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On Intentional and Social Agents with Graded Attitudes.

Abstract

The central contribution of this dissertation is the proposal of a graded BDI agent

model (g-BDI), specifying an architecture capable of representing and reasoning

with graded mental attitudes. We consider that making the BDI architecture more

flexible will allow us to design and develop agents capable of improved performance

in uncertain and dynamic environments, serving other agents (human or not) that

may have a set of graded motivations.

In the g-BDI model, the agent graded attitudes have an explicit and suitable

representation. Belief degrees represent the extent to which the agent believes a

formula to be true. Degrees of positive or negative desires allow the agent to set

different levels of preference or rejection respectively. Intention degrees also give a

preference measure but, in this case, modelling the cost/benefit trade off of achieving

an agent’s goal. Then, agents having different kinds of behaviour can be modelled

on the basis of the representation and interaction of their graded attitudes. The

formalization of the g-BDI agent model is based on Multi-context systems and in

order to represent and reason about the beliefs, desires and intentions, we followed a

many-valued modal approach. Also, a sound and complete axiomatics for represent-

ing each graded attitude is proposed. Besides, in order to cope with the operational

semantics aspects of the g-BDI agent model, we first defined a Multi-context calcu-

lus for Multi-context systems execution and then, using this calculus we give this

agent model computational meaning.

Furthermore, a software engineering process to develop graded BDI agents in a

multiagent scenario is presented. The aim of the proposed methodology is to guide

the design of a multiagent system starting from a real world problem. Through the

development of a Tourism recommender system, where one of its principal agents is

modelled as a g-BDI agent, we show that the model is useful to design and implement

concrete agents.

Finally, using the case study we have made some experiments concerning the

flexibility and performance of the g-BDI agent model, demonstrating that this agent

model is useful to develop agents showing varied and rich behaviours. We also

show that the results obtained by these particular recommender agents using graded

attitudes improve those achieved by agents using non-graded attitudes.
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Resumen

La principal contribución de esta Tesis es la propuesta de un modelo de agente

BDI graduado (g-BDI) que permita especificar una arquitetura de agente capaz de

representar y razonar con actitudes mentales graduadas. Consideramos que una

arquitectura BDI más flexible permitirá desarrollar agentes que alcancen mejor per-

formance en entornos inciertos y dinámicos, al servicio de otros agentes (humanos o

no) que puedan tener un conjunto de motivaciones graduadas.

En el modelo g-BDI, las actitudes graduadas del agente tienen una representación

expĺıcita y adecuada. Los grados en las creencias representan la medida en que el

agente cree que una fórmula es verdadera, en los deseos positivos o negativos per-

miten al agente establecer respectivamente, diferentes niveles de preferencias o de

rechazo. Las graduaciones en las intenciones también dan una medida de preferen-

cia pero en este caso, modelan el costo/beneficio que le trae al agente alcanzar una

meta. Luego, a partir de la representación e interacción de estas actitudes graduadas,

pueden ser modelados agentes que muestren diferentes tipos de comportamiento. La

formalización del modelo g-BDI está basada en los sistemas multi-contextos. Difer-

entes lógicas modales multivaluadas se han propuesto para representar y razonar

sobre las creencias, deseos e intenciones, presentando en cada caso una axiomática

completa y consistente. Para tratar con la semántica operacional del modelo de

agente, primero se definió un calculus para la ejecución de sistemas multi-contextos,

denominado Multi-context calculus. Luego, mediante este calculus se le ha dado al

modelo g-BDI semántica computacional.

Por otra parte, se ha presentado una metodoloǵıa para la ingenieŕıa de agentes

g-BDI en un escenario multiagente. El objeto de esta propuesta es guiar el diseño

de sistemas multiagentes, a partir de un problema del mundo real. Por medio del

desarrollo de un sistema recomendador en turismo como caso de estudio, donde el

agente recomendador tiene una arquitectura g-BDI, se ha mostrado que este modelo

es valioso para diseñar e implementar agentes concretos. Finalmente, usando este

caso de estudio se ha realizado una experimentación sobre la flexibilidad y perfor-

mance del modelo de agente g-BDI, demostrando que es útil para desarrollar agentes

que manifiesten conductas diversas. También se ha mostrado que los resultados

obtenidos con estos agentes recomendadores modelizados con actitudes graduadas,

son mejores que aquellos alcanzados por los agentes con actitudes no-graduadas.
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Introductory Concepts

1





The beginning is the most
important part of the work.

Plato

Chapter 1

Introduction

Computer applications play an increasingly important role in everyday life. They
are becoming more tightly connected with each other, forming large networks and
interacting with humans through user-interfaces. Much of these systems are too
complex to be completely characterized and precisely described; hence, these appli-
cations are hard to solve using centralized computing technology. Moreover, several
of these systems are inherently distributed in the sense that the data and information
to be processed is both geographically and temporarily distributed, or are structured
into clusters whose access and use requires sophisticated capabilities [152].

We are confronted then with a new view of computing: computation as interac-
tion, as an activity that is inherently social, and leading to new ways of conceiving,
designing and developing computational systems. Agent based systems stand as
a promising way to understand, manage and use these distributed, large-scale, dy-
namic, open and heterogeneous computing, information and social systems [85, 102].
Besides, multiagent systems offer a natural way of understanding and characteriz-
ing intelligent systems. Intelligence and interaction are deeply coupled and these
systems enable us to model this insight. Several researchers argue that intelligent
behaviour is not disembodied, but is a product of the interaction an agent main-
tains with its environment. Under this conception multiagent systems stand as a
new approach to Artificial Intelligence [133].

With the spread of multiagent systems the number of projects and researchers
involved in related fields has risen. Notably, there are some important coordina-
tion actions for agent based computing, as for instance AgentLink 1, an European
network of researchers and developers with a common interest in agent technology.
There are several websites providing information resources on intelligent agents,
examples of these are Agentcities 2 and Agentland.3

The agent research community holds that there are some application domains
where agent technologies will play a crucial role in the near future, including: am-

1http://www.agentlink.org
2http://grusma2.etse.urv.es/AgCitES/
3http://www.agentland.com

3



4 CHAPTER 1. INTRODUCTION

bient intelligence, grid computing, electronic business, the semantic web, bioinfor-
matics, monitoring and control, resource management, space, military missions and
manufacturing. The impact of agent technologies in application domains such as
these will occur firstly as a design metaphor of complex distributed computational
systems; secondly, as a source of technologies for such computing systems, and
thirdly, as models of complex real-world systems [86, 102].

Considering agents as a design metaphor, they provide software designers and
developers with a way of structuring an application around autonomous, communi-
cating components, and lead to the construction of software tools and infrastructure
to support this design. In order to support this view of systems development, par-
ticular tools and techniques need to be introduced. For example, methodologies
that guide the analysis and design processes are required, agent architectures are
needed for the design of individual software components, tools and abstractions are
required to enable developers to deal with the complexity of implemented systems,
and supporting infrastructure must be integrated.

In order to achieve the full potential of agent approaches and technologies there
are a number of broad technological challenges for the near future. In the Agent
Technology Roadmaps of the AgentLink network [86, 102], Luck et al. recommend
that research and development resources should be focused along several key direc-
tions. Some of them are the following:

1. Creating tools, techniques and methodologies to support agent systems devel-
opers.

2. Automating the specification, development and management of agent systems.

3. Integrating components and features. Many different theories, architectures,
technologies and infrastructures are required to specify, design, implement and
manage agent based systems.

4. Establishing appropriate linkage with other branches of computer science and
with other disciplines.

The work reported in this Thesis can be placed within these mentioned directions.

1.1 Motivations

This Thesis work undertakes an extension of the BDI agent architecture in order
to incorporate the representation of uncertainty in beliefs, desires —thus allowing
the expression of graded positive and negative desires, and graded intentions. Some
years ago, I worked in research projects related to knowledge-based systems, study-
ing how different approaches to approximate reasoning could be applied to them,
and turning these systems more flexible and useful for real applications [103, 100].
Now, in the framework of multiagents systems, i.e. in a distributed and complex
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platform of autonomous, proactive, reactive and social agents; I asked myself how
the ideas underlying approximate reasoning could be extended and applied to these
distributed systems.

Following this motivation, we found an interesting paper by Parsons and Giorgini
[116] where a first approach to a graded BDI model was presented. It included only
the representation of uncertainty in the beliefs, and left the general graded model
as an open research problem. This “open door” to future work encouraged us to
take this research direction. There are other contributions which treat agents that
reason under uncertainty in dynamic and complex environments, but most of them
deal with partial aspects of graded attitudes in intentional agents [97, 124, 142].

In this Thesis a graded BDI agent model is proposed, this model allows us to
define concrete agents capable of dealing with uncertain environments (i.e. graded
Beliefs) and with graded mental proactive attitudes (i.e. Desires and Intentions).
Besides proposing an agent model, we consider it important to define its operational
semantics to describe how a valid agent model is interpreted as sequences of compu-
tational steps. Notably, process calculi have been used to cope with formal aspects
of multi-agent systems [130, 148] and we wondered if the same approach could be
used to give this agent model computational meaning.

On the other hand, software engineering methodologies for developing agent
based systems have become an important necessity. Even though there are valuable
approaches in this field (e.g. [118, 157]), few of them emphasize the internal design of
agents and consider a particular architecture. Furthermore, the actual engineering
of graded BDI agents in a multiagent scenario was another relevant motivation for
our work.

In the following Section, we pinpoint the contributions of this Thesis to these
different fields.

1.2 Contributions

We consider that making the BDI architecture more flexible will allow us to de-
sign and develop agents capable of improved performance in uncertain and dynamic
environments, serving other agents (human or not) that may have a set of graded
motivations. In this research line, the central contribution of this work is the pro-
posal of a graded BDI agent model (g-BDI), specifying an architecture capable of
representing and reasoning with graded mental attitudes.

We consider this work to be an important contribution to the agent architectures
field, because of the relevance of the BDI architecture and because some of our
ideas may be adapted to other agent architectures. Moreover, we dealt with the
operational semantics of the agent model as a first step towards a g-BDI agent
interpreter and we also developed a methodology to engineer multiagent systems
composed by g-BDI agents. In summary, the Thesis contributions are situated on
the following diverse fields:
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1. Agent architectures: a general graded BDI agent model is proposed.

In this model, the agent graded attitudes have an explicit and suitable rep-
resentation. Belief degrees represent the extent to which the agent believes
a formula to be true. Degrees of positive or negative desire allow the agent
to set different levels of preference or rejection respectively. Intention degrees
also give a preference measure but, in this case, modelling the cost/benefit
trade off of achieving an agent’s goal. Then, agents having different kinds of
behaviour can be modelled on the basis of the representation and interaction
of their graded beliefs, desires and intentions.

The specification of the g-BDI agent model is based on Multi-context systems
(MCS). These systems were introduced by Giunchiglia et al. [68] to allow
different formal (logic) components to be defined and interrelated, and Parsons
et al. in [115] firstly used them to formalize BDI agents. The MCS specification
of agents has several advantages pointed out by Sabater et al. in [136] both
from a software engineering and a logical point of view.

In order to represent and reason about graded notions of belief, desire and
intention, in the g-BDI model we followed the approach developed by Godo et
al. [72] where uncertainty reasoning is dealt with by defining suitable modal
theories over suitable many-valued logics. This formalization permits us to
deal with the different mental attitudes within the same well-founded logical
framework.

An illustration of the development of the g-BDI agent model and its related
works is shown in Figure 1.1. The evolution of the g-BDI agent model, can be
seen in [29],[30] and [31].

Figure 1.1: Related work to the g-BDI agent model development
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2. Knowledge representation and reasoning: a logical framework with a
sound and complete axiomatics for representing beliefs, desires and intentions
is presented.

Looking for suitable logical systems for representing and reasoning about be-
liefs, desires and intentions in the g-BDI agent model is a knowledge represen-
tation problem. The question of how to deal with uncertain beliefs has been
widely studied in the AI community and several approaches to approximate
reasoning have been proposed (as for instance see [79]). The problem of pref-
erence representation (i.e. desires and intentions) has been also approached in
some works (e.g. [96], [11]). Considering the desire representation in our agent
model, we based our work on the bipolar model due to Benferhat et al. [12]
and we extend the state of the art by giving a sound and complete axiomatics
and defining different logical schemas to represent some additional constraints
over preferences. In addition, we present a logical system for intentions and
we show that the framework is expressive enough to describe how desires (ei-
ther positive or negative), together with other information, can lead agents to
intentions. Recent work in this direction was presented in [37].

3. Process calculi: a Multi-context calculus (MCC) to define operational seman-
tics for multi-context systems is developed and we use it for giving semantics
to the g-BDI agent model.

In order to cope with the operational semantics aspects of the g-BDI agent
model, we first defined a Multi-context calculus (MCC) for Multi-context sys-
tems (MCS) execution. The calculus proposed is based on Ambient calculus
[28] and includes some elements of the Lightweight Coordination Calculus
(LCC) [148]. We expect that MCC will be able to specify different kinds of
MCSs. Particularly, we have shown how graded BDI agents can be mapped
into this calculus. Through MCC we give this agent model computational
meaning and in this way, we move one step closer to the development of an
interpreter of the g-BDI agents. Figure 1.2 illustrates the path leading to the
operational semantics of the agent model. Although process calculi have been
used in the past to model multiagent systems [130, 148], we have considered
that the modular structure that MCS provides to the architecture of an agent
would permit a similar treatment of single agents as well. Preliminary results
on the language for the execution of g-BDI agents can be seen in [36].

4. Agent based software engineering: a methodology for engineering agent
based systems composed by agents designed as g-BDI agents, is presented.

We propose a software engineering process to develop graded BDI agents in
a multiagent scenario. The aim of the proposed methodology is to guide
the design of a multiagent system starting from a real world problem. This
process is illustrated in Figure 1.3. The methodology presented has been
built by adapting and extending previous approaches [88, 118, 159] in order
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Figure 1.2: Giving Operational Semantics to the g-BDI agent model

to engineer agents with a more complex internal architecture. Furthermore,
our work was inspired in some sense by the design process used in [141] where
the social aspects of design are considered, and the system design phase is
clearly separated from the agent design phase. Preliminary results on the
methodology proposed can be seen in [34]. The design and implementation of
a case study in the tourism domain is developed to show how the proposed
methodology works.

Figure 1.3: Software Engineering for the g-BDI agents

Through the design and implementation of a Tourism recommender system,
where one of its principal agents is modelled as a g-BDI agent, we show in the
first place that the agent model is useful to design and implement concrete agents
in real world applications. The Tourism recommender design and implementation
was presented in [32, 35].

Finally, using the case study we have made some experiments concerning the
flexibility and performance of the g-BDI agent model. The experiments demostrate
that this agent model is useful to develop concrete agents showing varied and rich
behaviours. We also show that the results obtained by these particular recommender
agents using graded attitudes improve those achieved by agents using non-graded
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attitudes. The validation and experimentation of the g-BDI Model using the case
study are exposed in [38].

1.3 Structure

This Thesis is structured in four main Parts. Part I, is about Introductory Concepts
and apart from the current Introduction in Chapter 2, we present related work to
our research, such as: agent theories and architectures, with special attention to
the BDI model; the multi-context systems and their approach to agent specification
and engineering; and some logics of preference. Then, in Chapter 3 we review some
of the logical background which is fundamental for our work, i.e. dynamic logic
to reason about the agent actions and the transformation they produce, and some
many-valued logic as Godel logic, Rational Pavelka logic and Rational Lukasiewicz
logic, to reason about fuzzy modal formulae in the different contexts.

In Part II, the Graded BDI agent model is presented and then, in the consecutive
Chapters 4 to 7 the general framework, its fundamental components as the different
Contexts (mental and functional) and the Bridge Rules are formalized. Later on,
in order to give an idea of how this model works, we show an example of a travel
assistant agent. Then, the extension of the basic model that includes social and
dynamic aspects is considered in Chapter 8. In Chapter 9 the operational semantics
of this agent model are given.

Next, in Part III the software engineering aspects are addressed. In Chapter 10
we present the characteristics of the Tourism domain where our case study is situ-
ated. Then, in Chapter 11 a methodology to engineer g-BDI agents in a multiagent
system is developed and a case study is designed using the proposed methodology.
At the end of this Part, in Chapter 12, a prototype implementation of the recom-
mender tourism system is described.

Part IV is dedicated to present our experimental work in Chapter 13 and fi-
nally, in Chapter 14 the most relevant contributions related to our Thesis work are
discussed and we present some lines of future work.





Is there anyone so wise as to learn
by the experience of others?

Voltaire

Chapter 2

Related Work

2.1 Introduction

In this Chapter we introduce different lines of work relevant to the agent model pro-
posed in this Thesis. Some fundamental theories that constitute the building blocks
of our agent architecture, are presented. Firstly, the principal agent architectures
and the theories supported them are revised, particularly we focus on the family
of BDI agents, where our proposal is situated. In second place, the backgrounds
of multi-context systems and their use on agent specification, are shown. Then, we
revise some logics of preferences to represent and reason about the agent positive
and negative desires. Finally, some approaches to graded attitudes in intentional
agent architectures are discussed.

Besides, two important lines of related work are presented in next Chapters 9 and
11. These fields are not fundamental for the agent model definition, but are vital
to give the agent model semantics and to state a methodology for its engineering.
Then, in Chapter 9 we present some Process Calculus used for giving operational
semantics to different systems, and particularly to formalize coordination charac-
teristics in multiagent systems. Later on, in Chapter 11 some approaches to Agent
based Software Engineering are presented to cope with the methodological aspects
of agent based systems and particularly, of those composed by BDI agents.

2.2 Agent Theories and Architectures

In order to give multiagent systems a formal support, several researchers have pro-
posed diverse theories and architectures for agents. Agent theories are essentially
specifications of agents behaviour expressed as properties that agents should satisfy.
A formal representation of the properties helps the designer to reason about the
expected behaviour of the system.

Agent architectures can be thought of as software engineering models of agents
and represent a middle point between specification and implementation. They iden-

11
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tify the main functions that ultimately determine the agent’s behaviour and define
the interdependencies that exist among them. A relevant review of the work done
on agent theories and architectures is due to Wooldridge and Jennings in [154].

Agent theories based on an intentional stance are among the most common ones.
These are based on a folk psychology by which human behaviour is predicted and
explained through the attribution of attitudes. For example, when explaining human
activity, it is often useful and common to make statements such as the following:

Jorge took his coat because he believed it was going to be cold.
Peter worked hard because he wanted to save money.

In these examples, Jorge’s and Peter’s behaviours can be explained in terms of
their attitudes, such as believing and wanting. The philosopher Dennet has coined
the term Intentional system to describe entities “whose behaviour can be predicted
by the method of attributing certain mentalistic attitudes such as belief, desires
and rational acumen” [48]. Dennet also identifies different grades of intentional
systems: a first-order intentional system has believes and desires (etc.) but no
beliefs and desires about beliefs and desires. A second-order intentional system is
more sophisticated; it has beliefs and desires (and possibly other intentional states)
about beliefs and desires (and other intentional states), both those of others and its
own.

When the underlying system process is well known and understood, there is no
reason to take an intentional stance, but this is not the case in many applications.
The intentional notions are abstraction tools, which provide with a convenient and
familiar way of describing, explaining, and predicting the behaviour of complex
systems. Considering that an agent is a system that is conveniently described by
the intentional stance, it is worth to weigh up which attitudes are appropriate for
representing agents. The two most important categories are information attitudes
—knowledge and belief— and pro-attitudes —desire, intention, obligation, commit-
ment, choice, among others.

Information attitudes are related to the knowledge that the agent has about the
world, whereas pro-attitudes are those that in some way guide the agent actions.
The attitudes of both categories are closely related and much of the work in agent
theory is concerned with clearing up the relationships between them. Although there
is no total agreement on which combination of attitudes is the most appropriate to
characterize an agent, it seems reasonable that an agent must be represented in
terms of at least one information attitude and one pro-attitude.

There are various formalisms that focused on just one aspect of agency (i.e.,
beliefs, desires, intentions, etc.) but it is expected that a realistic agent theory will
be represented in a logical framework that defines how the attributes of agency are
related; how an agent cognitive state changes over time; how the environment af-
fects the agent beliefs; and how the agent information and pro-attitudes lead it to
perform actions [154].
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Considering now the area of agent architectures, this field represent the move
from specification to implementation. We need to address such questions as: How
are we to construct computer systems that satisfy the properties specified by a
particularly agent theory? How the agent can be decomposed into the construction
of a set of component modules and how these modules should interact? What
software/hardware structures are appropriate?

Maes defines an agent architecture as

“A particular methodology for building agents. It specifies how...the
agent can be decomposed into the construction of a set of component
modules and how these modules should interact. The total set of modules
and their interactions has to provide an answer to the question of how
the sensor data and the current mental state of the agent determine the
actions...and the future mental state of the agent.” (Maes [101], p115).

Making specific commitments about the internal structure and operation of
agents, we have a distinct class of agents. There exists different proposal for the clas-
sification of agent architectures. Following the classification defined by Wooldridge
in [152, 158], we consider four classes of architectures for intelligent agents:

1. Logic based architectures(deductive agents)

2. Reactive architectures (reactive agents)

3. Layered architectures (hybrid agents)

4. Practical reasoning architectures (BDI agents)

In the rest of this Section we outline the main characteristics of each kind of ar-
chitecture and in the following Section 2.2.5 we present the BDI model in more
detail.

2.2.1 Logic-Based Architectures - Deductive agents

A classical approach to build agents follows the traditional way for building artificial
intelligent systems. This paradigm suggests that the intelligent behaviour can be
generated in a system by giving it a symbolic representation of its environment and
its desires, and allowing it to syntactically manipulate this representation.

A deductive or deliberative agent is one that contains an explicitly represented,
symbolic model of the world, in which the decisions are made through logical rea-
soning, based on pattern matching and symbolic manipulation. In most cases, these
symbolic representations are logical formulae and the syntactic manipulation corre-
sponds to logical deduction or theorem proving. The idea of deliberative agents as
theorem provers is attractive and a number of more-or-less “pure” logical approaches
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to agent programming have been developed. However, there are still several prob-
lems associated with this approach to agency to be solved (many of them come from
the symbolic approach to AI):

The transduction problem: how to translate the real world into an accurate,
adequate symbolic description, in time for that description to be useful.

The representation/reasoning problem: how to symbolically represent knowl-
edge about complex and dynamic real-world entities and processes, and how
to get agents reason with this knowledge in time.

Calculative rationality: the assumption that the world will not change in any
significant way while the agent is making decisions. This is not acceptable in
dynamic environments that change faster.

Computational complexity: the complexity of theorem proving makes it ques-
tionable whether agents using this deduction mechanism can operate effec-
tively in time-constrained environments.

2.2.2 Reactive architectures - Reactive agents

The problems with symbolic or logical approaches to build agents led some re-
searchers to proclaim that a whole new proposal was required. They began to in-
vestigate different alternatives to the symbolic AI paradigm. Although it is difficult
to characterize these different approaches, they agree in a number of points:

• the rejection of symbolic AI (as a representation-reasoning mechanism).

• intelligence and rational behaviour are not disembodied (they are a product
of the interaction the agent maintains with its environment).

• intelligent behaviour emerges from the interaction of various simpler behaviours.

Alternative approaches to agency are sometimes referred to as behavioral —
since these agents develop and combine individual behaviors, situated —since they
are actually situated in some environment, rather than being disembodied from it,
and finally reactive, the name used to represent this class of agents, because these
systems are often perceived as simply reacting to the environment, without reasoning
about it.

One of the best-known alternative architecture is the subsumption architecture,
developed by Brooks [23], one of the most influential critics of the symbolic approach
to agency in the last years. This architecture is also called behavior-based architec-
ture and some authors, as Wooldridge in [152, 158], classified it as a reactive one.
There are two defining characteristics of the subsumption architecture. The first one
is, that an agent’s decision making is realized through a set of task accomplishing
behaviours. Each behaviour may be though it of as an individual action function, it
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takes perceptual input and maps it to an action, neither does it include any complex
symbolic representation nor reasoning. Each of these behaviour modules is intended
to achieve some particular task. In Brooks’ implementation these modules are finite
state machines. The second important characteristic is, that many behaviours can
fire simultaneously. Hence, there must be a control mechanism to choose among
the different actions selected. Brooks proposed to organize the modules into a sub-
sumption hierarchy, with the behaviours arranged into layers —the lower the layer
is, the higher is its priority. Another characteristic of the subsumption systems
implementation is that there is assumed to be a quite tight coupling between per-
ception and action, and there is no attempt to transform the input data to symbolic
representations.

One of the principal advantages of the reactive approaches over the logic-based
ones is that the complexity is tractable. Other advantages of these approaches
such as Brooks’ subsumption architecture are: simplicity, economy and robustness
against failure. However, there are some fundamental unsolved problems related to
the reactive architectures that are remarked in [158]:

• If reactive agents do not employ models of their environment, then they must
have sufficient information available to determine an acceptable action

• How reactive agents would take into account global information as these agents
make decision based just on local information.

• How to incorporate learning from experience is not addressed.

• It is difficult to engineer this kind of agents to fulfill specific tasks and there
is no principled methodology for building reactive agents. In purely reactive
systems the overall behaviour emerges from the interaction of component be-
haviours when the agent is placed in its environment. Sometimes the relation-
ships between individual behaviours, environment and the overall behaviour
is not understood.

• It is hard to build agents that contains many layers. Effective agents can be
generated with small —less than ten— numbers of behaviours.

2.2.3 Layered Architectures - Hybrid agents

Many researches have argued that neither a complete reactive nor deliberative ap-
proach is suitable for building agents. Given the requirement that an agent must
be capable of reactive and proactive behaviour, an interesting approach involves
creating separate subsystems to deal with these different kinds of behaviours. A
class of architectures in which the defined subsystems are arranged into hierarchy
and interacting layers, implements this idea.

In this approach, an agent will be defined in terms of two or more layers, to
deal with the reactive and pro-active behaviours, respectively. The agent control
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Figure 2.1: Information and control flows in layered agents architecture (Source:
[111], p263).

subsystems are arranged into a hierarchy, with higher layers dealing with information
at increasing levels of abstraction. An important problem in such architectures is
to determine what kind of control framework is needed, in order to manage the
interactions between the various layers. Two basic types of control flow can be
identified within layered architectures, as it is shown in Figure 2.1 and are described
in [158]:

• Horizontal layering: each layer is directly connected to the sensory input and
action output, acting like an agent and producing action proposals (Figure 2.1
(a)).

• Vertical layering. Sensory input and action output are each dealt with by at
most one layer. In this case there are two approaches:

– one-pass architecture: control flows sequentially through each layer, until
the final layer (Figure 2.1 (b)).

– two-pass architecture: control flows up the architecture (the first pass)
and then, control flows back down (Figure 2.1 (c)).

The great advantage of the horizontally layered architecture is its conceptual
simplicity. One layer can be implemented for each behaviour the agent needs to
exhibit. The different layers may generate competitive actions suggestions, some-
times inconsistent. In order to ensure the system consistence, it generally includes
a mediator function. This function decides which layer has control on the agent at
any time, the design of this function is difficult. This problem is in part solved in the
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vertically layered architecture where the complexity of interactions between layers
is reduced. However, the vertical layering has a disadvantage: in this architecture
the control must pass between each different layer and a failure in any one layer
will affect the whole agent performance. Examples of the layered architectures are
Ferguson’s TouringMachines —horizontally layered architecture— [59], and Muller’s
InteRRaP —two-pass vertically layered— [112].

2.2.4 Practical Reasoning Architectures - BDI agents

Practical reasoning is a particular model of decision making. This model is inspired
in the process that seems to take place when we decide what to do next —the process
of deciding which action to perform in order to reach our goals. The philosopher
Michael Bratman defines this process as:

“Practical reasoning is a matter of weighing conflicting considerations
for and against competing options, where the relevant considerations
are provided by what the agent desires/values/care about and what the
agent believes.” (Bratman, [22], pp.17)

Practical reasoning involves two important processes: deliberation —deciding
what goals or desires we want to achieve, and means-ends reasoning —how we are
going to achieve them. After generating these set of alternative goals, the agent
must choose among them, and commit to some. These goals committed to achieve
are the agent’s intentions. In practical reasoning process, intentions play a crucial
role lead to actions.

Specifically, Bratman argues that rational agents will tend to focus their practical
reasoning on the intentions they have already adopted, and will tend to avoid the
consideration of options that conflict with them. Some of the most relevant points of
his work are known as Bratman’s claim, and we can summarize their characteristics
as follows [158]:

• Intentions drive means-ends reasoning: If an agent has an intention, then it
will attempt to achieve it, which involves deciding how to achieve it. If one
way fails to achieve an intention, then it will attempt others.

• Intentions persist: The agent will not give up on its intention without a good
reason —it believes it cannot achieve them or that the reason for the intention
is no longer present.

• Intentions constrain future deliberation: The agent will not consider options
that are inconsistent with its current intentions, and

• Intentions influence beliefs upon which future practical reasoning is based: The
agent can plan for the future on the assumption that she will achieve her
current intentions.
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Bratman’s theory of intention [20, 22] is an important contribution and his work
points out that intentions play an fundamental role in practical reasoning. In turn,
the agent intentions interact with and sometimes depends on, the agent beliefs and
desires. However, in the design of practical reasoning agents satisfactorily capturing
these interactions and achieving a good balance among the different items presented
above, turn out to be considerably difficult.

Some of the philosophical aspects of a rational agency were well formalized by
Cohen and Levesque [41, 42]. They developed a Logic of Rational Agency where
they provided one of the first logical formalization of intentions and the notion of
commitment using just two basic attitudes: beliefs and goals (i.e., desires). Other
attitudes, as intentions, were defined in terms of these. This theory of intention
and commitment was applied as for example, to the formalization of communicative
actions among agents [42].

In particular, intentions are modeled as a kind of commitment (i.e., persistent
goal) and are defined in terms of temporal sequences of an agent beliefs and goals.
The mechanism an agent uses to determine when and how to drop intentions is
known as commitment strategy. Based on different kinds of commitments specific
agents are proposed [123]:

• Blindly commited agent is a fanatically committed agent that will continue to
mantain an intention until she believe the intention has actually been achieved.

• Single-minded commited agent will continue to maintain an intention until
either it is believed to be achieve or it is believed to be unachievable.

• Open-minded commited agent is an agent with a relativized commitment to
her intentions is similar to the other but, may also drop her intentions when
some specified conditions are believed to hold.

A key problem in the design of practical reasoning agents implementing this kind
of commitments (in particular the single-minded and open-minded ones) is that they
must revise their intentions. Specially it seems clear that the agent should at times
drop some intentions (because the reasons mentioned above) It follows that, from
time to time it is worth an agent stopping to reconsider its intention. But recon-
sideration has a cost (i.e. in time and resources). This problem is known in the
literature as intention reconsideration (e.g. see [142, 143]) and treat the problem of
balancing the agent pro-active (goal-directed) and reactive (event driven) behaviour,
in relation to the environment dynamism.

While the Cohen and Levesque’s formalization treats intentions as being re-
ducible to beliefs and desires, Bratman [20] argues that intentions play a significant
and distinct role in practical reasoning. He also shows how the agent current beliefs,
desires and intentions, constitute a background for future deliberations. Systems
and formalisms that give primary importance to intentions represent an important
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class of the BDI architectures.

The Belief-Desire-Intention (BDI) architecture was originated in the work of the
Rational Agency Project at Stanford Research Institute in the mid-1980s. This
agent model is based on the theory of human practical reasoning [20, 22] mention
above. Within the “Agent Theory, Architectures and Languages” (ATAL) commu-
nity [66], the BDI model has come to be possibly the best known and studied model
of practical reasoning agents. There are several reasons for its success, but perhaps
the most compelling are that the BDI model combines a respectable philosophical
model [20, 22], a number of implementations (e.g. [20], [61] and [18]), several suc-
cessful applications [61], and finally, and a well-founded logical semantics [126, 139].

In the Agent Community, the term BDI model is used in different ways, includ-
ing a family of agent models and architectures. In a wide sense, they are models
of practical reasoning that employ the folk-psychology concepts of belief, desire and
intention, perhaps among other attitudes. In a narrow sense, there are particular
BDI models that embody Bratman’s claim, as for example, the IRMA specific archi-
tecture (for the “Intelligent Resource-Bounded Machine Architecture” described in
[20]). Also, there are particular BDI models that suitable specified Procedural Rea-
soning System (PRS), as for instance [61, 62]. In this Thesis we adopt the broader
position, calling BDI models, to those models of practical reasoning that explicitly
represent the agent mental attitudes (i.e. belief, desire and intentions).

The basic components of a BDI architecture are data structures representing the
beliefs, desires and intentions of the agent, and functions that represent its delibera-
tion —deciding what intentions to have, and means ends reasoning —deciding how
to do them. We present a general formalization of this agent model, describing its
components and their relations, following Wooldridge in [158].

Let Bel be the set of all possible beliefs, Des be the set of all possible desires,
Int be the set of all possible intentions, P is the current percept and the set A of
the actions the agent can execute. The state of a BDI agent at any given point of
time is a triple (B,D, I), where B ⊆ Bel, D ⊆ Des and I ⊆ Int. The process
of practical reasoning in a BDI agent may be summarized in the schema shown in
Figure 2.2. This Figure illustrates the main components in a BDI agent that are
described as follows:

• a set of current beliefs (B), representing the information the agent has about
its environment,

• a belief revision function (brf), which takes a perceptual input and the agent
current beliefs, and determines a new set of beliefs:
brf : ℘(Bel)× P → ℘(Bel),

• an option generation function (options), which determines the options avail-
able to the agent (its desires D), on the basis of the current beliefs and its
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Figure 2.2: Schematic diagram of a generic belief-desire-intention architecture
(Source: [152], p58).

current intentions:
options : ℘(Bel)× ℘(Int)→ ℘(Des),

• a set of current options (D), representing possible course of actions available
to the agent,

• a filter function (filter), which represents the agent deliberation process in
which the agent determines its intentions, based on its currents beliefs, desires
and intentions:
filter : ℘(Bel)× ℘(Des)× ℘(Int)→ ℘(Int)

• a set of current intentions (I), representing those states of affairs that it has
committed to try to bring about.

• an action selection function (execute), which determines an action to perform
on the basis of current intentions.
execute : ℘(Int)→ A

The resulting process is the agent decision function action : P → A. This
function maps the input perception into an action that the agent will try to execute
and is defined in terms of the data structures and functions previously presented.
A simple version of this function is defined by the following pseudocode:
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function ACTION (p:P):A

B:= brf(B,p)

D:= options(D,I)

I:= filter(B,D,I)

return execute(I)

end function ACTION

A more complete version of this practical reasoning loop, including intention
reconsideration, could be seen in ([158], p76).

Procedural Reasoning Systems

The procedural Reasoning Systems (PRS), originally developed by Georgeff and
Lansky [61] was one of the first agent architecture that explicitly embody the BDI
model.

The PRS is a BDI architecture because it contains explicitly represented data
structures loosely corresponding to these mental attitudes. An illustration of the
PRS architecture is given in Figure 2.3 PRS is a goal-directed and reactive planning

Figure 2.3: The procedural Reasoning System

system. The goal-directed behaviour allows to reason about and to perform complex
tasks, while reactiveness allows handling real-time behaviour in dynamic environ-
ment In the PRS an agent does no planning instead, it is equipped with a library of
precomputed plans which are used to to perform means-ends reasoning. The process
of selecting between different possible plans is a deliberation process and includes
the use of meta-level plans which are able to modify an agent’s intention structure
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at runtime, in order to change the focus of the agent’s practical reasoning. Beliefs
in the PRS are represented as PROLOG-like facts (i.e. atoms of a first order logic).

Since the first PRS system [61], it has been re-implemented several times after-
wards, as for example the dMARS system [46], implementations in C++ are UM-PRS
and Open-PRS and a Java version is called Jam system [81], Besides, two relevant
implementations currently very used are Jack [65] and Jason [18]. Furthermore, it
has been applied in several of the most significant multiagent applications so far
built including an air-traffic control system called OASIS, a simulation system for
the Royal Australian air force called SWARMM, the now-famous fault diagnosis
system for the space shuttle, as well as factory process control systems and business
process management called SPOC, overviews of these systems are described in [62]).

The BDI model is also interesting because a great deal of effort has been dedicated
to formalize it. In particular, Anand Rao and Michael Georgeff have developed a
range of BDI logics, which they use to axiomatized properties of BDI agents. In the
following Subsection, we outline the more important features of its logical framework.

2.2.5 Rao and Georgeff’s BDI model

One of the well-known intentional system formal approach that follows Bratman’s
claim, was proposed by Rao and Georgeff [123, 125]. This BDI model is built upon
the theory of Intentional systems.

This model is based on the explicit representation of the agent beliefs (B), de-
sires (D) and intentions (I), using a logical framework based on the possible world
semantics. Firstly, Rao and Georgeff in [123] present the logic formalism in terms of
the agent belief, goals and intentions. Then, they revised the concept of the agent
goal and it was replaced in [125] by the concept of desire, as it is still used nowadays.
In this section we used [123] as reference of the BDI logic and then, the term of goal
is used instead of desire.

In the design of rational agents the role played by attitudes such as beliefs (B),
desires (D) and intentions (I) has been well recognized and analyzed by philosophical
and AI researchers. The beliefs are needed to represent the state of the world, the
desires, to set the state of affairs the agent wants to achieve and the intentions,
the worlds the agent has chosen and is committed to achieve. In this formalism
intentions are represented as a fundamental attitude like beliefs and desires.

Rao and Georgeff used to model the world as a temporal structure with a branch-
ing time future and a single past, called a time tree. The branches in a time tree can
be viewed as representing the choices available to an agent at each moment of time.
A particular time point in a particular world is called situation. Events transform
the state at one time point into another state at a subsequent time point. Primitive
events (actions) are those events that the agent can execute directly, and uniquely
determine the next time point in a time tree. Non-primitive events (plans) map
to non-adjacent time points. The agent may attempt to execute some event, but
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Figure 2.4: Belief-accessible world (Source: [123]).

may fail to do so (i.e., successful execution of events or their failure). They use a
formalism similar to Computation Tree Logic, CTL [53] to describe these structures.
A distinction is made between state formulae —evaluated at a specified time point
in a time tree, and path formulae —over a specified path in a time tree.

The modal operators optional and inevitable are used to operate on path formu-
lae. A path formula ψ is said to be optional if, at a particular time point in a time
tree, ψ is true in at least one path emanating from that point; it is inevitable if ψ is
true in all paths emanating from that point. They also used the standard temporal
operators O (next), ♦ (eventually), � (always) and U (until), in order to operate
over state and path formulae.

These modalities can be combined in various ways to describe the options avail-
able to the agent. For example, the structure illustrated in Figure 2.4 could be used
to represent the following statements [123]:

- it is optional that John will eventually visit London (denoted by p);
- it is optional that Mary will always live in Australia (r);
- it is inevitable that the world will eventually come to an end (q) and
- it is inevitable that one plus one will always be two (s).

Belief is modelled in the conventional way, in each situation they associate a set
of belief-accessible worlds and each belief-accessible world is a time tree. Multiple
belief-accessible worlds result from the agent lack of knowledge about the state of the
world. This approach take into account the uncertainty in the agent beliefs allowing
a set of possibles world, but in this approach they do not use a belief measure (e.g.,
a probability measure, possibility measure, etc) to establish an order over the set of
worlds (i.e., expressing which of these are the most believable ones). Within each of
these worlds, the branching future represents the choice (options) still available to
the agent in selecting which actions to perform. In similar way, for each situation
they associate a set of goal-accessible worlds to represent the goals of the agent.
They use goals as a set of chosen consistent desires.
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Figure 2.5: Compatibility between Belief and Goal-accessible world (Source: [123]).

There are three well-established sets of attitudes relationships for the BDI agents
that has been identified in [123]. These three types of agents incorporates different
kind of relations between the attitudes (i.e. belief, desire and intention -accessible
worlds) called realisms, and they are define as follows:

• Strong realism: the set of intentions is a subset of desires which in turn is a
subset of the beliefs. That is, if an agent does not belief something is possible
to become true, it will neither desire nor intend it.

• Realism: the set of beliefs is a subset of desires which in turn is a subset of
the set of intentions. That is, if an agent beliefs something is possible, it both
desires and intends it.

• Weak realism: agents do not desires properties if the negation of those prop-
erties are believed, do not intend properties if the negation of those properties
are desired, and do not intend properties if the negation of those properties
are believed.

The formalization of these realism in a multi-context specification of BDI agents
can be seen in next Subsection 2.3.2).

In this review, we adopt the notion of strong realism. This sets up a relation
between the belief- and goal-accessible worlds: it is required that the agent be-
lieves she can optionally achieve her goals. This kind of belief-goal compatibility is
illustrated in Figure 2.5. Intentions are similarly represented by a set of intention-
accessible worlds. These worlds are ones that the agent has committed to attempt
to realize. The intention-accessible worlds of the agent must be compatible with her
goal-accessible worlds. In the case of a strong realism agent, she can only intend
some course of action if it is one of her goals.

It thus remains to formalize this semantics presented informally a the introduc-
tion to the BDI logical model.
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BDI logic

BDI logic is a branching-time temporal logic (CTL) extended in two ways. First,
they consider a first-order variant of the logic, and second, it is extended to a possible
world framework by introducing modalities for the believes, desires and intentions.

Then, its language includes the temporal operators U , �, ♦, O, optional and
inevitable, also modalities BEL, GOAL and INTEND to represent the mental
attitudes beliefs, desires and intentions, respectively. We present this formalization
as in

There are two types of formulae in the logic: state formulae and path formulae.
A state formula is defined as follows:

• any first-order formula is a state formula,

• if ϕ and ψ are state formulae and x is variable, then ¬ϕ, ϕ∨ψ, and (∃x)ψ(x)
are state formulae,

• if e is an event type then succeeds(e), fails(e), does(e), succeeded(e), failed(e),
and done(e) are state formulae,

• if ψ is state formula then BEL(ψ), GOAL(ψ) and INTEND(ψ) are state
formulae and

• if ψ is a path formula, then optional(ψ) is a state formula.

A path formula can be defined as follows:

• any state formula is also a path formula and

• if Φ and Ψ are path formulae, then ¬Φ, Φ ∨ Ψ, Φ U Ψ, ♦Ψ and OΨ are path
formulae.

There are some abbreviations used in the language for representing some formulae,
namely:

• �(ψ) for ¬♦(¬ψ).

• inevitable(φ) for ¬optional(¬φ)

• done(e) for succeeded(e) ∨ failed(e)

• succeeds(e) for inevitableO(succeeded(e))

• fails(e) for inevitableO(failed(e))

• does(e) for inevitableO(done(e))
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As for example, optionally♦p, optionally�r, inevitably♦q and inevitably�s are
state formulae that are true at the root state (time t0) of the world shown in Figure
2.4.

BDI Semantics

The formalization of this semantics is presented by Rao and Georgeff in [123].
First, they provide the semantics of the different formulae, secondly of the events
and finally, the possible world semantics of beliefs, goals, and intentions. In the
following we briefly outline this schema:

An interpretation M is defined as M = (W,E, T,≺, U,B,G, I,Φ), where:

• W is a set of possible worlds,

• E is a set of primitive event types,

• T is a set of time points,

• ≺ a binary relation on time points,

• U is the universe of discourse,

• Φ is a mapping of first-order entities to elements in U for any given world and
time point, and

• B,G, I ⊆ W × T ×W are accessible relations for BEL, GOAL and INTEND,
respectively.

Notation: R refers to any one of these relations (B,G,I) and Rw,t to denote
the set of worlds R-accessible from world w at time t:

Rw,t = {w′ : R(w, t, w′)} for R = B,G, I

As for example, we show in Figure 2.6 the relation Bw,t2 including the worlds
w′ and w′′.

Each world w ∈ W , called a time tree, is a tuple (Tw, Aw, Sw, Fw), where:

• Tw ⊆ T is a set of time points in the world w,

• Aw is the restriction of ≺ to Tw,

• Sw : Tw × Tw → E map adjacent time points to (successful) events in E and

• Fw : Tw × Tw → E map adjacent time points to (failing) events in E.

The domains of Sw and Fw are disjoint.
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Figure 2.6: Belief-accessible world relation

A fullpath in world w is an infinite sequence of time points (t0, t1, . . .) such that
(ti, ti+1) ∈ Aw y fullpath (t0, t1, . . .) in world w is denoted as: (wt0 , wt1 , . . .).
Considering an interpretation M and a variable assignment v, the semantics of the
state formulae are defined as following:

• M, v,wt |= q(y1, ..., yn)⇔ (v(y1), ..., v(yn)) ∈ Φ[q, w, t] where q(y1, ..., yn) is a
predicate formula.

• M, v,wt |= ¬φ⇔M, v,wt 6|= φ

• M, v,wt |= φ ∨ ψ ⇔M, v,wt |= φ or M, v,wt |= ψ

• M, v,wt |= (∃x)φ⇔M, v [d/x] , wt |= φ for some d ∈ U

• M, v,wt |= optional(φ)⇔ exists a full path (wt0 , wt1 , ...) such that
M, v, (wt0 , wt1 , ...) |= φ

Semantics of state formulae pertaining to events:

• M, v,wt1 |= succeeded(e)⇔ exists t0 s.t. Sw(t0, t1) = e

• M, v,wt1 |= failed(e)⇔ exists t0 s.t. Fw(t0, t1) = e

Semantics of Belief, Goals and Intentions:

The possible world semantics of beliefs, considers each world to be a collection
of propositions and models belief by a belief-accessibility relation B linking these
worlds. In this BDI model, each possible world is a time tree and denotes the
optional courses of events that an agent can choose in a particular world. The belief
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relation maps a possible world at a time point to other possible worlds. An agent
has a belief φ, denoted BEL(φ), at time point t if and only if φ is true in all the
belief-accessible worlds of the agent at time t. The semantics of the modal operator
GOAL is given in terms of a goal-accessible relation G which is similar to that of the
B relation. The goal-accessibility relation specifies situations that the agent desires
to be in. Intentions can be seen as future paths that the agent chooses to follow.
The intention-accessibility relation will be used to map the agent’s current situation
to all its intention-accessible worlds. Formally, this semantics is defined as follows:

• M, v, wt |= BEL(φ)⇔ ∀w′ ∈ Bw
t , M, v, w′t |= φ

• M, v,wt |= GOAL(φ)⇔ ∀w′ ∈ Gw
t , M, v,w′t |= φ

• M, v,wt |= INTEND(φ)⇔ ∀w′ ∈ Iwt , M, v,w′t |= φ

The semantics of path formulae:

• M, v, (wt0 , wt1 , ...) |= φ⇔M, v,wt0 |= φ (φ state formula)

• M, v, (wt0 , wt1 , ...) |= Oφ⇔M, v, (wt1 , wt2 , ...) |= φ

• M, v, (wt0 , wt1 , ...) |= ♦φ⇔M, v, (wtk , ...) |= φ for some k ≥ 0

• M, v, (wt0 , wt1 , ...) |= φ U ψ ⇔
- exists k ≥ 0 s.t. M, v, (wtk , ...) |= ψ and ∀0 ≤ j ≤ k
M, v, (wtj , ...) |= φ, or
- ∀j ≥ 0, M, v, (wtj , ...) |= φ

Axiomatization

The basic axiomatization for beliefs is the classic weak-S5 modal system or KD45.
For goals and intentions the K and D axioms are adopted to make them closed under
implication and satisfy the consistence condition. The rule of necessitation is also
needed for beliefs, goals and intentions (i.e., the agent believes, has as goal, and
intends all the valid formulae). As happens in most possible world formalisms, this
logic suffers from the logical omniscience problem i.e., the agent believes, desires
and intends all the logical consequences of its beliefs, desires and intentions. Then,
the axiom schema is the following:

• BEL(φ→ ψ)→ (BELφ→ BELψ) (axiom K)

• BELφ→ ¬BEL(¬φ) (consistency - axiom D)

• BELφ→ BEL(BELφ) (positive introspection - axiom 4)

• ¬BELφ→ BEL(¬BELφ) (negative introspection - axiom 5)
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• GOAL(φ→ ψ)→ (GOALφ→ GOALψ)

• GOALφ→ ¬GOAL(¬φ)

• INTEND(φ→ ψ)→ (INTENDφ→ INTENDψ)

• INTENDφ→ ¬INTEND(¬φ)

• Necessitation rule for beliefs, goals and intentions (from φ derive BELφ,
GOALφ and INTENDφ)

In addition, Rao and Georgeff in [123] presented a set of axioms (A11 and A12) in
order to set the interrelations among an agent’s beliefs, goals and intentions. They
also added an axiom that from leads intentions to actions (A13), and two axioms
(A14-A15) to establish that the agent believes what it is intending its goals. This
group of axioms is:

• (A11) GOAL(α)→ BEL(α) (belief-goal compatibility)

• (A12) INTEND(α)→ GOAL(α) (goal-intention compatibility)

• (A13) INTEND(does(e))→ does(e) (intention leading to action)

• (A14) INTEND(φ)→ BEL(INTEND(φ))

• (A15) GOAL(φ)→ BEL(GOAL(φ))

• (A16) INTEND(φ)→ GOAL(INTEND(φ))

• (A17) done(e)→ BEL(done(e)) (awareness of primitive events)

• (A18) INTEND(φ)→ inevitable♦(¬INTEND(φ))

(no infinite deferral)

This set of eight axioms A11-A18 together with the standard axioms for BDI log-
ics (KD45 for BEL and K-D for GOAL and INTEND) constitute the basic I-system.
Furthermore, Rao and Georgeff analyzed in [123] the relation between current and
future intentions —commitment strategy— in a process of intention maintenance
and revision. They described three different commitment strategies: blind, single
minded and open minded. A blindly committed agent is one who maintains its inten-
tions until the agent actually believes that they have been achieved. A single-minded
committed, is an agent which maintains its intentions as long as its believes that they
are still options. Finally, an open-minded agent is one who maintains its intentions
as long as these intentions are still its goals. In order to obtain one of these differ-
ent behaviours in an agent, the corresponding axioms must be added to the basic
I-system:
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• for a Blind agent:
INTEND(inevitable♦φ)→
inevitable(INTEND(inevitable♦φ) U BEL(φ)).

• for a single-minded agent:
INTEND(inevitable♦φ)→
inevitable(INTEND(inevitable♦φ))U (BEL(φ) ∨ ¬BEL(optional♦φ)).

• for an open-minded agent:
INTEND(inevitable♦φ)→
inevitable(INTEND(inevitable♦φ))U(BEL(φ) ∨ ¬GOAL(optional♦φ)).

2.2.6 Advantages of BDI models

Several factors have contributed to the importance of the BDI model. This architec-
ture is one of the best models of practical reasoning that is based on well understood
logical foundations. The BDI model has proved to have the essential components to
cope with complex, real world applications. These real systems are usually placed
in a dynamic and uncertain environment, having a local view of the world and
are resource bounded. These constrains have certain fundamental implications for
the design of the underlying computational architecture, and the Belief, Desire and
Intention components seem to be an essential part of such systems.

The BDI model is also interesting because a great deal of effort has been done
in its formalization. In particular, Rao and Georgeff have developed a range of BDI
logics. They set out different axiomatics over the basic logic, called I-system, to
define BDI agents having different properties (e.g., diverse commitment strategies).

But the importance of the BDI models is not limited to the theoretical field. In
the last years there have been different developments of particulars BDI architec-
tures. One of the specific BDI agent architecture is IRMA [21], this architecture has
been evaluated in an experimental scenario known as the Tileword. However, the
best-known implementation of the BDI model is the Procedural Reasoning System
(PRS) system developed by Georgeff and Lansky [61] and re-implemented several
times afterwards (e.g. [81, 65, 18]. This agent architecture has proved to be the most
durable agent architecture developed to date. It has been applied in several of the
most significant multiagent applications built up to now, some of them are described
in [62]. In addition, PRS-like systems has been used in a number of large-scale ap-
plications, as for example, a system for space shuttle diagnosis and a system for
telecommunications network management [84]. The BDI architecture has evolved
over time and diverse factors, including the above mentioned ones, have contributed
to the importance of this model.

Because of the recognized relevance of the BDI model we decided to use this agent
architecture as the basis for this PhD research work. In the following subsection we
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introduce one interesting approach to specify complex systems and particularly,
agent architectures.

2.3 Multi-context Systems

The notion of context has been studied in many research areas an in particularly
in Artificial Intelligence. Contexts are view as an important approach to represent
certain kinds of reasoning. On the one hand, contexts are a tool to formalize the
locality of reasoning. While on the other hand, contexts are introduced as a means
of solving the problem of generality. Coherently with these two points of view,
Giunchiglia et al. in [70, 71] introduced the notion of multi-context system (MCS
for short). These systems have also been called multi-language systems in [71], in
order to emphasized that they may include multiple languages.

There are two main intuitions underlying the use of contexts, called principles
in [68]:

• Locality principle: reasoning uses only part of what is potentially available
(e.g.,what is known, the available inference procedures). The part being used
while reasoning, is what we call context (of reasoning);

• Compatibility principle: there is a compatibility among the kinds of reasoning
performed in the different contexts.

These two principles are formalized by the semantics called Local Model Seman-
tics, which is described in [68]. In this paper the authors also showed how this novel
semantics is captured by the MCS. They also validate this semantics by formaliz-
ing two important forms of contextual reasoning: reasoning with viewpoints and
reasoning about belief.

One of the advantages of MCS in order to help in the design of complex logi-
cal systems is that this framework allows for the independent definition of formal
components, and their interrelations.

MCS have been used in diverse applications as for example in the integration of
heterogeneous knowledge and data bases, in the formalization of reasoning about
beliefs (more generally, propositional attitudes) [68]. Particularly, have been used to
model different aspects of agents and multiagent systems [40, 68] and as an approach
to engineering multiagent systems [119, 136].

2.3.1 Formalization of multi-context systems

We present an introduction to the formal aspects of MCS systems, where contexts
are formalized proof-theoretically. A more complete description is given in [71].
The MCS specification contains three basic components: units or contexts, logics,
and bridge rules, which channel the propagation of consequences among theories.
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Following this, a MCS is defined as a group of interconnected units:〈
{Ci}i∈I ,∆br

〉
, where:

• for each i ∈ I, Ci = 〈Li, Ai,∆i〉 is an axiomatic formal system where Li,
Ai and ∆i are the language, axioms, and inference rules respectively. They
define the logic for the context Ci and its basic behaviour is constrained by
the axioms.

• ∆br is a set of bridge rules, they are rules of inference which relate formulae in
different units. Each bridge rule can be understood as a rule of inference with
premises and conclusions in different contexts, for instance:

C1 : ψ,C2 : ϕ

C3 : θ

means that if formula ψ is deduced in context C1 and formula ϕ is deduced in
context C2 then formula θ is added to context C3.

When a theory Ti ⊆ Li is associated with each unit, the specification of a par-
ticular multi-context system is complete.

These components were first identify in the context of theorem provers for modal
logic in [71], and in [114] a full detail of these components can be found.

A MCS system is essentially a set of logical theories, plus a set of inference rules
which allow for the propagation of consequences among theories.

The deduction machinery ∆ in these systems is then based on two kinds of
inference rules, internal rules ∆i inside each unit, and bridge rules ∆br outside, i.e.,

∆ =
⋃
i∈I

∆i ∪∆br

Internal rules allow to draw consequences within a theory, while bridge rules
allow to embed results from a theory into another. The set of formulae that a given
context may contain depends on its initial theory, axioms, inference rules that allow
inner deductions; and bridge rules. The formulae introduced by a bridge rule depend
on the formulae contexts appearing in the premise of the bridge rule.

A MCS formalizes the principle of locality in the sense that each context has it
suitable language Li, the proper set of axioms Ai which provides the foundations of
reasoning, the theory Ti ⊂ Li gives the true formulae for each context, and finally, the
inference engine ∆i, captures different deduction capabilities for each unit. Through
bridge rules the principle of compatibility is represented as these rules allow contexts
to mutually influence themselves. Bridge rules change the theory of one context by
the derivation of formulae in other contexts.

In the following subsection we show how this kind of systems, that have been
used in diverse applications, can be used in agent specification.
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2.3.2 Multi-context agents

Multiagent systems are complex systems than can be well modeled by MCSs, as
they permit to represent the locality of its architectural components and to neatly
describe the interaction among them. This approach has been used by Parsons
et al. [119] and Sabater et al. [136] to specify several agent architectures and
particularly to model some classes of BDI agents [115]. Using the multi-context
approach, an agent architecture consist of the four basic types of components of
MCS (i.e., contexts, logics, theories and bridge rules).

Contexts represent the various components of the architecture. They contain the
agent’s problem solving knowledge, and this knowledge is encoded in the specific
theory that the unit encapsulates. In general, the nature of the contexts will vary
between architectures.

For example, a BDI agent may have units which represent intentional notions
—theories of beliefs, desires and intentions— (as in [115]), whereas an architecture
based on a functional separation of concerns may have units which encode theories
of cooperation, situation assessment and plan execution (as in [138]). In either case,
each context has a suitable logic associated with it.

In any architecture represented, bridge rules set the components interaction.
These rules provide the mechanism by which information is transferred among units.
The bridge rules continuously examine the theories of the contexts that appear in
their premises looking for new sets of formulae that match them. This means that all
the components of the architecture are always ready to react to any change (external
or internal) and that there are no central elements of control.

The multi-context approach was used to specified negotiating agents in an ex-
ample of two Home Improvement Agents, described in [115]. An extended model of
multi-context agent was presented in [138] to engineer the ReGreT system.

Multi-context BDI agents.

The BDI architecture was described in Subsection 2.2.5. This agent model involves
the explicit representation of the agent beliefs, desires and intentions. In a logical
framework this means to include different modalities for the different attitudes and
the chosen axiomatic according to the behaviour of each attitude. Modeling different
intentional notions by means of several modalities (e.g., B, D and I) can be very
complex if an unified logical framework is used (e.g., the BDI logic see Subsection
2.2.5) or if one must manage the interchange of formulae among different logics.

Using multi-context systems to build BDI agents allow as to represent the dif-
ferent mental attitudes by different contexts. This is advantageous with respect
to other approaches as pointed out in [136] and exemplified in [115]. The MCS ap-
proach enables to use different logics in a way that keeps the logics neatly separated.
This either makes it possible to increase the representational power of BDI agents
—compared with those which use a single logic, or to simplify agents conceptually
—compared with those which use several logics in one global framework.
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Figure 2.7: Different types of BDI agent. From left to right, the relations between
modalities correspond to strong realism, realism and weak realism. (Source [115],
p272).

Thus, in a MCS approach, we need at least different contexts to represent the
three basic attitudes i.e., one for beliefs (B), for desires (D) and intentions (I). The
belief context of a BDI agent may have a logic of belief associated with it, the
desire context may have a logic of preferences associated to it, and similarly for the
intention unit. The logic related with each unit provides the language in which the
information in that context is encoded.

We have presented in Subsection 2.2.5 three well-established sets of attitudes
relationships for the BDI agents, called realisms. A multi-context version of these
types of agent (i.e strong realistic, realistic and weak realistic) are formalized in
[115] and are illustrated in Figure 2.7.

As to show how this approach may be implemented, we present some insights
of the multi-context BDI agent model developed by Parsons et al. in [115]. The
specification corresponds to a strong realistic BDI agent and its main components
can be seen in Figure 2.7 (left) and are defined as follows:

Contexts: There are four contexts within a multi-context BDI agent. The units for
the beliefs (B), desires (D) and for the intentions (I); and a communication unit (C).

Logics: For each of these four contexts a proper logic is defined:
- B, D and I context: each one uses first-order logic with a special predicates B, D
and I, which are used to denote respectively the beliefs, desires and intentions of
the agent. The chosen axioms are the classics for predicate logics. To capture the
behaviour of the modalities, in the B context the KD45 axioms are included, and in
the logics for D and I, the axioms K and D are used.
- Communication context: Uses classical first-order logic with the usual axioms.

The rules of inference for each unit are the usual ones (MP, MT, generalization
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and particularization)

Theories: For each context, these logical formulae represent the domain informa-
tion that each unit posses, and depend on the specific agent we are defining (in a
generic BDI agent there are no specific theories included).

Bridge rules: The bridge rules are exactly those illustrated in Figure 2.7 for a
strong realism BDI agent, formally:

I : I(α) ⇒ D : D(dαe)
D : ¬D(α) ⇒ I : ¬I(dαe)
D : D(α) ⇒ B : B(dαe)
B : ¬B(α) ⇒ D : ¬D(dαe)
C : done(e) ⇒ B : B(ddone(e)e)

I : I(ddoes(e)e) ⇒ C : does(e)

The first four rules are directly derived from the model proposed by Rao and
Georgeff and ensure compatibility between what the agent believes, desires and
intends. The last two bridge rules specify the interactions that the communication
context has with the other units.

Concrete agents may be specified as extensions of this generic specification of
a BDI agent. The complete specification of two home improvement BDI agents is
presented in [115].

For BDI agents, the multi-context approach make it possible to model each
agent attitude in an appropriate local way, and the corresponding interactions be-
tween attitudes are neatly represented through the bridge rules. It also allows the
incorporation of other attitudes to the agent model by just adding the corresponding
contexts and the necessary bridge rules, relating the new attitude with the rest.

2.3.3 Advantages of the multi-context specification of agents

Multi-context approaches to engineering multiagent systems has several advantages,
some of them are pointed out by Sabater et al. in [136]. From a software engineer-
ing perspective, firstly, MCSs support the development of modular architectures.
Each architectural component, be it a functional component or a data structure
component, can be represented as a separate context. The interrelations between
the components can then be made explicit by writing bridge rules to link the con-
texts. This ability to directly support component decomposition and interaction
offers a path from the high level specification of the architecture to its detailed
design. Secondly, MCSs are ideally suited to support reuse —both of designs and
implementations— since these systems encapsulate architectural components and
provide specifications for the interrelationships.
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From the logical modeling perspective, there are several advantages of adopting
a multi-context approach. In first place, separating the logical description of an
agent into a set of contexts, each which its proper logic, we effectively get a form
of many-sorted logic (all the formulae in one context are a single sort). This brings
to the system the advantages of scalability and efficiency. The second advantage
comes from the same issue. This approach makes it possible to build agents which
use several different logics in a way that keeps the logics neatly separated (all the
formulae in one logic are gathered in one context).

The remaining two advantages from the logical perspective apply to those logical
agents which reason about their mental attitudes and those of other agents. The
first is that multi-context systems make it possible to build agents which reason in a
way which conforms to the use of modal logics like KD45 (the standard modal logic
for handling belief) while working within the computationally simpler framework of
standard predicate logic [71]. The final advantage is related to this. Agents which
reason about beliefs are often confronted with the problem of modeling the beliefs
of other agents and multi-context systems provide a neat solution to this problem
[40, 68].

Combining the software engineering and the logical modeling perspectives, it
can be seen that the multi-context approach offers a clear path from specification
to implementation. Indeed one advantage of the MCS logical approach to agency
modeling is that allows for rather affordable computational implementation. For
instance, a portion of the framework described in [115] has been implemented using
a prolog multi-threaded architecture [69].

2.4 Logics of preference

Preferences guide human decision making from early childhood (e.g. “which ice
cream flavour do you prefer?”) to complex professional and organizational decisions
(e.g.“which investment funds to choose”). Preferences are essential for making in-
telligent choices in complex situations, for mastering large sets of alternatives, and
for coordinating a multitude of decisions. Explicit preference models allow an agent
to reason about its own and the other agent’s behaviour and to analyze and revise
this behaviour. For these reasons, preference models have been necessary in many
fields of Artificial Intelligence such as multiagent systems, combinatorial auctions,
diagnosis, design, configuration, planning, among others. In addition to this, pref-
erence modelling and aggregation is central to decision theory, social choice and
game theory. AI tasks often need new forms of preference handling beyond classic
utility-based models. Recent work on preference handling in AI has consequently
elaborated many new preference representation formalisms, as for example logical
preference representations and generalized forms of utility functions. AI has also
innovated reasoning about preferences and problem-solving algorithms based on
preferences. This is an important issue when we have to represent the user’s desires
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in information systems (e.g. recommender systems), or to reason about desires and
solve eventually inconsistent goals as e.g., in multiagent systems. Logical frame-
works contribute to this problem, allowing for systematic study and classification
of desires by making underlying assumptions explicit. Recently, several logics for
desires and goals have been proposed as can be seen in [9, 19, 49, 95, 96, 146].

Notably, Lang et al. in [96] propose a logic of desires with a utilitarian semantics
and they study non-monotonic reasoning about desires and preferences. Their work
is about representation and reasoning on conditional desires D(a | b) and is based
on the idea that desires can be understood in terms of so-called utility losses and
gains (i.e. loss of utility resulting from its violation ¬a ∧ b and/or a gain of utility
from its fulfillment a ∧ b). According to these utility components (losses and gains)
they distinguish three types of desires (gain, loss and mixed) then, to sum up these
utilities additive functions are used. Furthermore, they propose different procedures
to induce, from a set of initial desires, the preference relation of the agent on a
set of worlds. Namely, in this approach a set of desires induces a set of utility
functions by adding up the utility losses and gains of the individual desires, and these
distinguished utility functions induce a (qualitative) partial preference ordering on
worlds. They also consider how to introduce domain knowledge expressing which
worlds are feasible in this ordering process. In contrast with Boutiller [19] they also
differentiate between factual background knowledge, telling us which worlds are
physically impossible, and contingent knowledge, expressing which of the physical
possible worlds can be the actual state of affairs. Then, the agent should attempt
to the best feasible world by performing a suitable action. This work is not focussed
on action theories but they use an action model inspired in [19] to represent feasible
worlds. Despite this is a valuable contribution to desire representation, we found
in this approach some limitations in relation to the desire representation we want
for our agent model. First, it does not include an explicit logical representation
of the agent rejections (negative preferences). Second, from qualitative expressions
about desires, they give as result a (qualitative) preference order over worlds. Then,
this proposal does not treat with different numerical levels of desires, useful for
deciding, besides other factors, the agent intentions. Finally, the authors recognize
that the role of expressing desirability is only a partial account of the use of desires
in the agent decision process toward intentions and present a more complex schema
(involving beliefs and actions), as future work.

Later on, the authors extend in [97] their qualitative logical approach to desire
representation, introducing the notion of hidden uncertainty of desires. The seman-
tics of this logic is defined by means of two ordering relations representing preference
and normality as in Boutilier’s logic QDT [19]. Desires are formalized to support
a realistic interaction between the concepts of preference and plausibility (or nor-
mality), both represented by a pre-order relation over the sets of possible worlds.
Their idea is to express desires with a suitable order modality <nd where A <nd B
means that, taking into account normality (expressed by another order relation ≥N),



38 CHAPTER 2. RELATED WORK

A is less desirable than B. This work considers that an ordinal-like uncertainty is
present in the notion of plausibility, whose corresponding pre-order may be defined
by the proximity of the current world to the set of most plausible (or normal) worlds.

Besides these approaches to preference representation, we observe that real-life
problems present positive and negative preferences. Relevant works on bipolar pref-
erence representation focuss on the fact that preferences over solutions or choices
are often expressed in two forms: positive and negative aspirations. On the one
hand, an agent may express what he considers unacceptable (to some degree) and
on the other hand, it may express what it considers desirable or satisfactory (to some
level). The first kind of preferences are called negative preferences and correspond
to constraints that should be respected, while the second type are called positive
preferences and correspond to desirable states of the world for the agent.

For instance, assume that we want to take a week of holidays and we are looking
for a tourist destination in the country. We may provide the tourism agent with two
kinds of preferences. First, we specify the satisfactory slots, with different desire
levels (e.g. we strongly prefer mountains, moderately prefer small cities and we
weakly like to make rafting), these are positive preferences. Second, we describe
unacceptable conditions, that are refused in different degrees (e.g. we do not want
to travel more than 1000 km), these are negative preferences or rejections. Then,
the agent is expected to find the best desirable solutions (e.g. tourist destinations)
among the feasible ones (i.e. not satisfying any negative desire).

This bipolar representation is supported by recent studies in cognitive psychology
showing that the distinction between positive and negative preferences makes sense.
They are processed separately in the brain, and are felt as different dimensions by
people [26, 27]. Note that in general there is no symmetry between positive and
negative preference in the sense that positive desires do not mirror what is not
rejected. The idea of bipolar representation of preferences has been considered in
different works as the ones oriented towards qualitative decision making based on
ordinal rankings [51, 146]. Besides, Bistarelli et al. in [16] propose a generalization
of the soft constraint formalism, which is able to model problems with one kind of
preferences (constraints) allowing to handle positive preferences as well. Also, the
use of bipolar information (prioritized desires and rejections) in an argument based
decision framework can be seen in [122]. Particularly, Benferhat et al. [10, 11, 12]
present a valuable approach, a bipolar possibilistic logic framework for modeling
preferences. As this approach inspired or work on agent desire representation, we
describe some of its fundamental aspects on the following Subsection.

2.4.1 Bipolar representation of preferences

This bipolar approach to preferences is supported by the work by Benferhat et al.
[10] on modelling positive and negative information. They presented a framework
based on possibility theory where this distinction can be made in a graded way. In
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logical terms, the two types of information —positive and negative— can be encoded
by two types of constraints expressed by necessity measures and other possibility
functions. Particularly, they applied this model to the representation and fusion of
preferences, and also they show how this bipolar information can be used to take
optimal solutions. The description of the bipolar representation of preferences in
the possibilistic logic framework can be seen in detail in [11, 12], we briefly outline
the relevant features of their approach.

The syntactic specification of this bipolar representation of preferences is done
introducing two different sets of constraints. These sets correspond to what the
agent rejects and what are its goals or desires, respectively:

- R = {R(φi) ≥ αi, i = 1, ..., n}, where φi is a propositional formula, αi ∈ [0, 1]
and reflects the agent rejection strength of φi. The higher αi is, the less acceptable
are the solutions satisfying φi. R(φi) = 1 means that the agent strongly rejects φi,
and no solution where φi is true is tolerated by the agent. This rejections can be
also encoded as R = {(¬φi, αi), i = 1, ..., n} where (¬φi, αi) represent the constraint
R(φi) ≥ αi and stands for “if a solution w satisfies φi then it is tolerated at most to
a degree 1− αi”.

It turns out that the set of rejections can be handled using the classical possibil-
ity and necessity measures.

- G = {G(ψj) ≥ βj, j = 1, ...,m}, where ψj is a propositional formula, βj ∈ [0, 1]
and expresses the minimum level of satisfaction guaranteed to the agent, if ψj is
true. Thus ψj is supposed to encode a desire or a wish, βj expresses the minimal
level of satisfaction which is guaranteed for a solution where ψj is true. The larger
βj is, the more satisfied is the agent if ψj is true. G(ψj) = 1 means that the agent
is fully satisfied if ψj is true. G may be also denoted as G = {[ψj, βj] : j = 1, ...,m}.
Thus, [ψj, βj] encodes the information G(ψj) ≥ βj.

This kind of positive desires (goals) cannot be directly handled by the classical
possibilistic logic machinery, as it is explained below.

Representing rejections in possibilistic logic.

Rejections can be represented, at semantical level, by a total pre-order on the set
of possible outcomes (interpretations). This pre-order can be encoded in possibil-
ity theory using a possibility distribution over the set of worlds πR : W → [0, 1]. This
possibility function πR associated with a set of rejections R= {R(φi) ≥ αi, i = 1, ..., n},
is defined as:

πR(w) = 1−max{αi : w |= φi, R(φi) ≥ αi ∈ R}, with max{∅} = 0

Clearly, this definition can be viewed in terms of a necessity measure replacing
φi by ¬φi (if R(φi) = αi then N(¬φi) ≥ αi )
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Representing positive desires

The positive desires can also be described in terms of a possibility distribution:
πG : W → [0, 1], where πG(w) ≥ πG(w′) means that w is more satisfactory for the
agent than w′. The meaning of πG(w) is different from πR(w), the first evaluates to
what degree w is satisfactory for the agent, while πR(w) evaluates to what extend
w is acceptable.

The possibility degree πG associated with a set of positive goals G = {[ψj, βj], j =
1, ...,m} is:

πG(w) = max{βj : w |= ψj, [ψj, βj] ∈ G}, with max{∅} = 0

The addition of positive goals in G can only lead to the increase of the satisfaction
level of w and this is dual to the behaviour of πR which monotonically decreases
with respect to the number of constraints in R.

The set of positive desires cannot be directly handled by standard possibilistic
measures. Constraints like G(ψj) ≥ βi are then represented using a function called
guaranteed possibilistic function, denoted by ∆, first presented by Dubois and Prade
in [50] and afterwards, used in [10] to represent bipolar information. The expression
∆(ψ) = b means that any interpretation where ψ is true, has a satisfaction degree
at least equal to b, then:

∆(ψ) = minw|=ψπG(w)

Hence, for the disjunction and conjunction ∆ behaves as follows :

• ∆(φ∨ψ) = min(∆(φ),∆(ψ)), so ∆ decreases with respect to disjunction. The
semantic for disjunctions goes here in an opposite way than in classical logic.
This means that φ ∨ ψ are guaranteed to be possible —∆(φ ∨ ψ) > 0— (i.e.,
because they are observed, feasible, satisfactory, according to the problem) if
and only if both φ and ψ are guaranteed to be possible ∆(φ),∆(ψ) > 0.

• ∆(φ∧ψ) ≥ max(∆(φ),∆(ψ)) since the minimum πG over the worlds satisfying
φ ∧ ψ may be greater than the minima over the worlds satisfying φ and ψ.
Applying the maximal specifity principle on ∆, this inequality leads to the
equality: ∆(φ ∧ ψ) = max(∆(φ),∆(ψ))

Coherence relation between positive and negative preferences

Even if independently specified, negative and positive preferences must neverthe-
less be in agreement with each other. The author in [11, 12] proposed the following
restriction between them “a solution cannot be at the same time unacceptable and
desired by the same agent”. Let (R,G) be an agent positive and negative prefer-
ences, intuitively if R= {R(φi) ≥ 1, i = 1, ..., n} and G = {[ψj, 1], j = 1, ...,m} (with
maximal rejection or satisfaction degrees), then R and G are coherent if
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∨
j=1,...,m

ψj `
∧

i=1,...,n

¬φi

namely any solution satisfying at least one goal of G should not satisfy any for-
mulae in R. More generally all solution that is satisfactory to a degree α should be
at least feasible (tolerant) to a degree α.

From a semantic point of view if πG and πR are the two possibility distributions
representing respectively the agent positive and negative preferences. Then, πR and
πR are said to be coherent iff:

πG(w) ≤ πR(w), for all world w

Merging multiple agents preferences in a bipolar representation

Benferhat et al. in [11, 12] also treat the problem of merging multiagents pref-
erences from a semantic and a syntactic point of view. The result of the merging
process will also be a pair (R⊕R

, G⊕G
) where R⊕R

is the result of merging nega-
tive preferences expressed by several agents, and G⊕G

is the result of merging the
agents positive preferences. These two merging steps are processed separately and
generally use different operators (i.e. ⊕R and ⊕G).

Merging agents’ preferences can lead to conflicts. They discuss how to revise the
set of positive desires when it is not coherent with the negative ones (as the negative
preferences are considered strong constraints).

Finding the best solution according to bipolar preferences

The problem of computing the best solutions after merging negative and positive
preferences separately can be viewed as an optimization problem involving the sets
R, G and a set of integrity constraints F (representing domain knowledge). Differ-
ent strategies are presented to compute the solutions that do not violate integrity
constraints, avoid all the the negative preferences R and satisfy as many as possi-
ble agent’s positive preferences G. Among the presented strategies we find tolerate
solutions (satisfying R and F ), tolerate solutions satisfying at least one important
positive preference (e.g. positive preference having the highest degree in G) and
cardinality-based selection mode (maximizing the number of respected rejections
and maximizing the number of satisfied positive preferences).

In summary, the work by Benferhat et al. on bipolar representation of prefer-
ences propose a separate treatment of positive and negative information under the
form of two sets of weighted logical formulae having different semantics. Both kinds
of preferences are encoded in the framework of possibility theory. The bipolar rep-
resentation of preferences allows to easily define different selection modes to find the
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best solutions, according to the agent preferences and domain knowledge (coded as
integrity constraints).

Finally, this approach inspired us to model, in our g-BDI architecture, the agent
desires in a bipolar way (i.e. positive and negative) as it is shown in Chapter 6.

2.5 Graded Attitudes in Intentional Agent Archi-

tectures

If we want that agent technologies increase their role in complex and real appli-
cations, the complexity of the real-world environments where the agents interact,
has to be considered. Most of the environments are not completely accessible, non-
deterministic and dynamic. Moreover, the preferences or goals of agents (humans
or not) interacting in the environment may be expressed with different levels of
intensity. This means that there is uncertainty involved not only in the agent’s
model of the world, but even there are different degrees related to its pro-attitudes.
In order to improve the agents performance, we consider essential to take into ac-
count this uncertainty and graded attitudes in the agent’s theory, architecture and
implementation.

Focussing on intentional agents and specifically on BDI model of agents, the
agent architectures proposed so far mostly deal with two-valued information. We
think that taking into consideration graded information (related to the different
attitudes) could improve the agent’s performance. Even in AI a lot of work have
been done related to uncertain beliefs (e.g. see [79]) and to preference representation
(see Section 2.4), in the context of intentional agent architectures, we found there
are a few works that partially address this issue and emphasize the importance of
graded models. There are some approaches considering graded information related
to a particular attitude (i.e. belief, desire or intention), the relevant features of some
of them are presented bellow.

In the BDI model developed by Rao and Georgeff, they explicitly acknowledge
that an agent’s model of the world is incomplete, by using a branching-time possible
world logic to model the beliefs, goals (desires) and intentions. For each situa-
tion they associate a set of belief-, goal- and intention-accessible worlds; intuitively,
those worlds that the agent believes to be possible, desires to bring about, and com-
mits to achieve, respectively. Multiple possible world results from the agent lack
of knowledge about the state of the world. Within each of these possible worlds,
the branching future represents the choice of actions available to the agent. In a
first proposal of the BDI model [123], they also considered the incompleteness of the
agent’s model of the world. However, they make no use of quantified information
to assess how much a particular world is possible. Neither do they allow for desires
and intentions to be quantified.

Afterwards, in [124] the authors extend the expressive power of BDI logic, by
introducing subjective probabilities and subjective payoffs to model the process of
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deliberation. Intuitively, an agent at each situation has a probability distribution
on its belief-accessible worlds. The agent then chooses sub-worlds of these belief-
accessible worlds that it considers are worth pursuing, and associates a payoff value
to each path. Using a probability distribution on its belief-accessible worlds and the
payoff value with each path in its goal-accessible worlds, the agent determines the
best plan(s) of action for different scenarios. This process is called Possible World
(PW) deliberation and is inspired by decision tree theory. The result of this pro-
cess is a set of the most desirable sub-worlds of the goal-accessible worlds. These
sub-worlds are the intention-accessible worlds that the agent commits to achieve.
In this work the similarity between the PW-deliberation on the one hand, and the
decision tree formalism on the other hand, is shown. We consider that this is an
interesting approach, although it has some shortcomings. The first one is that they
introduce the concepts of probability and payoff in the unified BDI logic framework
thus, increasing its complexity. Second, the semantics of the payoff function over
the path formulae is not clear. We think the payoff implicitly combines a kind of
benefit of achieving some world with the cost of the path. But, as its meaning is
not clear, we consider that it may be difficult to determine the function values, and
sometimes may be unnatural. Besides, they don’t use any measure degrees to repre-
sent the intentions in order to obtain an explicitly ordered set of possible intentions
as the results of the deliberation process. And finally, the functions they use in the
deliberation process are not neatly related to the BDI model.

Notably, Parsons and Giorgini [116] consider belief quantification by using Evi-
dence Theory. In their proposal, an agent is allowed to express its opinion on the
reliability of the agents it interacts with, and to revise its beliefs when they become
inconsistent. The paper combines previous authors’ works on the use of argumenta-
tion in BDI agents with other approaches to belief revision and update. The model
presented is an extension of the multi-context specification of BDI agents developed
in [115] to include degrees of belief. In order to introduce the degrees of belief they
translate every proposition in the belief unit (which may contain nested modalities)
into an argument with an empty set of grounds and with an associated degree of be-
lief expressed as a mass assignment in Dempster-Shafer theory (i.e. B(Φ) becomes
the argument: B((Φ) : {} : α) where α is the belief degree). Any propositions
deduced from the belief base set will then accumulate grounds. The belief revision
process they used consists of redefining the degrees of credibility of propositions in
the light of incoming information. Finally, the authors set out the importance of
quantifying degrees in desires and intentions in a BDI agent model, but this is not
covered by their work.

In the previous Section 2.4 we have revised different approaches to preference
representation and reasoning that may be applied to desire representation in a BDI
architecture. In the utilitarian logic of preference by Lang et al. [96] it is presented
how a preference order over worlds can result from qualitative agent desires.
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They present a general scheme of how this preference order in addition to agent
knowledge (about feasible worlds, plans, etc.) can be used to decide the agent
intentions. But this global agent decision procedure, related to action theory is
left as future work. We remarked the importance of the bipolar representation of
preferences due to Benferhat et al. [11]. In this bipolar approach the representa-
tion of weighted positive and negative preferences is formalized and we found this
approach suitable to model the agent desires (both positive and negative). The
authors also propose some alternative ways to find the best preferred solutions con-
sidering integrity constraints based on domain knowledge (feasible worlds). But
before applying some of the ideas exposed in the different approaches to preference
representation in an intentional agent model, there are many problems to be solved.
For example, how to use uncertain domain knowledge and planning theory to find
feasible worlds? How to take into account, beside the agent preferences, the cost of
plans and also the possibility of plan failure, in deciding the agent intention? More
importantly, how the agent can use intentions to derive the best action to follow?

After deciding the agent intention, a problem related to how long an agent must
maintain her commitment to it is known as intention reconsideration. There has
been a certain amount of work on the intention reconsideration problem, as for in-
stance in [123] (see Subsection 2.2.4), where different commitment strategies were
defined and in [156], where a formal perspective is presented. More recently, Parsons
et al. in [117] addressed the intention reconsideration in environments which are both
complex and dynamic. Other works deal with reasoning about intentions in uncer-
tain domains, as the proposal of Schut et al [142]. They present an efficient intention
reconsideration for BDI agents that interact in an uncertain environment in terms of
dynamics, observability, and non-determinism. In this approach they consider that
the internal state of an agent consist of beliefs and intentions: s = 〈Bel, Int〉. The
agent beliefs are represented by a probability distribution Bel : E → [0, 1] where E is
the set of environment states. The agent set of intentions Int is a set of environment
variables. They assume that it is possible to assign values V (i) and cost C(i) to the
outcomes of intentions and they define the net value , Vnet, representing the net value
of the outcome of an intention i: Vnet = V (i)−C(i), i ∈ Int. They also express how
good is a state defining a worth function: W : S → R, the value for each state s is
based on the net value of the intentions of the state. From this state representation,
they model the intention reconsideration by using the theory of Markov decision
processes for planning in partially observable stochastic domains (POMDP). They
used a POMDP approach because the optimality of the policy in this framework
is based on the same three environment characteristics considered for the intention
reconsideration strategy, namely: dynamism, determinism and observability.

Notice that all the above mentioned proposals related to graded beliefs, weighted
preferences and intention reconsideration, model partial aspects of the uncertainty
related to mental notions involved in an intentional agent architecture.
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On the other hand, argumentation is a promising approach for reasoning with in-
consistent information, based on the construction and the comparison of arguments
[52, 56]. These approaches make possible to assess the reasons (i.e. arguments)
why a fact holds, and to combine and compare these arguments in order to reach a
conclusion. Various argument-based frameworks have been developed in defeasible
reasoning [52, 56] for generating and evaluating arguments. Classically, argumenta-
tion has been mainly concerned with theoretical reasoning: reasoning about infor-
mation attitudes such as knowledge and belief. Recently, a number of attempts have
been made to use argumentation to capture practical reasoning: reasoning about
what to do. This requires capturing arguments about pro-active attitudes, such as
desires and intentions. In the following Subsection we discuss some of these relevant
approaches.

2.5.1 Argumentation-based approaches to BDI agents

Some argument-based frameworks for practical reasoning are instantiations of Dung’s
abstract framework [52] (e.g. [3, 4]). Others are operational and grounded in logic
programming (e.g. [134, 131, 132]).

Notably, a complete framework for practical reasoning is presented by Rah-
wan and Amgoud in [122]. This work is built on previous argumentation frame-
work proposals for generating desires and plans [3, 4, 82, 91]. They provide a rich
argumentation-based framework for (i) generating consistent desires, and (ii) gen-
erating consistent plans for achieving these desires. This is done through three
distinct argumentation frameworks: one for arguing about beliefs, one for arguing
about what desires the agent should adopt, and one for arguing about what plans
to intend in order to achieve the agent’s desires. More specifically, they refine and
extend existing approaches by providing means for comparing arguments based on
decision-theoretic notions (i.e. utility). Thus, the worth of desires and the cost of
resources are integrated into the argumentation frameworks and taken into account
when comparing arguments.

Recently, Amgoud and Prade in [6] has proposed an argumentation-based ap-
proach to formalize practical reasoning under uncertainty as a three steps process:
1) Deliberation which amounts to generate desires to be achieved, 2) Means-end
reasoning which consists of generating compatible plans for achieving those desires
and 3) Selecting the intentions to be pursued by the agent.

Another interesting argumentation approach to BDI agents is presented in [132].
In this work, they introduce a framework where defeasible argumentation is used for
warranting agent’s beliefs, filtering desires, and selecting proper intentions according
to a given policy. In this framework, different types of agents can be defined and this
decision will affect the way in which desires are filtered. The contribution of their
approach is to introduce a BDI architecture that uses a concrete framework based on
a working defeasible argumentation system: Defeasible Logic Programming (DeLP)
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[60]. In DeLP, knowledge is represented using facts, strict rules, and defeasible rules.
A Defeasible Logic Program (de.l.p.) is a set of facts, strict rules and defeasible rules.
When required, P is denoted (Π,∆) distinguishing the subset Π of facts and strict
rules, and the subset ∆ of defeasible rules.

In this framework [132] the main input is the perception from the environment,
which is part of the set of the agent beliefs. Following [131], agent beliefs corre-
spond to the semantics of a defeasible logic program PB = (ΠB,∆B). In ΠB two
disjoint subsets will be distinguished: Φ of perceived beliefs that will be updated
dynamically, and Σ of strict rules and facts that will represent static knowledge,
ΠB = Φ ∪ Σ. Then, besides the perceived beliefs, the agent may use strict and
defeasible rules from PB to obtain through an argumentation process the set B of
warranted beliefs.

For selecting from the set D of possible desires, those that are suitable to be
brought about, the agent uses its beliefs (representing the current situation) and a
defeasible logic program (ΠF ,∆F ) composed of filtering rules. The filtering rules
represent reasons for and against adopting desires. In other words, filtering rules
eliminate those desires that cannot be effected in the situation at hand. Different
agent types can be obtained depending on the chosen filtering criteria. Once the
set of achievable desires is obtained (Dc), the agent can adopt one of them as an
intention.

The final stage of this agent behaviour loop involves the usage of a set of intention
rules to select the final set of intentions. The set of all applicable intention rules
contains rules whose heads represent applicable intentions achievable in the current
situation. Depending on the actual domain, there are many possible policies to be
used. Then, using a suitable intention policy the agent will determine the preferred
rule. The current desire in the head of this rule will be the selected intention. The
existence of plans in order to satisfy a desire are related to intention rules and also,
to the notion of achievable desire, but are not explicitly formalized.

This is a valuable argumentation-based proposal to BDI agents, with different
argumentation frameworks for beliefs, desires and intentions. It has as limitation
that it has been developed using bi-valued propositional formulae for representing
belief, desires and intentions. A kind of uncertainty is represented by defeasible
rules. As the Defeasible Logic Programming (DeLP) has recently been extended to
an argumentation framework that includes the treatment of possibilistic uncertainty,
named Possibilistic Defeasible Logic Programming (PDeLP) [2], we think that by
using PDeLP this approach can be extended to a graded argumentation-based ap-
proach to BDI agents.

Finally, in the following Subsection we describe in some detail the most relevant
characteristics of the proposal due to Rahwan and Amgoud [122] because we found
that this is the argumentation-based proposal that is closest to our work.
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Rahwan and Amgoud’s approach

We start by presenting the logical language used in this work, as well as the different
data-bases representing the agent mental states and some special rules used in them.

From a propositional language L the agent can distinguish the three following
sets of formulae: the set K which represents the agent knowledge, the set D which
gathers all possible agent desires and the set RES which contains all the available
resources in a system. From these sets, two kinds of rules can be defined: desire-
generation rules and planning rules.

- Desire-Generation Rule or a desire rule, is an expression of the form ϕ1 ∧ ... ∧
ϕn ∧ ψ1 ∧ ...ψm ⇒ ψ where ϕi ∈ K and ψj, ψ ∈ D

The meaning of the rule is “if the agent believes ϕ1, ..., ϕn and desires ψ1, ..., ψm,
then the agent will desire ψ as well” and let

head(ϕ1 ∧ ... ∧ ϕn ∧ ψ1 ∧ ...ψm ⇒ ψ) = ψ

- Planning Rule is the basic building block for specifying plans and is an expres-
sion of the form

ϕ1 ∧ ... ∧ ϕn ∧ r1 ∧ ...rm 7→ ϕ where ϕi, ϕ ∈ D and ∀rj ∈ RES
A planning rule expresses that “if ϕ1 ∧ ... ∧ ϕn are achieved and the resources

r1 ∧ ...rm are used, then ϕ is achieved.”
Let DGR and PR be the set of all possible desire generation rules and planning

rules, respectively.

For the different argumentation processes the agent is equipped with four data-
bases: 〈Bb, Bd, Bp, R〉,1 where Bb base contains the agent beliefs, Bd its desire-
generation rules, Bp its planning rules and R gathers all the agent resources.

• Bb = {(βi, bi), i = 1, ..., n} where βi ∈ K and bi ∈ [0, 1]. A pair (βi, bi) means
that the belief on βi is at least bi.

• Bd = {(dgri, wi), dgri ∈ DGR and wi ∈ R, i = 1, ...,m} where symbol wi de-
notes the worth of the desire head(dgr).

• Bp = {pri, pri ∈ PR, i = 1, ..., l}

• R = {(ri, ci), i = 1, ..., n} where ri ∈ RES and ci ∈ R is the cost of consuming
ri.

Arguing over beliefs is different from arguing over desires or intentions. A propo-
sition is believed because it is true and relevant. Desires, on the other hand, are
adopted because they are justified and achievable. A desire is justified because the
world is in a particular state that warrants its adoption. On the other hand, a desire

1B∗i and R∗ will denote the corresponding data-bases without degrees.
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is achievable if the agent has a plan that achieves that desire. As a consequence of
the different nature of beliefs and desires, they are supported by two different types
of arguments. For example, a belief argument can be attacked by arguing that it is
not consistent with observation, or because there is a reason to believe the contrary.
Arguments for desires, on the other hand, could be attacked by demonstrating that
the justification of that desire does not hold, or that the plan intended for achieving
it is itself not achievable.

To deal with the different nature of the arguments involved, the authors present
three distinct argumentation frameworks: one for reasoning about beliefs, another
for arguing about what desires are justified and should be pursued, and a third
for arguing about the best plan to intend in order to achieve these desires. The
first framework for arguing about beliefs is based on existing works on belief argu-
mentation [52] and can be seen in [122], next we describe the other argumentation
schemas.

Arguing over desires

This proposal extends and refine the work by Amgoud and Kaci [4] considering more
general desire-generation rules in the sense that a desire may not only be generated
from beliefs, but it can also be generated from other desires.

In what follows, the functions BELIEFS(A), DESIRES(A) and CONC(A) return
respectively, for a given argument A, the beliefs used in A, the desires supported by
A and the conclusion of the argument A.

Let Bb and Bd the agent belief and desire bases, an Explanatory Argument is
defined as follows:

• If ∃(⇒ ψ) ∈ B∗d then (⇒ ψ) is an explanatory argument (A) with:

BELIEFS(A)= ∅

DESIRES(A)= {ψ}

CONC(A) = ψ

• If B1, ..., Bn are belief arguments, and E1, ..., Em are explanatory arguments,
and exists

CONC(B1) ∧ ... ∧ CONC(Bn) ∧ CONC(E1) ∧ ... ∧ CONC(Em)⇒ ψ ∈ B∗d
then B1, ..., Bn, E1, ..., Em ⇒ ψ is an explanatory argument (A) with:

BELIEFS(A)= SUPP (B1) ∪ ... ∪ SUPP (Bn) ∪BELIEFS(E1) ∪ ... ∪BELIEFS(Em)

DESIRES(A)= DESIRES(E1) ∪ ... ∪DESIRES(Em) ∪ {ψ}

CONC(A) = ψ

Where the support of a belief argument A = 〈H, h〉 denoted by SUPP (A), is a
minimal consistent set of belief formulae H that infers h.

TOP (A) = B1, ..., Bn, E1, ..., Em ⇒ ψ is the top rule of the argument.
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Let Ad denote the set of all explanatory arguments that can be generated from
〈Bb, Bd〉 and A = Ad ∪ Ab. As with belief arguments, explanatory arguments may
have different forces. However, since explanatory arguments involve two kinds of
information: beliefs and desires, their strengths depend on both the quality of beliefs
(using the notion of certainty level, i.e. the minimum certainty level of the support
formulae) and the importance (weight) of the supported desire. Then, the pair
(Level(A),Weight(A)) is used to define an order relation over explanatory arguments.
Since beliefs verify the validity and the feasibility of desires, it is important that
beliefs take precedence over desires. This is translated by the fact that the certainty
level of the argument is more important than the weight of the desire.

The notion of attack is then defined, an explanatory argument for some desire can
be defeated either by a belief argument (which undermines the truth of the under-
lying belief justification), or by another explanatory argument (which undermines
one of the existing desires the new desire is based on).

The definition of acceptable explanatory arguments Acc(Ad) is based on the
notion of defense. An explanatory argument can be defended by either a belief
argument or an explanatory argument. Desires supported by acceptable explanatory
arguments are justified and hence the agent will pursue them (if they are achievable).

Arguing over plans

We have presented a framework for arguing about desires and producing a set of
justified desires. Among this set, the agent must decide which ones will be pursued
and with which plan. The basic building block of a plan is the notion of partial
plan, which corresponds to a planning rule.

A complete plan (instrumental argument) is 〈G, d〉 such that d ∈ D and G is a
finite tree such that: the root of the tree is a partial plan for d; and a node has as
many children as the premise of the partial plan has. For each desire ϕi there is a
child node representing a partial plan toward this desire, and for each resource rj
there is an empty partial plan. The leaves of the tree are elementary partial plans
(with null preconditions).

An instrumental argument may achieve one or several desires of different worth
with a certain cost. So the strength of that argument is “the benefit” or “utility”
defined in this approach as the difference between the worth of the desires and the
cost of the plan. In a previous work [4] the authors defined the strength of an
instrumental argument only on the basis of the weight of the corresponding desire
and they did not account for the cost of executing the plan.

Let A = 〈G, g〉 be an instrumental argument, the utility of A is defined as:

Utility(A) =
∑

di∈Des(G)

Worth(di)−
∑

ri∈Res(G)

Cost(ri)

The notion of conflict-free sets of instrumental arguments is defined requiring
consistency between each consistent set of agent beliefs and all the nodes in the
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instrumental argument tree. Then, acceptable sets of instrumental arguments are
defined as maximal conflict-free sets. Finally, a desire g is achievable iff exists an
acceptable set of instrumental arguments S ′ such that 〈G, g〉 ∈ S ′

For an acceptable set of instrumental arguments S they define a global utility
extending the difference to the sum of worth of the desires and the sum of costs to
all the plans in S. This utility is used to construct a complete pre-ordering on the
set of acceptable sets of instrumental arguments. The basic idea is to prefer the set
of consistent plans with a maximal total utility.

This is more flexible than the frameworks presented in [3], where sets with max-
imal number of desires are privileged, with no regard to their priority or the cost of
different plans. In order to be pursued, a desire should be both justified (i.e sup-
ported by an acceptable explanatory argument) and also achievable. Such desires
will form the intentions of the agent.

Let I ⊆ D, I is an intention set iff:

1. ∀di ∈ I, di is justified.

2. ∃Sk acceptable set of instrumental arguments such that ∀di ∈ I, exists 〈Gi, di〉 ∈
Sk.

3. ∀Sj 6= Sk satisfying condition 2, then Sk is preferred to Sj.

4. I is maximal for set inclusion among the subsets of D satisfying the above
conditions.

The second condition ensures that the desires are achievable together. If there
is more than one intention set, a single one must be selected (e.g. at random) to
become the agent’s intention. This is a very complete argumentation-based approach
to practical reasoning and we will show in Chapter 14 that it is complementary to
our work in different aspects.

2.6 Conclusions

We conclude with some observations that will help us to outline our Thesis work.
Without any doubt, the importance given to the use of multiagent technologies has
increased in the design and implementation of complex real systems. In order to
achieve the full potential of multiagent approaches there are some important chal-
lenges pointed in [102] for the next future. Some of them are (1) working on many
different theories, architectures, technologies and infraestructures to specify, design,
implement and manage agent based systems; (2) creating tools, techniques and
methodologies to support agent systems developers and (3) establishing appropriate
linkage with other branches of computes science and with other disciplines, like the
uncertainty community in AI. In these general directions we place our research.
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After a bibliographic review, we have noticed that there are interesting works
dealing with partial aspects of graded attitudes in intentional systems (e.g., uncer-
tainty in beliefs, graded or ordered desires, intention reconsideration in uncertain
domains, etc), but we did not find many works proposing a general model. This
has encouraged us to work on the extension of an agent intentional architecture to
include graded attitudes.

Recently, Rahwan and Amgoud in [122] has presented an argumented-based ap-
proach to practical reasoning including three argumentation frameworks for beliefs,
desires and plans. This is a valuable approach allowing to represent uncertain be-
lief and worth related to desires. In this work, however, the authors do not present
strictly speaking a formal system (in the sense of a logical system which is sound and
complete with respect to an intended semantics) to represent and reason with these
graded attitudes according to a suitable uncertainty model. We propose a comple-
mentary approach to practical reasoning, based on a multi-context framework that
includes different logics to deal with these formal aspects and to include others, like
some estimation on plan failure and more flexible rules to derive intentions.

Because its aforementioned relevance, we have chosen to deal with the BDI ar-
chitecture. In particular, we have opted for a multi-context specification of the BDI
model because this approach shortens the gap between specification and implemen-
tation, among other advantages. Besides, to represent and reason about the agent
positive and negative desires in the g-BDI model we inspired our work in the bipolar
model of preferences proposed by Benferhat et al. in [12].





Logic is the anatomy of thought.

J. Locke

Chapter 3

Logical Background

In this Chapter, we include the review of some logic backgrounds necessary for our
agent model. First we revised the propositional Dynamic logic that allow us to
represent and reason about the agent actions. Then, some many-valued logic as the
Gödel logic expanded with a finite set of truth constants (G∆(C)) and the Rational
Pavelka logic (RPL) are presented. These logics will be used as the many-valued
logic to reason about graded degrees in the different attitudes. Finally the Rational
Lukasiewicz logic (RLL) is revised, this logic will be used in the agent intention
formalization.

3.1 Propositional Dynamic logic

To define the PDL language, LDL, the propositional language L is thus extended by
adding to it action modalities of the form [α] where α is an action. More concretely,
given a set Π0 of symbols representing elementary actions and the set L of basic
formulae the set Π(L,Π0) of plans (composite actions) is the following:

• Π0 ⊂ Π (elementary actions are plans)

• if α, β ∈ Π then α; β ∈ Π, (the concatenation of actions is also a plan)

• if α, β ∈ Π then α ∪ β ∈ Π (non-deterministic disjunction)

• if α ∈ Π then α∗ ∈ Π (iteration)

• If A ∈ L, then A? ∈ Π (test)

then formulae LDL is defined as follows:

• if p ∈ V ar, then p ∈ LDL

• if ϕ ∈ LDL then ¬ϕ ∈ LDL

53
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• if ϕ, ψ ∈ LDL then ϕ→ ψ ∈ LDL

• if α ∈ Π and ϕ ∈ LDL then [α]ϕ ∈ LDL.

The interpretation of [α]A is “after the execution of α, A is true”. We denote
by `DL the notion in proof in DL.

The semantics for the language LDL is defined, as usual in modal logics, using a
Kripke structure.

A standard Kripke model is a structure 〈W, {Rα : α ∈ Π} , e〉 where

• W is a non-empty set of possible worlds.

• Rα ⊆ W ×W , for each α ∈ Π. This relation represents transition over worlds
by the execution of action α.

• e : V ×W → {0, 1} provides for each world a Boolean (two-valued) evaluation
of the propositional variables, that is, e(p, w) ∈ {0, 1} for each propositional
variable p ∈ V and each world w ∈ W and the evaluation is extended to
arbitrary formulae in LDL using classical connectives and to formulae with
action modalities —as [α]A, by defining:

e([α]A,w) = min {e(A,w′) | (w,w′) ∈ Rα}
Notice that e([α]A,w) = 1 iff the evaluation of A is 1 in all the worlds w′ that
may be reached through the action α from w.

Then, a regular Kripke model is a standard Kripke model where the R relation
also verify:

• Rα;β = Rα ◦Rβ,

• Rα∪β = Rα ∪Rβ,

• Rα∗ = (Rα)∗ (ancestral relation) and

• Rϕ? = {(w,w) | e(ϕ,w) = 1}, ϕ ∈ L.

The simple propositional dynamic logic PDL introduced above can be finitely
axiomatized by the following system [104]:

• any axiomatization of propositional logic.

• [α] (φ→ ϕ)→ ([α]φ→ [α]ϕ)

• [ϕ?]φ↔ ϕ→ φ
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• [α; β]φ↔ [α] [β]φ

• [α ∪ β]φ↔ [α]φ ∧ [β]φ

• [α∗]φ→ φ

• [α∗]φ→ [α] [α∗]φ

• [α∗] (φ→ [α]φ)→ (φ→ [α∗]φ)

• [α]φ↔ ¬ [α∗]¬φ

Rules: modus ponens (MP) and the Necessitation rule: from ϕ derive [α]ϕ.

3.2 G∆(C) and RPL Fuzzy Logics

Most of the many-valued systems related to fuzzy logic are those corresponding to
t-norm based fuzzy logics. They use the real interval [0, 1] as set of truth-values
and their calculi is defined by a conjunction & and an implication ⇒ interpreted
respectively by a t-norm ∗ and its residuum ⇒ 1, and where negation is defined as
¬ϕ = ϕ→ 0̄, with 0̄ being the truth-constant for falsity. In the framework of these
logics, called t-norm based fuzzy logics, each (left continuous) t-norm ∗ uniquely
determines a semantical (propositional) calculus PC(*) over formulae defined in
the usual way from a countable set of propositional variables, connectives ∧, &
and → and truth-constant 0̄. Evaluations of propositional variables are mappings
e assigning each propositional variable p a truth-value e(p) ∈ [0, 1], which extend
univocally to compound formulae as follows:

e(0̄) = 0

e(ϕ ∧ ψ) = min(e(ϕ), e(ψ))

e(ϕ&ψ) = e(ϕ) ∗ e(ψ)

Note that, by definition of residuum, e(ϕ → ψ) = 1 iff e(ϕ) ≤ e(ψ), in other
words, the implication → captures the ordering. Further connectives are defined as
follows:

¬ϕ = ϕ→ 0̄

ϕ ∨ ψ = ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)

ϕ ≡ ψ = (ϕ→ ψ)&(ψ → ϕ)

From the above definitions: e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)) , ¬ϕ = e(ϕ) ⇒ 0 and
e(ϕ ≡ ψ) = e(ϕ ∨ ψ) ∗ e(ψ → ϕ).

1Defined as x⇒ y = max {z ∈ [0, 1] | x ∗ z ≤ y}
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A formula ϕ is a said to be a 1-tautology of PC(*) if e(ϕ) = 1 for each evaluation
e, and will be denoted as |=∗ ϕ. The associated consequence relation is defined as
usual: if T is a theory (set of formulas), then T |=∗ ϕ whenever e(ϕ) = 1 for all
evaluations e such that e(ψ) = 1 for all ψ ∈ T . Two relevant examples of contin-
uous T-norm fuzzy logic are Gödel and Lukasiewicz logics defined by the following
operations:

Gödel logic calculus:

x ∗G y = min(x, y)

x⇒G y =

{
1, if x ≤ y
y, otherwise

Lukasiewicz logic calculus:

x ∗L y = max(0, x+ y − 1)

x⇒L y =

{
1, if x ≤ y
1− x+ y, otherwise

Notice that in these two calculi the min operation and hence the connective ∧,
is also definable from ∗ and → as:

min(x, y) = x ∗ (x⇒ y)

If we denote by `L and `G the provability relations in Lukasiewicz and Gödel
logic respectively, the standard completeness hold, namely:

`L ϕ iff |=L ϕ
`G ϕ iff |=G ϕ

Both logics have been shown to be axiomatic extensions of Hájek’s Basic Fuzzy logic
BL [78]. The following formulae are axioms of BL:

(A1) (ϕ→ ψ)→ ((ϕ→ χ)→ (ψ → χ))

(A2) (ϕ&ψ)→ ϕ

(A3) (ϕ&ψ)→ (ψ&ϕ)

(A4) (ϕ&(ϕ→ ψ)→ (ψ&(ψ → ϕ))

(A5a) (ϕ→ (ψ → χ)→ (ϕ&ψ)→ χ)

(A5b) (ϕ&ψ)→ χ)→ (ϕ→ (ψ → χ))

(A6) (ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)

(A7) (0̄→ ϕ)
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The deduction rule of BL is modus ponens.

Particularly, Lukasiewicz logic is an extension of BL by the axiom:

(L) ¬¬ϕ→ ϕ (forcing the negation to be involutive)

and Gödel logic adds to BL axiomatic the following axiom:

(G) ϕ→ ϕ&ϕ (forcing the conjunction to be idempotent)

The above mentioned completeness for theorems extend to deductions from ar-
bitrary theories in case of Gödel logic and only to deductions from finite theories in
case of Lukasiewicz logic:

T `L ϕ iff T |=L ϕ, if T is finite
T `G ϕ iff T |=G ϕ

In some situations one might be also interested to explicitly represent and reason
with partial degrees of truth. One convenient way to allow for an explicit treatment
of degrees of truth is by introducing truth-constants into the language i.e. new
constant symbols c̄ for suitable values c ∈ [0, 1] and stipulates that e(c̄) = c for all
truth-evaluations e, then a formula of the kind c̄ → ϕ becomes 1-true under any
evaluation e whenever c ≤ e(ϕ).

Rational Pavelka Logic (RPL) is the expansion of Lukasiewicz Logic by adding
into the language a truth-constant r̄ for each rational r ∈ [0, 1], together with a
number of additional axioms. The semantics is the same as Lukasiewicz logic, just
expanding the evaluations e of propositional variables in [0, 1] to truth-constants by
requiring e(r̄) = r. Pavelka proved that his logic is complete for arbitrary theories
in a non-standard sense known as Pavelka-style completeness. Namely, he defined
the truth degree of a formula ϕ in a theory T as follows:

‖ϕ‖T = inf{e(ϕ) | e is a RPL model of T}

and defined a provability degree of ϕ over T as:

|ϕ|T = sup{r | T `RPL r →L ϕ}

and proved that ‖ϕ‖T = |ϕ|T

Hájek showed [78] that in order to set an axiomatic for this logic only was nec-
essary to add Lukasiewicz logic axioms these book-keeping axiom schemas:

r̄&s̄↔ r ∗L s
r̄ → s̄↔ r ⇒L s
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On the other hand, Hájek also shows that Gödel logic can be expanded with a
finite set of truth constants together with a new unary connective ∆ (denoted G∆(C)
logic) while preserving the strong standard completeness. Namely, let C ⊆ [0, 1] a
finite set containing 1 and 0, and introduce into the language a truth-constant r
for each r ∈ C, together with the so-called Baaz’s projection connective ∆. Truth-
evaluations of Gödel logic are extended in an analogous way to RPL as it regards
to truth constants and adding the clause

e(∆(ϕ)) =

{
1, if e(ϕ) = 1
0, otherwise

The axioms and rules for the G∆(C) logic are those of Gödel logic plus the above
book-keeping axioms for constants in C and the following axioms and rules for ∆:

(∆1) ∆ϕ ∨ ¬∆ϕ

(∆2) ∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ)

(∆3) ∆ϕ→ ϕ

(∆4) ∆ϕ→ ∆∆ϕ

(∆5) ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ)

and the Necessitation rule for ∆: from ϕ derive ∆ϕ. Then, the following strong
completeness result holds: for any theory T and formula ϕ,

T `G∆(C) ϕ iff T |=G∆(C) ϕ

3.2.1 Rational Lukasiewicz Logic

Rational  Lukasiewicz logic, RLL for short, introduced by Gerla in [67] to represent
and axiomatize the semantics of degrees of the intentions. This logic is an expan-
sion of  Lukasiewicz logic with a countable set of unary connectives {δn}n∈N, whose
intended semantics is that the truth-value of δnϕ is just the truth-value of ϕ divided
by n. So in RLL one can express divisions by natural numbers

The RLL language is an extension of Lukasiewicz Logic by adding into the lan-
guage a truth-constant r̄ for each rational r ∈ [0, 1]) and the unary connectives δn
for division, i.e. the language also includes the formulae δnΦ if Φ ∈ LL.

The following axioms defining the behavior of δn connectives, are added to the
RPL axiomatics:

(δn1) δnΦ⊕ n. . . ⊕δnΦ ≡L Φ

(δn2) δnΦ⊗ (δnΦ⊕ n−1. . . ⊕δnΦ)→L 0

As in  Lukasiewicz logic the standard completeness holds and also Pavelka-style
completeness holds for arbitrary theories [67].
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Chapter 4

The General Framework

4.1 Introduction

Several previous works have proposed theories and architectures to provide multia-
gent systems with a formal support. Among them, one of the most widely used is
the BDI agent architecture presented by Rao and Georgeff. We consider that an ex-
tension of this architecture in order to incorporate degrees in the different attitudes,
will not only make the model semantics richer, but it also will help the agent to take
better decisions. With that aim we looked first at the “individual” aspect of agency,
and decided to extend the BDI agent architecture to represent and reason under
uncertain beliefs and graded motivations. In this Chapter we introduce a general
model for graded BDI agents (g-BDI). This model is based on a multi-context spec-
ification of agents and is able to represent graded mental attitudes. In this sense,
belief degrees will represent to what extent the agent believes a formula is true.
Degrees of positive or negative desire shall allow the agent to set different levels of
preference or rejection respectively. Intention degrees shall give also a preference
measure but, in this case, modeling the cost/benefit trade off of reaching an agent’s
goal. Then, Agents having different kinds of behavior shall be modelled on the basis
of the representation and interaction of these basic three attitudes.

In order to represent and reason about graded notions of beliefs, desires and
intentions in our graded BDI agent model, we decide to use the many-valued modal
approach proposed by Hájek et al. in [78]. Following this approach to reason about
uncertainty in the different mental contexts, respecting a particular uncertainty
model (e.g. probabilities, necessities), can be done in a very elegant way within a
uniform and flexible logical framework.

In this Chapter we present the general aspects of this agent model as its multi-
context specification and its logical framework. Then, to complete the definition of
this agent model the specification of the different components in the architecture
(i.e., the different contexts and bridge rules) are needed and will be presented in
next Chapters 5, 6 and 7. The architecture we present will serve as a blueprint to
design different kinds of particular agents.
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4.2 Multi-context specification

The architecture presented in this Chapter is an extension of the work of Parsons
et.al. [115] about multi-context BDI agents. Multi-context systems were introduced
by Giunchiglia et.al. [71] to allow different formal (logic) components to be defined
and interrelated. These systems and their applications to multiagent formalization
were presented in Chapter 2.3.

The MCS specification of an agent contains three basic components: units or
contexts, logics, and bridge rules, which channel the propagation of consequences
among theories. Thus, an agent is defined as a group of interconnected units:〈
{Ci}i∈I ,∆br

〉
, where each context Ci ∈ {Ci}i∈I is the tuple Ci = 〈Li, Ai,∆i〉 where

Li, Ai and ∆i are the language, axioms, and inference rules respectively. They define
the logic for the context and its basic behaviour as constrained by the axioms. When
a theory Ti ∈ Li is associated with each unit, the implementation of a particular
agent is complete. ∆br can be understood as rules of inference with premises and
conclusions in different contexts, for instance:

C1 : ψ,C2 : ϕ

C3 : θ

means that if formula ψ is deduced in context C1 and formula ϕ is deduced in context
C2 then formula θ is added to context C3.

The deduction mechanism of these systems is based on two kinds of inference
rules, internal rules ∆i inside each unit, and bridge rules ∆br outside. Internal rules
allow to draw consequences within a theory, while bridge rules allow to embed results
from a theory into another [68]. A multi-context systems needs some kind of control
strategy to synchronize and coordinate both kinds of inferences (i..e. by internal
rules and by bridge rules) also needs to prevent that a bridge rule execute more
than once under the same premise conditions.

We have mental contexts to represent beliefs (BC), desires (DC) and intentions
(IC). We also consider two functional contexts: for Planning (PC) and Communica-
tion (CC). The Planner is in charge of finding plans to change the current world into
another world, where some desire is satisfied, and of computing the cost associated
to the plans. The Communication context is the agent door to the external world,
receiving and sending messages. In summary, the BDI agent model is defined as:

Ag = ({BC,DC, IC, PC,CC},∆br)

Each context has an associated logic, that is, a logical language with its own
semantics and deductive system. The different context will be described in some
detail in the following chapters.

In Figure 11.6 it is shown an schema of the graded BDI agent proposed make
up of a set of mental contexts (BC, DC and DC) and functional ones (PC and CC)
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Figure 4.1: Multi-context model of a graded BDI agent

and some of the bridge rules ((1) to (6)) relating them.

4.3 Logical Framework: Many-valued modal ap-

proach

In the last two decades, the Artificial Intelligence community has undertaken the
problem of knowledge representation and reasoning under uncertain, incomplete
and vague knowledge. This was an important and necessary issue, in order to
develop systems able to deal with these kinds of information in real-domains. There
are different approaches to model and manage approximate reasoning. Among the
most relevant ones, are the works based on probabilistic models, Dempster-Shafer
theory of evidence and possibility theory [100]. Considering uncertainty reasoning
an important state of the art can be seen in [79].

Recently, Hájek et al. in e.g. [78] and Gottwald in [75] have developed an
approach where uncertainty reasoning is dealt by defining suitable modal theories
over suitable many-valued logics. This proposal allows to use well-founded logical
frameworks (as diverse many-valued logics) to represent different uncertainty models
by adding the adequate axiomatics for each case.

Fuzzy logics and uncertainty theories play different roles that must be clarified.
Fuzzy logic is a logic of vague, imprecise notions and propositions, and is then, a
logic of partial degrees of truth. On the contrary, an uncertainty measure deals with
crisp notions and propositions (i.e. true or false), and is evaluated with the degree
of belief on the truth of the proposition. Fuzzy logics behave as a many-valued logic,
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whereas uncertainty or belief theories can be related to some kinds of (two-valued)
modal logics.

Next, we present the basic ideas proposed by Hájek et al. in [78]. We notice
that they are expressed in terms of beliefs but they may be directly applied to other
graded mental attitudes (e.g. desires, intentions).

To consider the belief degree of a crisp proposition as the truth-degree of a fuzzy
(modal) proposition.

For instance, let us consider the case where belief degrees are modelled as proba-
bilities. Then, for each classical (two-valued) formula ϕ, we consider a modal formula
Bϕ which is interpreted as “ϕ is probable”. This modal formula Bϕ may be seen
then as a fuzzy formula which may be more or less true, depending on the probabil-
ity of ϕ. In particular, we can take as truth-value of Bϕ precisely the probability
of ϕ. Moreover, using a many-valued logic, we can express the governing axioms of
probability theory as logical axioms involving modal formulae of the kind Bϕ. But
notice that such an approach has to clearly distinguish between propositions like
“(ψ is probable) and (ϕ is probable)” on the one hand and “(ψ∧ϕ) is probable” on
the other.

Other key concept pointed out in the works by Godo et. al [72, 73] related to
reason about belief functions using fuzzy logic is:

To represent belief measures as models of fuzzy theories.

Once we have defined the language of belief fuzzy propositions Bϕ (B being a
modality representing probable, necessary, desirable, etc.) where ϕ are crisp propo-
sitions, then we can write theories about the Bϕ formulae over a particular fuzzy
logic.

Then, the many-valued logic machinery can be used to reason about the modal
formulae Bϕ, which faithfully respect the uncertainty model chosen to represent
the degrees of belief. Therefore, in this kind of logical frameworks we shall have,
besides the axioms of the many-valued logic, a set of axioms corresponding to the
basic postulates of a particular uncertainty theory.

The question derived from this approach is which kind of fuzzy logics can be used
and which aspects of uncertainty theories can be formalized. As for example, Hájek
et al. in [77] defined a propositional probability logic —Fuzzy Logic of Probability,
as a theory over Rational Pavelka logic RPL (an extension of  Lukasiewicz’s infinitely-
valued logic with rational truth constants, described in Section 3.2). The very reason
of selecting this logic was in first place, the availability of well-founded results for
this logic and secondly, the fact that the main connectives of this logic are based on
the arithmetic addition in [0,1], which is basically what we need to deal with additive
measures like probabilities. Besides,  Lukasiewicz logic also allows to define the min
and max connectives, so it was possible to define in [77] a logic to reason about
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necessities and possibilities degrees. However, in order to get standard completeness
for a necessity-based logic, instead of Pavelka-style completeness, it may be chosen
the G∆(C) logic (see for details Section 3.2), because, the main connective is the min
conjunction which is vital to represent necessity measures, since necessity measures
are min-decomposable w.r.t. the conjunction ∧, and second, because G∆(C) enjoys
completeness for deductions from arbitrary theories.

On the other hand, considering the  Lukasiewicz logic as the underlying fuzzy
logic constraints the uncertainty theories that can be defined over it. In particular,
the lacking of the product and division operations is an important obstacle to for-
malize many aspects of uncertainty theories. Then, the same authors in [72] take
advantage of a logic combining  Lukasiewicz and Product logic connectives — LΠ
Logic— to define a richer belief theory on top of it, particularly they formalized the
logic of conditional probability.

To give an insight of how these logical frameworks are built, we consider some
features of the Fuzzy Logic of Probability (FP) presented in [77]. They associate
with each crisp formula ψ a new fuzzy propositional variable P (ψ) meaning “ψ is
probable” and which is evaluated using its probability: e(Pψ) = P (ψ).

The syntax of FP-formulae are just RPL-formulae built from fuzzy propositional
variables. Then the FP-logic language includes formulae of two types, namely:

1. non-modal: they are crisp formulae of L i.e., those built from propositional
variables p1, ..., pn using the classical binary connectives (¬, ∨).

2. modal: they are built from elementary modal formulae Pψ (also may be
noted fψ), were ψ are non-modal formulae, and the truth constants r̄ for each
rational r ∈ [0, 1] using the connectives of RPL (&,→L,↔L,∧,∨)

The axiomatic schema presented for the FP-logic is the following:

• (RPL) Axioms of RPL. (Axioms of many-valued logic)
(can be seen in Section 3.2)

• (FP1) (Pφ, 1) for φ being an axiom of classical propositional logic.
Necessitation rule

• (FP2) (P (φ→ ψ)→L (Pφ→L Pψ), 1) for all φ, ψ
(K axiom for the P modality)

• (FP3) (P¬φ→L ¬L(Pφ), 1) for φ for all φ
(Axiom of probability)

• (FP4) (P (φ ∨ ψ)↔L ((Pφ→L P (φ ∧ ψ))→L Pψ), 1) for all φ, ψ
(Axiom of probability)
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Axioms (FP1) and (FP2) guarantee the preservation of classical equivalence and
the monotonicity. (FP3) and (FP4) are direct translation of the well-known axiom
of probability, the first represents the relationship between the probability of one
proposition and its negation (i.e. P¬φ = 1 − Pφ), and the second represents the
finitely additive property (i.e. P (φ ∨ ψ) = Pφ+ Pψ − P (φ ∧ ψ)).

In order to represent and reason about graded notions of beliefs, desires and
intentions in our graded BDI agent model, we decide to use the many-valued modal
approach previously presented. Following this approach to reason about uncertainty,
respecting a particular model (e.g. probabilities, necessities), can be done in a very
elegant way within a uniform and flexible logical framework.

The matter is to select the suitable many-valued logic that equip us with the
necessary connectives as to represent the selected uncertainty measure. In this way,
the most suitable many-valued logic with well-founded results, may be used as the
logic basement for the uncertainty theory we want to model. Furthermore, the logic
machinery of this many-logic can be used to reason about the uncertainty measure.

In our g-BDI model, for the probabilistic model of the belief context and for the
desire and intention contexts, we choose as the many-valued logic the infinite-valued
 Lukasiewicz logic.1 But another selection of many-valued logics may be done for each
unit according to the uncertainty measure modelled in each case. For instance, we
use Gödel logic for the necessity approach to the BC because the main connective is
the min conjunction which is fundamental to represent necessity measures, and also
because G∆(C) logic presents completeness for deductions from arbitrary theories.

Therefore, in this kind of logical frameworks we shall have, besides the axioms of
many-valued logic (e.g  Lukasiewicz or Gödel logics), a set of axioms corresponding
to the basic postulates of a particular uncertainty theory. Hence, in this approach,
reasoning about uncertainty (e.g. probabilities, necessities) can be done in a very
elegant way within an uniform and flexible logical framework.

This many-valued logical framework is used as the general logical framework to
represent and reason about the different mental graded attitudes in the g-BDI agent
model, as will be seen in Chapters 5 and 6.

1The reason of using this many-valued logic is that its main connectives are based on the
arithmetic addition in the unit interval [0, 1], which is what is needed to deal with additive measures
like probabilities. Besides,  Lukasiewicz logic has also the min conjunction and max disjunction as
definable connectives, so it also allows to define a logic to reason about degrees of necessity and
possibility.



So far as the laws of mathematics
refer to reality, they are not
certain. And so far as they are
certain, they do not refer to reality.

A. Einstein

Chapter 5

The Belief Context (BC)

5.1 Introduction

The purpose of this context is to model the agent’s beliefs about the environment.
These beliefs may be uncertain, imprecise or incomplete. In the last years, to over-
come with this kind of information, different models of approximate reasoning have
been proposed to represent and reason with these kinds of knowledge [79]. Among
the main approaches to uncertainty we can mention the probabilistic, possibilistic
and evidential models.

In the BC we represent the agent uncertain knowledge about the world where
she lives. We need quantitative formulae to express, for instance, that the belief
degree (e.g. probability, necessity) of a formula is greater or equal than a certain
value. Also, qualitative formulae are needed to represent that the belief degree in
some formula is greater than the belief in other. To represent these beliefs in the
Belief context we use modal many-valued formulae, following the logical framework
presented in Section 4.3.

Since the agent needs to reason about her possible actions and the environment
transformations they cause, they must be part of any situated agent’s beliefs set. To
represent this knowledge related to action execution, we use the Dynamic Proposi-
tional logic (PDL) as the basic propositional logic (described in Section 3.1). PDL
has been proposed to model agent’s actions in [104] and [140].

We consider two particular approaches to uncertainty for the Belief Context:
BCnec corresponding to the necessity-valued logic and BCprob using the probability-
valued logic. For each logic, a modal language BC is defined over a propositional
dynamic language to reason about the belief on dynamic propositions. Then, our
logics BCnec and BCprob are built as suitable theories over suitable fuzzy modal
logics with truth-constants. Particularly, the necessity logic for the BC (BCnec) is
defined as a theory over G∆(C) whereas the probabilistic logic for BC (BCprob) is
formalized as a theory in Rational Pavelka logic (RPL). The description of both
fuzzy logics, G∆(C) and RPL, can be seen in Chapter 3.

67
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Furthermore, a sound and complete axiomatics for BCnec and BCprob is pre-
sented.

Other belief models might be used as well selecting an appropriate many-valued
logic and adding the corresponding axioms.

5.2 Belief context logics

To reason about the credibility of bi-valued (crisp) propositions, we define a language
for belief representation, following Godo et al.’s proposal [72, 73] based on a many-
valued logic (described in Section 4.3).

In order to define the basic crisp language, we start from a classical proposi-
tional language L, defined upon a countable set of propositional variables V ar and
connectives (¬,→), and extend it to represent actions. We take advantage of Dy-
namic logic which is suitable to model agent’s actions (described in Section 3.1).
These actions and the transformations caused by their execution must be part of
any situated agent’s beliefs set.

The propositional language L is thus extended to LDL, by adding to it action
modalities of the form [α] where α is an action. The set of composite actions or
plans Π are built from the language L and a given set Π0 of symbols representing
elementary actions. Then, LDL includes formulae like [α]ϕ, where α ∈ Π and ϕ ∈ L.
The definition of the plan set Π and the propositional dynamic language LDL can
be seen in Section 3.1.

This language LDL is the basic bi-valued (crisp) language to define a fuzzy modal
language capable to represent the uncertainty of the belief context. Once we build
a belief fuzzy proposition Bϕ (B being a modality standing for probable, necessary,
believable, etc.) per each crisp proposition ϕ, then one can try to write theories
about formulae of the form Bϕ over a particular fuzzy logic, including, as axioms,
formulae corresponding to the basic postulates of a particular uncertainty theory. In
this way, models (in the sense of many-valued logic) of the theories about formulae
of the form Bϕ become uncertainty measures of a particular type over the crisp
formulae ϕs.

Formulae of BC are of two types:

• Crisp (non B-modal): they are the (crisp) formulae of LDL, built in the usual
way, thus, if ϕ ∈ LDL then ϕ ∈ BC.

• B-Modal: they are built from elementary modal formulae Bϕ, where ϕ is crisp,
and truth constants r, for each rational r ∈ [0, 1], using the connectives of the
chosen many-valued logic.

Now, in order to represent and reason about the uncertainty of dynamic for-
mulae we need to introduce appropriate measures for this purpose. Necessity and
probability measures are two outstanding plausibility measures [79].
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Given a Boolean algebra F of subsets of W, µ : F → [0, 1] is a plausibility
measure if the following holds:

• µ(∅) = 0

• µ(W ) = 1

• If X, Y ∈ F and X ⊆ Y , then µ(X) ≤ µ(Y )

A plausibility measure µ is a

1. necessity measure if in addition satisfies:

- µ(X ∩ Y ) = min(µ(X), µ(Y ))

2. (finitely additive) probability if it satisfies:

- µ(X ∪ Y ) = µ(X) + µ(Y ), when X ∩ Y = ∅, for all X, Y ⊆ F

We define next two approaches for the Belief Context: BCnec corresponding to
the necessity-valued logic and BCprob using the probability-valued logic. For each
logic, a modal language BC is defined over the language LDL to reason about the
belief on crisp dynamic propositions. To do so, we extend the crisp language LDL
with a fuzzy unary modal operator B. If ϕ is a proposition in LDL, the intended
meaning of Bϕ is “ϕ is certain” in one case and “ϕ is probable” in the other. Then,
our logics BCnec and BCprob are built over the set LDL of DL-formulae, as theories
over suitable fuzzy logics with truth-constants.

Now, the question is which kind of fuzzy logics can we use and which (aspects of)
uncertainty theories can we formalize. The very reason of using Rational Pavelka
logic (RPL) for a probabilistic model as in [72] is, besides the availability of well-
founded results for such a logic, the fact that the main connectives of  Lukasiewicz’s
logic are based on the arithmetic addition in the unit interval [0, 1], which is ob-
viously what we basically need to deal with additive measures like probabilities.
Also we have the Pavelka style completeness for this logic, that does not need finite
theories, which fits our needs when proving completeness for the BCprob logic.

For a necessity model of uncertainty, the  Lukasiewicz’s logic also has the min
conjunction and max disjunction as definable connectives, and it is not difficult
to also define a logic to reason about necessity or possibility degrees. However,
in order to get standard completeness for our necessity-based BC logic, instead
of Pavelka-style completeness, we chose the G∆(C) logic, because, first the main
connective is the min conjunction which is vital to represent necessity measures,
since necessity measures are min-decomposable w.r.t. the conjunction ∧, and second,
because G∆(C) enjoys completeness for deductions from arbitrary theories that we
can extend to our Belief context logic BCnec.

Therefore, the necessity logic for the BC will be defined as a theory over G∆(C)
and will be denoted BCnec, whereas the probabilistic logic for BC will be defined as
a theory in Rational Pavelka logic RPL and will be denoted BCprob.
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5.3 The BCnec Logic

We define a fuzzy modal language over the DL-formulae to reason about the neces-
sity degree of dynamic formulae. In this case, we chose as many-valued logic: G∆(C),
i.e. Gödel logic expanded with the ∆ operator and finitely many truth-constants
from some finite C ⊂ [0, 1] [78].

The language of BCnec, LBCn, is built over the language ϕ ∈ LDL. Then, for-
mulae of LBCn are of two types DL-formulae and B-modal formulae (B-formulae),
namely:

• If ϕ ∈ LD then ϕ ∈ LBCn.

• If ϕ ∈ LD then Bϕ ∈ LBCn

• If r ∈ C then r ∈ LBCn

• If Φ ∈ LBCn then ∆(Φ) ∈ LBCn (where ∆ represents the unary Baaz projection
connective).

• If Φ,Ψ ∈ LBCn then Φ→G Ψ ∈ LBCn and Φ∧G Ψ ∈ LBCn (where ∧G and→L

correspond respectively to the conjunction and implication of G∆(C) logic).
Other G∆(C) logic connectives are definable from ∧G, →G, and 0: ϕ ∨G ψ is
((ϕ→G ψ)→G ψ)∧G ((ψ →G ϕ)→G ϕ)), ϕ ≡G ψ is (ϕ→G ψ)∧G (ψ →G ϕ),
and ¬Gϕ is ϕ→G 0.

Since in Gödel logic a formula Φ→G Ψ is 1-true iff the truth value of Ψ is greater
or equal to that of Φ, modal formulae of the type r →G Bϕ (where ϕ ∈ LDL) express
that the necessity of ϕ is at least r (quantitative formulae). By means of formulae
of the form Bψ →G Bϕ comparison of degrees may be represented (qualitative
formulae).

In this context, the agent’s beliefs will be expressed by a theory T (a set of
B-formulae) containing quantitative and qualitative expressions.

BCnec semantics

The semantics for this language is defined using a Necessity Kripke structure of
the following form:

MBCn = 〈W, {Rα : α ∈ Π} , e, µ〉

where 〈W, {Rα : α ∈ Π} , e〉 is a regular Kripke model of PDL and µ : F → [0, 1] is
a necessity measure on a Boolean algebra F ⊆ 2W such that for each ϕ ∈ LD, the
set {w | e(ϕ,w) = 1} is µ-measurable [78].

The truth evaluation e(w,ϕ) of a DL-formula ϕ is defined (either 0 or 1) as
described in previous Section 3.1. Then e is extended to B-formulae by means of
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G∆(C) logic truth-functions and the necessity interpretation of belief, as follows:

- e(Bϕ,w) = µ({w′ ∈ W | e(ϕ,w′) = 1}), for each crisp ϕ

- e(r, w) = r, for all r ∈ C

- e(Φ ∧G Ψ, w) = min(e(Φ, w), e(Ψ, w))

- e(Φ→G Ψ, w) =

{
1, if e(Φ, w) ≤ e(Ψ, w)
e(Ψ, w), otherwise

- e(∆(ϕ), w) =

{
1, if e(ϕ,w) = 1
0, otherwise

Then, the truth-degree of a formula Φ in a Necessity Kripke structure MBCn is
defined as

‖Φ‖MBCn
= inf

w∈W
e(Φ, w)

for a Bϕ formula (with ϕ crisp) the following holds:

‖Bϕ‖MBCn
= µ({w′ ∈ W | e(φ,w′) = 1})

If T is a set ofB-formulae, T ⊆ LBCn one defines the truth-degree of aB-formulae
Φ over T as the value

‖Φ‖T = inf{‖Φ‖M |M is a BCnec model of T}

Models of BCnec are K structures such that ‖Φ‖K = 1 for each Φ ∈ BCnec. If
T ⊆ LBCn, we will write T |=BCnec Φ when ‖Φ‖K = 1 for each K model of BCnec∪T .

BCnec Axioms and rules
The axioms and rules for BCnec are set in layers according to the nature of the
language LBCn and the particular uncertainty model chosen here. Namely, we need
axioms for the DL-formulae, for the B-formulae and to model the behavior of B-
formulae respecting the selected uncertainty model. Then, they are defined in the
following way:

1. Axioms and rules of propositional Dynamic logic for DL-formulae (see Section
3.1).

2. Axioms and rules for G∆(C) logic for B-formulae (see Section 3.2).

3. Necessity Axioms (where ϕ and ψ are DL-formulae)

(a) B(ϕ→ ψ)→G (Bϕ→G Bψ)

(b) B(ϕ ∧ ψ) ≡G Bϕ ∧G Bψ
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(c) ¬GB⊥
(d) Bϕ for every ϕ DL-theorem

4. Necessitation rule for B: from ϕ derive Bϕ

Proof within BCnec will be denoted as `BCnec .

BCnec Soundness and Completeness

We basically follow the proof schema presented in [47] for Graded Dynamic
Deontic logics which, in turn, is based on the proof of Theorem 8.4.9 in [78], with
some adaptation. The idea is that a B-modal theory T (consisting of B-formulae)
can be represented as a theory T ∗ over the propositional logic G∆(C).

For each modal formula Bϕ we introduce a propositional variable pϕ. Then, we
define a mapping ∗ as follows:

- (Bϕ)∗ = pϕ,
- (r)∗ = r, for each rational r ∈ [0, 1],
- (Φ ∧G Ψ)∗ = Φ∗ ∧G Ψ∗

- (Φ→G Ψ)∗ = Φ∗ →G Ψ∗.
- (∆Φ)∗ = ∆Φ∗

If T is a set of B-formulae, let T ∗ be the following set of G∆(C) formulae: T ∗ =
{Φ∗ | Φ ∈ T} ∪ {pϕ, for each ϕ : `DL ϕ} ∪ {ψ∗, for each Necessity Axiom ψ}.

Lemma 1 If T is a B-theory and Φ is a B-formula, then

T `BCnec Φ iff T ∗ `G∆(C) Φ∗

Proof: Assume that T ∗ `G∆(C) Φ. Let α∗1, . . . , α
∗
n be a G∆(C)-proof of Φ∗ in T ∗.

Then, that sequence can be converted into a BCnec-proof of Φ in T by adding for
each formula of the form pψ that occurs in α∗1, . . . , α

∗
n, a proof of ψ in PDL and then

applying the rule of necessitation for B-formulae. Conversely, assume T `BCnec Φ.
Then, a G∆(C)-proof of Φ∗ in T ∗ can be obtained by taking the translation of the
formulae of one PDL-proof of Φ in T , once the DL-formulae are deleted. Use the
fact that every DL-formula provable in a B-theory is a PDL-theorem (see [47]).

�

Lemma 2 (Soundness) For every B-theory T over BCnec and every Φ B-formula,

T `BCnec Φ implies T |=G∆(C) Φ

Proof: It follows from the fact that the Necessity Axioms are 1-true in every Neces-
sity Kripke structure. �
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Theorem 3 (Completeness) For every B-theory T over BCnec and every B-
formula Φ,

T |=BCnec Φ implies T `G∆(C) Φ

Proof: By Lemma 2 and the Completeness Theorem of the G∆(C) logic it is enough
to prove that

T |=BCnec Φ implies T ∗ |=G∆(C) Φ∗

Assume T ∗ 6|=G∆(C) Φ∗ then, there is a model E of T ∗, with evaluation v such that
v(φ∗) < 1. We will show that there is a Mv model of T that is not a model of φ.

Let U = 〈W, ρ, e〉 be a Universal model of DL. The Universal models for PDL
where introduced in [94] and satisfy the following properties:

- U is a regular Kripke model

- for every formula φ in PDL, φ is valid in U if and only if φ is a theorem of
PDL.

- Every regular Kripke model of PDL, can be isomorphically embedded in U .

Let us denote by Xϕ the set {w ∈ W | e(w,ϕ) = 1} and consider now the following
Boolean subalgebra F ⊆ 2W :

F = {Xϕ : ϕ is a DL-formula}

We define a function µ : F → [0, 1] as follows: µ(Xϕ) = v(pϕ), then it can be shown
(see [47]) the following items:

(i) µ is well defined and is a necessity measure on F .

To prove that µ is a well defined function is necessary to show that if Xϕ = Xψ

then v(pϕ) = v(pψ) and this is a consequence of the second property of the
Universal models of DL. On the other hand, to prove that µ is a necessity
measure, the different properties corresponding to those measures, i.e. µ(∅) =
0, µ(W ) = 1 and µ(Xϕ ∩ Yψ) = min(µ(Xϕ), µ(Yψ)), are shown to be satisfied.

(ii) For the structure Mv = 〈W, ρ, e, µ〉 and for every B-formulaΦ,

‖Φ‖Mv = v(Φ∗).

For this, it is enough to show that for every DL-formula ϕ, ‖Bϕ‖Mv = v(pϕ).
It is easy to check by induction on the complexity of the B-formula and by
definition of µ.

The previous items have just proved that Mv is a necessity Kripke model of T and
‖Φ‖Mv = v(Φ∗) < 1. This concludes the proof. �
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5.4 The BCprob Logic

Now, we define a fuzzy modal language over LD to reason about the probability
of dynamic propositions in a similar way than we defined LBCn. The language of
BCprob, LBCp, is built from propositional variables of the form Bϕ for each ϕ ∈ LDL.
Compound formulae are defined in the usual way in the Rational Pavelka logic (RPL)
using the  Lukasiewicz connectives and truth-constants r, for each rational r ∈ [0, 1],
as follows:

• If ϕ ∈ LD then ϕ ∈ LBCp.

• If ϕ ∈ LD then Bϕ ∈ LBCp

• If r ∈ Q ∩ [0, 1] then r ∈ LBCp

• If Φ,Ψ ∈ LBCp then Φ →L Ψ ∈ LBCp and Φ&Ψ ∈ LBCp (where & and →L

correspond to the conjunction and implication of  Lukasiewicz logic)

Other  Lukasiewicz logic connectives for the modal formulae can be defined from
&, →L and 0: ¬LΦ is defined as Φ →L 0, Φ ∧ Ψ as Φ&(Φ →L Ψ), Φ ∨ Ψ as
¬L(¬LΦ ∧ ¬LΨ) and Φ ≡ Ψ as (Φ→L Ψ)&(Ψ→L Φ).

Since in this logic a formula Φ→L Ψ is 1-true iff the truth value of Ψ is greater or
equal to that of Φ, modal formulae of the type r →L Bϕ express that the probability
of ϕ is at least r. Formulae of the type r →L Ψ will be denoted as (Ψ, r). Also we
can represent qualitative formulae like Bϕ →L Bψ expressing that the probability
of ψ is greater or equal than the probability of ϕ.

In this context, the agent’s beliefs will be expressed by a theory T (a set of
B-formulae) containing quantitative and qualitative expressions.

BCprop Semantics

In a similar way as we did for BCnec semantics, we define a BC probabilis-
tic Kripke structure of the following form: MBCp = 〈W, {Rα : α ∈ Π} , e, µ〉 where
〈W, {Rα : α ∈ Π} , e〉 is regular Kripke model of PDL and µ : F → [0, 1] is a prob-
abilistic measure on a Boolean algebra F ⊆ 2W such that for each crisp ϕ, the set
{w | e(ϕ,w) = 1} is µ-measurable.

The e evaluation is extended as usual to DL-formulae (see previous Section
3.1) and it is extended to B-modal formulae by means of  Lukasiewicz logic truth-
functions and the probabilistic interpretation of belief, as the following items:

- e(Bϕ,w) = µ({w′ ∈ W | e(ϕ,w′) = 1}), for each crisp ϕ

- e(r, w) = r, for all r ∈ Q ∩ [0, 1]
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- e(Φ&Ψ, w) = max(e(Φ, w) + e(Ψ, w)− 1, 0)

- e(Φ→L Ψ, w) = min(1− e(Φ, w) + e(Ψ, w), 1)

Finally, the truth-degree of a Bϕ formula (with ϕ crisp) in a probabilistic Kripke
structure MBCp is as follows

‖Bϕ‖MBCp
= µ({w′ ∈ W | e(ϕ,w′) = 1})

Now, given a theory T ∈ LBCp (a set of B-formulae) one defines the truth-degree
of a B-formulae Φ over T as the value

‖Φ‖T = inf{‖Φ‖M |M is a BCprob model of T}

Models of BCprob are M structures such that ‖Φ‖M = 1 for each Φ ∈ BCprob.
If T ⊆ LBCp, we will write T |=BCprob

Φ when ‖Φ‖M = 1 for each M model of
BCprob ∪ T .

BCprob Axioms and rules

In a similar way than in BCnec, the axioms and rules for BCprob are built in
layers in the following way:

1. Axioms of propositional Dynamic logic (for DL-formulae), see Section 3.1.

2. Axiom for RPL (for B-formulae), see Section 3.2.

3. Probability Axioms:

(a) B(ϕ→ ψ)→L (Bϕ→L Bψ)

(b) B(ϕ ∨ ψ) ≡L Bϕ⊕ (Bψ 	B(ϕ ∧ ψ))

(c) ¬LP (⊥)

(d) Bϕ, for each theorem ϕ of DL

where ϕ ⊕ ψ is a shorthand for ¬Lϕ →L ψ and ψ 	 ϕ is a shorthand for
¬L(ϕ →L ψ).1 Deduction rules for BCprop are Modus Ponens (both for → of DL
and for →L of RPL) and Necessitation for the modality B.

Proof within BCprob will be denoted as `BCprob
. Given a set of formulae T ∪Φ ⊂

LBCp, we define a provability degree of φ over T as

|Φ|T = sup{r | T `BCprob
r →L Φ}

1Note that in  Lukasiewicz logic (x ⇒L 0) ⇒L y = min(1, x + y) and (x ⇒L y) ⇒L 0 =
max(0, x− y)
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BCprob Soundness and Completeness

It is easy to check that the above defined BCprob is sound with respect to the
class of BC probabilistic Kripke structures.

Lemma 4 (Soundness) For every B-theory T over BCprob and every Φ B-formula,

T `BCprob
Φ implies T |=RPL Φ

Proof: It follows from the fact that the Probability Axioms are 1-true in every
Probability Kripke structure (cf. [78, Lemma 8.4.5]). �

Although we cannot apply the same technique used for BCnec to get a com-
pleteness theorem like Theorem 3 since RPL is not strong complete for arbitrary
theories, it can be proved that the Pavelka-style completeness of RPL (see Section
3.2) extends to BCprob by easily adapting the proof of Theorem 8.4.9 in [78] for the
logic FP (RPL), a probability logic over classical propositional logic, to our case of
a probability logic over PDL, making use of the of notion universal model for PDL.
We therefore omit the proof.

Theorem 5 (Pavelka completeness of BCprob ) For every B-theory T over BCprob
and every φ B-formula, we have the following equality:

‖Φ‖T = |Φ|T .

Notice that the above completeness result implies in particular that T |=BCprob
Φ

iff sup{r | T `BCprob
r →L Φ} = 1.

5.5 Conclusions

We have presented two formalizations for the BC context following a schema based
on a fuzzy-modal approach. In this way, we have shown that different uncertainty
models may be represented using an appropriate many-valued logic and a set of
axioms according to the chosen uncertainty model. The fuzzy modal approach used
for belief representation provides us a solid logical background including soundness
and completeness results. Preliminary approaches to the belief context in the g-BDI
agent model can be seen in [29, 30, 31].

Comparing our BC logics BCnec and BCprob to Rao and Georgeff’s BDI logic,
two comments are in order. First of all, our approach allows us to reason about
(two different notions of) graded beliefs, while the classical approach does not. A
second comment, abstracting from the gradedness of our logics, is about comparing
the axioms for the chosen uncertainty models, respectively necessity and probability
axioms the axiomatics presented for BCnec and BCprob with the one proposed by
Rao and Georgeff for the beliefs in his BDI logic, i.e., KD45 axioms [123]. In both
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proposals for BC axioms we are also including K and D axioms, but axioms related
to introspection (i.e., axioms 4 and 5) are not considered because the the definition
of BC language does not allow nested modalities. Even though formulae with the
nested modalities e.g, B(Bϕ), are not allowed in our BC language because Bϕ is
a fuzzy formula and we only apply the B-modality over two-valued (crisp) ones,
we could partially overcome this shortcoming by using for instance the ∆ operator.
This approach would become indeed valuable in a multi-agent framework where an
agent needs to represent the beliefs she has about other agents and is described in
Chapter 8.

In the next Chapter we describe the other two mental contexts of the g-BDI
agent model related to the agent preferences. The first one, the Desire context (DC)
is in charge of dealing with the ideal agent preferences, both positive and negative.
The second one, the intention context (IC) represents the agent intentions which
are the desires the agent decides to follow after analyzing the cost/benefit relation
associated with a plan of actions to achieve them.





All you have to decide is what to do
with the time that has been given to
you.

J.R.R. Tolkien

Chapter 6

Desire and Intention Contexts

6.1 Introduction

In this chapter we present the contexts of the g-BDI agent model in charge of
dealing with the agent’s preferences: the Desire and Intention contexts. As we have
mentioned in Section 2.4 preferences are essential for making intelligent choices in
complex situations, for mastering large sets of alternatives, and for coordinating
a multitude of decisions. In particular, preferences are the proactive attitudes in
intentional agents. From these positive preferences or desires the agent may choose
which ones it will intend to achieve through a suitable plan of actions. Negative
preferences are also considered in modelling different AI problems and particularly
in multiagent systems. For an intentional agent negative preferences may represent
restrictions or rejections over the possible worlds it can reach.

In next Section 6.2 the Desire context (DC) is introduced, to represent the agent’s
desires. Desires represent the ideal agent’s preferences regardless of the agent’s cur-
rent perception of the environment and regardless of the cost involved in actually
achieving them. We deem important to distinguish what is positively desired from
what is not rejected. According to the works on bipolarity representation of pref-
erences by Benferhat et.al. [11], described in Section 2.4, positive and negative
information may be modeled in the framework of possibilistic logic. Inspired by this
work, we suggest to formalize also positive and negative desires. Positive desires
represent what the agent would like to be the case. Negative desires correspond
to what the agent rejects or does not want to occur. Furthermore, positive and
negative desires can be graded to represent different levels of preference or rejection,
respectively. When dealing with both kinds of preferences it is also natural to ex-
press indifference, meaning that we have neither a positive nor a negative preference
over an object. To represent and reason about the agent bipolar preferences in the
DC the definition of its logical components (i.e. the language, axioms and inference
rules) is needed.

Firstly, we define a language to express positive and negative desires. Secondly,
using an appropriate axiomatic the behavior of these preferences is modelled. In a

79
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similarly way than in the BC context, a modal many-valued approach is used to deal
with the desire degrees and a layered structure of axioms is set. As for combining
one kind of desires (positive or negative) usually the conjunction of positive (resp.
negative) preferences should produce a higher positive (resp. negative) preference.
The disjunction degree of positive (resp. negative) preferences is computed as the
minimum of the desire degrees, following the intuition that if the disjunction is
satisfied unless the minimum of satisfaction (rejection) is guaranteed. Then, the
axiomatic and the inference rules are defined to capture these combination properties
for positive and negative desires independently. The language with this set of axioms
constitute the basic logic framework for the Desire context (DC schema).

As desire are ideal preferences, we consider that it may be somewhat controversial
and domain dependent to set (normative) general restrictions about e.g. positive
(negative) desires both on some formula and its negation, or also between the positive
and negative desires on a same given formula. In this direction, we present the basic
framework DC for the bipolar desires representation without including additional
restrictions. Then, besides the basic framework some alternative constraints are
analyzed in this work, resulting in different logical schemas or theories. Some of the
possible constraints are commented below.

Following the intuition (that seems valid in most domains) that a formula and
its negation cannot be both desired (respectively rejected) at the same time, some
restrictions over the desires (positive and negative) respect a formula may be estab-
lished. Since positive and negative preferences are stated separately, it is worthwhile
to consider whether any consistency condition may be imposed between them. Ben-
ferhat et al. [12] present a coherence condition restricting what is desirable to what
is tolerated. Namely, any world satisfying at least one positive desire should also
satisfy all the constraints induced by the negative preferences. We have proposed a
more restrictive approach in [30] imposing the condition that if a world is rejected to
some extent, it cannot be desired at the same time, by an agent. And conversely, if
a solution is somewhat desired it cannot be rejected. This is a strong restriction not
allowing to represent that a world may be partially desired because of some aspects
and partially rejected because of others, it may be useful to represent preferences in
particular problems.

To formalize these alternative preference models, a Basic Schema for the Desire
Context (DC) is first presented and afterward, we refine it by adding the different
preference properties above mentioned. For each consistency schema, the corre-
sponding semantics and axioms are presented.

Later on, in Section 6.3, the Intention context (IC) to represent the agent’s inten-
tions, is described. We follow the model introduced by Rao and Georgeff [123, 125],
in which an intention is considered a fundamental pro-attitude with an explicit rep-
resentation. However, as in the work of Cohen and Levesque [41], in our approach,
intentions result from the agent’s beliefs and desires and then, we do not consider
them as a basic attitude. Intentions, as well as desires, represent the agent prefer-
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ences. However, we consider that intentions cannot depend just on the benefit, or
satisfaction, of reaching a desire ϕ —represented in D+ϕ, but also on the world’s
state w and the cost of transforming it into a world wi where the formula ϕ is true.
By allowing degrees in intentions we represent a measure of the cost/benefit rela-
tion involved in the agent’s actions toward the desired goal. A similar semantics
for intentions is used in [142], where the net value of an intention is defined as the
difference between the value of the intention outcome and the cost of the intention.
In [124], this relation is resumed in the payoff function over the different paths. The
formalization of the intention semantics is difficult, because it does not depend only
on the formula intended, but also on the plan that the agent executes to achieve a
state where the formula is valid. Our work evolved in this aspect as can be seen in
[29], [30] and [31].

In our model, the positive and negative desires are used as pro-active and re-
strictive tools respectively in order to set intentions. Note that intentions depend
on the agent’s knowledge about the world, which may allow —or not— the agent
to choose a plan to change the world into a desired one.

We represent in this context two kinds of graded intentions, intention of a for-
mula ϕ considering the execution of a particularly plan α, noted Iαϕ, and the final
intention to ϕ, noted Iϕ, which takes into account the best path to reach ϕ. As
in the other contexts, if the degree of Iϕ is δ, it may be considered that the truth
degree of the expression “ϕ is intended” is δ. The intention to make ϕ true must be
the consequence of finding a feasible plan α, that permits to achieve a state of the
world where ϕ holds.

6.2 Desire Context (DC)

6.2.1 DC Language

To represent positive and negative desires over formulae of a basic propositional
language L we introduce in such a language two modalities. Thus, the theory
associated to the Desire Context will consist of a set of modal formulae from the
expanded language LDC representing all the available information about the agent’s
desires. It can be the case that the context theory needs only a given subset of
the modal language, for instance, when the agent’s desires are only expressed over
literals or conjunctions of them.

The language LDC is defined over a classical propositional language L (built
from a countable set of propositional variables Var with connectives ∧, → and
¬) expanded with two (fuzzy) modal operators D+ and D−. D+ϕ reads as “ϕ is
positively desired” and its truth degree represents the agent’s level of satisfaction
would ϕ become true. D−ϕ reads as “ϕ is negatively desired” (or “ϕ is rejected”)
and its truth degree represents the agent’s level of disgust on ϕ becoming true. As
in the BC logic, we will use a modal many-valued logic to formalize graded desires.
We use again Rational Pavelka logic (i.e.  Lukasiewicz logic expanded with rational
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truth-constants) as the base logic.
More precisely, formulae of the expanded language LDC are defined as follows:

• If ϕ ∈ L then ϕ ∈ LDC

• If ϕ ∈ Sat(L)1 then D−ϕ,D+ϕ ∈ LDC

• If r ∈ Q ∩ [0, 1] then r ∈ LDC

• If Φ,Ψ ∈ LDC then Φ→L Ψ ∈ LDC and ¬LΦ ∈ LDC (other  Lukasiewicz logic
connectives, like ∧L,∨L,≡L are definable from ¬L and →L)

We will call a modal formula closed when every propositional variable is in the scope
of a D+ or a D− operator.
As in LBC , the notation (D+ψ, r), with r ∈ [0, 1] ∩Q, will be used as a shortcut of
r̄ →L D

+ψ, and reads as: the level of positive desire of ψ is at least r. Analogously
for (D−ψ, r) and r̄ →L D

−ψ.

In this context, the agent’s preferences will be expressed by a theory T (a
set of LDC-formulae) containing quantitative expressions about positive and neg-
ative preferences, like (D+ϕ, α) or (D−ψ, β), as well as qualitative expressions like
D+ψ →L D+ϕ (resp. D−ψ →L D−ϕ), expressing that ϕ is at least as preferred
(resp. rejected) as ψ. In particular (D+φi, 1) ∈ T means that the agent has max-
imum preference in φi and is fully satisfied if it is true. While (D+φj, α) 6∈ T for
any α > 0 means that the agent is indifferent to φj and the agent does not benefit
from truth of φj becoming true. Analogously, (D−ψi, 1) ∈ T means that the agent
absolutely rejects φi and thus the states where ψi is true are totally unacceptable.
If (D−ψj, β) 6∈ T for any β > 0 it simply means that ψj is not rejected.

6.2.2 Semantics for DC

Many people can argue that considering the desires as a proactive attitude, then,
reasoning about desires on disjunctions of formulae may have no sense. In most
cases we may have plans for achieving ϕ or ψ individually, or for both (ϕ ∧ ψ)
but not for achieving non-deterministically ϕ ∨ ψ. But since we define the basic
language as a propositional language it is necessary to define the semantics in terms
of preferences for disjunctive formulae, and leave the selection of what formulae
should been considered to reason about desires to the definition of a particular
theory.

According to the semantics presented in [11], the degree of positive desire for (or
level of satisfaction with) a disjunction of desires ϕ∨ψ is taken to be the minimum
of the degrees for ϕ and ψ. Intuitively, if an agent desires ϕ ∨ ψ then it is ready to

1Sat(L) represent the set of satisfiable formulae of L and thus, excluding to have positive and
negative desires on a contradiction (⊥ /∈ Sat(L)).
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accept the situation where the less desired goal becomes true, and hence to accept
the minimum satisfaction level produced by one of the two desires. In contrast the
satisfaction degree of reaching both ϕ and φ can be strictly greater than reaching one
of them separately. These are basically the properties of the guaranteed possibility
measures (see e.g. [10]). Analogously, we assume the same model for the degrees
of negative desire or rejection, that is, the rejection degree of ϕ ∨ ψ is taken to be
the minimum of the degrees of rejection for ϕ and for ψ separately, while nothing
prevents the rejection level of ϕ ∧ ψ be greater than both.

The intended DC models are Kripke structures M = 〈W, e, π+, π−〉 where W and
e are defined as in the BC semantics and π+ and π− are preference distributions
over worlds, which are used to give semantics to positive and negative desires:

• π+ : W → [0, 1] is a distribution of positive preferences over the possible
worlds. In this context π+(w) < π+(w′) means that w′ is more preferred than
w.

• π− : W → [0, 1] is a distribution of negative preferences over the possible
worlds: π−(w) < π−(w′) means that w′ is more rejected than w.

The truth evaluation for non-modal formulae e : L ×W → {0, 1} is defined in
the usual (classical) way. It is extended to atomic modal formulae D−ϕ and D+ϕ
by:

• e(D+ϕ,w) = inf{π+(w′) | e(ϕ,w′) = 1}

• e(D−ϕ,w) = inf{π−(w′) | e(ϕ,w′) = 1}

together with the assumption that inf ∅ = 1. This is extended to compound modal
formulae by means of the usual truth-functions for  Lukasiewicz connectives. Notice
that the evaluation e(w,Φ) of a modal formula Φ only depends on the formula itself
—represented in the preference measure over the worlds where the formula is true—
and not on the actual world w ∈ W where the agent is situated. In such a case, we
will also write eM(Φ) for e(w,Φ). This is consistent with the intuition that desires
represent ideal preferences of an agent, regardless of the actual world and regardless
of the cost of moving to a world where the desire is satisfied.

We will write M |= Φ when e(Φ, w) = 1 for all w ∈ W . Moreover, let MDC be
the class of all Kripke structures M = 〈W, e, π+, π−〉. Then, for each subclass of
models M ⊆ MDC, given a theory T and a formula Φ, we will write T |=M Φ if
M |= Φ for each model M ∈M such that M |= Ψ for all Ψ ∈ T .

6.2.3 DC Axioms and Rules

To axiomatize the logic with above intended preference-based semantics we need to
combine classical logic axioms for non-modal formulae with Rational Pavelka logic
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axioms for modal formulae. Also, additional axioms characterizing the behavior of
the modal operators D+ and D− are needed. As already mentioned, a conjunctive
combination of one kind of desires (either positive or negative) preferences may be
attached a strictly higher preference value, while the preference value of a disjunctive
combination of either positive or negative desires is taken as the minimum of the
desire degrees, following the intuition that at least the minimum of satisfaction
(rejection) is guaranteed. The following axioms and inference rules aim at capturing
these combination properties, considering positive or negative desires independently.
We define the basic set of axioms and rules for the DC logic as follows:
Axioms:

(CPC) Axioms of classical logic for non-modal formulae

(RPL) Axioms of Rational Pavelka logic for modal formulae

(DC0+) D+(A ∨B) ≡L D+A ∧L D+B

(DC0−) D−(A ∨B) ≡L D−A ∧L D−B

And the Inference Rules as:

(MP1) modus ponens for →
(MP2) modus ponens for →L

Introduction of D+ and D− for implications:

(ID+) from ϕ→ ψ derive D+ψ →L D
+ϕ

(ID−) from ϕ→ ψ derive D−ψ →L D
−ϕ.

The notion of proof, denoted `DC , is defined as usual from the above axioms and
inference rules.

Notice that the two axioms (DC0+) and (DC0−) define the behavior of D− and
D+ with respect to disjunctions.

The formalization we present for D− is somewhat different from the approach
presented by Benferhat et al. in [11], where they used a necessity function i.e.,
considering D−φ as N(¬φ). But in their approach the axiomatic is equivalent since
the axiom (DC0−) we present results from the necessity axiom i.e., N(A ∧ B) ≡
N(A) ∧L N(B).

Finally, the introduction rules for D+ and D− state that the degree of desire
is monotonically decreasing with respect to logical implication. Moreover, an easy
consequence that these rules allow is that equivalent desire degrees are preserved by
Boolean equivalence.

Lemma 6 If ` denotes deduction in classical propositional calculus, then ` ϕ ≡ ψ
implies `DC D+ϕ ≡L D+ψ and `DC D−ϕ ≡L D−ψ.
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The above axiomatization is correct with respect to the defined semantics.

Lemma 7 (soundness) Let T be a theory and Φ a formula. Then T |=MDC Φ if
T `DC Φ.

Proof: It is a matter of routine to check that the axioms are valid in each DC-model
and that the inference rules preserve validity in each DC-model. �

Moreover, the basic DC logic is complete as well for finite theories of closed
(modal) formulae.

Theorem 8 (completeness) Let T be a finite theory of closed formulae and Φ a
closed formula. Then T |=MDC Φ iff T `DC Φ.

Proof: We basically follow the proof of Theorem 8.4.9 in [78], with some adaptations.
Assume p1, . . . , pn contain at least all the propositional variables involved in T

and Φ, and let Nor = {χi}i=1,22n the set of 22n
non logically equivalent Boolean

formulae in DNF built from the pi’s. For each non-modal ϕ built from the pi’s, let
ϕNF ∈ Nor denote its corresponding normal form. Then for each modal Φ let us
denote by ΦNF the result of replacing each atomic modal component of the form
D+ϕ or D−ϕ by D+ϕNF or D−ϕNF respectively. Finally, for each modal theory S
let us denote by SNF the result of replacing each Φ ∈ S by ΦNF .

The idea is that the modal theory T can be represented as a (finite) theory over
the propositional logic RPL. For each modal formula D+ϕ introduce a propositional
variable p+

φ , and for each D−ϕ another propositional variable p−ϕ . Then define a
mapping ∗ as follows:

- (D+ϕ)∗ = p+
ϕ ,

- (D−ϕ)∗ = p−ϕ ,
- (r)∗ = r, for each rational r ∈ [0, 1],
- (Φ&LΨ)∗ = Φ∗&LΨ∗

- (Φ→L Ψ)∗ = Φ∗ →L Ψ∗.

If S is a set of modal formulae, let S∗ = {Φ∗ | Φ ∈ S}.
Now, let DC = {Φ | Φ is an instance of modal axioms (DC3+) and (DC3−)} ∪

{D+ϕ→L D
+ψ,D−ϕ→L D

−ψ | ϕ→ ψ theorem of CPC }. We next show that the
following statements are equivalent:

1) T |=DC Φ
2) T ∗ ∪ DC∗ |=RPL Φ∗

3) T ∗NF ∪ (DCNF )∗ |=RPL Φ∗NF
4) T ∗NF ∪ (DCNF )∗ `RPL Φ∗NF
5) T ∗ ∪ DC∗ `RPL Φ∗

6) T `DC Φ
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1 ⇒ 2 : Let us assume T ∗∪DC∗ 6|=RPL Φ∗. This means there is an RPL-evaluation v
model of T ∗∪DC∗ and v(Φ∗) < 1. We build then a model Mv = 〈W, e, π+, π−〉
as follows:

- W is the set of Boolean evaluations of the propositional variables q1, ..., qn;
- e(w, q) = w(q), for each propositional variable q, and e(w, ·) is extended to
Boolean formulae as usual;
- e(w, r) = r for each rational r ∈ [0, 1];
- e(w,D+ϕ) = v(p+

ϕ ) and e(w,D−ϕ) = v(p−ϕ ), and e(w, ·) is extended to com-
pound modal formulae using RPL connectives;
- π+(w) = v(p+

Aw
) and π−(w) = v(p−Aw

), where Aw is the elementary conjunc-
tion built with literals from the propositional variables q1, . . . , qn such that
e(w,Aw) = 1 and e(w′, Aw) = 0 if w′ 6= w;

Since Mv |= ϕ ≡ ∨w∈WAw, it is easy to check that, e(w,D+ϕ) = inf{π+(w′) |
e(w′, ϕ) = 1} and e(w′, D−ϕ) = inf{π−(w′) | e(w′, ϕ) = 1}. Therefore Mv is
DC model, and since by construction e(w,Ψ) = v(Ψ∗) for all modal formula
Ψ and worlds w ∈ W , we also have in particular e(w,Ψ) = v(Ψ∗) = 1 for all
Ψ ∈ T ∗ and e(w,Φ) = v(Φ∗) < 1 and hence T 6|=DC Φ.

2 ⇒ 3 : Assume e is a RPL-evaluation of the propositional variables pϕNF
which is

a model of T ∗NF ∪ (DCNF )∗ but e(Φ∗NF ) < 1. Then, extend e to propositional
variables p+

ϕ and p−ϕ by putting e′(p+
ϕ ) = e(p+

ϕNF
) and e′(p−ϕ ) = e(p−ϕNF

). It is
easy to check that e′ is such that e′(Φ∗) = e((ΦNF )∗) for any modal formula
Φ, and hence e′ is a model of T ∗ ∪ DC∗ and e′(Φ∗) = e(Φ∗NF ) < 1.

3 ⇒ 4 : Since T ∗NF ∪ (DCNF )∗ is a finite theory (recall that there are finitely-many
formulae in Nor), then 4) follows from 3) by the finite strong standard com-
pleteness of RPL.

4 ⇒ 5 : Using Lemma 6, if ` ϕ ≡ ψ (in classical propositional logic) then T ∗ ∪ DC∗
proves in RPL both p+

ϕ ≡L p+
ψ and p−ϕ ≡L p−ψ , and hence T ∗∪DC∗ `RPL Φ∗ ≡L

(ΦNF )∗ for each modal formula Φ.

5 ⇒ 6 : Let Ψ∗1, . . . ,Ψ
∗
n be a DC-proof of Φ∗ from T ∗ ∪DC∗. This is converted into a

DC-proof of Φ from T by adding for each Φ∗i which is of the form p+
ϕ →L p

+
ψ

(resp. p−ϕ →L p
−
ψ ) with ϕ → ψ being a theorem of CPC, a proof of ϕ → ψ

in CPC and then applying the rule of introduction of D+ (resp. D−) for
implications.

6 ⇒ 1 : This is soundness.

�
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Example 1 Maŕıa, who lives in busy Buenos Aires, wants to relax for a few days
in an Argentinian beautiful destination. She activates a personal agent, based on our
DC logical framework, to get an adequate plan, i.e. a tourist package, that satisfies
her preferences. She would be very happy going to a mountain place (m), and rather
happy practicing rafting (r). In case of going to a mountain place she would like to
go climbing (c). On top of this, she wouldn’t like to go farther than 1000km from
Buenos Aires (f). She is stressed and would like to get to the destination with a
short trip. The user interface that helps her express these desires ends up generating
a desire theory as follows:

TD = {(D+m, 0.8), (D+r, 0.6), D+m→L D
+c, (D−f, 0.7)}

Once this initial desire theory is generated the tourist advisor personal agent deduces
a number of new desires:

TD `DC (D+(m ∧ r), 0.8),
TD `DC (D+(m ∨ r), 0.6),
TD `DC (D+c, 0.8)

As Maŕıa would indeed prefer much more to be in a mountain place doing rafting she
also expresses the combined desire with a particularly high value: (D+(m∧ r), 0.95).
Notice that the extended theory

T ′D = TD ∪ {(D+(m ∧ r), 0.95)}

remains consistent within DC.

The basic logical schema DC puts almost no constraint on the strengths for
the positive and negative desires of a formula ϕ and its negation ¬ϕ. This is in
accordance with considering desires as ideal preferences and hence it may be possible
for an agent to have contradictory desires. Indeed, the only indirect constraint DC
imposes is the following one: if a theory T derives (D+ϕ, r) and (D+¬ϕ, s) then,
due to axiom (DC0+) and rule (ID+), T also derives both (D+ψ,min(r, s)) and
(D+¬ψ,min(r, s)) for any ψ.

In the following section, different properties are added to the preferences as to
represent some constraints between the positive and negative desires of a formula
and its negation.

6.2.4 Consistency Schemas

The basic schema for preference representation and reasoning provided by the DC
logic may be felt too general for some classes of problems and we may want to restrict
the allowed assignment of degrees of positive and negative desire for a formula ϕ
and for its negation ¬ϕ. For instance, in the case of considering positive desires
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as proactive attitudes, it is not an efficient approach to allow to assign non-zero
degrees to D+ϕ and to D+¬ϕ, since the agent will be looking for plans toward
opposite directions, some plans leading to satisfy ϕ and some others to satisfy ¬ϕ.

In the following subsections three different extensions or schemas are proposed
to show how different consistency constraints between positive and negative desires
can be added to the basic logic, both at the semantical and syntactical level. These
different schemas allow us to define different types of agents. Each agent type will
accept (respectively restrict) desire formulae in its theory depending on its defined
constraints according to the chosen schema.

DC1 Schema

It may be natural in some domain applications to forbid to simultaneously have
positive (in the sense of > 0) desire degrees for D+ϕ and D+¬ϕ. This constraint
and the corresponding one for negative desires amounts to require that the following
additional properties for the truth-evaluations be satisfied in the intended models:

• min(e(D+ϕ,w), e(D+¬ϕ,w)) = 0, and

• min(e(D−ϕ,w), e(D−¬ϕ,w)) = 0.

At the level of Kripke structures, this corresponds to require some extra condi-
tions over π+ and π−, namely:

• infw∈W π+(w) = 0 and

• infw∈W π−(w) = 0

These conditions are a kind of anti-normalization conditions for π+ and π−, in
the sense that they require the existence of at least one world that is not desired and
one world that is not rejected. Let MDC1 denote the subclass of models satisfying
these conditions.

For instance, following this schema an agent’s theory TD should not simul-
taneously contain the formulae (D+m, 0.8) and (D+(¬m), 0.4), or the formulae
(D−f, 0.7) and (D−(¬f), 0.5).

At the syntactic level these conditions are equivalent to add to the basic axiomatic
for DC the following two axioms:

(DC1+) D+ϕ ∧L D+(¬ϕ)→L 0̄ (or equivalently D+(>) ≡L 0̄)

(DC1−) D−ϕ ∧L D−(¬ϕ)→L 0̄ (or equivalently D−(>) ≡L 0̄)

We will denote by DC1 the extension of DC system with the above two axioms
(DC1+) and (DC1+), and by `DC1 the corresponding notion of proof.

Theorem 9 (completeness) Let T be a finite modal theory of closed formulae and
Φ a closed formula. Then T |=MDC1

Φ iff T `DC1 Φ.

Proof: The proof runs like in Theorem 8 by adding to the DC theory the instances
of axioms (DC1+) and (DC1−) and with the obvious modifications. �
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DC2 Schema

The above logical schema DC1 does not put any restriction on positive and negative
desires for the same goal (any classically satisfiable formula). According to Benferhat
et al. in [12], a coherence condition between positive and negative desires should
be considered, namely, an agent cannot desire to be in a world more than the level
at which it is tolerated (not rejected). This condition, translated to our framework,
amounts to require in the Kripke structures the following constraint between the
preference distributions π+ and π−:

• ∀w ∈ W, π+(w) ≤ 1− π−(w)

To formulate the corresponding axiomatic counterpart that faithfully accounts
for the above condition, we consider MDC2 the subclass of DC-Kripke structures
M = (W, e, π+, π−) satisfying the above constraint between π+and π−. Note that
π+(w) ≤ 1− π−(w) iff π+(w)⊗ π−(w) = 0. 2

To capture at the syntactical level this class of structures, we consider the ex-
tension of the DC system with the following axiom:

(DC2) (D+ϕ ⊗D−ϕ)→L 0̄

We will denote by DC2 the extension of DC with the axiom (DC2).3

Notice that this axiom is valid in every DC-structure M = (W, e, π+, π−) ∈
MDC2 . Indeed, for any non modal ϕ, we have:

eM(D+ϕ⊗D−ϕ) =
inf{π+(w) | e(w,ϕ) = 1} ⊗ inf{π−(w) | e(w,ϕ) = 1} =
inf{π+(w)⊗ π−(w′) | e(w,ϕ) = e(w′, ϕ) = 1} ≤
inf{π+(w)⊗ π−(w) | e(w,ϕ) = 1} = 0.

that is, for any ϕ, the evaluations of D+ϕ and D−ϕ are such that eM(D+ϕ) ≤
1− eM(D−ϕ).

Conversely, if the (DC2) axiom is valid in a DC-structure M = (W, e, π+, π−)
then it must necessarily satisfy the condition π+(w) ≤ 1 − π−(w) for any w ∈ W ,
i.e. M ∈MDC2 .

Proof: W.l.o.g., we can assume that W is such that e(w, ·) = e(w′, ·) iff w = w′.
Then, for each w ∈ W consider the formula ϕw = (

∧
pi∈l+ pi) ∧ (

∧
pi∈l− ¬pi), where

l+ = {p ∈ V ar | e(w, p) = 1} and l− = {p ∈ V ar | e(w, p) = 0}. It is clear that
e(v, ϕw) = 1 iff v = w, and hence e(w,D+ϕw) = π+(w) and e(w,D−ϕw) = π−(w).
Therefore, eM(D+ϕw ⊗D−ϕw) = 0 iff π+(w)⊗ π−(w) = 0. �

2Here we use the same symbol as the  Lukasiewicz connective ⊗ to denote its corresponding
truth-function on [0, 1], i.e. x⊗ y = max(x+ y − 1, 0) for any x, y ∈ [0, 1].

3An equivalent presentation of axiom (DC2) is D+ϕ→L ¬LD−ϕ.
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These properties, together with a suitable adaptation of the proof of Theorem 8,
lead to the following completeness result for DC2.

Theorem 10 (completeness) Let T be a finite theory of closed formulae and Φ a
closed formula. . Then T |=MDC2

Φ iff T `DC2 Φ.

DC3 Schema

Stronger consistency condition between positive and negative preferences was con-
sidered in [30], requiring that if a world is rejected to some extent, it cannot be
positively desired at all. And conversely, if a goal (any satisfiable formula) is some-
what desired it cannot be rejected. Indeed, at the semantical level, this amounts to
require the intended DC-models M = (W, e, π+, π−) to satisfy the following condi-
tion for any w ∈ W :

• π−(w) > 0 implies π+(w) = 0
(or equivalently, min(π+(w), π−(w)) = 0)

This is a stronger condition than the one presented in DC2 schema and may be
suitable to represent preferences for some particular domains. We will denote by
MDC3 the subclass of DC-Kripke structures satisfying this latter condition.

At the syntactic level, the corresponding axiom that faithfully represents this
consistency condition is the following one:

(DC3) (D+ϕ ∧L D−ϕ)→L 0̄

We will denote by DC3 the extension of the DC system by the above axiom (DC3),
and by `DC3 the corresponding notion of proof.

Theorem 11 (completeness) Let T be a finite theory of closed formulae and Φ a
closed formula. Then T |=MDC3

Φ iff T `DC3 Φ.

Proof: Again it is an easy adaptation of the proof of Theorem 8. �

Example 2 (Example 1 continued)
Maŕıa, a few days later, breaks her ankle. She activates the recommender agent to

reject the possibility of going climbing (c). If Maŕıa selects for the agent the schema
DC1, the agent simply adds the formula (D−c, 1) into the former desire theory T ′D,
yielding the new theory

T ′′D = {(D+m, 0.8), (D+r, 0.6), (D+(m ∧ r), 0.95), (D+c, 0.85), (D−f, 0.7), (D−c, 1)} ,

as the schema allows for opposite desires.4

4The fact of having both positive and negative desires may be handled in different ways de-
pending on the kind of agent behaviour. For instance, if the agent follows [11]’s approach, where
negative desires are used as strong constraints, the agent would then first discard those packages
including mountain climbing (that is, D+c would be ignored), and among the remaining ones it
would then look for packages satisfying at least some positive preferences.
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If Maŕıa selects DC2, the formulae D+c and D−c are not allowed to have degrees
summing up more than 1, and hence the above theory T ′′D becomes inconsistent.
Actually, T ′′D becomes also inconsistent under DC3, DC3 is stronger than DC2 (it
does not even allow to have non-zero degrees for D+c and D−c). In these cases,
the agent applies a revision mechanism, for instance to cancel (D+c, 0.85) from the
theory.

Example 3 (Example 2 continued)
Suppose Maŕıa’s ankle is okay but she wants to travel with a very young nephew.

In this situation she generates the desire of doing save activities (s) represented by
the formula (D+s, 0.8). Moreover, considering the desire relation D+s→L D

+(¬r),
expressing that if a tourist prefers safe activities then he prefers not doing rafting is
also in the agent theory, the agent infers (D+(¬r), 0.8). Then, the extended theory
is as follows:

T ′′′D = {(D+m, 0.8), (D+r, 0.6), (D+(m ∧ r), 0.95), (D+c, 0.85), (D−f, 0.7), (D+(¬r), 0.8)}

In the logic schema DC1 it is not possible to have (D+r, 0.6) and (D+(¬r), 0.8)
in a consistent theory. Then, to restore the consistency one of these formulae must
be forced to have desire degree equal 0. Instead, in schemas DC2 and DC3 there are
no additional restrictions about this kind of formulae, and the agent may have both
formulae maintaining consistency.

After analyzing in the previous subsections different schemas to model desires
in an agent architecture, in the following section we show how these positive and
negative desires may be used by the agent to generate intentions in the Intention
Context (IC).

6.3 Intention Context

6.3.1 IC Language

We define in this context a suitable language to represent the agent’s intentions.
The syntax is defined in a similar way as we did with BC and DC, starting with
a basic language L and incorporating a family of modal operators. In this case, in
order to have a greater expressive power, we use the so-called Rational  Lukasiewicz
logic, RLL (see section 3.2.1), to represent and axiomatize the semantics of degrees
of the intentions. RLL is an expansion of  Lukasiewicz logic with a countable set of
unary connectives {δn}n∈N, whose intended semantics is that the truth-value of δnϕ
is just the truth-value of ϕ divided by n. So in RLL one can express divisions by
natural numbers and these arithmetic operations are important in order to define
the intention degree as weighted averages between diverse factors.

To define the IC Language we start from a basic propositional language L. We
assume the agent has a finite set of actions or plans Π0 at her disposal to achieve
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the desires. Then, for each α ∈ Π0 we introduce a modal operator Iα. such that
the truth-degree of a formula Iαϕ will represent the strength the agent intends ϕ
by means of the execution of the particular action α.5 We also introduce another
modal operator I with the idea that Iϕ will represent that the agent intends ϕ by
means of the best plan in Π0.

As in the other contexts, if the degree of Iαϕ is δ, it may be considered that the
truth degree of the expression “the desire ϕ is intended by means of plan α” is δ. If
the degree of Iϕ is γ, it may be considered that the truth degree of the expression
“the desire ϕ is intended” is γ.

Therefore, many-valued LIC formulae will be Rational  Lukasiewicz logic formulae
built from the set of propositional variables V arcost = {Cα}α∈Π0 and elementary
modal formulae Iαϕ and Iϕ, where ϕ ∈ Sat(L), and truth constants r for each
rational r ∈ [0, 1]:

• If ϕ ∈ L then ϕ ∈ LIC

• If α ∈ Π0 then Cα ∈ LIC

• If ϕ ∈ Sat(L) and α ∈ Π then Iαϕ, Iϕ ∈ LIC

• If r ∈ Q ∩ [0, 1] then r ∈ LIC

• If Φ ∈ LIC then δnΦ ∈ LIC

• If Φ,Ψ ∈ LIC then Φ→L Ψ ∈ LIC and ¬LΦ ∈ LIC

As usual, other  Lukasiewicz logic connectives, like ∧L,∨L,≡L,⊕L,⊗L are definable
from ¬L and →L.

We will call a (modal) formula closed when every propositional variable is in the
scope of a I or a Iα operator.

The agent’s intentions will be expressed by a theory TI (a set of closed formulae).
Then, if the agent’s IC theory TI contains the formula Iαϕ→L Iβϕ then the agent
will try ϕ by executing the plan β before than executing plan α. On the other hand,
if TI has the formula Iψ →L Iϕ then the agent will try ϕ before ψ and it may not
try φ if (Iφ, δ) is a formula in TI and δ < τ , where τ is an intention threshold.6 This
situation may mean for instance, that the benefit of getting φ is low or the cost is
high.

5In the IC context we are not concerned about the question of whether a given desire can be
reached by the execution of a particular action, this is left for the Planner Context, see Section
7.1.

6Set to discard the intentions with intention degree less than this value.
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6.3.2 Semantics and axiomatization for IC

The semantics defined in this context shows that the value of the intentions depends
on the formula intended to bring about and on the benefit the agent gets with it. It
also depends on the agent’s knowledge on possible plans that may change the world
into one where the desire is true, and their associated cost. This last factor will make
the semantics and axiomatization for IC somewhat different from the presented for
positive desires in DC.

Models for IC are Kripke structures M = 〈W, e, {πα}α∈Π0〉 where W is a set of
worlds and πα : W ×W → [0, 1] is the utility distribution corresponding to action α:
πα(w,w′) is the utility of applying α to transform world w into world w′.7 Further,
e : W × (V ar ∪ V arcost) → [0, 1] evaluates in each world propositional variables in
such a way that variables from V ar are evaluated into {0, 1} while propositional
variables from V arcost into [0, 1] (so variables from V ar are Boolean while variables
from V arcost and many-valued). Then e is extended to Boolean formulae as usual
and to atomic modal formulae by

• e(w, Iαϕ) = inf{πα(w,w′) | w′ ∈ W, e(w′, ϕ) = 1}

• e(w, Iϕ) = max{e(w, Iαϕ) | α ∈ Π0}

and to compound modal formulae using the truth functions of Rational  Lukasiewicz
logic. Recall the interpretation of the δn connectives:
e(w, δnΦ) = e(w,Φ)/n.

As usual, we will write M |= Φ when e(Φ, w) = 1 for all w ∈ W and will denote
byMIC the class of all Kripke structures M = 〈W, e, πD, {πα}α∈Π0〉. Then, for each
subclass of models M ⊆ MIC, given a theory T and a formula Φ, we will write
T |=M Φ if M |= Φ for each model M ∈M such that M |= Ψ for all Ψ ∈ T .

The axiomatics for the IC logic is the following:

1. Axioms of classical logic for the non-modal formulae.

2. Axioms of Rational  Lukasiewicz logic for the modal formulae, i.e. axioms of
 Lukasiewicz logic plus:

δnΦ⊕ n. . . ⊕δnΦ ≡L Φ

δnΦ⊗ (δnΦ⊕ n−1. . . ⊕δnΦ)→L 0

3. (DC0) axiom for Iα modalities:

Iα(ϕ ∨ ψ) ≡L Iαϕ ∧L Iαψ

4. Definitional Axiom for I:

Iϕ ≡L
∨
α∈Π0 Iαϕ

7Indeed, it can be seen as a kind of refinement of the Rα relations of the action dynamic logic
semantics considered in the BC context.
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5. Inference Rules:

modus ponens for → and for →L

introduction of Iα for implications: from ϕ → ψ derive Iαψ →L Iαϕ for each
α ∈ Π.

The notion of proof for IC, denoted `IC , is defined as usual from the above
axioms and inference rules. The presented axiomatics is obviously sound and one
can prove completeness in an analogous way as for DC logic and we omit the proof.

Theorem 12 Let T be a modal theory and Φ a modal formula. Then T `IC Φ iff
T |=MIC

Φ.

It is worth noticing that so defined the semantics of the Iα operators is very
general and probably it is not evident how to capture the idea that the truth-degree
of a formula Iαϕ should take into account not only how much ϕ is desired but also
how costly is α. We define in the following, concrete Iα operators as to show how
the logical framework for the IC works.

Definition of concrete Iα operators
To take into account how much ϕ is desired and how costly is α, one can think

of many possible ways. The possibly simplest one is to consider the value of Iαϕ
as the arithmetic mean between the value of D+ϕ and 1 minus the cost value of
Cα. Suppose we have syntactically and semantically extended the language LDL to
receive D+ϕ formulae, coming from the DC by means of an appropriate bridge rule.
Indeed, consider the following expression:

Iαϕ ≡L δ2Dϕ⊕ δ2¬LCα (Iα-Def)

Then, one can easily show that (Iα-Def) is consistent in IC. In fact, this formula is
valid in all IC-models M = (W, e, π+, {πα}α∈Π0) such that π+ is the same preference
distribution defined in DC and πα(w,w′) = (π+(w′) + 1 − e(w,Cα))/2. Indeed, it
holds that, for any w ∈ W ,

e(w, Iαϕ) = inf{πα(w,w′) | w′ ∈ W, e(w′, ϕ) = 1}
= inf{(π+(w′) + 1− e(w,Cα))/2 | w′ ∈ W, e(w′, ϕ) = 1}
= (inf{π+(w′) | w′ ∈ W, e(w′, ϕ) = 1}+ 1− e(w,Cα))/2

= (e(w,Dϕ) + e(w,¬LCα))/2 =

= e(w, δ2Dϕ⊕ δ2¬LCα).

In other words, the above formula captures a notion of intention strength of reaching
a desire ϕ through a plan α which is defined as the arithmetic mean of the desire
degree of ϕ and of 1 minus the cost degree of action α. This notion of intention is
at work in a bridge rule that will be described later.
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Therefore, this axiom (or similar ones leading to different definitions for the
Iα operators) can be included in a specialized theory over IC to specify particular
behaviors of the Intention Context. Also, one can also specify some particular
semantics for the plan cost variables Cα. For instance, one can consider the following
natural axioms

(C1) Cγ ≡L Cα ∨ Cβ, if γ, α, β ∈ Π0 and γ = α ∪ β

(C2) Cγ ≡L Cα ⊕ Cβ, if γ, α, β ∈ Π0 and γ = α; β

governing the costs of a nondeterministic union and of a concatenation of actions
respectively. Axiom (C1) represents a kind of conservative attitude since it assigns
to the nondeterministic plan α ∪ β the maximum of the costs of α and β. Axiom
(C2) establishes the (bounded) sum of costs of α and β as the cost of the plan α; β.
If we denote by IC2 the extension of IC logic with these two axioms, then one can
easily prove some consequences for the behavior of the Iα’s operators in the theory
defined by the (Iα-Def) formulae:

Lemma 13
(i) If α, β, α ∪ β ∈ Π0, then {(Iγ−Def)}γ∈Π0 `IC2 Iα∪βϕ ≡L Iαϕ ∧ Iβϕ
(ii) If α, β, α; β ∈ Π0, then {(Iγ−Def)}γ∈Π0 `IC2 Iα;βϕ→L Iαϕ ∧ Iβϕ

Proof: (i) comes from the fact that in RLL one can prove the following equivalences:
¬L(Φ∨Ψ) ≡L ¬LΦ∧¬LΨ, δn(Φ∧ψ) ≡L δnΦ∧δnΨ, and Γ⊕(Φ∧Ψ) ≡L (Γ∧Φ)⊕(Γ∧Ψ).
On the other hand (ii) is a consequence of the following implications provable in RLL:
(Φ→L Ψ)→L (δnΦ→L δnΨ) and (Φ→L Ψ)→L (Γ⊕ ¬LΨ→L Γ⊕ ¬LΦ). �

6.4 Conclusions

We have presented a logical framework for the Desire and Intention contexts, both
related with the representation of the agent’s preferences. The DC represents the
ideal preferences of the agent and the IC represents the goals the agent decides to
follow after weighing the cost/benefit relation. In both cases we showed that the log-
ical frameworks proposed are flexible enough to support different kinds of behaviors
of these mental attitudes. Particularly, we notice that this kind of fuzzy-modal rep-
resentation for desires and intentions allows to express in an explicit way qualitative
expressions as for example D+ϕ→ D+ψ and Iαϕ→ Iβϕ meaning respectively that
we desire ψ more that ϕ, and we intend ϕ through the plan β with higher strength
than through the plan α.

On the one hand, different proposals for modelling desires in DC have been
presented from a basic DC schema. The most suitable alternative may be chosen for
defining particular agents. The purpose of presenting different consistency schemas
was to show that the framework presented for the agent Desire context is capable
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to represent different kinds of bipolar and graded preferences, as for example, the
model proposed by Benferhat et al [12].

On the other hand, in the IC we have defined a general logical context and
then, we showed how a concrete definition of the Intention through a plan, involving
different factors, as for instance the desire degree and cost of the plan, may be defined
in a consistent way. Other similar definitions of the intention degree representing
the way the agent takes the decisions are possible.

In general, we have followed a “blind” conception of desires where the preference
relations (positive or negative) over formulae are translated into preferences over
worlds considering what happens in the different worlds only with respect to that
formulae, independently of what happens with the rest (i.e. the values that take the
other formulae in the worlds), for instance if we have D+A→ D+B (that is 1-true
whenever D+A ≤ D+B) semantically means that the preference measure over the
worlds where A is satisfied is greater than the measure over the worlds where B is
true, but nothing is said about the rest of the formulae in the worlds w where A or
B are satisfied. Another approach following the Ceteris Paribus principle may be
interesting to analyze, where the relations over formulae like D+A→ D+B may be
transfered to worlds where the only difference between them is about A and B and
the rest remaining the same. This approach is left as future work.

With respect to the proposed axiomatics to model desires and intentions in the
BDI logic (K and D axioms), the K axiom is covered by the current axiomat-
ics presented respectively for DC and IC. Considering the D axiom GOALφ →
¬GOAL(¬φ) for desires (goals), in the DC logic we did not include any kind of
restriction over the desires on a formula and its negation, but we formalized this
constraint in a many-valued framework, in the schema DC1 by adding the axiom
(D+ϕ ∧L D+(¬ϕ)→L 0)

Preliminary work related to desire and intention contexts in the g-BDI agent
model can be seen in [29, 30, 31]. Recently, in [37] we have presented the logical
framework to represent and reason about graded preferences and intentions.

An important question related to preference modelling is how to use preferences
in order to get the best solutions. In the case of our agent architecture, this ques-
tion turns to: how can the agent use positive and negative desires to get the best
intentions that in turn lead him to plans. There are different ways of using (or
combining) positive and negative preferences in order to find the best solutions, for
instance Benferhat et al. present different approaches in [12]. In the g-BDI model of
agent the positive and negative preferences are pro-active attitudes that guides the
search of which is the best intention the agent may follow and suitable bridge rules
are defined to combined in a flexible way this preference information with other ele-
ments (e.g., the plan cost, the belief degree of achieving the goal by plan execution)
to decide the best intention the agent may follow through a selected plan. In the
next Chapter 7 we introduce this kind of bridge rules.



The whole is more than the sum of
the parts.

Aristotle

Chapter 7

Functional contexts and Bridge
rules

In this Chapter we present the remain necessary components of our multi-context
agent model: the Planner context (PC), the Communication context (CC) and the
Bridge rules (BR). Finally, a simple example to show how our agent model works is
presented.

7.1 Planner and Communication Contexts

The nature of these contexts is functional. The Planner Context (PC) has to build
plans which allow the agent to move from its current world to another, where a given
formula is satisfied. This change will indeed have an associated cost according to
the actions involved. Within this context, we propose to use a first order language
restricted to Horn clauses (PL), where a theory of planning includes the following
special predicates:

• action(α, P, A, cα) where α ∈ Π0 is an elementary action, P ⊂ PL is the
set of preconditions; A ⊂ PL are the postconditions and cα ∈ [0, 1] is the
normalized cost of the action.

• plan(ϕ, α, P, A, cα) where α ∈ Π is a composite action representing the plan
to achieve ϕ, P are the pre-conditions of α, A are the post-conditions, ϕ ∈ A
and cα is the normalized cost of α.

• bestplan(ϕ, α, P, A, cα) similar to the previous one, but only almost one
instance with the best plan is allowed.

The Planner context is in charge of looking for a set of plans called feasible
plans : f-plan(ϕ, α, P, A, cα). In this PC approach, these plans are generated to
fulfill positive desires (ϕ if (D+ϕ, d) and d > 0), the current state of the world w
must satisfy the preconditions (for all φ ∈ P : w |= φ), the plan must make true

97
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the positive desire the plan is built for (ϕ ∈ A), but avoiding negative desires (i.e.
cannot have any negative desire as post-condition A 6|= ψ if (D−ψ, n) and n > 0.

Furthermore, a filter may be used to select those plans that achieve the desire ϕ
with a belief degree greater than some threshold (τb): (B([α]ϕ), τb). In the represen-
tation of a feasible plan the normalized cost of the plan, cα ∈ [0, 1], is also included.

The communication unit (CC) makes it possible to encapsulate the agent’s inter-
nal structure by having a unique and well-defined interface with the environment.
This unit also has a first order language restricted to Horn clauses. The theory in-
side this context will take care of the sending and receiving of messages to and from
other agents in the Multi-agent society where our graded BDI agents live. Also,
through the communication unit the agent perceives changes in the environment.
Depending on the kind and the source of the information, an uncertainty degree
may be associate to the incoming data. This issue is in close relation to the trust in
the information source and some view of this problem is analyzed in next Chapter
8. All the information that the CC receives will be introduce to the Belief context
BC by a suitable bridge rule (see (7.5) in next Section 7.2).

Also, the CC is in charge of communicating the action the agent choses to execute
and this is done by another bridge rule (see (7.4) in next Section 7.2).

Both functional contexts use resolution as a deduction method.

7.2 Bridge Rules

The deduction mechanism of multi-context systems is based on two kinds of inference
rules, internal rules, inside each unit; and bridge rules, outside. Internal rules allow
to draw consequences within a theory, while bridge rules allow to embed results
from a theory into another (see Section 2.3 for details). Then, bridge rules can be
understood as rules of inference with premises and conclusions in different contexts.
A multi-context systems needs some kind of control strategy as to prevent that a
bridge rule executes more than once under the same premise conditions.

For our g-BDI agent model, we define a collection of basic bridge rules to estab-
lish the necessary interrelations between context theories. Some of these rules are
illustrated in figure 11.6. In this Section we comment some of the most relevant
Bridge rules schemas:

1. There are bridge rules from DC to PC that, from the positive and negative
desires (pro-active attitudes), generate predicate instances in the PC unit that
are used by the planner program to build the feasible plans:

DC : (D+ϕ, d)

PC : d(D+ϕ, d)e
and

DC : (D−ψ, n)

PC : d(D−ψ, n)e
(7.1)

2. The agent knowledge about the world state and about actions that change
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the world, is introduced from the belief context into the Planner as first order
formulae:

BC : Bϕ

PC : dBϕe
(7.2)

3. Regarding intentions, there is a bridge rule that infers the degree of Iαϕ for
each feasible plan α that allows to achieve ϕ. The intention degree is thought
as a trade-off among the benefit of reaching a desire, the cost of the plan and
the belief degree in the full achievement of ϕ after performing α. The following
bridge rule computes this value from the degree of D+ϕ (d), the degree of belief
B[α]ϕ (r), the cost of the plan α (c):

DC : (D+ϕ, d), BC : (B[α]ϕ, r), PC : fplan(ϕ, α, P,A, c)

IC : (Iαϕ, f(d, r, c))
(7.3)

Different functions f allow to model different agent behaviors. For instance,
if we consider an equilibrated agent, where all the factors involved are equally
taken into account, the function might be defined as the average among these
factors. In other cases, a weighted average may be used where the different
weights wi are set according to the agent expected behavior:

f(d, r, c) = (wdd+ wrr + wc (1− c)) / (wd + wr + wc)

For example, for a greedy agent, wc may be set greater than the other weights:
wd and wr.

4. The information supplied by the above bridge rule to the IC unit allows this
unit to derive, for each desire ϕ, a formula (Iϕ, i) where i is the maximum
degree of all the (Iαϕ, iα) formulae, where α is a feasible plan for ϕ. The
plan αb that allows to get the maximum intention degree imax considering
all the agent desires, will be set by the PC unit as the best plan (see the
definitional axiom for I in Section 6.3). Finally, we also need rules to establish
the agent interaction with the environment, meaning that if the agent intends
ϕ at degree imax, the maximum degree of all the intentions, then the agent
will choose to execute the plan αb —bestplan— that will allow him to reach
the most intended goal ϕ:

IC : (Iαb
ϕ, imax), PC : bestplan(ϕ, αb, P, A, c)

CC : C(does(αb))
(7.4)

5. Through the communication unit the agent perceives all the changes in the
environment that are introduced by the following bridge rule in the belief
context:

CC : β

BC : Bβ
(7.5)
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Bridge rules to represent realism

In BDI agents, bridge rules have been also used to determine the relationship
between the mental attitudes and the actual behavior of the agent [115]. Well-
established sets of relations for BDI agents have been identified called realism models
[41, 125].

• Strong Realism: the set of intentions is a subset of the set of desires, which
in turn is a subset of the beliefs. That is, if an agent does not believe that
something may became true, it will neither desire it nor intend it:

BC : ¬Bψ
DC : ¬Dψ

and
DC : ¬Dψ
IC : ¬Iψ

(7.6)

• Realism: The set of the agent beliefs is a subset of the agent desires which in
turn is a subset of the set of intentions. That is, if an agent believes something,
she both desires and intends it.

BC : Bψ

DC : Dψ
and

DC : Dψ

IC : Iψ
(7.7)

• Weak Realism: This is a middle point between strong realism and realism. An
agent do not desire a property if its negation is believed, does not intend some-
thing if its negation is desired, and does not intend something if its negation
is believed.

BC : Bψ

DC : ¬D¬ψ
,

DC : Dψ

IC : ¬I¬ψ
and

BC : Bψ

IC : ¬I¬ψ
(7.8)

Notice that in these rules we present a simplified version of these relations were
the time dimension is not taken into account as it is the case in [115]. Some work
to overcome this limitation was proposed in [136] introducing the notion of time in
Bridge rules of a multi-context agent, particularly to represent the time consumed
in passing formulae and action execution.

Bridge rules to generate desires in a dynamic way

In the desire context DC different schemas to represent and reason about desires
were presented but how desires are derived was not discussed. In a dynamic envi-
ronment the agent desires will change, depending on her beliefs and also on the set
of current desires.

Notably, Rahwan and Amgoud in their argumentation-based approach to prac-
tical reasoning [122] provide an argumentation-based framework for generating con-
sistent desires, among other tasks (see Section 2.5 for details). The basic elements
of this argumentation framework are the desire-generation rules, as follows:
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• Desire-Generation Rule or a desire rule, is an expression of the form:

ϕ1 ∧ ... ∧ ϕn ∧ ψ1 ∧ ...ψm ⇒ ψ where ϕi ∈ K and ψj, ψ ∈ D. The set
K represents the agent knowledge and the set D gathers all possible agent
desires.

The meaning of the rule is “if the agent believes ϕ1, ..., ϕn and desires ψ1, ..., ψm,
then the agent will desire ψ as well”.

These rules are also similar to the filtering rules proposed in [132] to represent
reasons for and against adopting desires.

Thus, we can introduce in our g-BDI model a multi-context and many-valued
version of these rules. As the desire and belief formulae in the premise are coming
from different contexts, we define the following bridge rules for desire generation:

BC : (Bϕ1 ∧ ... ∧Bϕn, b), DC : (D+ψ1 ∧ ... ∧D+ψm, c)

DC : (D+ψ, d)
(7.9)

Namely, if the agent has the beliefs Bϕ1, ..., Bϕn in degree greater or equal then
a threshold b and positively desires D+ψ1, ..., D

+ψm in degree at least c, she also
desires ψ in degree at least d.

With the description of this set of bridge rules (BR) we have finished the presen-
tation of all components of the g-BDI agent model. Below we give some insights of
how the agent model works and present a simple example as to show how these com-
ponents interact to decide the agent action. Then, in next Chapter 12 we develop a
case study extracted from a real world domain.

7.3 How the g-BDI model works

Up to this point we have proposed an expressive logical framework to represent and
reason about an agent’s beliefs, desires and intentions.

In order to make all the described logical ingredients operational in a deliberative
agent architecture, they should be complemented with the proposed functional con-
texts (Communication Context and Planner contexts) and some bridge rules, which
allow to pass formulae among theories.

We describe next the working of the agent architecture its main components,
which are shown in Figure 7.1 where circles represent the different contexts and
their theories, boxes represent tasks carried out by special bridge rule inferences,
and where arrows illustrate the information flow and context interaction by bridge
rules.

1. CC: receives the environment input.

2. Information passes from CC to BC (see BR 7.5).

3. BC: represents the uncertain information the agent has about its environment.
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Figure 7.1: Agent architecture

4. DC: represents the graded positive and negative agent desires.

5. A belief revision process, which takes new inputs (from CC) and the agent’s
current beliefs (from BC) and determines a new set of graded beliefs.1

6. A desire generation and revision process, which determines and/or revises the
agent’s graded positive and negative desires on the basis of her current beliefs
and her previous desires (see BR 7.9).

7. Desires are passed from DC to PC (see BR 7.1).

8. Beliefs about plans and domain knowledge are passed form BC to PC (see BR
7.1).

9. PC: looks for feasible plans,feasible plans are plans which fulfill (to some de-
gree) positive desires, satisfy some preconditions and avoid undesired postcon-
ditions. Filtering plans, to identify which ones are feasible, can be achieved in

1Even thought in this approach we haven’t included some revision processes for the different
contexts, we consider they are necessary for an agent that lives in a dynamic environment
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a logic style by the following rule:2

(D+ϕ, r), (D−ψ, s), plan(α, P,A, c),
(B([α]ϕ), b0 ), (B(P ), 1), (B(A→ ¬ψ), 1)

fplan(ϕ, α, P,A, c)
(1)

which generates a predicate fplan(ϕ, α, P, A, cα), standing for α is plan that
achieves ϕ with precondition P , postcondition A and cost c, whenever: (1) it is
believed (above some threshold level b0) that plan α leads to satisfy a positively
desired goal ϕ (encoded as (D+ϕ, r) and (B([α]ϕ), b0)), (2) α’s precondition
P is satisfied ((B(P ), 1)), and (3) α’s postconditions A avoid negative desires
ψ (encoded as (B(A→ ¬ψ), 1) and (D−ψ, s)).

10. PC: has a set of feasible plans (fplans) according to the agent’s beliefs and
desires.

11. A process for deriving intentions, which for each feasible plan α that allows to
achieve a desire ϕ, an intention formula Iαϕ is derived with its corresponding
degree. According to the notion adopted the intention degree is taken as a
trade-off between the benefit of reaching the desire and the cost of the plan
α. This can be made operational by means of an inference rule like the one
showed in previous Section (see BR 7.3) and using as the function f a weighted
average as it was proposed.

12. IC: represent the set of current graded Intentions, representing those desires
that the agent is committed to try to bring about by the execution of feasible
plans (see BR 7.3).

13. Intention - Action selection process, which determines which action to perform
on the basis of each selected intention. From the set of current intentions and
feasible plans, the agent selects for a given desire ϕ the plan α which leads to
a maximum intention degree for Iαϕ, represented by the degree of the formula
Iϕ .

14. CC: communicates the action α the agent undertakes.

We illustrate how the g-BDI agent model works by the following example.

7.4 Example

(Continuation of Example 1, see Chapter 6) We have a Tourism Recommender
Agent in charge of looking for different tourism plans in order to satisfy a set of

2Notice that this is not a BR, is an internal rule in the PC that uses formulae that have been
injected by BRs (agent beliefs and desires).
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tourist preferences. She will intend to reach the goal (i.e. satisfying the user) by
the recommendation of the tourism plan which can get her the highest intention
degree. The recommender agent is modelled using the g-BDI architecture and takes
all desires expressed by Maŕıa, our stressed tourist (also presented in Example 1),
and following the steps explained in this section, finds the best recommendation for
Maŕıa:

(1-2-3) Update Belief Context: the agent updates her current beliefs about the
tourism plans offered, the tourism domain (structured using destinations on-
tologies) and the beliefs about how these packages can satisfy the user’s pref-
erences. All these beliefs constitute the agent current belief theory TB.

(4-6) Update Desire Context: from Maŕıa preferences the agent generates her
desires exactly at they were generated in Example 1 and are represented as
the desire theory: T ′D = {(D+m, 0.8), (D+r, 0.6), (D+(m ∧ r), 0.95), (D−f, 0.7)}.

Once these theories are defined, the Agent is ready to reason in order to
determine which Intention to adopt and which plan is associated with that
intention.

(7) The desires are passed from DC to PC.

(8) The beliefs about tourist packages and tourism are passed from BC to PC.

(9) PC - looking for feasible packages: from this set of positive and negative
desires (T ′D) and knowledge about the tourist packages the agent can offer and
the benefits they bring (TB), and using a Planner, the agent looks for feasible
plans, that are believed to achieve positive desires (i.e in this case m, r or
m ∧ r) by their execution but avoiding the negative desire (i.e. f) as post-
condition (see rule (1)).
The agent has in its knowledge base among other formulae, the following ones
representing the description of the offered tourism plans. Each package is
represented by predicates defined as: Package(Id, null, T rip, Cost)

where Id is the identification of the plan, we consider null preconditions, Trip
is a detailed travel-stay sequence (postconditions) and Cost is the package
cost.

The Planner looks for the plans that do not satisfy f and that satisfies m or
r, by a cross-searching between the package and destination ontologies.

(10) Current feasible packages: the agent finds that the plans Mendoza (Me)
and SanRafael (Sr) are feasible plans for the combined desire m ∧ r, while
Cumbrecita (Cu) is feasible only for m. The Planner also computes the nor-
malized cost (c ∈ [0, 1]) of these plans being respectively: cMe = 0.60 and
cSr = 0.70 and cCu = 0.55.
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The agent also has the following beliefs related to the achievement of the
different desires (m, r or m∧ r) by the feasible plans (Me, Sr and Cu). These
beliefs are included in the BC theory.

T ′B = {(B[Me]m, 0.7), (B[Me]r, 0.6), (B[Me](m ∧ r), 0.6), (B[Sr]m, 0.5),
(B[Sr]r, 0.6), (B[Sr](m ∧ r), 0.5),

(B[Cu]m, 0.4), (B[Ba]m, 0.8), (B[Ba](f), 1)}

(11) Deriving the Intention formulae Iαϕ, for each feasible plan α towards
a desire ϕ. The intention degrees for satisfying each desire m, r and m ∧ r
by the different feasible plans are computed by a rule that trades off the cost
and benefit of satisfying a desire by following a plan. The Agent uses rule
7.3 (Section 7.2) and considering the function f as the average of the desire
degree (d), the belief degree r of achieving the desire by a selected plan and
the complement of the cost (c):

f(d, r, c) = (d+ r + (1− c))/3

computes the intentions degrees towards m ∧ r, m and r by executing the
feasible plans Mendoza (Me) and SanRafael (Sr).

(12) Current Intentions: as a result of the previous process, the set of intentions
contains the following formulas:

(IMe(m ∧ r), 0.675), (ISr(m ∧ r), 0.625),
(IMe(m), 0.60), (IMe(r), 0.50),
(ISr(m), 0.55), (ISr(r), 0.45),
(ICu(m), 0.625) .

(13-14) Selecting Intention-plan: the agent decides the tourist recommendation.
From this set of current intentions, the Agent decides to recommend the plan
Mendoza (Me) since it brings the best cost/benefit relation (represented by
the intention degree 0.675) to achieve m∧r, satisfying also the tourist negative
desire.

7.5 Comparison with Rahwan and Amgoud’s ap-

proach

In this Chapter we have completed the formalization of our g-BDI agent model by
presenting the functional contexts and the bridge rules. Also, we have described
the working of the proposed architecture. Then, we are able to compare this agent
model with a relevant related approach.
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Previously, in Chapter 2.5, we have analyzed different approaches to graded
attitudes in intentional agents. Noticing that most proposals related to graded
beliefs, weighted preferences and intention reconsideration, model partial aspects of
the uncertainty related to mental notions involved in agent architectures. Notably,
Rahwan and Amgoud have recently presented in [122], a complete argumentation-
based framework for practical reasoning. They provide a rich argumentation-based
framework for (i) generating consistent desires, and (ii) generating consistent plans
for achieving these desires. We belief that our agent model is complementary to
their approach in different aspects we next detail.

This argumentation-based approach allows the representation of uncertain beliefs
and worth related to desires. In this work, however, the authors do not present
strictly speaking a formal system (in the sense of a logical system which is sound and
complete with respect to an intended semantics) to represent and reason with these
graded attitudes according to a suitable uncertainty model. The relation between
their proposal and some BDI axiomatics is left as future work. In this direction,
we have developed well founded logics to model the different mental attitudes (i.e.
beliefs, desires and intentions) in a multi-context framework.

Besides, Rahwan et al. in [122] do not use any estimation on plan failure and have
no estimation on the uncertainty of achieving the desire after the plan execution.
They work with certain plan rules. In this sense, our proposal includes a preliminary
approximation to the notion of plan failure by computing the belief degree in having
the goal after executing a determine plan (i.e. by using B[α]ϕ formulae).

In their model, they select intentions from a set of justified and feasible desires,
constructing a complete pre-order relation, where the worth of the desires in the
plan, and the cost of its resources are involved. To decide intentions they present
an interest combination based on utility, as the difference between of total worth of
desires and the total cost of the resources involved in their achievement. For the
g-BDI model we have proposed a process to decide the agent current intention by
looking for the desires that can be achieved by feasible plans (similar to their notion
of feasible desires) and then, the best ranked intention is selected (see Chapter 6).
This ranking is built by using a function that combines among others, the desire
degree and cost of the plan. Instead of specifying a fixed combination, we proposed
that different functions may be defined to model different agent behaviours.

We remark they have presented an important approach to the deliberation pro-
cess in BDI agents towards desire generation. They include desire generation rules
that from desires and belief, generate new desires. We have incorporated these rules
to our agent model to generate desires in a dynamic domain, by defining suitable
bridge rules (7.9 in Section 7.2). Furthermore, the argumentation frameworks they
propose for belief, desires and plans, permit to treat in an efficient way with the
agent inconsistent information. In this way their argumentation model maintains
the different bases sound and it allows to look for a conflicting free set of acceptable
plans. We consider that the argumentation based approach is a promising direction
for future work related to the revision of the different attitudes in our g-BDI model.



Trust is the lubrication that makes
it possible for organizations to
work.

W. G. Veńıs

Chapter 8

The Socialization of the g-BDI
agents

8.1 Introduction

The agents developed using the g-BDI model may interact with the environment and
other agents, human or not, in the agent society where they are situated. Thus, it is
necessary to take into account the social aspects of agency. The agent interactions
have many facets and much work still must be done in different directions. In this
chapter we consider some preliminary steps towards the g-BDI agent socialization
so as to show how the agent model can be extended to include some of these aspects.

First, we show how the language defined for the mental contexts can be used
to reason about other agent attitudes. Second, a social context is added to the g-
BDI agent model to represent and handle different kinds of trust in other agents.
Particularly we consider the trust in informant agents and the trust in delegating
plans to other agents.

8.2 Reasoning about other agent attitudes

The languages defined in previous chapters for the different mental contexts (BC, DC
and IC) in the g-BDI agent model include modal formulae over a base propositional
language L, i.e. formulae of the kind Mϕ, where ϕ ∈ L and M ∈ {B,D, I}. These
languages do not permit nested modalities, i.e. formulae of the kind BBϕ or BIψ
are not allowed. This is actually a language limitation for an agent that may need
to reason about other agents’ beliefs, desires or intentions, and would need to use
formulae like BaBbϕ or BaIbψ, expressing that agent a believes that agent b believes
ϕ or that agent a believes agent b intends ψ. The problem with this more general
formulae is, first of all, that they cannot be given a suitable meaning by the different
kinds of Kripke structures we have defined for the different context logics. Namely,
let us consider for instance the logic BCprob. In a BCprob Kripke structure, a formula
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Bϕ is evaluated by a probability measure µ defined on (classical) subsets of worlds.
If we would like to evaluate a formula like B(Bϕ), then notice that Bϕ is a many-
valued formula (it takes a value from [0, 1] in each model) and hence the outermost
B operator should be evaluated over a fuzzy subset of worlds.

To overcome this problem, a partial solution would be to force that modal oper-
ators B, D and I apply over Boolean modal formulae, in the sense that they either
take degree 1 or degree 0 in each world. This can be achieved by first expanding
the fuzzy logics used in the different contexts (e.g.  Lukasiewicz or Gödel logic) with
the projection Baaz ∆ operator (see Section 3.2), with the following interpretation:

e(∆ϕ) =

{
1, if e(ϕ) = 1
0, otherwise

From ∆ we can define other projection operators, for example the operator∇ = ¬∆¬
[78], evaluated as follows:

e(∇ϕ) =

{
1, if e(ϕ) > 0
0, otherwise

Notice that although ϕ may be a fuzzy formula, ∆ϕ and ∇ϕ are crisp (bi-valued).
Therefore, if we stipulate that every modal operator can only be applied to either a
propositional formula or to a modal expression beginning with ∆ or∇, then we could
safely use and evaluate and agent’s beliefs about other agents’ attitudes provided
that BCprob Kripke structures M = (W,µ, e) are extended to structures of the kind
M = (W,µa, µb, . . . , e), with a probability measure for each agent. For instance, in
such a case, we could represent and evaluate expressions like:

• Ba(∇Ibϕ) representing that “the agent a believes that the agent b intends
ϕ in some positive degree”.

• 0.6→ Ba(∇Bbϕ) expressing that “ the agent a believes with a degree greater
or equal than 0.6, that the agent b believes ϕ with a positive degree”.

• 0.7→ Ba(∆(0.5→ Dbϕ)) meaning that “the agent a believes with a degree
greater or equal than 0.7, that the agent b desires ϕ with a degree greater or
equal than 0.5”.

These restricted nested formulae work properly, in principle, to combine dif-
ferent modalities from a semantic point of view. However, this approach does
not improve the language expressive power. For example, consider the formula
0.7→ Ba(∆(0.5→ Bbϕ)). Since the probability measures µa and µb do not depend
on the particular world we are but on the whole model, then 0.5→ Bbϕ either holds
or not in any world of W , and hence Ba(∆(0.5 → Bbϕ)) gets either value 1 or 0,
and so, it is trivially true or false, and the complex belief formula could actually be
equivalently represented by the formula ∆(0.5 → Bbϕ), without using any nesting.
Therefore, to get a better expressive power, the semantics should also be extended
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by considering probabilistic Kripke structures of the kind M = (W,µa, µb, . . . , e)
where now µi : W × Fi → [0, 1], such that for each world w ∈ W , µi(w, ·) is a
probability measure over some suitable Boolean subalgebra Fi ⊆ 2W .

The full development of these kinds of more expressive power is left for future
work.

8.3 Trust in an agent society

To equip an agent with tools in a social context, it is important to model and support
the agent’s trust. In an agent community different kinds of trust are needed and
should be modelled, as it was pointed out in [1, 39]. They can be grouped in trust in
the environment and trust in other agents interacting in it (e.g., mediating agents,
potential partners). Trust is a mental state, a complex social attitude of an agent x
toward another agent y about the belief in the behavior/action relevant for a goal.
Castelfranchi and Falcone in [39] have developed a complete cognitive approach to
social trust.

The use of previous direct interactions is probably the best way to calculate trust
but, unfortunately, this information is not always available. Reputation systems take
advantage, among other things, of social relations between agents to overcome this
problem as is discussed in [137]. A valuable example of this kind of tools is the
ReGret system [135] where the reputation of the participating agents is modelled
taking into account diverse social relations in a trading context.

To deal with the social aspects of agency in our g-BDI agent model we introduce
a new context, the Social Context (SC), with the purpose of modelling the agent
trust or reputation in other agents. In the multi-context specification of the g-BDI
agent model, besides the mental contexts to represent beliefs (BC), desires (DC),
intentions (IC), and two functional contexts, for Planning (PC) and Communication
(CC); a social context (SC) is thus included:

Ag = ({BC,DC, IC, SC, PC,CC},∆br)

The interrelation of the SC with the other contexts in the architecture can be defined
in a neatly way, by suitable bridge rules.

Among the different kinds of trust that may be used in an agent society, in this
chapter we consider two cases. On the one hand, the incoming information must be
analyzed and filtered depending on the trust that the agent has in its source. On
the other hand, the social trust must also be considered when the agent must decide
about the delegation to others of an action that is part of the plan toward the goal
that it is trying to achieve.



110 CHAPTER 8. SOCIALIZATION OF G-BDI AGENTS

8.3.1 A Social Context to Filter Information

In a first stage, we consider that the purpose of the social context (SC) in our agent
model is to filter all the information coming from other agents. We have inspired
our work in the Belief, Inform and Trust (BIT) logic presented by Liau [98] and
then, extended by Dastani [43]. One of the central ideas formalized in BIT logic is
the following: “if agenti is informed by agentj about ϕ, the agenti’s beliefs about
ϕ depends on the trust the agenti has in agentj with respect to ϕ”. In the frame-
work of this logic all the formulae are crisp. We extend this idea to a many valued
approach, in a multi-context specification. Preliminary results in this direction can
be seen in [31].

Language
Assuming we have a multiagent system scenario with a finite set of agents:

{agenti}i∈Ag , the language for this social context LSC is built over a basic propo-
sitional language L, extended by a family of modal operators Tij where i, j ∈ Ag.
Then, the language LSC contains non-modal L-formulae and modal formulae Tijϕ,
where ϕ ∈ L. As in the definition of the DC language (see Section 6.2), we call a
modal formulae closed when every propositional variable is in the scope of a modal
operator Tij.

The formula Tijϕ represents the trust of agenti towards agentj, with respect to
ϕ. We consider that these formulae may be graded taking values in [0,1], to express
different levels of trust. A belief-based degree of trust has been discussed in [39].

In the same way than in the other mental contexts, we use a many-valued treat-
ment for the trust of an agent in others. Then, if the degree of Tijϕ is τ , we shall
consider that the truth degree of the sentence “agenti trusts in agentj about ϕ” is
τ . We also choose the  Lukasiewicz logic as the underlying many-valued logic.

In this context, the agent trust in other agents will be represented by a theory T
(a set of closed LSC formulae) containing quantitative expressions about the agent
trust, as for example (Tijϕ, τ) and (Tikψ, γ).

Semantics and axioms
The models for SC are defined in a similar way as we did in the other contexts

using a Kripke structure. MS = 〈W, e, {τij}i,j∈A〉 where W and e are defined in
the usual way, and for each i, j ∈ A, τij : W → [0, 1] is a trust distribution over
worlds where τij(w) ∈ [0, 1] is the degree on which agenti trusts agentj about the
possibility of w being the actual state of the world.

The truth evaluation e : V ×W → {0, 1} is extended to the non-modal formulae
in the usual way. For the modal formulae, we follow the intuition that the trust on
ϕ∧ψ may be taken as the minimum of the trust on ϕ and on ψ, hence we interpret
the trust operator Tij as a necessity measure on non-modal formulae. We extend the
truth-evaluation e to modal formulae using  Lukasiewicz logic truth-functions and by
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defining:
e(Tijϕ,w

′) = inf{1− τij(w) | w ∈ W, e(w,ϕ) = 0}

that is, the necessity of ϕ with respect to the possibility distribution τij.
Then, the corresponding axiomatics is set in a similar way than in the basic

schema for DC, as follows:

1. Axioms of classical logic for the non-modal formulae,

2. Axioms of  Lukasiewicz logic for the modal formulae,

3. axiom for Tij modalities:

(SC1) Tij(ϕ ∧ ψ) ≡L Tijϕ ∧L Tijψ
(SC2) ¬LTij⊥

4. Inference Rules:

(MP) modus ponens for → and for →L

(EQ) from `CPC ϕ ≡ ψ derive ` Tijϕ ≡L Tijψ
necessitation rule for each Tij where i, j ∈ Ag: from ϕ derive Tijϕ.

After the trust between the agent and the other agents in the environment respect
to a subject is defined, the agent can use this notion of trust to asses the quality of
the information received from other agents. Following [43] we want to use this trust
to derive the agent beliefs about what is being informed.

In a multiagent system scenario, if agenti is informed by agentj that ϕ is true,
this statement may be represented by a first order predicate:

informed(agenti, agentj, ϕ) (two-valued formula represented by Nijϕ).

The main axiom for trust in the BIT logic [98] where the agent filter behavior is set,
is defined as follows:

(C1) (BiNijϕ ∧ Tijϕ)→ Biϕ, where i, j ∈ Ag (filter)

We present a multi-context version of this axiom. As belief, information and
trust formulae are represented in different contexts, we use a special bridge rule to
formalize it and we extend this rule to a many-valued framework.

Through the Communication unit —CC (outlined in Chapter 7), the agent per-
ceives all the changes in the environment and, in particular, it receives the informa-
tion from other agents (e.g. Nijϕ formulae). Then, using the trust degree (τ) on
agentj with respect to ϕ, this information is introduced in the belief context, using
a suitable order preserving transformation h, by the following bridge rule:

CCi : Nijϕ, SCi : (Tijϕ, τ)

BCi : (Bϕ, h(τ))
(8.1)
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Figure 8.1: A g-BDI agent model including a SC for filtering information.

Figure 11.6 shows the extension of the graded BDI agent model with the different
contexts (including the social context, SC) and some of the bridge rules relating
them. Particularly, the bridge rule 8.1, in charge of the agent information filtering
process, is illustrated as rule (1).

Example 4 Suppose a tourism agent (Agent1) is informed by another tourism
agent (Agent2) that “there is not enough snow in Mendoza for skiing”(¬s), rep-
resented by N12(¬s). As they are competitive travel agents, the trust of Agent1 in
Agent2 with respect to tourism issues is low, this may be represented in the SC1 of the
Agent1 by the formula (T12(¬s), 0.4). Then, the Agent1 by using the bridge rule (see
rule 8.1) and defining h(τ) = τ , she derives in her BC1 the formula (B1(¬s), 0.4)
expressing that her belief degree on ¬s is also low (at least 0.4).1

8.3.2 Trust in Delegation

The aim at considering a Social Context in the g-BDI agent architecture is to model
the social aspects of agency, particularly the trust in other agents. Previously a
Social Context was introduced to filter the agent incoming information, taking into
account the trust in the informant agents. The social trust must also be considered
when the agent decides about the delegation to others of an action, part of the plan
toward the goal. Thus, trust and delegation are closely related. In this subsection,
we use the Social Context in order to represent the trust needed in order to evalu-
ate the risk of delegating partial plans and thus decide whether or not to delegate
them. We need to extend the SC defined above to represent and reason about this
kind of trust. Different modalities are used to distinguish the diverse types. They
are treated separately because agenti may trust agentj with respect to the informa-
tion she gives about ϕ, but may not trust her about delegating an action related to ϕ.

1In the case that the Agent1 has previous conflicting information about this subject, a belief
revision process is needed to decide her current beliefs.
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Language
Assuming we have a multiagent system with a finite set of agents: {agenti}i∈Ag ,

we extend the dynamic propositional language LD (see Section 3.1) used in BC to
reason about actions and plans, by a family of modal operators T dij,

2 where i, j ∈ Ag.
Then, the language for the social context LSC is extended by the LD-formulae.

The modal formulae T dijψ are included to represent the trust agenti has on agentj
related to delegating an action in ψ, where ψ is a closed formula in LD (i.e. ψ = [α]ϕ,
α ∈ Π0 and ϕ ∈ L). The formulae T dijψ may be graded, taking values in [0,1], to
express different levels of trust. Like in the other contexts, we use a many-valued
approach for trust modelling. When who the agenti holding the trust is is clear
from the context we remove its subindex, that is, T dijϕ becomes T dj ϕ.

The theory for SC in a g-BDI agent, TSC, will have closed formulae like (T dj [α]ϕ, τ)
expressing that the trust of the agent toward an agentj about a plan α directed to a
goal ϕ, has degree greater than τ . We propose to use a plan classification based on
an action ontology to assign the different levels of trust to dynamic formulae related
to plans, preserving the following axioms:

T dj [α ∪ β]ϕ ≡L T dj [α; β]ϕ ≡L T dj [α]ϕ ∧L T dj [β]ϕ

Namely, the trust level in an agentj related to delegate her a plan that combines
actions by concatenation or non-deterministic disjunction, results in the minimum
of the trust levels with respect to delegate the elementary actions.

Actually, one in fact could assume that the trust only depends on the plan α and
not in the goal the agent is trying to achieve with its execution. In such a case, the
language could be simplified and instead of introducing the modal operators T dj one
could introduce in the language a set of fresh many-valued propositional variables
tdjα indexed by agent identifiers j ∈ Ag and by actions α from a given set of actions
Π0 that we may assume to be closed by nondeterministic union and concatenation.
This approach would be similar to what was done with cost propositional variables
Cα in the intention context IC (see Section 6.3). In that setting the above axioms
should be replaced by analogous ones on the variables tdjα:

tdjα∪β ≡L td
j
α;β ≡L td

j
α ∧L td

j
β

Regarding intentions, we believe that in the case a g-BDI agent is evaluating
an intention towards a goal ϕ by a plan α, when the plan execution involves the
delegation of the plan (or subplan) to another agentj, it needs to use trust. In
previous works, as in [76], it was considered that the plan quality could be computed
as a weighted sum of a standard rating (combination of the benefit obtained by the
plan execution and its cost) and a cooperative rating (evaluated from the trust in
the agents involved).

2We use the superscript d to differentiate the kind of trust (on delegation) we are dealing with.
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Figure 8.2: A g-BDI agent model including a SC to deal with delegation.

To compute the intention degrees in the g-BDI model, we have proposed a func-
tion that combines different factors (i.e. desire degree, belief in satisfying the goal,
cost of the plan), that was formalized by defining an specific bridge rule (see 7.3 in
Section 7.2). The intention degree is thought as a trade-off between the benefit of
reaching a goal and the cost of the plan. Now, we propose to include the trust in
the agent that will cooperate with the action execution. The following bridge rule
computes the intention degree of Iαϕ from the degree d of D+ϕ, the degree r of
belief B[α]ϕ, the cost c of the plan α and the trust level t in the agentj that will
cooperate in the execution of the plan α.3

DC : (D+ϕ, d), BC : (B[α]ϕ, r), PC : fplan(ϕ, α, P,A, c), SC : (Tj[α]ϕ, t)

IC : (Iαϕ, f(d, r, c, t))
(8.2)

Different functions f allow to model different agent behaviors. For instance, f
may be defined as a weighted average,

f(d, r, c, t) =
wd.d+ wr.r + wc. (1− c) + wt.t

wd + wr + wc + wt

where the different weights wi are set according to the diverse agent types. For
instance, for a greedy agent wc will be set greater than the other weights and for a
suspicious agent the more relevant will be wt.

In Figure 8.2 the extended g-BDI agent model is illustrated, in this case we focus
on the trust in delegation. The bridge rule 8.2 that computes the intention degrees
taking trust into account is shown as rule(2).

Example 5 The personal tourism agent ( T-Agent) recommends tourism packages

3If the trust in the agentj only depends on the plan α and not in the goal ϕ trying to achieve
then, the premise (Tj [α]ϕ, t) may be replaced in the BR with (tdjα, t).
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provided by two different tourism operators ( P1-Agent and P2-Agent). It is impor-
tant for the T-Agent to take into account the trust she has in the different Providers
in the recommendation she undertakes. In this case, we consider that the trust de-
pends only on the kind of tourist plan that the operator offers. For instance, we
consider the region of the country as a classification element, since there are tour-
operators that are good for plans in a particular region, but not in others.

Maŕıa, our tourist of Example 1 (see Section 6.2), activates the personal agent
T-Agent, to get an adequate plan, i.e. a tourist package, that satisfies her prefer-
ences (e.g. going to a mountain place (m) and practicing rafting (r) in a beautiful
Argentinian place). The principal steps of the T-Agent towards to give a suitable
recommendation are resumed next (for details see Section 7.4):

- The T-Agent finds that the plans Mendoza (Me) and SanRafael (Sr) are fea-
sible plans for the combined goal m ∧ r, while Cumbrecita (Cu) is feasible only for
m. The Planner also computes the normalized cost (c ∈ [0, 1]) of these plans being
respectively: cMe = 0.60 and cSr = 0.70 and cCu = 0.55.

- In the belief context of the T-Agent the following beliefs of achieving the dif-
ferent desires through the plans offered are computed as follows: (B[Me]m, 0.7),
(B[Me]r, 0.6), (B[Me](m∧ r), 0.6), (B[Sr]m, 0.5), (B[Sr]r, 0.6), (B[Sr](m∧ r), 0.5)
and (B[Cu]m, 0.4).

- The packages Mendoza and Cumbrecita are provided by P1-Agent while San-
Rafael is offered by P2-Agent. The trust T-Agent has on P1-Agent with respect
to both packages Mendoza and Cumbrecita, is medium and the trust in P2-Agent
providing SanRafael is higher. In T-Agent SC theory TSC the trust in these provider
agents are represented using a set of many-valued propositional variables as the fol-
lowing formulae: (td1

[Me], 0.7), (td1
[Cu], 0.7) and (td2

[Sr], 0.9).

- Using bridge rule 8.2 with the weighted function proposed, the T-Agent com-
putes the different intention degrees towards satisfying the user preferences by fol-
lowing feasible plans. We consider that Maŕıa has selected the confidence priority
criterion and thus, the T-Agent adopts a suspicious behaviour by setting the follow-
ing weights: wd = wr = wc = 0.5 and wt = 1.

As a result of the previous process, the intention context contains the following
formulae:

(IMe(m ∧ r), 0.685), (ISr(m ∧ r), 0.735),
(IMe(m), 0.64), (IMe(r), 0.58),
(ISr(m), 0.69), (ISr(r), 0.63),
(ICu(m), 0.655) .

Then, the T-Agent recommends Maŕıa the plan SanRafael (Sr) since it brings the
best cost/benefit relation (represented by the intention degree 0.735) respecting her
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priority selection (i.e. confidence). If we compare this result with the one obtained
in the Example of Section 7.4 where the recommended package was Mendoza, we
can notice that the trust in the different package providers makes the difference in
the recommendation.

8.3.3 Conclusions

In this Chapter we have shown how the g-BDI agent model can be extended to
include some social aspects.

We have first proposed how the language and semantics defined for the mental
contexts could be extended to reason about the agent’s different attitudes or the
attitudes of other agents. In this way, we partially overcome the limitation of the
previous languages that did not allow for nested modal formulae. Second, we have
shown that the g-BDI agent model can be extended to deal with different kinds of
trust, necessary for an agent who interacts in an agent society. With this aim, a
social context has been added to the g-BDI agent model to represent different kinds
of trust in other agents. Particularly, we have considered the trust in informant
agents and the trust to delegate to other agents the execution of a plan (or partial
plan). Preliminary results on the inclusion of a social context in the agent model
can be seen in [31, 32]. Further research in this direction is ongoing and we consider
very promising the recent work of Pinyol and Sabater-Mir in [120] focussing the
integration of a cognitive model of reputation within a BDI agent architecture.



Design is not just what it looks like
and feels like. Design is how it
works.

S. Jobs

Chapter 9

Operational semantics for g-BDI
Agents

9.1 Introduction

As exposed in Chapter 4 the graded BDI model of agents is based on multi-context
systems. These systems are basically deductive machines. In this Chapter, we want
to specify the operational semantics of this agent model.

Operational semantics is a way to give meaning to computer programs in a
mathematically rigorous way. The semantics for a g-BDI model of agent will describe
how a valid agent model is interpreted as sequences of computational steps. These
sequences then are the meaning of the model. Operational semantics may define
an abstract machine and give meaning to language expressions by describing the
transitions they induce on a finite state machine. Alternatively, via a pertinent
process calculus, operational semantics can be defined as syntactic transformations
on sentences themselves. We decided to follow this second approach.

The process calculus approach has already been used to cope with formal aspects
of multi-agent interactions defining different protocols [55]. Next, we outline some
of these calculus.

The π-calculus is a process calculus developed by Milner et al. [106] as a continu-
ation of the body of work on the process calculus CCS (Calculus of Communicating
Systems) [107]. The aim of the π-calculus is to be able to describe concurrent
computations whose configuration may change during the computation.

The Ambient Calculus due to Cardelli et al. [28] was developed as a way to de-
scribe the movement of processes (agents) and devices, including movement through
boundaries (administrative domains). It can also be considered as an extension of
the π-calculus and it is presented in more detail in next Section 9.2.

The Lightweight Coordination Calculus (LCC) [130] can also be considered as
a variant of the π-calculus with an asynchronous semantics to coordinate processes
that may individually be in different environments. LCC was designed specifically
to formalize agent protocols for coordination and it is suitable to express interac-

117
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tions within multi-agent systems without any central control. LCC borrows the
notion of role from agent systems but reinterpret this in a process calculus. So-
cial norms in LCC are expressed as the message passing behaviours associated with
roles. The most basic behaviours are the send or receive messages, where sending
message may be conditional on satisfying a constraint and receiving a message may
imply constraints on the agent accepting it. The constraints are expressed by struc-
tured terms (i.e. Prolog syntax). More complex behaviours are specified using the
connectives then, or and par for sequence, choice and parallelism, respectively. A
set of such behavioural clauses specifies the message passing behaviour expected of
a social norm. It is also possible for LCC to verify the protocols using automated
means, e.g. model checking [150]. Walton in [148] presents a language based on
CCS [107] to specify agent protocols in a flexible manner during the interaction of
agents. Then, in [149] he proposes a Multi-agent Protocol (MAP) based in LCC
and oriented to agent dialogues. These protocols allow to separate agent dialogues
from their specific agent reasoning technology.

Ambient LCC [90] is a language based on process algebra concepts that combines
the notions of LCC and ambient calculus. It was specially designed to support the
execution of electronic institutions, an organization model for Multi-Agent Systems.

In order to give semantics to a g-BDI agent, we take advantage of Ambient calcu-
lus. Although process calculi have been mainly used to model multiagent systems,
we have considered that the modular structure that Multi-context system (MCS)
provide to the architecture of an agent would permit a similar treatment to single
agents as well. Particularly we find that the notion of ambient is also suitable to
represent the MCS main components: contexts and bridge rules.

As in Ambient LCC we combine Ambient calculus with some LCC elements but
in this case, for dealing with the internal structure of intentional agents. We focus
on the work about Ambient Calculus due to Cardelli et al. [28] to capture the notion
of bounded ambient and we take into account some elements of LCC syntax [130]
to represent the state components (e.g. terms, variables).

Since the g-BDI agent model is specified using multi-context systems (MCS),
we first introduce a specific ambient calculus which we call Multi-context Calculus
(MCC) with its corresponding semantics. The calculus presented is general enough
to support the execution of different kinds of MCSs and particularly, we show how
a graded BDI agent can be mapped to the calculus proposed.

9.2 Mobile Ambient Calculus

Ambient calculus was developed as a way to express mobile computation [28]. It can
also be viewed as an extension of the basic operators of the π-calculus [106]. The
inspiration behind Ambient calculus is the observation that many aspects of mobility
involve administrative considerations. For example, the authorization to enter or
exit a domain, and the permission to execute code in a particular domain. These
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issues were principally motivated by the needs of mobile devices. However, they are
very similar to the issues faced by agents in an open environment. The ambient
calculus addresses this problem by defining an ambient (informally) as a “bounded
space where computation happens”. The existence of a boundary determines what
is inside and outside the ambient. Process mobility is represented as crossing of
boundaries and security is represented as the ability or inability to cross them. In
turn, interaction between processes happens in shared locations within a common
boundary. Ambients can also be nested, leading to a hierarchy. An ambient is
also something that can be moved. For example, to represent a computer or agent
moving from one place to another.

More precisely, each ambient has a name, a collection of local processes that
run directly within the ambient, and a collection of sub-ambients. The syntactic
categories are processes and capabilities. A process is analogous to an individual
agent. A process may be placed inside an ambient, may be replicated, and may be
composed in parallel with another process, which means that the processes execute
together. In Ambient calculus, n[P ] denotes an ambient named n containing the
process P. The formal syntax of Ambient calculus is shown in Table 9.1.

P,Q,R ::= 0 Inactivity
(νn) .P Restriction
P |Q Parallel Composition
M [P ] Ambient
!P Replication
M.P Capability Action

M ::= n Name
in M can enter into M
out M can exit out of M
open M can open M
ε null
M.M ′ composite

Table 9.1: Syntax of Ambient calculus

In general, an ambient exhibits a tree structure induced by the nesting of ambient
brackets. Each node of this tree structure may contain a collection of (non-ambient)
processes running in parallel, in addition to subambients. We say that these pro-
cesses are running in the ambient, in contrast to the ones running in subambients.
The general shape of an ambient is, therefore:

n [P1 | · · · | Pk |m1 [...] | · · · |mj [...]]
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Figure 9.1: General structure of an ambient

To illustrate this structure we may display ambient brackets as boxes. Then the
general shape of an ambient is shown in Figure 9.1.

One of the relevant characteristics of the ambient calculus is the definition of ca-
pabilities M for processes, which are described by actions. These capabilities permit
things to happen within ambients. Especially, this calculus presents some actions
related to crossing or opening ambient boundaries. Thus, different capabilities are
defined as for example:

• Entering an ambient (in m capability): this action is used by a process to
enter an ambient, i.e. to cross its boundary. The result is that the process
(and its enclosing ambient) move from the current ambient to the ambient
pointed in the action.

n [in m · P |Q] | m [R]→ m [n [P |Q] | R]

• Exiting an ambient (out m capability): this action is used by a process to exit
an ambient. The result is that the process (and its enclosing ambient) move
outside the current ambient to a parent ambient according to the ambient
hierarchy.

m [n [out m · P |Q] | R]→ n [P |Q] | m [R]

For further information on the formal definition of Ambient calculus the reader is
referred to [28]. Synthesizing, we can say that the emphasis of the Ambient calculus
is on boundaries and their effect on computation, having the following key features:

• Ambients are used to separate locations and allow a hierarchical structure
(defining a topology of boundaries).

• Process mobility is represented as crossing of boundaries, by the movement of
processes between ambients.

• Security is represented as the ability or inability of a process to cross bound-
aries.
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• Interaction between processes is by shared location within a common boundary
(i.e. process can communicate only within the same ambient).

After these considerations, we find that the notion of ambient is also appropri-
ate to represent contexts in Multi-context systems. Contexts encapsulate the local
aspects of particular logical deductions in a global system and bridge rules enable
to represent the interaction or compatibility between them. Then, each unit can
be mapped to an adequate ambient having a state and a process running in it.
Moreover, bridge rules may be also represented by special ambients whose mobile
processes may be in charge of the inter-context deduction.

9.3 Multi-context Calculus

Multi-context systems (MCS) are specifications of deductive machines that modify
the internal states of the different contexts through the context inner deductions and
bridge rules [68]. In order to translate these MCS specifications into computable
languages, we propose a Multi-context calculus (MCC) based on Ambient calcu-
lus. The notion of ambient allows us to encapsulate the states and processes of the
different contexts and bridge rules. The possibility of structuring ambients hierar-
chically enables us to represent complex contexts where different components may
be represented by different ambients.

We also take advantage of the process mobility addressed in Ambient calculus to
represent the process attached to a bridge rule. This process is meant to supervise
a number of context ambients to verify if particular formulae are satisfied and, if it
is the case, to add a formula in another context ambient. Thus, this process will
be getting in and out of the different ambients. Our definition of the actions for
entering and exiting an ambient (i.e. in C and out C) is slightly different from the
one used in Ambient calculus. In Ambient calculus a process gets into or out of an
ambient C with the ambient enclosing it. In MCC calculus we want the process to
move alone, then we redefine these capabilities by the following reduction rules that
give semantics to in C and out C actions:

n [in m.P ‖ m [Q]] → n [m [P ‖ Q]]1

m [n [out n.P ‖ R]] → m [P ‖ n [R]]

Furthermore, for defining our calculus we use some elements of LCC [130] as
the definition of structured terms (i.e. words in a suitable language) as the nec-
essary elements to represent the ambient state. In LCC terms are used to specify
constraints that restrict the interchange of messages and to represent some post-
conditions after the message sending. In our calculus, the ambient state formulae

1In MCC we use ‖ to represent parallel composition instead of the symbol |, normally used in
Ambient Calculus, as to differentiate parallelism from the choice symbol in BNF grammars.



122 CHAPTER 9. OPERATIONAL SEMANTICS FOR G-BDI AGENTS

Figure 9.2: The general ambient structure in MCC

determine the results of the execution of the context ambient process (inner context
deduction) and also can trigger some bridge rule processes (inter-context deduction).

In a Multi-context calculus (MCC), a MCS is structured by a global ambient,
having an identifier and a Clause inside it. This clause may generate a set of
clauses (ambients) for representing contexts and bridge rules. A context ambient
has an identifier, a state and the context process being executed in it. Moreover, a
context ambient may have other context ambients inside it, thus composing a nested
structure of ambients. Besides, a bridge rule ambient has an internal state and a
special process representing the inter-context deduction, attached to it. Such an
ambient structure is illustrated in Figure 9.2.

The definition of the MCC syntax is shown in Table 9.2. In the following we
describe the main syntax categories in the definition.

Multi-context System (MCS): is defined by an ambient structure where the
global ambient identifier is IdMC and Clause will result in the ambients and
processes inside it (see (1) in Table 9.2). Clause leads us to a set of two type
of clauses: Clausec and Clausebr (2). Clausec generates a context ambient
structure (possibly nested) with a context process Pc running in each ambient
C (3). Respectively, Clausebr becomes a bridge rule ambient Br (4) where a
Pbr process is being executed. In this way, we define a global ambient where
different processes (Pc and Pbr types) are running in parallel. As the pro-
cesses are being executed in different ambients there is no possible interaction
between them (i.e. interaction between processes happens only in a shared
ambient).

Context ambient: this ambient has a context process running in it. The context
ambient C is defined as c(Idc, Sc) where Idc is its identifier and Sc its state
(5). In turn, the state Sc is a set of Terms of an adequate language Lc (e.g.
Prolog formulae) that represents valid formulae in the context (7). In many
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MCS ::= IdMC [Clause] (1)
Clause ::= (Clausec ‖ Clause) | (Clausebr ‖ Clause) | ε (2)
Clausec ::= C [Pc ‖ Clausec] ‖ Clausec | ε (3)
Clausebr ::= Br [Pbr] (4)
C ::= c(Idc, Sc) (5)
Br ::= br(Idbr, Sbr) (6)
Sc ::= {Term} (7)
Sbr ::= L (8)
L ::= 〈U〉 (9)
U ::= 〈V → Term〉 (10)
V ::= variable (11)

Pc ::= Clausec | `c | Pc · Pc | Pc or Pc |
if Term then Pc else Pc | Action (12)

Action ::= in C | out C | get∗(Term,L) | getS(L1, ..., Ln, L) |
add∗(L, Term) | remove(C, Term) | ε (13)

Pbr ::= Clausebr | (spy(Br,C1, ϕ1, L1) ‖ spy(Br,C2, ϕ2, L2) ‖ . . .
‖ spy(Br,Cn, ϕn, Ln)) · put∗(Br,Ck, ϕk, L1, ..., Ln) (14)

spy(Br,C, Term,L) ::= out Br · inC · get∗(Term,L) · out C · in Br
(15)

put∗(Br,C, Term,L1, ..., Ln) ::= out Br · in C · getS(L1, ..., Ln, L) ·
add∗(L, Term) · revise(C) · out C · in Br (16)

Table 9.2: Syntax of Multi-context calculus (MCC)

cases it may be useful to use a nested structure of context ambients. For ex-
ample, to represent a complex context where its language or deduction system
are built using different layers. In a nested structure of ambients we can deal
with this complexity defining different ambients for each layer. In the MCC
syntax it is possible to represent a context ambient structure: from Clausec
we can generate parallel context ambients (at the same level of hierarchy) or
embedded context ambients, by using the rewriting rule (3).

Context process: consists of a deductive operator `c corresponding to the context
logical deduction. The Pc may be composed using the basic operators: sequen-
tial processing (.); deterministic choice (or) meaning that if at all possible the
process on the left is to be executed, otherwise, the right one is chosen; and
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the classical conditional if then else. Furthermore, rewriting Pc as Clausec
the recursion of processes is allowed. Then, different kinds of programs may
be represented by Pc (12).

Bridge rule ambient: this ambient has a special process Pbr running in it (4).
These ambients are defined as br(Idbr, Sbr), having an identifier Idbr and a
state Sbr (6). The state for a Br ambient is a kind of substitution memory L
composed by the substitution lists returned by the Pbr process (8).

Bridge rule process: this process is a key characteristic in the MCC and repre-
sents the inter-context deduction process of a certain bridge rule (14). Each
Pbr is composed by a finite set of parallel spy(br, C, Term,L) processes fol-
lowed by a put∗(Br,C, Term,L1, ..., Ln) process. In the following items we
describe in some detail these important components:

• spy(Br,C, Term,L) process (15) gets out of the Br ambient and gets
into the C ambient. In this ambient it retrieves in L all the substitution
lists that result of unifying Term with formulae in the context state. This
task is done by the process get∗(Term,L), which is the heart of the spy
process. Then, it returns to the Br ambient.

• put∗(Br,C, Term,L1, ..., Ln) process (16) is executed after all the lists
of substitutions L1,...,Ln have been extracted by the different processes
spy(Br,Ci, T ermi, Li), i = 1, ..., n. This process gets out of the Br ambi-
ent, comes into the C ambient and using the getS(L1, ..., Ln, L) process,
retrieves in L all the substitutions compatible with the lists of substi-
tutions L1,...,Ln. Then, using the add∗(L, Term) process, adds all the
instances of Term applying the resulting substitutions in L. In order
to maintain the consistency in the ambient state, as the add∗(L, Term)
process may introduce new formulae in it, a revise(C) process is needed.

• revise(C) process is defined according to a suitable revision method cho-
sen to keep the ambient state consistent. If we want to revise using time
considerations as for example, allowing in the state to retain the more
recent formulae respect to the conflicting ones, the insertion time t of a
formulae in an ambient state, must be included in the calculus. In our
case that means that each Term in the context ambient state Sc needs a
parameter t that will only be used by the revise process. Since in some
revision processes we may need to remove formulae from the state, we
include the remove(C, Term) as a possible action.
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9.4 Operational Semantics

One of the purposes of defining the MCC is to provide the Multi-context computa-
tional model with a clean and unambiguous semantics, allowing to be interpreted in
a consistent way. There are different methods for giving semantics to a process calcu-
lus as for example, defining structural congruence between processes and reduction
relations [28], or using rewriting rules for the clause expansion [130]. We have cho-
sen the natural semantics methods to provide operational semantics for the MCC.
This formalism is so called because the evaluation rules are in some way similar to
natural deduction and it has been used to specified the semantics of Multi-Agent
Protocols (MAP) [149]. In natural deduction we define relations between the initial
and final states of program fragments. Thus, we found it suitable for our case since
each process may produce some changes in the ambient state. A program fragment
in our model is either a context process Pc or a bridge rule process Pbr.

We define the evaluation rules for the different processes. The general form of
these rules is: M,a �P ⇒ M ′, where M is the MCS at the start of the evaluation,
a is the ambient (C or Br type) where the procedure P is executed and M ′ is the
final global system.

I- Evaluation rules for context processes: M,C � Pc ⇒ M,C ′

Since each context process Pc runs in a particular context C of M and its ex-
ecution only changes its state, in the following evaluation rules we can omit the
reference to M . As the context ambient C is defined as c(Idc, Sc), we represent as
C ′ the modification of its ambient state i.e. C ′ = c(Idc, S

′
c).

C � (`c)⇒ C ′ (9.1)

C � Pc1 ⇒ C ′

C ′ � Pc2 ⇒ C ′′

C � Pc1 · Pc2 ⇒ C ′′
(9.2)

C � Pc1 ⇒ C ′

C � Pc1 or Pc2 ⇒ C ′
(9.3)

C � Pc1 ⇒ C
C � Pc2 ⇒ C ′′

C � Pc1 or Pc2 ⇒ C ′′
(9.4)

C ` Term
C � Pc1 ⇒ C ′

C � if Term then Pc1 else Pc2 ⇒ C ′
(9.5)

Notice that C ` Term represents that Term is a valid formula in the ambient
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state Sc, i.e. Term ∈ Sc.

C ` Term
C � Pc2 ⇒ C ′′

C � if Term then Pc1 else Pc2 ⇒ C ′′
(9.6)

II- Evaluation rule for bridge rule process: M,Br � Pbr ⇒ M ′

As the fundamental processes for the Pbr definition are the processes
get∗(Term,L), getS(L1, ..., Ln, L) and add∗(L, Term), defining their semantics

is enough to have the complete Pbr semantics well defined. In some rules we use ∅ to
denote that the result of the process execution is independent of the ambient where
it is running.

∀ Termi

{{
C ` Termi

∅ � unify(Term, Termi)⇒ Ui

}
↔ member(Ui, L

′)

}
∅ � get∗(Term,L)⇒ L = L′

(9.7)

Intuitively, get∗(Term,L) gathers in the list L all the substitutions Ui that result
from unifying Term with Termi, formulae in C ambient state.

∀ (U1 ∈ L1, . . . , Un ∈ Ln)
{(∅ � unify∗(U1, . . . , Un)⇒ L∗)↔ member(L∗, L′)}

∅ � getS(L1, . . . , Ln, L)⇒ L = L′
(9.8)

Where unify∗(U1, . . . , Un) is a variant of the classical unify function, where lists
of substitutions (U1, . . . , Un) instead of formulae are unified. If unify∗ succeeds, its
result is a list L∗ of the unified substitutions.

C = c(Idc, Sc)
∀Li { member(Li, L)↔ (Term [Li] ∈ TermSet)}
C � add∗(L, Term)⇒ c(Idc, Sc ∪ TermSet)

(9.9)

Intuitively, add∗(L, Term) adds to the ambient state Sc all the instances of the
Term formula by applying the substitutions in L.
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9.5 Mapping a g-BDI Agent to the MCC

Given a g-BDI agent defined by its multi-context specification (see Chapter 4):

Ag = ({BC,DC, IC, PC,CC},∆br)

we want to map it into the MCC language. Thus, we need to define a mapping F :
{Ag} 7→ MCC, which maps each g-BDI agent Ag with its multi-context components
(contexts and bridge rules) to the MCC language. The general insights of the
mapping F between these two formalisms are the following:

Global ambient: the multi-context agent Ag is mapped to a global ambient Ag in
MCC:

F : Ag = ({BC,DC, IC, PC,CC},∆br) 7→ Ag [Clause]

Context ambient: each context Ci ∈ {BC,DC, IC, PC,CC} in the agent Ag, ei-
ther mental or functional, is mapped to a suitable ambient structure (possibly
nested) in MCC.

F : Ci = 〈Li, Ai,∆i, Ti〉 7→ c(Ci, SCi
) [PCi

‖ Ci0 [PCi0
‖ [Ci1 ‖ ...]] ]

• Language: before setting the ambient state for a context Ci, we have to
define the ambient languageALCi . Since the languages of different mental
contexts in the g-BDI agent model are built using different language
layers, we create the corresponding ambient hierarchical structure where
the inner an ambient is, the more basic language it has. The ambient state
will be composed by formulae of the top level language. This structure
allows us to differentiate the language layers (represented by ALCij ) in
different ambient states and by using the mobility of processes we can
access the different formulae in them.

F : Li 7→
{
ALCi ,ALCi0 , ...,ALCik

}
• Context ambient state: the initial ambient state SCi

is composed by
the translation of the theory Ti formulae into the ambient language.

F : Ti 7→ SCi
⊂ ALCi

• Context ambient process: the process PCi
attached to a context am-

bient is derived from its logical deduction system. Thus, it is built from
the context theory, axioms and inference rules.

F : 〈Ai,∆i, Ti〉 7→ PCi
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Essentially the PCi
process is composed by the following sequential schema:

PCi
::= P ∗Ai

· P ∗∆i
, where the P ∗Ai

process represents the generation
of finitely-many instances of the different context axioms i.e. P ∗Ai

::=
P ∗Ai1
· ... ·P ∗Ain

, where the Aij’s are axioms in Ai. Respectively, P ∗∆i
is com-

posed by processes in charge of generating the instances of the different
inference rules. i.e. P ∗∆i

::= P ∗∆i1
· ... · P ∗∆ik

, where the ∆ij’s are rules in
∆i. These processes are described in more detail for DC context in next
Subsection 9.5.1.

Bridge rule ambient: each bridge rule Bri is mapped to a suitable ambient Bri
having as internal state a list of possible substitutions Li and a special process
PBri . The definition of both elements related to the Bri ambient (i.e. Li
and PBri) depends on the premise and conclusion of the bridge rule that it
represents:

F : Bri =
C1 : ϕ1, . . . , Cn : ϕn

Ck : ϕk
7→ br(Bri, Li) [PBri ]

• Internal state: is the list Li of n substitution lists, i.e.:

Li = 〈Li1, . . . , Lin〉 where each sublist Lij will contain the resulting sub-
stitutions of unifying the formulae ϕj with formulae in the context Cj.

• Bridge rule process: the special process PBr is created in MCC (see
(12) in Table 9.2) to represent the bridge rule inference. This process will
add instances of formula ϕk in ambient Ck when the preconditions are
satisfied.

PBri ::= (spy(Br,C1, ϕ1, L1) ‖ . . . ‖ spy(Br,Cn, ϕ2, Ln)) ·
· put∗(Br,Ck, ϕk, L1, ..., Ln)

The ambient structure in MCC for representing a g-BDI agent Ag is thus illustrated
in Figure 9.3.

In summary, for each mental or functional context in the g-BDI agent spec-
ification, we can define the corresponding ambient structure in MCC. Since the
planning and communication contexts are based in first order logic, the mapping is
straightforward and both contexts can be easily mapped in an ambient. Namely,
both ambient languages has only one layer, the theories may be translated to the
initial context states and the inference rule resolution may be translated to the
corresponding ambient processes.

In the case of the mental contexts, since the logical framework is more complex,
some details must be analyzed. As a matter of example, in the next subsection we
describe the mapping F for the Desire Context. In a similar way, the ambients for
the other mental contexts are defined.
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Figure 9.3: The ambient structure for a g-BDI agent

9.5.1 Mapping the Desire context into a Desire ambient

We want to define a mapping from the desire context DC to a suitable ambient
structure in MCC.

F : DC = 〈LDC , ADC ,∆DC , TDC〉 → c(DC,SDC) [PDC ‖ ...]

For this, we start with an abridged description of the components of the DC context:
the language LDC , the axioms ADC , the inference rules ∆DC and a theory TDC . A
more complete description can be found in Chapter 6.

Language (LDC): it is defined over a (classical) propositional language L (gener-
ated from a finite set of propositional variables and connectives ¬ and →)
by introducing two (fuzzy) modal operators D+ and D−. As in other mental
contexts, we use a (modal) many-valued logic to formalize reasoning about
graded desires by interpreting the (positive and negative) degrees of desires
over a (classical) proposition ϕ as the truth-degrees of the modal formulas
D+ϕ and D−ϕ respectively. We choose  Lukasiewicz logic, extended with ra-
tional truth-constants, as the underlying many-valued logic dealing with the
many-valued modal formulas. The LDC language is built therefore as follows:

• If ϕ ∈ L then D−ϕ,D+ϕ ∈ LDC
• If r ∈ Q ∩ [0, 1] then r ∈ LDC
• If Φ,Ψ ∈ LDC then Φ→L Ψ ∈ LDC and ¬LΦ ∈ LDC (where ¬L and →L

correspond to the negation and implication of  Lukasiewicz logic, other
logic connectives, like ∧L,∨L,≡L are definable from ¬L and →L)

Axioms and inference rules (ADC and ∆DC): to axiomatize the logical system
DC we need to combine different sets of axioms Axioms:

(CPC) Axioms of classical logic for non-modal formulas

(RPL) Axioms of Rational Pavelka logic for modal formulas
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Figure 9.4: The DC ambient structure

(BD0+) D+(A ∨B) ≡L D+A ∧L D+B

(BD0−) D−(A ∨B) ≡L D−A ∧L D−B

Inference Rules:

(MP1) modus ponens for →
(MP2) modus ponens for →L

Introduction of D+ and D− for implications:

(ID+) from ϕ→ ψ derive D+ψ →L D
+ϕ

(ID−) from ϕ→ ψ derive D−ψ →L D
−ϕ.

Theory (TDC): is a set of LDC formulae.

Now we are ready to define the corresponding Desire Ambient F(DC) by de-
scribing its state language ALDC , its initial state SDC and its process PDC .

Desire ambient

1. State Language

Since the modal language LDC for the desire context is built in two layers
(one base propositional language L and the modal LDC), we define two am-
bients to represent these language layers. We define the ambient DC0 (to
represent language L) inside the ambient DC (to represent language LDC),
having the following ambient structure: DC [PDC |DC0]. This structure and
the languages involved are illustrated in Figure 9.4.

This nested ambient structure enable us to deal in a proper way with the dif-
ferent fomulae in the two language layers. The language for the DC0 ambient
is the basic language used in the DC context for building the language LDC .

As it is convenient for the definition of the deductive process PDC , we consider
that the formulas of this language are in Disjunctive Normal Form (DNF). So
we have for DC0 the mapping F : L 7→ ALDNF defined by
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• F(ψ) = ψDNF

The mapping from the language LDC to the language ALDC for the desire
ambient, F : LDC 7→ ALDC is then defined as follows:

• F (D+ϕ) = d+(F(ϕ))

• F (D−ϕ) = d−(F(ϕ))

• F (r) = r

• F (¬LΦ) = neg(F(Φ))

• F (Ψ→L Φ) = imp(F(Ψ),F(Φ))

2. Initial state

The DC ambient state SDC is composed by the translated formulae of the
context theory:

SDC = {F(ϕ)| ϕ ∈ TDC}

3. DC Process PDC

We need to map the logical deduction of the desire context DC, composed
by two different layers of axioms and inference rules, into the PDC process.
Actually, it can be shown that reasoning in the DC axiomatic system can be
reduced to reasoning in plain  Lukasiewicz logic from a big, but finite, theory
which gathers suitable translations of instances of all the axioms and infer-
ence rules, and of the formulas of the context theory TDC . We will consider
deduction in  Lukasiewicz logic as an encapsulated process P L without enter-
ing in its internals. This is possible to engineer by using one of the existing
theorem provers for this many-valued logic (e.g. [7]). We describe next how
to build such a theory in the context ambient which incorporates a finite set
of instances of the axioms and inference rules that model the behavior of D+

and D−. The idea is that, since we have a language L built over a finite set
of propositional variables, there are only a finitely-many different DNF formu-
las, so there are finitely-many instances of axioms and rules over these DNF
formulas. Therefore the PDC process will consist of two parts. The first one,
involving four processes PV , PDNF , PAX , P∆, will add to the initial ambient
state SDC (context theory) the set of instances of the axioms and inference
rules, changing the initial state into S ′DC :

c(DC,SDC) � (PV (V Set) · PDNF (V Set) · PAX · P∆)⇒ c(DC,S ′DC)

Then, over the state S ′DC , the deduction over  Lukasiewicz logic, represented
by the process P L can be applied. Thus, the PDC process is defined as the



132 CHAPTER 9. OPERATIONAL SEMANTICS FOR G-BDI AGENTS

following schema of sequential processes:

PDC ::= PV (V Set) · PDNF (V Set) · PAX · P∆ · P L

In the following items we describe the four first processes:

• The PV (V Set) process extracts from SDC the finite set of propositional
variables appearing in the formulas of TDC and puts them in V Set.

• The PDNF (V Set) process enters in the DC0 ambient and through the
add∗DNF (V Set) process creates and adds to SDC0 the finite set of DNF
formulae built upon the variables in V set, i.e.:

PDNF (V Set) ::= in DC0 · add∗DNF (V Set) · out DC0

• The PAX process is composed by all the processes derived from each
context axiom. For this particular case of the DC ambient we have:

PAx ::= PAx1 · PAx2

These processes implement respectively the axioms Ax1 and Ax2 (see
below), for instance PAx1 is defined as:

PAx1 ::= in DC0 · get∗(dpair(x, y), L) · out DC0 ·
· add∗(F(D+(x) ∧D+(y) ≡ D+(x ∨ y)), L)

where the special component processes have the following meaning:

– get∗(dpair(x, y), L) stores in L all the pairs (x, y) satisfying the con-
dition dpair(x, y): x, y ∈ SDC0 and x 6= y;

– add∗(F(D+(x) ∧D+(y) ≡ D+(x ∨ y)), L), using the pairs (x, y) ∈ L
for substitution, instantiates and adds to the ambient state SDC the
formulae F(D+(x) ∧D+(y) ≡ D+(x ∨ y)).

In a similar way the PAx2 process implements the corresponding axiom
for D−.

• The P∆ process is composed of the processes representing the instances of
the different inference rules. For the DC ambient there are two processes
representing the rules ∆1 and ∆2, hence

P∆ ::= P∆1 · P∆2 , with

P∆1 ::= in DC0· get∗(F(x→ y), L)· out DC0· add∗(F(D+(y)→ D+(x)), L)
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and similarly for P∆2 , where

– get∗(F(x→ y), L) gets the pairs (x, y) resulting from the unification
of F(x→ y) in DC0 ambient;

– add∗(F(D+(y) → D+(x)), L) adds all the instances of the formula
F(D+(y)→ D+(x)) with pairs (x, y) ∈ L.

• The final process P L applies  Lukasiewicz logic deduction ` L to the state
S ′DC resulting from the previous processes, i.e. P L ::= ` L

9.6 Conclusions

In this Chapter we have defined a MCC calculus for Multi-context systems (MCS)
execution. The MCC proposed is based on Ambient calculus [28] and includes some
elements of LCC [148]. The operational semantics for this language was given using
Natural Semantics. We expect that MCC will be able to specify different kinds of
MCSs. Particularly, we have shown how graded BDI agents can be mapped to this
calculus. Preliminary work on MCC calculus and its uses to define the g-BDI agent
semantics, can be seen in [36].

Through MCC we give to this agent model computational meaning and in this
way, we are getting closer to the development of an interpreter of the g-BDI agents.
Although process calculi have been mainly used in the past to model multiagent
systems, we have considered that the modular structure that MCS provide to the
architecture of an agent would permit a similar treatment to single agents as well
(or to any system with a self-similarity structure like Holons). We think that the
implementation of agent architectures using process calculi, in particular ambient
calculus, would give a uniform framework for agent architectures, multiagent systems
and also electronic institutions.





Part III

Methodology and a Case-Study
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Chapter 10

Case Study Domain: Tourism
Recommender Systems

In this Chapter we explain the a case study where we have applied our g-BDI model
of agent: a tourist recommender system.

10.1 Introduction

In the last years, the Artificial Intelligence (AI) community has carried out a great
deal of work on recommender systems [127, 108]. This kind of systems can help
people to find out what they want, especially on the Web. As a result, the idea of
recommender systems has been widely accepted among users.

Agent technology becomes invaluable to model different characteristics we ex-
pect from these recommender systems. When this technology is applied we obtain
a community of distributed, complex and autonomous recommender agents. These
software agents can learn the interests of users and make recommendations accord-
ingly. The agents learn by tracking the actions of the user or by seeking explicit
feedback from him. The most common applications of recommender agents are
Web content filtering systems and e-commerce shop assistants (e.g., amazon.com).
These agents are used to discover a person’s interests in the hope of providing useful
information or encouraging a sale.

From within the recommender systems we have select the tourism domain. The
travel and tourism industry is one of the most important and dynamic sectors in
Business-to-consumer (B2C) e-Commerce. In this context, recommender applica-
tions can be valuable tools supporting, for example, information search, decision
making, and package assembly.

Another reason to choose tourist domain for this case study is its richness and
different characteristics where diverse user’s preferences and restrictions can be con-
sidered. Because of this variety, the recommendation systems can be treated in
different levels of complexity. Besides this, its vocabulary and concepts are well
known by people and then, a tourist recommender system can be easily used and

137



138 CHAPTER 10. CASE STUDY DOMAIN

validated by general users.

10.2 Recommender Agents

Recommender systems are the technical response to the fact that we frequently rely
on other people’s experience and recommendations when confronted with a new field
of expertise, where we do not have a broad knowledge of all facts, or where such
knowledge would exceed the amount of information humans can cognitively deal
with.

The main task of a recommender system is to locate items (movies, music, books,
news, web pages, etc.) related to the interest and preferences of a single person or
a group of people. This involves the construction of user models and the ability to
anticipate and predict user preferences. To do this the user’s profile is compared to
some reference characteristics. These characteristics may be from the information
item (the content-based approach) or the user’s social environment (the collaborative
filtering approach). When building the user’s profile a distinction is made between
explicit and implicit forms of data collection.

By looking at definitions of the design space of recommender systems [127, 145],
there seems to be some basic items common to most of them [113], their relations
are illustrated in Figure 10.1:

Resources: The targets of the recommendation process.

Recommenders: Those entities that give out opinions about resources. In practice
recommenders are actors and they could also be artificial agents.

Descriptions: Those information about resources that include opinions.

Preferences: Recommendation seeker’s position towards resources.

Techniques for Computing Recommendation: The system’s means for auto-
matically evaluating resources by using descriptions and preference informa-
tion.

Recommendations: The concrete results of the evaluation process for the recom-
mendation seeker. The recommendations may be presented in different ways
(e.g. by filtering out resources, ordering resources).

Many different recommender systems were developed since the 1990s. A de-
tailed taxonomy of recommender agents, classified by the application domain and
by the different task-achievement techniques used, is presented in [108]. The diverse
approaches may be grouped in the following major system types [14, 145]:
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Figure 10.1: Principal items in a recommender schema

• Collaborative Filtering (CF)- These algorithms (also referred to as social
filtering) focus on the behaviour of users on items, which are to be recom-
mended, rather than on the internal nature of the items themselves. These
systems concern with techniques for matching people based on their prefer-
ences and weighting the interests of people with similar taste, to produce a
recommendation for the information seeker. This social approach, which most
closely resembles the nature of real-life recommendations, is related to both
the concept of collaborating individuals and the process of finding persons
with similar interests.

• Content-based Filtering (CBF)- Focusses on the internal nature of items,
or on the content of description files. These systems use two main classes of
algorithms: information retrieval or attribute-based filtering algorithms. A
content-based approach favors the semantics of the content over social inter-
actions or user behaviour. Usually, CBF techniques use product descriptions
(e.g. extracting a set of keywords), compute the users preferences (e.g. key-
words which are contained in products selected by the user), and build the
list of recommendations by searching for products that match the users pref-
erences.

• Knowledge-based Filtering - These systems rely on an explicit represen-
tation of knowledge, usually as collections of statements, ontologies or other
forms of rule systems. While the high performance and flexibility make the
knowledge-based approach suitable for most tasks, applications with a strong
focus on content or social semantics can be realized efficiently using the respec-
tive specialized approach (CBF or CF). If an application requires knowledge
reasoning or inference, choosing the knowledge-based approach allows the de-
velopers to benefit from the existing components (e.g. knowledge representa-
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tion and rule-based systems).

• Social data mining systems - Social data mining systems do not require
users to engage in any new activity; rather, they seek to exploit user pref-
erence information implicit in records of existing social activity (e.g. Usenet
messages, system usage history, citations or hyperlinks). The interactions be-
tween individuals are analyzed to understand innovation, collective decision
making and problem solving, and how the structure of organizations and so-
cial networks impact these processes. Analysis of such inherently relational
datasets is currently being applied in e-commerce to drive recommendation
systems.

• Hybrid Systems - Can merge any combination of the above methods and
metrics. Typically, hybrid recommender systems would compute ratings from
a number of internal algorithms, before combining these in a single metric.
In some cases, the preliminary results of the internal algorithms are stored
component-wise in a vector, before crafting a single-dimensional rating for
ranking.

Collaborative filtering (CF) technique is the most widespread, used in the earliest
recommender systems [127]. In some application domains, the content of an item
may be crucial. In these cases, recommender systems should use a content-based
approach rather than a social approach (see e.g., [110, 105]). CF and CBF tech-
nologies exploit user preferences and allow acceptable recommendation accuracy for
frequently bought (or selected) products such as music, video DVDs, books, Internet
radio, etc. When accessing product descriptions, a list of CF recommendations is
available for users in the section “Customers who bought this item also bought”,
while the CBF suggestions can be accessed via “Look for related items by keyword”
and “Look for similar items by category” links.

There are other types of products which are less frequently bought and their
purchase is related to higher risks (e.g., financial services, cars, electronic goods,
services in the tourism domain). When recommending such products, recommender
applications must support a more detailed elicitation of user requirements. Deep
domain knowledge has to be exploited in order to be able to make more precise and
more trusted recommendations. Knowledge-based (KB) recommender technologies
[24, 58] are based on a detailed domain description in the form of structured product
descriptions and constraints. The identification and construction of user preferences
usually takes place in the context of an explicit sales dialog. The major advantage
of this type of recommendation technology is the explicit representation of prod-
uct, marketing and sales knowledge. Such a representation makes it possible the
development of explanations argumenting why a certain product fits the wishes and
needs of a given customer.

Agent technology becomes invaluable by appreciating the facts that we want
the systems to take personal preferences into account, and to infer and intelligently



CHAPTER 10. CASE STUDY DOMAIN 141

aggregate relationships from heterogeneous and distributed sources and data. Fur-
thermore, we want systems to be scalable, open, privacy-protecting and we want to
get the recommendations with the least possible work on users’ behalf. Multi-agent
systems permit the creation of subcommunities of agents for recommending among
certain actor groups or recommending on certain resource types, at the same time
allowing grand-scale interconnection. Distributed and open architectures also allow
users to design and implement their own recommending schemes and algorithms,
which can interoperate with other customized systems.

Relevant uses of software agent technology in achieving tasks related to recom-
mendation are analyzed in [113]. Namely, user modelling is needed for taking per-
sonal preferences into account in recommending. Distribution, matchmaking, and
reputation and trust management can be achieved with multi-agent system tech-
nologies. Intelligent reasoning capabilities are needed for social network modelling
and analysis. In the community of agent systems, there is relevant ongoing research
for achieving these goals.

10.3 Recommender Systems in Travel

and Tourism

The travel and tourism industry is one of the most important and dynamic sectors
in business-to-consumer (b2c) e-Commerce and online transactions are rapidly in-
creasing. According to [153], this single sector represents nearly fifty percent of the
global B2C turnover. At least in developed countries, the Web is nowadays already
the primary source of information for people when searching or booking suitable
travel destinations and that is the trend as well in developing countries.

Products and services in the field of tourism are mainly not physical and typically
exist mostly as information. For this reason, they are very adequate for electronic
sale. ICT allows to easily present tourism offers with rich descriptions to enable
travelers make informed choices. Therefore, the complexity of product descriptions
is growing. As tourists of today are very demanding and have numerous desires and
needs, tourism offers should be multi-optional and of high quality. Thus, systems
that help to take these decisions on the Web become more and more significant
nowadays, calling for modern means of decision-making support and recommender
systems.

Tourism is an information based business, at the moment of decision-making only
the description of the product is available. This characteristic of tourism products
entails high information search costs and causes informational market imperfections.
Consequently, the industry has comparably long information and value chains. In
Figure 10.2 (extracted from [153]) the principal actors in the tourism chain are illus-
trated. The supply and demand sides are separated from the respective intermediary
layer. Nodes indicate the relevant types of players. Links mark the relationships as
well as the flow of information, showing only the most important links.
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Figure 10.2: Structural view of tourism market

On the supply side, primary supplier enterprises like hotels, restaurants, etc.
(which are mostly SMEs) and big companies like airlines, are placed. Tour operators
can be seen as product aggregators, travel agents act as information brokers, provid-
ing final consumers with the relevant information and booking facilities. CRS/GDS
(Central Reservation Systems / Global Distribution Systems), stemming from the
airline reservation systems, include also other products (e.g. other means of trans-
port). Whereas the intermediaries on the right side can be seen as the commercial
connection between supply and demand, the left side is relevant for national (NTO)
and regional organizations (RTO) in charge of destination planning and promotion.
Normally, these entities have to act on behalf of all suppliers within a destination and
are often governmental organizations. The downstream flow of Figure 10.2 consists
of product information, whereas the upstream flow reports on market behaviour.
Both information flows create a tourist information network relating most of the
market participants.

When looking at today’s e-Tourism web sites we can observe that only some
of the existing systems provide services that go beyond a pure booking system’s
functionality. An exception are popular online travel agencies like Expedia

(www.expedia.com), that permit exploiting the potential of Web communities
by letting their customers rate individual hotels or destinations. Still, in these ap-
plications the average ratings of other customers merely serve as another piece of
information to chose a certain hotel or destination but there is typically no recom-
mendation service available.

There are several reasons why established recommendation techniques cannot
be directly applied to the tourism domain [57]. Collaborative filtering techniques
work best when there exists a broad user community and each user has already
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rated a significant number of items. As individual travel planning activities are typ-
ically much less frequent and in addition, the items themselves may have a far more
complex structure, it is hard to establish reasonable user profiles. Therefore, many
approaches aim at eliciting the preferences and requirements in a conversational dia-
log using, for example, knowledge-based approaches for generating recommendations
[24, 58].

Another important facet which makes recommendation in the tourism domain
more complex is the fact that a single trip arrangement may consist of several, in-
dependently configurable services. Typically, only pre-defined packages like ‘flight
and hotel’ or ‘all-inclusive’ arrangements are available online. As the segment of
individualized travel arrangements is constantly growing, it will be increasingly im-
portant that future systems support such packaging services. Nevertheless, only first
attempts in that direction can be found in literature today (e.g. see [129]).

Consequently, the domain has always been at the forefront of information tech-
nology and still is a highly attractive research area as its potential is not yet fully
exploited. The hybrid recommender approaches seems to be the best candidates in
this rich and heterogeneous information domain.

10.4 Case Study: Recommender System on

Argentinian Tourism

As in other developed countries, e-commerce is changing the Argentinian tourism
and travel businesses. The Web is becoming an important source of information and
each day an increasing number of online booking services is being added. Nowadays,
the Latin American tourist behaviour has some differences with respect to other
markets, e.g. the European one. While the consumer behaviour of the last group
is focussed on destinations and the tourist usually plans their travels on their own,
the role of travel agencies to recommend and sell tourism services and packages is
key in the Latin American community. Normally a tourist turns to a travel agency
to consult and choose a predefined tourism package (an itinerary including means
of transport, accommodations, excursions, activities, etc). This commerce strategy
is supported by providing the tourist with lower travel costs.

Thus, the focus of our case study is the recommendation of tourist packages in
Argentinian destinations. The packages used as resources are provided by different
tourist operators and were downloaded from the Internet.

In the previous section we have discussed the complex tourism market and its
different actors. Since the principal goal of our case study is to design and develop
a recommender system that allow us to experiment our g-BDI model of agent, some
simplifications on the general tourism recommender problem were made. We situate
our case study in the intermediate sector of the tourism market, involving travel
agents and tourism operators, as can be seen in Figure 10.3.

Some characteristics for the recommender system in the case study are pointed
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Figure 10.3: Case study in the tourism market

out in the following items:

• Resources: The resources to recommend are Argentinian tourist packages pro-
vided by different tourist operators. These packages are described by a detailed
travel-destination sequence including accommodation, activities, etc.

• Recommender techniques: The recommender system will be a hybrid system
that combines a knowledge base approach with a content based one. In this
case the resource contents are the package descriptions and are fundamental
for the recommendation. Also domain knowledge, represented by ontologies
and system rules, is needed to evaluate the expected satisfaction of the tourist
preferences by a tourist package.

• User profile: Each recommendation request is considered independently, and
the user graded preferences and restrictions constitute the user’s profile. These
tourist’s preferences are stored but are not used for a user profile updating
process.

• Social model: a basic social model of the actors is contemplated including
the reputation a travel agent has with its tourist providers, this reputation is
simulated and for this case study we did not use a model of trust update.

• Descriptions: The tourist is requested to fill in a user satisfaction report about
the given recommendation, stored for off-line statistical analysis and system
adjustments.

In the next Chapter we design and develop this case study: a Recommender
System on Argentinian Packages. This system has the purpose of select the best
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Figure 10.4: Recommender System on Argentinian Packages

tourist packages in Argentinian places according to the preferences and restrictions of
a tourist, from the packages offered by diverse tourist operators. This recommender
system has a multiagent architecture and one of its main agents, the Travel Assistant
Agent (T-Agent), is modelled as a graded BDI agent (an illustration can be seen in
Figure 10.4).





The ideal engineer is a composite.
He is not a scientist, he is not a
mathematician, he is not a
sociologist... but he may use the
knowledge and techniques of any or
all of these disciplines in solving
engineering problems.

N. W. Dougherty

Chapter 11

Methodology to Engineer g-BDI
Agents and a Case Study

11.1 Introduction

Agent technology has received a great deal of attention in the last few years and, as
a result, many software applications are developed using this technology. In spite of
the different developed agent theories, languages, architectures and the successful
agent-based applications, further work is needed for specifying (and applying) tech-
niques to develop applications using agent technology. The role of agent-oriented
methodologies is to assist in all the phases of the life cycle of an agent-based appli-
cation, including its management.

Many different Agent Oriented Software Engineering (AOSE) approaches have
been proposed, a survey of some of them can be seen in [13]. Each of the method-
ologies has different strengths and weaknesses, and diverse specialized features to
support different aspects of their intended application domains. Most of the method-
ologies have shown that there is a conceptual level for analyzing the agent-based
systems, no matter the agent theory, agent architecture or agent language they are
supported by. This conceptual level should describe fundamentally the external
view point of agents by the Role Models (the characteristics/tasks of each agent)
and the Society Models (the relationships and interactions between the agents).
We consider that it is important for a methodology to also include the agent de-
tailed design, adopting the necessary tools to develop its architecture, as pointed in
[93, 118].

A relevant architecture that provide the agent-based systems with a formal sup-
port, is the BDI architecture proposed by Rao and Georgeff [123]. The BDI paradigm
provides a strong notion of agency: agents are viewed as having certain mental at-
titudes (Beliefs, Desires and Intentions) which represent respectively their informa-
tion, motivational and deliberation states. These mental attitudes play a relevant
role in the process of determining the agent actions. With the purpose of making
the BDI architecture more flexible, we have proposed a general model for graded

147
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BDI Agents described in Chapters 4 to 6.
Since there is no standard agent architecture, the design of the agents needs to

be customized to each agent architecture. In this Chapter we present a methodology
to engineer graded BDI (g-BDI) agent based systems.

Software Engineering for BDI Agent Based Systems

There are few works on Software Engineering for BDI Agent Based Systems. Kinny
et al. in [93] proposed a methodology for agent-oriented analysis and design, fo-
cussing upon the BDI model of agents. In specifying an agent system, they have
found that it is highly desirable to adopt a specialized set of models which operate
at two distinct levels of abstraction. First, from the external viewpoint, the system
is decomposed into agents. Second, from the internal point of view, the elements
required by a particular agent architecture must be modelled for each agent.

More recently, Jo et al. in [88, 89] proposed the BDI Agent Software Development
Process (BDI-ASDP) as a specialization of traditional and Object Oriented software
engineering methodologies, embracing several steps enumerated below. A similar
approach of software engineering process for multi-agent systems is presented by
Zhang et al. in [159]. These proposals share the same approach, they take advantage
of different artifacts proved to be useful in Object-Oriented Software Engineering,
adapting them to their purpose. During the software analysis and design phases they
define which agents integrate the system. Furthermore, some of the artifacts used
in these phases support the design of the BDI architecture for each agent. Following
the natural style of human thinking “goal-plan-data”, these proposals first extract
the desires (goals) from the requirements and create the proper plans towards them.
Then, they find the beliefs. The BDI extraction process is done during the task of
agent recognition and after identifying the system goals and plans. More specifically,
these proposals for software modelling contain the following iterative stages:

1. They use some artifacts to specify system requirements (e.g., External Use
Cases) and to extract goals (desires) from them;

2. They use Dynamic Models (e.g., Internal Use Cases, Sequence Diagrams, and
Activity Diagrams) to provide a more precise description of each goal and its
corresponding plan (intentions).

3. A role analysis is performed from the list of goals and their corresponding
plans. The relevant roles and their interactions (role composition) are taken
into account to define the set of agents in the system.

4. Finally, using Data Models (e.g., Data Flow Diagrams) they propose to obtain
the environment information (beliefs) that is necessary for the goals satisfac-
tion.
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5. After a complete BDI specification has been obtained, then it is assigned to
an agent.

We can remark that in both works [89, 159] there is no clear separation in the
agent analysis and design between the external and the internal viewpoints. Also, the
internal BDI architecture of agents is only described considering what the contents
of the different attitudes (i.e., B,D,I) would be. In fact, their approaches neither
present how to specify them nor show how the agent can use them to decide the
current action to follow.

Besides, Sierra et. al in [141] extended the Prometheus methodology [118] empha-
sizing the social design of multi-agent systems. They particularly focus on a design
methodology for agent societies or organizations (i.e., Electronic Institutions) where
norms and rules must be abided by all the participating entities. This methodol-
ogy contributes with some elements related to the social aspects of the system design.

Based on these previous works, we present a methodological framework to en-
gineer graded BDI agents. We work up these approaches, adapting and extending
them, to engineer agents with a more complex internal architecture. In this sense,
we make more emphasis in the separation of the system design from the agent de-
sign phase. We also consider important to include some social aspects in the system
design phase and to add some steps to support the agent detailed design.

Furthermore, in our approach we use a novel notion of intention, related to
a pair desire/plan, where the desire is the goal that the agent will try to satisfy
by executing the plan. The agent will consider desire/plan pairs with the best
cost/benefit relation for reaching a given goal by executing a feasible plan. As a
result of this analysis the agent has to decide which intention (a chosen goal) to
follow by executing the best plan towards it. In an agent design, this deliberation
process and the elements involved must be both formalized.

In order to design a g-BDI agent, we propose a process that starting from the ex-
ternal stages, where some roles and functionalities are assigned to it, moves forward
the definition of the elements that compose the multi-context architecture. Next,
the different stages of this process are described and a case study is used to illustrate
them.

11.2 The Development Process of g-BDI Agent-

Based Systems

For engineering agent-based systems, we follow the methodology presented in [93,
118] where two different design levels were defined. In one level, from the external
viewpoint, the system is decomposed into agents, modelled by their roles, responsi-
bilities and services they perform, the information they require and maintain, and
their external interactions. In a second level, from the internal point of view, the el-
ements required by a particular agent architecture must be modelled for each agent.
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Then, in our approach we consider two important phases: the System Specification
and Design (i.e., external) and the Agent Design (i.e., internal).

The purpose of the System Specification and Design phase is to establish the
social structure of the system. This System phase starting from the problem state-
ment and the social structure related to it, results in the different agent types that
integrate the multi-agent system and the necessary interactions between them. This
phase may be divided in two important stages: the System Specification and Anal-
ysis, and the System Architecture Design.

In the Agent Architecture Design stage the agent architecture for each agent
type is set. Then, for its specification we need to bridge the gap from the external
functionalities assigned to a particular agent, to the elements that compose the
architecture, using the information extracted in the previous stages. In our case,
we focus on modelling agents with the g-BDI architecture presented. Then, for its
specification we need to set the logical structure and contents of the different contexts
(either mental or functional) and the interactions between these units, represented
by bridge rules. In the Detailed Design stage, its specification is completed in order
to define concrete agents.

The flow of the overall development process for BDI agent-based systems is
depicted in Figure 11.1. The principal steps, that make use of some tools, are
represented in different boxes. In the g-BDI Agent Design stage, the boxes in dot
lines represent contexts that are included in the g-BDI architecture respecting the
logical model proposed and do not need any specification in this stage. The arrows
illustrate the dependences between the different steps and intend to show a possible
sequence between them.

In the following items we outline the principal steps of the methodology stages:

(I) System Specification and Analysis
This stage begins defining the system requirements through the Initial problem

statement. This process aims at determining the system social structure (i.e., roles
and actors), the system goals, and the necessary ontologic elements. The system
goals are captured with the support of Use Cases and may be of different types. We
take a graded view of goals (desire states), allowing to distinguish different degrees
of preference between goals of the same type.

(II) System Architecture Design
In this stage, from the elements and structures found in the previous stage the

necessary Agent types to structure the system are identified. From the system
goals and use cases, a task structure is developed representing a plan for the goals
achievement. Besides, norms and role constraints (rejected states) are extracted.
We consider it important to incorporate degrees on these constraints to differentiate
the level of rejection of each state.

Starting from the social structure and considering the system goals and task
structures, a role composition process begins (i.e. a role has a social function and
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Figure 11.1: Development Process for BDI Agent-Based Systems
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may have a list of goals attached to it). Furthermore, in this stage the system
Information Model is built from the domain ontologies (representing the necessary
information) and role interactions (determining the information flow).

The agents in the multi-agent system will be defined through the integration of
the relevant role models. From an iterative role composition process, the initial list
of roles may be refined to determine the candidate agents.

(III) Agent Architecture Design
Following with the design process, the architecture of each agent type must be

designed. We propose to model agents using the g-BDI architecture. Considering
the multi-context specification for the basic g-BDI agent model, we have proposed
three mental contexts to represent the mental attitudes (i.e. Belief, Desires and
Intentions) and two functional contexts (i.e., Planner and Communications). In this
stage, the engineer must take the decision of whether to include another context
(e.g., a social context) in the architecture and if it is the case, which is the most
suitable logical schema for this context.

The g-BDI model proposes a logical framework for the different contexts (see
Chapters 5 to 7), from the information extracted in the previous stages we must
capture the elements to complete the logical skeleton for each agent type. Partic-
ularly, the selection of the uncertainty model for the Belief context must be done
taking into account the system information model. For the Planner context, the
planning algorithm must be defined from the task structure.

(IV) Agent Detailed Design
In this final design stage, the agent architecture is completed to define executable

agents. This means that the contents (i.e., theories) of the mental and functional
contexts, and a suitable set of bridge rules must be defined. We use the information
extracted in the previous stages to fill in this agent model, this process is explained
in next Section 11.4.2 and is illustrated in Figure 11.1.

Following the overall flow “goals, feasible-plans, beliefs and intention”, our ap-
proach to the g-BDI Agent Design will first extract the agent desires from the
requirements (i.e., system goals and norms). From the task structure it will analyze
the possible plans towards the agent goals. Then, from the information model the
beliefs involved will be captured. Finally, it will set the how to derive the agent
intentions by defining a suitable Bridge rule.

Since in practice the methodology is iterative, analysts or designers may freely
move between steps and phases and each successive iteration will produce additional
details to finally provide a complete, yet consistent system design.

In the following subsections we describe the most important stages and steps of
the software engineering process presented. To illustrate and clarify these different
steps, we describe the process using a Case Study in the tourism domain (see Chapter
10).
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11.3 System Analysis and Design Phase

The purpose of the System Design phase is to establish the social structure of the
system. This phase is divided in two important stages: the System Specification and
Analysis, and the System Architecture Design.

11.3.1 Stage I: System Specification and Analysis

As usual in Software Engineering, the requirement analysis is the initial part of the
software development process. It will assist us to understand the purpose of the
system, its social structure and how to construct it. During the system analysis,
the investigation on the problem and its requirements is deepened. We focus on
finding the system roles and goals. The different steps in this stage will allow in
turn to extract the necessary elements for the system design that later will help in
the g-BDI agent design.

Step 1: Initial Problem Statement
This is the previous and fundamental step for the System Analysis, where the

problem that the system is expected to solve is described. It is a high level concep-
tualization of the system from the user’s point of view, and describes the services
that the system will provide. It is the input to capture the system goals and social
structure (i.e., actors, roles, and their interactions). The initial Problem Statement
is an agreement document between the user and the software developers, on a high
level of description.

Case Study:
We want to design a recommender system on Argentinian tourist plans. This

system will be in charge of looking for different holiday packages in Argentinian
places, in order to satisfy the tourist desires. The tourist plans are described by a
traveling-staying sequence. Where the different travels are described by their means
of transport and kind of road, and the stays are described by their destination,
accommodation, activities, etc. These tourist plans are provided by different tourist
operators which in turn interact with the airlines, transport companies, hotels, and
tourism services.

The customer’s desires may be preferences about Argentinian zone, geographic
conditions, infrastructures, activities, means of transport and accommodation. They
may also have different rejections or restrictions, as for example a given maximum
amount they can spend. The tourist plan the system is expected to offer, must be
the best choice among the tourist packages supplied by a set of tourism operators.
The system has to decide which tourist package (plan) to recommend taking into
account the user’s interests, the expected satisfaction of the preferences by the plan,
its cost and the trust in the plan supplier.
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Step 2: Actors and Roles
A natural starting point of the system analysis is to identify the system roles

and actors. To establish the social structure of the system, it is necessary to capture
the roles that will interact within the system, respecting the natural roles in the
domain, and their relationships.

The actors are persons or entities (including other systems) external to the sys-
tem, that interact with it. Some of them trigger the system behaviour to achieve
a certain goal. The outcome of this step is a list of roles and actors and, if it is
needed, a brief description of some of them may be included.

Case Study:
In our example we extracted two roles from the initial steps: The Provider role

and the Travel Assistant role. The Provider role interacts with the different services
(i.e., hotel owners, airlines, means of transports, tourism companies), builds the
tourist plans (a detailed travel and stay sequence, including its cost) and sends
them to a repository of tourist plans. Then, the Travel Assistant role considering
the user’s preferences, finds from the plan repository the best plans to recommend
to the user.

The actors could be: the Tourist (user), the Airlines, the Hotel owners and other
Tourist services.

Step 3: Use Cases
We can apply the Use Cases technique, coming from UML [17], to capture the

intended behaviour of the system. A Use Case is a description of a sequence of
actions, including variants that a system performs, to yield a service to an actor.
Use Cases treat the system as a black box and show how the entities outside of
the system interact with it. Besides capturing the system goals, the Use Case
technique also describes the interaction between the system and its environment,
and identifies external actors. In this step the system services are identified. The
Use Case technique captures who (actor) does what (interaction) with the system,
for what purpose (goal) and without dealing with the system internals. In some
works, like [88], this kind of use case, is called external use case.

The uses cases are specified in a number of ways, from informal structure text
to pseudocode. There is no standard template for documenting use cases. Typical
sections may include: Use Case Name, Actors, Preconditions, Main Scenario (ba-
sic course of events), Alternative paths and Postconditions. We propose to include
in the use case description, the constraints related to the behaviour that the use
case describes. In an iterative process, more detailed use cases may be given. A
detailed Use Case refines an specific description of a system action as for example,
decomposing the global goal into sub-goals or including a plan (task structure) for
achieving each goal (subgoal).
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Case Study
In order to discover all the functionalities that the Recommender system should

provide, we develop use cases. Next, we show one of them:

• Name: Give a suitable recommendation

• Actors: Tourist and Tourist services (e.g. hotel owners, airlines, transport compa-
nies)

• Scenario:

a) The Tourist requires a personal tourist recommendation from the System.

b) The System acquires a set of graded Tourist’s preferences and rejections (re-
strictions) about the tourist plans.

c) The System updates the repository of tourist packages.

d) The System finds the best packages according to their preferences and con-
straints.

e) The System gives the Tourist a ranking of the best tourist packages.

• Preconditions: The Systems has some tourist plans to offer. The Tourist requires
from the System, a personal tourism recommendation.

• Success/Postcondition: The System offers the Tourist a list of ranked tourist plans.

Step 4: Goals
From the previous steps (the initial problem statement and use cases) a set

of goals can be captured and structured considering possible inter-relationships be-
tween them. The extraction of system goals goes hand in hand with the identification
of use cases.

The system goals may be of different types, as defined in [141]. These goals may
be individual goals that are allocated to a role (and later to an agent type), joint
goals that are achieved by a group of roles (eventually agents) and social goals set-
ting the desired social properties of the system whose achievement the multi-agent
system must ensure. In successive iterations the system goals may be refined into
a subgoal structure. Each goal may be placed differently in the hierarchy (w.r.t.
a global goal) and have different importance. To deal with this, we propose to
use graded expressions (valued in [0, 1]) in order to represent the different levels of
importance of goals at the same level of the hierarchy. Finally a diagram, called
Goal Overview Diagram, should be used to represent the different types of goals and
subgoals, including their possible relationships.

Case Study:
In our case study, we capture the following goals:
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- The social goal “is to give a reliable service (e.g., via reliable providers, using
reliable information)”.

- The overall system goal is “to give a Tourist a suitable recommendation based
on the tourist packages the system has”. To achieve this system goal we divide it
in some subgoals (tasks) that are shown with the task structure in the Overview
Diagram of Figure 11.2.

Step 5: Ontology
During the system specification and analysis there is an identification of the data

used an produced. From this analysis the ontologic model definition starts identify-
ing the information needed in the domain.

Case Study:
For our case study, the needed ontologic elements are:
- tourism knowledge,
- knowledge about Argentinian destinations and regions, and
- tourist plans

11.3.2 Stage II: System Architecture Design

During this design stage, emphasis is put on defining software agents and on how
they collaborate to fulfill the global requirements.

Step 6: Detailed Use Cases and Task structure
The purpose of this step is to get a better understanding of the role interactions

based on the actions that each role (or group of roles) may execute towards the
achievement of a goal. At this point some new roles may be necessary to support
different internal functionalities. In this Step the different system goals are seen from
an internal point of view using detailed use cases. These use cases are concerned
with interactions among agents inside the system and how they use each other to get
things done. The development of the detailed use cases helps to better understand
the interactions and collaborations between roles, and consequently, between the
candidate agents.

Case Study:
As a matter of example, we describe one detailed use case for the Give a suitable

recommendation functionality of the T-Agent. This case is a detailed version of the
corresponding external use case.
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• Name: Give a suitable recommendation

• Actors: Tourist and Tourist services (e.g. hotel owners, airlines, transport compa-
nies)

• Scenario:

a) The Tourist requires a personal tourism recommendation from the System.

b) The Interface role acquires a set of graded user preferences and rejections
(restrictions) about the tourist plans.

c) The Travel-Assistant role asks the Provider role for tourist packages.

d) The Repository-Maintenance role updates the package repository with the
plans the Provider role sends.

e) The Travel-Assistant role finds the best packages satisfying some of the Tourist
preferences and avoiding the rejections. Each feasible plan has an associated
cost. The set of feasible plans are ranked using a function that combines in a
suitable way: the intensity of the desires, the Tourist expected satisfaction by
a plan, the cost of the plan, and the trust in the plan provider.

f) The Travel-Assistant role sends to the Interface role a ranking of the best
plans.

g) The Interface role shows the recommendation and the plan description to the
user.

From this detailed use case we can design a task structure towards the system goal
of giving a suitable recommendation. In this example, for achieving this overall
system goal the first task (subgoal) is to acquire the user’s preferences. Then,
another subgoal is to update the tourist plan repository with the plans provided by
the tourism Provider role. Next, the system must look for the best plan to satisfy
the user preferences.

The global goal-task structure for this case study can be seen in Figure 11.2.
This goal and its subgoals are represented by ellipses and constitute the task struc-
ture. Besides, we include in this illustration two social goals (represented by boxes)
related to the system goal.

Step 7: Norms and Constraints
Norms are conditions that should be enforced, if possible, by the infrastructure

of the multi-agent system. In some kind of systems (e.g., Electronic Institution) it
is fundamental to control the interactions between the participants and ensure that
they all adhere to agreed rules or norms. The norms are usually defined towards the
end of the social design process when the structure is completely defined.
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Figure 11.2: Goal-Task Overview Diagram

Constraints are also added at this stage and represent some restrictions that a
role may have in a particular scenario or in relation to a goal achievement.

Case Study:
For our case study we do not extract any norm, but we consider some constraints
the tourist may have in relation to the tourist package he/she is looking for. We
set for this example that this restrictions may be about the days they are available
to spend in their holidays, the maximum amount to spend and the kilometers to
travel. Also, these restrictions may be strict or soft and may be thus treated in a
different way.

Step 8: Ontology +
There is some initial ontological information specified during the System Speci-

fication phase, as the engineer identifies the information needed within a particular
scenario. This initial ontology is brought into this Design step and provides the
basis for more thorough refinement and development.

Case Study:
In our example, the necessary knowledge that have been identified are tourism

knowledge, information about Argentinian tourist places and Argentinian tourist
packages.

The tourist packages are structured following the information extracted from a
set of examples, as a suitable travel-stay sequence. The information on Argentinian
places and their characteristics are organized following a destination ontology struc-
ture. For each city or town, this ontology contains information about geographic
and infrastructure characteristics, accommodations, activities offered, excursions
and relevant issues related to the place. The needed tourism knowledge includes
similarity relations and rules for deriving the belief in the preference satisfaction by
the plan execution (see Chapter 12 for a detailed description).
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Step 9: Role Composition
Different agent-based software engineering methodologies take advantage of a

role analysis for the agents definition, as for example in [92, 157, 159, 118]. In the
analysis phase we have detected some natural roles related to the social structure
of the problem. This set of roles may be expanded after the extraction of the
system goals. From the structure of goals and plans, a role analysis is held in order
to define the agents and interactions that compose the system. Functional roles,
responsibilities and goals (or services) are just descriptions of purposeful behaviours
at different levels of abstraction. In our proposal, a role includes a set of goals and
a role (or a set of roles) will be mapped into an agent who will be responsible for
satisfying these goals.

This process of role composition and role assignment to agent types is a diffi-
cult task because is not just a distribution problem: the reasons for and against
grouping particular functionalities must be carefully analyzed. This is so because
there is a need to compose roles when agents carry out their responsibilities and
interact/collaborate, there may be a synergy between the different roles played by
the agent. More generally, we seek to have agents which have strong coherence and
loose coupling. The activity of identifying roles from use cases and the use of role
patterns in agent software engineering are described in [92]. The resulting combined
roles are the candidate agents. The different roles, with their assigned goals or tasks
and collaborators, may be gathered in a table similar to the RGC (Responsibility,
Goal, Collaborator) card proposed in [159].

In agent-based modelling, interaction diagrams may be useful and some agent
based software engineering methodologies adopted them (e.g. in [118, 157]). For ex-
ample, some sequence diagrams are used for modelling temporal ordering of interac-
tions, and collaboration diagrams are used to emphasize the structural organization
of the agents. From this process of role identification and composition, a refined list
of candidate agents is obtained.

Case Study:
Inspired in the different members of a tourism chain, in the analysis phase we

have detected the following roles: the Provider role (tourist package providers),
the Travel Assistant role and Services role (hotel owners, airlines, etc.). In this
case study we don’t deal with the Services role, we only mention it as a necessary
collaborator of the Provider role.

From the task structure we capture two more roles: the Interface role, to manage
the user interface and the Repository-Maintenance role (R-Maintenance), to charge
and discharge the tourist packages that are sent by the Provider role. We map the
goals and tasks, extracted and structured in previous steps into the different roles.
For our case study, the defined roles with their assigned goals or tasks, and their
collaborators (that is, other roles that interact with it) are shown in Table 11.1.

We also use an interaction model to schematize the roles interaction as can be
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Roles Goals - Tasks Collaborators-Interactions
Interface Acquire the Tourist’s preferences Tourist

Communicate best plans Travel Assistant
Provider Build tourist plans Services

Communicate plans R-Maintenance
R-Maintenance Charge-Discharge tourist plans Provider

Package Repository
Travel Assistant Find feasible plans Interface

Rank feasible plans Provider

Table 11.1: RGC card for roles

Figure 11.3: Role interaction model

shown in Figure 11.3.

Step 10: Information Model
After defining the detailed roles and their interactions, we also need to specify

what information the agents filling the different roles, need. All the information that
will be referenced within constraints or norms, needs also to be part of the informa-
tion model. For this design process the input and output data requirements for each
subgoal in a plan must be analyzed, in order to be sure that this information will be
available in the needed stage. With the support of internal use cases we can extract
the information needed for each action in a plan (Step 6). Besides, we may apply
some artifacts (e.g. the Data Flow Diagram) to show the data flow from external
entities into the agent, and how the data flows from one process to another, as well
as its logical storage.
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Case Study:
For our example, we extract the following necessary information:
- The different graded user preferences/rejections respect to the tourist package

he/she is looking for. This information is provided by the Tourist, is captured by
the Interface role and is used by the Travel Assistant role.

- The updated description of the different tourist packages. This information is
provided by the Provider role and we create a Tourist Packages Repository to gather
this information. This repository is updated by the R-Maintenance role and is used
by the Travel Assistant role.

- General knowledge about tourism and information about Argentinian regions
and destinations. The general tourism knowledge is represented by special relations
and rules. The Argentinian information is structured in a suitable tourism ontology
(organized by destinations), and it is maintained and used by the Travel Assistant
role.

The information storages interacting with the different system roles are illus-
trated in Figure 11.3.

Final Step: Agent Types Definition
From the iterative process of role identification and composition, supported by

some interaction and information models, the list of the candidate agents is finally
defined.

Case Study:
For this prototype Recommender System, we define only two agent types: the

Provider Agent and the Travel Assistant Agent. We assign the Interface role, the
Repository Maintenance role and the Travel Assistant role to the Travel Assistant
Agent (T-Agent). As it is natural in the Tourism Chain, different Tourist Operators
may collaborate in the Provider role. To represent these different sources of tourist
packages, we use different agents (Provider Agents).

Then, the agents composing our multi-agent recommender system are: the T-
Agent and a finite set of Provider Agents (Provider-i, i=1,...,n). An agent interaction
diagram for this multi-agent system is illustrated in Figure 11.4.

11.4 Agent Design Phase

Once the different agent types in the system are defined, we have to deal with their
internal design. Namely, we must decide what kind of agent architecture is the most
appropriate in each case according to its characteristics and its role assignment. In
this Section we focus on the methodological process to develop agents using the
g-BDI model. This design process is done in two stages: the first stage is concerned
with completing the logical skeleton of the agent architecture, on the second one,
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Figure 11.4: The multi-agent Recommender System

called Detailed Design stage, the contents (theories) of each context are defined. To
illustrate how this methodology works, we show the detailed design of the Travel
Assistant Agent (T-Agent).

11.4.1 Stage III: A graded BDI Agent Design

In this Stage we show the methodology used to develop agents following the g-BDI
model. Taking advantage of its multi-context approach, this amounts to specify the
different contexts, either mental, functional and the Bridge rules.

In this stage we must go from functionalities assigned to an agent type to a multi-
context model, conforming an agent capable to reach each desired goal (goals). For
the modelling of the different contexts, we will use the information acquired in the
system analysis and design stages. Next, some aspects related to the different con-
texts are analyzed to complete the multi-context schema for an agent type.

1- Social Context
It must be decided whether or not to include a social context in the agent archi-

tecture to represent the social aspects of agency. A key issue related to the social
aspects is the modelling of the agent trust in other agents. In an agent community
different kinds of trust may be needed and should be modelled. The necessity of
a social context in an agent model depends on the roles and tasks assigned to the
agent, and on the information model. An overview of an appropriate logical frame-
work to represent and reason about trust or reputation in a social context, has been
proposed in the socialization of the g-BDI model (see Chapter 8).
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2- Desire Context
Besides a general logical framework to represent desires in the g-BDI agent model,

different logic schemas have been proposed (see Chapter 6) to represent the agent
positive and negative desires. According to the agent type (roles and tasks as-
signment) we must decide which constraints we want to set between positive and
negative desires (i.e. preferences and restrictions) respect to a formula and its nega-
tion. Thus, the most suitable logic schema may be chosen.

3- Belief Context
This context represents the agent knowledge about the world. Depending on

the agent environment and on how the agent acquires information from it, the
knowledge may be of different kinds: uncertain, imprecise, incomplete, etc. In
the case of having uncertain information, we propose to use in the g-BDI model a
fuzzy modal approach to deal with graded information and to consider a suitable
uncertainty model on top of this logical framework (see Chapter 5). To complete
the logical schema for this context, the selection of the uncertainty model must be
done. We must decide whether to use probability, possibility or necessity measures,
among other options. For this purpose, the system information model is used and
two factors that may be taken into account are:

- The source of the uncertainty information: if the uncertainty information comes
from data bases containing and important amount of data that may be statistically
processed, the use of probability measures is recommended. If we only have order
relations expressing which data is more certain than others, then a possibility mea-
sure is adequate.

- The different intuitions about the expected results on operators (e.g., conjunc-
tions and disjunctions) also helps in the uncertainty model selection. For example,
if the conjunction is expected to be the minimum of the individual values of uncer-
tainty, we may use a necessity function.

4- Planner Context
From the task structure related to the agent goals, it can be determined how

the agent will make some plans (feasible plans) to fulfill the positive desires and to
avoid the negative ones. Precomputed plans or a particular planning algorithm may
be used to support the Planner strategy to find feasible plans for the agent.

5- Bridge Rules
The interactions between the different contexts are represented by Bridge rules

(BRs). As each unit uses a proper logic, these rules allow to embed results from
a theory into another [68]. Besides, diverse agent’s personalities may be modelled
using a suitable set of BRs to represent, for example, different realisms (see Section
7.2).
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Case Study:
For the design of the T-Agent using the g-BDI model, we decided the following:

1. To incorporate a Social Context to represent the trust in the Provider Agents
in relation to the different tourist packages they offer.

2. To represent desires in the Desire Context, we chose the DC3 Schema that
models a strong consistency condition between desires and rejections. It rep-
resents the following restriction: if a state of the world is rejected to some
extend, it cannot be positively desired at all and conversely, if a goal is some-
what desired it cannot be rejected. We found this schema is suitable to our
case study.

3. To represent uncertainty in the Belief Context by using the probabilistic model,
as there is quantifiable data in the tourism domain.

4. To make the Planner Context look for feasible plans in a Repository of Tourist
Packages (pre-computed plans).

5. To define for the T-Agent a set of BRs that are needed to export formulae
from one context to others. The T-Agent personality is represented by a
particular BR, where the intention degree is computed. Depending on the
tourist preferences with respect to his priority criterion in the package selection
(i.e. minimum cost, preference satisfaction or trust) the BR representing the
Tourist personality, will use different aggregation functions for the variables
involved to compute the intention degree.

11.4.2 Stage IV: Agent Detailed Design

In this stage, we must complete the agent design process defining what the contents
of each unit will be. We extract information from previous steps in the overall design
process to fulfill this internal stage as it is shown in Figure 11.1. The flow of this
detailed multi-context design process is illustrated in Figure 11.5. Next, we depict
this process by using the case study.

Desire Context (DC):

The agent positive desires are extracted from the goals assigned to the agent. We
take as desires only the proactive goals, not those subgoals that can be derived from
a planning process. The positive desires are extracted from the goal and task struc-
ture (Step 4 and Step 6) related to the different roles (Step 9), that are later on
assigned to the different agent types. We also consider important for the agent to
include a set of negative desires, representing its rejection states. The negative de-
sires are expressed in the use cases as part of its description and later are separated
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Figure 11.5: Detailed modelling process flow

as constraints (Step 7). As we mentioned in the system analysis, the set of desires
(positive and negative) may have different levels of importance. Usually, these levels
may be captured in a numerical scale (or in an order relation) and then, may be
translated into degrees in [0, 1], using an order preserving function. To represent
and reason with these positive and negative graded desires, we can use the general
logic framework or one of the different schemas presented in Chapter 6.

Case Study:
The T-Agent goal is to satisfy the tourist preferences by recommending the most

suitable tourist package. As a personal agent, the T-Agent takes as subgoals to
satisfy the different tourist preferences. Thus, the contents of the Desire context
will be obtained at runtime.

The tourist desires will be expressed by a theory in the DC containing quanti-
tative expressions about positive and negative preferences. These formulae express
what the tourist desires or rejects in different degrees for his holidays. From this set
of desires the DC generates all the possible conjunctions of the positive desires. For
this case, we take as the negative desire the conjunction of all the rejections. An
example of how the T-Agent desires are built from a tourist preferences can be seen
in Chapter 6 (Example 1).

Planner Context (PC):

Some authors as [89, 159] directly relate the plans towards the different goals to
the notion of intentions. We consider a more complex notion of the agent intention
that involves the pair feasible plan-desire. That is, the agent will intend to reach
a desire by executing the feasible plan that best satisfies a cost/benefit relation.
Indeed, the existence of a plan constitutes a necessary condition to determine the
agent intention. The plans towards the different goals are outlined in the initial use
cases, are refined successively in more detailed use cases and are represented in the
Task Structure (Step 6). Using the Task Structure, we find the set of actions that
the agent may follow to reach a goal or set of goals (positive desires), satisfying the
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norms and avoiding the rejections (negative desires). These plans are composed by
the elementary actions that the agent can perform. These actions are part of the
agent beliefs. Starting from these actions a planning process may be held, using
a planning algorithm or pre-computed plans (determined in the previous stage) to
find the feasible plans. Namely, the current state of the world must satisfy its pre-
conditions, the plan must make true the positive desire the plan is built for, and
cannot have any negative desire as post-condition. These feasible plans are com-
puted within this unit taking into account beliefs and desires injected from other
units (i.e., BC and DC).

Case Study:
The Planner context in the T-Agent is in charge of looking for tourist packages

that are expected to satisfy the tourist preferences (feasible plans) in a repository
of the tourist packages offered by different Provider agents. After analyzing the
information of various tourist packages, we structure them including the Tourism
Operator provider, the cost and itinerary description, as follows:

package ::= (ID,Operator, Cost, [travel1, stay1, ..., traveln, stayn, traveln+1])

where travel is a description of the travel characteristics (e.g. type of transporta-
tion, travel length, etc.) and stay includes destination, number of days, type of
accommodation and activities. Each travel and stay is considered as an atomic
sub-plan amenable to satisfy desires. Packages are modelled as composed plans,
alternating travel and stay sub-plans.

Belief Context (BC):

Beliefs represent the (uncertain) knowledge about the agent state and the changing
environment. This knowledge is used to derive conclusions about whether a plan
may fulfill some agent goals (desires). The agent beliefs are the necessary infor-
mation in relation to its goals assignment, and are extracted from the Information
Model (Step 10).

Case Study:
From the Information Model we extract the BC theory for the T-Agent, it con-

tains at least:

• General knowledge about tourism and Argentinian regions and destinations,
including the characteristic of each region and activities allowed in each place.
The knowledge about destinations is structured as follows:
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Destination ::= (Name, Coordinates, Zone, [NaturalResource],
[ArtificialResource], [Activity])

Coordinates ::= (X, Y)
NaturalResource ::= Resource
ArtificialResource ::= Resource
Resource ::= (KindOfResource, Name)

• Information about the tourist packages that the different operators provide
(their structure was presented previously). This information is placed in a
suitable repository and is made accessible by a BR to the PC in order to find
feasible plans.

• Beliefs about how possible desires D (e.g. going to a mountain place or making
rafting) are satisfied after executing different tourist plans. Following the
model presented, the truth-value of B([α]D) is the probability of having D
after executing plan α. If a package α is composed by a number of subplans
αi, B([α]D) will result from the probabilities ri of having D after the execution
of the sub-plan αi, by using an appropriate aggregation operator.

Besides, different kinds of knowledge are represented in this context. On the
one hand, we use bi-valued formulae to represent some tourist knowledge as, for
example, the distance between two destinations. On the other hand, many-valued
modal formulae are used to represent uncertain knowledge. For instance, the formula
(B[Atuel7]rafting, 0.9) expresses that the probability of satisfying the goal of mak-
ing rafting, as a consequence of following the tourist plan Atuel7, is greater than 0.9.

Social Context (SC)

The aim of including a SC in an agent architecture is to model the social aspects of
agency. Once the trust model has been defined (to filtering incoming information or
to evaluate the risk on delegation of actions, etc), this context must be filled with
formulae expressing the initial trust in other agents.

Case Study:
We consider the trust in the tourist package suppliers that interact with the

T-Agent, in order to evaluate the risk in the recommended tourist plans.
The theory for the SC in the T-Agent has formulae like (Tj[α]ϕ, t) expressing

that the trust of the T-Agent towards a Providerj of the plan α directed to satisfy
a goal ϕ, has degree greater than t. For this application, we consider that the trust
depends only on the kind of tourist package that a Provider offers. Hence, we have
proposed a plan classification based on a tourism ontology. For instance, we consider
the region of the country as a classification element, since there are tour-operators
that are good for plans in a particular region, but not in others. We consider that
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is important for the T-Agent to evaluate the trust in the different plan providers,
to decide which package to recommend. Thus, we introduce the trust degree as
another variable that must be weighted in the computation of the intention degree,
next described.

Intention Context (IC)

To complete the agent design we need to specify how the agent intentions are decided.
In the g-BDI model the intention of an agent is a pair desire/plan (the desire she
decides to follow by executing the plan) that is determined following a deliberation
process. We consider that this attitude depends on different factors, we select the
following relevant ones:

- the degree of the desire intended to be satisfied,
- the expected satisfaction degree of the desire through the plan execution,
- the cost of the plan,
- if some collaboration of other agents is involved in the plan execution, the trust

in those agents must also be considered.

Different kinds of agents may be defined according to the way these elements are
combined and weighted. How to do this in a suitable way is a difficult and domain
dependent problem.

The intention degree is computed using a suitable bridge rule, as the formulae
representing the different factors are coming from various contexts.

Case Study:
A theory for IC in the T-Agent represents those desires the user can intend to

satisfy by different feasible plans. This theory is initially empty and will receive from
a suitable bridge rule (see 11.1 in next subsection Bridge Rules) intention formulae
like (Iαϕ, i) for all the desires ϕ and for all the feasible packages α that the Planner
finds to achieve them. Using this set of graded intentions, the T-Agent derives the
final intention and the most recommended tourist plan.

Then, if the Intention with the maximum degree is obtained by the execution of
the plan αb, this package will be recommended to the user.

Communication Context (CC)

This context makes it possible to encapsulate the agent internal structure by having
a unique and well-defined interface with the environment. The necessary commu-
nication among the agent and other interacting agents, may be extracted from the
role interaction model and the information model (Steps 9 and 10). As in the PC
context we propose to use classical first order logic (see Chapter 7). The theory of
this context must be in charge of the agent communication with the other agents
and entities in the multi-agent society where the agent lives.
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Case Study:
The theory of this CC context takes care of the sending and receiving messages

to and from the Provider agents and manages the user’s interface (detailed in next
Chapter 12.

Bridge Rules (BRs)

The design of the BRs is done simultaneously to the process of determining the
agent intentions. For example, the set of positive and negative desires must be
passed from the DC to the PC which is in charge of finding the feasible plans to
satisfy these desires. Also, some beliefs are also needed by the PC context to find
these plans, like the elementary actions that the agent can execute, or the beliefs in
the satisfaction of the different desires after executing a plan. Furthermore, there is
a fundamental BR in charge of computing the intention degrees. By defining this
BR in different ways, diverse agent’s personalities may be modelled. The necessary
BRs for an agent specification will depend on the agent type and its role assignment,
a set of basic BRs was presented in Chapter 7.

Case Study:
For the T-Agent we have defined a set of bridge rules, modelling the inter-context

inferences. Particularly, there is a bridge rule that infers the intention degree of Iαϕ
for each feasible plan α that allows to achieve the goal ϕ.

This value is deduced by using a suitable function that combines different factors.
From the degree d of the desire on ϕ (D+ϕ) and the degree r of belief on satisfying
ϕ by executing α (B[α]ϕ), the T-Agent computes the expected satisfaction degree
e after executing the plan α towards D: E(D,α) (see for details next Chapter 12).
This expected satisfaction degree, together with the cost c of the plan α and the
trust t in the tourist supplier o of the plan,1 derive the graded intentions by using
the following rule:

PC : fplan(D,α, o, P,A, c), IC : (E(D,α), e), SC : (To[α]ϕ, t)

IC : (IαD, f(e, c, t))
(11.1)

Different functions f allow to model different agent behaviours. For instance, the
function might be defined as a weighted average, where the different weights are set
according to the user’s priority interests (e.g. minimum cost, preference satisfaction
or trust).

Specifying a graded BDI Agent
Collecting the specification of the different contexts and the bridge rules, the

1We have added an argument (o) to the predicate fplan used in the PC (respect to the defined
in Chapter 7) to represent the plan provider.
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Figure 11.6: Multi-context model of the graded BDI T-Agent

g-BDI specification for the T-Agent is completed. Figure 11.6 illustrates this archi-
tecture for the T-Agent.

11.5 Conclusions

Agent-based computing has increased in the last years and thus the software en-
gineering methodologies to develop these systems has become an important need.
Even though there are valuable approaches in this field, few of them emphasize in
the internal design of agents. In this Chapter we have presented some contributions
in this direction, proposing a software engineering process to develop graded BDI
agents in a multiagent scenario. The methodology presented has been built adapting
and extending previous approaches [88, 118, 159] in order to engineer agents with
a more complex internal architecture. Our work was also inspired by the design
process described in [141] where the social aspects of design are considered, and the
system design phase is clearly separated from the agent design phase.

The system design phase has the purpose of determining the agent types compos-
ing the system and it follows a similar schema than other methodologies [87, 92, 118,
159]. In the Agent Design phase we focus on modelling g-BDI agents. We extract
the necessary elements from the system design phase to design the different types of
agents using the proposed architecture. This process is done in two stages. The first
one deals with the logical skeleton of the multi-context specification of the g-BDI
model. The second one, following a flow “goals-feasible plans-beliefs-intentions”
complete the agent design, filling the contents (theories) of the different contexts.
In this sense, we have modified the flow “goals-plans(intentions)-beliefs” used in
approaches like [88, 159] presenting a new process to obtain the agents intentions.

Furthermore, the proposed process to develop g-BDI agents contributes to bridge
the gap from the external functionalities assigned to a particular agent, to the ele-
ments that composed each architecture. Particularly, we have presented the method-
ology applied to the design of graded BDI agents, extending the BDI model with
the capabilities of dealing with the environment uncertainty and with graded mental
attitudes.



In theory there is no difference
between theory and practice. In
practice, there is.
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Chapter 12

Recommender System
Implementation

In this Chapter the principal characteristics of the recommender system implemen-
tation are described. The system design was presented in Chapter 11. Especially we
focus on the T-Agent implementation, as this agent is modelled using our g-BDI ar-
chitecture. In the following sections the most relevant implementational challenges
are presented, going from theory to practice.

12.1 Introduction

The implementation of a prototype of an Argentinian Recommender System is de-
scribed in this Chapter. The system goal is to recommend the best tourist packages
on Argentinian destination according to the user’s preferences and restrictions. The
packages are provided by different tourist operators. The recommender system has
been designed previously (see Chapter 11 for details) using a multi-agent architec-
ture composed by a Travel Assistant Agent (T-Agent) and two Provider Agents
(P-Agents) In our implementation the Provider agents simulate different tourism
Operators that supply the T-Agent of tourist packages. As usual in real world oper-
ators, these agents may manage the package information in different ways and using
diverse formats.

The purpose of this prototype implementation is to show that the g-BDI agent
model is useful to develop concrete agents on real domain. Thus, we focus on
the most relevant implementational aspects of the T-Agent designed as a g-BDI
agent. The different components in the multi-context architecture of the T-Agent
(i.e., context and bridge rules) with their logical structure are then implemented.
Particularly we show how the T-Agent, takes advantage of the tourist’s preferences
and the domain knowledge (about tourism and Argentinian places) to give the user
a good recommendation.

171
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12.2 Multiagent development

In this simplified version of Recommender System we define two agent’s types: the
Provider agent and the Travel Assistant Agent. In this simplified version of Rec-
ommender System, we define two agent’s types: the Provider agent and the Travel
Assistant Agent. We assign the interface role, the repository maintenance role and
the travel assistant role to the Travel Assistant Agent (T-Agent). As it is natural
in the Tourism Chain, different Tourist Operators may collaborate in the Provider
role. To represent these different sources of tourist packages, we use two different
provider agents (P-Agents). The internal architecture of the Provider agents is not
considered in our implementation and for our purposes they are considered only
tourist packages suppliers.

The multi-agent architecture of the prototype version of the tourism recom-
mender system, composed by the T-Agent and two Provider Agents, together with
the main source of information they interact with (the destination ontology and
the package repository) is illustrated in Figure 11.4 of Chapter 12. This multiagent
system is easily scalable to include other providers.

The implementation of the Recommender system was developed using SWI-
Prolog 1. We decided to use prolog because is a suitable language to deal with
logical deduction, which is the nature of the inference processes in our agent model.
Also, SWI-Prolog is a multi-threaded version of prolog allowing an independent ex-
ecution of the different contexts (i.e. in different threads). Furthermore, this prolog
version is open source, it is well documented and includes a graphic interface tool
in native language. A previous implementation of multi-context agents using this
software [69] was a starting point for our development. Furthermore, this prolog
version is open source, it is well documented and includes a graphic interface tool
in native-language.

In our multiagent recommender system the two Tour Operator agents (P-Agents)
implemented runs in a different thread, so in this way being independent from each
other and from the T-Agent. When the T-Agent requests for information, the P-
Agents send to T-Agent all the current packages they can offer. The communication
between agents is by message exchange.

In the real world, each tourist operator may structure the tourist packages in
a different way and using its own terminology. To experiment with heterogeneous
providers, we use different field names in the plan structure used in each P-Agent.
Then, these structures are translated into the format the T-Agent uses. Thus, a
wrapper functionality is needed and it is carried out by the Communication context
of the T-Agent. In a more complete multiagent recommender architecture a wrapper
agent may be included.

1http://www.swi-prolog.org
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Figure 12.1: Multithread system scheme

12.3 T-Agent Implementation

The main role of the T-Agent is to provide tourists with recommendations about
Argentinian packages. This agent may be suitable modelled as an intentional agent
and particularly, by a g-BDI agent model. This agent model is specified by a multi-
context architecture having mental and functional contexts (i.e, BC, DC, IC, PC
and CC ) and a set of bridge rules (BRs). Thus, the implementation of these in-
terconnected components is needed. Even though, in the T-Agent design we have
included a social context (SC) with the aim of modelling the trust or reputation in
the different providers agents, in this prototype we have left out the implementation
of this context.

Each context has its own inference rules and theories, and they should not in-
terfere. Using a thread for each context allows the desired separation but could
considerably slow down the execution. The solution adopted for our implemen-
tation was to place only some of these components in different threads. That is
the case for the Communication context (CC), the Desire context (DC) and some
bridge rules. However, since the Belief (BC), Planner (PC) and Intention (IC) con-
texts interchange quite a lot of information, for efficiency reasons they run in the
same thread. The multithread scheme for the T-Agent in the multiagent system is
illustrated in Figure 12.1, where the yellow boxes represent different threads and
the arrows their interactions.

For this multithreaded implementation, following [69], the policy adopted is to
have asynchronous threads and asynchronous communication. It means that the
messages are sent and received at any time, but they are processed only when
the unit is inactive (i.e. when it has finished the internal deductions). Each unit
has a message queue that retains the messages until they have been processed.
A communication meta-interpreter is devoted to synchronize the ongoing inference
process and the arrival of new incoming messages. In our prototype, the exchange of
most part of the messages is made during the initial phase. In this phase the T-Agent
asks the P-Agents for the current tourist packages. To answer this request, the P-
Agents send back a number of messages, each one containing an offered package.
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The software tool successfully supports this intensive message exchange.
The Communication context (CC) in the T-Agent is in charge of receiving these

messages, it translates them into a suitable format and it immediately sends them
to the Belief context (BC). In this way the agent’s knowledge is increased with the
package information. In the next sections we described how the main multi-context
components of the T-Agent are implemented in order to obtain the desired behavior.
We begin with the Communication context that provides the agent with a unique
and well-defined interface with the environment.

12.3.1 Communication Context

The Communication context (CC) constitutes the T-Agent interface and makes it
possible to encapsulate the agent’s internal structure. This context takes care of
the sending and receiving of messages to and from other agents in the multiagent
society where our graded BDI agents lives. The CC in the T-Agent is in charge of
interacting with the tourist operators (P-Agents) and with the tourist user that is
looking for a recommendation.

Interaction with the P-Agents

Before beginning its recommendation task, the T-Agent updates its information
about current packages (carrying out its repository maintenance role). This is
achieved by the CC through the following steps:

• Requiring the packages offered: The CC sends a message to each P-Agent
asking them for the current touristic packages they offer.

• Receiving packages and formatting them: As the information coming
from each P-Agent has different format the CC behaves as a wrapper, trans-
lating the incoming packages into the T-Agent format. This functionality for
one of the Provider agents (agentTradingTour) is coded as follows:

run :-
repeat,
thread_get_message(X),
parse(X),

fail.
parse(tell(agentTradingTour, agentT,
paq(codigo(Id), precio(Costo), Recorrido)))
:--
thread_send_message(brUnit, paq(id(Id),
empresa(agentTradingTour), costo(Costo), Recorrido)).

• Sending packages: Once the packages are put under the correct format, they
are sent to the Planner context. The recommendation will be based on the
information about packages and on domain knowledge.
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User interface

The user interface is in charge of explicitly acquiring the tourist’s profile, providing
him with the resulting recommendation and receiving the user’s feedback. In a
first approach this interface was developed using the native language. Later on, to
facilitate the access to the recommender system it has been implemented as a Web
service2. This interface process goes through the following sequential steps:

• Acquiring user’s preferences: User’s preferences are explicitly acquired
asking him to fill in a form. The tourist can specify his preferences (positive
desires) and restrictions (negative desires), assigning them a natural number
from 1 (minimum) to 10 (maximum) to represent the level of preference or
rejection in the selected item. Furthermore, he can choose different param-
eters: the flexibility of restrictions (by specifying them as flexible or hard),
the expected frequency of the selected activity (high or low) and the priority
criterion to rank-order the recommended packages (preference satisfaction or
minimum cost). An example of a tourist’s preferences specification using this
interface is shown in

Figure 12.2: User interface: tourist’s preferences.

Once the user finishes his specification, the CC sends all the acquired infor-
mation to the Desire context (DC).

2http://musje.iiia.csic/eric/
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Figure 12.3: User interface: package recommendation, a package description and
user feedback.

• Showing the resulting recommendation: As result of the T-Agent de-
liberation process, the CC receives from the Intention context (IC) a ranking
of feasible packages that satisfies some of the tourist preferences. The ranking
is ordered also taking into account the priority criterion he has selected (e.g.
preference satisfaction). The first nine packages of this ranking are shown to
the tourist and the user can visualize the information about them by opening
suitable files (e.g pdf files). In Figure 12.3 can be seen the results for the query
shown in Figure 12.2.

• Receiving user’s feedback: After analyzing the ranking of the recom-
mended packages the user can express through the interface his opinion about
the recommendation. For this task, the options considered are the following:

- Correct: when the user is satisfied with the ranking obtained.

- Different order: when the recommended packages are fine for the user, but
they are ranked in a different order than the user’s own order. In such a case,
the user is able to introduce the three best packages in the right order.

- Incorrect: when the user is not satisfied with the given recommendation.
Then, the interface enables him to introduce a (textual) comment about his
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opinion.

All the information resulting from the previous steps (i.e., the tourist’s prefer-
ences, the recommendation given and the user’s feedback) is stored to evaluate the
system performance.

12.3.2 Desire Context

As the T-Agent is a kind of personal agent, its overall desire is to maximize the sat-
isfaction of tourist’s preferences. Then, in this context the different tourist’s graded
preferences and restrictions are respectively represented as positive and negative
desires.

On the one hand, the negative desires are used as strong constraints, namely,
the T-Agent will discard those packages not satisfying them. On the other hand,
from the elementary positive desires all their conjunctions are built as combined
desires. The T-Agent will use all these desires as pro-active elements, looking for
different packages that will allow tourists to satisfy any of them. Then, the theory
in this context is constituted by positive and negative desires (represented by desU
formulae).

The user’s preferences are acquired in the CC by the user interface and are in-
troduced in a list to the DC. In the following items we describe how the positive
desires are built (negative desires are treated in a similar way):

1. Elementary desires: The DC takes each desire from the list received from
the CC, normalizes its degree (i.e. mapping it from {1, ..., 10} into (0, 1]) and
adds it to the context formulae. The structure of these formulae is:

desU(y(Desire, V alue), NormalizedDegree)

The relation y(Desire, V alue) represents a positive desire where the first ar-
gument is the class of desire (e.g. transport “transporte”) and the second is
the value the tourist has chosen (e.g. plane “avion”), followed by the normal-
ized degree. For instance, the formal expression in the DC of the elementary
desires corresponding to the tourist’s preferences specified in Figure 4 are:

desU(y(zona, patagonia), 0.9)
desU(y(transporte, avion), 0.7)
desU(y(comodidad, apart), 0.6)

2. Similar Desires: In the special case of some types of desires (e.g. those
about accommodation, transportation, natural resources), we consider that a
tourist can also be satisfied (to some lower degree) with a package that offers
similar facilities to the ones originally specified. Also, in the particular case
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of accommodation, we assume tourists will be also satisfied if they receive a
better accommodation than the selected one.

Therefore, the Belief context contains instances of the domain dependent rela-
tions “to be similar to” and “to be better than” which are used to expand the
set of possible values that would satisfy the user’s preferences.

Indeed, these instances are used to generate new desires into the DC by means
of rules like “If the T-Agent has a positive desire X at least to a degree d and
he believes that X is similar to Y at least to a degree s, then he also desires Y
at least to a degree d′ = d · s” and “If the T-Agent has a preference about an
accommodation X at least to the degree d and Z is an accommodation better
than (“mejorQue”) X, then he also desires Z at least to degree d”. These
rules are formalized using suitable bridge rules.

desU(y(Deseo, X), d),
belU(similar(X, Y,s))
--: desU(y(Deseo, Y), d.s)

desU(y(comodidad, X), d),
belU(mejorQue (Z, X))
--: desU(y(Deseo, Z),d)

This rules are used for the expected satisfaction computation (see next sub-
section 12.6.1).

3. Combined Desires: After the elementary desires are added to the context, all
possible conjunctions are built. The conjunctions are attached a degree greater
or equal than the maximum of elementary degrees, and hence is computed in
accordance with the guaranteed possibility model (see [11]). Namely, if the
DC contains formulae like desU(y(D1), G1) and desU(y(D2), G2), a combined
desire desU(yLst([D1, D2]), G) is also added. In our prototype G is computed
by the following function:

calcularGraduacion(G1, G2, G) :-
G is G1 + ((1 - G1) * G2)

As way of example, we show the code of one of the conjunctive combinations
built from the elementary desires given above:

desU(yLst([(zona, patagonia),
(transporte, avion)]), 0.97)

desU(yLst([(zona, patagonia),
(comodidad, apart)]), 0.96)
desU(yLst([(transporte, avion),
(comodidad, apart)]), 0.88)
desU(yLst([(zona, patagonia), (transporte, avion),

(comodidad, apart)]), 0.988)
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Both, the positive and negative desires are passed by means of a bridge rule to the
Planner context where the feasible packages that satisfy the tourist’s preferences are
selected.

12.4 Belief Context

In the Belief context the T-Agent represents all the necessary domain knowledge
about tourism and in particular about tourism in Argentina: tourist packages, in-
formation about destinations and some special domain-dependent relations. Also,
in this context the belief degrees of achieving the different desires by executing al-
ternative plans, are computed. We describe next the representation of these kinds
of information.

12.4.1 Tourist packages

One of the most significant data structures in our system is the package structure.
After analyzing nearly forty Argentinian packages selected from the Internet, a gen-
eral structure which is capable of representing the information available in most of
them has been adopted. Each package is represented as a list containing an iden-
tifier, a tour provider, the cost and a travel-stay sequence as it can be seen in the
following structure:

Package ::= (Id, Provider, Cost, Trip)
Trip ::= [(Travel, Stay)]
Travel ::= (Transport, Road)
Stay ::= (Destination, Days, Accommodation, [Activity])
Activity ::= activity(Sport, Hours) | excursion(Resource, Hours, Name)

For example, the prolog representation of the package named holCalafatePatagonia
is presented below:

paq(id(holCalafatePatagonia), costo(1900),
[(viaje(avion, aire), estadia(calafate, dias(3), comodidad(apart),

actividades([
[act(cityTour), horas(4)],
[exc(parqueNacional), horas(8), peritoMoreno]]))),

(viaje(avion, aire), estadia(ushuaia, dias(4), comodidad(hotel3),
actividades([

[act(cityTour), horas(1.5)],
[exc(museo), horas(1), finDelMundo],
[exc(historia), horas(1), carcelDeReincidentes],
[exc(parqueNacional), horas(2), tierraDelFuego],
[exc(lago), horas(1), escondido],
[exc(lago), horas(1), fagnano]]))),

(viaje(avion, aire), null)])
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Notice that in the last element of the travel list, the stay is null representing the
return travel.

12.4.2 Destination ontology

The T-Agent needs to have information about the country and the different possi-
bilities its places bring about. Usually the packages have little information about
the destinations and the resources available in them. This domain knowledge is
complementary to the package information and very important to infer whether a
trip including certain destinations can satisfy some tourist preferences (e.g. natural
resources). To structure the knowledge about Argentinian tourism, we analyzed
different tourism ontologies and most of them were focused on destinations (see e.g.
[121]) including the resources they have, the activities they offer, etc. Inspired in
them, the following features were extracted for defining the destination ontology in
our prototype.

Destination ::= (Name, Coordinates, Zone, [NaturalResource],
[ArtificialResource], [Activity])

Coordinates ::= (X, Y)
NaturalResource ::= Resource
ArtificialResource ::= Resource
Resource ::= (KindOfResource, Name)

The information of almost fifty Argentinian destinations (i.e. all the destinations
related to the packages used) has been introduced to fill in this ontology. This
information has been extracted from official web-sites.

We use as coordinates the geographic coordinates provided by the Instituto Ge-
ográfico Militar de la República Argentina.3 The geographical zone assigned to
each destination corresponds to the partition of Argentinian provinces into zones
proposed by the Secretaŕıa de Turismo de la República Argentina.4

An example of the destination structure for the Ushuaia city is presented below:

localidad(nombre(ushuaia), provincia(tierraDelFuego),
gps(54.80, 68.31), zona(patagonia),
naturaleza([(parqueNacional,tierraDelFuego), (canal,beagle)

, (bahia,lapatala), (lago,roca), (lago,fagnano)
, (lago,elEscondido), (laguna,negra), (rio,grande)]),

infraestructura([(museo,finDelMundo), (museo,regional)
, (museo,acatushun), (historia,presidio)
, (ingenieria,trenFinDelMundo)],

actividades([avistajeFauna,esqui,navegacion,pesca,trekking]))

The ontology used in this prototype was directly code in a prolog file, but it is

3http://www.geoargentina.com.ar
4http://www.turismo.gov.ar



CHAPTER 12. T-AGENT IMPLEMENTATION 181

possible for the T-Agent to receive an ontology built using an ontology editor (via
XML code).

12.4.3 Special Relations in the domain

As already mentioned in Section 12.3.2, to increase the domain knowledge of the
T-Agent, some special relational predicates have been included in the BC language.
This allows to encode knowledge about related concepts that makes it possible for
the T-Agent to expand the search to other terms related to the ones expressed in
the tourist’s preferences and are used in the selection of the best packages for the
tourist. In this implementation we have considered important to include two kinds
of relations:

1. “to be similar to” relation: The BC includes a set of instances of the
similar predicate on pairs of synonymous or similar concepts according to the
tourism domain, composing a so-called similarity dictionary. As the T-Agent
belief context deals with graded information, these instances may include a
degree g ∈ [0, 1] expressing a sort of semantical distance between terms. The
formulae in this dictionary are structured as:

belU(similar(term1, term2), g)

For instance, we show a fragment of this similarity dictionary:

% accomodation category
belU(similar(apart, hotel3), 0.75)
belU(similar(camping, campamento), 1.0)

% transport category
belU(similar(bus, colectivo), 1.0)
belU(similar(bus, trafic), 0.9)

% nature category
belU(similar(lago, embalse), 0.7)
belU(similar(montaa, serro), 0.8)

2. “Better than” relation: For the accommodation concepts a “better than”
relation has been added to express whether an accommodation is better than
another one. This transitive relation allows the T-Agent to expand the search
of the packages that satisfy the user’s preferences, to those that include ac-
commodations better than the selected one. Two formulae expressing these
relations and the transitive rule in the BD are the following:

belU(mejorQue(hotel5, hotel4)).
belU(mejorQue(hotel4, hotel3)).
belU(mejorQue(X, Y)):- belU(mejorQue(X, Z)),belU(mejorQue(Z, Y)).
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12.4.4 Beliefs on desires fulfillment

The T-Agent needs to compute in which degree a particular desire is believed to
be fulfilled after a plan execution. This means to compute the degree r of the
formula B([αP ]D), where αP is a tourism package and D is a desire (elementary or
combined). This belief degree r is necessary for the agent to estimate the expected
satisfaction E(D,α) of a desire D by a plan αP , as we will see later in Section 12.6.1
where this expectation is estimated by the value E = r · d, where r is the degree of
B([αP ]D) and d the degree of desire D. Notice that, following the model presented
in Chapter 5, the truth degree of B([αP ]D) may be considered as the probability
of making D true after following plan αP . In the following we describe how such
a probability is estimated from according to the different types of desire types and
plans.

Basically, a tourist plan may be considered as a temporal sequence of subplans
and the global satisfaction depends on how user’s preferences are expected to be
satisfied through each stage of the plan trip. As it was presented above, the packages
are structured as:

Package ::= (Id, Provider, Cost, T rip)

where Trip is a travel-stay sequence [(Traveli, Stayi)], i = 1, . . . , n. In our ap-
proach each pair (Traveli, Stayi) is considered as an atomic package stage (sub-
plan), amenable to satisfy some desires. Packages αP are therefore modelled as
composed plans, αP = α1; . . . ;αn, alternating travel and stay sub-plans.

Then, the expected satisfaction E(D,αP ) of a desire D = D1 ∧ ... ∧Dn through
the execution of the plan αP is computed in our model (see Section 12.6.1) from
the expected satisfactions values Eij = E(Dj, αi) of the elementary desires Dj by
the execution of the elementary sub-plans αi. In turn, to compute each of the Eij’s,
the belief degree rij of achieving the desire Dj through the subplan αi execution
(corresponding to the degree of the formula B([αi]Dj)) is needed. This is described
next.

The case of elementary desires

For evaluating the belief degree r in which a package αP will fulfill an elementary
desire D, the agent focuses on either the travel stages or the stay stages in the αP
depending on the kind of desire D specifies. For example, if D is about transport
then, only the travel stages in αP are considered, while if D is related to a natural
resource then only the stay stages of αP are considered. In any case, the belief
degree is computed using a set of rules that depend on the kind of desire and on the
user’s priority criterion.

For example, the BC has a rule setting that “if the desire D is about accom-
modation of category c and stayi of package αP (i.e. the subplan αi) offers an
accommodation better or equal than c, then the belief degree of fulfilling the desire D
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by subplan αi is ri = 1”. In other words, in case D and αi satisfy these conditions,
such a rule would create the formula (B([αi]D, 1) in the agent’s BC theory.

When the tourist’s desire D is related to a destination resource (e.g. natural
resources, activity) the belief degree of fulfilling it by a plan execution has an-
other interesting characteristic. We have noticed that packages have usually limited
information about destinations and their resources. Thus, for belief estimation pur-
poses, besides the package information, the T-Agent may need further knowledge
about destinations. In our prototype this information is structured in a destination
ontology. This amounts to extend the computation of the degree ri of B([αi]D)
to a package-destinations cross inference to assess the fulfillment of the tourist’s
selected preference in a certain destination, using not only the package supplied
information but also the available information about the destination. Therefore,
the strategy which is followed is, for each package stage αi, to evaluate the prob-
ability of αi providing a certain resource D both from explicit information offered
in the package (rPi) and from information inferred from the destination ontology
(rOi). Finally, the T-Agent takes as degree ri the maximum of both estimations, i.e.
ri = max {rPi, rOi}.

Combined desires

The DC theory includes conjunction of positive desires. To evaluate the probability
of fulfilling the conjunction of elementary desires (e.g. (D1 ∧D2)) by the execution
of a package α, we assumed that, as random variables, the elementary desires are
stochastically independent. Then, from the degrees r1 and r2 corresponding to the
elementary desires D1 and D2 respectively, we can compute the belief degree in
achieving their conjunction by executing the plan α using the following rule:

(B[α]D1, r1), (B[α]D2, r2)

(B[α](D1 ∧D2), r1 · r2)

For example, consider the T-Agent has the following combined desire D specified in
the DC:

desU(yLst([(zone, patagonia), (activity, rafting)]), 0.8)
and the agent has also in her belief context BC the belief degrees of obtaining the
elementary desires by a package α, which are respectively:

(B[α]patagonia, 1.0) and (B[α]rafting, 0.7)
Following the rule given above, the T-Agent computes that the belief degree for the
combined desire is:

(B[α](patagonia ∧ rafting), 0.7)



184 CHAPTER 12. T-AGENT IMPLEMENTATION

12.5 Planner Context

The Planner Context (PC) is fundamental for the T-Agent implementation. The
PC unit is assumed to contain a set of available plans, coded as instances of the
predicate planner with paq formulae (see below). The Planner context is responsible
for looking among them for feasible packages. By feasible package we mean a package
that fulfills, to some degree, one of the positive desires (elementary or combined)
and avoids, as post-condition, the satisfaction of the agent’s negative desires above
to a given threshold UmbralN . The set of feasible plans is determined within this
context using an appropriate searching method that takes into account information
injected by bridge rules from the BC and DC units, including positive and negative
desires, information about packages (including their cost), the agent’s beliefs about
package destinations and the estimation of the agent’s desires fulfillment by the
different plan executions. The following forward rule encodes this in the Planner
context.

des(yLst(DeseosP), _), des(nLst(DeseosN), UmbralN),
planner(paq(IdPaq, Proveedor, Costo, _Recorrido)),
bel(contiene(IdPaq, DeseosP), R),
bel(not(contiene(IdPaq, DeseosN)), UmbralN),
bel(costoNormalizado(Costo, CN), 1)
--:
planner(paqSi(IdPaq, Proveedor, CN, DeseosP), R)

For each feasible package, with identifier IdPaq, this rule creates into the PC
theory an instance of the planner predicate with a paqSi formula with identifier
IdPaq. Note that in each instance of a feasible package, its normalized cost (CN ∈
[0, 1]) is used instead of the actual cost. A rule computes this normalized cost as
CN = (Costo/CostoMax) where CostoMax is the maximum cost of all the costs
of feasible packages.

After the PC has identified the set of feasible packages, they are passed to the
Intention context, which is in charge of ranking of these packages according to the
user’s preferences.

12.6 Intention Context

In order to rank the feasible packages to be offered to the user, the Intention context
IC of the T-Agent is in charge of estimating the intention degree for each feasible
package as a trade off between the benefit (expected satisfaction) and the cost of
reaching the user’s desires through that package. Thus, first, this context estimates
the expected satisfaction E(D,α) of a tourist’s desire D assuming she selects a
package α. Second, using a suitable bridge rule, it computes the intention degree
(the truth degree of the formula IαD) towards the desire D by executing a tourist
package α using a function that combines the expected satisfaction E(D,α) and the
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normalized package cost CN . In the following Subsections we give some insights of
how this estimations are implemented in the T-Agent.

12.6.1 Estimating the expected satisfaction of desires

For estimating the expected satisfaction of a tourist’s desire D assuming she selects
a package αP , the underlying idea is to consider that each plan α makes D a binary
random variable, with a probability distribution

Probα(D = true) = r, Probα(D = false) = 1− r

Now, if d is the user’s positive desire degree for making D true, and assuming the
positive desire of making D false is 0, then the user’s expected satisfaction degree
by achieving D through the plan α is clearly

E(D,α) = r · d+ (1− r) · 0 = r · d

Therefore, to estimate the value E(D,α) one needs to estimate both the proba-
bility r of achieving D by α and the (positive) desire degree d for D. These values
can be directly obtained from the BC and DC contexts respectively for atomic pack-
age components and elementary desires. Indeed, if the plan α consists of a sequence
of travel-stay components α = α1; . . . ;αk and the desire D is a conjunction of ele-
mentary desires D = D1 ∧ . . . Dn, then the agent contains in her contexts:

BC: instances (B[αi]Dj, rij), for i = 1, k; j = 1, n and

DC: instances (D+Dj, dj), for j = 1, n, and (D+D, d) where

d = 1− Πj=1,n(1− dj) (see DC context in Section 12.3.2).

and hence, for each i, j we can estimate E(Dj, αi) with the values rij · dj. Then, in
order to come up with a estimated value for E(D,α), we follow the following steps:

(i) E(Dj, α) is computed for each elementary desire Dj, j = 1, n and then

(ii) E(D,α) is estimated for the combined desire D.

Next we give some insights of how the estimation is done first, for elementary and
then, for combined positive desires.

(i) Elementary desires
The expected satisfaction E(Dj, α) of an elementary desire Dj through the execu-

tion of the plan α may be computed from the expected satisfactions Eij = E(Dj, αi)
by the execution of its sub-plans αi, using an appropriate aggregation operator ⊕,
i.e.:

E(Dj, α) = ⊕(E(Dj, α1), . . . , E(Dj, αk))
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For computing each Eij, the agent uses the probabilities rij and desire degrees dj
injected from the BC and the DC respectively by a bridge rule. A set of rules play
the aggregation role to obtain the expected satisfaction. These rules depend on the
kind of desire.

The underlying idea to compute the expected satisfaction of a user’s desire Dj

(with degree dj) is to consider the proportion (in terms of duration) of the package
components where Dj is expected to be satisfied with respect to the whole trip
proposed by the package. Furthermore, the estimation of how much a component
of a package αP (a sub-plan αi) satisfies a preference may be also graded and is
computed depending on what the offer of the sub-plan is, as it is explained next: In
our approach we consider for this estimation the relationship of the tourist’s desire
Dj with the actually proposed in the package D′j:

• if D′j is exactly Dj or “better than” than Dj, the expected satisfaction of Dj

by the package component αi is taken as E(Dj, αi) = rij · dj, where rij is the
belief degree of B([αi]Dj).

• if D′j is similar to Dj to the degree s (see previous subsection 12.3.2), the ex-
pected satisfaction of Dj by the package component αi is taken as E(Dj, αi) =
r′ij · d · s, where r′ij is the belief degree of B([αi]D

′
j).

Then, if the package α is composed by different stages, i.e. α = α1; . . . ;αn, the
general way of computing the expected satisfaction E(Dj, α) of the desire Dj by the
package α, is defined as

E(Dj, α) =

∑
iE(Dj, αi) · Timeαi

TotalT ime
,

where Timeαi
and TotalT ime are computed according to the kind of desire Dj.

For instance, if Dj is about accommodation, Timeαi
denotes the duration (in

days) of the stay αi and TotalT ime is the total duration of the trip. On the other
hand, in the case of D being an activity, if the user’s preferences specify to do the
activity with high frequency (see Section 12.2), Timeαi

is the duration (in hours) of
the activity programmed by αi and TotalT ime is an estimation of the total number
of hours the activity could take during the whole trip.

Example: Let us assume a tourist has an accommodation preference of Apart-Hotel
represented by the desire D:

desU(y(comodidad, apart), 0.7).

Using the similarity relation between this type of accommodation and a 3 star hotel
represented by the instance

belU(similar(apart, hotel3), 0.75)

the T-Agent considers the tourist will also be satisfied to some degree if he is accom-
modated in a 3-star Hotel, i.e. he is assumed to also have the desire D′ represented
by:
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desU(y(comodidad, hotel3∗), 0.7 · 0.75)

The T-Agent evaluates the expected satisfaction of accommodation through the
package holCalafatePatagonia. This package has two stay components: 3 days in
Calafate with Apart-Hotel accommodation and 4 days in Ushuaia with a 3-star Hotel
accommodation (see for details subsection 12.4.1). Considering that in the BC were
computed r1 = 1 and r′2 = 1 then, the expected satisfaction of each one of these two
package components are respectively as follows:
- E1 = r1 · d = 1 · 0.7 = 0.7 and
- E2 = r′2 · d′ = 1 · 0.525 = 0.525

Finally, the expected satisfaction of the accommodation desire by the package
holCalafatePatagonia is computed as the average of the expected satisfactions E1

and E2, considering the duration in days of each stay, i.e.:

E =
(E1 · 3) + (E2 · 4)

7
= 0.6

(ii) Combined desires
If the agent has a combined desire D = D1 ∧ ... ∧ Dn with degree d (i.e. the

formula (D+D, d) is in the DC) and she has selected a plan α, for each desire Dj

the agent can compute the expected satisfaction E(Dj, α) as it was shown in item
(i). Then, the agent can estimate the probabilities:

- Probα(Dj = true) = E(Dj, α)/dj, for each desire Dj and
- Probα(D = true) = Πi=1,nProbα(Dj).

Finally, she can estimate the expected satisfaction of the combined desire as
follows:

- E(D,α) = Probα(D) · d.

The expected satisfaction is then coded in the intention context following the
schema proposed, and using the information introduced by suitable bridge rules
from PC (feasible packages), DC (set of desires), BC (priority selected). As we have
detailed the estimation of the expected satisfaction depends on the kind of desire
(TD) (i.e. preference category and if it is elementary or combined), and is computed
by using different aggregation functions (fes(TD,GD,GR,FU,ES)) that combines
the belief degree of having the desire after a plan execution (GR), the desire degree
(GD) and respect the activity frequency preference selected by the user (FU). The
rule that compute the espected satisfaction degree (ES) is then coded as follows:

planner(paqSi(Id, Proveedor, CN, DeseosP), GR),
des(yLst(D), GD),
bel(frecuencia(FU), 1),
fes(TD, GD, GR, FU, ES)
--: int(es(D,Id), ES)
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12.6.2 Computing the intention degrees

After the T-Agent has estimated the tourist’s expected satisfaction E(D,α) for
each desire D and feasible package α, as a suitable aggregation of the desire degrees
d (GD) and the belief degree in achieving the desire r (GR), the corresponding
intention degrees are computed in the IC. Namely, for each desire D and a feasible
package α to achieve D, the following bridge rule is used to infer a degree for the
formula Iα(D):

PC : fplan(D,α, P,A, c), IC : (E(D,α), e)

IC : (IαD, f(e, c))
(12.1)

This degree is computed, by means of a suitable function f combining the expected
satisfaction of the desire through the plan execution (e, which in turn is function
of r and d) and the cost of the plan (c). Different functions can model different
individual agent behaviors. In the T-Agent this function is defined as a weighted
average:

f(e, c) =
wes · e+ wcost · (1− c)

wes + wcost
(12.2)

where wes and wcost are weights which are set by the T-Agent according to the
priority criterion selected by the user (minimum cost, preference satisfaction). If
the selected priority option is minimum cost then, wc is set greater than wes and if
it is preference satisfaction, wes is given a greater value.

The following bridge rule code infers the intention formulae related to the package
Id with the corresponding intention degree (G):

planner(paqSi(Id, Proveedor, CN, DeseosP), GR),
int(es(D,Id), ES),
bel(prioridad(PU), 1),
f(ES, CN, PU, G)
--: int(paqRecomendado(Id), G)

After the bridge rule has been applied to all the feasible plans, the IC has in its
theory a set of graded intention formulae. The intention degrees are used by the
T-Agent to rank the feasible packages that communicates to the CC. We opted to
select the first nine packages to recommend the tourist.

Finally, the selected packages are passed to the CC unit and then, through the
user interface the T-Agent outputs to the user the ranking as the system recom-
mendation. For instance, Figure 4 shows a tourist’s preference selection and the
resulting recommended ranking is shown in Figure 5. After analyzing the recom-
mended packages, the user is prompted by the system to provide his feedback.
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12.7 Conclusions

A prototype of multiagent Tourism Recommender system has been implemented. A
multiagent approach is suitable for this kind of systems dealing with heterogeneous
and distributed information. Particularly we used a g-BDI architecture for modelling
the T-Agent, showing in this way, that this model is useful to develop concrete agents
in real domains.

We remark that the many-valued model of information representation and rea-
soning in the g-BDI agent, has many advantages for this implementation. First, this
model enables an expressive representation of the domain knowledge (agent beliefs),
the user’s preferences (desires) and the resulting intentions. Secondly, the imple-
mented approach allows the agent to expand the retrieval of feasible packages using
similarity relations and domain knowledge, not explicitly included in the package
information. Also, the treatment of many-valued information makes it possible to
compute in a graded way the expected satisfaction of the different tourist’s prefer-
ences, by the execution of diverse packages. Finally, the intention degree of a plan
towards a desire satisfaction may be computed as a function of diverse factors (e.g.
satisfaction, cost, trust). As we can obtain diverse agent behaviors defining differ-
ent functions for intention computation, these become a crucial point in the agent
model.

The implementation of this recommender system and particular of the T-Agent,
modelled as a g-BDI agent enable as to make some experimentation to validate the
system and also to compare our graded BDI model of agent with a simulated crisp
BDI version of the T-Agent. This experimentation is presented in the following
chapter.
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A theory is something nobody
believes, except the person who
made it. An experiment is
something everybody believes,
except the person who made it.

A. Einstein

Chapter 13

Recommender System Validation
and Experimentation

13.1 Introduction

It has been shown in previous Chapters (11 and 12) that the g-BDI model is useful
to design and implement recommender systems. In this Chapter we present the
validation of the Tourism Recommender system where its main recommender agent,
the Travel Assistant Agent (T-Agent), was modelled using our graded BDI approach.
The experimentation on the case study aims at proving that this agent model is
useful to implement different and rich behaviors. Besides, we show that the results
obtained by recommender agents using graded attitudes improve those achieved by
agents using non-graded attitudes.

The validation process checks whether the Tourism recommender system de-
signed using this agent model is useful and returns suitable recommendations. As
the process of information classification is generally a complex and personal task,
we measure the average system behavior over a given population.

We follow two experimental directions. First, we have performed sensitivity
analysis to show how the g-BDI agent model can be tuned to define concrete agents
having different behaviors, by modifying some of its component elements. For this
purpose, in Experiment 1 we use a Travel agent, called T2-Agent which differs from
the previously introduced T-Agent in the desire context. Later on, in Experiment
2 we implement an agent, called T3-Agent that differs from T-Agent in the bridge
rule used to obtain the resulting intention degrees.

Second, we describe some experiments we have done in order to compare the
performance of recommender agents using the g-BDI model with agents without
graded attitudes. Starting from the T-Agent and the T2-Agent we simulate two
families of non-graded BDI recommenders. The way of doing this was by introduc-
ing some thresholds for belief and desire degrees. We experiment with the same
cases collected in the validation process running them in these agent families. This
experimentation compares the performance of the T-Agent and T2-Agent, both im-
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Figure 13.1: The validation process for the Tourism Recommender System

plemented with the g-BDI agent model, with a family of simulated non-graded BDI
ones. Finally, we present some statistics and conclusions.

13.2 Validation

In the design and implementation stages of a Recommender System (see Chapter
12) we showed that the g-BDI model of agent is useful to model this kind of systems.
In this section we try to answer the question of whether the resulting system is good
as a tourist recommender.

Since the T-Agent is a personal recommender agent, to analyze its behavior the
user’s opinion is key. This recommender system is accessible via Internet1 allowing
an online and a multiuser access. The user’s opinion is gathered after he receives a
ranking of tourist packages. We want to study whether the T-Agent is a personal
agent satisfying, to some degree, a set of different users. This validation process is
illustrated in Figure 13.1 and is explained below.

We use the implementation of the T-Agent modelled as a g-BDI agent as detailed
in Chapter 12. A set of 40 tourism packages are offered to the T-Agent by the
provider agents. We have collected near 70 queries from which we have selected a set
of 52 complete queries (including user’s feedback) made by at least 35 different users,
most of them students of a Computer Sciences Department.2 The preferences and
restrictions of the users, together with the system results and the users’ feedbacks,
constitute our N-cases set. Thus, each case in the dataset is composed by:

• User’s profile: a user ID and his graded preferences and restrictions.

• Agent result: the agent returns a ranking of at most k packages.3

1http://musje.iiia.csic.es/eric/
2Departamento de Cs. de la Computacin, Facultad de Cs. Exactas, Ingeniera y Agrimensura,

Universidad Nacional de Rosario, Argentina.
3the number of ranked packages is a T-Agent parameter, experiments are reported for k=9.
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Figure 13.2: Example of records containing some user profiles (above) and a subset
of the T-Agent ranking together with the corresponding user’s feedback (below)

• User’s feedback: after analyzing the information of the offered plans the
user gives a feedback that may be:

1. Correct order : if the tourist considers that the order of the first three
packages is correct (called Feedback1 in table of Figure 13.2).

2. Different order : if the tourist finds what he wants in the ranked list but
considers that the first three packages are not in the right order. In this
latter case, the user gives his most preferred order (called Feedback2).

3. Incorrect : the user does not agree with the recommendation (called Feed-
back3).

In this validation process we consider that when the user’s feedback is (1) or
(2), this corresponds to a satisfactory agent result, as he can find what he
want among the recommended options.

Actually, in the validation process, we have only taken into account those cases
which included user’s feedback. Examples of some records used and their most sig-
nificant fields are shown in the tables of the Figure 13.2.

Results:
From the selected 52 cases (N-cases) we have separated those having a satisfac-

tory feedback (i.e. Correct or Different order) from the unsatisfactory ones. The
cases where the user gives his own ranking (Different order), are indeed very valu-
able because it means that the user took time to analyze the offers proposed by the
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system, while cases with Feedback 1 (Correct order) may sometimes correspond to
a “quick answer”.

The N-cases are classified by their different feedback categories in Table 13.1.
From these results, the global behavior of the T-Agent may be considered useful in
most cases (73% of N-cases). These are preliminary results and the recommender
systems may be improved to obtain better performance if we want it to be more
qualified.

Consults Correct order Different order Incorrect Satisfactory
(N-cases) (S-cases)

100% 40.4% 32.7% 26.9% 73.1%

Table 13.1: Result of the N-cases in the validation process

In order to give a general measure of the T-Agent results over the satisfactory
cases (S-cases), we have evaluated how close is the T-agent ranking respect to the
user’s own ranking. For this, we choose the block (Manhathan) distance between
the position of the first three packages selected by the user and their position in the
system ranking. This distance was adopted because it is appropriate for capturing
positional differences.

Namely, assume the user’s feedback is Ui = (Pi1, Pi2, Pi3) and the T-Agent rank-
ing for this query is Ri = (R1, R2, ..., R9). Then, if Pi1 = Rj, Pi2 = Rk, Pi3 = Rn,
the distance between the user’s and the system rankings is defined by:

Dist (Ui, Ri) = |1− j|+ |2− k|+ |3− n|

As for example consider the first case showed in Figure 13.2 where the T-Agent
ranking of packages is as follows:

Ri= (ayaMinaClavero, ayaLaCumbre, ayaLosCocos, ayaVillaGralBelgrano, ayaV-
illaCarlosPaz, expMendoza, holMendozaVinos, holEsquel, holBariloche7Lagos)

and the user’s own ranking is:

Ui=(expMendoza, ayaLaCumbre, ayaMinaClavero)

then, the distance for this case is:

Dist (Ui, Ri) = |1− 6|+ |2− 2|+ |3− 1| = 7

Notice that for the cases with Correct order feedback (Feedback 1) the distance
is 0 and in the worst case this distance takes the value of 18. The table in Figure 13.3
(left) shows the block distances for all the cases with satisfactory user’s feedback
(S-cases) and the distance frequencies for S-cases can be seen in Figure 13.3 (right).
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Case Distance Case Distance
Id1 4 Id29 0
Id3 4 Id30 7
Id4 6 Id31 0
Id5 0 Id32 0
Id6 6 Id34 0
Id7 2 Id35 0
Id9 2 Id36 11
Id10 0 Id38 1
Id11 0 Id39 0
Id13 0 Id40 0
Id14 0 Id41 0
Id15 3 Id42 0
Id18 11 Id44 0
Id19 3 Id45 0
Id20 0 Id47 3
Id21 7 Id48 14
Id22 17 Id49 0
Id27 0 Id50 0
Id28 0 Id52 11

Average Distance 2.95

Figure 13.3: Distances of the T-Agent
over the S-cases (left) and the correspond-
ing frequencies (right).

We analyzed the incorrect cases and the comments attached (if any) about the
user dissatisfaction with respect to the system recommendation and they were some-
what scattered. Apart from that, in some of these incorrect cases we detected a sys-
tem shortcoming related to the tourism knowledge base, the destination ontology
used for this experimentation was incomplete with respect to the popular knowledge.
We found another limitation due to the system interface that was built for experi-
mental use and need more detailed explanations about the different items required
to the users, to avoid misunderstandings.

Therefore, we believe the T-Agent behavior may be improved by completing
these ontologies and refining the user interface.

Finally, the S-cases (see table in Figure 13.3) yield an average distance of 2.95
in the scale [0, 18], and hence giving a good global measure result. Summarizing,
we have obtained preliminary satisfactory results of the Recommender System in
this validation process, that allows us to claim that “the T-Agent recommended
rankings over Tourism packages are in most cases near to the user’s own rankings”.
Even thought we recognize that future work is needed to improved the system in
the pointed directions, we consider that these first results on the N-cases allow as
to focus on the experimentation of our agent model using this Recommender.

13.3 Experimentation

In this section we present the experimentation we have made in two directions.
The first one, a Sensitivity analysis, has the purpose of finding out how much the
general g-BDI agent architecture can model different behaviors by varying some of its
components. The second one, aims at checking whether the distinctive feature of the
g-BDI agent model, which is the gradual nature of mental attitudes, actually makes
a difference (in terms of better results) with simulated BDI non-graded models.
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In Figure 13.4 we present the experimentation schema. The Sensitive analysis is
based on Experiments 1 (Exp-1) and 2 (Exp-2). Experiments 3 (Exp-3) and 4
(Exp-4) correspond to the comparison between graded agents (g-BDI model) and
non-graded ones (c-BDI model).

Figure 13.4: Experimentation scheme

13.3.1 Sensitive model analysis

We have performed two experiments to analyze how the overall recommender sys-
tem behavior can be modified by tuning some of the T-agent components. First, in
Experiment 1 we change the theory of one of the mental contexts, the desire context
DC, using a different method to compute the desire degree of preference combina-
tions. Then, in Experiment 2 we modify a bridge rule definition by changing the
function used to obtain the intention degree.

Experiment 1

(1) We use the tourism recommender agent T2-Agent : this agent was developed
changing the desire context of the T-Agent (see Section 12.3.2). The modifi-
cation in this context is related to the way the desire degrees are computed.
The underlying idea was to weight not only the preference degrees but also
the number of preferences we are considering in each combined desire, as to
have a more dispersed distribution of desire degrees, giving relevance to the
desires that combine a higher number of preferences. For this purpose, in the
Desire Context of the T2-Agent we use as degree for desire D the value

d′ = 1/2 ∗ (d+
CardD

CardPref
)
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where d is the desire degree used in the T-Agent (described in Section 12.3.2),
CardD is the number of preferences considered in the desire D and CardPref
is the total number of preferences selected by the user.

For example, if a user’s graded preferences (elementary desires) are as follows:

desU(y(zona, patagonia), 0.9)

desU(y(transporte, avion), 0.7)

desU(y(comodidad, hotel3), 0.6)

In the T-Agent we compute the degrees for the combined desires as:

desU(yLst([(zona, patagonia), (transporte, avion)]), 0.97),

where d1 = 0.97

desU(yLst([(zona, patagonia), (transporte, avion),

(comodidad, hotel3) ]), 0.988), where d2 = 0.988

For the T2-Agent we proposed to use d′1 and d′2 instead:

d′1 = 1/2 ∗ (0.97 +
2

3
) = 0.818 and d′2 = 1/2 ∗ (0.988 + 1) = 0.994

We notice that the difference between these desire degrees in T2-Agent are
greater than the corresponding one in T-Agent (e.g. d′2 − d′1 = 0.176 and
d2 − d1 = 0.018).

(2) We consider the S-cases, the set where the results were satisfactory (see Section
13.2).

(3) The user’s preferences of the S-cases are run in the T2-Agent.

(4) We compare the T2-Agent results with the S-cases user’s feedbacks we have
for the T-Agent results and compute distances.

Results:
In this experiment we are comparing the ranking proposed by the T2-Agent with

the first three packages extracted from the T-Agent recommendation or the user
feedback. Some of these packages may not be found in the T2-Agent answer. Again,
we use the Block distance to have a global measure of the T2-Agent performance.
For the missing packages, we take an optimistic approach assuming that the distance
is 10 (supposing that the missing package would be the first one immediately after
those appearing in the ranking). This approach was decided because we consider
this is a kind of “indirect measure” (we are comparing the T2-Agent results with
the feedbacks the users gave to the T-Agent results) and can give us worst results
than in a direct one.
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Two global measures are computed in this experiment, the average of distances
excluding the cases having missing packages in the current ranking and the total
average, that includes all the cases. The distance frequencies corresponding to the
T2-Agent results for all the S-cases, including the distance average and the total
average, are shown on the Table 13.2 and illustrated in Figure 13.5.

The average of the distances between the T2-Agent rankings and those of the
S-cases is 2.85 and the total average is 4.23. Comparing the first global measure
with the one obtained for the T-Agent results, we notice that this measure is slightly
better than the one computed for the T-Agent. We believe that had we had a direct
measure of the performance of the T2-Agent (comparing the T2-Agent ranking with
the corresponding user’s feedback) we would have obtained better results. We can
conclude that the recommenders T-Agent and T2-Agent have similar behavior, but
results of the second one are a little bit closer to the user’s rankings.

Experiment 2

The same steps followed in Experiment 1 were taken but, in this experiment, for
item (1) we use a new tourism recommender agent called T3-Agent. This new agent
was defined from T-Agent by changing one of its bridge rules. Namely, we have
modified the function that is used by bridge rule 12.1 (described in Chapter 12.6)
to compute the intention degree of a package α in order to satisfy a set of user’s
preferences ϕ (Iαϕ). We have used for T3-Agent a function of the desire degree (d),
of the belief degree of satisfying the goal by the plan execution (r) and the cost
of the plan (c): f(d, r, c). This function assigns an intention degree according to
two different priorities: Preference Satisfaction or Minimum Cost, by following two
lexicographic orderings, namely:

• when the Preference Satisfaction criterion is selected, we consider to assign
as the degree of intention Iαϕ the 3-tuple (d′, r, 1 − c), where d′ is the desire
degree of ϕ, r is the belief degree in satisfying the user’s preferences ϕ by
the considered plan α, and c is the cost of the plan α. Then, we use the
lexicographic order over the product space [0, 1]3 to rank the 3-tuples and
hence, the intentions.

• when the Minimum Cost criterion is selected, we consider the degree of Iαϕ
to be the 3-tuple (d′, 1− c, r) and then, intentions are again lexicographically
ordered.

Results
The distance frequencies of the results of the T3-Agent for the S-cases are shown

in Table 13.2 and are illustrated in Figure 13.5 (and compared with the ones obtained
by T-Agent and T2-Agent). The average of the distances in this case was 4.97, worst
than the previous experiments, and the total average is 6.73. This means that the
ranking obtained by this T3-Agent is farther from the user’s ranking obtained in the
validation process than the results of the previous versions T-Agent and T2-Agent.
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This fact does not necessarily mean that T3-Agent behavior is worst, perhaps it
finds different options from these found by the T-Agent.

In summary, we can state that the g-BDI model allows us to easily engineer
recommender agents showing different behaviors.

Distance Frequency
T-Agent T2-Agent T3-Agent

0 21 11 5
1 1 4 3
2 2 4 3
3 3 5 3
4 2 1 2
5 0 1 2
6 2 4 3
7 2 2 0
8 0 0 3
9 0 0 2
10 0 1 3
11 3 2 1
12 0 1 4
13 0 1 1
14 1 0 1
17 1 0 0
18 0 0 1
26 0 0 1
30 0 1 0

Average 2.95 2.85 4.97
Tot.Average 2.95 4.23 6.73

Table 13.2: Distance frequencies for T-Agent, T2-Agent and T3-Agent.

Figure 13.5: Distance frequencies for T-Agent, T2-Agent and T3-Agent.

13.3.2 Graded vs. non-graded model comparison

In these experiments we compare the g-BDI agent model with non-graded (two-
valued) BDI architectures. We want to show that the results obtained by our rec-
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ommender agents using graded attitudes improve those achieved by agents using
non-graded attitudes.

We use the T-Agent and T2-Agent prototypes as the g-BDI model implementa-
tions. Since the development of a Tourism Recommender using a traditional BDI
architecture (e.g. dMARS, Jack, Jason or Open-PRS) would be a time-demanding
task and since also different factors would possibly interfere in the comparison of
the results (e.g. how the agent builds plans, which decision process she uses), we
have decided to use simulated non-graded versions of the g-BDI architecture of the
tourism agent. Starting from the recommender agents T-Agent and T2-Agent we
keep their multi-context architecture and their logic schemes for contexts.4 Then,
we use some thresholds to make the desire and belief attitudes two-valued (i.e., their
degrees will be allowed to only take values in {0, 1}). The intention degrees have
been left many-valued as to obtain a ranking of the selected packages.

Experiment 3

We have followed the same procedure as in previous experiments but, in this case,
we define a family of Tourism Recommender agents called C1j–Agents, derived from
the T-Agent and that simulate two-valued models of BDI agents.

Each C1j–Agent has been developed by introducing thresholds in the context
DC (τd) and in the context BC (τb) of the T-Agent, to decide which formulae in
these contexts are considered to hold (i.e. those with degree 1) and which do not
(i.e. those with degree 0). Thus, the following internal processes are introduced in
these contexts:

• DC: before introducing formulae like (D+φ, d) in the DC it is checked whether
d ≥ τd; if so, the formula (D+φ, 1) is added in the context, otherwise this
desire is discarded (assuming (D+φ, 0)).

• BC: the same happens when the belief context evaluates the degree r of for-
mulae like (B[α]ϕ, r), if r ≥ τb then the formula (B[α]ϕ, 1) is added to the
BC, otherwise its degree is considered to be 0.

As for the setting of the different thresholds, we analyzed the desire and belief
degrees distribution in the T-Agent previous executions. Some tourists used a scale
[1,5] to give their preferences but most of them used around five different values
between [3,9]. This means that most of the desire degrees concentrate in the interval
[0.3, 1] (as the degree of conjunctions is greater or equal than their components
degrees). With respect to belief degrees, the estimation of the satisfaction by a
plan execution, usually took values in the interval [0.5,1]. Given these observations,
we experimented with different thresholds (i.e. 0.4, 0.5 and 0.6) that were a good

4This is possible as the many-valued frameworks used for the mental contexts are extensions of
classical logic used in the two-valued models.
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representation of the variations in the agents’ results. Thus, we have defined the
following “two-valued” BDI agents:

• C14-Agent uses τd = τb = 0.4

• C15-Agent uses τd = τb = 0.5

• C16-Agent uses τd = τb = 0.6

Then, we run the S-cases in each agent of this two-valued family and compared
the results with the S-cases feedback by computing the Block distances. As in
previous experiments we have used the distance average and the total average as
global measures. The results are shown in Table 13.3.

Experiment 4

We repeat Experiment 3 but using a second family of non-graded Recommender
agents, called C2j-Agents. To create this family we start from the T2-Agent (see
Experiment 1). We use the same thresholds and procedure as in Experiment 3, to
make the desire and the belief degrees two-valued:

• C24-Agent uses τd = τb = 0.4

• C25-Agent uses τd = τb = 0.5

• C26-Agent uses τd = τb = 0.6

Results
The distance frequencies of the results of these two families of crisp agents de-

riving from T-Agent and T2-Agent are respectively shown on Figures 13.6 and 13.7
.

Figure 13.6: Distance frequencies for the T-Agent family.
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Figure 13.7: Distance frequencies for the T2-Agent family.

On the one hand, analyzing the graphic corresponding to the T-Agent family
(Figure 13.6), we can see that the performance of the T-Agent is the best, reaching
the maximum of the distance frequencies at 0 and furthermore, almost all the relative
maximums are near 0. The behavior of the non-graded agents (i.e. C14-Agent, C15-
Agent and C16-Agent) are in general very similar and most of the relative maximums
are spread in the interval [0,15]. The absolute maximum move to a distance value of
30, meaning that an important number of queries had feedback packages not found
in the corresponding rankings made by the different C1j-Agents. In this sense, C14-
Agent and C15-Agent behave better than C16-Agent, as their results give lower
frequency value at 30.

On the other hand, the distance frequencies graphic of the T2-Agent family (Fig-
ure 13.7), also shows that the performance of the T2-Agent using the graded model
is better than the non-graded agents in this family. Besides, in this experiment
we obtain similar good results for C24-Agent and C25-Agent (better than the non-
graded ones for the T-Agent family). Also, the relative maximum of the frequencies
for the C26-Agent are very near 0. But in this case, the absolute maximum (reach at
a distance frequency of 30) increased its value, meaning that many packages selected
by the users are out of this agent ranking.

In these experiments, the distance average and total average are computed as in
previous experiments and are gathered in the following table 13.3.

Comparing the averages obtained with the two-valued models of recommenders
(deriving from T-Agent and T2-Agent) we can see that those corresponding to the
thresholds 0.4 and 0.5 are very similar. The average achieved with the threshold
0.6 is the best in the T-Agent family and is almost the best in the T2-Agent one,
but the total average is greater, meaning that we have more packages of the S-cases
feedback out of the system rankings. The number of missing packages, reflected in
the total average and in the frequencies of the distance values over 18, is a good
indicator of the similarity between the user’s ranking and the agent results. In both
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T-Agent family T2-Agent family
Average Tot. Average Average Tot. Average

g-BDI model 2.95 2.95 2.85 4.23
τd = τb = 0.4 6.43 14.96 4.04 8.36
τd = τb = 0.5 6.43 14.83 3.50 8.07
τd = τb = 0.6 4 17.41 3.55 14.43

Table 13.3: Distance average results for the T-Agent and T2-Agent families.

families we can see that these indicators are better for the recommenders using the
graded model. Furthermore, we can see that the distance average (excluding the
missing packages) of the recommenders using graded models are better than the
simulated two-valued ones (using different thresholds).

These results give support to the claim that the recommender agents modelled
using graded BDI architectures provide better results than the ones obtained using
two-valued BDI models.

13.4 Data analysis

The purpose of this analysis is to investigate which of the differences found in the
different experiments we carried out are statistically significant, meaning that the
differences observed among the distance averages are significant and hence, the agent
behaviours are different.

First, we present some descriptive data resuming the results obtained with the
different agents used, namely: T-Agent, T2-Agent and T3-Agent (g-BDI mod-
els); C14-Agent, C15-Agent and C16-Agent (T-Agent two-valued family); and C24-
Agent, C25-Agent and C26-Agent (T2-Agent two-valued family). Then, to compare
the different results, we apply the Analysis of Variance (ANOVA), we use as the
analysis variable the Block distance between the agent results and the S-cases feed-
backs (described in Section 13.2).

In this analysis we consider all the different agents’ results over all the S-cases
hence, we also take into account the results having missing packages. Then, the
number of queries considered for each agent is S-cases cardinality (38 cases for this
experimentation). For the descriptive analysis we extracted the following informa-
tion: the total distance average (Tot. average), standard deviation and maximum
distance. The minimum distance takes value 0 in all cases. The descriptive infor-
mation for the different agents is gathered in the Table 13.4.

The total average for the graded agent models T-Agent,T2-Agent and T3-Agent
are better than the two-valued families, as it is shown in Figure 13.8.

Next, we apply the Analysis of Variance (ANOVA) for the distances of the dif-
ferent agents’ results over the S-cases to analyze whether the differences between
the total averages obtained by the different agent’s results, are significant. The clas-
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Agent Tot. Average Standard deviation Maximum
T-Agent 2,95 4,52 17
T2-Agent 4,23 5,74 30
T3-Agent 6,73 5,75 26
C14-Agent 14,97 11,39 30
C15-Agent 14,84 11,24 30
C16-Agent 16,76 12,23 30
C24-Agent 8,37 8,87 30
C25-Agent 8,08 8,95 30
C26-Agent 14,45 12,08 30

Table 13.4: Descriptive measures of the distances obtained over S-cases, using dif-
ferent agents.

Figure 13.8: Total averages for the different agents.

sic ANOVA includes information about: degrees of freedom (DF), Sums of Squares
(SS), Mean Square (MS), Test Statistic (F) and P-value, representing the probability
that our hypothesis “ the distance averages of the different agents’ results are equal”,
is true. In this analysis we consider our eight different agents whose behaviour we
want to compare, and each case in S-cases set is consider as a block thus, we have
38 different blocks. The ANOVA results for our case study are presented in Table
13.5.

As the P-value are very small, we found that the total average differences among
the agent’s results over S-cases are significant. Thus, we decided to analyze, using
some statistical tool, which of these differences were statistically significant. For
this purpose, the Tukey confidence intervals [15] were built for the distance differ-
ences between pair of agents’ results. For a particular interval, if it is the case that
the value 0 is included in the interval, the corresponding difference is not consider
statistically significant.

Among all the possible comparisons we consider relevant for our experimentation:

1. the differences between the results of T-Agent with the other graded agents:
T2-Agent and T3-Agent, and with its corresponding two-valued family: C14-
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Source of DF SS MS F P-value
variation
Agent 8 8110.76 1016.07 19.46 0.000
Block 38 14074.63 370.38 7.09 0.000
Error 295 15401.40 52.21 19,46
Total 341 37586.79 52.21 19,46

Table 13.5: ANOVA for the distances between the different agents’ results and the
S-cases

Agent, C15-Agent and C16-Agent.

2. the differences between the T2-Agent with T3-Agent, and with its correspond-
ing two-valued family (C2j-Agent).

In the following we describe these comparisons supported by Tukey’s intervals:

1. The Figure 13.9 shows the simultaneous Tukey’s confidence intervals (95%),
for the difference between the T-Agent average and the other agents’ averages
(µagent − µT−Agent) over S-cases. Where respectively Ll represents the lower
limit of the confidence interval, C the center (is the difference between the
distance averages of the corresponding agents’ results), and Lu its upper limit.

Agent Ll C Lu
T2-Agent -3,856 1,289 6,435
T3-Agent -1,356 3,789 8,935
C14-Agent 6,881 12,026 17,172
C15-Agent 6,749 11,895 17,040
C16-Agent 8,670 13,816 18,961

Figure 13.9: Tukey’s confidence intervals for the differences between T-Agent and other
relevant agents (µagent − µT−Agent).

In the cases where the interval does not contain the value 0, the difference
between the averages we are comparing are considered statistically significant.
As can be seen in Figure 13.9 the results of T-Agent does not present significant
differences with T2-Agent and T3-Agent results. Even so, we can notice that
the last case is in a limit situation (i.e. Ll is near 0). On the other hand,
they clearly present significant differences with C14-Agent, C15-Agent and
C16-Agent results.

2. The Figure 2 shows the simultaneous Tukey’s confidence intervals (95%), for
the average differences between the T2-Agent with the T3-Agent, and with
the corresponding family of two-valued agents (C2j-Agent).

The Tukey’s intervals in Figure 2 show that the results of T2-Agent do not
present significant differences with the T3-Agent ones. On the other hand,
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Agent Ll C Lu
T3-Agent -2,646 2,500 7,646
C24-Agent -1,209 3,976 9,161
C25-Agent -1,304 3,842 8,988
C26-Agent 5,065 10,211 15,356

Figure 13.10: Tukey’s confidence intervals for the differences between T2-Agent and other
relevant agents (µagent − µT2−Agent).

they present significant differences with C26-Agent. Besides, we found that
the interval corresponding to C24-Agent and C25-Agent differences are in a
limit situation (the corresponding Ll are slightly higher than 0). We believe
that in the case of considering a greater number of cases, or a lesser confidence
percentage in the Tukey’s intervals, these results may also present a significant
difference.

13.5 Conclusions

In this Chapter we have focussed on the validation and experimentation of g-BDI
agents using as a case study a Tourism recommender agent. First, the results of
the validation performed allows us to conclude that g-BDI agents are useful to build
recommender systems in real and rich domains such as tourism. Second, we have
also performed a sensitivity analysis showing that a g-BDI agent architecture can
engineer concrete agents having different behaviors by suitably tuning some of its
components. The results of a third experiment support our claim that the distinctive
feature of recommender systems modelled using g-BDI agents, which is using graded
mental attitudes, allows them to provide better results than those obtained by non-
graded BDI models. Finally, supported by the analysis of variance we found that
even there are any difference among the results given by the different agents modelled
using the g-BDI architecture (i.e. T-Agent, T2-Agent and T3-Agent) they are not
statistically significant, but the differences between the graded agents T-Agent and
T2-Agent and the families of two-valued agents are significant.



Chapter 14

Discussion

In this final Chapter we present the different contributions of this Thesis. In the
different Chapters of this dissertation we have presented partial conclusions and now
we gather the most relevant ones. Besides, we present some future lines of work that
has been opened during this research work. Finally, we list the related publications
to the evolution of this Thesis.

14.1 Contributions of this Thesis

The focus of our research work has been to develop a graded intentional agent ar-
chitecture. In this direction we have proposed a formal well-grounded agent model
capable of representing and reasoning with graded mental attitudes. Besides, our
aim was to give this model computational meaning and also to develop a method-
ology to engineer concrete agents based on this architecture. Thus, we have made
contributions to diverse areas related to the core of our Thesis work as preference
representation and reasoning, process calculi and agent-based software engineering.

14.1.1 Contributions respect to BDI architectures

The main contribution of this Thesis is the proposal of a general graded BDI agent
model. In this model, the agent graded attitudes have an explicit and suitable
representation. Belief degrees represent the extent to which the agent believes a
formula to be true. Degrees of positive or negative desires allow the agent to set
different levels of preference or rejection respectively. Intention degrees also give a
preference measure but, in this case, modelling the cost/benefit trade off of achieving
an agent’s goal. Then, agents having different kinds of behaviour can be modelled
on the basis of the representation and interaction of their graded beliefs, desires and
intentions.

We consider our Thesis work is an important contribution in the agent architec-
tures field. Our g-BDI architecture is more flexible than classic BDI models and we
have shown that is capable to develop agents with improved performance.

209
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Several factors have contributed to the importance of the BDI model in the Agent
community. The BDI architecture is one of the best models of practical reasoning
that is based on well understood logical foundations. Besides, this model has proved
to have the essential components to cope with complex, real world applications.

As we mentioned in Chapter 2 there is a family of BDI architectures. In a wide
sense, they are models of practical reasoning that explicitly represent the agent
mental attitudes i.e. belief, desire and intentions, perhaps among other attitudes.
In the following items we point to the most relevant characteristics that distinguish
our g-BDI model with respect to the generalities of the BDI family:

• The g-BDI architecture includes an explicit representation of agent uncertain
beliefs, and graded desires and intentions. These graded attitudes are repre-
sented by well-founded fuzzy modal logics. Then, diverse uncertainty models
can be represented to reason about the different attitudes, by defining suitable
modal theories over suitable many-valued logics.

• The g-BDI model is specified using multi-context systems. This specification
enables to use different logics in a way that keeps the logics neatly separated.
This either makes it possible to increase the representational power of BDI
agents —selecting the most suitable logic for each attitude, or to simplify
agents conceptually —having the different logics in separate contexts. Then,
the MCS specification of g-BDI agents has several advantages from both a
software engineering and a logical point of views.

• To represent the agent beliefs, the belief language is built over a dynamic logic
language, as to explicitly represent and reason about actions and the changes
their executions produce.

• With respect to desires, besides representing graded positive desires our agent
model includes the formalization of graded negative desires, to represent re-
spectively the agent desired and rejected states.

• In our approach, an agent intention is considered a pro attitude that results
from the agent beliefs and desires, and thus, is not a basic attitude (as pro-
posed in [125]). Intentions, as well as desires, represent another type of agent
preferences. However, we consider that intentions cannot depend just on the
benefit, or satisfaction, of reaching a goal (represented by desire degrees), but
also on the world state and the cost of transforming it into a world where the
goal is satisfied. Then, by allowing a graded representation of the strength of
intentions we are able to attach to intentions a measure of the cost/benefit
relation involved in the agent actions towards the intended goal.

• For the different mental attitudes we have presented a sound and complete
basic logic. In the case of beliefs, two logic frameworks have been formalized
to represent different uncertainty models. In the case of desires, different logic
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schemas were proposed to represent alternative constraints between positive
and negative desires, over a formula and its negation.

• In the g-BDI architecture the interrelation among attitudes, as for example
different realisms, may be suitably represented by bridge rules (see Section
7.2).

• The g-BDI agent model takes advantage of the agent graded beliefs and de-
sires (both positive and negative) in the agent deliberation process to derive
graded intentions. Different agent behaviours can be modelled by combining
in different ways these factors. This is tunned by a particular bridge rule.

The agent performance may be improved by using these graded attitudes as
it was shown in the experimentation of a case study (see Chapter 13).

14.1.2 Contributions on related fields

Besides the definition of this novel g-BDI architecture, we have made some additional
contributions that are situated on the following fields:

1. Knowledge representation and reasoning: a logical framework with a
sound and complete axiomatics for representing desires and intentions, was
proposed.

Considering the desire representation in our agent model, we based our work
on the bipolar model due to Benferhat et al. [12]. We have extended the state
of the art by giving a sound and complete axiomatics and defining different
logical schemas to represent some additional constraints over preferences. In
addition, we have presented a logical system for intentions and we have shown
that the framework is expressive enough to describe how desires (either positive
or negative), together with other information, can lead agents to intentions.

2. Process calculi: a Multicontext calculus (MCC) to define operational seman-
tics for multi-context systems was developed and we used it for giving semantics
to the g-BDI agent model.

In order to cope with the operational semantics aspects of the g-BDI agent
model, we have first defined a Multi-context calculus (MCC) for Multi-context
systems (MCS) execution. The calculus proposed is based on Ambient calculus
[28] and includes some elements of the Lightweight Coordination Calculus
(LCC) [148]. The operational semantics for this language was given using
Natural Semantics.

We expect that MCC will be able to specify different kinds of MCSs. Particu-
larly, we have shown how graded BDI agents can be mapped into this calculus.
Through MCC we have given this agent model computational meaning and in
this way, we moved one step closer to the development of an interpreter of the
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g-BDI agents. We think that the implementation of agent architectures using
process calculi, in particular ambient calculus, would give a uniform framework
for agent architectures, multiagent systems and also electronic institutions.

3. Agent based software engineering: a methodology for engineering agent
based systems composed by agents designed as g-BDI agents, was presented.

We have proposed a software engineering process to develop graded BDI agents
in a multiagent scenario. The aim of the proposed methodology is to guide
the design of a multiagent system starting from a real world problem. The
methodology presented has been built by adapting and extending previous
approaches [88, 118, 159] in order to engineer agents with a more complex in-
ternal architecture. Our work was inspired in some sense by the design process
used in [141] where the social aspects of design are considered, and the Sys-
tem Design phase is clearly separated from the Agent Design phase. Then, the
proposed methodology is composed by two fundamental phases: the System
Design phase, that has the purpose of determining the agent types composing
the system and the Agent Design phase that is focussed on modelling g-BDI
agents. We extract the necessary elements from the System Design phase to
design the different types of agents using the proposed architecture. This pro-
cess is done in two stages. The first one, deals with the logical skeleton of the
multi-context specification of g-BDI model. The second one, following a flow
“goals-feasible plans-beliefs-intentions” complete the agent design, filling the
contents (theories) of the different contexts.

Furthermore, the proposed process to develop g-BDI agents contributes to
bridge the gap from the external functionalities assigned to a particular agent
(in the System design phase), to the elements that composed the architecture
(in the Detailed design stage). Besides, we have designed and implemented a
case study in the tourism domain so as to show how the proposed methodology
works.

Through the design and implementation of a Tourism recommender system,
where one of its principal agents was modelled as a g-BDI agent (see Chapters
11 and 12), we have come all the way from the formal g-BDI model to a concrete
agent implementation.

Then, the validation and experimentation of g-BDI agents was carried out by
using as a case study this recommender system (detailed in Chapter 13). First,
the results of the validation performed allowed us to conclude that g-BDI agents
are useful to build concrete agents in real world applications. Second, we have also
performed a sensitivity analysis that showed that a g-BDI agent architecture can
engineer agents having different behaviors by suitably tuning some of its components.
The results of a third experiment gave support to our claim that “the distinctive
feature of recommender systems modelled using g-BDI agents, which is using graded
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mental attitudes, allows them to provide better results than those obtained by non-
graded BDI models”.

14.2 Future work

This thesis has opened several possible new areas for further research. The main
topics for future work are described below.

• Social aspects:

We have presented in Chapter 8 preliminary work related to the socialization
of the g-BDI agent model. With this aim we have included a social context to
represent different kinds of trust and reputation in other agents. On the one
hand, we have modelled in the social context the filtering of the agent infor-
mation interchange. On the other hand, the social trust related to delegation
was also considered.

In this direction, an important topic for further work is to consider how to
evaluate the trust in other agents, and how the agent updates this trust model
along time, and after different interactions with the agent society.

• Dynamic aspects:

To model agents that interacts in dynamic environments, it is important for
the g-BDI agent to represent in relation to her beliefs, desires and intention,
the notion of time. Then, we need to incorporate some elements of temporal
logics to our logical framework.

Another key problem related to the dynamic aspects of this agent model is
to represent some intention reconsideration policy. It is clear that the agent
should at times drop or reconsider some intentions. But reconsideration has
a cost and is closely related to the problem of balancing the agent pro-active
and reactive behavior, in relation to the environment dynamism.

• Revision in g-BDI Agents:

As the agents interact in a dynamic and changing world, they may be capable
to deal with inconsistencies. As our model is specified by using multi-context
systems we consider important to set a general process for multi-context sys-
tem revision an then, specialize it for the g-BDI agent model.

In a Multi-context system, the theory of each context is composed of formulae
coming from different provenance. Firstly, it has initial formulae. Then, the
derivations from inner deductions will be added. Lastly, using bridge rules,
other formulae may be introduced as the bridge rule’s preconditions are satis-
fied. This set of formulae without any check may be inconsistent. Then, in a
dynamic framework, it is needed a process to maintain the context consistency.
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We belief that an argumentation based revision process for multi-context sys-
tem is a promising direction of future work.

• Experiment the g-BDI model in other applications:

We have designed and implemented a tourism recommender system where its
main recommender agent, the Travel Assistant Agent, was modelled using
our graded BDI approach. The experimentation on the case study proved
that this agent model is useful to implement different and rich behaviours.
Besides, we showed that the results obtained by recommender agents using
graded attitudes improved those achieved by agents using non-graded ones.

Further work is necessary to experiment with the g-BDI architecture to model
agents in other domains. We have preliminary good results on the use of the
g-BDI model in the design of an educational recommender system, to give
recommendations about learning objects, taking into account the subject and
the user’s cultural and preference characteristics [8, 33, 44]. We belief that the
model may be applied to other domains.

14.3 Related publications

The publications listed below are direct consequence of the evolution of this disser-
tation in the last four years:

• Casali A., Godo L. and Sierra C., Modelos BDI Graduados para Arquitecturas
de Agentes. Proc. of ASAI 2004, 33JAIIO, 13 pg, Córdoba, Argentina, 2004.

Also in Revista Iberoamericana de Inteligencia Artificial, AEPIA, N 26, Vol 9,
pp 67-75, 2005.

• Casali A., Godo L. and Sierra C., Graded BDI Models For Agent Architec-
tures. Leite J. and Torroni P. (Eds.) CLIMA V, Lecture Notes in Artificial
Intelligence LNAI 3487, 126-143, Springer-Verlag, Berling Heidelberg, 2005.

Also in Proceedings of European Workshop of Multiagent Systems (EUMAS’04),
Barcelona, Spain, 2004.

• Casali A., Godo L. and Sierra C., Multi-Context Specification for Graded
BDI Agents. Proceedings of the Doctoral Consortium - Fifth International
Conference on Modeling and Using Context (CONTEXT-05), Research Report
LIP 6, Paris, Francia, 2005.

• Casali A., Godo L. and Sierra C., Modeling Travel Assistant Agents: a graded
BDI Approach. In Max Bramer (Ed.), IFIP-AI, WCC. Artificial Intelligence
in Theory and Practice., 415-424. Springer Verlag, 2006.
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• Casali A., Deco C., Bender C. and Motz R., A Multiagent Approach to Edu-
cational Resources Retrieval. In Proceedings del Workshop Inteligencia Artifi-
cial en Educación WAIFE, ASAI 2006, 35 JAIIO,35-41. Mendoza, Argentina,
2006.

• Casali A., Godo L. and Sierra C., A Methodology to Engineering Graded
BDI Agents. In Proceedings WASI-CACIC 2006, 12pag. Potrero de Funes,
Argentina, 2006.

• Casali, A., Von Furth, A., Godo, L., Sierra, C., A Tourism Recommender
Agent: From theory to prectice. In Proceedings WASI-CACIC 2007 1548-
1561. Corrientes, Argentina, 2007.

A revised and extended version will be published in Revista Iberoamericana de
Inteligencia Artificial, AEPIA, to apear, 2008.

• Casali A., Godo L. and Sierra C., A Language for the Execution of Graded
BDI Agents. In Proceedings of Formal Approaches to Multi-Agent Systems
FAMAS’007, 65-82, Durham, UK, 2007.

• Casali A., Godo L. and Sierra C., A Logical Framework to Represent and Rea-
son about Graded Preferences and Intentions. . In Principles of Knowledge
Representation and Reasoning: Proceedings of the 11th Internacional Confer-
ence (KR 2008), G. Brewka and J. Lang (Eds.), The AAAI Press, pp.27-37,
2008.

• Casali A., Godo L. and Sierra C., Validation and Experimentation of a Tourism
Recommender Agent based on a Graded BDI Model. In: ArtificiaL Intelli-
gence Research and Developement, T. Alsinet et al (Eds.), Series: Frontiers in
Artificial Inteligence and Applications 184, IOS Press, pp. 41-50, 2008.

Also in Proceedings of XXXIV Conferencia Latinoamericana de Informtica
(CLEI 2008), pp. 30-39, Santa Fe, Argentina, 2008.

• Deco C., Bender C., Casali A., Motz R. Design of a Recommender Educa-
tional System. Design of a Recommender Educational System. Proceedings of
3ra. Conferencia Latinoamericana de Objetos de Aprendizaje (LACLO 2008),
Aguascalientes, Mexico, to apear, 2008.





Bibliography

[1] Acebo, E. and de la Rosa, J. L., A Fuzzy System Based Approach to Social Mod-
eling in multiagent Systems. Proceedings of the First International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS’02), Palazzo
Re Enzo, Italy, 2002.
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[140] Sierra C., Godo L., López de Mántaras R. and Manzano, Descriptive Dy-
namic Logic and its Application to Reflective Architectures. Future Generation
Computer Systems, 12, 157-171, 1996.

[141] Sierra C., Thangarajah J., Padgham L. and Winikoff M., Designing Institu-
tional Multi-Agent Systems. AOSE 2006 : 84-103, 2006.

[142] Schut, M., Wooldridge, M. and Parsons S., Reasoning About Intentions in
Uncertain Domains Symbolic and Quantitative Approaches to Reasoning with
Uncertainty. Proceedings of the 6th ECSQARU 2001, 84-95, Toulouse, France,
2001.

[143] Schut M. and Wooldridge M., Principles of intention reconsideration. In Proc.
of the 5th International Conference on Autonomous Agents,340-347, 2001.

[144] Tang Y. and Parsons S., Argumentation-based dialogues for deliberation. In F.
Dignum et al. (Eds.), Proc. AAMAS, Utrecht, The Netherlands, 552-559. ACM
Press, New York NY, USA, 2005.

[145] Terveen L. G. and Hill W., Beyond Recommender Systems: Helping People
Help Each Other. In Carroll, J. (Ed.), HCI in the New Millennium. Addison
Wesley, 2001.

[146] van der Torre L. and Weydert E., Parameters for Utilitarian Desires in a
Qualitative Decision Theory. Applied Intelligence, 14:285-301, 2001.

[147] van Linder B., Modal Logics for Rational Agents, PhD. Thesis, Utrech Uni-
versity 1996.

[148] Walton C. and Robertson D., Flexible multi-agent protocols. Technical Report
EDI-INF-RR-0164, University of Edinburgh, 2002.

[149] Walton C., Multi-Agent Dialogue Protocols. In Proceedings of the Eighth Inter-
national Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale,
Florida, January 2004.

[150] Walton C., Model Checking Multi-Agent Web Services. In Proceedings AAAI
Spring Symposium on Semantic Web Services, Stanford, California, 2004.

[151] Walton C., Protocols for Web Service Invocation, in Proceedings of the AAAI
Fall Symposium on Agents and the Semantic Web (ASW05),6 pag., Arlington,
USA, November 2005.



BIBLIOGRAPHY 229

[152] Weiss G., In Weiss G. (Ed.), Multiagent Systems. A Modern Approach to
Distributed Artificial Intelligence, The MIT Press, 1999.

[153] Werthner H., Intelligent Systems in Travel and Tourism, in Proceeding of the
18th International Joint Conference on Artificial Intelligence, IJCAI-03, 1620-,
Acapulco, Mexico, 2003.

[154] Wooldridge M and Jennings N. R., Intelligent Agents: theory and practice.
The Knowledge Engineering Review, 10(2), 115-152, 1995.

[155] Wooldridge M. and Jennings N. R., Agent-based software engineering. IEEE
Proceedings in Software Engineering, 144(1), 26-37, 1997.

[156] Wooldridge, M. and Parsons S., Intention Reconsideration Reconsidered. In
Proceedings of Intelligent Agents V, 5th International Workshop Agent Theories,
Architectures, and Languages (ATAL ’98), Paris, France, 1998. Jrg P. Mller,
Munindar P. Singh, Anand S. Rao (Eds.), LNCS 1555, 63-79, Springer, 1999.

[157] Wooldridge M. J., Jennings N. R. and Kinny D., The Gaia Methodology for
Agent-Oriented Analysis and Design. Autonomous Agents and Multi-Agent Sys-
tems (Agents’99), Vol. 3 (3) 285 - 312, Kluwer, 2000.

[158] Wooldridge, M., Introduction to Multiagent Systems, John Wiley and
Sons,Ltd., 2001

[159] Zhang T., Kendall E. and Jiang H., A Software Engineering Process for BDI
Agent-Based Systems, in Proceedings of the IEEE/WIC International Confer-
ence on Intelligent Agent Technology(IAT’03), 0-7695-1931-8/03IEEE, 2003.


	ON INTENTIONAL AND SOCIAL AGENTS WITH GRADED ATTITUDES  
	Acknowledgements
	Abstract
	Contents
	List of figures
	List of tables
	PART I. INTRODUCTORY CONCEPTS
	Chapter 1. Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Structure

	Chapter 2. Related Work
	2.1 Introduction
	2.2 Agent Theories and Architectures
	2.2.1 Logic-Based Architectures - Deductive agents
	2.2.2 Reactive architectures - Reactive agents
	2.2.3 Layered architectures - Hybrid agents
	2.2.4 Practical reasoning architectures - BDI agents
	2.2.5 Rao and georgeff's BDI model
	2.2.6 Advantages of BDI models

	2.3. Multi-context Systems
	2.3.1 Formalization of multi-context systems
	2.3.2 Multi-context agents
	2.3.3 Advantages of the multi-context specification of agents

	2.4 Logics of preference
	2.4.1 Bipolar representation of preferences

	2.5 Graded Attitudes in intentional Agent Architectures
	2.5.1 Argumentation-based approaches to BDI agents

	2.6 Conclusions

	Chapter 3. Logical Background
	3.1 Propositional dynamic logic
	3.2 Ga(C) and RPL Fuzzy Logics
	3.2.1 Rational Lukasiewicz Logic


	PART II. THE GRADED BDI AGENT MODEL
	Chapter 4. The General Framework
	4.1 Introduction
	4.2 Multi-context specification
	4.3 Logical framework: Many-valued modal approach

	Chapter 5. The Belief context (BC)
	5.1 Introduction
	5.2 Belief context logics
	5.3 The BC Logic
	5.4 The BC Logic
	5.5 Conclusions

	Chapter 6. Desire and intention context
	6.1 Introduction
	6.2 Desire Context (DC)
	6.2.1 DC Language

	6.3 Intention context
	6.3.1 IC Language

	6.4 Conclusions

	Chapter 7. Functional context and bridge rules
	7.1 Planner and communication contexts
	7.2 Bridge rules
	7.3 How the g-BDI model works
	7.4 Example
	7.5 Comparison with Rahwan and Amgoud's approach

	Chapter 8. The socialization of the g-BDI agents
	8.1 Introduction
	8.2 Reasoning about other agent attiudes
	8.3 Trust in an agent society
	8.3.1 A social context to filter information
	8.3.2 Trust in delegation
	8.3.3 Conclusions


	Chapter 9. Operational semantics for g-BDI Agents
	9.1 Introduction
	9.2 Mobile Ambient Calculus
	9.3 Multi-context calculus
	9.4 Operational semantics
	9.5 Mapping a g-BDI agent to the MCC
	9.6 Conclusions


	PART III. METHODOLOGY AND A CASE- STUDY
	Chapter 10. Case Study domain: tourism recommender systems
	10.1 Introduction
	10.2 Recommender agents
	10.3 Recommender systems in travel and tourism
	10.4 Case Study: recommender system on argentinian tourism

	Chapter 11. Methodology to engineer g-BDI Agents and a Case Study
	11.1 Introduction
	11.2 The Development process of g-BDI Agent-Based-Systems
	11.3 System analysis and Design phase
	11.3.1 Stage I: system specification and analysis
	11.3.2 Stage II: System Architectures Design

	11.4 Agent Design Phase
	11.4.1 Stage III: a Graded BDI Agent Design
	11.4.2 Stage IV: Agent detailed design

	11.5 Conclusions

	Chapter 12. Recommender system implementation
	12.1 Introduction
	12.2 Multiagent development
	12.3 T-Agent implementation
	12.3.1 Communication context
	12.3.2 Desire Context

	12.4 Belief context
	12.4.1 Tourist packages
	12.4.2 Destination ontology
	12.4.3 special relations in the domain
	12.4.4 Beliefs on desires fulfillment

	12.5 Planner context
	12.6 Intention context
	12.6.1 Estimaging the expected satisfaction of desires
	12.6.2 computing the intention degrees

	12.7 Conclusions


	PART IV. EXPERIMENTATION AND DISCUSSIONS
	Chapter 13. Recommender system validation and experimentation
	13.1 Introduction
	13.2 Validation
	13.3 Experimentation
	13.3.1 Sensitive model analysis
	13.3.2 Graded vs. non-graded model comparison

	13.4 Data analysis
	13.5 Conclusions

	Chapter 14. Discussion
	14.1 Contributions of this thesis
	14.1.1 Contributions respect to BDI architectures
	14.1.2 Contributions on related fields

	14.2 Future work
	14.3 Related publications


	BIBLIOGRAPHY


