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Abstract 
 

 

Many new multicast applications emerging from the Internet, such as TV over the 

Internet, Radio over the Internet, Video Streaming multi-point, etc., need the following 

resource requirements: bandwidth consumption, end-to-end delay, packet loss ratio, 

etc. It is therefore necessary to formulate a proposal to specify and provide for these 

kinds of applications the resources necessary for them to function well.  

 

In this thesis, we propose a multi-objective traffic engineering scheme using different 

distribution trees to multicast several flows. In this case, we are using the multipath 

approach to every egress node to obtain the multitree approach and of this way to 

create several multicast tree. Moreover, our proposal solves the traffic split ratio for 

multiple trees. The proposed approach can be applied in Multiprotocol Label Switching 

(MPLS) networks by allowing explicit routes in multicast events to be established. 

 

In the first instance, the aim is to combine the following weighting objectives into a 

single aggregated metric: the maximum link utilization, the hop count, the total 

bandwidth consumption, and the total end-to-end delay. We have formulated this 

multi-objective function (MHDB-S model) and the results obtained using a solver show 

that several weighting objectives are decreased and the maximum link utilization is 

minimized.  

 

The problem is NP-hard, therefore, an algorithm is proposed for optimizing the 

different objectives. The behavior we get using this algorithm is similar to what we get 

with the solver.  

 

Normally, during multicast transmission the egress node can leave and enter of the 

tree and for this reason in this thesis we propose a multi-objective traffic engineering 

scheme using different distribution trees for dynamic multicast groups (i.e. in which 

egress nodes can change during the connection’s lifetime). If a multicast tree is 

recomputed from scratch, it may consume a considerable amount of CPU time and all 

communication using the multicast tree will be temporarily interrupted. To alleviate 

these drawbacks we propose an optimization model (dynamic model MHDB-D) that 

uses a previously computed multicast tree (static model MHDB-S) adding new egress 

nodes. 



 x

 

Using the weighted sum method to solve the analytical model is not necessarily 

correct, because is possible to have a non-convex space solution and some solutions 

cannot be found. In addition, other kinds of objectives were found in different research 

works. For the above reasons, a new model called GMM is proposed and to find a 

solution to this problem a new algorithm using a Multi-Objective Evolutionary 

Algorithm (MOEA) is proposed too. This algorithm is inspired by the Strength Pareto 

Evolutionary Algorithm (SPEA).  

 

To give a solution to the dynamic case with this generalized model a dynamic GMM 

model is proposed and a computational solution using Breadth First Search (BFS) 

probabilistic is also proposed to give a solution to the dynamic case in multicast. 

 

Finally, in order to evaluate our proposed optimization scheme, we performed the 

necessary simulations and tests.  

 

The main contributions of this thesis are the taxonomy, the optimization model and 

the formulation of the multi-objective function in static and dynamic multicast 

transmission (MHDB-S and MHDB-D), as well as the different algorithms proposed to 

give computational solutions to this problem. Finally, the generalized model with 

several functions found in different research works in static and dynamic multicast 

transmission (GMM and Dynamic GMM), as well as the different algorithms proposed 

to give computational solutions using MOEA and BFS probabilistic.  
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Chapter 1 Introduction 
 

 

This chapter describes the motivation for this work in reference to certain problems and new 

trends we have detected in the field of network optimization in multicast transmission. From 

this starting point we out line the main aims of the thesis along with the expected 

achievements. The chapter ends by describing the structure and contents of the document. 

 

1.1 Overview of the problem 
 

Traffic engineering aims to optimize the performance of operational networks. The main 

objective is to reduce congestion hot spots and improve resource utilization. This can be 

achieved by setting up explicit routes through the physical network in such a way that the 

traffic distribution is balanced across several traffic trunks. This load balancing technique can 

be achieved by a multicommodity network flow formulation which leads to the traffic being 

shared over multiple routes between the ingress node and the egress nodes in order to avoid 

link saturation and hence the possibility of congestion, which is the inability to transmit a 

volume of information with the established capacities for a particular equipment or network. 

 

When we translate this balancing technique into a mathematical formulation, the main 

objective is to minimize the maximum link utilization. When the network is congested, 

minimizing the maximum link utilization involves: 1) minimizing the congestion of links, 2) 

reducing the total packet delay, and 3) minimizing the total packet loss.  

 

One solution is the multipath approach, in which the data is transmitted along different paths 

to achieve the aggregated, end-to-end bandwidth requirement. Several advantages of using 

multipath routing are discussed in the literature, such as: the links do not get overused and 

therefore do not get congested, therefore they have the potential to aggregate bandwidth, 

allowing the network to support higher data transfer than is impossible with just one path.  

 

We can also have per-flow multipath routing where an originating node uses multiple paths 

for the same flow, i.e. each flow is split into multiple subflows. The split ratio is fed to the 

routers which divide the traffic of the same ingress-egress node pair into multiple paths. 

Several papers address this splitting multipath problem of unicast traffic, motivated by its 

importance in any complete traffic engineering solution. Traffic splitting is executed for every 
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packet in the packet-forwarding path. However, in this research work a multicast approach is 

proposed. 

 

Multicast connections are connections between one or more senders and a number of members 

of a group. The aim of multicasting is to be able to send data from a sender to the members of 

a group in an efficient manner. Many multicast applications, such as audio and 

videoconferencing or collaborative environments and distributed interactive simulation, have 

multiple quality-of-service requirements in relation to bandwidth, packet delay, packet loss, 

cost, etc. In multicast transmission, load balancing consists of traffic being split (using the 

multipath approach) across multiple trees, between the ingress node and the set of egress 

nodes. The multicast transmissions function has a particular way, in many cases the egress 

nodes can enter or leave the transmission tree and in this situation the connections are 

dynamic. Currently, multicast transmissions can be applied using switching technology and in 

this research work we use a MPLS technology for this function. 

 

MPLS is a versatile solution addressing current problems at a network level such as velocity, 

scalability, quality of service, and applying traffic engineering. The central idea of MPLS is to 

add a label to each package to be sent. These packages are assigned a pair of short length 

values that synthesizes the source and egress of the package. At the end of the thesis, we will 

propose the use of MOEAs to give a computational solution to our optimization problem. 

 

The term Evolutionary Algorithm (EA) refers to searching and optimizing techniques inspired 

by the evolution model proposed by Charles Darwin. The EAs are interesting given the fact 

that at first glance they seem especially apt for dealing with the difficulties posed by MOPs. 

The reason for this is that they can return an entire set of solutions after a simple run and 

they do not have any other of the limitations of traditional techniques. In fact, most recent 

publications on MOP resolutions using EAs, seem to consider this fact and they have opened 

the way to a whole new field of investigation: evolutionary algorithms applied to multi-

objective optimization MOEA.  
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1.2 Objectives 
 

In this section we outline the objectives of this thesis. 

 

• To develop an optimization model for the transmission of multicast applications. The 

main objective function in the development of the model is to minimize the maximum link 

utilization. The solution obtained by this model can distribute traffic between multiple 

trees by using a multi-path scheme from the ingress node to each egress node. Using this 

scheme it is possible to transmit the information through more than one path between 

ingress node and egress node. For the multicast case, which is the topic of this thesis, it 

would consist in transmitting information flow through more than one tree. The 

contribution is that the current multicast routing protocols such as DVMRP [WAI88] 

[PUS00], MOSPF [MOY94], PIM-DM [DEE98], PIM-SM [EST98], CBT [BAL97] [BAL97a] 

and BGMP [THA00], transmit the information through just one tree. 

 

• To broaden the possibilities of the above model with other objectives (total hop count, 

end-to-end delay and bandwidth consumption). As this model uses a load-balancing 

technique it is possible, in this case, that very long paths can be found. 

 

• To make the model appropriate for dynamic connections. As in multicast 

transmissions, egress nodes can go in and out of the connection during the life-time 

connection, another objective is to present a new model solving the problem of dynamic 

nodes. 

 

• To specify the way of creating paths between ingress nodes and egress ones by using 

MPLS technology, that is Label Switched Paths (LSPs) based on solutions found with the 

analytical model previously proposed. 

 

• To propose a taxonomy to classify related works and this thesis contributions. 

 

• To define a generalized model in order to be able to consider and cover most of different 

models and their objectives, found in bibliographical reviews. 

 

• To find a solution to the problem by using MOEA. 

 

• To analyze the validity of the proposed models through simulations. 
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1.3 Contributions 
 

We list here the contributions of this thesis: 

 

• The use of the “multipath approach” to solve the “load balancing” problem in multicast 

transmissions. 

 

• An analytical model to solve the problem when the set of egress nodes of multicast 

transmissions is static. 

 

• The use of four different objectives in the analytical model previously presented. 

 

• As the static model has an NP complexity, a heuristic to solve this problem is proposed. 

 

• An analytical model with four objective functions to solve the problem when the set of 

egress nodes of multicast transmission is dynamic. 

 

• As the dynamic model has an NP complexity, a heuristic to solve this problem is 

proposed. 

 

• As mapping the obtained results with the models (static and dynamic) and the explicit 

paths that must be established in an MPLS network is not “immediate”, a model and a 

heuristic have been proposed to map sub-flows to point to multi-point (P2MP) LSP. 

 

• A new general model considering most of the objectives found in the related works are 

analyzed. The variables obtained in this case are at a “sub-flow” level (a new index has 

been considered) and allow direct mapping between the results obtained by the models 

and the explicit paths that must be considered. 

 

• An MOEA to solve the proposed general model as a system using multi-objectives 

considering the objectives previously mentioned in the literature. This model solves the 

problem even in the space of non-convex solutions. 

 

• A new heuristic to solve the general model when the set of egress nodes of multicast 

transmissions is dynamic. 
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1.4 Outline of the Thesis 
 

Chapter 2 is clearly divided into two main parts. In the first part we present the fundamental 

concepts. In this section we explain the concepts of Quality of Service (QoS), traffic engineering 

and load balancing of unicast flows. In addition, we present a taxonomy of our research and 

other related topics. In the second part, we present the related works with this research. 

 

Once we have presented the fundamental concepts and the related works, in Chapter 3 we 

present our first analytical model (MHDB-S) and computational solution (MMR-S) as a 

proposal to solve static multicast transmission using load balancing. We finish with some 

conclusions, problems and motivations with respect to the presented proposal. 

 

Since in some multicast transmissions the egress node can enter or leave the transmission 

tree, in Chapter 4, we present the Multi-Objective Optimization in Dynamic multicast Routing 

(MHDB-D). In this case an analytical model and algorithm are proposed. We finish with some 

conclusions, problems and motivations with respect to the presented proposal. 

 

Since it is necessary to apply this proposal using MPLS technology, a mapping sub-flows to 

point-to-multipoint label switched path (P2MP LSPs) is proposed in Chapter 5. We present the 

specific problem and solution of mapping sub-flows (P2MP LSPs) for a MPLS network. We 

finish with some conclusions, problems and motivations with respect to the presented 

proposal. 

 

Some problems and limitations are presented in Chapters 3, 4, and 5. To solve these 

drawbacks, in Chapter 6 we present a generalized model to static and dynamic case called the 

GMM-model and Dynamic GMM-model respectively and a computational solutions to both 

case using Multi-Objective Evolutionary Algorithms (MOEAs Previously, Multi-Objective 

optimization and Evolutionary Algorithms applied to Multi-Objective optimization are 

introduced. 

 

Chapter 7 includes the analysis and evaluation of the different proposals. We present several 

results to demonstrate that the objectives have been achieved and that the different 

mechanisms operate correctly. We also evaluate how the system performs as a whole by means 

of simulation results in different scenarios. 

 

In Chapter 8, we conclude this document and summarize the main contributions. We also list 

future work. 



 6

 

Finally, in Appendix A we are presenting other kind of model to give an analytical solution to 

the Multi-Objective Optimization in NonConvex Solution Spaces. In Appendix B we are 

presenting some Framework Considerations and in Appendix C we list the different 

publications of this research thesis. 
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Chapter 2 Background and Related Work 
 

 

2.1 Overview 
 

In this chapter we present the fundamental concepts that are necessary to develop this 

doctoral thesis. We will talk about Quality of Service (QoS) in Internet, Traffic Engineering, 

Load Balancing in Unicast Transmission, a taxonomy and related works with this research. 

 

 

2.2 Fundamental Concepts 
 

2.2.1 Quality of Service (QoS) in the Internet 
 

As the use of the Internet spreads in both business and entertainment sectors, the notion of 

QoS has become more critical for network service providers. Today's standard IP (Internet 

Protocol) networks support only a single service level called best-effort service. For best-effort 

service, the network will try its best to forward the traffic without giving guarantees on the 

routing performance in terms of loss rate, bandwidth, delay, delay jitter, and so on. All packets 

are treated equally regardless of their source applications. In the current Internet, some of the 

applications have elastic requirements, e.g., they can tolerate packet losses and/or delays, or 

they can respond to the congestion by decreasing their transmission rates. Remote terminal 

(e.g., Telnet), file transfer protocol (e.g., FTP), and electronic mail are among the examples for 

elastic applications.  

 

Although best-effort service is acceptable for elastic applications, it is not tolerable for real-

time and multimedia applications such as Internet telephony and videoconferencing. Real-time 

applications have more difficult requirements than the elastic applications. Their performance 

is very sensitive to packet losses, delays and delay jitters throughout the network. Moreover, 

they can not reduce their transmission rates in case of congestion.  

 

Under the hard requirements of some specific applications, the notion of QoS has been very 

popular in the Internet literature. QoS is defined as "a set of service requirements to be met by 

the network while transporting a flow", where flow implies a packet stream associated with a 

specific application. Alternatively, QoS can be defined as the level of service measured by the 
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user(s) of the network. QoS requirements of a specific flow can be specified in terms of packet 

loss probability, bandwidth, end-to-end delay, reliability, etc. The customers of the network 

may agree with the service providers on the QoS requirements via Service Level Agreements 

(SLAs).  

 

Quality of Services, in its simplest form, is defined as the mechanism that fulfils the 

requirements of the applications in a network, that is, one or some elements of the network 

that can guarantee, to a certain extent, that the traffic needs are fulfilled. All the layers of the 

network are involved in these elements of quality of service. QoS works by assigning priorities 

according to network traffic needs, and by managing in this way the network bandwidth 

[WAN01]. 

 

The following parameters have been widely used to describe the requirements of Quality of 

Service: 

 

• Minimum bandwidth: the minimum amount of bandwidth requested by an application 

flow. The time interval for measuring the bandwidth must be specified because 

different intervals may give different results. The algorithms of packet scheduling 

guarantee bandwidth assignment. 

 

• Delay: Delay requesting can be specified as the average delay or the delay in the worst 

case. The delay experimented by a package consists of three components: propagation 

delay, transmission delay, and queue delay. Propagation delay is caused by light speed 

and is directly related to the distance. Transmission delay is the time taken to send a 

package across a link. Queue delay is the time that packages have to wait.  

 

• Delay jitter: a delay jitter request can be said to specify the maximum difference 

between the longest delay and the shortest one experienced by the packages. This 

should not be longer than the transmission in the worst case and the delay in a queue. 

 

• Loss rate: This is the rate of lost packages and the total amount of transmitted 

packages. Package loss in Internet is often caused by congestion. By assigning enough 

bandwidth and buffers for traffic flow these losses can be prevented. 

 

One of the causes of low performance in networks is congestion, which is the inability to 

transmit a volume of information with the established capacities for a particular equipment or 

network. 
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The following aspects are examples of this congestion: 

 

• Congestion at port level: Multiple ingress flows compete for the bandwidth of the same 

egress port. 

 

• Congestion in intermediate nodes: This occurs if the bandwidth of the backplane - 

switching matrix of a node is less than the total aggregate of its entries. 

 

• Congestion in the network: This occurs if at some point between the ingress node and 

the egress node, one or several pieces of equipment or links of the network experiment 

become congested. 

 

Congestion can also be caused by unbalanced traffic distribution, in this case when the traffic 

is distributed unevenly across the network some links in the network are overloaded while 

other links are underutilized. 

 

Although the problem of inadequate network resources must be solved with new capacities or 

by reducing and controlling the demands, unbalanced traffic distribution can be addressed by 

managing the resources in the network better.  

 

Basically, congestion problems can be solved by two options:  

 

• Increasing the bandwidth in the network, which has its cost and, moreover, the 

bandwidth is not infinite.  

 

• Managing the available bandwidth in an intelligent way. The network can monitor the 

use of its bandwidth, observe the symptoms of congestion, and reinforce the policies 

related with supplying, using and distributing the available bandwidth. 

 

2.2.2 Traffic Engineering 
 

To support QoS in today's Internet, several new architecture models have been proposed. 

Traffic engineering has become a key issue within these new architectures, as supporting QoS 

requires more sophisticated resource management tools. The goal of traffic engineering is the 

performance evaluation and optimization of operational networks. Traffic engineering has 

become an essential requirement for ISPs to optimize the utilization of existing network 
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resources and it enables to maintain a desired overall Quality of Service (QoS) with fewer 

network resources. One of its key objectives is to balance loads across a network. Load 

balancing leads the number of overutilized links, which will have low QoS, and underutilized 

links, which represent a waste, to be reduced. 

 

Traffic engineering aims to improve network performance by means of optimizing resource 

utilization in the network. One important issue that we need to address before we go any 

further is the objective of optimization. The optimization objective tends to vary depending on 

the specific problem that service providers are trying to solve. However, common objectives 

include: 

 

− Minimizing congestion and packet losses in the network  

− Improving link utilization 

− Minimizing the total delay experienced by packets. 

− Increasing the number of customers with the current resources. 

 

With carefully arranged traffic trunks, service providers can spread traffic across the network 

to avoid congestion hot spots in the network. When we translate this into a mathematical 

formulation, the objective is basically to minimize the Maximum Link Utilization in a network. 

 

When the Maximum Link Utilization (MLU) is minimized, MLU is called α in some cases, a 

new upper bound of the utilization in every link of the network is created (see Fig 2.1). In this 

way, when this new upper bound is exceeded, the information flow is transmitted by another 

different path. That is, all the traffic that exceeds the (α.uij) value will be transmitted by other 

paths instead of using the total capacity of the links. If the traffic is multicast, instead of paths 

we consider trees.     

 

 

 

Fig 2.1. Meaning of α 

 

Intuitively the hot spots are the points with the highest link utilization. Reducing the link 

utilization at these points balances the traffic distribution across the network. It turns out 

that when all links are utilized to the same degree, the network tends to perform at an optimal 

uij
α.uij
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level in terms of packet losses, total delay, and bandwidth efficiency. Intuitively this is quite 

obvious. The queuing delay increases nonlinearly and indeed much faster as link utilization 

becomes higher. Thus the maximum queuing delay that packets experience will increase when 

traffic distribution is unbalanced. 

 

This optimization objective of minimizing the MLU has a number of desirable features. First, 

as we have shown, minimizing the MLU can at the same time reduce the total delay 

undergone by the packets. Similarly it can also be shown that the total losses are minimized. 

Second, this optimization objective moves traffic away from congestion hot spots to less 

utilized parts of the network, so that the traffic distribution tends to be balanced. Finally, it 

also leaves more space for future traffic growth. 

 

When the MLU is minimized, the percentage of the residual bandwidth in links (unused 

bandwidth) is also maximized. Therefore, the growth in traffic is more likely to be 

accommodated and can be accepted without requiring connections to be rearranged. If we 

assume that traffic grows in proportion to the current traffic pattern (i.e. scale up), this 

objective ensures that the extra traffic causes minimum congestion. 

 

Load sharing can substantially improve the performance of a traffic engineering scheme. 

When traffic demands are large, any movement of a traffic demand may cause substantial 

shifting in the traffic between different links. When traffic demands can be split into smaller 

sizes, there is more flexibility in managing them. The use of load sharing in the Internet may 

increase substantially as Dense Wavelength Division Multiplexing (DWDM) becomes more 

widely used.  

 

Traffic can be split equally among all outgoing links or in some specified proportion. The traffic 

splitting schemes must take into account a number of basic requirements. First, traffic 

splitting takes place in the packet–forwarding path and must be executed for every packet. 

 

With multi-path forwarding, a router can have many paths to a destination. This paths can be 

used simultaneously to provide more bandwidth that the bandwidth of a single path. The 

optimized multi-path protocol is a traffic engineering extension of currently deployed link-

state routing protocols, which aims at distributing load optimally based on each router having 

global knowledge about all link loads in the network. With this information the routers can 

shift traffic from congested to less congested paths and thus perform load balancing decisions. 

In a MPLS network MPLS ingress routers may establish one or more paths to a given egress 

to MPLS domain. Load can be balanced across a complex topology using MPLS 
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Traffic engineering in MPLS networks is similar to those arising in Asynchronous Transfer 

Mode (ATM) networks. To bring guaranteed QoS (lacking in connectionless IP networks), 

MPLS provides connection-oriented capabilities, as in ATM networks. LSPs coincide with the 

circuit-switched paths in ATM networks [CER04].  

 

Several advantages of using multipath routing are discussed in [CHE01] and [IZM02]. Links 

do not get overused and therefore do not get congested, and so they have the potential to 

aggregate bandwidth, allowing a network to support a higher data transfer than is possible 

with any single path. Several paths can be used as backup paths for one primary path when 

paths are configured maximally disjoint. Each working path is protected by an alternative 

disjoint path. If the primary path goes down, alternative paths can quickly be deployed. 

Therefore, load balancing emerges as a fast response path protection mechanism. 

Furthermore, some authors have expanded this idea by proposing to split each flow into 

multiple subflows in order to achieve better load balancing [DON04], [DON03], [KIM04] and 

[KIM02]. The flow splitting approach can be used for the protection path. Splitting the 

working path has the advantage of reducing the amount to be protected [IZM02].  

 

The per-packet overhead therefore has to be small, and to reduce implementation complexity, 

the system should keep no or little state information. Second, traffic–splitting schemes 

produce stable traffic distribution across multiple outgoing links with minimum fluctuation. 

Last but not least, the traffic–splitting algorithms must maintain per-flow packet ordering. 

Packet misordering within a TCP flow can produce a false congestion signal and cause 

unnecessary throughput degradation. 

 

Simple schemes for traffic splitting are based on packet–by–packet round robin results in low 

overheads and good performance. They may, however, cause per–flow ordering. Sequence 

numbers or state may be added to reordering, but these additional mechanisms drastically 

increase complexity, and in many cases they only work in point–to-point links. 

 

Hashing based traffic–splitting algorithms are stateless and easy to implement, particularly 

with hardware assistance. For hash functions that use any combination of the five-tuple as 

input, per–flow ordering can be preserved; all packets within the same TCP flow have the 

same five–tuple, and so the output of the hash function with the five–tuple as input should 

always be the same. 
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A simple method to divide the input traffic is on a per-packet basis, for example in a round-

robin fashion. However, this method could result in excessive packet reordering and is not 

recommended in practice. [VIL99] tries to balance the load among multiple LSPs according to 

the loading of each path. In MPLS networks [ROS01] multiple paths can be used to forward 

packets belonging to the same “forwarding equivalent class” (FEC) by explicit routing. Once 

the explicit path is computed, the signaling protocol Constraint-Based Routing Label 

Distribution Protocol (CR-LDP) [ASH02] [ASH02a] or Resource Reservation Protocol with 

Traffic Engineering extension (RSVP-TE) [AWD01] is responsible for establishing forwarding 

state and reserve resources along the route in both last protocols. How the load is distributed 

between a set of alternate paths is determined by the amount of number space from a hash 

computation that is allocated to each path. Effective use of load balancing requires good traffic 

distribution schemes. In [CAO00] the performance of several hashing schemes for distributing 

traffic between multiple links while preserving the order of packets within a flow is studied. 

Although hashing-based load balancing schemes have been proposed in the past, [CAO00] is 

the first comprehensive study of how the schemes perform using real traffic traces. The 

current configurations in computer networks provide an opportunity for dispersing traffic over 

multiple paths to decrease congestion. In this work dispersion involves (1) splitting and (2) 

forwarding the resulting portions of aggregate traffic along alternate paths. The authors 

concentrate on (1), methods that allow a network node to subdivide aggregate traffic, and they 

offer a number of traffic splitting policies which divide traffic aggregates according to the 

desired fractions of the aggregate rate. Their methods are based on semi-consistent hashing of 

packets to hash regions as well as prefix-based classification [CAO00a]. The analysis of 

hashing methods is out of these thesis topics. 

 

2.2.3 Load Balancing of Unicast Flows 
 

In the Unicast case the network is modeled as a directed graph ),( ENG = , where N is the set 

of nodes and E is the set of links. We use n to denote the number of network nodes, i.e. Nn = . 

Among the nodes, we have a source Ns∈  (ingress node) and a destination Nt∈  (egress 

node). Let Eji ∈),(  be the link from node i to node j. Let Ff ∈  be any unicast flow, where 

F is the flow set. We denote the number of flows by |F|. Let f
ijX  be the fraction of flow f 

assigned to link (i,j). The problem solution, f
ijX variables, provides optimum flow values. Let cij 

be the capacity of each link (i,j). Let bwf be the traffic demand of a flow f. The problem of 

minimizing |F| unicast flows from ingress node s to egress node t is formulated as follows 

[WAN01]: 
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Minimize  α (2.1) 
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The main aim is to minimize the Maximum Link Utilization (MLU), which is represented as α 

in (2.1). The α value is directly related to the utilization in each link (αij). The equation (2.2) is 

the same as the one that calculates the MLU (α), i.e. the maximum utilization of each of the 

links (i,j) through which a fraction of the unicast flow is being transmitted. 

 

Constraints (2.3), (2.4) and (2.5) are flow conservation constraints. Constraint (2.3) ensures 

that the total flow emerging from the ingress node to egress node t in flow f is 1. It is possible 

to see in Fig 2.2. and Fig 2.3. that the sum of the X values leaving from the ingress node (Node 

1) with a destination at the egress node (Node 4) is 1, i.e. ( )11312 =+ ff xx . 

 

In Figures 2.2 and 2.3 we show an example of the creation of two paths to transmit one unicast 

flow. This example shows an ingress node to node 1 and an egress node to node 4. In this 

example using the model presented in this chapter, it is possible to create two paths to 

transmit the unicast flow. In this case, the variable X represents the fraction of flow 

transmitted in each link with a destination at the egress node. 
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Fig 2.2. 1st Transmission Path in Unicast Fig 2.3. 2nd Transmission Path in Unicast  

 

Constraint (2.4) ensures that the total flow coming from an egress node t of flow f is 1. 

Constraint (2.5) ensures that for any intermediate node that is different from the ingress node 

(i ≠ s) and egress nodes )( ti ≠ , the sum of its output flows minus the input flows with a 

destination at egress node t of flow f is 0. i.e. ( ) ( )0,0 13341224 =−=− ffff xxxx . 

Constraint (2.6) is the MLU constraint. The total amount of bandwidth consumed by all the 

flows in the link (i,j) must not exceed the maximum utilization (α) per link capacity cij. 

Expression (2.7) shows that the f
ijX variables must be real numbers between 0 and 1 because 

they represent the fraction of each flow that is transmitted. These variables form multiple 

trees to transport a multicast flow. The demand between the ingress node and egress node t 
may be split between multiple routes. When the problem is solved without load balancing, this 

variable is only able to take values 0 and 1, which show, respectively, whether or not the link 

(i,j) is being used to carry information to egress node t. 
 

In [WAN01] and [LEE02] a solution for unicast transmission has been presented. 

 

2.2.4 Taxonomy 
 

In this section we present a taxonomy that helps to clarify and better understand the problems 

associated with multicast transmission, load balancing, traffic splitting and multi-objective 

optimization. 

 

First, the taxonomy considers the flow type when classifying reviewed works into a traditional 

unicast flow type and a more general multicast flow type. Second, it categorizes load balancing 

techniques considering the number of paths/trees employed. For instance, if different flows 

going from a given source to the same set of destinations can be delivered (or not) through 

different paths/trees, a flow could use a path/tree while another flow could go through a 

different path/tree, both leave a given source node and go to the same set of destinations. 

Moreover, load balancing techniques are classified in relation to splitting, i.e. whether a given 
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flow can be split into several subflows to balance loads using multiple routes. Note that 

splitting is only considered when a multipath / multitree is applied. Finally, optimization 

problems are also classified as a Single-Objective Problem (SOP) or Multi-Objective Problem 

(MOP) depending on how different objectives are treated, i.e. if the problem is treated with a 

final unique cost function, or as a set of simultaneous conflicting objective functions. A generic 

multi-objective optimization problem includes a set of m decision variables, a set of o objective 

functions and a set of z restrictions. The aim of multi-objective optimization is to obtain an 

efficient solution, in which any improvement in one objective can only be achieved at the 

expense of another. 

 

However, the proposed TE Load Balancing Taxonomy (see Table 2.1) is very useful for 

presenting our model in the next chapters. 

 

Table 2.1 

Proposed TE Load Balancing Taxonomy 
CLASSIFICATION 

PARAMETER 
DESCRIPTION 

Unicast Transmission from one source to one destination using a path Flow 
Types Multicast Transmission from one source to a set of destinations using a tree 

Unipath (UP) 

Unitree (UT) 

All flows from a source to the same set of destinations travel through the 

same path / tree Number 
of flows Multipath (MP) 

Multitree (MT) 

Different flows from a source to the same set of destinations can travel 

through different paths / trees 

No A flow always travels along the same path/tree 

Splitting 
Yes 

A flow can be split into several subflows that can be delivered through 

different paths/trees 

Single-Objective Problem 

(SOP) 
Only one generic cost function is considered 

Objective 
Problem Multi-Objective Problem 

(MOP) 

Several (conflicting) objective functions may be simultaneously optimized 

in a multi-objective context. 

 

 

2.3 Related Works with this Research 
 

Various traffic engineering solutions using techniques that balance loads by multiple routes 

have been designed and analyzed in different studies that attempt to optimize a cost function 

subject to constraints resulting from the application’s QoS requirements. Later on, we present 

different characteristics of some works that are related to this research. 
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In [RAO98] the authors consider two generic routing algorithms that plan multipaths 

consisting of possibly overlapping paths. Therefore, bandwidth can be reserved and 

guaranteed once it is reserved in the links. The first problem deals with transmitting a 

message of finite length from the ingress node to the egress node within r units of time. A 

polynomial-time algorithm is proposed and the results of a simulation are used to illustrate its 

applicability. The second problem deals with transmitting a sequence of some units at such a 

rate that the maximum time difference between the two units received out of order is limited. 

The authors show that this second problem is computationally intractable, and propose a 

polynomial-time approximation algorithm. Therefore, a Quality of Service Routing (QoSR) 

routing along multiple paths under a time constraint is proposed when the bandwidth can be 

reserved. 

 

 

In [ABO98] the authors propose a fuzzy optimization model for routing in Broadband 

Integrated Service Digital Network (B-ISDN) networks. The challenge of the proposed model is 

to find routes for flows using paths that are not hideously expensive, fulfill the required QoS 

and do not penalize the other flows that already exist or that are expected to arrive in the 

network. The model is analyzed in terms of performance in different routing scenarios. The 

authors obtained good improvements in performance compared with the traditional single 

metric routing techniques (number of hops or delay based routing). This improvement was 

achieved while maintaining a sufficiently low processing overhead. Throughput was increased 

and the probability of congestion was decreased by balancing the load over all the network 

links. 

 

 

[RAO98] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Unicast 

Number of flows:  Multipath 

Splitting:  No 
[RAO98] 1998 

Delay 
Bandwidth 

 
 

Objective problem: Single-Objective 
Problem 

Ford-Fulkason 
method 

[ABO98] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Unicast 

Number of flows:  Multipath 

Splitting:  No 
[ABO98] 1998 

Link Utilization 
Hop Count 

Delay 
 

Bandwidth 
 

Objective problem: Single-Objective 
Problem 

Fuzzy logic, 
Weighted Sum 
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In [FOR02] the authors propose optimizing the weight setting based on the projected demands. 

They show that optimizing the weight settings for a given set of demands is NP-hard, so they 

resort to a local search heuristic. They found weight settings that performed to within a few 

percent of the optimal general routing, where the flow for each demand is optimally 

distributed over all paths between the source and destination. This contrasts with the common 

belief that Open Shortest Path First (OSPF) routing leads to congestion and shows that for the 

network and demand matrix studied it is not possible to get substantially better load 

balancing by switching to the proposed more flexible MPLS technologies. 

 

 

In [SRI03] the authors propose an approach that remedies two main difficulties in optimal 

routing. The first is that these protocols use shortest path routing with destination based 

forwarding. The second is that when the protocols generate multiple equal cost paths for a 

given destination routing prefix, the underlying forwarding mechanism balances the load 

across these paths by splitting traffic equally between the corresponding set of next hops. 

These added constraints make it difficult or impossible to achieve optimal traffic engineering 

link loads. It builds links by taking advantage of the fact that shortest paths can be used to 

achieve optimal link loads, but it is compatible with both destination based forwarding and 

even splitting of traffic over equal cost paths. Compatibility with destination based forwarding 

can be achieved through a very minor extension to the result obtained in [WAN01a], simply by 

taking advantage of a property of shortest paths and readjusting traffic splitting ratios 

accordingly. Accommodating the constraint of splitting traffic evenly across multiple shortest 

paths is a more challenging task. The solution we propose stems from the fact that current day 

routers have thousands of route entries (destination routing prefixes) in their routing table. 

Instead of changing the forwarding mechanism responsible for distributing traffic across equal 

cost paths, we plan to control the actual (sub)set of shortest paths (next hops) assigned to 

routing prefix entries in a router’s forwarding table(s). 

 

[FOR02] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Unicast 

Number of flows:  Multipath 

Splitting:  No 
[FOR02] 2002 Link Utilization 

 
Bandwidth 

 

Objective problem: Single-Objective 
Problem 

Linear 
programming and 

shortest path 
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In [SON03] the author proposes an adaptive multipath traffic engineering mechanism called 

Load Distribution over Multipath (LDM). The main goal of LDM is to enhance the network 

utilization as well as the network performance by adaptively splitting the traffic load among 

multiple paths. LDM takes a pure dynamic approach that does not require any previous traffic 

load statistics. Routing decisions are made at the flow level and traffic proportioning reflects 

both the length and the load of a path. Moreover, LDM dynamically selects a few good Label 

Switched Paths (LSPs) according to the state of the entire network. 

 

 

In [VUT00] the authors propose a traffic engineering solution that adapts the minimum-delay 

routing to the backbone networks for a given long-term traffic matrix. This solution is practical 

and is suitable to implement in a Differential Services framework. In addition, they introduce 

a simple scalable packet forwarding technique that distinguishes between datagram and 

traffic that requires in-order delivery and forwards them accordingly and efficiently. 

 

 

In [CHE01] the authors propose an algorithm to carry out the unicast transmission of 

applications requiring minimum bandwidth through multiple routes. The algorithm consists of 

[SRI03] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Unicast 

Number of flows:  Multipath 

Splitting:  No 
[SRI03] 2003 

Link Utilization 
Bandwidth 

 

Bandwidth 
 

Objective problem: Single-Objective 
Problem 

Linear 
programming and 

shortest path 

[SON03] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Unicast 

Number of flows:  Multipath 

Splitting:  No 
[SON03] 2003 

Hop Count 
Bandwidth 

 

Hop Count 
 

Objective problem: Single-Objective 
Problem 

(Linear) multi-
commodity 

network flow 
problem 

[VUT00] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Unicast 

Number of flows:  Multipath 

Splitting:  Yes 
[VUT00] 2000 Delay 

 
Bandwidth 

 

Objective problem: Single-Objective 
Problem 

Non linear 
programming 
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five steps: a) the multipath P set is initialized as empty, b) the maximum flow graph is 

obtained, c) the shortest route from the ingress node to the egress node is obtained, d) the 

bandwidth consumption obtained in the maximum flow of step b is decreased, and e) step (d) is 

repeated until the required bandwidth for transmission is reached. The results presented show 

very similar end-to-end delay values to those obtained independently whether the load 

balancing is applied or not. However, link utilization is improved when load balancing is 

applied. 

 

 

In [WAN01a] the authors present a multi-objective optimization scheme to transport unicast 

flows. In this scheme they consider the MLU (α) and the selection of best routes based on the 

flow assigned to each link. In this paper the authors consider a new approach that 

accomplishes traffic engineering objectives without full mesh overlaying. Instead of overlaying 

IP routing over the logical virtual network traffic engineering objectives such as balancing 

traffic distribution are achieved by manipulating link metrics for IP routing protocols such as 

OSPF. In this paper, they present a formal analysis of the integrated approach, and propose a 

systematic method for deriving the link metrics that convert a set of optimal routes for traffic 

demands into the shortest path with respect to the link weights that pass through them. The 

link weights can be calculated by solving the dual of a linear programming formulation. 

 

 

In [LEE02] the authors propose a method for transporting unicast flows. The constraint of a 

maximum number of hops is added to the minimization of the MLU (α). Moreover, the traffic is 

divided between multiple routes in a discrete way. This division simplifies implementing the 

solution. The behavior of five approaches are analyzed: Shortest path based on non-

[CHE01] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Unicast 

Number of flows:  Multipath 

Splitting:  Yes 
[CHE01] 2001 Delay 

 
Bandwidth 

 

Objective problem: Single-Objective 
Problem 

Max-flow and 
shortest path 

[WAN01a] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Unicast 

Number of flows:  Multipath 

Splitting:  Yes 
[WAN01a] 2001 

Link Utilization 
Bandwidth 

Flow assignation  
Bandwidth 

 

Objective problem: Single-Objective 
Problem 

Linear 
Programming, 
Weighted Sum 
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bifurcation, Equal Cost Multiple Paths (ECMP), Traffic bifurcation, H Hop-constrained traffic 

bifurcation and H Hop-constrained traffic bifurcation with node affinity. Through the 

approaches of Hop-constrained traffic bifurcation, a minimum value of the MLU (α) is 

obtained. 

 

 

In [ABR02] the authors propose an intra-domain routing algorithm based on multi-commodity 

flow optimization which allows load sensitive forwarding over multiple paths. It is not 

constrained by weight-tuning of the legacy routing protocols, such as OSPF, and it does not 

require a totally new forwarding mechanism, such as MPLS. These characteristics are 

accomplished by aggregating the traffic flows destined for the same egress into one commodity 

in the optimization and using a hash based forwarding mechanism. The aggregation also 

reduces computational complexity, which makes the algorithm feasible for on-line load 

balancing. Another contribution is the optimization objective function, which allows precise 

tuning of the tradeoff between load balancing and total network efficiency. 

 

 

In [CHO03] the authors propose two multi-path constraint based routing algorithms for 

Internet traffic engineering using MPLS. In a normal Constraint-based Shortest Path First 

(CSPF) routing algorithm, there is a high probability that it cannot find a feasible path 

through networks for a large bandwidth constraint. This is one of the most significant 

constraints of traffic engineering. The proposed algorithms can divide the bandwidth 

constraint into two or more sub constraints and find a constrained path for each sub 

constraint, providing there is no single path satisfying the whole constraint. Extensive 

[LEE02] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Unicast 

Number of flows:  Multipath 

Splitting:  Yes 
[LEE02] 2002 Link Utilization Hop Count 

Bandwidth 

Objective problem: Single-Objective 
Problem 

Mixed-integer 
programming 

[ABR02] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type :  Unicast 

Number of flows:  Multipath 

Splitting:  Yes 
[ABR02] 2002 Link Utilization 

  

Objective problem: Single-Objective 
Problem 

(Linear) multi-
commodity 

network flow 
problem 
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simulations show that they enhance the success probability of path setup and the utilization of 

network resources. 

 

 

In [CET04] the authors introduce Opportunistic Multipath Scheduling (OMS), a technique for 

exploiting short term variations in path quality to minimize delay, while simultaneously 

ensuring that the splitting rules dictated by the routing protocol are fulfilled. In particular, 

OMS uses measured path conditions in time scales of up to several seconds to 

opportunistically favor low-latency high-throughput paths. However, a naive policy that 

always selects the highest quality path would violate the routing protocol’s path weights and 

potentially lead to oscillation. Consequently, OMS ensures that over longer time scales 

relevant for traffic management policies, traffic is split according to the ratios determined by 

the routing protocol. A model of OMS is developed and an asymptotic lower bound on the 

performance of OMS as a function of path conditions (mean, variance, and Hurst parameter) 

for self-similar traffic is derived. 

 

 

In [KIM04] the author suggests a method to improve network performance by appropriately 

distributing traffic in accordance with the state of the paths in a dynamic traffic pattern 

occurring in a short time in a multipath environment. TE using an Adaptive Multipath-

forwarding (TEAM) is a traffic engineering (TE) algorithm that aims to improve network 

performance by properly distributing traffic in dynamic traffic patterns occurring in a short 

time scale. This method monitors the state of the paths by using a probe packet in the ingress 

node of the network, and computes the cost of the paths with monitored values. Path cost 

consists of weights given in the paths, such as packet delay and loss rate, the number of hops 

[CHO03] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Unicast 

Number of flows:  Multipath 

Splitting:  Yes 
[CHO03] 2003 Bandwidth 

 
Bandwidth 
Subflows 

Objective problem: Single-Objective 
Problem 

Max-flow and 
Shortest Path 

[CET04] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Unicast 

Number of flows:  Multipath 

Splitting:  Yes 
[CET04] 2004 

Delay 
Queue Size 

 

Bandwidth 
 

Objective problem: Single-Objective 
Problem 

Scheduling 
Algorithm 
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and the number of LSPs. This enables it to adapt to the state of the network without a sudden 

change by tracing neighboring solutions from an existing solution. Therefore, it can be seen 

that network performance is improved when the total cost of paths of the whole network are 

minimized. In addition, by distributing traffic into each interface using a table-based hashing 

method, the problem of ordering packets is solved. 

 

 

In [SEO02] the authors propose non-bifurcation and bifurcation methods to transport 

multicast flows with hop-count constraints. When analyzing results and simulations, they only 

consider the non-bifurcation methods. The constraint of consumption bandwidth is added to 

the constraints considered in [RAO98]. In [LEE02] a heuristic is proposed. The proposed 

algorithm consists of two parts: 1) modifying the original graph to the hop-count constrained 

version, 2) finding a multicast tree to minimize the MLU (α). 

 

 

In [ROY02] the authors propose a new multicast tree selection algorithm based on a non-

dominated sorting technique of a genetic algorithm to simultaneously optimize multiple QoS 

parameters. Simulation results demonstrate that the proposed algorithm is capable of 

obtaining a set of QoS-based near optimal, non-dominated multicast routes within a few 

iterations. In this paper, the authors use a Non-dominated Sorting based Genetic Algorithm 

(NSGA) technique to develop an efficient algorithm which determines multicast routes on-

demand by simultaneously optimizing end-to-end delay guarantee, bandwidth requirements 

and bandwidth utilization without combining them into a single scalar objective function. 

 

[KIM04] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Unicast 

Number of flows:  Multipath 

Splitting:  Yes 
[KIM04] 2004 

Hop Count 
Delay 

Flow assignation  
Number of LSPs 

 

 

Objective problem: Single-Objective 
Problem 

Shortest path 

[SEO02] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Multicast 

Number of flows:  Unitree 

Splitting:  Not Applicable 
[SEO02] 2002 

Link Utilization 
Bandwidth 

 

Hop Count 
Bandwidth 
Subflows 

Objective problem: Single-Objective 
Problem 

Mixed-integer 
programming, 
Weighted Sum 
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In [CUI03a] the authors propose algorithm MEFPA (Multi-constrained Energy Function based 

Precomputation Algorithm) for a multi-constrained QoSR problem based on analyzing linear 

energy functions (LEF). They assume that each node s in the network maintains a consistent 

copy of the global network state information. This algorithm fulfills each QoS metric to b 

degrees. It then computes B ( )1
2

−
−+= k
kbCB  coefficient vectors that are uniformly distributed in 

the k-dimensional QoS metric space, and constructs one LEF for each coefficient vector. Then 

based on each LEF, node s uses Dijkstra's algorithm to calculate a least energy tree rooted by s 

and a part of the QoS routing table. Finally, s combines the B parts of the routing table to form 

the complete QoS routing table it maintains. For distributed routing, for a path from s to t, in 

addition to the destination t and k weights, the QoS routing table only needs to save the next 

hop of each path. For source routing, the end-to-end path from s to t along the least energy 

tree should be saved in the routing table. Therefore, when a QoS connection request arrives, it 

can be routed by looking up a feasible path satisfying the QoS constraints in the routing table. 

 

 

In [DON03] we presented several static models which are analyzed by comparing some 

particular one-objective optimization functions with the multi-objective optimization function. 

 

[ROY02] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Multicast 

Number of flows:  Unitree 

Splitting:  Not Applicable 
[ROY02] 2002 

Delay 
Bandwidth 

Flow assignation  
 

 

Objective problem: Multiple-Objective 
Problem 

MOEA based on 
NSGA 

[CIU03a] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Multicast 

Number of flows:  Multitree 

Splitting:  No 
[CUI03a] 2003 Cost 

Hop Count 
Delay 

Bandwidth 
Subflows 

Objective problem: Single-Objective 
Problem 

Shortest Path Tree 
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In addition, some master or doctoral theses have worked in the same area, for example the 

thesis [CER04] focuses on the multi-objective optimization of Label Switched Path design 

problem in MPLS networks. Minimal routing cost, optimal load-balance in the network, and 

minimal splitting of traffic form the objectives. The problem is formulated as a zero-one mixed 

integer program and aims at exploring the trade-offs among the objectives. The integer 

constraints make the problem NP-hard. In this thesis first both the exact and heuristic multi-

objective optimization approaches are discussed, and then a heuristic framework based on 

simulated annealing is developed to give a solution to this proposal. 

 

 

 

While [RAO98], [ABO98], [SRI03], [FOR02] and [SON03] consider unicast flow, in [CHE01], 

[WAN01a], [LEE02], [CHO03], [ABR02], [CET04] and [VUT00] this unicast flow is split, and 

in [SEO02], [ROY02] and [CUI03a] the flow is multicast but not split, thus our proposal solves 

the traffic split ratio for multicast flows. The major differences between our work and the other 

multicast works are:  

 

• First, from an objectives and function point of view, we propose a multi-objective 

scheme to solve the optimal multicast routing problem with some constraints, while 

[ROY02] and [CUI03] propose a scheme without constraints. 

 

• Second, in relation to how many trees are used, we propose a multitree scheme to 

optimize resource utilization of the network, while [SEO02] and [ROY02] only propose 

one tree to transmit the flow information. 

[DON03] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Multicast 

Number of flows:  Multitree 

Splitting:  Yes 
[DON03] 2003 

Link Utilization 
Hop Count 

Delay 
Bandwidth 

 

Bandwidth 
Subflows 

Objective problem: Single-Objective 
Problem 

Non Linear 
programming, 
max-flow and 

shortest path tree, 
Weighted Sum 

[CER04] Characteristics 

Reference Year Objective functions  Constraints  Taxonomy Heuristic 

Flow Type:  Unicast 

Number of flows:  Multipath 

Splitting:  Yes 
[CER04] 2004 

Cost 
Link Utilization 
Splitting (LSPs) 

 

Bandwidth 
 

Objective problem: Multi-Objective 
Problem 

Simulated 
Annealing 
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• Third, in relation to traffic splitting, we propose that the traffic split can transmit the 

multicast flow information through load balancing using several trees for the same 

flow, while [SEO02], [ROY02] and [CUI03a] do not propose this characteristic. 

 

It should be noted that the proposals in [SON03], [WAN01a], [LEE02], [CHO03], [VUT00], 

[KIM04] and [SEO02] can be applied to MPLS networks. 

 

Table 2.2 classifies the papers that could be considered as the most inspired for this research 

area. Note that [XIA99] is repeated because it considers unicast and multicast flows. The last 

column of Table 2.2 shows the methodologies/heuristics proposed in publications. Clearly, most 

publications consider the load balancing problem as a SOP, therefore, they have mainly 

proposed using traditional SOP heuristics such as linear programming, shortest path, non-

linear programming and even evolutionary approaches such as genetic algorithms. This last 

evolutionary approach is dominant when considering MOPs, where all works surveyed use 

some kind of MOEA. 

 

It can be seen that, initially, most papers only considered multipath (and not splitting) for 

unicast traffic in a single-objective context. Immediately after, multicast flow was also 

considered in the same single-objective context (splitting was still not considered). In the year 

2000 papers considering splitting began to appear. Lately, the multiobjective context of the TE 

problem has slowly been recognized [ROY02], with an increased number of publications since 

2003 (see Table 2.2 in bold for the aims of this thesis). 
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Table 2.2 

Proposed taxonomy applied to reviewed papers including objective functions, constraints and heuristics 

Objective functions (OF) Constraint 
(C) Taxonomy 
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g 

O
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ec
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e 
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le

m
 Heuristic 

[XIA99] 1999   X X  X   X    X X SOP Genetic algorithms, Weighted Sum 
[KOY04] 2004   X       X     

UP NA 
MOP MOEA 

[RAO98] 1998   X X           Ford-Fulkason method 
[ABO98] 1998 X X X          X  Fuzzy logic, Weighted Sum 
[FOR02] 2002 X            X  Linear programming and shortest path 
[SRI03] 2003 X   X         X  Linear programming and shortest path 

[SON03] 2003  X  X       X    

No SOP 

(Linear) multi-commodity network flow 
problem 

[VUT00] 2000   X          X  Non Linear programming  
[CHE01] 2001   X          X  Max-flow and shortest path 
[WAN01a] 2001 X   X X        X  Linear programming, Weighted Sum  
[LEE02] 2002 X          X  X  Mixed-integer programming 

[ABR02] 2002 X              (Linear) multi-commodity network flow 
problem 

[CHO03] 2003    X         X X Max-flow and Shortest Path 
[CET04] 2004   X    X      X  Scheduling algorithm 
[KIM02] 
[KIM04] 

2002 
2004  X X  X   X       

SOP 

Shortest Path  

[CER04] 2004 X       X  X   X  

U
ni

ca
st

 

MP 

Yes 

MOP Simulated Annealing 
[XIA99] 1999   X X  X   X    X X Genetic algorithms, Weighted Sum 
[LEU98] 
[INA99]  
[LI99] 

1998  
1999  
1999 

         X     Genetic algorithms 

[SUN99] 1999          X  X   Genetic algorithms 
[BAN01] 2001   X X           Genetic algorithms, Weighted Sum 

[SEO02] 2002 X   X       X  X X

SOP 

Mixed-integer programming, Weighted 
Sum 

[ROY02] 2002   X X X          MOEA based on NSGA 
[CUI03] 2003   X X  X      X   MOEA 
[ROY04] 2004   X X  X         MOEA based on NPGA 
[CRI04] 2004   X       X     MOEA based on SPEA 
[CRI04a]  
[CRI04b] 2004 X  X       X     

UT NA 

MOP 

MOEA based on SPEA 

[CUI03a] 2003          X     Shortest Path Tree 
[LAY04] 2004   X X  X   X X     Genetic algorithms, Weighted Sum 
[POM04] 2004          X     

SOP 
DIMRO Heuristic  

[FAB04] 2004 X X X X           

No 

MOP MOEA based on NSGA 
[DON04]  
[DON03] 
[FAB04a] 
[DON04a] 
[DON04b] 

2004 
2003 
2004 
2004 
2004 

X X X X         X X SOP Non-linear programming, max-flow and 
shortest path tree, Weighted Sum 

[BAR04] 2004 X X X X X  X X X    X X

M
ul

tic
as

t 

MT 

Yes 

MOP MOEA based on SPEA 

 

UP: Unipath  

MP: Multipath  

UT: Unitree 

MT: Multitree 
NA: Not Applicable SOP:   Single-Objective Problem 

MOP: Multi-Objective Problem 
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TE Load Balancing Taxonomy proposed (see Table 2.1) could be extended with other kind of 

concepts like whether the connections are static or dynamic. All works presented previously 

(Table 2.2) consider static case. With respect to the dynamic case, some works have been 

realized. 

 

One of the important distinctions between unicast and multicast connections is the possibility 

of connection dynamics. Now, two categories of multicast routing algorithms, static and 

dynamic are identified. If the network topology does not change and that group membership is 

fixed during a session, static algorithm is sufficient. However, in a real network environment, 

network links and nodes can fail (or be removed) or be recovered (or be added) frequently. In 

addition, the group membership can change dynamically during a multicast session. It is 

essential to design efficient dynamic multicast routing algorithm operating under dynamic 

network environment. This variability adds further complexity to the already difficult problem 

of traffic engineering. This kind of problem is known as a dynamic Steiner tree problem 

[IM95]. The main different between the static and dynamic cas in multicast transmission is 

that in the static case, the group of egress nodes is fixed during set up and the identities of all 

egress nodes are available simultaneously. Once a static group has been established, 

individual membership remains unmodified until it is discarded. Paths from the ingress node 

to all egress nodes are computed at the same time. In the dynamic case, the group of egress 

nodes can change during the connection and the identities of the egress nodes are revealed one 

by one. Note that the dynamic problem can be reduced to the static problem, if the multicast 

tree is recomputed from scratch each time there is a membership change. But, since the 

optimal solution obtained is ephemeral, because of the dynamic nature of multicast 

connections, the computation of an optimal tree for each membership group change may not be 

the best way forward. In the optimization process it is possible to have a solution like the best 

path to the new egress node is a direct connection between the ingress node to the egress node. 

 

There are two main design objectives for the dynamic problem. The first is to minimize the 

computational complexity required to update a multicast tree. The second is to maintain 

routing stability by making minimal changes to the topology of an existing multicast tree, 

because multicast sessions cannot tolerate the disturbances and disruptions caused by 

excessive changes. As recomputing the multicast tree from scratch is computationally 

expensive, it makes sense to compute a near-optimal multicast tree which is minimally 

disturbed after each change in the membership group.  
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If designing an optimal tree is a complex problem, maintaining this tree optimality after 

changes in the membership group may be even more complex. The GREEDY algorithm is a 

simple, non-rearrangeable heuristic proposed by Vaxman, with the aim of minimizing the 

perturbation to the existing tree. To add a node, i.e. Nnew, to an existing multicast group, a 

closest node, i.e. Ntree, already in the tree is chosen and Nnew is attached to the Ntree via the 

least cost path. For a delete request, if the node being removed is a leaf node, then the branch 

of the tree supporting only that node is pruned. For the case of a nonleaf node, no action is 

taken. 

 

In [STR02] present a multicast “life cycle” model that identifies the various issues involved in 

a typical multicast session. During the life cycle of a multicast session, three important events 

can occur: group dynamics, network dynamics and traffic dynamics. The first two aspects are 

concerned with maintaining a good quality (e.g., cost) multicast tree taking into account 

member join/leave and changes in the network topology due to link/node failures/additions, 

respectively. The third aspect is concerned with flow, congestion, and error control. In this 

paper they examine various issues and solutions for managing group dynamics and failure 

handling in QoS multicasting, and outline several future research directions. 

 

The dynamic case in multicast transmission can be worked in different ways. In [STR02] the 

authors are identifying the different ways, in the Figure 2.4 are shown. 

 

 
Fig 2.4 Issues in multicast group dynamics 

 

In this thesis, in the dynamic case, we are working with QoS of new members. Te tree type are 

build through a combination of shortest path, maximum flow and breadth first search 

probabilistic algorithms. We respect to the routing method we are working with multiple path. 
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In [RAG99] the authors propose the problem of modifying such a delay-constrained multicast 

tree, when new nodes enter or existing members leave the multicast group. They present a 

new algorithm called controlled rearrangement for constrained dynamic multicasting 

(CRCDM) for on-line updating of delay-constrained multicast trees with the aim of minimizing 

the cost of constructing the trees.  

 

In [TRA03] address the problem of rearranging a part of the existing multicast tree, so that 

the tree cost is reduced, while the source-to-destination delay and inter-destination delay 

constraints remain satisfied. They propose a genetic algorithm for which the tradeoff between 

tree cost and running time is tunable. 

 

In [ALO02] the authors propose an efficient on-line estimation algorithm for determining the 

size of a dynamic multicast group. By using diffusion approximation and Kalman filter, they 

derive an estimator that minimizes the mean square of the estimation error. As opposed to 

previous studies, where the size of the multicast group is supposed to be fixed throughout the 

estimation procedure, they consider a dynamic estimation scheme that updates the estimation 

at every observation step. The robustness of our estimator to violation of the assumptions 

under which it has been derived is addressed via simulations. Further validations of our 

approach are carried out on real audio traces. 

 

In [CHA03] the authors propose a QoS-based routing algorithm for dynamic multicasting. The 

complexity of the problem can be reduced to a simple shortest path problem by applying a 

Weighted Fair Queuing (WFQ) service discipline. Using a modified Bellman–Ford algorithm, 

the proponed routing builds a multicast tree, where a node is added to the existing multicast 

tree without re-routing and satisfying QoS constraints. With user defined life-time of 

connection this heuristic algorithm builds multicast tree which is near optimum over the 

whole duration of session. Simulation results show that tree costs are nearly as good as other 

dynamic multicast routings that does not consider QoS.  

 

 

2.4 Conclusions and Motivations 
 

In this section, we have presented some fundamental concepts and different related works 

with this research. The concepts presented in this chapter allow us to put our research into a 

context and understand the different related works helping us to make some proposals for 

multicast transmissions in chapters 3, 4, 5 and 6. 
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Chapter 3 Load Balancing of Static Multicast Flows 
 

 

3.1 Overview 
 

Although different models have been defined, which fulfill load balancing in unicast 

transmission, it is necessary to define other models that consider multicast transmission, 

because in this case, instead of creating multiple paths to transmit the flow from the ingress 

node to just one egress node it is necessary to create multiple trees to transport the flow from 

the ingress node to the egress node set of the multicast group. 

 

In this chapter we propose a load-balancing scheme using several objectives to create multiple 

trees based on weighting methods. The scheme includes the maximum link utilization (MLU), 

the hop count (HC), the total bandwidth consumption (BC), and the total end-to-end delay 

(DL). In this model, we have included a constraint with the aim of solving the scalability 

problem, because without this constraint it would be possible to create too many trees. 

 

3.2 Optimization Scheme 
 

In this multi-objective proposal the network is modeled as a directed graph ),( ENG = , where 

N is the set of nodes and E is the set of links. We use n to denote the number of network nodes, 

i.e. Nn = . Among the nodes, we have a source Ns∈  (ingress node) and some destinations T 

(the set of egress nodes). Let Tt∈  be any egress node. Let Eji ∈),(  be the link from node i 

to node j. Let Ff ∈  be any multicast flow, where F is the flow set and fT  is the egress node 

subset for the multicast flow f. We use |F| to denote the number of flows. Note that 

U
Ff

fTT
∈

= . 

Let tf
ijX  be the fraction of flow f to egress node t assigned to link (i,j). Note that these variables 

include egress node t, which is not considered in previous works [KIM02] [LEE02] [ROY02] 

[SEO02] [WAN01]. Including the egress nodes permits us to control the bandwidth 

consumption in each link with a destination at the set of egress nodes. Therefore, it is possible 

to maintain the flow equilibrium constraint at the intermediate nodes exactly. The problem’s 

solution, tf
ijX  variables, provides optimum flow values. 
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Let cij be the capacity of each link (i,j). Let bwf be the traffic demand of a flow f from the 

ingress node s to fT . The binary variables, tf
ijY , represent whether link (i,j) is being used (1) or 

not (0) for the multicast tree rooted at ingress node s and reaching egress node subset fT . Let 

vij be the propagation delay of link (i,j). Let m be the number of functions in the multi-objective 

function. Let connectionij be the indicator of whether there is a link between nodes i and j. The 

Table 3.1 presents the variable definitions. 

 

Table 3.1.  

Variable Definitions 

Terms Definition 

G Graphs of the topology 

N Set of nodes 

E Set of links 

s Ingress node 

T Set of egress nodes 

t Any egress node 

(i,j) Link from node i to node j 
F The flow set 

f Any multicast flow 

Tf The egress node subset for the multicast flow f 
tf
ijX  The fraction of flow f to egress node t assigned to link (i,j) 

cij The capacity of each link (i,j) 
bwf the traffic demand of a flow f 
tf
ijY  Represent whether link (i,j) is being used (1) or not (0) to transmit the flow f to 

egress node t    
m The number of functions in the multi-objective function 

connectionij The indicator of whether there is a link between nodes i and j 
NT The maximum number of necessary links 

 

 

The problem of minimizing |F| multicast flows from ingress node s to the egress nodes of each 

subset fT  is formulated as follows: 
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(MHDB-S model) 
 
Minimize 
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fTt
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The Multi-objective function (MHDB-S model) (equation 3.1) defines a function and generates 

a single aggregated metric for a combination of weighting objectives. 
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The main objective consists in minimizing the maximum link utilization (MLU), which is 

represented by α in (3.1). The value of α is directly related to the utilization in each link (i,j). 
 

However with this objective the solution obtained may involve long routes. In order to 

eliminate these routes and to minimize hop count (HC), the term ∑ ∑ ∑
∈ ∈ ∈Ff fTt Eji

tf
ijY

),(
 is added. 

This is necessary because the objective function may report only the most congested link and 

the optimal solution may include unnecessarily long paths in order to avoid the bottleneck link 

[KIM02]. 

 

In addition, in the hop count function it is possibly to optimize other objective functions, for 

example, in order to minimize the total bandwidth consumption (BC) over all links, the term 

( )∑ ∑
∈ ∈ ∈Ff Ejit

tf
ij

fTt
f Xbw

),(
max  is also added. Remember that in a unicast connection, the total amount 

of bandwidth consumed by all the flows with a destination at egress node t must not exceed 

the maximum utilization (α) per link capacity cij, that is, EjicXbw ij
Ff Tt

tf
ijf ∈≤∑ ∑

∈ ∈
),(,.. α . However in a 

multicast connection it is necessary to consider only the maximum value because the same 

packet is never sent twice in a link. 

 

Furthermore, in order to minimize the total end-to-end propagation delay (DL) over all links, 

the term ∑ ∑ ∑
∈ ∈ ∈Ff fTt Eji

tf
ijij Yv

),(
is also added. In [ABO98] the authors showed that the delay has 

three basic components: switching delay, queuing delay and propagation delay. The switching 

delay is a constant value and can be added to the propagation value. The queuing delay is 

already reflected in the bandwidth consumption. The authors state that the queuing delay is 

used as an indirect measure of buffer overflow probability (to be minimized). Other 

computational studies (e.g. [ABO98]) have shown that it makes little difference whether the 

cost function used in routing includes the queuing delay or the much simpler form of link 

utilization. 

 

Equation (3.2) calculates the maximum link utilization (MLU), also called α, in function of the 

maximum utilization in every link (i,j) in which a fraction of the multicast flow is being 

transmitted. 

 

Constraints (3.3), (3.4) and (3.5) are flow conservation constraints. Constraint (3.3) ensures 

that the total flow emerging from the ingress node to any egress node t at flow f is 1. In Fig 3.1 
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and Fig 3.2 we show that the sum of the X values leaving the ingress node (Node 1) with 

destinations at every egress node (Nodes 5 and 6) is 1. In the Figures 3.1 and 3.2 we show an 

example of the creation of two trees to transmit one multicast flow. In this example the ingress 

node is node 1 and the egress nodes are nodes 5 and 6. In this example using the proposal 

presented in this chapter, it is possible to create two trees to transmit the multicast flow. In 

this case, the variable X represents the fraction of flow transmitted in every link with a 

destination at one particular egress node. 

 

 

 

Fig 3.1. 1st Transmission Tree in Multicast Fig 3.2. 2nd Transmission Tree in Multicast 

 

Constraint (3.4) ensures that the total flow coming from an egress node t at flow f is 1. 

Constraint (3.5) ensures that for any intermediate node that is different from the ingress node 

(i ≠ s) and egress nodes )( Ti∉ , the sum of its output flows to egress node t minus the input 

flows with a destination at egress node t at flow f is 0. i.e. 

( ) ( ) ( ) ( )0,0,0,0 6
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Constraint (3.6) is the maximum link utilization constraint. Remember that in an unicast 

connection, the total amount of bandwidth consumed by all the flows with a destination at 

egress node t must not exceed the maximum utilization (α) per link capacity cij, that is, 

EjicXbw ij
Ff Tt

tf
ijf ∈≤∑ ∑

∈ ∈
),(,.. α .  

 

Nevertheless, in constraint (3.6) only the maximum value of tf
ijX for fTt∈  must be considered. 

Though several subflows of flow f in link (i,j) with destinations at different egress nodes are 

sent, in multicast IP specification just one subflow will be sent.  

 

The function max in expressions (3.1), (3.2) and (3.6) generates discontinuous derivatives. For 

this reason, the problem should be solved using a GAMS tool to solve DNLPs (Nonlinear 

programming with discontinuous derivatives) such as MINOS, MINOS5, COMOPT, 

COMOPT2, and SNOPT [GAM04]. The DNLP problem is the same as the NLP (Nonlinear 

Programming) problem, except that non-smooth functions (abs, min, max) can appear. 
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Our model is a nonlinear programming problem because some equations use the nonlinear 

function max (3.1), (3.2), (3.6). Usually the models can be relaxed by introducing a new 

constraint variable which reaches the greatest value of the max function. One way to give a 

solution to this kind of problem is the linearization. For example: min y, where y = max xi, 

such model can be rewritten as: min y, where y ≥ xi. But sometimes, such relaxation can 

introduce new variables in the model and this kind of solution (called e-constraint) has 

problems when in multi-objective optimization problem the solution space is not convex: 

Moreover,  another difficult it is to know the maximum values of these new constraints. This 

kind of method to convert a nonlinear problem into a linear problem is good when the problem 

is a single-objective problem. And this kind of solution is good when it is impossible to have a 

nonlinear solver. 

 

The constraints (3.7a) and (3.7b) limit the maximum number of subflows in each node by 

means of the capacity of each link and the traffic demand. This formulation represents the 

number of links necessary for a traffic demand, without this constraint the model could have 

scalability problems, i.e. the label space used by the LSPs would be too high. 

 

A first approach towards achieving this aim is to use constraint (3.7a), in this case, the 

maximum number of necessary links is given by a constant value NT [DON03]. However, this 

expression has a problem; what is the right value of NT? To solve this drawback constraint 

(3.7b), which depends on network characteristics (flow demand, bandwidth in every link and 

number of connections in every node), is defined. 

 

Expression (3.8) shows that the tf
ijX variables must be real numbers between 0 and 1 because 

they represent the fraction of every flow that is transmitted. These variables form multiple 

trees to transport multicast flow. The demand between the ingress node and egress node t can 

be split over multiple routes. When the problem is solved without load balancing, this variable 

can only take the values 0 and 1, which show, respectively, whether or not link (i,j) is being 

used to carry information to egress node t.  
 

Expression (3.9) calculates tf
ijY  as a function of tf

ijX . Note that the variables tf
ijY  are integers. 

 

Finally, expression (3.10) shows that the weighting coefficients, ri, assigned to the objectives 

are normalized. These values are used to solve the optimization problem.  
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The problem presented is NP-hard because the problem of computing the minimum cost tree 

for a given multicast group is known as a Steiner tree problem (NP-complete) and this model 

includes constrained integers ( tf
ijY ) and real variables ( tf

ijX ).  

 

Therefore, it is necessary to develop an algorithm to solve the same problem in a considerable 

polynomial time. In the next sub-section, we present an algorithm that gives an approximate 

solution to the problem presented in this sub-section. 

 

3.3 Static Multicast Multitree Routing Algorithm (MMR-S) 
 

In this section we propose a heuristic algorithm called MMR-S to solve the multiobjective 

MHDB-S model proposed in equation (3.1). This algorithm, shown in Algorithm 3.1, has 

G(N,E), s, Tf, bwf  and r as parameters, where G is the network topology, N is the node set, E 

is the links set, s is the ingress node for flow f, Tf  is the egress node subset, bwf  is the 

transmission rate for flow f, and r is the weighting objectives vector. Let 
tf
id  denote the length 

of a SPT from the ingress node to the egress nodes Tf. Let λf be a tree from s to t, fTt∈ , 

associated to flow f, which consists of several paths 
tf
kP  with 1≤k≤h, where h is the number of 

paths. This algorithm consists of two steps: 1) obtaining graph G’ with the distance based on 

the hop count, bandwidth consumption and delay, and 2) finding the multicast tree. 

 

Table 3.2.  

Variable Definitions 

Terms Definition 
tf
id  

Denote the length of a SPT from the ingress node to the egress nodes Tf 

tf
kP  

The paths found between ingress node s to the egress node t in the flow f  

λf A tree from s to t 
G’ Graph with the distance based on the hop count, bandwidth consumption and delay 

 

Step 1) Obtaining modified graph G’. In this step, all possible paths between ingress node s 

and every egress node t, fTt∈  are looked for. This step consists of three nested loops which 

calculate (for each egress node, fTt∈ , for each path 
tf
kP with a destination at node t and for 
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each node i, 
tf
kPi∈ ) the distance value 

tf
id  based on the hop count, bandwidth consumption 

and delay. In this case, a Breadth-First Search (BFS) is used to look for the different paths. In 

this type of search, the search proceeds by generating and testing each node that is reachable 

from a parent node before it expands any of these children. This search is said to be exhaustive 

because the search is guaranteed to generate all reachable states before it terminates with 

failure. By generating the all of the nodes at a particular level before proceeding to the next 

level of the tree (the Breadth First Strategy) this control regime guarantees that the space of 

possible moves will be systematically examined. 

 

Step 2) Finding the multicast tree. The second step consists of finding for each egress node 

fTt∈  the paths required to transmit the flow of information according to graph G’ with its 

distance variables, 
tf
id , and the available capacity of each path. To find out the cost of the 

path, the ri values obtained with SNOPT (see Table 3.3) in the solution of the multi-objective 

function of the MHDB-S model are taken into account. From among the paths that have a 

capacity greater than zero, the path with the lowest cost is selected and the maximum possible 

flow is applied in accordance with the maximum link utilization constraint (3.6). 

 

For a simple case with just one egress node (as in the topology shown in Fig 3.3), Fig 3.4 shows 

the values of the distances 
tf
id  obtained in the first run of the algorithm. 

 

Table 3.3. 

The  weighting objective vector r 

r1 r2  r3  r4  

0.997925 0.001 0.001 0.000075 

 

Fig 3.3. Graph G 
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Fig 3.4. Distances labeled by paths 
 

Dist. Path: 
nodes  

HC 
(hops) 

DL 
(mseg) 

BC 
(Mbps) 

     
d1 ---- 0   0 0 

     
P1: {1,2} 1 10 1.5 d2 P3: {1,2} 1 10 1.5 

     
P1: {1,2,4} 2 15 = 10+5 1.5 
P2: {1,3,4} 2 15 = 8+7 1.5 d4 

P3: {1,2,3,4} 3 25 = 10+8+7 1.5 
     

P2: {1,3} 1   8 1.5 d3 P3: {1,2,3} 2 18 = 10+8 1.5 
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algorithm MMR-S (G(N,E),s,Tf,bwf,r):   

begin 

  
tf
ijX  ← 0      

   // Step1: (Obtain modified graph G’) // 

   for each ( fTt∈ ) do  

        while (exists a path 
tf
kP  from node sf  to  node t) do 

              for each (
tf
kPi∈ ) do 

                   },,,{ Pppp
tf
i BCDLHCd α← ;        

             endfor 

        endwhile 

   endfor 

   α ← min αp 

   // Step2: (Finding multicast tree) // 

   for each ( fTt∈ ) do 

         while (bwf > 0     && 

                   
tf
ijX ← identify a path 

tf
kP in 

tf
id from node sf  to node t / 

                                       min (r1*α+r2*HCP+r3*DLP+r4*BCP) ≠ 0) )   do 

                       δ ← min{max_flowij, (i,j)Є
tf
kP } ; 

                        increase δ units of flow along 
tf
kP and update G’; 

                       bwf ← bwf – δ; 

          endwhile 

   endfor 

end algorithm;   

Algorithm 3.1. Algorithm MMR-S (Static Multicast Multi-Tree Routing) 

 

The 
tf
ijX values resulting from the algorithm allow us to calculate the values of MLU, HC, DL 

and BC according to the multi-objective (3.1) of the MHDB-S model. 
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3.4 Conclusions and Motivations 
 

Although different models have been defined to carry out load balancing in unicast 

transmission, it is necessary to define models that consider multicast traffic because in this 

case, instead of creating multiple paths to transmit flow from an ingress node to a single 

egress node, it is necessary to create multiple trees to transmit flow from the ingress node to 

the egress node set of the multicast group. 

 

In this section, we have presented multi-tree routing in order to develop multicast 

transmission with load balancing using multiple trees. We have employed a multi-objective, 

load-balancing scheme to minimize: the maximum link utilization (α), the hop count (HC), the 

total bandwidth consumption (BC), and the total end-to-end delay (DL). By introducing HC, 

lengthy paths are eliminated. By introducing BC, the bandwidth consumed by links is 

minimized. Using DNLP mathematical programming, we obtained the optimal set of  
tf
ijX  (the 

fraction of flow f with a destination at node t assigned to link (i,j)) for the problem (MHDB-S). 

The optimization variables (MLU, HC, DL and BC values) are calculated using a GAMS solver 

called SNOPT and the results will be compared with the heuristic algorithm presented.  

 

The optimization scheme proposed in section 3.2 has the following limitations: 

 

1. In multicast transmissions the egress nodes can enter or leave the group in 

transmission time. 

2. It is necessary to define the label assignation for the information transmission in 

MPLS.  

3. The solution to the multi-objective problem is obtained through a lineal 

combination of the different objectives and therefore it is transformed into a single-

objective function to be optimized. 

4. The method used in section 3.2 to solve the optimization problem would present 

some problems when the feasible solution set is a non-convex set, since some 

solutions cannot be found.  

 

To solve these drawbacks several proposals are presented in the following chapters. A solution 

to dynamic nodes in multicast transmission is presented in chapter 4. A solution to the label 

assignation problem in MPLS is presented in chapter 5. In addition, in chapter 6 a new 

scheme for finding a solution to points 3 and 4 using Multi-Objective Evolutionary Algorithms 

(MOEA) is presented. 
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Chapter 4 Load Balancing of Dynamic Multicast 
Flows 

 

 

4.1 Overview 
 

In this chapter, we propose a multi-objective traffic engineering scheme using different 

distribution trees for dynamic multicast groups (i.e. in which egress nodes can change during 

the connection’s lifetime). If a multicast tree is recomputed from scratch, it may consume a 

considerable amount of CPU time and all communications using the multicast tree will be 

temporarily interrupted. To overcome these drawbacks we propose an optimization model 

(dynamic model MHDB-D) that uses a previously computed multicast tree (static model 

MHDB-S) adding new egress nodes. Similarly to the MHDB-S model, our aim in the MHDB-D 

model is to combine the following weighting objectives into a single aggregated metric: 

maximum link utilization, hop count, total bandwidth consumption and total end-to-end delay. 

In the same way, our dynamic proposal (MHDB-S model) also solves the traffic split ratio for 

multiple paths. In this case they are multiple paths and not multiple trees because a new node 

is added only in the flow transmission. Finding a solution for the analytical MHDB-D model 

using the different equations is very complicated. A multicast multi-objective dynamic routing 

algorithm called MMR-D is proposed for optimizing the different objectives.  

 

 

4.2 Optimization Scheme 
 

In this section, the MHDB-S model presented in the previous section is extended to the case of 

dynamic membership because using the MHDB-S model to obtain the optimal multicast tree 

after each change is computationally expensive. The solution is called the MHDB-D model. 

This model is based on adding the new egress nodes one by one to the tree. In this case, in 

order to connect the new egress node to the MHDB-S tree solution, only paths from the ingress 

node or the egress nodes are considered. The nodes that can become ingress nodes of the new 

node in the dynamic model must receive 100% of the flow information f. On the other hand, 

when the new node is connected to the existing tree the MHDB-D model considers the 

multipaths found previously, firstly by using the MHDB-S model and subsequently by using 

the previous MHDB-D model. In both cases, the multipath that optimizes MLU, HC, DL and 
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BC is chosen. With this scheme, the existing paths to the egress nodes can be used from that 

point to continue creating or extending new paths to connect to the new egress node. 

For the MHDB-D model the network is modeled as a directed graph ),( ENG = , where N is 

the set of nodes and E is the set of links. We use n to denote the number of network nodes, i.e. 

Nn = . Among the nodes, we have a source Ns∈  (ingress node) and some destinations T (the 

set of egress nodes in the initial transmission). Let Eji ∈),(  be the link from node i to node j. 

Let Ff ∈  be any multicast flow, where F is the flow set and fT  is the egress node subset for 

the multicast flow f. We use |F| to denote the number of flows. Let U
Ff

fTT
∈

= . Let bwf  be the 

traffic demand of a flow f from the ingress node s to fT . Let vij be the propagation delay of link 

(i,j). Let m be the number of variables in the multi-objective function. Let connectionij be the 

indicator of whether there is a link between nodes i and j. These variables that have been 

presented are the same as the MHDB-S model but have been included for completeness.  

 

We will now extend the variables and functions defined in the previous section to define the 

new dynamic model. Let t’ be the new egress node of the egress node subset (the membership 

group) for the multicast flow f. Let { }'''' , tTTTt fff U=∈ . Let ft
ijXd
'

 be the fraction of flow f to 

the new egress node t’ assigned to link (i,j). The binary variables, ft
ijYd
'

, represent whether 

link (i,j) is being used (1) or not (0) for the new egress node t’  in flow f. Let '
ijc  be the residual 

capacity of each link (i,j), which is calculated by decreasing the used bandwidth in the static 

model through tf
ijX  variables and flow demand f. 

 

The Table 4.1 presents the variable definitions. 

 

Table 4.1.  

Variable Definitions 

Terms Definition 

G Graphs of the topology 

N Set of nodes 

E Set of links 

s Ingress node 

T Set of egress nodes 

t Any egress node 
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t’ The new egress node of the egress node subset (the membership group) for the 

multicast flow f 
(i,j) Link from node i to node j 
F The flow set 

f Any multicast flow 

Tf The egress node subset for the multicast flow f 
tf
ijX  The fraction of flow f to egress node t assigned to link (i,j) 

ft
ijXd
'

 The fraction of flow f to the new egress node t’ assigned to link (i,j) 

cij The capacity of each link (i,j) 
'
ijc  The residual capacity of each link (i,j) 

bwf the traffic demand of a flow f 
tf
ijY  Represent whether link (i,j) is being used (1) or not (0) to transmit the flow f to 

egress node t    

ft
ijYd
'

 Represent whether link (i,j) is being used (1) or not (0) for the new egress node t’  
in flow f 

m The number of functions in the multi-objective function 

connectionij The indicator of whether there is a link between nodes i and j 
 

The problem of minimizing the dynamic membership group is formulated as follows: 

 

(MHDB-D model) 
 
Minimize  

++ ∑
∈Eji

ft
ijYdrr

),(

''
2

'
1 ..α +∑

∈Eji

ft
ijf Xdbwr

),(

''
3 .. ∑

∈Eji

ft
ijijYdvr

),(

''
4 .   (4.1) 

Subject to 

α = { }ijαmax , where  
ij

ft
ijf

ij c

Xdbw
'

.
=α  (4.2) 

 

∑
∈

=∨∈=
Eji

f
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ij siTiXd
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'
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∑ ∑
∈ ∈

=−=−
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The Multi-objective function (MHDB-D model) (4.1) defines a function and generates a single 

aggregated metric through a combination of weighting objectives, but in this case, the 

transmission is minimized in order to add an egress node to the existing multicast tree with 

load balancing through a multipath. 

In the same way as the static model (MHDB-S), in this dynamic model the main objective 

consists in minimizing the maximum link utilization (MLU), which is represented by α. The 

hop count (HC) ∑
∈Eji

ft
ijYd

),(

'
 function, the total bandwidth consumption (BC) ∑

∈Eji

ft
ijf Xdbw

),(

'
.  

function over all the links and the total end-to-end propagation delay (DL) ∑
∈Eji

ft
ijijYdv

),(

'
 

function over all links are added.  

All constraints except constraint (4.3) have the same objective as in the static model (MHDB-

S). Constraint (4.3) shows that the flow taken to send it to this new egress node emerges from 

one node and fulfills the restriction of transmitting 100% of the multicast traffic.  

Once the analytical model of the dynamic case (MHDB-D) has been presented, in the next 

section we present an algorithm (called MMR-D) that gives an approximate solution to the 

model presented. 
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4.3 Dynamic Multicast Multitree Routing Algorithm (MMR-D) 
 

In this section we propose a heuristic algorithm to solve the multi-objective for the dynamic 

multicast routing model proposed in (4.1). This algorithm, shown in Algorithm 4.1, has as its 

parameters G(N,E), s, Tf, bwf ,r and t’, which are defined in the section 4.2. Let s’= }{sT f ∪ be 

the set of initial egress nodes plus the ingress node. Let 
ft
ijsXd
'' )'(  be the fraction of flow f to 

the new egress node t’ assigned to link (i,j) from node s’. Let 
ft
isd
'

)'( denote the length of a SPT 

(shortest path tree) from node s’ to the new egress nodes t’. Let λf be a path from s’ to t’, 

associated with flow f, which consists of several paths 
ft
ksP
'

)'(  with 1≤k≤h, where h is the 

number of paths. This algorithm consists of one outer loop for each node s’ and two internal 

steps: 1) obtaining graph G’ with the distance based on hop count, bandwidth consumption and 

delay, and 2) finding the multicast tree. 

Step 1) Obtaining modified graph G’. In this step, all possible paths between any ingress node 

s’ and the new egress node t’ are looked for. This step consists of two nested loops which 

calculate (for each path 
ft
ksP
'

)'( with a destination at node t’ and for each node i, 
ft
ksPi
'

)'(∈ ) 

the distance value 
ft
isd
'

)'(  based on the maximum link utilization, hop count, bandwidth 

consumption and delay. 

Step 2) Finding the multicast tree. The second step consists of finding for the new egress node 

t’ the paths required to transmit the flow of information, according to graph G’ with its 

distance variables, 
ft
isd
'

)'( , and the available capacity of each path. To find out the cost of the 

path, the ri values obtained with the SNOPT solver in the solution of the MHDB-D model are 

taken into account. Out of the paths that have a capacity greater than zero, the path with the 

minimum cost is selected and the maximum possible flow is applied in accordance with the 

maximum link utilization constraint (4.6). Finally, the best metric (Zs) is selected with its 

paths. The 
ft

ijXd
'

values resulting from the algorithm allow us to calculate the values of HC, 

DL and BC according to the multi-objective (4.1) of the MHDB-D model. 
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algorithm MMR-D (G(N,E),s’,Tf,bwf,r,t’): 

1 begin 

2  for each s’←  ( }{sT f ∪ do 

3   
ft
ijsXd
'' )'(  ← 0      

4    Step1: (Obtain modified graph G’) 

5    while (exists a path 
ft
ksP
'

)'(  from node s’  to  node t’) do 

6              for each (
ft
ksPi
'

)'(∈ ) do 

7                   },,,{)'(
'

Pppp
ft
i BCDLHCsd α← ;        

8              endfor 

9     endwhile 

10   α ← min αp 

11  Step2: (Finding multicast tree) 

12   while (bwf > 0 && 

13     (
ft
ijsXd
'' )'( ← identify a path 

ft
ksP
'

)'( in
ft
isd
'

)'(  from node s’  to node t) 

14      /, min(r1*α+r2*HCP+r3*DLP+r4*BCP) ≠ 0) ) 

15            do 

16      Zs← min(r1*α+r2*HCP+r3*DLP+r4*BCP)     

         

17          bwf ← bwf – δ; 

18   endwhile 

19 endfor 

20 
ft

ijXd
'

, 
ft

kP
'

←
ft
ijsXd
'' )'( , min (Zs) 

21 δ ← min{max_flowij, (i,j)Є
ft

kP
'

} ; 

22 increase δ units of flow along 
ft

kP
'

and update G’; 

23 end algorithm; 

Algorithm 4.1. Algorithm MMR-D (Dynamic Multicast Multi-Tree Routing) 
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4.4 Conclusions and General Limitations 
 

In this section, we have presented a dynamic multi-objective optimization model (MHDB-D) 

and a heuristic algorithm (MMR-D) to develop a multicast transmission with load balancing 

using multiple paths. In this case, as in the static case, a label mapping solution to give an 

implementation in MPLS through LSPs is applied. We have employed a multi-objective load-

balancing scheme to minimize the following parameters: the maximum link utilization (α), the 

hop count (HC), the total bandwidth consumption (BC), and the total end-to-end delay (DL). 

Using mathematical programming, we obtained the optimal set of ft
ijXd
'

 (the fraction of flow f 

to destination node t’ assigned to link (i,j)) for the problem (MHDB-D) for the new egress node. 

 

The MHDB-D model proposed in this chapter for the dynamic case and the models proposed in 

previous chapters for the static case have the following limitations: 

 

1. The solutions found through the weighted sum method present problems when 

the space of feasible solutions is not convex. As this method works in relation 

to linear combinations, it is possible that many solutions cannot be found. 

2. In the MHDB-S and MHDB-D models proposed in Chapters 3 and 4, it is not 

possible to know exactly when the load balancing is been carried out and how 

many subflows are being created from a multicast flow. Moreover, it is also not 

possible to know what is the percentage transmitted by each subflow. 

3. Due to the previous limitation, the dynamic model proposed just selects the 

path to the new egress node from the ingress node and from the previous 

egress nodes. Until now, it has been impossible to consider any node that is a 

part of the transmission flow or subflow because it was not considered a sub-

index indicates the proportion of traffic of a particular flow considering each 

subflow. 

4. Only some objectives of those presented in other related works have been 

considered. 

 

To solve limitation 1, a solution of the general model (GMM-model) by using MOEA is 

presented in Chapter 6.  

 

Limitations 2, 3 and 4 are solved by adding to the GMM- model a new sub-index to represent 

each subflow and through which it is possible to find out what is the percentage of information 
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transmitted through each one. With regards to limitation 4 in the GMM-model, 11 objective 

functions for optimization have been included. 
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Chapter 5 Mapping subflows to P2MP LSPs 
 

 

5.1 Overview 
 

In this chapter we focus on the specific problem of mapping subflows to point-to-multipoint 

(P2MP) LSPs for MPLS network implementations. The aim is to obtain an efficient solution to 

formulate P2MP LSPs given a set of optimum subflow values. In [SOL04] the author presents 

a subflow mapping solution based on a linear equation system that requires a large number of 

equations and variables. To solve this problem, a subflow mapping heuristic for creating 

multiple P2MP LSPs based on the optimum subflow values obtained with the MHDB-S model 

is proposed in this sub-section. 

 

 

5.2 The problem of lack of labels 
 

A general problem of supporting multicasting in MPLS networks is the lack of labels. The 

MPLS architecture allows aggregation in point-to-point (P2P) LSPs. Aggregation reduces the 

number of labels that are needed to handle a particular set of flows, and may also reduce the 

amount of label distribution control traffic needed [ROS01]. Adding new LSPs increases the 

label space and hence the lookup delay. Therefore, reducing the number of labels used is a 

desirable characteristic for any algorithm that maps flows to LSPs. 

 

As pointed out in [ROS01], the label based forwarding mechanism of MPLS can also be used to 

route along multi-point to point (MP2P) LSPs. In [SAI00] and [BHA02], aggregation 

algorithms that merge P2P LSPs into a minimal number of MP2P LSPs are considered. In this 

case, labels assigned to different incoming links are merged into one label assigned to an 

outgoing link. If two P2P LSPs follow the same path from an intermediate node to the egress 

node, these aggregation algorithms allocate the same label to the two P2P LSPs and thus 

reduce the number of labels used. In [APP03], an algorithm that reduces the number of MPLS 

labels for |N| (number of nodes) + |E| (number of links) without increasing the link load is 

presented. For differentiated services with K traffic classes with different load constraints, 

their limit increases to K(|N|+|E|). Their stack-depth is only one, justifying MPLS 

implementations with limited stack depths. To reduce the number of labels used for multicast 

traffic, another label aggregation algorithm is presented in [OH03]. In this case, if two P2MP 
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LSPs follow the same tree from an ingress node to the egress node set, the aggregation 

algorithm allocates the same labels to the two P2MP LSPs. Ingress nodes have a new table 

(called the Tree Node Table), which saves node information from the P2MP LSP. Label 

allocation is carried out using this table. 

 

The label stack was introduced into the MPLS framework to allow multiple LSPs to be added 

to a single LSP tunnel [ROS01]. In [GUP03], a comprehensive study of label size versus stack 

depth trade-off for MPLS routing protocols in lines and trees is undertaken. This study shows 

that, in addition to LSP tunneling, label stacks can also be used to dramatically reduce the 

number of labels required to set up LSPs in a network. Their protocols have numerous 

practical applications that include implementing multicast trees, and virtual private networks 

using MPLS as the underlying signaling mechanism. 

 

 

5.3 Subflow to LSPs mapping problem in P2MP 
 

In this section, we detail the problem of mapping multiple P2MP LSPs based on the optimum 

subflow values tf
ijX obtained with the MHDB-S model (3.1). However, this mapping is difficult 

using the MHDB-S model because there is no index for identifying subflows [SOL04]. 

Remember that tf
ijX is the fraction of flow f with a destination at node t assigned to link (i,j). As 

the presented algorithm applies only to one flow f, the index f will be omitted when it does not 

cause confusion. 

 

To explain the problem, the MHDB-S models have been applied to the topology of Fig 5.1, with 

a single flow f, where s=N1 and T={N5, N6}. In this case, a possible subflow solution ( t
ijX ) 

obtained is shown in Fig. 5.2. The simplest solution (Fig. 5.3.) to create LSPs based on the 

optimum subflow values is to send each subflow (0.4 and 0.6 fractions) to the group separately, 

and in this case each subflow is mapped to one P2MP LPS. In Fig. 5.3, each packet represents 

a 0.2 fraction of the flow. With this mapping, subflows 5
12X  and 6

12X  are different and the 

maximum link utilization constraint (5) could be violated. Moreover, the network is used 

inefficiently because multicast node capabilities are not considered. In section 3.2 the 

difference between the multicast and unicast equations in the bandwidth consumption 

constraint was explained. 
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Fig 5.1. Physical network topology 
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Fig 5.2. MDDB-S solution 

 

1 2

3

4

5

6

2 1
12

345

345

12

345

345

12
1 2

3

4

5

6

2 12 1
12 12

345 345

345
345

12 12

345 345

345 345

12 12

 
Fig 5.3. Simplest P2MP mapping 

 

A second approach considers that one subflow is included in the other, i.e. min ( 5
12X , 6

12X ) ⊆ 

max ( 5
12X , 6

12X ), in the example 5
12X  ⊆ 6

12X . If both subflows 5
12X  and 6

12X  are sent over the 

link (1,2) to each member of the group separately (Fig 5.4), a part of the same flow is 

transmitted over the same link and the network is also used inefficiently. 
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Fig 5.4. P2MP assignment: unicast transmission 
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Fig 5.5. P2MP assignment: multicast transmission 
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Fig 5.6. P2MP assignment: subflow mapping 

 

Moreover, if a node has multicast capabilities, it is not necessary to transmit all the subflows 

over the link. In particular, if N2 has multicast capabilities, only the max ( 5
12X , 6

12X ) must be 

transmitted over link (1,2) (Fig 5.5). However, this solution presents a problem in the 

forwarding mechanism. Some incoming packets at node 2 must be forwarded only once (packet 

3), but other packets of the same subflow must be forwarded by different output links (packets 

4 and 5). To solve this, the ingress node must split this subflow into several LSPs (Fig 5.6). 

 

 

5.4 Subflow assignment based on a linear equation system 
 

In this sub-section, a linear system equation to split a subflow into several subflows is 

proposed. The solution is the set of desired multicast trees for the set of tf
ijX  values. For a 

unique flow f and given values Xij
t

, the solution of the presented system is a set of encoded 

P2MP LSPs, in which each, P2MPk , sends a fixed fraction, cmin , of the whole bandwidth to all 

destinations in T f . Let  ij
p2mpk  be a natural number, possibly 0, indicating the number of 

destinations that link i , j  at P2MPk broadcasts. 

 

To compute the cmin  value, it should be taken into consideration that a low value can result in 

many equations with many P2MP LSPs that are the same, and in contrast, a high value can 

result in an unsolvable problem because some fractions of Xij
t

 could not be assigned to the 
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P2MP LSP. On the other hand, there is a set of P2MP LSPs found, and thus  can be 

regarded as a linear combination of Xij
t

values. Therefore, an optimal cmin  value must divide 

all Xij
t

 and the difference between them, hence ( )tijXc *
min gcd= , where ( )yx,gcd*  is the 

greatest common divisor operator used with real numbers between 0 and 1. In the example in 

Fig 4.7, the cmin  value is 20%.  

 

The greatest common divisor of two real numbers ( )yx,gcd*  can be found following a modified 

Euclid’s algorithm: 

 

1 Let ba /  = irreducible fraction (x) and dc /  = irreducible fraction(y), where yx <  

2 Let ( )dcbalcdk /,/= , where lcd is the least common divisor of two fractions. 

3 Find ( )dckbakm /,/mod ⋅⋅=  

4 If m = 0, the result is ba /  

5 dcba // =  

6 kmdc // =  

7 Return to 2 

Algorithm 5.1. Modified Euclid’s Algorithm 

 

The Table 5.1 presents the variable definitions. 

 

Table 5.1.  

Variable Definitions 

Terms Definition 

 A solution of the presented system is a set of encoded P2MP LSPs 

cmin  The whole bandwidth to all destinations in T f  

ij
p2mpk

 A natural number, possibly 0, indicating the number of destinations that link 

i , j  at P2MPk broadcasts 

( )yx,gcd*
 

It is the greatest common divisor operator used with real numbers between 0 and 

1 

 

The following three equation sets model P2MP LSPs in general. 

 

 k , j
j N

sj
p2mpk T f        (5.1) 
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 k , i , j E , m ij
p2mpk m N

jm
p2mpk 1, if j T f

m N
jm
p2mpk , otherwise

    (5.2) 

 

And for this problem in particular: 

 

 i , j E cm in
k

ij
p2mpk

t T f

X ij
t

      (5.3) 

 

Note that, the set i , j ij
p2mpk 1  for a given k is the set of links that make up the tree p2mpk . 

 

Equation set (5.1) suggests that the number of destinations reached from a source node s is 

equal to fT . This is clear because all P2MP LSPs reach all destinations. Another obvious 

consequence is that |p2mp|=1/cmin , in other words, the number of constructed P2MP LSPs is 

the inverse of the fraction sent by each P2MP LSP. For the example analyzed in Fig. 5.7, the 

number of P2MP LSPs to be constructed is 5. 

 

The conservation flow law seen in (3.3), (3.4) and (3.5) can be translated as the set regarded in 

(5.2). This means that the number of destinations that node j must forward packets to is the 

same amount after (i.e. i node) and before (i.e. m nodes), or one less if j is a destination. 

 

By looking at a single link (i,j), the total bandwidth consumed in a link for a single destination 

should be equal to the amount consumed by all P2MP LSPs going to that destination. In 

general, this holds for all destinations at the same time according to (5.3). 

 

For a given set of Xij
t

 values, the solution set of the presented system is a set of encoded 

P2MP LSPs, which are made up of those values greater or equal to 1. Note that the equation 

system can be resolved into equal P2MP LSPs. If two P2MP LSPs, A and B, are the same (i.e. 

contain the same links, no more, no less), these P2MP LSPs can be merged by adding their 

fractions. Solving the example described in Fig 5.6, the solution (see Table 5.2) shows that 2 

pairs of P2MP LSPs (1 ∧ 4 and 3 ∧ 5) can be merged. Therefore, we have a set of 3 P2MP LSPs 

in our solution; one transmitting 20% of the total bandwidth and two transmitting 40%. 
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Table 5.2  

 solution and the P2MP LSPs. 

a. First tree. (40%) 

 

12
1 4 2, 25

1 4 1, 26
1 4 1  

1 2

3

4

5

6

1 2

3

4

5

6
 

b. Second tree. (20%) 

 

12
2 1, 25

2 1, 14
2 1, 46

2 1  

1 2

3

4

5

6

1 2

3

4

5

6

 

c. Third tree. (40%) 

 

13
3 5 1, 35

3 5 1, 14
3 5 1, , 46

3 5 1  

1 2

3

4

5

6

1 2

3

4

5

6

 

Super indexes a b indicate that the values were assigned initially to a and b P2MP LSPs 

 

 

5.5 Subflow mapping heuristic 
 

In more complex networks the linear system equation previously presented needs a large 

number of equations and variables. Therefore, in this sub-section, a subflow mapping heuristic 

to map subflow values into LSPs is proposed. 

 

The method presented in this section returns a set of P2MP that transmits 100% of a given 

flow f from source node s to the destination node set Tf. In order to explain the procedure, we 

will start by presenting the complementary notation used. Let ds,≤  be a total ordered 

relationship defined according to a pair of links, i.e. EE × , in which: ( ) ( )mkji ,, ≤  if, and only 

if, j = k; this means that there is a node, j or k, that can forward packets coming in from node i 

to node j directly; ( ) ( ) ( )jixsEji ,,,, ≤∈∀ ; and ( ) ( ) ( )dxjiEji ,,,, ≤∈∀ . Let ( )dsEP ,,≤⊆  

be the set that represents a single unicast path in graph G starting at node s and ending at 

node d, briefly summarized as dsP , . By adding a bandwidth restriction to the set of links, we 
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can restrict the set dsP ,  to ct
dsP
,
,  in the following way: ( ) ( ){ }cXPjijiP t

ijds
ct
ds ≥∈= ,,|, ,
,
,  and 

ct
dsP
,
,  fits in ds,≤ . This means that ct

dsP
,
,  is a path (found in t

ijX ) that could transmit c-percent of 

the total flow from s to d. In a similar way to ct
dsP
,
, , a tree is modeled as a set of links following a 

partial order relationship over the links analogous to ds,≤ . Let P2MP be a set that is initially 

empty, in which each element of the set is a tuple of a tree, usually denoted as M, and a real 

number c between 0 and 1 indicating the percentage of the flow transmitted using that tree. 
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1 Subflow mapping (P2MP, t
ijX , s, Tf) 

2  Parameter: t
ijX  s, Tf 

3  Return: p2mp 

4 Begin 

5  φ=mpp2  

6  While 0>∑ t
ijX   

7 

  

( ) 





















== ∑∑

∈∈∈ ff Tt

t
ij

EjiTt

t
ij YYjiL

,
sup|),(  

//** Computes the set of 

network links (L) that transmit 

a maximum number of 

subflows. 

8 
  ( ) ( ){ }tijLji

Xji
∈

∈
),(

inf|,),( βα  //** Choose link (α,β) in L that 

transmits the less fraction. 

9 
  

( )
( ) 10,inf

,
≤<ℜ∈= cXc t

αββα
        

10   For each fTt∈  do 

11    If ct
tP

,
,β  exists and cX t ≥βα , then 

12    ( ){ } ct
t

ct
st PPM ,

,
,
, , βα βα ∪∪=  

13    Else 

14    ct
tst PM ,
,=  

15    End if 

16    ( ) cXXMji t
ij

t
ijt −=∈∀ ,,  

17   End for 

18 
  U

fTt
tMM

∈

=  

19   ( ){ }cMmppmpp ,22 ∪=  

20  End While 

21 End 
 
Algorithm 5.2. Subflow mapping algorithm 

 

The path ct
tP

,
,β , in line 11 of Algorithm 5.2, will still exist when t is the destination index of the 

selected subflow fraction c in line 9, due to the flow conservation law in (3.3), (3.4) and (3.5). 

Note that at least one t
ijX is eliminated, i.e. takes the value of zero, in each iteration (6 to 20), 

because line 16 in Algorithm 5.2 reduces the bandwidth of link ( )βα ,  by exactly c units when 
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the destination is t in 9. Therefore, the complexity of the procedure is ( )ft
ij TXO ⋅  for a single 

flow. 

 

Fig 5.8a. shows the subflow solution ( t
ijX ) considered to explain the subflow mapping 

algorithm. Initially, in lines 7 to 9 of Algorithm 5.2, set L only contains link (1,2) for 

destinations 5 and 6. Therefore, ( )βα , will be (1,2) and c = 0.4 (see also Fig. 5.7a.) because it is 

the minimum fraction for all destinations computed in (1,2). Assuming that the cycle in line 10 

begins with t = 5, then path 4.0,5
5,2P  exists. In the same way, path 4.0,6

6,2P  also exists. Hence, the 

multicast tree built in the first iteration is ( ) ( ) ( ){ }6,2,5,2,2,1=M  (see Fig 5.7b) and the values 

5
5,2

6
2,1

5
2,1 ,, XXX  and 6

6,2X  are reduced to 0.4. 

 

1 2

3

4

5

6

0.4
0.4

0.40.4
0.6 0.6

0.6

0.6

1 2

3

4

5

6

0.4
0.4

0.40.4
0.6 0.6

0.6

0.6  
a. Initial subflow fraction values 

1 2

3

4

5

6

45

45

45
1 2

3

4

5

6

1 2

3

4

5

6

45

45

45

 
b. First multicast tree: (40%) 

Fig 5.7. First iteration of the algorithm 

 

In this case, the set of remaining fraction values t
ijX  is presented in Fig. 5.8a. The link 

( )βα , selected could be either (1,2) or (2,5) because both have the smallest capacity ( c= 0.2). 

We will select (1,2) for the example. In this case, path 2.0,5
5,2P  exists, but 2.0,6

6,2P does not. So, 

( ) ( ){ }5,2,2,15 =M  is computed with line 12 of Algorithm 5.2 and ( ) ( ){ }6,4,4,16 =M  with line 

14. The resulting tree ( ) ( ) ( ) ( ){ }6,4,5,2,4,1,2,1=M  with subflow fraction 0.2 is shown in Fig 

5.8b. 
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b. Second multicast tree: (20%) 

Fig 5.8. Second iteration of the algorithm 

 

Finally, the set of remaining fraction values t
ijX is presented in Fig 5.9a. Note that all the 

fraction values in the last iteration are the same, in this case c = 0.4. The algorithm applied 

here results in the remaining tree, ( ) ( ) ( ) ( ){ }5,4,5,3,4,1,3,1=M  (see Fig 5.9b). 
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b. Third multicast tree: (40%) 
Fig. 5.9 Final iteration of the algorithm 
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5.6 Conclusions and Motivations 
 

In this chapter, we have presented a proposal for finding a solution for label assignation and 

the creation of LSPs in MPLS technology. With this proposal, we have given a solution for 

limitation 2 presented at the end of chapter 4. 

 

However, we still have the other limitations: solving the multi-objective problem is given 

through lineal combination and this model does not cover some objective functions analyzed by 

other authors. 

 

In the next chapter we propose a generalized model with 11 different objective functions and 

the solution is given in a real multi-objective context using MOEAs (Multi-Objective 

Evolutionary Algorithms). 

 

 

5.7 Papers Published with this Chapter 
 

International Conference 

 

• [SOL05] F. Solano, R. Fabregat, Y. Donoso, JL. Marzo. “Asymmetric Tunnels in P2MP 

LSPs as a Label Space Reduction Method”. IEEE ICC 2005. Seoul, Korea. May 2005. 

 

• [SOL04a] F. Solano, R. Fabregat, Y. Donoso, JL. Marzo. “Mapping subflows to P2MP 

LSPs”. IEEE International Workshop on IP Operations & Management (IPOM 2004). 

Beijing, China. October 2004. 

 

• [SOL04] F. Solano, R. Fabregat, Y. Donoso. “Subflow assignment model of multicast 

flows using multiple P2MP LSPs”. CLEI (Congreso Latinoamericano de Estudios en 

Informática) 2004. Arequipa, Perú. October 2004. 

 



 65

 

Chapter 6 Generalized Multi-Objective Multitree 
model 

 

 

6.1 Overview 
 

In the previous chapters we presented the proposal for solving the multi-objective problem 

using load balancing in multicast transmissions. In the last chapters the problem was solved 

using the weighted sum method. In addition, the limitations and problems of the proposals 

were presented:  

 

• The solutions found using the weighted sum method present problems when the space 

of feasible solutions is not convex. Since this method works with linear combinations, 

it is possible that many solutions cannot be found. 

• In the dynamic case the solution found is sub-optimal. 

• Only some objectives of those presented in other related works have been considered. 

 

To overcome these drawbacks, in this chapter we propose a Generalized Multiobjective 
Multitree model (GMM-model) in a pure multiobjective context that considers simultaneously 

for the first time multicast flow, multitree, and splitting. A Multiobjective Evolutionary 

Algorithm (MOEA) approach is proposed to solve the GMM-model. 

 

 

6.2 Basic Concepts of Multi-Objective Optimization and MOEAs 
 

6.2.1 Multi-Objective Optimization scheme 
 

A general MOP includes a set of n parameters (decision variables), a set of k objective 

functions and a set of m restrictions. The objective and restriction functions are functions of 

the decision variables [COL03] [COH78]. Then the MOP can be expressed as: 
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   Optimize y = f(x) = (f1(x), f2(x), ... , fk(x)) 
   Subject to e(x) = (e1(x), e2(x), ... , em(x)) ≥  0 
   Where  x = (x1, x2, ... , xn) ∈  X 

     y = (y1, y2, ... , yk) ∈  Y 

 

(6.1) 

 

Where x is the decision factor and y the objective factor. The decision space is denoted by X, 

and the objective space by Y. Optimizing, depending on the problem, can also mean 

minimizing or maximizing. 

 

The restriction set e(x) ≥  0 determines the feasible solution set Xf and its corresponding set of 

feasible objective vectors Yf. 

 

Definition 6.1: Set of feasible solutions. The set of feasible solutions Xf is defined as the set of 

decision vectors x satisfying the requirements e(x): 
 

    Xf = {x ∈  X | e(x) ≥  0} (6.2) 

 

The image Xf , that is the feasible region of the objective space is denoted by: 

 

    Yf = f( Xf ) = 
fXx∈U {y =  f(x) } (6.3) 

 

Therefore, from these definitions we can see that each solution of the MOP consists of an n-

tuple x = (x1, x2, ... , xn), which leads to an objective vector y = (f1(x), f2(x), ... , fk(x)), where each 

x must fulfill the restriction set e(x) ≥  0. The optimization problem consists of finding x with 

the “best value” of f(x). In general, and as we have stated before, there is no one “best value”, 

but rather a set of solutions. In this set no one solution can be considered better than the 

others if all the objectives are taken into consideration at the same time. This derives from the 

fact that there may exist – and in general there exist - a conflict between the different 

objectives that make up the problem. For this reason, when dealing with MOPs a new concept 

of “optimal” is necessary. 

 

In one objective optimization the set of feasible decision variables is completely ordered 

through an objective function f. That is, given two solutions a, b ∈  Xf , only one of the following 

propositions is valid: f(a) > f(b), f(a) = f(b) o f(b) > f(a). The objective consists in finding the 

solution (or solutions) with the optimal values (maximum or minimum) of f. When we are 

dealing with various objectives, the situation changes.  Xf, in general is not totally ordered by 



 67

objectives; the order given is usually partial, (that is, with the decision factors a and b, f(a) 

cannot be considered to be better than f(b), and neither can f(b) be considered better than f(a)). 

The following graph illustrates this concept. It shows the relationship between two functions f1 

and f2. Function f1 represents the cost of the safety mechanisms of a system, while f2 

represents the accident occurrence index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The solution represented by point B is better than that of point C due to the fact that it 

provides better safety at a lower cost. Solution B would also be chosen in the case of 

performing an objective optimization. Moreover, all solutions located in the rectangle limited 

by the origin coordinates and solution C and over the curve are better than C. Comparing A 

and C we find that by decreasing costs a lot the safety level provided by A is only a bit worse, 

although C and A cannot really be compared because it is impossible to say that one is better 

than the other when considering all the objectives. If we compare A with B, we would not be 

able to establish that one of the two is better either, if we consider that both objectives are 

equally important and no subjective consideration is introduced. Nevertheless, B is clearly 

superior to C in both objectives. To express this situation mathematically the =, ≤  y ≥  

relations must be extended. This can be performed as follows: 

 

Definition 6.2: Given two decision vectors u ∈   X and v ∈   X, 

 

  f(u) = f(v) if, and only if ∈∀i  {1, 2, ... , k}:  fi(u) = fi(v) 

  f(u) ≥  f(v) if and only if ∈∀i  {1, 2, ... , k}:  fi(u) ≥  fi(v) 

  f(u) > f(v) if and only if   f(u) ≥  f(v) ∧  f(u) ≠  f(v)  

 

(6.4) 

 

Fig 6.1 Example of Optimal Pareto in the Objective Space 
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The ≤  y <  are similarly defined.  

 

From this notion it follows that f(B) < f(C), f(C) < f(D), and as a consequence f(B) < f(D). 

Nevertheless when comparing A and C or A and B, we cannot say that one is superior to the 

other. For example, even though the solution represented by B is more expensive, it provides a 

lower accident index than that represented by A. 

 

So it follows that two decision vectors x1 y x2 of a MOP can only fulfill one of three possible 

conditions: f(x1) > f(x2), f(x2) > f(x1) or f(x1) ≱  f(x2) ∧  f(x2) ≱  f(x1). This situation is expressed 

with the following symbols and terms: 

 

Definition 6.3: Pareto Dominance in a Maximization context. For two objective vectors a and b, 

 

a ≻ b (a dominates a b)  if and only if              a > b 

b ≻ a (b dominates an a)  if and only if  b > a 

a ∼ b (a y b  are not comparable) if and only if  a ≱ b ∧  b ≱ a 

 

(6.5) 

 

Definition 6.4: Pareto Dominance in a Minimization context. For two objective vectors a and b, 

 

a ≻ b (a dominates a b)   if and only if a < b 

b ≻ a (b dominates an a)   if and only if b < a 

a ∼ b (a y b  are not comparable)              if and only if a ≰ b ∧  b ≰ a 

 

(6.6) 

 

So, from now on it will not be necessary to differentiate the type of optimization to be 

performed (minimization or maximization) to the point that an objective can be maximized, 

while another can be minimized. 

 

It is possible to introduce the Pareto optimization criterion starting with the concept of Pareto 

dominance. Going back to the graph, point A is different from the others: its decision vector a 

is not dominated by another decision vector. This implies that a is optimal in the sense that it 

cannot be improved in an objective without degrading another one. These solutions are known 

as Pareto optimality (the term non-inferior is also used). 
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Definition 6.5: Pareto Optimality. Given a decision vector x ∈  Xf and its corresponding 

objective vector y = f(x) ∈  Yf , it is said that x is not dominated with respect to a set  A ⊆  Xf  if 

and only if 

 

   ∀  a ∈  A : (x ≻ a ∨  x ∼ a) (6.7) 

 

In case x is not dominated with respect to the entire set Xf, and only in that case, it is said that 

x is a Pareto optimal solution (x ∈  Xtrue, the real Pareto’s optimal set). While the 

corresponding y is part of the real Pareto optimal front Ytrue. This is defined as follows. 

 

Definition 6.6: Pareto optimal set and Pareto optimal front. Given the set of feasible decision 

vectors Xf.  Xtrue will be the set of non-dominated decision factors belonging to  Xf. That is: 

 

  Xtrue = { x ∈  Xf | x is not dominated with respect to Xf } (6.8) 

 

The set Xtrue is also known as the Pareto optimal set. While the corresponding set of objective 

vectors Ytrue = f(Xtrue) constitutes the Pareto optimal front. 

 

Now, the MOP involves two conceptually distinct tasks: search and decision making [HOR97]. 

Search is related to the processes where the feasible solutions are visited in order to find the 

Pareto optimal solutions. Decision making refers to the ranking process of alternative 

solutions. A rational human decision maker determines preferences among the conflicting 

objectives. The methodologies in MOP can be classified into three primary groups, depending 

on how the search and decision making tasks are handled. Horn [HOR97] discusses the state-

of-art approaches for each of these methodologies in detail [CER04]: 

 

• Decision making before search: In this approach, the objectives are aggregated into 

a single objective function where the preference information of the decision maker 

is represented. The aggregation can be carried out in two ways: scalar combination 

or lexicographical ordering (ranking according to the importance) of the objectives. 

The aggregation of the objectives into a single objective function requires domain-

specific knowledge about the ranges and the behavior of the functions. However, 

this kind of deep knowledge about the functions is usually not available, since the 

functions and/or feasible set may be too complex. However, this methodology has 

the advantage that the SOP strategies can be applied to the problem with the 

aggregated objective. 
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• Search before decision making: The feasible set is searched to find a set of best 

alternatives, without giving any information about preferences. Decision making 

considers only the reduced set of alternatives. For most of the real-life problems, 

gaining fundamental knowledge about the problem and alternative solutions can 

be very helpful in realizing the conflicts that are inherent in the problem. 

Performing the search before decision making makes this favorable circumstances 

possible, however the search process becomes more difficult with the exclusion of 

the preferences of the decision maker.  

 

• Integrating search and decision making: This approach includes the interactive 

methods where the preferences of the decision maker are used during the search 

process. At each iteration, the result of the search is evaluated by the decision 

maker in order to update the preferences. The search space is then reduced and the 

direction of the search is restricted to some particular regions according to the 

preferences of the decision maker. This last methodology integrates the theory of 

decision making into optimization theory.  

 

The interest of this thesis is in the first and in the second categories and comparisons between 

these kinds of methodologies are shown in the chapter 7. The first categories are given by the 

proposals presented in the chapters 3 and 4. The second category is given by the proposal 

presented in this chapter. In the second category when the method obtain an optimal solution 

set a rational human decision maker determines preferences among the conflicting objectives.  

 

6.2.2 MOEA concepts 
 

The term evolutionary algorithm (EA) refers to searching and optimization techniques 

inspired by the evolution model proposed by Charles Darwin after his exploratory trips 

[BAC00]. 

 

In nature individuals are characterized by chains of genetic material that are denominated by 

chromosomes. All information related to the individual and his or her tendencies is coded in 

the chromosomes. Each element making up the chromosome is called an allele. Each 

individual has an adaptation level to the environment, which gives him or her a greater 

survival capacity and possibility to generate descendants. This level of adaptation is linked to 

the characteristics encoded in the chromosomes. As the genetic material can be passed from 

parents to children as pairing occurs, the resulting children have chromosome chains 

resembling those of their parents and they combine characteristics of both. So, if two parents 
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with good characteristics cross, they will probably generate equally good children or even 

better ones [DEB01]. 

 

In order to solve a searching or optimization problem using evolutionary algorithms and the 

suggested concepts first a given number of possible solutions to the problem are presented as 

individuals of a finite population. This process is called coding. When coding an individual, all 

the relevant information concerning the individual and considered to influence optimization or 

searching must be present. Generally, the coding of an individual or its chromosome is a chain 

of bits or round numbers, depending on the problem to be solved. In this chain the element 

located in a given position is called an allele. 

 

Next the ability or adaptation level of each individual is determined (fitness), depending on the 

quality of the solution it represents. Later, the existing individuals generate new individuals 

through genetic operators such as selection, crossing or mutation. The selection operator 

chooses the parents that will be crossed. The probability that an individual is chosen as a 

parent and/or that it survives up to the next generation is linked to its fitness or ability; the 

greater the fitness, the greater the probability of surviving and having descendants, in the 

same way that it occurs in natural processes. 

 

After choosing the parents, their recombination or crossing occurs in order to obtain a new 

generation. In this way, in every new generation there is a high probability that the new 

population is composed of better individuals, since the offspring inherit the good 

characteristics of their parents, which when combined will be better. 

 

On the other hand, during recombination alterations (mutations) may occur in an individual’s 

genetic information. If the alterations that occur are good, they will generate a good individual 

with a high fitness and the alteration will be transmitted to the next generation; if, on the 

contrary, the alteration is not beneficial, the altered individual will have a low fitness and very 

few descendants or none at all. If this is so, this alteration will disappear with it. In this way, 

after several generations, the population will have evolved genetically to be individuals with a 

high ability level. That is to say, they represent good solutions to the proposed problem. 

 

The operators described are called searching or genetic operators. Reproduction focuses its 

attention on individuals with a high degree of fitness, and in this way, it takes advantage of 

the information at hand concerning the adaptation of the individual to the environment. 

Recombination and mutation somehow disturb individuals and they provide heuristics for the 

exploration of searching spaces. This is why the Eas are said to use the concepts of exploitation 
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and exploration. Even though they are simplistic from the Biology point of view, these 

algorithms are complex enough to provide strong searching mechanisms which can adapt to a 

great variety of problems. 

 

Since the mid seventies several algorithms in the area of the Eas have been introduced. They 

can be classified mainly as Genetic Algorithms, (GA), Evolutionary Programming, (EP), and 

Evolution Strategies, (ES), Classifying Systems, (CS) and Genetic Programming (GP). Even 

though the principle sustaining them is apparently very simple these algorithms have proven 

to be generally strong and powerful tools. In the next sub-section there is a short introduction 

to genetic algorithms.  

 

In this thesis the use of MOEA is oriented to look for a better solution to the multi-objective 

case presented in this thesis, but the idea is not to look for and to analyze the different kinds 

and the best MOEA to be applied in this thesis. 

 

Genetic Algorithms 

 

Genetic algorithms are used in several areas especially for searching and optimizations. In the 

praxis the algorithm is implemented by choosing a coding for the possible solutions to the 

problem. The coding is done through chains of bits, numbers or characters that represent the 

chromosomes. The crossing and mutation operations are applied in a very simple way through 

functions of vector value manipulation. Even though many research projects on coding have 

been developed using chains of varying lengths and even other structures, most of the work 

with genetic algorithms is focused on chains of bits with a fixed length. As a matter of fact 

using fixed length chains and the need to codify the possible solutions are the two crucial 

characteristics which differentiate genetic algorithms from genetic programming, which does 

not have a fixed length representation and which normally does not use a coding of the 

problem and its solutions. 

 

The working cycle of a GA (also known as generation cycle) is generally the following: calculate 

the fitness of the individuals in a population, create a new population through selection, 

crossing or mutation, and finally discard the old population and keep on creating using the 

recently created population. Each iteration in this cycle is known as a generation. It is 

necessary to mention that there is no theoretical reason for this to be the implementation 

method. As a matter of fact this punctual behavior is not seen as such in nature. Nevertheless 

the model remains valid and convenient. 
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The first generation (generation 0) of this process operates in an individual population 

generated according to chance. From there the genetic operators are applied to improve the 

population. Algorithm 6.1 presented next shows the main algorithm. 

 

 GA( ) Procedure 

Starting 

 t = 0 /* start with an initial time */ 

 Starting Population P (t) /* initiate a population of individuals generated by chance 

in */ 

 Evaluate P (t) /* evaluate the fitness of all the individuals in the initial population 

*/ 

 Until the stopping criterion is not reached 

 t = t + 1 /*  increase the time counter */ 

 P’ = Select Parents P (t) /* select a population to generate descendants */ 

  Recombine P’ (t) /* recombine the “genes” of the group of parents selected */ 

  Mutate P’ (t) /* perturb the generated population in a stochastic form */ 

 Evaluate P’ (t) /* calculate fitness of the newly created population */ 

  P = P, P’ Survivors (t)/* Select survivors for the next generation */ 

 End While 

End 

Algorithm 6.1. Basic Genetic Algorithm 

 

As it has been mentioned before the selection operator simulates the natural selection process 

where the strongest has the most survival ability. In the GA the survival ability of an 

individual is linked to the numerical value of the objective function or fitness. This operation is 

applied to each iteration in a population of individuals of constant size, with the aim of 

selecting promising individuals to generate the new population. Among the selected 

individuals there can be two or more identical individuals. The reason for this is that 

individuals with low fitness have little possibility of being elected, while the ones with good 

fitness are more frequently selected. 

 

The selection operator can be applied in several ways. Sometimes the selection is developed 

through tournaments where a group of individuals is chosen by chance and the winner of the 

tournament is the individual with the best fitness. The number of individuals chosen for the 

competence is previously fixed and remains constant in the traditional implementation. This 

form of selection is called tournament selection and it most adequately reflects the natural 

process of selection. Another form is called roulette selection. It is easily understood by 
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imagining a roulette wheel where the number of parts into which the roulette wheel is divided 

is the same as the number of individuals in the population. The size of each part is 

proportional to the fitness of each individual. It is expected that when the roulette wheel spins 

several times a larger number of individuals with high fitness will be obtained. Although there 

may be other ways to make the selection the two methods mentioned above are the most 

common in the published implementations. Next we present algorithm 6.2, which only 

contains the description of the roulette selection operator because the tournament one is very 

simple and implementing it is very direct. 

 

Selection Procedure( ) 

Start 

 Random Value = random number between 0 and 1  

 Partial Addition = 0 

 Rand = Random Value * ∑=

N

i if
1  

 i = 1 

 While ( lSumaParciaRandyNi ≥≤ )  

 Partial Addition = Partial Addition + fi 

 i = i + 1 

 End While 

 Return i 

End 

Algorithm 6.2. Genetic Algorithm. Selection Operator 

 

Once individuals have been selected the crossing operator is applied to each pair. Crossing can 

be done in different ways and we will only discuss one of them here, one point crossing. The 

one cutting point is selected randomly and it is applied to the pair of chromosomes or coding of 

the selected individuals. The most significant characters at the point of cutting will be 

maintained in their relative positions in the new pair of chromosomes and the rest are 

exchanged from the progeny chromosomes to the two new chromosomes obtained. For example 

consider the two chromosomes A1 and A2 from a pair of individuals in which the crossing 

operator will be applied to obtain two new chromosomes. Say the individuals are: 

 

    A1 = 0  1  1  |  0  1 

    A2 = 1  1  0  |  0  0 
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Where the “|” symbol indicates the cut point. The characters on the left of the cutting point 

are the most significant, so they remain in their corresponding positions in the new 

chromosomes, while the characters to the right of the cutting point are crossed with the 

parental chromosomes as shown in the example: 

 

    A’1 = 0  1  1  |  0  0 

    A’2 = 1  1  0  |  0  1 

 

In this way A’1 and A’2 are the chromosomes resulting from applying the crossing operator to 

the pair of parental chromosomes 

 

In Algorithm 6.3 the crossing operator is described. In the already mentioned pseudo-code I 

represents the length (in bits) of the chromosome; Jcross is the cutting point; the vectors 

Descendant 1 and Descendant 2 are equivalent to the binary representation of a pair of 

descendants; and Parent 1 and Parent 2 are the parents. The given crossing probability 

indicates the probability that parents will cross and the probability of generating clones. In 

this way not all selected individuals are destroyed by crossing. 

 

CrossOver Procedure(Parent1, Parent2) 

Start 

 Rand = random number between 0 and 1  

 If Rand is Lower than the given crossing probability  

  JCross = random number between 1 and l 

 If not 

  JCross = l 

 End Si 

 From i = 1 to i = JCross, i = i + 1  

 Offspring1[i] = Parent1[i] 

 Offspring2[i] = Parent2[i] 

 End From  

 From i = Jcross + 1 to i = l, i = i + 1  

 Offspring 1[i] = Parent2[i] 

 Offspring2[i] = Parent1[i] 

 End From  

End 

Algorithm 6.3. Genetic Algorithm. Crossover Operator 
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The crossing operator represents a form of local search in the regions next to the searching 

space surrounding the parents. On the other hand the mutation process is basically an random 

search. A specific position in the chromosome of the mutating individual is selected in an 

random way, then, the content value in that position is changed. 

In nature the probability of a mutation occurring is small in normal living conditions.  In the 

GA we try to represent the same probability with a very low occurrence value for the mutation 

operator. 

 

Evolutionary algorithms and multi-objective optimization 

 

The Eas are interesting given the fact that at first glance they seem especially apt to deal with 

the difficulties presented by MOPs. The reason for this is that they can return an entire set of 

solutions after a simple run and they do not have any other of the limitations of traditional 

techniques. In addition, some researchers have suggested that the Eas would behave better 

than other blind searching techniques. This statement still needs a clear demonstration and it 

should be considered in the light of the “no free lunch” theorems related with optimization, 

which states that if a method behaves “better” than other methods in one set of problems, it 

will perform “worse” in another set. The reality is that nowadays there are very few valid 

alternatives concerning other possible solution methods. In fact, the most recent publications 

on MOP resolutions using Eas (which are compiled in [DEB01]), seem to consider this fact and 

they have opened the way to a whole new field of research: evolutionary algorithms applied to 

multi-objective optimization (MOEA): Multiobjective Optimization Evolutionary Algorithm). 

 

 

6.3 GMM-model 
 

The proposed GMM-model considers a network represented as a graph G(N, E), with N 

denoting the set of nodes and E the set of links. The cardinality of a set is denoted as |.|, thus 

|N| represents the cardinality of N. 

The set of flows is denoted as F. Each flow f ∈ F can be split into Kf subflows that after 

normalization can be denoted as fk; k = 1, … |Kf|. In this case, fk indicates the fraction of f ∈ F 

it transports, i.e. 

 

  1
1

=∑
=

fK

k
kf  

(6.9)  

 



 77

For each flow f ∈ F we have a source sf ∈ N and a set of destination or egress nodes Tf  ⊂  N. 

Let t be an egress node, i.e. t ∈Tf. 

 

Let tf
ij

kX  denote the fraction of subflow fk to egress node t assigned to link (i,j) ∈ E, i.e. 

0≤ tf
ij

kX ≤1. In this way, the n components of decision vector X are given by all tf
ij

kX . Note that 

tf
ij

kX uses five indexes: i, j, f, k and t for the first time, unlike previous publications that only 

used a smaller subset of indexes because they did not deal with the same general problem  

[KIM02] [LEE02] [ROY02] [SEO02] [WAN01]. In particular, the novel introduction of a 

subflow index k gives an easy way to identify subflows and define LSPs in a MPLS 

implementation. 

 

Let cij be the capacity (in bps) of each link (i,j) ∈ E. Let bf  be the traffic request (measured in 

bps) of flow f ∈ F, traveling from source sf  to Tf. Let dij be the delay (in ms) of each link (i,j) ∈ 

E. The binary variables tf
ij

kY  represent whether a link (i,j) is being used (value 1) or not (value 

0) for transporting subflow fk to destination node t, i.e. 
 

 


 =

==
otherwise

Xif
XY

tf
ijtf

ij
tf

ij

k
kk

,1
0,0

       (6.10) 

 

where  .  denotes the ceiling function and consequently,  .  denotes the floor function. 

Finally, let connectionij be an indicator of whether there is a link between nodes i and j. 
Given the above notation and the multiobjective context already presented in equation (6.1), 

the proposed GMM-model considers the following objective functions: 
 

Maximal link utilization 
 

φ1 = { }ijαmax   where { }∑∑
= = ∈

=
F

f

K

k Tt

tf
ijf

ij
ij

f

f

kXb
c 1 1

max1α  (6.11) 

 

Hop count, in several different flavors such as: 
 

Total hop count 
 

φ2 = 
( )
∑ ∑ ∑ ∑

∈ ∈ ∈ ∈Eji Ff Kk Tt

tf
ij

f f

kY
,

 (6.12) 

 

Hop count average 
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φ3 = 
( )

∑∑

∑ ∑ ∑ ∑

∈ =

∈ ∈ ∈ ∈

Ff

K

k
f

Eji Ff Kk Tt

tf
ij

f

f f

k

T

Y

1

,
 (6.13) 

 

Maximal hop count, which is useful for QoS assurance 
 

φ4 = 
( ) 







∑
∈

∈∀
∈∀
∈∀ Eji
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ij
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Kk
Ff

k

f

f

Y
,,

,
max  (6.14) 

 

Maximal hop count variation for a flow, which is useful for jitter and queue size calculations 
 

φ5 = { }ft
Tt
Ff

f

Η
∈∀
∈∀

max  (6.15) 

 

where 
( ) ( ) 








−





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ijKkft
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Delay 
 

Total delay 
 

φ6 = 
( )
∑ ∑ ∑ ∑

∈ ∈ ∈ ∈

⋅
Eji Ff Kk Tt

tf
ijij

f f

kYd
,

 (6.16) 

 

Average delay 
 

φ7 = ( )
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Maximal delay, which is useful for QoS assurance 
 

φ8 = 
( ) 


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


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max  (6.18) 

 

Maximal delay variation for a flow, which is useful for jitter and queue size calculations  
 

φ9 = { }ft
Tt
Ff

f

∆
∈∀
∈∀

max   (6.19) 
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where 
( ) ( ) 








⋅−








⋅=∆ ∑∑
∈

∈
∈

∈ Eji
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ijijKkEji
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Number of subflows that can give an idea of the maximum number of LSPs for an MPLS 

implementation 
 

φ11 = ∑
=

F
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fK

1
 (6.21) 

 

As stated in equation (6.1), a MOP formulation usually considers m constraints (C), such as 

the following. 
 

Flow conservation constraints: 
 

for every source node Ns f ∈∀  and ,, fTtFf ∈∀∈∀  
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for every destination fTt ∈∀  and Ff ∈∀  
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for every other node if, Ff ∈∀ , fKk ∈∀ , fTt ∈∀ , ,Ni f ∈∀ tisi fff ≠≠ , fT∈  
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A subflow uniformity constraint, to ensure that a subflow fk always transports the same 

information: 
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without this restriction, 
tf

ij
kX >0 may differ from '

''
tf

ji
kX >0 and therefore, the same subflow fk may not transport the 

same data to different destinations t and t’. As a consequence of this new constraint, mapping 

subflows to LSPs is easy. 
 

Link capacity constraint, ,, NjNi ∈∀∈∀ : 
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Constraint on the maximum number of subflows: 
 

,,, NiTtFf f ∈∀∈∀∈∀  
 

a. constant maximum number: 
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b. or alternatively, depending on required bandwidth bf : 
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In summary, the proposed GMM-model follows the general mathematical framework of any 

MOP, given by equation (6.1). In this context, this model considers 11 objective functions given 

by equations (6.11) to (6.21), and 7 constraints given by (6.22) to (6.28). Clearly, it is not 

difficult to increment the number of objectives or constraints of the proposed model if new ones 

appear in the literature or they are useful for a given situation. In fact, Packet Loss was not 

considered in this first proposal, but including it would be very easy. 

 

At this point, it is important to point out that the mathematical solution of the proposed 

GMM-model is a complete set X* of Pareto optimal solutions x*∈X*, i.e. any solution x’ outside 

the Pareto set (x’∉X*) is outperformed by at least one solution x* of the Pareto set (∃x* f x’); 
therefore, x’ cannot outperform x* even if not all the objective functions are considered. 

Consequently, under the same set of constraints, any previous model or algorithm, that only 
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considers a subset of the proposed objective functions, either as a SOP or MOP, can find one or 

more solutions calculated with the GMM-model or dominated by solutions x*∈X* of this model. 

 

In conclusion, by using the GMM-model it is possible to calculate the whole set of optimal 

Pareto solutions. This includes any solution that has been found previously using most of the 

already published alternatives that consider any subset of the proposed objective functions. 

Now it is clear why we call this model generalized. 
 

6.3.1 Computational Solution applying MOEA to the Static case 
 

To solve the GMM-model, a Multiobjective Evolutionary Algorithm (MOEA) approach has been 

selected because of its well recognized advantages when solving MOPs in general and TE load 

balancing in particular [CRI04], [CRI04a], [CRI04b], [FAB04], [KOY04], [ROY02], [CUI03] and 

[ROY04]. A MOEA, as a genetic algorithm, has been inspired by the mechanics of natural 

evolution (based on the survival of the fittest) [VAN99]. 

 

At the beginning, an initial population of Pmax feasible solutions (known as individuals) is 

created as a starting point for the search. In the next stages (or generations), a performance 

metric, known as fitness, is calculated for each individual. In general, a modern MOEA 

calculates fitness considering the dominance properties of a solution with respect to a 

population. Based on this fitness, a selection mechanism chooses good solutions (known as 

parents) for generating a new population of candidate solutions, using genetic operators like 

crossover and mutation [GOL89]. The process continues iteratively, replacing old populations 

with new ones, saving the best found solutions (a process known as elitism), until a stop 

condition is reached. 

 

In this chapter, an algorithm based on the Strength Pareto Evolutionary Algorithm (SPEA) 

[ZIT99] is proposed. It has an evolutionary population P and an external set Pnd with the best 

Pareto solutions found. Starting with a random population P, the individuals of P evolve to 

optimal solutions that are included in Pnd. Old dominated solutions of Pnd are pruned each time 

a new solution from P enters Pnd and dominates old ones. 

 

Encoding 

Encoding is the process of mapping a decision variable x into a chromosome (the 

computational representation of a candidate solution). This is one of the most important steps 

towards solving a TE load balancing problem using evolutionary algorithms. Fortunately, it 

has been studied a lot in current literature. However, it should be mentioned that to our best 
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knowledge, this paper is the first one that proposes an encoding process, as shown in Figure 

6.2, that allows representing several flows (unicast and/or multicast) with as many splitting 

subflows as necessary to optimize a given set of objective functions to be represented. 

 

In this proposal, each chromosome consists of |F| flows. Each flow f, denoted as (Flow f), 
contains |Kf| subflows that have resulted from splitting and which flow in several subflows 

(multitree, for load balancing). Inside a flow f, every subflow (f,k), denoted as (Subflow f,k), 
uses two fields. The first one represents a tree (Tree f,k) which is used to send information 

about flow f to the set of destinations Tf, while the second field represents the fraction fk of the 

total information of flow f being transmitted. Clearly, equation (6.12) should be satisfied to 

assure that all information in flow f arrives to destinations Tf. 

 

Moreover, every tree (Tree f,k) consists of |Tf| different paths (Path f,k,t), one for each 

destination t ∈ Tf. Finally, each path (Path f,k,t) consists of a set of nodes Nl between the 

source node sf and destination t ∈  Tf (including sf and t). For optimality reasons, it is possible 

to define (Path f,k,t) as not valid if it repeats any of the nodes, because in this case it contains 

a loop that may be easily removed from the given path to make it feasible. Moreover, in the 

above representation, a node may receive the same (redundant) information by different paths 

of the same subflow; therefore, a correction algorithm has been implemented to choose only 

one of these redundant path segments, making sure that all subflows satisfy the optimality 

criteria. 

(Subflow f,k) (Tree f,k) fk

(Path f,k,t1) (Path f,k,t|Tf|)(Path f,k,t) ......(Tree f,k)

Nsf NtNn ......(Path f,k,t)

CHROMOSOME (Flow |F|)(Flow 1) (Flow f)... ...

(Flow f) ...(Subflow f,k) (Subflow f,|Kf|)...(Subflow f,1)

(Subflow f,k) (Tree f,k) fk(Tree f,k) fk

(Path f,k,t1) (Path f,k,t|Tf|)(Path f,k,t) ......(Path f,k,t1) (Path f,k,t|Tf|)(Path f,k,t) ......(Tree f,k)

Nsf NtNn ......Nsf NtNn ......(Path f,k,t)

CHROMOSOME (Flow |F|)(Flow 1) (Flow f)... ... (Flow |F|)(Flow 1) (Flow f)... ...

(Flow f) ...(Subflow f,k) (Subflow f,|Kf|)...(Subflow f,1) ...(Subflow f,k) (Subflow f,|Kf|)...(Subflow f,1)

 
Fig 6.2. Chromosome representation 

 

One interesting advantage of the proposed encoding is that a valid chromosome satisfies 

restrictions (6.22) to (6.28) completely, making verifying them unnecessary. 

An example of the proposed encoding process is presented in Figure 6.3 which shows a 

chromosome representation for a very simple network topology of six nodes (|N|=6) with a 

flow f between a source node sf ={N1} and two destination nodes: Tf ={N5, N6}. 
 

In this example, flow f is split into three subflows: 
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• A first subflow (k=1) transmits 40% of the total flow information through (Tree f,1) 
which consists of two different paths, (Path f,1,5)={N1, N2, N5} and (Path f,1,6)={N1, N2, 

N6}. 

• A second subflow (k=2) transmits 20% of the total flow through (Tree f,2) using two 

different paths, (Path f,2,5)={N1, N2, N5} and (Path f,2,6)={N1, N4, N6}. 

• Finally, a third subflow (k=3) transmits the final 40% of the total flow through (Tree 
f,3), which consist of two different paths, (Path f,3,5)={N1, N3, N5} and (Path f,3,6)={N1, 

N4, N6}. 

 

sf={N1} Tf ={N5 , N6}

N1

N3

N2

N4

N5

N6

N1

N3

N2

N4

N5

N6

N1

N3

N2

N4

N5

N6

(Subflow f,1) (Subflow f,2) (Subflow f,2)

ff1
=0.4 ff2

=0.2 ff3
=0.4

sf={N1} Tf ={N5 , N6}sf={N1} Tf ={N5 , N6}

N1

N3

N2

N4

N5

N6

N1

N3

N2

N4

N5

N6

N1

N3

N2

N4

N5

N6

N1

N3

N2

N4

N5

N6

N1

N3

N2

N4

N5

N6

N1

N3

N2

N4

N5

N6

(Subflow f,1) (Subflow f,2) (Subflow f,2)

ff1
=0.4 ff2

=0.2 ff3
=0.4

 
[ 

  (Flow f =                     /* Generic flow f split into 3 subflows 

   (Subflow f,1 = (                                              /* first subflow 

      Tree f,1=( 

        Path f,1,5 = (N1,N2,N5),              /* path to destination N5 

        Path f,1,6 = (N1,N2,N6) ) ),         /* path to destination N6 

      fraction f1 = 0.4 )        /* subflow 1 transmits 40% of flow 

   (Subflow f,2 = (                                         /* second subflow 

      Tree f,2=( 

        Path f,2,5 = (N1,N2,N5),              /* path to destination N5 

        Path f,2,6 = (N1,N4,N6) ) ),         /* path to destination N6 

      fraction f2 = 0.2 )         /* subflow 2 transmits 20% of flow 

   (Subflow f,3 = (                                             /* third subflow 

      Tree f,3)=( 

        Path f,3,5 = (N1,N3,N5),              /* path to destination N5 

        Path f,3,6 = (N1,N4,N6) ) ),         /* path to destination N6 

      fraction f3 = 0.4 )         /* subflow 3 transmits 40% of flow 

  ) 

] 

Fig 6.3. Network topology and chromosome representation for a flow f with three subflows 
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Initial Population 

To generate an initial population P of valid chromosomes we have considered each 

chromosome one at a time, building each (Flow f) of that chromosome separately. For each 

(Flow f) we first generated a large enough set of different valid paths from source sf to each 

destination t∈Tf (see line 1 of Algorithm 6.4). Then, an initial |Kf| is chosen as a reasonable 

random number that satisfies constraints on the maximum number of subflows given by 

equations (6.27) and (6.28). To build each of the |Kf| subflows, we randomly generated a tree 

with its roots in sf and its leaves in Tf by randomly selecting a path one at a time for each 

destination, from the previously generated set of paths. 

 

Trees are made up of a path-set, which can contain redundant segments; i.e. two paths 

belonging to a tree with different destinations can meet in more than one node causing 

redundant subflow information to be transmitted between the pair of nodes. To correct this 

anomaly, a repair redundant segments process has been defined: the shortest path of this tree 

can be taken as a pattern and then for each of the remaining paths in the tree, its shortest 

segment starting at the latest node (branching node) in the pattern must be found. The 

resulting segment will be a pattern segment starting at its source at the branching node joint 

with the old segment starting at the branching node at the destination. Later, an information 

fraction of fk=1/|Kf| is set. 

 

In this initialization procedure (see lines 2-3 of Algorithm 6.4), chromosomes are randomly 

generated one at a time. A built chromosome is valid (and accepted as part of the initial 

population) if it also satisfies link capacity constraint (6.29); otherwise, it is rejected and 

another chromosome is generated until the initial population P has the desired size Pmax. 

 

Selection 

Good chromosomes of an evolutionary population are selected for reproduction with 

probabilities that are proportional to their fitness. Therefore, a fitness function describes the 

“quality” of a solution (or individual). An individual with good performance (like the ones in 

Pnd) has a high fitness level, while an individual with bad performance has a low fitness. In 

this proposal, fitness is computed for each individual, using the well-known SPEA procedure. 

In this case, the fitness for every member of Pnd is a function of the number of chromosomes it 

dominates inside the evolutionary set P, while a lower fitness for every member of P is 

calculated according to the chromosomes in Pnd that dominate the individual considered. A 

roulette selection operator is applied to the union set of Pnd and P each time a chromosome 

needs to be selected. 
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Crossover 

We propose two different crossover operators: flow crossover and tree crossover. With the flow 
crossover operator (line 11 in Algorithm 6.4), |F| different chromosomes are randomly 

selected to generate one offspring chromosome that is built using one different flow from each 

father chromosome, as shown in Figure 6.4. A father may be chosen more than once, 

contributing with several flows to an offspring chromosome. 
 

OFFSPRING (Flow 1) (Flow 2) (Flow |F|)...

(Flow 1) (Flow 2) (Flow |F|)...

CHROMOSOMES

(Flow 1) (Flow 2) (Flow |F|)...

(Flow 1) (Flow 2) (Flow |F|)...

...

|F|

1

2

OFFSPRING (Flow 1) (Flow 2) (Flow |F|)...(Flow 1) (Flow 2) (Flow |F|)...

(Flow 1) (Flow 2) (Flow |F|)...

CHROMOSOMES

(Flow 1) (Flow 2) (Flow |F|)...

(Flow 1) (Flow 2) (Flow |F|)...

...

|F|

1

2

 
Fig 6.4. Flow crossover operator 

 

The tree crossover operator is based on a two-point crossover operator, which is applied to each 

selected pair of parent chromosomes (line 11 in Algorithm 6.4). In this case, the crossover is 

carried out by making tree exchanges between two equivalent flows of a pair of randomly 

selected parent-chromosomes, as shown in Figure 6.5. 
 

CHROMOSOMES Two-point crossover

OFFSPRING

(Tree f,1) f 1* ... (Tree f,k) f k* ... (Tree f,|Kf|) f |Kf|
*

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

Normalization process

1 – (flow f)

2 – (flow f)

1

2

CHROMOSOMES Two-point crossover

OFFSPRING

(Tree f,1) f 1* ... (Tree f,k) f k* ... (Tree f,|Kf|) f |Kf|
*(Tree f,1) f 1*(Tree f,1) f 1* ... (Tree f,k) f k*(Tree f,k) f k* ... (Tree f,|Kf|) f |Kf|
*(Tree f,|Kf|) f |Kf|
*

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ...... ...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ...... ...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ...... ...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ...... ...(Sub f,k) (Sub f,|Kf|)...(Sub f,1) ......

Normalization process

1 – (flow f)

2 – (flow f)

1

2

 
Fig 6.5. Tree crossover operator 

 

Tree crossover without normalization of the information fraction fk usually generates 

infeasible chromosomes because equation (6.9) is not satisfied. Therefore, a normalization 
process: 
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is used as the last step of a tree crossover operator. 

 

Mutation 

A mutation operator is usually used to ensure that an optimal solution can be found with a 

probability greater than zero. This operator can improve an evolutionary algorithm’s 

performance, given its ability to continue the search for global optimal (or near optimal) 

solutions even after local optimal solutions have been found, which stops the algorithm from 

being easily trapped in local sub-optimal solutions. Each time that an offspring chromosome is 

generated, a (generally low) mutation probability pm is used to decide if the mutation operator 

should be applied to this chromosome (line 13 in Algorithm 6.4). 

 

To apply a mutation operator, we first randomly choose a (Flow f) for the new offspring, in 

order to later select (also randomly) a (Subflow f,k) in which the mutation will actually apply; 

therefore, what we implement is a subflow mutation operator. For this work, we propose a 

subflow mutation operator with two phases: segment mutation and subflow fraction mutation.  

 

For the segment mutation phase, a (Path f,k,t) of (Tree f,k) is chosen randomly. At this point, a 

node Nj of (Path f,k,t) is selected as a Mutation Point. The segment mutation phase consists in 

finding a new segment to connect the selected Mutation Point to destination t (see Figure 6.6), 

followed by the repair redundant segment process that has already been explained (see B - 
Initial Population), to achieve better chromosome quality. 
 

Path f,k,t Mutation Point

Nsf NtNj oldest segment...

Nsf new segmentNj... Nt

Path f,k,t Mutation Point

Nsf NtNj oldest segment...

Nsf new segmentNj... Nt

 
Fig 6.6. Segment mutation 

 

Finally, the subflow fraction mutation phase is applied to (Subflow f,k) by incrementing (or 

decrementing) flow fraction fk in δ (see Figure 6.7), followed by the normalization process that 

has already been explained, to assure that equation (6.12) is satisfied. 
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(Tree f,1) f 1 ... (Tree f,k) f k ... (Tree f,|Kf|) f |Kf|

Flow f Mutation Point

(Tree f,1) f 1 ... (Tree f,k) f k±δ ... (Tree f,|Kf|) f |Kf|

Incrementation / decrementation subflow fraction

(Tree f,1) f 1* ... (Tree f,k) f k±δ* ... (Tree f,|Kf|) f |Kf|
*

Normalization process

(Tree f,1) f 1 ... (Tree f,k) f k ... (Tree f,|Kf|) f |Kf|

Flow f Mutation Point

(Tree f,1) f 1 ... (Tree f,k) f k ... (Tree f,|Kf|) f |Kf|

Flow f Mutation Point

(Tree f,1) f 1 ... (Tree f,k) f k±δ ... (Tree f,|Kf|) f |Kf|

Incrementation / decrementation subflow fraction

(Tree f,1) f 1 ... (Tree f,k) f k±δ ... (Tree f,|Kf|) f |Kf|
(Tree f,1) f 1 ... (Tree f,k) f k±δ ... (Tree f,|Kf|) f |Kf|

Incrementation / decrementation subflow fraction

(Tree f,1) f 1* ... (Tree f,k) f k±δ* ... (Tree f,|Kf|) f |Kf|
*

Normalization process

(Tree f,1) f 1* ... (Tree f,k) f k±δ* ... (Tree f,|Kf|) f |Kf|
*(Tree f,1) f 1* ... (Tree f,k) f k±δ* ... (Tree f,|Kf|) f |Kf|
*

Normalization process

 
Fig 6.7. Subflow fraction mutation followed by the 

normalization process 

 

This MOEA is summarized in Algorithm 6.4. 
 

1 Obtain initial set of valid paths 

2 Generate the initial population P of size Pmax 
3 Normalize fractions and remove redundant segments for every chromosome in P 
4 Initialize set Pnd as empty 
5 DO WHILE A FINISHING CRITERIOM IS NOT SATISFIED { 

6  Add non-dominated solutions of P into Pnd 
7  Remove dominated solutions in Pnd 
8  Calculate fitness of individuals in P and Pnd 
9  REPEAT Pmax times { 

   Generate new chromosome set C using 
   Tree crossover with Selection (in P ∪ Pnd) and normalization process 

10 

11 

12    Flow crossover with Selection (in P ∪ Pnd) 

13 
   With probability pm mutate set C and the normalization process and remove 

redundant segments 

14    Add to P the valid chromosomes in C not yet included in P 
15  END REPEAT 

16 END WHILE 

Algorithm 6.4. Proposed Algorithm 

 

6.3.2 Limitations 
 

In the previous section the GMM model and a computational solution using MOEAs in the 

static case were presented. However, now it is necessary to give a solution to the dynamic case 

with the same aims as the static case, because in multicast transmission it is possible that the 

egress nodes enter and leave the tree in transmission time. 
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6.4 Dynamic GMM-model 
 

Inspired by the GMM-model, the present work proposes a Dynamic Multiobjective Multitree 
model (Dynamic-GMM-model) in a pure multiobjective context that considers simultaneously 
for the first time, multicast flow, multitree, splitting and dynamic nodes. The Dynamic-GMM-

model is an extension of the GMM-model. 

 

The proposed Dynamic-GMM-model considers a network represented as a graph G(N, E), with 

N denoting the set of nodes and E the set of links. Remember that the cardinality of a set is 

denoted as |.|, thus |N| represents the cardinality of N. The set of flows is denoted as F. 

Each flow f∈F can be split into Kf subflows that after normalization can be denoted as 

fk; k = 1, … |Kf|. In this case, fk indicates the fraction of f∈F it transports, i.e. 
 

1
1

=∑
=

fK

k
kf   (6.30) 

 

For each flow f∈F we have a source sf ∈N and a set of destination or egress nodes Tf ⊂ N. Let t 

be an egress node, i.e. t ∈Tf. 

 

Let tf
ij

kX  denote the fraction of subflow fk to egress node t assigned to link (i,j) ∈ E, i.e. 

0≤ tf
ij

kX ≤1. In this way, the n components of decision vector x are given by all tf
ij

kX . Note that 

tf
ij

kX uses five indexes: i, j, f, k and t.  

 

We also need to include the following notation. Let cij be the capacity (in bps) of each link (i,j) ∈ 

E. Let bf be the traffic request (measured in bps) of flow f ∈ F, traveling from source sf to Tf. 

Let dij be the delay (in ms) of each link (i,j) ∈ E. The binary variables tf
ij

kY  represent whether a 

link (i,j) is being used (value 1) or not (value 0) for transporting subflow fk to destination node 

t, i.e. 
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 (6.31) 

 

where  .  denotes the ceiling function and consequently,  .  denotes the floor function. 

Finally, let connectionij be an indicator of whether there is a link between nodes i and j. 
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Given the above notation and the multiobjective context already presented by equation (6.1), 

the proposed Dynamic-GMM-model considers the following objective functions: 

 

Maximal link utilization 
 

φ1 = { }ijαmax  (6.32) 
 

where ∑
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ij Xb

c 1
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Hop count, in several different flavors such as: 
 

Total hop count 
 

φ2 = 
( )
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∈ ∈Eji fKk
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,
 (6.33) 

 

Hop count average 
 

φ3 = 
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Maximal hop count, which is useful for QoS assurance 
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Maximal hop count variation for a flow, which is useful for jitter and queue size calculations 
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 (6.37) 
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Average delay 
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Maximal delay, which is useful for QoS assurance 
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Maximal delay variation for a flow, which is useful for jitter and queue size calculations  
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Total bandwidth consumption 
 

φ10 = 
( )
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⋅
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,
 (6.41) 

 

Number of subflows that can give an idea of the maximum number of LSPs for a MPLS 

implementation 
 

φ11 = ∑
=

F

f
fK

1
 (6.42) 

 

As stated in equation (7.1), a MOP formulation usually considers m constraints (C), such as 

the following: 
 

Flow conservation constraints: 
 

for every source node Ns f ∈∀  and ,, fTtFf ∈∀∈∀  
 

1
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f
X  (6.43) 

 

for every destination fTt ∈∀  and Ff ∈∀  
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for every other node if, Ff ∈∀ , fKk ∈∀ , fTt ∈∀ , ,Ni f ∈∀ tisi fff ≠≠ , fT∈  
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A subflow uniformity constraint, to ensure that a subflow fk always transports the same 

information: 
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without this restriction, 
 

tf
ij

kX >0 may differ from '
''
tf

ji
kX >0 and therefore, the same subflow fk may not transport the 

same data to different destinations t and t’. As a consequence of this new constraint, mapping 

of subflows to LSPs is easy. 
 

Link capacity constraint, ,, NjNi ∈∀∈∀ : 
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Constraint on the maximum number of subflows: 
 

,,, NiTtFf f ∈∀∈∀∈∀  
 

a. constant maximum number: 
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 (6.48) 

 

b. or alternatively, depending on required bandwidth bf : 
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In summary, the proposed Dynamic-GMM-model follows the general mathematical framework 

of any MOP. This work considers 11 objective functions given by equations (6.32) to (6.42), and 

7 constraints given by (6.43) to (6.49). Clearly, in a similar way to the GMM-model, it is not 

difficult to increment the number of objectives or constraints of the proposed model if new ones 

appear in the literature or they are useful for a given situation.  

 

 

6.5 Dynamic GMM Model Resolution Using a Probabilistic 

Breadth First Search Algorithm 
 

In this section we propose the D-GMM algorithm to solve the Dynamic-GMM-model using a 

probabilistic Breadth First search algorithm. The D-GMM algorithm, shown in Algorithm 6.5, has 

as its parameters G(N,E), Sf, bwf and t’, which have been defined previously. Let Sf be the 

subflows set for flow f. Let t’ be the new node for flow f. 
 

This algorithm consists in three steps: 

 

• The first is to find paths. This step consists of obtaining different paths from each node 

of the subflow with a destination at the new egress node that will enter the multicast 

flow. This step has three internal cycles because all subflows must be considered, all 

the paths along which this subflow is transmitted and finally each one of the nodes of 

this path. For each one of these nodes a probabilistic Breadth_First search algorithm is 

applied to the new node. This search algorithm is probabilistic because every path has 

a probability greater than zero of being found. In this case, the search is not 

exhaustive. 

 

• The second is to combine Paths. In this step, each subflow is selected from the paths 

found in the previous step. With all the paths selected for each of the functions, a 

solution is constructed that extends the P2MP LSPs and therefore 100% of the flow is 
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transmitted to the new egress node. In this same procedure the different objective 

functions for each one are calculated from the solutions found. 

 

• The next step is to make a Non-dominated selection. This step consists of determining 

which solutions, out of all the solutions obtained in step 2,  are not dominated. These 

non-dominated solutions are the set of optimal solutions. 
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D-GMM algorithm (G(N,E),Sf,bwf,t’) 

begin 

P  ← Ф 

 for each subflow s ← Sf  do  

   while (exists a path p Є Sf ) do     

     for each node i in path p  i Є p do    

        p’ ← Breadth_First_Search(i,t’) 
       P ← p’U P  
    endfor 

   endwhile 

 endfor 

 combine_paths(); 

 no_dominated_selection(); 

end algorithm 

 

function combine_paths() 

begin 

  while (exists a path p Є Sf ) do     

    for each subflow s ← Sf  do  

        T ← one path p by each subflow s  

        Solutions(T) ← by each p calculate objective functions values 

    endfor 

  endwhile 

end function 

 

function no_dominated_selection() 

begin 

Optimal_Solutions  ← Ф 

  for each combined solution t Є T do 

     while (t’ Є T-{t} and t is non-dominated) do 

          for each objective function do 

                calculate dominance between t and t’ 
          endfor 

     endwhile 

     if  (t is non-dominated for every t’) then 

          Optimal_Solutions ← Optimal_Solutions U t 
   endif 

   endfor 

end function 

Algorithm 6.5. D-GMM algorithm 
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The complexity of the algorithm is given by the first step. The Breadth First Search 

probabilistic function has the next complexity O(nlogn). Every loop has an n as the maximum 

number of iterations. Finally, the complexity of the algorithm is O(n3logn). 

 

 

6.6 Conclusions and Motivations 
 

Given that one of the main contributions of this chapter is to formalize the GMM-model as a 

general model, it is interesting to compare it to another recently published model, like the 

MHDB-model. When comparing them, we can mention the following advantages of the GMM-

model over the previous MHDB-model: 

 

• The MHDB-model recognizes the multiobjective nature of the load balancing problem 

considering four objective functions (φ1, φ2, φ6, φ10), but it only solves a SOP using a 

weighted sum cost function, therefore only finding one solution for the whole Pareto 

set. 

 

• The MHDB-model simultaneously considers a weighted sum of objectives that are 

highly correlated, like φ2 and φ6, which seems inefficient in a SOP context. On the other 

hand, the GMM-model can also consider correlated objective functions, but only to 

discriminate similar solutions in a multi-objective context. 

 

• The weighted sum method proposed in the MHDB-model and several other papers (see 

Table II), is not good enough for finding all the solutions of a Pareto set in 

multiobjective non-convex problems, as stated in [VAN99]. 

 

• Given that the GMM-model clearly identifies each subflow (and even each subpath), it 

is very easy mapping subflows to LSPs for MPLS implementations. However, this 

mapping is difficult using the MHDB-model because there is no index for identifying 

subflows [SOL04]. 

• Given that each subflow is identified clearly, it is easier and more efficient to extend 

this generalized model to the dynamical case given that a node that wants to be 

included in a flow only needs to find the “closer” nodes from which subflows can be 

obtained. 

 

In this chapter we have proposed a Generalized Multiobjective Multitree model (GMM-model) 

that is able to consider any type of flow (unicast and multicast traffic), any number of flows 
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(unipath / multipath - unitree / multitree), considering (or not) splitting (or subflows) in a more 

general multiobjective context. 

 

If eventually a single-objective context is preferred, techniques like weighted sum may be used 

to combine objective functions in a unique cost function that can be combined with restrictions 

on some objectives, such as an upper bound on the delay, hop count, etc. However, any optimal 

single objective solution, like the ones proposed in several previous papers, could be a solution 

of the GMM-model or be dominated by one of its Pareto solutions when all analyzed objective 

functions are simultaneously considered. 

 

To solve the proposed model, a Multi-Objective Evolutionary Algorithm (MOEA) inspired by 

the Strength Pareto Evolutionary Algorithm (SPEA) has been implemented, proposing a new 

encoding process to represent multitree-multicast solutions using splitting. 

 

Finally, we have proposed a dynamic-GMM-model to give a solution to multicast transmission 

when the egress nodes can enter and leave in transmission time. A computational solution has 

been presented using a Probabilistic Breadth First Search Algorithm. In this case, this 

proposal is better than the proposal presented in chapter 4, because in this new proposal we 

resolve the dynamic case using every node of the transmission trees, and the computational 

solution is given in a real multi-objective context. 
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Multiobjective Multitree model for Dynamic Multicast Groups”. IEEE ICC. Seoul. Korea. 

May 2005. 
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Chapter 7 Analysis and Simulation Results 
 

 

7.1 Overview 
 

This chapter shows the experiments that have been carried out in order to evaluate the 

different models and algorithms proposed (MHDB-S, MMR-S, MHDB-D, MMR-D, GMM-model 

and Dynamic GMM-model). These experiments are focussed on testing the different models 

and the algorithms in them, as well as taking into account other proposals. First the different 

models (mono-objective models and the MHDB-S model) in the static case are tested, and then 

the MHDB-S model is compared with the MMR-S algorithms. The results obtained with the 

MMR-S algorithm and the MMR-D algorithm are compared. Finally, the results obtained of 

the GMM-model through the MOEA solution and the Dynamic GMM-model through BFS 

Probabilistic are compared. 

 

The experiments were developed following the methodologies proposed by [MON04] and 

[HER03]. These proposals define 7 steps to develop the research evaluation process: 

identifying and stating the problem; selecting the factors, levels and ranks; selecting response 

variables; choosing the experimental design; developing the experiment; a data statistical 

analysis, and finally conclusions and recommendations. 

 

 

7.2 Introduction 
 

To analyse the performance in extended networks four network scenarios were considered: 

NSF (National Science Foundation), SPRINT Network, UUNET Network and several random 

networks. These topologies were mainly selected because they have been used in many 

previous works.  

 

The NSF network considered has 14 nodes (Fig. 7.1). The costs on the links represent the 

delay and all links have 1.5 Mbps of bandwidth capacity.  
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Fig. 7.1. NSF Network 

 

The SPRINT network has 15 nodes (Fig. 7.2). The costs on the links represent the delay but 

these values don’t appear in the figure. Links have 45Mbps, 155 Mbps, 622Mbps and 2.5Gbps 

of bandwidth capacity. 

 

 
Fig. 7.2. SPRINT Network 

 

The UUNET network has 15 main nodes and 30 total nodes (Fig. 7.3). The costs on the links 

represent the delay but these values don’t appear in the figure. In this case the links also have 

45Mbps, 155 Mbps, 622Mbps and 2.5Gbps of bandwidth capacity. 
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Fig. 7.3. UUNET Network 

 

Random topologies have been used following the scheme proposed by [MED01]. These 

topologies are considered to prove the validity of the MMR-S and MMR-D algorithms proposed 

in this thesis in larger topologies than those presented in the three preceding scenarios. Using 

this generator several types of net topologies can be obtained by following the traditional 

scheme of Internet interconnectivity. It is also possible to obtain other types of topologies using 

this generator. 

 

In short, the parameter values used in the tests were the following: 

 

• Transmission rates ranging from 8% of the link capacity to 200%. Exactly 8%, 

16%, 33%, 66%, 100%, 133%, 166% and 200%. In this case the flow demand 

increases but the number of flows doesn’t. 

 

• The selection of the ingress node was randomly generated.  

 

• The selection of the egress nodes was randomly generated.  

 

• The amount of egress nodes compared with the number of nodes in the network 

topology for each flow changed from 20% to 95%. We did not work with 100% 

because the ingress node or multicast flow transmitter was not the ingress 

node or egress node at the same time.  

 

• Each simulation was developed with one ingress node, which was randomly 

selected. The number of egress nodes started at three nodes and in the case of 
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NSF reached up to 13 egress nodes, with values corresponding to 95% of the 

total number of topology nodes. For SPRINT and UUNET the same procedure 

was developed.  

 

• The order in which the egress nodes entered the process was determined 

randomly. 

 

When developing the tests, an important factor was choosing the sample size. As the NSF 

topology has 14 nodes and UUNET and SPRINT each have 15 nodes we then chose the sample 

size that would indicate the number of tests to be developed. Given the test variables (egress 

nodes randomly selected and transmitted flow percentage selected in an increasing way) the 

number of tests developed was the following: 

 

• For the tests developed with the GAMS tool: For each kind of flow (eight 

different types in total) and for the maximum number of egress nodes (13 for 

NSF and 14 for UUNET and SPRINT) 104 tests were developed with NSF and 

112 for UUNET and SPRINT. The total number of tests associated with each 

scenario type was 328.  

 

• For tests used to compare the solutions given by GAMS and the heuristic 

MMR-S and MMR-D the same number of tests were developed: 104 tests for 

NSF and 112 for UUNET and SPRINT. The total number of tests developed 

with the MMR-S heuristic and with the MMR-D was the same: 328 each. This 

gives a total of 656 tests with the heuristics.  

 

• Tests were also developed with larger topologies in order to test the heuristic 

and meta-heuristic solutions proposed. Topologies of 50, 100 and 200 nodes 

were randomly generated. In this case tests were developed for each flow, with 

egress nodes corresponding to 25%, 50%, 75% and 95% of the total number of 

flows. Therefore 32 experiments were carried out for each topology. That is, a 

total of 96 experiments.  

 

• For the tests developed with the MOEA solution, the same number of tests was 

carried out in order to compare them with the former results. That is, 328 tests 

were developed with MOEA and 328 tests with the probabilistic BFS algorithm 

to solve the dynamic case. This means that in order to solve the GMM model 

and the Dynamic-GGM model 656 tests were developed.  
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• This indicates that adding up GAMS, heuristics and MOEA and probabilistic 

BFS 1736 tests were developed in order to establish the corresponding 

comparisons. 

 

 

7.3 MHDB-S model versus simplified models: static case 
 

In this section, the MHDB-S model proposed in chapter 3, which considers four objective 

functions, is compared with “traditional” multicast routing algorithms such as DVMRP, PIM-

DM and BGMP, which are mono-objective. In particular, the MHDB-S model is compared with 

simple models which only consider one objective function: maximum link utilization in the 

MLU-model (section 7.3.1), delay in the DL-model (section 7.3.2), bandwidth consumption in 

the BC-model (section 7.3.3) and hop count in the HC-model (section 7.3.4). These models are 

proposed in several works: MLU-model in [FOR02], [LEE02] and [ABR02]; DL-model in 

[VUT00] and [CHE01]; BC-model in [CHO03] and one cost function which encompasses many 

objectives in [LEU98], [INA99], [LI99] and [SUN99]. 

 

In section 7.3.5. model MHDB-S is compared with other models, which have more than one 

objective and have been presented in other research works. Firstly model MHDB-S is 

compared with model DL-BC, considered in [RAO98] and [BAN01], in which only delay and 

bandwidth consumption are minimized. Later, model MHDB-S is compared with model HC-BC 

considered in [SON03], in which only hop count and bandwidth consumption are minimized. 

Finally model MHDB-S is compared with model MLU-HC-DL considered in [ABO98], in which 

maximum link utilization, hop count and bandwidth are minimized. 

 

To analyse the analytical model GAMS was used as an optimisation problem solving tool. The 

testing consisted in using GAMS to numerically solve the MHDB-S model with the four 

objective functions as well as simplified models with only one objective function, which have 

been considered in other works ([FOR02], [LEE02], [ABR02] [VUT00], [CHE01], [CHO03], 

[LEU98], [INA99], [LI99] and [SUN99]), and also with the models that consider combinations 

of two or three objective functions ([RAO98], [BAN01], [SON03] and [ABO98]). 

 

In the following sections the results for NSF are presented. For the SPRINT and UUNET 

topologies the same behaviour was observed. 
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7.3.1 Comparative Analysis of MHDB-S versus MLU 
 

In this section, the MHDB-S and MLU models are compared. Remember that in the MLU 

model only the maximum link utilization objective is minimized. 

 

Figures 7.4a, 7.4b, 7.4c and 7.4d respectively show the behaviour of MLU, HC, DL and BC 

when the information flow is 10% of the total link capacity. It can be seen that Model MHDB-S 

behaves similarly to Model MLU in all cases. 

 

In this section the relevant value is the analysis of the MLU function due to the fact that 

model MHDB-S is being compared with model MLU, in which only this function is minimized. 

The maximum difference observed is 10% of the optimal value found by function MLU. The 

figures with the values corresponding to variables HC, DL, and BC are shown in order to be 

able to analyse the differences found between the MHBD-S model and the model in which 

these three functions are not minimized. 

 

In the next figure every point represents the average value obtained to run with 8 different 

flow values, 3 different topologies and a varying number of egress nodes. 
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Fig. 7.4a. MLU of MHDB-S and MLU by 15% Fig. 7.4b. HC of MHDB-S and MLU by 15% 
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Fig. 7.4c. DL of MHDB-S and MLU by 15% Fig. 7.4d. BC of MHDB-S and MLU by 15% 
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Figures 7.5 show the behaviour when the information flow is 33% of the total link capacity. 
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Fig. 7.5a. MLU of MHDB-S and MLU by 30% Fig. 7.5b. HC of MHDB-S and MLU by 30% 
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Fig. 7.5c. DL of MHDB-S and MLU by 30% Fig. 7.5d. BC of MHDB-S and MLU by 30%  

 

 

Figures 7.6 show the behaviour when the information flow is 100% of the total link capacity. 
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Fig. 7.6b. HC of MHDB-S and MLU by 100% 
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Fig. 7.6c. DL of MHDB-S and MLU by 100% Fig. 7.6d. BC of MHDB-S and MLU by 100% 

 

Now if model MHDB-S is compared with the MLU minimization and the behavior of the other 

functions is analysed (HC, DL and BC), see figures b, c, and d of 7.4, 7.5 and 7.6, we can 

observe that in most cases model MHDB-S behaves in a better way and the tendendy is very 

similar between the MHDB-S model and the others kind of functions (HC, DL and BC). 

 

To compare the incidence of increases or decreases in a proposal with respect to the other 

proposal, different normalized variables were calculated. For example, to compare the MHDB-

S model with the MLU model, the normalized variable is given by 

MLU

MLUSMHDB
MLUvsSMHDB MLU

MLUMLUMLU −
= −

−
. 

 

When the “normalized value” < 0, the MHDB-S model is better than the MLU model; when the 

“normalized value” > 0 the MHDB-S is worse; and finally, when the “normalized value”= 0 the 

same behaviour is shown by both models. 

 

Figure 7.7 shows the normalized MLU values for different flow fractions and the number of 

egress nodes. In this case it can be observed that on average the MHDB-S model behaves in 

the same way as the MLU model where only the function maximum link utilization (MLU) is 

minimized.  In the worst case a 12% difference was found. This kind of behavior is due to the 

main function in the MHDB-S model is the MLU and this model try to optimize mainly this 

function. 
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Fig 7.7. Normalized MLU versus Flow Fractions (%) with different percentages of egress 

nodes  

 

When analysing all the normalized values for model MHDB-S and model MLU, it was 

observed that model MHDB-S compared to: 

 

• Function HC, model MHDB-S behaves better in most cases (up to 40% better) 

and in the worst case 17% worse.  

• Function DL, model MHDB-S behaves better in most cases (up to 45% better) 

and in the worst case 20% worse. 

• Function BC, model MHDB-S behaves better in most cases (up to 35% better) 

and in the worst case 10% worse. 

 

In all cases, the MHDB-S model show a better behavior in comparison with the function HC, 

DL, BC is due to the MHDB-S model optimize these function too. Only some few points are 

betther than the MHDB-S model due to the multi-objective optimization process. 

 

7.3.2 Comparative Analysis of MHDB-S versus HC 
 

In this section, the MHDB-S model and the HC model are compared. Remember that in the 

HC model only hop count objective is minimized. 

 

In Figure 7.8 model MHDB-S is compared with model HC. Figures 7.8a, 7.8b, 7.8c and 7.8d 

show the behaviour of HC when the information flow is 15%, 33%, 66% and 100% respectively, 

of the total link capacity. 
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It can be observed that model MHDB-S behaves with values near to those shown by function 

HC. The maximum difference observed is 35% of the optimal value found by the HC function. 

 

It can be observed in the figures that the HC values obtained for the MHDB-S model are 

greater than those obtained for the HC model, which implies that we cannot minimize the 

variable too much and therefore the MHDB-S model has worse behaviour with respect to hop 

count (HC). 
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Fig. 7.8a. HC of MHDB-S and HC by 15% Fig. 7.8b. HC of MHDB-S and HC by 33%  
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Fig. 7.8c. HC of MHDB-S and HC by 66% Fig. 7.8d. HC of MHDB-S and HC by 100% 

 

 

For the other objective functions (MLU, DL, and BC) the behaviour is similar to that presented 

in the previous section, i.e. in the graphs with non-minimized functions. In this case, in the HC 

model MLU, DL and BC are not minimized. In this case it was also observed that in most 

cases model MHDB-S behaved better than the values observed for the non-minimized 

functions. 

 

Figure 7.9 shows the normalized HC values for different flow fractions and the number of 

egress nodes. In this case it can be observed that model MHDB-S behaves at a maximum 27% 
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compared to model HC. This mean that the MHDB-S model optimizes the HC function too and 

the values are very close in comparison when the HC function is optimized only. In this figure 

we are testing up 200% tot he flow fraction because int this cas ewe are congestioning the 

network. 
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Fig 7.9. Normalized HC versus Flow Fractions (%) with different percentages of egress nodes 

in the NSF Topology minimizing HC 

 

Analysing all normalized values for MHDB-S model and the HC model it is observed that 

model MHBD-S compared to: 

 

• Function MLU, model MHBD-S behaves on average 10% better and in the best 

cases 60% better. The reasons area the same than the MLU analysis. 

• Function DL, model MHBD-S behaves on average 20% better and in the best 

cases 80% better.  

• Function BC, model MHBD-S behaves on average 10% better and 60% in the 

best cases better. 

 

7.3.3 Comparative analysis of MHDB-S versus DL 
 

In figure 7.10 the comparative graph between model MHDB-S and function DL is shown. It 

can be observed that model MHDB-S behaves with values closer to those shown by function 

DL. The maximum difference observed is 35% of the maximum value found for function DL. 

For the other functions (MLU, HC and BC) the behaviour is similar to that presented in the 

previous section where the graphs whose functions were not minimized were shown. In this 
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case it was also observed that in most cases model MHDB-S behaved better than the values 

presented when only function DL was minimized. 

 

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100

% Egress Nodes

D
L MHDB-S

DL

 

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 100

% Egress Nodes

D
L MHDB-S

DL

 

Fig. 7.10a. DL of MHDB-S and DL by 15% Fig. 7.10b. DL of MHDB-S and DL by 33% 
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Fig. 7.10c. DL of MHDB-S and DL by 66% Fig. 7.10d. DL of MHDB-S and DL by 100% 

 

Figure 7.11 shows the normalized DL values for different flow fractions and number of egress 

nodes. In this case it is observed that model MHDB-S behaves at a maximum 27% compared to 

model DL. This mean that the MHDB-S model optimizes the DL function too and the values 

are very close in comparison when the DL function is optimized only.  
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Fig 7.11. Normalized DL versus Flow Fractions (%) with different percentages of egress nodes 

in the NSF Topology minimizing DL 

 

When analysing all the normalized values for model MHDB-S and model DL, it is observed 

that model MHDB-S compared to: 

 

• Function MLU, model MHBD-S behaves on average 5% better and in the best 

cases 40% better.  

• Function HC, model MHBD-S behaves on average 20% better and in the best 

cases 80% better.  

• Function BC, model MHBD-S behaves on average 10% better and in the best 

cases 60% better. 

 

7.3.4 Comparative analysis of MHDB-S versus BC 
 

In figure 7.12 the comparative figures between model MHDB-S and function BC are shown. It 

can be observed that model MHDB-S behaves with values closer to those shown by function 

BC. The maximum difference observed is 30% the optimal value found for function BC. For the 

other functions (MLU, HC and DL) the behaviour is similar to that presented in the previous 

section where the graphs whose functions were not minimized were presented. In this case it 

was also observed that in most cases model MHDB-S behaved better than the values 

presented when only function BC was minimized. 
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Fig. 7.12a. BC of MHDB-S and BC by 15% Fig. 7.12b. BC of MHDB-S and BC by 33% 
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Fig. 7.12c. BC of MHDB-S and BC by 66% Fig. 7.12d. BC of MHDB-S and BC by 100% 

 

Figure 7.13 shows the normalized BC values for different flow fractions and number of egress 

nodes. In this case it is observed that model MHDB-S behaves at a maximum 32% compared to 

model BC. This mean that the MHDB-S model optimizes the BC function too and the values 

are very close in comparison when the BC function is optimized only. In summary, the 

analysis of the four different functions show the same behavior to the MHDB-S model is 

compared with the models when just one function is optimized. 
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Fig 7.13. Normalized BC versus Flow Fractions (%) with different percentages of egress nodes 

in the NSF Topology minimizing BC 

 

When analysing all the normalized values for model MHDB-S and model BC it is observed 

that model MHDB-S compared to: 

 

• Function MLU, model MHBD-S behaves on average 50% better and in the best 

cases 100% better.  

• Function HC, model MHBD-S behaves on average 5% better and in the best 

cases 80% better.  

• Function DL, model MHBD-S behaves on average 5% better and in the best 

cases 80% better. 

 

7.3.5 Comparative analysis of MHDB-S versus other functions with more 
than one objective 

 

In this section model MHDB-S is compared with other models with more than one objective, 

which have been presented in other research works. 

 

In this case the behaviour typically observed is that model MHDB.S behaves in a similar way  

to model DL-BC in DL and BC functions. But model MHDB-S shows better behaviour for 

functions MLU and HC. These trends are given for all flow percentages and for all three 

topologies tested: NSF, SPRINT and UUNET. 
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Fig. 7.14a. MHDB-S vs DL-BC comparing 

MLU 

Fig. 7.14b. MHDB-S vs DL-BC comparing HC 
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Fig. 7.14c. MHDB-S vs DL-BC comparing DL Fig. 7.14d. MHDB-S vs DL-BC comparing BC 

 

Secondly, model MHDB was compared with model HC-BC [SON03] in which only hop count 

(HC) and Bandwidth consumption (BC) are minimized. 

 

In this case the behaviour typically observed is that model MHDB-S behaves in a similar way 

to model HC-BC in functions HC and BC. But model MHDB-S shows better behaviour for 

functions MLU and DL. These trends are given for all flow percentages and for the three 

typologies tested: NSF, SPRINT and UUNET. 
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Fig. 7.15a. MHDB-S vs HC-BC comparing MLU Fig. 7.15b. MHDB-S vs HC-BC comparing 

HC 



 115

 

0
1000
2000
3000
4000
5000
6000
7000
8000

0 10 20 30 40 50 60 70 80 90 100

% Egress Nodes

D
L MHDB-S

HC-BC

 

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 100

% Egress Nodes

B
C MHDB-S

HC-BC

 
Fig. 7.15c. MHDB-S vs HC-BC comparing DL Fig. 7.15d. MHDB-S vs HC-BC comparing 

BC 

 

 

Thirdly, model MHDB-S was compared with model MLU-HC-DL [ABO98] where maximum 

link utilization (MLU), hop count (HC) and bandwidth consumption (BC) are minimized. 

 

In this case the behaviour typically observed was that model MHDB-S behaved in a very 

similar way to model MLU-HC-DL in functions MLU, HC and DL. But model MHDB-S had 

better behaviour for functions MLU and DL. These trends remained the same for all the flow 

percentages and for the three tested typologies: NSF, SPRINT and UUNET. 
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Fig. 7.16a. MHDB-S vs MLU-HC-DL 

comparing MLU 

Fig. 7.16b. MHDB-S vs MLU-HC-DL 

comparing HC 
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Fig. 7.16c. MHDB-S vs MLU-HC-DL comparing 

DL 

Fig. 7.16d. MHDB-S vs MLU-HC-DL 

comparing BC 

 

 

7.4 Comparing static model (MHDB-S) with Heuristic (MMR-S) 
 

In this section the results of the static model versus those of the (MMR-S) algorithm are 

shown. In figures 17 the observed behaviour for topology NSF is shown.  

 

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

% Egress Nodes

M
LU

MHDB-S

MMR-S

 

0

1

2

3

0 20 40 60 80 100

% Egress Nodes

H
C MHDB-S

MMR-S

Fig. 7.17a. MHDB-S vs MMR-S comparing 
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Fig. 7.17b. MHDB-S vs MMR-S comparing 

HC 

 

0

5

10

15

20

25

30

0 20 40 60 80 100

% Egress Nodes

D
L MHDB-S

MMR-S

 

0

50

100

150

200

250

300

0 20 40 60 80 100

% Egress Nodes

B
C MHDB-S

MMR-S

 
Fig. 7.17c. MHDB-S vs MMR-S comparing DL Fig. 7.17d. MHDB-S vs MMR-S comparing 
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When analyzing all the normalized values for model MHDB-S and MMR-S algorithm it is 

observed that model MHDB-S compared to: 

 

• Function MLU, model MHDB-S behaves on average 5% better and in the best 

cases 80% better. This behavior is due to the main objective in our research is 

the MLU function in both cases (MHDBS-S model and MMR-S algorithm).  

• Function HC, model MHDB-S behaves on average 30% better and in the best 

cases 70% better. This behavior is normal because the MHDB-S model 

optimize these functions while MMR-S algorithm is an approximation to the 

ideal behavior. 

• Function DL, model MHDB-S behaves on average 15% better and in the best 

cases 80% better. It is the same behaviour as the HC analysis.. 

• Function BC, model MHDB-S behaves on average 30% better and in the best 

cases 60% better. It is the same behaviour as the HC analysis. 

 

The SPRINT and UUNET topologies showed the same trends. 

 

7.5 Comparison of Proposal of Dynamic Case (MMR-D) versus the 

Proposal of Static case (MMR-S) 
 

In this section, we present the results of comparing the algorithm to solve the static model 

(MMR-S) and the algorithm to solve the dynamic model MMR-D. In this case, the tests were 

divided into two types. In the first kind of test, the three topologies used in the previous tests 

(NSF, SPRINT and UUNET) were used as references. In the second type of test, three kinds of 

randomly generated topologies with base sizes of 50, 100 and 200 nodes, were used as 

references. In this case, the entering or discharged nodes from the multicast flow transmission 

were chosen randomly. The comparison between the static case and the dynamic one was 

carried out as follows: 

 

• The first execution performed was in the static case.  

• Later, whether a node randomly entered or discharged from the transmission 

flow was randomly selected.   

• For each randomly selected node, the dynamic model was executed again in 

order to add that node only.  
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• For each randomly selected node, the static model was executed completely, 

that is, all results were calculated again for both the previous egress nodes and 

the new entering node.  

 

In both cases, we obtained results indicating the possible nature of flow transmission trees. 

 

With respect to the results observed in the first type of test for topologies NSF, SPRINT and 

UUNET, the behaviour is shown in Figures 7.18. 
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Fig. 7.18a. MMR-S vs MMR-D comparing 

MLU 

Fig. 7.18b. MMR-S vs MMR-D comparing HC 
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Fig. 7.18c. MMR-S vs MMR-D comparing DL Fig. 7.18d. MMR-S vs MMR-D comparing BC 

 

 

Now, with respect to the tests of random networks with 50 nodes, the behaviour is shown in 

Figures 7.19. 
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Fig. 7.19a. MMR-S vs MMR-D comparing MLU Fig. 7.19b. MMR-S vs MMR-D comparing 

HC 
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Fig. 7.19c. MMR-S vs MMR-D comparing DL Fig. 7.19d. MMR-S vs MMR-D comparing 

BC 

 

With respect to the tests of random networks with 100 nodes, the behaviour is shown in 

Figures 7.20. 
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Fig. 7.20a. MMR-S vs MMR-D comparing MLU Fig. 7.20b. MMR-S vs MMR-D comparing 
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Fig. 7.20c. MMR-S vs MMR-D comparing DL Fig. 7.20d. MMR-S vs MMR-D comparing 

BC 

 

By analysing all the normalized values for model MMR-S and the algorithm MMR-D, it can be 

observed that model MMR-S compared to: 

 

• Function MLU, MMR-S behaves on average in a similar way to both 

algorithms and in the best cases the MMR-S algorithm 10% better. This 

behaviour is because the main objective of our research is the MLU function in 

both algorithms. 

• Function HC, the MMR-S behaves in the best cases 80% better. This behaviour 

is normal because the MMR-S algorithm optimises these functions while MMR-

D is an approximation of the value given by the MMR-S algorithm. 

• Function DL, model MMR-S behaves in the best cases 80% better. This 

behaviour is the same as that observed in the HC function. 

• Function BC, model MMR-S behaves in the best cases 100% better. This 

behaviour is the same as that observed in HC function. 

 

 

7.6 Comparison of the multi-objective solution for Static Case  
 

In this section we present the results obtained for GMM-model. The GMM model considers the 

static case and was solved through a MOEA.  

 

In these tests, the same topologies (NSF, SPRINT and UUNET) were used, and in this way the 

results obtained can be compared with those of the models and heuristics presented in 

previous chapters. In addition, the results were compared with larger randomly generated 

topologies. 
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As these two new algorithms are multi-objective, the result is not just a solution but a set of 

non-dominated solutions. In this section, the minimum values found by these algorithms are 

presented in order to compare them with the previously obtained values. 

 

To perform these tests, each case was carried out 10 times on average and the solutions found 

were kept in a repository. Once a case was performed several times, a dominance analysis was 

carried out on the solutions found. 

 

We followed the same test design as that used in the previous sections. For each type of test, 

the flow percentage was increased, and for each flow percentage, the number of egress nodes 

was increased. The ingress of a new egress node was randomly selected, but it follows the 

same pattern as the one analysed in previous sections so that we can compare the results with 

those previously obtained. 

 

For the NSF, SPRINT and UUNET topologies, on average, around 300 non-dominated 

solutions were obtained.  

 

Table 7.1 shows 20 solutions out of the 320 obtained using the algorithm GMM for a flow of 8% 

network capacity and 4 destination nodes. Among these solutions we have highlighted those 

that present the minimum values for each target function. The Table 7.1 shows the values 

when all nodes were added through the solution by using MOEA. 
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Table 7.1 
GMM model using MOEA 

ID φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11 
1 8,33% 137 5,7 9 6 1335 18,2 84 40 2592 6 

2 8,33% 243 5,5 11 7 2535 10 124 93 2640 11 

3 8,33% 39 4,8 8 0 374 46,7 73 0 2048 2 

4 8,33% 35 4,3 7 0 365 45,6 79 0 2176 2 

5 16,6% 31 3,8 7 0 310 38,7 59 0 2176 2 

6 16,6% 31 3,8 6 0 358 44,7 70 0 2560 2 

7 16,6% 37 4,6 7 0 338 42,2 62 0 2048 2 

8 16,6% 47 3,9 7 4 468 26,6 56 15 2144 3 

9 16,6% 49 4,1 6 2 432 24,3 56 11 2176 3 

10 16,6% 54 4,5 7 1 517 28,5 65 15 2176 3 

11 16,6% 58 4,8 8 1 507 26,5 70 17 2512 3 

12 16,6% 51 4,2 7 2 484 27,4 61 15 2096 3 

13 13,5% 87 4,4 7 2 806 17,1 71 26 2352 5 

14 11,5% 71 4,4 7 2 645 21,7 71 26 2352 4 

15 13,5% 50 4,2 7 4 488 28,6 62 15 2144 3 

16 16,6% 50 4,2 7 4 490 28,3 62 15 2096 3 

17 10,4% 56 4,7 7 2 499 29,3 71 26 2464 3 

18 12,5% 87 4,4 7 3 821 16,0 65 30 2032 5 

19 11,4% 251 5,2 10 7 2494 8,4 118 80 2512 12 

20 13,5% 64 4,0 7 4 648 20,1 55 22 2336 4 

 

In Table 7.1 each column represents a target function of the GMM model. Each shaded square 

represents the minimum value found, at least by a Pareto front solution, for each target 

solution. 

 

To use and to implement just one solution, as was explained in the chapter 6 (Search before 

decision making methodology), a rational human decision maker determines preferences 

among the conflicting objectives and search the best alternatives. The results shown in the 

sections between 7.3 and 7.5 were realized using a Decision making before search methodology 

 

The values shown in the Table 7.1 are very close to the minimum values obtained by the 

MHDB-S model and the MMR-S algorithm. But, with this kind of solutions it is possible to 

find the optimal pareto set instead of just one solution given by the others methods.  
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7.7 Comparison of the multi-objective solution for Dynamic Case 
 

In this section we show the results obtained for the Dynamic GMM-model. To solve the 

Dynamic GMM model, a probabilistic BFS (Breadth First Search) was developed. The 

parameters in this case were exactly the same as those of the MOEA. 

 

Table 7.2 shows a sample of 20 solutions resulting from solving the dynamic case with 

probabilistic BFS. In this case, the values are shown for when the last node was added with 

probabilistic BFS.  

 

Table 7.2 
Dynamic GMM model using BFS Probabilistic 

ID φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11 
1 8,33% 145 7,1 8 4 1245 20,7 75 30 2322 7 

2 8,33% 135 4,3 9 6 1567 17,0 88 25 2530 10 

3 10,2% 43 5,2 7 0 450 50,4 70 0 2136 3 

4 16,6% 45 5,3 7 0 395 52,4 80 0 2435 2 

5 16,6% 31 3,8 7 0 310 38,7 59 0 2176 2 

6 16,6% 31 3,8 6 0 358 44,7 70 0 2560 2 

7 16,6% 37 4,6 7 0 338 42,2 62 0 2048 2 

8 16,6% 50 4,0 10 0 570 32,5 70 0 2087 3 

9 16,6% 49 4,1 6 2 432 24,3 56 11 2176 3 

10 18,0% 66 5,2 6 3 678 29,3 73 11 2456 6 

11 18,0% 58 4,6 9 0 550 24,5 72 12 2434 4 

12 11,4% 251 5,2 10 7 2494 8,4 118 80 2512 12 

13 16,6% 51 4,2 7 2 484 27,4 61 15 2096 3 

14 13,5% 64 4,0 7 4 648 20,1 55 22 2336 4 

15 11,4% 112 6,2 5 3 1020 33,3 82 11 2467 9 

16 12,5% 87 4,4 7 3 821 16,0 65 30 2032 5 

17 16,6% 43 4,3 8 4 1245 45,6 72 12 2145 4 

18 11,5% 71 4,4 7 2 645 21,7 71 26 2352 4 

19 16,6% 54 5,1 7 3 682 31,4 86 12 2420 8 

20 16,6% 50 4,2 7 4 490 28,3 62 15 2096 3 

 

In Table 7.2 each column represents a target function of the Dynamic GMM. Each shaded 

square represents the minimum value found, at least by the Pareto front solution, for each 

target solution.  

 
The minimum values for each function obtained by the D-GMM algorithm (Table 7.2) are very 

close to the minimum values obtained by the GMM-MOEA (Table 7.1). The best value of the 

functions φ1, φ2, φ3, φ5, φ9, φ11 given by the D-GMM algorithm is not improved by the GMM-

MOEA. The other kinds of tests (using UUNET, SPRINT and random topologies) show the 

same behavior.  
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7.8 Comparison between static and dynamic using multi-objective 

metrics 
 

In this section the MOEA algorithm to give a solution to the GMM-model and the BFS 

probabilistic algorithms to give a solution to the Dynamic GMM-model are compared using 

multi-objective metrics. 

 

• Overall Nodominated Vector Generation (ONVG). This metric measures the total 

number of nondominated found and is defined as: cknownYONVG ||
∆
= . 

• Overall Nondominated Vector Generation Ratio (ONVGR). This metric measures 

the ratio between the number of nondominated found and the number of 

nondominated existents. The metric is defined as: 
ctrueY

ONVGONVGR
||

∆
=  

In our tests, the Yknow are the optimal values found by the BFS algoritms and the Ytrue are the 

optimal values found by the MOEA algorithms and the idea of this kind of test it is to prove 

the nearness between the BFS algorithms and the MOEA algoritms to give a solution to the 

dynamic case. The Table 7.3 shows some values of 10 executions. 

 

Table 7.3 
Multi-objective metrics 

Execution ONVG ONVGR 

1 210 0.75 

2 250 0.85 

3 280 0.64 

4 190 0.78 

5 310 0.65 

6 245 0.82 

7 278 0.76 

8 251 0.67 

9 266 0.73 

10 280 0.79 
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With this kind of metrics it is possible to observe the nearness in terms of number of solution 

found between the solution obtained by the MOEA algoritms and the BFS algorithm to give a 

solution to the dynamic case. 

 

 

7.9 Summarized comparative analysis, correlation analysis, and 

confidence intervals 
 

Table 7.4 shows the results obtained by minimizing each one of the target functions (MLU, 

HC, DL and BC); the minimum values obtained with model MHDB-S, and the minimum 

values obtained with MOEA. In this case, it can be observed that all minimum values of the 

presented models were found at least by one of the solutions given by MOEA. 

 

Table 7.4 
MOEA vs Other solutions 

 φ1 (MLU) φ2 (HC) φ6 (DL) φ10 (BC) 
MOEA 8,33% 31 310 2032 
MHDB-S 8,33% 35 325 2120 
MHDB-D 12,0% 45 370 2205 
MMR-S 8,33% 38 330 2150 
MMR-D 12,0% 50 390 2300 
MLU 8,33%    
HC  31   
DL   310  
BC    2032 

 

 

Once the tests were carried out, it was observed that there is some type of correlation between 

some of the functions. In the table 7.5, the correlation values between functions are shown. 

 

Table 7.5 
Correlation Analysis 

 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11 
φ1 -0,23 -0,12 -0,24 -0,26 -0,25 0,19 -0,28 -0,19 0,09 -0,20 
φ2  0,70 0,78 0,80 0,95 -0,81 0,78 0,78 0,56 0,98 
φ3   0,78 0,48 0,67 -0,35 0,62 0,41 0,52 0,59 
φ4    0,82 0,76 -0,58 0,90 0,73 0,47 0,72 
φ5     0,84 -0,83 0,85 0,93 0,34 0,80 
φ6      -0,83 0,79 0,78 0,53 0,98 
φ7       -0,69 -0,78 -0,36 -0,85 
φ8        0,83 0,40 0,75 
φ9         0,33 0,77 
φ10          0,53 
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It can be observed that in Table 7.5, there is a high correlation between the following target 

functions: 

 

• Total Hop Count (φ2), termed HC in models MHDB-S and MHDB-D, and the Hop 

Count Average (φ3) with a correlation value of 0.70. 

 

• Total Hop Count (φ2) and Maximal Hop Count (φ4) with a correlation value of 0.78. 

 

• In addition, the Total Hop Count function (φ2) had a high correlation with the other 

target functions (φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ11). This means that if we are minimizing 

this function, we would be also minimizing the other target functions. 

 

• The same effect, but not so sharp, it is observed for the Total Delay function (φ6), 

which is also a function of Models MHDB-S and MHDB-D. 

 

 

Finally, the analysis of confidence intervals was carried out for each of the analysed results. 

Assuming independence among the algorithm types and normality of data, by applying an F 

test at 95% for the tests of the three topologies and random topologies, it was proved that for 

each algorithm performed the variances were different ( 21 σσ ≠ ). By using a t test at 95%, it 

was proved that there are differences between means ( 21 µµ ≠ ). The confidence intervals for 

these differences are shown in the following table. 

 

Table 7.6 
Confidence intervals 

 φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11 
µ 0,12 136,2 4,9 8,6 5,1 1362 16,7 88,0 52,4 2443 6,8 
σ 0,02 60,2 0,4 1,2 1,8 634,1 7,1 16,8 24,2 197,9 2,7 
IC(95%) 0,002 6,5 0,04 0,1 0,2 68,2 0,8 1,8 2,6 21,3 0,3 
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7.10 Conclusions 
 

In this chapter we have presented the results and can make the following conclusions: 

 

• The stability shown by model MHDB-S with respect to the 4 minimized 

functions when compared to other models in which 1, 2 or 3 target functions 

are minimized, models that have been proposed by previous studies. 

 

• The closeness of model MHDB-S values compared to the minimum value of 

each target function and the improvement with respect to the values of the 

other target functions, which are not minimized in these cases.  

 

• The closeness of the values of the heuristic MMR-S and MMR-D to the values 

presented by analytical models MHDB-S and MHDB-D. At this point, it is 

important to highlight that some algorithmic solutions to analytical models 

have been proposed whose solutions are by nature NP-Hard. Even so, it is 

important to mention that the solution presented by model MHDB-S and the 

algorithm MMR-D is not the best solution because it can not estimate all the 

nodes of the multicast tree to perform the transmission to the new egress node 

that is entering. It can be seen in the results that the proposed heuristic 

(probabilistic BFS) with the Dynamic-GMM model shows better values than 

the ones observed for the MMR-D algorithm when giving a solution to model 

MHDB-S. 

 

• It is important to mention the scalability of the solution because tests 

performed with large topologies using the random generation of topologies 

show similar behaviour to those results obtained with the NSF, SPRINT and 

UUNET topologies. 

 

• The importance of both the GMM model and the computer solution using 

MOEA, whose values can reach the minimum values presented by analytical 

models and heuristics (MHDB-S and MMR-S), and also all the possible 

solutions found through each Pareto front. 

 

• Finally, the closeness of the values found by the multi objective algorithm for 

the generalized dynamic case compared to the values found by the GMM model 

using the MOEA algorithm. 
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Chapter 8 Conclusion and Future Work 
 

 

8.1 Conclusion 
 

How in different networks is possible to have congestion and many multicast applications, 

such as audio and videoconferencing or collaborative environments and distributed interactive 

simulation, have multiple quality of service requirements on bandwidth, packet delay, packet 

loss, cost, etc. This thesis presents a proposal to optimize the network resources through the 

load balancing technique. In this case, this thesis presents a scheme to transmit the multicast 

flow by more than one tree instead of by just one tree how is the functioning of the current 

multicast routing protocols such as: DVMRP, MOSPF, BGMP, PIM-DM, PIM-SM and CBT. 

 

In the research process, at the beginning, just one objective function was chosen. This function 

was the Maximum Link Utilization (MLU) and through this function was possible to do the 

load balancing. With this function is possible to create more than one tree. After, three more 

functions were adding: end-to-end delay (DL), hop count (HC) and bandwidth consumption 

(BC). With these functions were possible to improve the following aspects: long paths, paths 

with high delay and it reduce the bandwith consumption in every tree. Finally, it was 

necessary to improve the analytical model and the computational solution. The new analytical 

model considers eleven different functions and in this case, it is a generalized optimization 

model. The new computational solution was realized using MOEA and in this case it is 

possible to find the optimal Pareto front and it is possible to find solutions in nonconvex 

solutions set.  

 

In multicast flows, the egress nodes can enter or leave of the tree transmission. In the 

proposals presented previously were considered the dynamic case. In the first proposal, the 

ingress node and the current egress nodes just can be the new point of transmission to the new 

egress node. In the last proposal, that is, in the generalized model is possible to use the ingress 

node and anyone current node that belong to the transmission tree. 
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The main aspects considered in this thesis are: 

 

• Load Balancing in Multicast Flows. 

• The analytical models 

• The computational solutions using heuristic algorithms and MOEAs. 

• The static and dynamic functioning of the multicast flows. 

 

Many experiments have been carried out in order to test the proposals presented in this thesis. 

In these tests were considered different real networks topologies such as: NSF, SPRINT and 

UUNET and others large random topologies. Different percentages of flows were chosen. 

Several percentages of egress nodes in comparison with the total nodes of the topology were 

selected. With these kind of scenarios was possible to probe that our proposal presents a good 

behaviour in comparison with current multicast routing protocol and with respect to the others 

proposals. 

 

The results obtained from our thesis show that the MHDB-S and MHDB-D models present a 

very close beaviour in comparison with the function that is being minimized, but these models 

present a better beaviour in comparison with the others objective functions. The computational 

solutions to give solution to the analytical models presented very close results in comparison 

with the MHDB-S and MHDB-D models. This means that the algorithms proposed give very 

good solutions. Finally, the MOEA solution gives an optimal Pareto front and in this case the 

results given by the previous algorithms are similar in comparison with the minimum values 

found by the MOEA solution. With the MOEA solution is possible to have a nondominated 

solution set, however, in the algorithms just one solution is obtained and this functioning is a 

limitation of the first proposal. 
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8.2 Future Work 
 

There are many issues that have been left as future work throughout this thesis. The most 

significant ones are the following: 

 

• This thesis can be applied in MPLS technology, but it would be interesting to apply 

these models in GMPLS technology in the photonic label. 

 

• Out multi-objective optimization models can be extended to the wireless technology 

and in this case, it would be necessary to analize the different functions that affect 

the flow transmission in wireless technology. 

 

• In this thesis were proposed three different heuristic to give solutions in the static 

and dynamic case and one meta-heuristic is proposed using MOEA to give a 

solution to the generalized model. It could be interesting to probe other kind of 

meta-heuristic to look for solutions to the same problem. These kinds of meta-

heuristic could be: Ant Colony, Memetic Algorithms, Tabu Search, Simulated 

Annealing, etc. 

 

• Due to the load balancing technique is possible to have some problems such as: 

packet disordering. It could be interesting to analyse a proposal using effective 

Hashing functions to avoid this kind of problems. 

 

• In computer networks is possible to have some problems as failed links or paths 

and different proposal to give solutions have been proposed. It could be interesting 

to apply this proposal of load balancing in the recovery proceedings due to in our 

proposal we have more than one transmission tree and these trees can be used like 

a protection tree. 

 

• Our models are no-lineal models, but it would be interesting to convert our models 

as lineal model through approximation methods such as relaxation of the models.  

 

• How future work will be possible to analyze an algorithm that gets advantage of 

the MPLS label stack features in order to reduce the number of labels used in 

P2MP LSPs. Some P2MP tunnels methods and their MPLS implementation 

drawbacks can be also discussed.  
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Appendix A Multi-Objective Optimization in 
NonConvex Solution Spaces 
 

 

A. 1. Overview 

 

Instead of using a weighted sum of the objectives, other means of combining multiple 

objectives into a single objective can also be used. For this purpose, weighted metrics such as 

Lp and L∞ distance metrics are ofen used. For non-negative weights, the weighted Lp distance 

measure of any solution x from the ideal solution z* can be minimized as follows: 
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The parameter p can take any value between 1 and ∞. When using p = 1, the resulting problem 

is equivalent to the weighted sum approach. When using p = 2, a weighted Euclidean distance 

of any point in the objective space of the ideal point is minimized. When a large p is used, the 

above problem is reduced to a problem of minimizing the largest deviation p
mm zxf |)(| *− . This 

problem has a special name – a weighted Tchebycheff problem:  
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A. 2. Optimization Scheme 

 

In this case using L∞ the mathematical model MHDB-S can be written as follows: 

 
Minimize  
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In this method it is clear that when p = 1 or 2, not all Pareto-optimal solutions can be 

obtained. However, when the weighted Tchebycheff metric is used, any Pareto-optimal 

solution can be found in non-convex objective space.  

 

Since different objectives can take values of different orders of magnitude, it is advisable to 

normalize the objective functions. This means that we need to know the minimum and 

maximum function values of each objective. Moreover, this method also requires the ideal 

solution z*. Therefore, all M objectives need to be independently optimized before optimizing 

the Lp metric. 

 

 

A. 3. Conclusions and Motivations 

 

Although by using this method we can find the solutions of the Optimum Pareto Front in 

convex and non-convex solution spaces, the problem is presented in the following aspects: 

 

• It is necessary to know the Z* point which is the reference point for finding the 

Pareto Front solutions. It can be very difficult to find this point.  

 

• Each execution of this method gives a point of the Pareto Front as a result. 

Due to this, it is necessary to perform this model many times in order to find 

different points of the Pareto Front.  

 

• This mathematical model continues to have the problem of ignoring the 

number of sub flows and their transmission percentage.  

 

Due to the aspects mentioned above, in chapter 6, a mathematical model was presented, 

adding a sub index k in order to be able to control how many and which sub flows of a 

particular flow in the Multicast transmission were used. Moreover, an algorithm scheme was 

presented to give solutions to the problems found, using mono-objective solution methods 

presented in chapters 3 and 4.  
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Appendix B Framework Considerations 
 

 

In this appendix, we present the theoretical concepts, such as mathematical notation for the 

networks representation, distance labels, layered networks, mathematical programming 

formulation for the SPT primal and dual problem and the different lemmas of the primal-dual 

relationship theory. 

 

The network is modelled as a directed graph ),( ENG = , where N is the set of nodes and E is 

the set of links. Let Ns∈  be the ingress node. Let Tt∈  be any egress node, where T is the 

set of egress nodes. Let Eji ∈),(  be the link from node i to node j, and let wij be the weight 

associated with each link (i,j) . 

Let f be any multicast flow Ff ∈ , where F is the flow set and fT  is the egress nodes subset of 

the multicast flow f. U
Ff

fTT
∈

= . Let tf
ijX  be the fraction of flow f to egress node t assigned to 

link (i,j).  
 

 

B. 1. SPT Primal Problem for Multicast Transmission 

 

The Shortest Path Tree Primal problem (P-SPT) can be formulated as  
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10, ≤≤ℜ∈ tf
ij

tf
ij XX                    (B.5) 

 

The objective function (B.1) consists of minimizing the total weight of links wij used. 

Constraint (B.2) denotes that the total flow emerging from the ingress node to an egress node t 
must be 1. Constraint (B.3) denotes that the total flow coming to an egress node t must be -1.  
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Constraint (B.4) denotes that for any intermediate node which is different from the ingress 

node, (i ≠ s), and from the egress nodes, )( Ti∉ , the sum of their output flows to the egress 

node t minus the input flows with a destination at the egress node t must be 0. Constraint 

(B.5) shows that the tf
ijX  variable may have a value of between 0 and 1. Solving the problem 

without load balancing implies that this variable is only able to take the values 0 and 1, which 

show respectively, whether the (i,j) link is or is not being used to carry information to the 

egress node t. 
 

The solution using the tf
ijX  variables provides optimum flow values. These variables form the 

multiple trees that transmit a multicast flow f from the ingress node to the set of egress nodes 

Tf. 

 

 

B. 2. Distance labels, layered networks and SPT Optimality Conditions 

 

At this point, we will apply the concept of distance labels to the P-SPT problem. 

A distance function }0{: U+Ζ→Nd with respect to a graph is a function from the set of 

nodes N to the set of nonnegative integers. A distance function is valid with respect to a flow f 
if it satisfies the following two conditions: 

 
Lemma 1. d(s) = 0 and d(j) ≤ d(i) + 1 for every link (i,j) in graph G(N,E). d(i) is referred to as 

the distance label of node i [AHU93], [AHU97], [BAZ90] and [BAZ93]. 

 
Lemma 2. If the conditions of the distance labels are valid, the distance label d(j) is a lower 

bound on the length of the shortest (directed) path from node j to node s [AHU93], [AHU97], 

[BAZ90] and [BAZ93]. 

 

Now, with respect to a given flow f, we can define the layered network G’(N,E) by determining 

the exact distance labels d in G(N,E). The layered network consists of the links (i,j) in G(N,E) 
satisfying the condition d(j) = d(i) + 1. 

 

Let tf
jd for j ≠ s denote the length of a SPT from the ingress node to the egress nodes Tf. Thus, 

in keeping with lemma 1 and lemma 2, FfTtd f
tf
s ∈∈= ,,0 . If the distance labels are SPT 
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distances associated to the weights wij for each link (i,j), they must satisfy the following 

optimality conditions: 

 
Lemma 3 (SPT Optimality Conditions). Let λf be a tree from s to t, fTt∈ , associated to the 

flow f, which consists of several paths tf
kP  with 1≤k≤h, where h is the number of paths. For 

every node j Є N in the tree, let tf
jd denote the length of a directed path in the path tf

kP  from 

the ingress node to node j with a destination at the egress node t in the flow f. tf
jd represents 

the SPT distances for all egress nodes to flow f if and only if they satisfy the following SPT 

optimality conditions: 

FfTtEjiwdd fij
tf
i

tf
j ∈∈∈+≤ ,,),(,  

FfTtd f
tf
s ∈∈= ,,0  

 

 

B. 3. Mathematical programming duality theory 

 

Each mathematical programming problem (P-Primal) is associated with another mathematical 

programming problem (D-Dual). P and D are mathematically equivalent in the sense that they 

have the same optimal objective value, and the optimal solution of D can be derived from the 

optimal solution of P and, vice versa, due to the relationship of complementary slackness. 

Lemma 4 (Weak duality). Let z(x) denote the objective function value of a feasible solution, x, 
of the SPT problem and let β(d) denote the objective function value of a feasible solution of its 

dual. Then β(d)≤ z(x) [AHU93]. 

 

The weak duality lemma implies that the objective function value of any dual feasible solution 

is a lower bound of the objective function value of any primal feasible solution. One 

consequence of this result is immediate: if a dual solution d and a primal solution x have the 

same objective function value )()( xzd =β , d must be an optimal solution of the dual problem 

and x must be an optimal solution of the primal problem. 

 
Lemma 5 (Strong duality). For any choice of problem, the SPT problem always has a solution 

x  and the dual SPT problem has a solution d satisfying the property that 

)()( xzd =β [AHU93]. 
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This lemma shows that any optimal solution, x , of the SPT problem always has an associated 

dual solution, d , satisfying the condition )()( xzd =β . The weak and strong duality lemmas 

imply several fundamental results concerning relationships between the primal and dual 

problems. The following complementary slackness optimality conditions, which are another 

way of relating the two problems, makes some of these relationships more explicit. 

 
Lemma 6 (Complementary slackness optimality conditions) [AHU93]. If x is an optimal 

solution of the primal SPT problem and d is an optimal solution of the dual SPT problem, the 

pair ),( dx  satisfies the complementary slackness optimality conditions:  

ij
tf
i

tf
j

tf
ij wddthenXIf =−> ,0 . 

If tf
kP  is a path of the tree λf determined by FfTtEjiX f

tf
ij ∈∈∈ ,,),(, , for each link 

tf
kPji ∈),( , if 0>tf

ijX , then this implies that ij
tf
i

tf
j wdd =− . 

 

 

B.4. Shortest Path Tree Dual Problem 

 

Using the definition of the P-SPT problem and the concepts of the duality theory described 

previously, in this section we demonstrate the relationship between the primal and dual SPT 

problems. 

The Shortest Path Tree Dual Problem (D-SPT) can be formulated as 

∑ ∑
∈ ∈Ff fTt

tf
tdmax                 (B.6) 

Subject to 

FfTtEjiwdd fij
tf
i

tf
j ∈∈∈≤− ,,),(,                   (B.7) 

 

By lemma 3 FfTtd f
tf
s ∈∈= ,,0                      (B.8) 

0≥ijw                              (B.9) 

Let tf
ijX be the optimal solution of (P-SPT). Then tf

ijX determines the shortest path for each 

egress node in a flow. Let tf
jd be the optimal solution of the dual problem (D-SPT). The values 

of tf
jd  can be viewed as the distance from the ingress node s to the node j based on the SPT to 

the flow f with a destination at egress node t determined in (P-SPT). In particular, 

FfTtd f
tf
t ∈∈ ,, is the total length of the SPT from s to t, fTt∈ . If tf

jd is any solution of 



 149

distance labels satisfying the constraints of this problem and the path tf
kP defined as s, i1, i2 , 

…, im , t is any path from node s to node t, then 

11 si
tf
s

tf
i wdd ≤−  

2112 ii
tf
i

tf
i wdd ≤−  

... 

tmi
tf
mi

tf
t wdd ≤−  

so, by adding these inequalities and using the fact that 0=tf
sd , we see that  

tmiiisi
tf
t wwwd +++≤ ...211  

 

This result shows that if tf
td is any feasible solution to the optimization problem, then tf

td is a 

lower bound of the length of any path from node s to every node t of flow f and therefore, it is a 

lower bound of the shortest distance between these nodes and, as a consequence, tf
td equals 

the SPT distance for every flow f, Ff ∈ . Now, the total distance of the tree, λf , where λf  

represents the tree given by the values , tf
ijX  for flow f, would be as follows: 

∑ ∑∑∑
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=−=
fTt

tfl
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jiji

fTt
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tf
t

fTt

tf
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where ltf is the number of nodes in a path with a destination at egress node t in flow f, i.e., 

|| tf
ktf Pl = , where || is the number of elements in a set. 

 

By applying the complementary slackness relationship of the linear programming duality 

theory, presented in lemma 6, to the primal (P-SPT) dual (D-SPT) pair, we have: 

 

Theorem 1: Let λf be a tree from s to t, fTt∈ . If for every link (i,j) Є λf,  ij
tf
i

tf
j wdd =− , then λf 

is a SPT with respect to the link weights {wij}.  

Proof: Let },..,,{ 21
tf
h

tftf
f PPP=λ , be the set of paths from the ingress node to each of the egress 

nodes t, for flow, f of the multicast tree. Each path k
tfl

k
tfl

kktf
k ppppP ,110 ,...,, −=  is made up of all 

the nodes so that sp k =0  y tp k
tfl

= , where 1 ≤ k ≤ h, with h being the number of paths in the 

tree λf. 
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Thus we have jpjp
tf
k
jp

tf
k
jp

wdd ,1
1

−
−

=−  

for 0 ≤ j ≤ ltf. If we sum up all these equations using equation (B.10) we get  
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nodes, that is to say, || tf
ktf Qr = . Then, by constraint (B.7),  
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Hence equations (B.11) and (B.12) imply that ∑ ∑∑ ∑
∈ =

−
∈ =

− ≤
fTt

tfr

j
jqjq

fTt

tfl

j
jpjp ww

1
,1

1
,1 . That is, the 

length of the tree '
fλ  is at least as long as the length of the tree λf. Therefore, λf  is a shortest 

path tree.              ■ 

 

In summary, lemma 6 and theorem 1 taken together, say that every tree determined by tf
ijX is 

a shortest path tree. 

 

 

B. 5. Optimal Multicast Routing 

 

In Section 3 we demonstrated that the primal problem (P-SPT) could be converted via the dual 

problem (D-SPT) into a SPT problem by setting appropriate link weights. In this section, we 

propose the multi-objective load-balancing scheme (P-MHDB), which includes the maximum 

link utilization (α), the hop count (HC), the total bandwidth consumption (BC), and the total 

end-to-end delay (DL). Later, we saw that, using the corresponding dual problem, D-MHDB 

the solution obtained for the P-MHDB problem was the SPT.  
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B. 5.1. Multi-objective primal problem 

 

Given the graph G=(N,E) defined in Section 3, we will now introduce some additional notation. 

Let cij be the capacity of each link (i,j). Let bwf be the traffic demand of a flow f from the 

ingress node s to fT . The binary variable, tf
ijY , represents whether link (i,j) is used (1) or not 

(0) by the multicast tree rooted at the ingress node s and reaching egress node subset fT . Let 

vij be the delay of link (i,j). Let m be the number of variables in the multi-objective function. 

Let NT be the maximum number of bifurcation paths for each node. 

 

The problem of minimizing n multicast flows from source node s to the egress nodes of each 

subset fT  is formulated as follows: 

min 
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The Multi-objective function (P- MHDB model) (B.13) is the same as that presented in chapter 

3. 

 

B. 5.2. Dual multi-objective problem 

 

In this section, we present the dual problem of the primal problem P-MHDB proposed earlier 

and demonstrate that we can find a tree of a set of trees that are the SPT (Shortest Path Tree). 

In the primal problem, we assigned the delay vij and the capacity cij for each link (i,j) (see Fig. 

B.1). Before we present the theoretical results, let us first illustrate, using a simple example 

with only one egress node, the relationship between the primal and dual problem.  

 

  

 Fig B.1 Metrics for the primal 

problem 

Fig B.2 Metrics for the dual 

problem 

 

In the dual problem, we define an associated weight ijw  to the link (i,j). In this case, the 

objective consists in maximizing the distance tf
td  from the ingress node to each egress node.  

 

The value found when solving the objective function indicates a lower bound for the distances 

associated with the egress nodes and therefore, we can find the SPT. If multiple shortest path 

trees exist for a particular flow, these trees have an equal cost. When we refer to a tree, we 

mean any one of these trees. 

 

The dual of P-MHDB can be formulated as.  

max ∑ ∑
∈ ∈Ff fTt
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td      (D-MHDB model)               (B.22) 
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By lemma 3 FfTtd f
tf
s ∈∈= ,,0               (B.26)  

 

Note that the shortest path tree dual problem (D-SPT) is a special case of the D-MHDB model. 

By applying the same proof methodology used for the P-SPT, we can to demonstrate that the 

P-MHDB is an SPT. 

 

Lemma 7: (complementary slackness) By applying lemma 6: If 0>tf
ijX , then 

ijfijf
tf
i

tf
j vrbwrrwbwdd ... 432

' +++=− . 

In the same way as the D-SPT problem, if we assume that the variables, '
ijw , are constant, 

then the value of tf
id is the shortest path distance from ingress node s to node i with respect to 

link weight, ijfijf vrbwrrwbw ... 432
' +++ . Therefore, the total length of the shortest path tree 

for flow f is given by ∑
∈ fTt

tf
td . Let ijfijfij vrbwrrwbww ... 432

' +++= , hence 0>ijw . 

 
Theorem 2: Let λf be any tree from ingress node s to t, fTt∈  determined by the P-MHDB 

optimal solution tf
ijX . Then λf is a shortest path tree with respect to link weights { ijw }. 

Proof: Let λf be a tree for flow f determined by the P-MHDB optimal solution. For every link 

(i,j) on λf , we have 0>tf
ijX . This implies using lemma 7 that ij

tf
i

tf
j wdd =− . From theorem 1, λf 

is a shortest path tree from s to t, fTt∈  with respect to link weights { ijw }.  ■ 

 

In summary, we have shown that for the multi-objective function, the optimal trees can be 

reproduced as shortest path trees based on certain positive link weights, which can be derived 

through the optimal dual solution. This characteristic is based on constraints (B.14) and (B.15) 

and on the multi-objective function (B.13) of the primal problem formulation, which together 

produce constraint (B.23) of the dual problem which indicates the distance between a pair of 

adjacent nodes.  
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