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The increasing use of computers in engineering activities has originated the

apparition of numerous packages or frameworks especially conceived to facilit ate
engineering developments. Some reasons for extensive application of computers
in engineering decision and design problems are quite obvious; computer aided
tools make the work of engineers both easier and faster. This means that
increasingly more complex engineering problems become solvable in reasonable
short time, while the effort devoted to solve these problems remains limited
mostly to some conceptual work. Some other reasons include the necessity of
improving the of quality of engineering solutions, including robustness, reliabilit y
and safety and lowering down the cost of manpower spent on developing
particular solutions. Moreover, the systems developed with use of computer
software can easily be simulated, analysed and reused.

Because of these reasons, the acronym CA (Compute Aided) has been used as
a prefix for designing software packages developed to assist engineering tasks.
Some principal areas of interest in applying computers for assisting engineers
include domains as:

• CAD - Computer Aided Design.
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• CADS - Computer Aided Decision Support, also known as DSS -
Decision Support System.
• CAE - Computer Aided Engineering.
• CACE - Computer Aided Control Engineering.
• CAM - Computer Aided Manufacturing.
• CASE - Computer Aided Software Engineering.
• CACSD - Computer Aided Control Systems Design,

The application of computers becomes more important in everyday
engineering activity. Particularly, control engineering community has been
actively pursuing avenues for supporting multi -disciplinary design activities for
several years. Consequently, the research activity in this field has been increased
to support design, implementation and maintenance of control projects. CACSD
packages have been developed following these lines. They incorporate
representation, analysis and design faciliti es. Therefore, these packages are dotted
of friendly user interfaces, representation capabiliti es and a wide number of
numerical algorithms (modelli ng and simulation capabiliti es) to facilit ate control
systems design, test and validation.

Nowadays, control engineers activities in the industry are not only reduced to
control systems design but their activity must also take into account all process
behaviour, especially when dealing with complex systems (non-linear, coupled,
time dependent, etc.). In such cases, control and process engineers must work
together to ensure global quality, safety and reliabilit y in both, product, and
process behaviour. This is process supervising. From the control engineers point
of view supervisory task consists in closing a high level control loop. Supervisory
systems will be designed to observe the process (process measures, visual
observations, indices and so on), to decide about its behaviour according to a
template (predefined normal operating conditions) and to perform or suggest
specific actions (control reconfiguring, set point change, etc.) when necessary.
The complexity in designing supervisory systems makes necessary the use of all
available information about instantaneous process behaviour. Process measures
given by sensors, estimations obtained from models (numerical or qualitative)
and expert knowledge obtained from operators and process engineers, must be
merged to perform supervisory strategies in the best way. Thus, Expert
Supervision is used in this text to design such supervisory strategies that take
benefit of  expert knowledge about process behaviour.

Following this line, control engineers working in the domain of supervisory
systems are also needed for specific software packages to assist their activities.
This thesis puts forward several particular solutions in this relatively new area,
i.e. Computer Aided Supervisory Systems Design- CASSD.
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Nowadays, automatic control applications in the domain of process

supervision are restricted to decision making, including human operator, into the
feedback loop [Mill ot, 1996] . In fact, the functionality of Supervisory Control
And Data Acquisition (SCADA) packages, widely used in the industry, are
restricted to monitoring and alarm generation tasks. Final decisions about the
validity of these alarms and actions to perform in the process are done by expert
operators in the plant. Design diff iculties of supervisory systems increase with
process complexity. Coupled systems, high order dynamics, and non-linearity are
common situations in industrial process. In such situations, it is diff icult to obtain
accurate models for applying traditional model-based techniques for designing
supervisory systems and knowledge-based approaches can be applied taking
benefit of process operators and process engineers’ experiences to identify
specific situations. Therefore, Expert Supervision is an active research line
oriented to take advantage of expert knowledge of process engineers and plant
operators to automatically decide about process behaviour and to propose
adequate actions or changes  in the set points, controllers parameters or
reconfiguring strategies. Artificial intelli gence (AI) technologies are applied to
deal with this expert knowledge inside computers because of its capabilities  for:

• Knowledge representation. This is the interpretation of human
knowledge and translation into computers. AI proposes several methods
for structuring and organising expert knowledge into knowledge bases
(KBs). Rule-based systems, also called expert systems (ES), are the
most common example of applications used to represent exert
knowledge.
• Reasoning. This is the capabilit y of using the expert knowledge to
infer conclusions as a consequence of specific situations.
• Manipulation of heterogeneous data. The use of AI technologies
allows to manage qualitative and symbolic information mixed with
numerical data and methods.

Those capabiliti es are extremely useful in expert supervision because of the
different origin of information to be used . Expert supervisory applications are
designed to reason about process variables, i.e. signals that represent physical
variables in the process and provide information about process behaviour. These
signals can be measures, numeric data obtained directly from real process or
controllers, or estimations, obtained from models or relations. According to the
kind of relationship or models used to estimate a process variables we can
differentiate between qualitative, or symbolic, and numeric estimations. These
signals can be manipulated or processed to isolate significant information, i.e.
abstracted information.
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The complexity of designing, testing and validating the expert supervisory
systems is basically due to the variety of tools and data to be used. Diff iculties in
integration are the main reason of failure in supervisory strategies
implementation. This pitfall will decrease if all the available faciliti es to be used
are available together in a framework, avoiding integration inconvenient,
especially oriented to assist expert supervisory systems design.

� � � � � � � � � � � � � � � � � � �  ! �  ! " � " #

1.3.1. General Problem Description.

Expert Supervisory Systems design involves manipulation of heterogeneous
information such as signals, knowledge, qualitative data and so on. All of them
are representations of process behaviour that must be taken into account when
designing supervisory systems. Numerical data comes basically from direct
measures of process variables or from estimations supplied by numerical models
or equations. Usually, numerical data is the kind of information supplied from
process periodically, at every sampling time. This kind of information can be
saved, processed and represented in several ways to be analysed. On the other
hand knowledge and qualitative appreciation of process dynamics come from
heuristics or observations of representative situations done by process engineers
(Fig.  1.1).  In industrial applications the existing knowledge representation
procedures for assisting experts in translating and structuring this knowledge into
computers are basically reduced to production rules systems. For example, fuzzy
based controllers or industrial ES are in this line. Reasoning about dynamic
systems involve working with temporal restrictions as expiring data validity and
limitations in the response time. Periodically (at each sampling time), ES input
data is actualised and deductions about them must be performed.
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Therefore, design of a knowledge-based system to reason about dynamic data
involves an important task on data analysis and features extraction to match
description of situations given by experts. Main drawbacks are in obtaining
perceptual information from process variables, in order to interface expert KBs,
defined from human perception of process behaviour, and measures, supplied by
instruments and numerical methods. Consequently, the design of expert
supervisory systems consists of an iterative procedure until specifications are
reached.

The definitive application sometimes involves the election of adequate
description of input and parameters tuning by trial an error. This iterative
procedure, represented in Fig.  1.2, is necessary, not only in the designing step,
but also in previous tasks for defining adequate input and output of expert
supervisory system.
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Input must be defined in number, type and quality. The number of input can be
restricted to according to process limitations (location, observabilit y,
transmission) or economical restrictions. Then, estimation capabiliti es (indirect
measures, modelli ng) can be used as alternative. Data typology is always
submitted to KB to be used, due to human subjectivity in the observations. These
observations of process behaviour are strongly time dependent and, consequently,
process variables supplied to inference engines must incorporate this dependency.
Thus, the use of abstracted significative time representations of process variables
at different levels will be very useful and, therefore, the exact shape of those
trends must be defined to match expert interpretations. Certainty and imprecision
is another factor to be taken into account in some kind of measures or estimations
that are subject to unknown factors (perturbations, unknown parameters
dependencies, deviations, time dependency, failures, and so on). Similar
specification of output must be performed if they are used to as a high level
feedback loop to propose actions to improve global system performances.
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It is evident that different tools will be used to deal with this variety of
information. As a consequence, interfacing problems between applications and
data type mismatch will occur at the same time that users (supervisory systems
designers) will operate with distinct user interfaces and applications front-end.
This work is centred on providing a set of tools integrated into a framework to
facilitate management of information when designing expert supervisory systems.

1.3.2. Outline of the proposed approach.

The proposal presented in this thesis is to provide designers of knowledge
based supervisory systems of dynamic systems with a framework to facilit ate
their tasks avoiding interface problems among tools, data flow and management.
The approach is thought to be useful to both control and process engineers in
assisting their tasks. The use of AI technologies to diagnose and perform control
loops and, of course, assist process supervisory tasks such as fault detection and
diagnose, are in the scope of this work. Special effort has been put in integration
of tools for assisting expert supervisory systems design. With this aim the
experience of Computer Aided Control Systems Design (CACSD) frameworks
have been analysed and used to design a Computer Aided Supervisory Systems
(CASSD) framework. In this sense, some basic faciliti es are required to be
available in this proposed framework:

• Abstraction Tools . These are tools for signal processing,
representation and analysis to obtain significative information.
• To deal with process variables, measures or numerical estimations,
and expert observations, with uncertainty and imprecision.
• Expert knowledge representation  at different levels by using a rule-
based system or simple  qualitative relations.
• Modularity and encapsulation of data and knowledge would be
useful for structuring information.
• Graphical user interface to manage all those faciliti es in the same
environment as actual CACSD packages.

 An existing commercial framework has been chosen, MATLAB/Simulink, to
add those faciliti es in order to assist expert supervisory systems design.
MATLAB/Simulink has been selected because of its proximity to control
engineers and easy to use graphical user interface. Simulink blocks are used in
two ways : to encapsulate information (data and methods) and to force engineers
to structure they knowledge in a graphical representation.

Several tools from the AI domain have been added as Simulink ToolBoxes to
deal with abstracted information, qualitative relationship and rule-based ES.
Simple and intuitive qualitative relationship can be implemented by means of a
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block-based qualitative representation language called ALCMEN. An ES shell ,
called CEES, has also been embedded into MATLAB/Simulink as a block to
allow modularisation and partition of large expert KBs. Finally, the numeric to
qualitative interfaces is performed by a set of  algorithms, called abstraction
tools, encapsulated also in Simulink blocks. The functionality of the whole
framework is able due to the use of object oriented approach in the development
and implementation of those tools.C D E F G H I J K L M N J O P Q L R J S M S T U L R J V T W X Y

Current computer aided environments for assisting engineering tasks have
reached their majority in the domain of numerical data processing and
representation. All widely used systems provide well -developed and user-friendly
tools for numerical data acquisition, all types of mathematical calculation and
variety of diagrams for output data representation. Moreover, most of the systems
provide graphical user interface including symbolic block diagram editor which
offers an easy way for programming and turns the complex engineering task to
simpler manipulation on icons. This makes the design and analysis process very
intuitive and close to physical ‘interpretation’, i.e. realistic systems manipulation.

On the other hand, the current computer aided systems still l ack of consistent,
intuitive, and adequate support for symbolic and qualitative data and knowledge
management. Such kind of knowledge constitutes however a very important
component of more complex systems design and analysis tasks such as process
monitoring, supervision, diagnosis, safety and reliabilit y analysis and etc. In this
thesis an attempt is undertaken to make steps towards integration of tools for
expert supervision, including once for qualitative and symbolic data
representation and management and symbolic knowledge processing. The main
research objectives of this work include the following points :

1. Incorporation of object-variables into classical numerical data
processing system. The aim is to allow structural qualitative and symbolic
knowledge representation. Complex information is encapsulated in a single
source/sink structure, called object-variable, providing methods for knowledge
access and processing.

2. Implementation of selected particular tools for qualitative and symbolic
knowledge representation and interfacing. Higher abstract level information
processing based on the introduced object-variables.
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3. Embedding an object oriented rule-based expert system into a classical
CACSD framework in order to provide high level knowledge processing faciliti es
based on the domain of expert knowledge, heuristics, and logic.

  The principal thesis of this work is that : Integration of object oriented
knowledge representation and processing into classical numerical methods based
computer aided control system design contributes for abstract level information
processing and provides necessary tools for the task of knowledge-based
Computer Aided Supervisory System Design - CASSD. The object oriented
paradigm allows efficient representation of qualitative knowledge at various
levels of abstraction and knowledge encapsulation becomes convenient and
technically sound tool in the design of supervisory systems. Incorporation of
qualitative and symbolic knowledge representation tools and  rule-based system
processing, in a single framework constitutes a new quality in the area of
Computer Aided Control System Design and provides a user friendly, flexible and
very powerful tool for design tasks covering both numerical and symbolic
knowledge representation.

The object approach forces engineers to structure knowledge becoming highly
locatable, modular and encapsulated. This features are very important to get
expert supervisory system design closer to process. The objective is to approach
design tools to process engineers avoiding extra-time in learning application
functionality and interfacing process variables and design tools. Thus, objects are
used in the process variables descriptions as sources of information,
encapsulating tools to provide significant (qualitative or numerical) information.
Object oriented features will permit to divide large KBs into smaller ones to deal
with complex systems adopting distributed solutions. Consequently, ES becomes
more specialised, maintainable, and easier to validate.

Furthermore, in order to base the thesis on a stronger background a wide
comprehensive review of domain knowledge and literature and practical solution
is undertaken. All the proposed solutions are analysed in detail , implemented and
tested. Examples of practical applications are provided. Finally, concluding
remarks are presented.x y z { | } ~ � � � � � } ~ � �

Domain of expert supervision has been briefly introduced to focus the
problematic of using expert knowledge in the design of supervisory systems. The
main problems are the dealing with heterogeneous types of information
(numerical, qualitative, logic, knowledge, etc.). The complexity in using multiple
tools, from different domains, for knowledge representation and data
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manipulation becomes an integration problem. The use of a framework especially
conceived to assist these tasks, falls within the scope of this thesis. Integration of
AI based tools with classical numerical methods by means of an object oriented
approach is proposed as a solution to encapsulate information coming from
process and engineers at several abstraction levels.

The necessity of this CASSD (acronym of Computer Aided Supervisory
Systems Design) framework is to support the iterative procedure involved in the
development of such applications in all their steps (design, test, validation). A
CASSD framework is needed to incorporate both, numerical (modelli ng and
simulation, signal processing, analysis and representation) and knowledge-based
faciliti es (representation and processing). Numerical to qualitative interfaces are
also needed to deal with process variables at several abstraction levels.
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Nowadays, the interest for supervision is increasing due to the growing

demands for quality, safety, reliabilit y, availabilit y and cost eff iciency in
industrial processes. As systems grow in size and complexity, the possibilit y of
misbehaviour increases. Thus, the call for fault tolerant systems is gaining more
and more importance. Fault tolerance could be achieved either by passive or
active techniques [Frank and Köppen-Seliger, 1995] :

•  The passive approach makes use of robust control techniques to
ensure that  the closed-loop system becomes insensitive with respect to
faults. This solution allows small faults be tolerated without control
system reconfiguration.
• The active approach provides fault accommodation, i.e., the
reconfiguration of the control system when a fault has occurred.
Reconfiguration can be thought at various degrees, i.e. set point
changes, parameters re-tuning or structural changes. The aim of this
approach is to avoid a fast degradation of the whole system due to this
fault. The majority of actual solutions involve human decision.
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In this work, only active approach is taken into account. This chapter
overviews different methodologies that can be applied in this sense to remark the
importance of human knowledge about process behaviour and how it can be used
to implement supervisory structures. Finally, it is concluded that the use of both,
analytical and knowledge-based methods, together can improve the results of
supervisory structures. In such cases, the main problem is about integration of
methods provoked by differences in data representation (numeric, qualitative,
symbolic).ð ñ ð ñ ò ó ô õ ö ÷ ø ù ø ú û ü ý þ ó ÿ �
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The terminology used in the literature in the field of supervision fault detection
and diagnosis is not unique. Consequently, the Technical Committee
SAFEPROCESS tried to find commonly accepted definitions. Some of these
preliminary proposals are collected in [Isermann and Ballé, 1996]. The
terminology used in this text has been transcribed when used with a similar
meaning, and redefined when used with a different significance (such topics are
marked with an asterisk, *) :

About states and signals :

• Fault : Unpermitted deviation of at least one characteristic property
or variable of the system.
• Malfunction : Irregularity in fulfilment of a systems desired function.
• Error : Deviation between a measured or computed value of an
output variable and the specified or theoretically correct value.
• Disturbance : An unknown (unmeasurable and uncontrolled) input
acting on a system.
• Perturbation : An input acting on a system which results in a
temporary departure from steady state.
• Residual : Fault  indicator, based on model equations.
• Symptom*  : Change of the observed behaviour with respect to the
normal one.

About functions:

• Fault detection : Determination of faults present in a system.
• Fault isolation : Determination of kind, location and time of
detection of a fault. Follows fault detection.
• Fault diagnosis*  : Determination of the origin of a fault. Therefore,
it follows fault detection.
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• Monitoring : A continuous real-time task of determining the
condition of a physical system.
• Supervision : Monitoring a physical system and taking appropriate
action to maintain the operation in the case of faults.
• Protection : Means by which a potentially dangerous behaviour of
the system is suppressed if possible or, means by which the
consequences of a dangerous behaviour are avoided.

Although all of these topics exist in the bibliography and correspond to
different stages in the study of faults of plants, the majority of works in the
domain are centred on: fault detection, fault diagnosis, monitoring and
supervision.

About models :

• Quantitative model : Use of static and dynamic relations among
system variables and parameters in order to describe systems behaviour
in quantitative mathematical terms (also called analytical or numerical
model).
• Qualitative model : use of static and dynamic relations among system
variables and parameters expressed in symbolic terms in order to
describe systems behaviour in qualitative terms.
• Diagnostic model : A set of static and dynamic relations which link
specific input variables -the symptoms- to specific output variables- the
faults.
• Analytical redundancy : Use of two or more, but not necessarily
identical ways, to determine a variable where one way uses a
mathematical process model in analytical form.

About system properties and its measures:

• Reliabilit y : Abilit y of a system to perform a required function under
stated conditions, within a given scope, during a given period of time. It
can be expressed by the Mean Time Between Failure (MTBF). It  is the
mean value of time passed between two consecutive failures
• Safety: Abilit y of a system not to cause a danger for persons or
equipment  or environment.
• Other terms such as, availabilit y or dependabilit y, are less frequent
terminology, referring to probabilit y of satisfactory operation of systems
through time. They are not used in this text.

The scope of supervision is not only to detect malfunctions and faults, but also
to propose actions against these situations. Therefore, basic tasks associated to a
supervisory system have a correspondence with fault diagnosis, [Gentil , 1996],
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and other fault related tasks. Once faults are detected and localised, actions can
be proposed or ordered to assure global performances. See Fig.  2.1 for the
relationship between tasks and terminology.
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Nowadays, commercial industrial applications cover simple monitoring tasks
that consist in data management (storing, visualisation and representation) and
alarm generation. This is the case of extended SCADA packages. More advanced
systems can diagnose and propose actions, but final decision about alarm
certainty or action validity are restricted to human operators.
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Supervision is essentially the set of techniques used with the goal of assuring
the integrity of a system. The definition given in the last paragraph assigns to
supervision the  role of detecting (to recognise and to indicate) in real time
abnormal behaviour of a process taken benefit of all i nformation available about
the process (measures, models, history, experience and so on).

According to these goals, the main part of supervision of a complex system is
focused on to detect and isolate occurring faults and provide information about
their size and source, [Frank and Köppen-Seliger, 1995]. The most important and
diff icult task is centred on fault detection and diagnosis where diff iculty increases
with the real time constraints and complexity of systems (non-linear, coupled
dynamics, time dependencies, etc.). The core of the fault diagnosis methodology
is the so-called model-based approach, where either analytical or knowledge-
based models or combination of both are used in combination with analytical or
heuristic reasoning [Frank and Köppen-Seliger, 1995]. The classical procedure of
a fault diagnosis system is depicted in Fig.  2.2. This is achieved in three basic
steps, residual generation, evaluation and analysis, not always clearly separable.
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Hence, the methodology used in fault detection is clearly dependent on the

process and the sort of available information. [Pal, 1995] gives an extensive
classification and description of these methods (Fig.  2.3). A distribution of fault
detection methods depending on applications is summarised in [Isermann and
Ballé, 1996], from the main contributions presented in the domain main
conferences from 1991 till 1995. The evaluation of fault diagnosis and
supervision methods is more diff icult because of littl e data, although rule-based
reasoning methods are increasingly used and also the number of fuzzy rule-based
applications is growing  [Isermann and Ballé, 1996].
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Classification in Fig.  2.3 shows the diversity of methods available for fault

detection using analytical models and the shortage of methodologies described in
the case of  the knowledge-based approach. The reason of this difference is due
to the tools used in both situations. Most of the model-based fault detection
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methods are based on comparing measures and simulations for obtaining a
residual as is depicted  in Fig.  2.4. The application of existing signal processing
and statistical methods to deal with numerical data boosted the used of such
methods. The major inconvenient of those methods is the necessity of a model.
The knowledge-based model offers an alternative to that situation in which an
accurate model is difficult to be obtained.

In the following subsections, fault detection methods are briefly described and
classified in model, signal and knowledge-based methods. Model-based methods
group analytical methods based on comparing process output with theoretical
model response to the same input applied real process. The next subsection,
signal based methods, is restricted to those methods that only use process output
variables in the fault detection task and no model is used. Finally, the knowledge-
based method subsection, introduces the problematic of dealing with knowledge
representation to monitor and supervise dynamic systems.

2.3.1. Model-based fault detection.

Model-based fault detection methods are focused on  residual generation, i.e.
fault indicators (Fig.  2.4). Residuals are obtained as changes or discrepancies in
special features of the process obtained from process variables (for example,
output signals, state variables) or coeff icients (for example, estimated parameters
or other calculated ratios). To achieve this goal, data obtained from the process is
compared to the data supplied by models representing normal operating
conditions. For this, different change detection methods are applied. The next
step consist in residual evaluation to decide about faults existence. Threshold
logic, statistical decision theory, pattern recognition, fuzzy decision making or
neural networks are actual methods used to decide whether and where a fault has
occurred.
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Different kinds of process models and methods can be used to generate
residuals of state or output variables. A basic classification of them is represented
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in Fig.  2.5. Observer-based residual generation consists in using observers or
Kalman filters to reconstruct the interest output of the system. Then, the error
between real data and estimated data or a function of them are used as residual. In
the parity space approach the process equations (for instance, state space
equations)  are modified with the aim of getting residuals decoupled from system
states and different faults. The inconsistency of these parity equations represent
the residuals. On the other hand parameter estimation methods are based on the
assumption that the faults are provoked by changes in the physical system
parameters (mass, friction, resistance, viscosity, etc.). Therefore,  these methods
use process measures to repeatedly estimate the parameters of the actual process.
Estimations are compared with the parameters of the reference model, obtained
under fault-free conditions. A wider description of those methods and other
interesting variants of them are included in [Frank, 1996].

            Models                                                                        Methods         
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Although these approaches have proved to be very effective in many

applications, they have two major shortcomings : the complex technology or
natural process are generally non-linear time-varying systems, which makes it
particularly diff icult to detect structural changes in the system and to obtain
adequate models for this purpose. Secondly, the available model is often assumed
to represent normal operating conditions, and the impact of a departure from
these conditions on the model outputs is diff icult to predict [Du, Elbastawi and
Wu, 1995a]. Consequently, these methods are diff icult to be applied to dynamic
process submitted to repeated changes in the operation mode.

2.3.2. Signal-based fault detection.

Model-based fault detection requires process variables (measures) to compare
real  process response and model response. This comparison is performed under
the assumption that the same input is provided to both systems. Therefore,
process measures and actions  must also be supplied as input of model. Other
methods can be applied if only process output is available, i.e. signal-based
methods. This methods are usually used with rotating machinery and electrical
circuits and applied with signals measured from process in steady state.
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Therefore, signals are thought to be rich in information. This is the case of
vibrations analysis and other methods based on frequency analysis.

Signal-based methods are focused on  analysing signal features. Change
detection is measured as a deviation from normal behaviour. For this purpose,
statistical (mean, variance, entropy, etc. are estimated), freqüencial (as filtering or
spectral estimations methods for example) and probabili stic (Bayes decision)
methods are used. Signal models or patterns are used to detect deviations from
normal operating modes. Those methods do not require the mathematical model
of process. Knowledge about system is assumed to consist in learning
associations between process measures and operating conditions. In this sense
they can be considered as knowledge-based methods.

Some of the limitations of pattern recognition techniques is that they assume a
knowledge about all systems states and do not take into account the time
evolution of the process under study. A survey of these techniques can be
consulted in [Denoeux, Masson and Debuisson, 1996].

2.3.3. Knowledge-based fault detection.

In the case of noticeable modelli ng uncertainty, a more suitable strategy is that
of using knowledge-based techniques. Instead of output signals any kind of
symptoms can be used and the robustness can be attained by restricting to only
those symptoms that are not strongly dependent upon the systems uncertainty. In
this case, knowledge has to be processed which is commonly incomplete and can
not be represented by analytical models. On the other hand, residual evaluation is
a complex logical process which demands intelli gent decision making techniques,
like fault tracing in fault trees or Petri nets or pattern recognition including fuzzy
or neural techniques. Therefore, knowledge-based methods are quite a natural
approach also for residual generation in fault diagnosis, and ESs have so far been
applied more successfully here than in the field of control ([Frank, 1996]). The
use of knowledge, in the model definition or qualitative observation of variables,
when analytical models are diff icult to be obtained,  is another field where AI
techniques can be used.

Knowledge-based methods is a field in continuous evolution, where AI
techniques have an important role. There is not a unified theory to be applied to
these methods and, in fact, knowledge-based methods can be applied in all three
phases of fault diagnosis, namely residual generation, residual evaluation and
fault analysis, although the phases in this case are not always as clearly separable
as in case of the analytical approach. [Frank, 1996] distinguishes two  categories
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in the knowledge-based domain for diagnosis, also applied for residual
generation:

• Symptom based.  It consists in organising expert knowledge into
diagnosis ESs. Then, ESs deal with process variables to identify fault
symptoms in them (See Fig.  2.7). When symptoms are considered in
connection with process input, we speak of a symptom-model-based
approach. In such implementations, major diff iculties exist in the
knowledge acquisition task and knowledge representation, for obtaining
a rule base for example, and knowledge processing and interfacing,
when running the ES application with real data.
• Qualitative model-based. This methodology is based on using
process knowledge to represent systems structure in terms of rules and
facts. The goal is to dispose of a rough model to be used as a model-
based approach. The use of qualitative techniques implies a description
of process variables given by short sets of labels or symbols ( low,
normal, high). Consequently, the inevitable deviations from the exact
model, (uncertainties and incompleteness) always present in these
representations, requires the AI support.

A ctuators PROCESS

Qualit ative
model

Sensors

Discrepancy
detector

FAU LT S

N/Q
interface

Estimated
variables

N/Q
interface

× Ø Ù Ú Û Ú  ! ç ã Ø " ã " # à $ à ä % & Þ ç ' Ø æ ç æ Ø â à $ ä ( à ' ) * ç ã à (
% ç Þ ' æ ( à æ à " æ Ø ä å $ à æ # ä (

The use of one or the other method is only submitted to the knowledge about
process behaviour or faults. Furthermore, there are not exclusive methodologies
and a combination of both can be required. In fact, the best strategy tries to use
all available knowledge and data for reaching the fault detection goal.

Additional problems, when dealing with knowledge representation, of process
behaviour or faults description, occur when interfacing fault detection structure
(linguistic representation of magnitudes and process variables) and process
(numerical variables, measures). However, the use of all available information,
i.e. numerical data and knowledge, can improve fault detection structures because
they are complementary approaches.
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Fig.  2.7 represents how both, numerical techniques and knowledge-based
techniques, can be merged for fault detection. In fact, heuristic knowledge
acquired from process observations is used in this proposal to reinforce analytical
methods applied to numerical variables in the symptoms generation step. While
numerical methods are used for features extraction of measured variables, i.e.
signal processing techniques as filtering and analytical estimations, some
drawbacks appear in extracting features from operator observations. Specialised
knowledge processing techniques must be used with this aim. Taking into
account that diff iculties in such systems are presented at knowledge
representation level, the use of those techniques for features extracting are not
very extended.

] ^ _ ` a b c d e f g h f i j k l f g m k n e o g p k h b c l p l q

Fault diagnosis follows fault detection in the supervisory chain. According to
the general description of fault detection systems, residual evaluation is an step
preceding fault diagnosis. Constraints and conditions used in fault evaluation are
submitted to particular faults. In these tasks, the use of intelli gent decision
systems offers a clear advantage because the use of expert knowledge about fault
in the decision conditions. The use of AI techniques in this task can be combined
with the analytical model used for fault detection.
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2.4.1. Knowledge-based methods used in fault diagnosis.

The extensive domain of AI can be applied in different ways to diagnose about
faults. In this sense, logical decisions needed in residual evaluation, can be
performed by using fuzzy logic. Adaptive threshold for uncertain systems can be
performed by fuzzy rules. In such situations, rules incorporate knowledge about
process behaviour and the threshold is changed according to the operation
conditions.

Another powerful technique from the AI domain are the Artificial Neural
Networks. They have also been used in fault diagnosis with different  purposes
such as residual generation by replacing analytical models by trained networks
and using them as a normal operating model. Residual evaluation can be
improved by using neural networks using data from previous faults to train neural
networks to solve theses situations.

Neural networks or fuzzy logic are AI technologies that can be used within
analytical model-based fault detection for improving them. In fact, both neural
networks and fuzzy logic use numerical data. Another different approach consists
in using qualitative models (process models or faults models) for diagnosis as it
has been introduced when talking about knowledge-based fault detection. In the
case of a fault model, a previous knowledge about faults symptoms is assumed,
then process is observed to match some of them. On the other hand,  process-
model is used to detect qualitative deviations from the normal operating mode.

Partial work of this thesis has been focused on the task of developing and
integrating tools to assist knowledge-based design using the two last approaches.
Main effort has been done in providing a useful tool for representing the simple
qualitative relationship, ALCMEN, to perform qualitative observations of process
variables submitted to faults. A case example has been developed to test both
techniques. The use of ALCMEN to qualitatively estimate a non-measured
variable is described in [Melendez et al. 1996a] , while the  analysis of measured
process variables in fault situations is used to obtain a qualitative description of
faults in [Melendez  et al. 1995]. In this case the use of rule-based ES under G2
was used to diagnose. The use of imprecise description of signals features, given
by qualitative labels, as antecedents provoked sudden transitions in the ES
decision because the ES was not able to mange this imprecision. This work was
improved, by using a shell with fuzzy reasoning to deal with uncertainty and
imprecision [Sàbat, 1996].

Sometimes the necessity of applying one of two methodologies, symptom-
based or qualitative-model-based, is not clear and knowledge about fault
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situations and qualitative estimations of variables can be merged to improve the
diagnose system. Moreover, it is necessary to combine both methodologies to
take benefit of KB describing symptoms related to non measured variables, i.e.
the qualitative observer. Former work of the author, with the same case example,
has been extended in this sense as is explained in [Melendez et al., 1996b].

2.4.2. Diagnosis strategies.

Despite there does not exist a standard architecture for fault diagnosis, actual
tendencies point to hybrid architectures because of the benefits of merging both
technologies, (analytical and model-based approaches). Basic and pure lines are
represented in Fig.  2.8 but drawbacks are presented in implementing simple
strategies, due to the incompleteness of information when dealing with any
proposal, especially with complex systems.
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Supervision of complex systems (non-linear, time dependent, etc.) becomes

impossible using analytical model-based approach because diff iculty in obtaining
accurate models. Despite of this drawback numerical methods must be taken into
account for obtaining signal features that are needed by ES, representing expert
knowledge, to deduce about behaviour of process variables. This thesis is
particularly focused on  combining all possible techniques in the implementation
of complete supervisory systems. Fig.  2.7 represents the variety of information
that can be used in the implementation of knowledge-based structures for fault
detection and diagnosis.
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In this ways, the proposal of this thesis (Fig.  2.9) tries to take benefit of both

knowledge and analytical tools, providing abstraction tools as numerical to
qualitative interfaces. Qualitative reasoning and modelli ng are also present to
roughly estimate process variables. Rule-based systems must be used together
with analytical tools in the diagnosis tasks because data coming from process is
purely numerical and process knowledge is referred to qualitative perceptions of
them. In following chapters a set of tools are selected to be integrated in a
commercial framework to facilit ate the development of supervisory structures
following this line.

I J K L M N O P Q N Q R S T S U V R V W Q X O Q Y S Z [ O Q Y \ U Z V Y ] Z ] Z S Q N Z ^
Despite implementation of supervisory systems is not an extended topic in

literature, it is an important stage. Especially, when dealing with knowledge-
based methods because of the limitations of available shells. Nowadays,
knowledge-based methods are thought to be useful in all supervisory tasks. The
easy use of rule-based ES for classifying or the use of graphs or fault trees as
analysis tool, are simple tasks where expert knowledge can improve fault
detection. Moreover, the use of fuzzy logic to deal with imprecision and
uncertainty, or neural nets for classification, are other representative examples of
how AI is coming into supervisory schemes.

Nowadays, final actions are restricted to human decision, then the
implementation of intelli gent supervisory systems is far from the actual
implementations in industrial process and restricted to simple controller
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reconfigurations or rule-based controllers (fuzzy controllers). A reason for these
diff iculties in implementing expert supervisory systems is the complexity in
knowledge representation and validation of such applications.

2.5.1. Assisting expert supervision design.

A possible block representation of supervisory system, is depicted in Fig.
2.10. A model-based (analytical or qualitative) fault diagnosis system is used to
reconfigure the control system. Actual shells and existent frameworks used for
industrial monitoring tasks (SCADA systems as CITECT, InTouch and so on.)
permit such kind of reconfiguration according simple conditions. These are well
dotted of numerical methods  and tools, but they lack of knowledge-based
methods. In fact, the application domain of these applications is reduced to
simple monitoring, representing, alarm generation and registration tasks. On the
other hand, actual shells conceived to deal with knowledge-based systems are
designed to manage specific kind of knowledge representation and there exist
some diff iculties in integrating numerical capabiliti es. This is the example of the
shell G2, the actual state-of-the-art in real-time knowledge-based process
diagnose tasks. It is provided with an object-oriented graphical user interface that
offers several knowledge representations tools, such as rule bases, frames, tables.
G2 inference engine is able to deal with KB in several ways (forward and
backward chaining, focusing, invoking). Despite of its capabiliti es of knowledge
representation, it presents some drawbacks in qualitative modelli ng and
uncertainty (and imprecision) management, which are necessary in a complete
knowledge-based framework. Another inconvenient is detected when dealing
with multi -level representation of process variables. In such cases it is necessary
to abstract significant information from numerical measures, and those
frameworks do not provide suff icient tools for numerical management and signal
processing.
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Another important factor to be taken into account in the design of supervisory
systems is the application domain. Different tools and signals must be used for
process supervision than for controllers supervision. It also applies to continuous,
discrete or hybrid systems and to distributed or centralised systems.

Management of both numerical and qualitative data and the use of analytical
and  knowledge-based models and tools is necessary in actual supervisory
systems. Taken into account that the supervisory loop is closed by means of
reconfiguration of the control systems, a supervision shell must also include
control systems design capabiliti es and some evaluation and graphical
representation tools. The actual Computer Aided Control Systems Design
(CACSD) frameworks incorporate such capabiliti es and a great number of
numerical algorithms, including modelli ng and simulation capabiliti es. On the
other hand, these frameworks are not provided with knowledge-based
capabiliti es. Consequently, a possible approach for assisting expert supervisory
systems design based on control reconfiguration, is to add following knowledge-
based capabilities to CACSD frameworks:

• Numeric/Qualitative interfaces. Process variables are the main link
between the process and the supervisory system. Therefore, different
observations of them must be possible and, consequently, a multi -level
representation of them must be performed. Numeric features of process
measures, as its actual value, derivatives, mean or trend estimation,
must be available together with qualitative representations such as
qualitative tendency, labels or landmarks, to be useful for working
together with both analytical and knowledge-based supervisory
methods. Then a set of different methods for obtaining accurate
qualitative representation of signals are needed to be used as numeric to
qualitative interfaces. i.e. abstraction methods. The object oriented
approach can be used to encapsulate the multi -level representation of
these variables (object-variables) as it is explained in chapter 5.
• Knowledge representation. Several tools can be used to deal with
expert knowledge at several abstraction degrees. Knowledge about
process can be about process variables, the relationship between them,
the description of situations (faults) related to physical elements,
functionality, behaviour and so on. All of these possibiliti es require
some specific tools with different representation capabilities.
• Knowledge processing. Usefulness of knowledge-based systems
reside in the capabilit y of deduction using knowledge representation.
Then  those inference engines must also be present in the framework to
deal with qualitative relationship (qualitative reasoning), rules (ES),
logic, and other possible knowledge representations. Capabiliti es of
certainty and imprecision management must also be present, for
example, by using fuzzy reasoning.
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Some tools are selected and presented in chapter  five to assist in the design of
control systems supervision. With this goal a specific commercial open package
from the control domain, MATLAB/Simulink,  has been used as a platform
where knowledge representation capabiliti es and qualitative reasoning tools have
been integrated by means of an object oriented approach [Melendez et al.,
1996b]. The goal is to take advantage of the existent representation and analysis
tools used in control systems design, extending its capabiliti es with knowledge-
based techniques to assist engineers in such designs, avoiding the always diff icult
problem of interfacing separated tools reasoning on dynamic systems. The work
has been centred on solving main drawbacks in knowledge representation and
processing. With this aim, a tool for dealing with simple qualitative
representations, ALCMEN,  and an ES shell , CEES, have been added. Other
possibilit y is pointed by [Rengasamy, 1995], using CIM models to integrate
several functionalities in order to assist supervision.

¿ À Á Â Ã Ä Å Æ Ç È É Ê Ä Å É Ë
Supervisory systems design is an actual research line that covers process

monitoring at several stages (fault detection, diagnose, and identification). This
chapter has been focused on the necessities of knowledge-based systems in the
different steps of supervisory systems design.

Nowadays, the main research activity in the area of supervision is focused on
the objective of fault detection. Several methods are described in the literature,
but there does not exist an unified theory. Model-based theory has been
consolidated for numerical models despite of the necessity of an extension for
non-linear systems. In the case of knowledge-based fault detection, qualitative
models can be used to roughly  deduce non observable dynamics and symptom
description by  means of rule-based systems, can use this information. Nowadays,
qualitative models implementation is supported by several AI technologies.

The combination of both analytical and knowledge-based methods in fault
diagnosis falls within the field of the actual research and in the scope of this
work. Numeric to qualitative and qualitative to numeric interfaces, knowledge
representation and processing are relevant topics to be solved before a unified
approach could be reached. When dealing with complex systems (large systems,
non-linear, time dependent, coupling and so on), main diff iculties appear in the
implementation of global supervisory systems because of the amount of different
data and information to manage. The global conclusion is that there does not exist
a framework to deal with different approaches (knowledge and analytical based)
in the design of supervisory systems.
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The complexity of designing supervisory systems has been introduced in the
last chapter. The necessity of incorporating expert knowledge in such design is
present in all tasks involved in supervisory systems. Fault detection can be
performed by using analytical models, but these models are not always available
and final resolution about residual generated, is always submitted to the human
expert decision. On the other hand, the use of knowledge-based representations is
needed by numeric to qualitative interfaces to perform reasoning about process
variables. The important role of human knowledge in process supervision is
concentrating the attention on these techniques that permit the use of expert
knowledge to automate these tasks. From this perspective, the increasing use of
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Artificial Intelli gence (AI) techniques in control and process engineering must
improve supervisory designs, and coexist with numerical methods.

The most extended AI tools in the control domain, are overviewed in this
chapter, and benefits and drawbacks of using some of the AI techniques for
knowledge representation and qualitative reasoning, are discussed from a
supervisory systems design point of view. The aim is to take advantage of control
experience in using AI resources, to choose a set of adequate tools to be
integrated in a framework for assisting supervisory tasks avoiding.

3.1.1. Heterogeneous, imprecise and uncertain data.

In the design of supervisory systems, the information related to process
variables is available in several ways: numerical data (from sensors, analytical
models, numerical estimations and so on), qualitative data (from human
perception of process variable trends, qualitative models and qualitative
estimations) and relationship or dependencies among these data. The complexity
in managing together such different kinds of data is in the scope of AI
techniques.

Nowadays, the main contribution for designing supervisory systems comes
from operators and expert engineers experience. In fact, they are also present in
the majority of applications for final decision making. Sometimes, the description
and translation into computers of this expert knowledge, related to process
variables, becomes very diff icult or impossible due to the different nature of
human descriptions and data obtained from process.

Usually, experts describe situations, while data are instantaneous samples of
measures, or estimations of these situations. In the procedure of matching process
variables evolution and those situations, humans use an imprecise description of
magnitudes. An example can clarify these diff iculties : The following sentence,
“when temperature in the reactor increases, opens the input valve slowly” ,
describes an action (opens valve slowly) to be performed when a  process variable
(temperature) experiments certain behaviour (increasing). This expert description
are easily interpreted by humans, but diff icult to interface with numerical
magnitudes coming from the process (temperature) or actuators to perform this
action (open valve). They are imprecise descriptions of numerical magnitudes
available in the process. This imprecise description must be processed before to
be used in the control structure. The representation of these kinds of information
and the capabilit y of dealing with the relationship among imprecise variables is in
the scope of AI. The use of qualitative reasoning and modelli ng techniques can
be useful for these purposes.



& ' ( ) * + , ( - . ' . / 0 ' . 1 2 ) 3 * ) 4 5 , 6 ) 3 7 8 9 , 2 - ( , ( - : ) 7 , ' 3 ; 9 < ) + - = > . . 2 6/ . + ? ) , 2 > - < ) @ A ' , < - = B A 6 ( ) < 6 B 9 C ) + : - 6 - . '

Chapter 3:  Methods for Expert Supervisory Systems    - 28 -

Another important feature of AI techniques is the capabilit y of dealing with
uncertain data or information. The description of an intermittent fault is an
example of this situation. In spite of some conditions matched, the fault is not
sure. Certainty can be introduced as an index of confidence in the description of
situations or data. A similar situation is given when contrasting information
among several sources. Sometimes it leads to incongruous descriptions and a
decreasing confidence of a source of information. In such cases, the use of
different certainty indices for each source can be useful to merge incoming
information to work  in co-operation. See [De la Rosa J.Ll, 1994].

3.1.2. Process behaviour and expert knowledge. 

An additional inconvenience of expert knowledge for process supervision
refers to temporal references. Usually it describes process behaviour in an
uncertain period of time, or changes in the evolution of process variables without
dating these events. In the example of the previous paragraph, the label
increasing is related to a characteristic of a process variable during an imprecise
period of time. This consideration must be taken into account for building
numeric to qualitative interfaces in order to take benefit of this kind of
descriptions of variables evolution. This also applies more general descriptions of
process behaviour such as transient or steady state, for instance. In this case, both
possibiliti es are exclusive, but real transition between both states is gradual. Then
diff iculties exist in determining the limits between both, because it implies all
process variables analysed.

Actual AI techniques, as fuzzy logic or some qualitative reasoning formalisms,
are applied to deal with this imprecision in the description magnitudes and the
relationship between variables. On the other hand, temporal imprecision is
inherent to qualitative methods.

D E F E G H I J K L M N L O L P O L Q L H R S R T I H R L U V H T W X L Q Y

The main characteristic of AI techniques is the separation between knowledge
and inference mechanisms. This independence causes that two separated steps
must be performed to build any AI based system. The first is to declare
knowledge and second is to reason about facts according to the previous
declaration. Consequently, these tools are provided of mechanisms for knowledge
representation and manipulation, and mechanisms for reasoning.
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In order to encode expert knowledge concerning the process, different
knowledge representation techniques could be used. The most popular ones
include the following :

• Logical formalisms
• Rule-based systems
• Graphs (including semantic networks)
• Frames and object oriented representations

Of course, more complex systems use combinations of the above knowledge
representation schemes. Below, a brief presentation of the core formalism
mentioned above, is given. It is not in the scope of this work to start an extensive
discussion of these techniques, but only to present the different possibiliti es for
representing expert knowledge in supervisory applications.

3.2.1. Logical formalisms.

Logical formalism includes both propositional logic and predicate calculus. In
the simplest case, propositional logic is satisfactory as a knowledge
representation formalism. The language of propositional logic consists of
propositional symbols, such as p,q,r, ..., denoting logical sentences (a logical
sentence is one to which we can assign the truth value, i.e. either true or false)
and logical connectives. Among the logical connectives, typically used, are : ∧
(conjunction), ∨ (disjunction), ⇒ (implication), ⇔ (equivalence) and ¬
(negation). Using the above connectives and parentheses, various complex logical
sentences can be build.

The main advantages of logical formalism include well established formal
background and theoretical properties (soundness and completeness of inference
systems). Further, in case of logical formalism, the standard logical inference
methods are immediately applicable.

3.2.2. Rule-based systems.

Rule-based systems, are the most comprehensible form of knowledge
representation. These are descriptions of condition-dependent actions. A single
production rule is understood to be a single item of information. The simple
structure “IF  ... THEN ...” has became the most successful way of knowledge
representation. Production rules applied in a specific domain by representing
expert knowledge applied to a particular problem are also called, expert systems
(ES).
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The most important component of these knowledge representation techniques
is the inference mechanism. The inference mechanism controls the selection and
activation of production rules. This inference engine must be able to solve
possible conflicts appeared in the selection procedure and multiple deductions of
the same fact.

When using ES for representing knowledge involving numerical data,
additional capabiliti es of processing uncertainty and/or imprecision are necessary,
due to the imprecision of input data. In such situations, it is evident that the use of
adequate numeric to qualitative interfaces will i mprove the results. To dispose of
a set of correct rules is as important as to provide the ES with expected inputs in
the antecedents of these rules. Therefore, when using ES directly connected to
dynamic systems, the additional mechanism must be used to interface process and
ES.
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Rules description is different according to the shell to be used and reasoning
capabiliti es used by the inference engine of the ES. For example, Fig.  3.1 and
Fig.  3.2 show two different rules from two shells, G2 and CEES respectively ,
especially conceived to deal with data coming from dynamic systems. G2 is a
commercial shell conceived to deal with knowledge-based applications in the
domain of process control. CEES [De la Rosa J.Ll, 1994], is a research tool in
continuous evolution according to the supervisory systems necessities. Basic
differences between the rules are given by the ES capabiliti es of dealing with
imprecision and uncertainty. In both, a qualitative description of the process
variables is given, but ES in Fig.  3.2, CEES,  can deal with imprecision and
uncertainty, while ES in Fig.  3.1 can not. The activation of rules in  Fig.  3.1
depends, exclusively (apart from process dynamics), on the interface numeric to
qualitative used, while in the second example, Fig.  3.2, this activation can be
tuned according to the result of smoothed comparison -for instance,
(Tendency_n1-n2).fv.equal(increasing)- using fuzzy sets in the definition of
qualitative values, and the election of an activation threshold. The necessity of
reasoning about numerical data makes the use of a shell with capabiliti es of
dealing with uncertainty and/or imprecision necessary.
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3.2.3. Graphs and including semantic networks.

Graphs and semantic networks are a means of representing knowledge-based
on the relationships between objects. The nodes correspond to these objects, and
links (lines or arcs) between them describe the dependencies.  This is only a kind
of representation without capabiliti es of processing. Final implementation of this
kind of representation usually uses rule-based systems.
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Examples of Fig.  3.3 and Fig.  3.4, extracted from [Melendez, 1998], are a
partial representation of the global process behaviour. In this case, graphs were
used to assist the expert system configuration. The necessity of describing time
dependencies to differentiate situations in the process behaviour, can be
observed. These are the main diff iculties when dealing with dynamic systems,
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because the reasoning must be performed not only about sampled data, but also
about the temporal evolution of signals (trends). The graph of Fig.  3.4 shows the
necessity of supplying these trends (E↓, or E↑ for example) for  interfacing
coming data in the on-line application.
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In those cases, the imprecision of human knowledge is diff icult to be
interfaced with numeric process variables. In the previous graphs, the arrows are
used to describe the human perception of increasing or decreasing tendencies of
process variables in a sample interval. The translation of this observances into a
rule-based system becomes a diff icult interfacing problem. The use of
specialised tools to abstract qualitative representation from process variables are
needed to interface process input variables with expert knowledge.

3.2.4. Frames and object oriented representations.

A frame is a data structure for representing objects, situations, facts or other
kind of knowledge by breaking it down into their constituent parts. A simple
example of using frames consists in structuring data in tables. The use of frames
involves a set of mechanisms (access, new, reset and change of values) to deal
with frame attributes or slots. Inheritance is another important property of
frames. Graphical representation of frames offers an easy to use interface to
users. For instance, frames are present in G2 to represent knowledge related  to
process variables and objects. Attributes as sampling time, length, connections
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and other are used to describe data and relationship between them. Copies of
these graphical objects conserve all the attributes (inheritance).

The actual object oriented languages are very extended to support this type of
representation with additional features. Languages such as C++ or  Smalltalk
permit to declare complex data structures, called classes, embedding data (object
attributes) and methods (to manage and/or to access to its attributes). Main
benefits of Object Oriented Programming (OOP) are resumed in the following
properties :

• Abstraction : Once a class is defined, the instance of objects of this
class is done with independence of the contents of this class.  This
allows to work in a more conceptual level.
• Encapsulation : This is the property of object oriented languages of
storing data and methods in the same structure.
• Polymorphism, refers to the property of using the same description
for an operator dealing with different kinds of data. For instance, an
operator addition could be applied to different type of data (real,
complex, integer) : addition(real, real), addition(integer, integer),
addition(complex, complex) using the same name.
• Inheritance : Classes definition can take profit of the previous
defined classes or partial properties without rewriting code.

The basic difference between OOP and procedural programming resides in
that the data is not clearly separated from the code. The programming structure
called object is used to encapsulate both, data (or attributes) and methods
(procedures describing how actions of these objects must be performed) related to
this data forming complex structures. In OOP, objects are created as instances of
classes, or template structures, as in procedural languages variables are declared
according to types of data. The extended use of object oriented languages in the
domain of automatic control is surveyed  in [Jobling  et al. 1994].
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Qualitative reasoning (QR), also called qualitative physics, has become a
domain of AI since the early eighties. This is the research area within AI which
deals with human reasoning about physical systems [Bobrow, 1984].
Fundamentals of QR are based on applying human common sense and scientific
implications used by engineers in the analyse of the environment and situations.
The aim is to use a small number of symbols or qualitative values in the variables
description. In dynamic process supervision, QR is used for describing qualitative
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dependencies or models between symbols representing process variables. Two
fundamental principles must be taken into account  for qualitative reasoning:

• Continuous variables granularity is defined according to the type of
reasoning to perform. For example, temperature qualitative values for
alarm generation could take two states (normal, high) to differentiate a
normal operation condition from a dangerous situation. The same
variable used in a control loop could be defined using five qualitative
values (very low, low, normal, high and very high) to smooth big and
sudden transitions in the control law.
• Qualitative data evolution is event driven. This means that qualitative
data is not equi-sampled and its changes in its values are asynchronous.
From the previous example, temperature changes from normal to high
only when  the risk situation is approaching.

The intent of translating numerical models or relationships into qualitative
descriptions involves the use of mathematical operators and calculating
mechanisms defined for symbolic values. In this sense, qualitative representation
has serious restrictions and algebraic operators are only defined for simple
qualitative representations of numerical spaces. Consequently, the majority of
actual pure qualitative mechanisms operate with qualitative variables that can
only take the values : negative, zero or positive ({-,0,+}).

For the development of this work, special interest for QR is centred on the use
for developing simple qualitative observer. This is for describing simple
relationships between qualitative variables obtained from process variables. The
goal is to deduce the dynamic of variables that are not available as numerical
data. For this purpose, other numerical variables can be used, using a qualitative
description of them and the adequate relationship.

Other important QR formalisms are introduced in the next chapter as
abstraction tools because of their capabiliti es in providing qualitative
interpretations of  numerical information at several degrees of abstraction. On the
other hand, other QR formalism, such as algebra of signs and order of magnitude,
are not present in this text due to the imprecision obtained in the results when
multiple operations are combined  (and multiple steps must be performed) in the
deductions.

3.3.1. Qualitative modelling and simulation.

Modelli ng has been one of the areas where qualitative reasoning has been
more successfully applied. Several qualitative formalisms succeed for qualitative
modelli ng of dynamic systems. Various QR methods about physical systems are
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based on the description of the functional mechanism. Then, using simple
descriptions of process dynamics, qualitative simulations can be performed to
determine the system behaviour from an initial condition. Some examples of
techniques used with this purpose are :

• Envisionment  [De Kleer and Brown, 1984] is a behavioural
description consisting in a transition graph where all possible evolution
of the system from an initial condition are described by the output
branches. Model is constrained to the symbols used to represent
physical parameters of the system, these parameters are interrelated by
means of equations.
• QSIM [Kuipers, 1986], is a package conceived to deal with
qualitative simulation. This approach differs from the previous in the
definitions of qualitative values. In QSIM qualitative values are defined
by a pair <qval, qdir>, where qval is obtained from an ordered set of
landmarks and the intervals between consecutive landmarks, and qdir is
the qualitative derivative associated to this variable. Possible values for
inc are dec (decreasing), std (steady) or inc (increasing). A set of
constraining equations are composed by a variety of primitives
(arithmetic, functional, derivative). QSIM has been improved, by
integrating quantitative information, to decrease the ambiguity of
managing pure qualitative information.
• FuSim, [Shen and Leitch, 1993],  is a more recent qualitative
simulator package with fuzzy capabiliti es. Fuzzy sets have been used in
the definition of the finite number of values of a qualitative variable.
FuSim allows to order the evolution of the states and transitions
between them. This benefits the reduction  of qualitative ambiguity and
simulation more suitable for applications.

The main goals, in QR, have been centred on the domains of  modelli ng,
simulation and interpretation of systems behaviour using symbolic representation
of variables. Pure qualitative approaches have two basic problems to be used
directly in a model-based architecture for fault detection. First, ambiguity in the
description of magnitudes and second the lag of temporal information. This
causes, that mixed simulations (using numerical and qualitative methods) offer
better results. Fuzzy approaches are also taken into account to smooth sudden
transitions in the management of imprecision.

Despite of these drawbacks the idea of qualitative modelli ng can be used to
establish a simpler relationship, not complete models, between qualitative
representation of numerical process variables. The idea is to use this relationship
on line with process as a qualitative observer, where a numerical relationship can
not be applied.
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Since its beginning, AI has been present in control and process engineering. At
that time AI was focused on learning architectures using connective systems
called artificial neural networks. Some structures such as, Perceptron, by
Rosenblatt in 1962, and ADALINE, by Widrow in 1962, are two representative
examples of these epoch. From then until now, several approaches have
succeeded in the AI domain to improve control systems according to two
perspectives ; on one hand the techniques that try to mimic the expertise of
humans  and on the other hand the techniques based on machine learning [ & rzen,
1995b]. In spite of the fact that this thesis is centred on the first approach (using
expert knowledge to improve control actions and supervise process behaviour), a
brief description of these approaches is given :

• Learning control, refers to control systems that are able to estimate
unknown information during their operation and determine an optimal
action from the estimated information. It is conceptually similar to
classical adaptive control. Some learning algorithms are based on
pattern classification, Bayesian estimation and stochastic
approximation.
• Neural Control. This terminology refers to the use of artificial neural
networks for learning process behaviours by training them. It  has had
an increasing popularity since the eighties. Various learning strategies
have been developed for learning input/output relationship (supervised
learning) or only sets of input (unsupervised learning) or delayed
output (reinforcement learning) data. Multiple strategies can be found
in the literature.
• Fuzzy control. This is the use of fuzzy logic for implementing direct
control strategies. The idea is to describe control actions by means of
simple rules applied to the input variables to decide about control
action. It involves three steps : fuzzyfication, and defuzzyfication.
Fuzzy logic is maybe the most extended technology, from the AI
domain, in the industry. Nowadays, fuzzy logic is used in control
systems where classical PID does not offer satisfactory solution (for
instance, in non-linear or time dependent systems) as industrial
controller or fuzzy logic unit into programmable logic computer (PLC).
• Expert control.  The notion of expert control was originally
introduced in [ & str ' m, Anton and ( rzén, 1986]. The aim is to use AI-
base systems to supervise numeric control algorithms. These are
systems designed to deal with both signal and symbols. The idea is to
separate signal processing algorithms and logic. The implementation of
logic is typically by means of rule-based ES. Some applications in this
domain are auto-tuning controllers or fault diagnosis systems and
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therefore, fall within the scope of this thesis. Example of an expert
control architecture is depicted in Fig.  3.5.
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All of these AI technologies have been tested and applied with success in
direct control applications. The difference between applying such technologies in
a control strategy or in a supervision structure, is basically the kind of data to be
used. Control is performed close to process and, therefore, input and output of
controllers are numerical sampled data coming from, usually, one source. Simple
numerical features (derivatives, filtering) are obtained from these signals before
being processed by the controller. In supervisory systems more significant
information must be obtained to be useful for automatic use by AI tools, because
they try to identify those signals with structural changes, faults or localised
missfunctions. Moreover, qualitative representations of these signals must be
managed together with numerical values.

Expert systems were originally developed to solve static problems (situations
where the premises do not change with time). Consequently , the introduction of
ES in the control domain had some diff iculties because of the importance of
temporal dependencies of dynamic systems where control strategies are applied.
Then, normally they are used in a higher level where time dependency is less than
in direct control. Expert control falls within this direction and represents an
example of how ES can be used for supervision.
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Artificial Intelli gence is introduced in process supervision because of its
capabilities in dealing with different kinds of information [Gentil, 1996]:

• Heterogeneous kind of data (numeric, binary, qualitative, fuzzy).
Significant information associated to process variables can be added.
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• Imprecision and uncertainty.
• Incomplete sets of process data.
• Heuristics and relationship from human knowledge and experience.

The techniques used in this domain are extensive. Some of them have been
tested in control application with successful results and they have been
introduced in the supervision domain because of their capabiliti es in knowledge
representation. In fact, the most used AI technologies in the domain of
supervision, are real time ES. They have an extended use in fault detection and
diagnosis. Others are only indirectly used. For example :

• Fuzzy logic is present in fault diagnosis in some applications for
residual evaluation or threshold adaptation in the case of uncertain
systems with changing operation conditions. Fuzzy logic is also used in
the inference engine of some ES to deal with uncertainty and
imprecision in data and rules.
• Neural networks have been used in supervision for residual
generation and evaluation, in the fault diagnosis step. When models are
diff icult to be obtained, the use of neural networks can supply this
limitation by training the network in normal operating conditions and
using it as in a model-based approach. The other option is use the neural
network to match specific fault situations. In this case, the neural
network must be trained with data from previous faults. Thus, it is an
alternative to analytical models in model-based methods.
• Qualitative modelli ng is present for obtaining qualitative models for
simulation and variables estimation as a qualitative observer, see for
instance [Melendez et al. 1996a] , where analytical methods are not
available or numerical estimations are diff icult to be applied. From
previous presented simulation packages, integration problems are
present because they are conceived as simulation tools and numerical to
qualitative interfaces are not provided to be used directly connected
with real data sources.

At the same time, the use of these techniques involve knowledge
representation techniques, implicit in the application chosen for the
implementation.

3.5.1. Integration problem.

Despite the great number of tools from the AI domain that can be used to
represent expert knowledge and to make the procedure of writing rules and
describing dependencies between variables, situations and causaliti es easier,
supervisory systems design is still a research field in need of a methodology and
frameworks where the complete cycle could be developed. Nowadays, design,
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test, validation and implementation of supervisory strategies is not possible in a
simple way using only one framework with necessary tools. Some commercial
packages, such as G2, are as described before but still l ack the basic tools, such
as data abstraction tools for obtaining significant information (numeric and
qualitative) or imprecision management in the rules description. Rule bases
describing conditions related to both, numerical and qualitative description of
process variables, is a common situation. In such cases, reasoning becomes easier
if all possible information about these variables is encapsulated.

When additional capabiliti es are required, such as qualitative simulation or
estimation, other packages must be used and data must be converted to be
interpreted. The interface of simulation package and ES is not an easy task, and
of course implementation of such systems becomes impossible. Moreover,  if
only simple relationships between qualitative descriptions of variables are
needed, then the use of external complex packages is not justified and makes the
option unrealisable.

3.5.2. Imprecision in temporal references.

The advantages of AI managing imprecise data become a serious drawback
when translating this imprecision into temporal references. A message alarm
about a possible fault “ in 2 minutes” is slightly different from the message “is
coming soon” . Similar problems are derived from the use of qualitative labels for
representing process variables state during a period of time. Then, time
dependencies  are another important factor to be taken into account when dealing
with dynamic process. Its importance increases when dealing with states
transitions. A change in the behaviour from “normal” to “degraded” can not be
suddenly. This kind of transitions must be smoothed in real-time operating
conditions in order to detect these situations before they become irreparable.

3.5.3. Benefits of using OOP in supervisory tasks.

The main benefits of using OPP in the implementation of supervisory systems
are derived from their characteristics, inheritance, abstraction and encapsulation
of data and methods in the same structure. This applies in the construction of
numeric to qualitative interfaces where numeric and qualitative data can be
encapsulated together with the interface methods for an easier use. If additional
methods for data access are provided to other objects, data can be shared and
easily accessed.

Tools integration can be solved in this way if any data (numeric, qualitative,
symbolic or logic) related to a process variable is encapsulated into objects and
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all tools are provided with access methods for obtaining desired information
related to these variables. This introduces the concept of object-variables
explained in chapter five. The use of object-variables with their graphical
representation simpli fies the conceptual use of them. QR tools can be “connected
“ to them to access desired information for performing some action or operation.
Other numerical  tools connected to the same object-variable could operate with
numerical attributes.% & ' ( ) * + , - . / 0 * + / (

The complexity of designing supervisory systems comes from the necessity of
dealing with incomplete, imprecise and uncertain data and information related to
process behaviour. Expert knowledge, from operators and engineers, must be
introduced into computers, despite of the imprecision in the description of data
and rules. Knowledge representation tools (logic, production rules, graph, frames
and objects) are the interfaces used by AI tools with this purpose. Several AI
techniques can help in this task if they are available in the same framework where
numerical data is collected from process (measures, simulations or estimations)
and specialised tools are provided to interface both numerical data and qualitative
methods. The use of QR methods can assist supervisory systems design in the
tasks of qualitative estimation (qualitative observer) of variables, more than for
defining pure qualitative models for simulation or to be used in model-based
approaches.

Numerical to qualitative interfaces are subjected to some drawbacks. The
knowledge representation related to process dynamics needs the conversion of
numerical data into qualitative one. Moreover, multiple qualitative representation
can be necessary and coexist with numerical indices obtained from these signals.
In such cases, encapsulation of methods and data is needed. Such interfaces must
be very close to the process. Its inputs are numerical row data from the process
and its outputs are thought to be connected to numerical processing and
reasoning tools. OOP offers an adequate solution to this problem.
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Nowadays, many control applications take benefit of AI techniques for

improving control algorithms or for developing expert knowledge-based
controllers [ k strl m et al., 1993] [Lee et al. , 1993].

In the same line, AI techniques are often used in fault detection, diagnosis or
supervision applications combining quantitative and qualitative information.
Then, it seems to be useful to have a framework where several AI tools (for
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instance, ES and QR tools) could be used friendly together to assist design and
implementation of structures for special purposes and particularly, for assisting
supervisory systems design. Consequently, a framework is required to achieve the
kind of faciliti es needed for supervisory systems development. The aim is to have
a framework where control and supervisory systems could be developed without
the necessity of using external applications. Frameworks with these capabiliti es
have not been found in the bibliography, although there exist some applications
that link Computer Aided Control Systems Design (CACSD) environments with
external KB or ES for reasoning. [James, 1988] provides a survey of coupled
(numeric and qualitative) systems for CACSD. The idea of construction of most
of  these systems consist in linking external KB with existing packages instead of
embedding KBs in the same framework. Consequently, these frameworks present
some drawbacks:

• Engineers must learn to use more than one package to satisfy their
needs, since no uniform, integrated design framework is provided.
• Transfer of data between different, often incompatible packages, is
necessary; this slows down the operation, makes design more diff icult
and is a potential source of errors.
• The type, format and structure of data from different packages are
often incompatible, and therefore, diff icult to combine. Then, some
drawbacks appear when comparing performances of different designs.

In most of these cases, interface and data type mismatches were solved by
writing and reading files for data format conversions. A better solution would be
to avoid data conversion between tools by providing a more eff icient mechanism
for data management.� � � � � � � � � � � � � � � �

4.2.1. Steps towards a tools-based architecture.

In the late fifties and late sixties, computers used by control systems designers
were diff icult to interact. Due to their  low processing power, they were used only
to automate diff icult numerical calculations. Meanwhile, controller design was
done manually. In the late sixties, large computers allowed to perform large
calculation by means of launching batch-operations. Control designers used those
faciliti es for computing system responses in the time and frequency domains, root
locus and simulation without the possibilit y of sharing applications and data.
Those programmes, were developed to run only on a specific hardware and
software platform. With the introduction of terminal access to main frame
computers, during the mid-seventies, several numerical routines, essential in



� � � � � � � � � � � � �   � � ¡ ¢ � £ � � ¤ ¥ � ¦ � £ § ¨ © � ¢ � � � � � ª � § � � £ « © ¬ � � �  ® � � ¢ ¦� � � ¯ � � ¢ ® � ¬ � ° ± � � ¬ �  ² ± ¦ � � ¬ ¦ ² © ³ � � ª � ¦ � � �

Chapter 4: CASSD - Computer Aided Supervisory Systems Design Frameworks    - 43 -

FORTRAN, were developed for solving control problems. Thus, development of
computer-based control applications were converted to writing programmes
where these routines were called. Diff iculties occurred when experimenting with
different algorithms (from different libraries) or parameters. Frequently,  they
resulted in source code changes and recompilations.

During the mid-seventies, research efforts in CACE (Computer Aided Control
Engineering) focused on the interaction between control designer and CACE
package. The resulting software was in the form of command-driven packages.
The interaction was similar to that in interpreted languages, such as BASIC. Two
commercial programmes built under command-driven approach succeeded in this
epoch: CLADP (The Cambridge Linear Analysis and Design Programs) and a set
of packages developed at the Lund Institute of Technology for modelli ng,
analysis and design of control systems (IDPAC, MODPAC, SIMNON, SYNPAC
and POLPAC). Both CLADP and the packages developed at Lund, used complex
and arbitrary data structures which were not generally transportable. Users could
define their own macros but the facilit y was not suff icient to build toolboxes.
From the user interface point of view, maybe the main feature of the set of
packages developed at Lund was the fact that it provided an integration
mechanism (INTRAC) shared among several packages. The integration facilit y of
INTRAC was only at the user interface level. This first intent in packages
integration succeeded because all packages were developed at the same institute.
Problems become bigger when integrating external packages from different
vendors for getting a more powerful environment for assisting in all control
engineer activities (identification, modelli ng, simulation, analysis, design,
implementation, tuning, validation and documentation). Then, integration
problems appear basically in two main points :

• Incompatibilit y of the user interfaces of different applications.
Consequently, the user must know how to operate  all of them.
• Incompatibilit y at the level of operating system. Data management
and data format are not transportable.

The first solution to these problems was to provide data exchange faciliti es
based on data translators (“Fig.  4.2a)” ) but then arose the problem of an
increased number of packages to be integrate in the same environment.
Consequently, attempts on integrated environments focused on this topic and
some projects appeared, incorporating enhanced database management
functionality for supporting data relations and project design histories, while
taking maximal advantage of existing software modules.  The earliest integrated
environment of this type was the Federated Computer Aided Control Design
System described by Spang in 1984. This has been followed more recently by an
Environment for Control System Theory And SYnthesis (ECSTASY), [Munro,
1990] and the Multi -disciplinary Expert-aided Analysis and Design (MEAD)
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environment proposed, by Taylor and McKeehen in 1989 (This is clearly
described in [Taylor et al., 1990]). The basic idea of the architecture of these
systems consists in the integration of external packages as is depicted in Fig.  4.1
b). The user communicates with the packages through a command language
interpreted by a supervisor that performs translations to package commands. A
similar procedure solved the transfer  of  data from packages to a common data
base to be shared with other packages. The main disadvantage of this architecture
became obvious  when new enhanced versions of the constituent packages
appeared with better functionality and capabiliti es. The integration framework
could not  follow continuously these changes and the maintenance of such
environment was impossible.

The next step in the evolution of CACE frameworks  was firstly proposed by
Anderson in 1991 and further refined by Barker in 1992. The proposed
architecture (“Fig.  4.1c)” ) consisted in integrating not complete packages but
simple tools (Tools-based architecture). The environment provided user interface
and data storage  and management services.  A more extended description of
these proposals is included in [Jobling  et al. 1994].
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The tools-based approach has been taken as reference for posterior works

taking advantage of  object-oriented programming for designing these tools.
Thus, in an object oriented architecture tools are objects containing models as
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attributes and these objects respond to user messages sent by the user operating
the user interface. In [Barker, 1995] basic objects defined by dynamic systems
models are proposed for representing plants, actuators, controllers, sensors and
any abstraction of physical elements to be used in the design.

As control implementations grew in size and complexity, CACE tools assumed
a more important role in engineering design and implementation of computer
controlled devices [James et al., 1995]. Consequently, in the middle eighties an
increasing number of applications and environments  appeared in the
bibliography. Special interest, in the majority of these works, is centred on
assisting the design stage of control systems. These are the Computer Aided
Control Systems Design (CACSD) environments. Some of them are especially
oriented to process, for example [Ogunnaike, 1995] presents an environment
especially  conceived to improve the control of a commercial polymerisation
reactor. Meanwhile, other environments are focused on specific control
methodology, such as is the software presented in [Bohn and Atherton , 1995] to
compare PID anti-windup strategies.

In fact, topics related to CACSD and CACE environments domain are in
constant evolution to adapt contemporary software technologies and to satisfy
control engineers requirements. Object-oriented programming is one of the topics
that has hardly been introduced in new developments as integration methodology.
Authors as Jobling believe that an object-oriented view of CACSD is necessary
to reach the complete functionality of these frameworks [Jobling  et al. 1994].

4.2.2. The reference model for CACE open environments.

The foundation of all forms of CAE (computer aided engineering) is the
environment, which contains the software to support the engineering of a product
or process throughout the its whole li fe, from conception and specification,
through design and development, to implementation and operation. In the case of
control engineering, the final product is the implementation of control algorithms
designed to reach a specific goal. Thus, the basis of a way forward in CACE open
environments could be inherited from the experience in CASE (Computer Aided
Software Engineering) environments, since they are the most technically
advanced software development products and receive the greatest amount of
investment.

Nowadays, it is widely accepted that it is necessary to provide CASE
environments with a set of faciliti es, or services, (known as a Public Tool
Interface)  for assisting tools management. This is a set of services joined in a
framework that, when adding the appropriate tools, constitutes an environment.
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The European Computer Manufacturers' Association (ECMA)  adopted in 1990 a
reference model as standard Public Tool Interface for CASE environments. In
1991 the American National Institute for Standards and Technology (NIST)  also
adopted the same reference model [Barker, 1995].
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The common faciliti es proposed by this reference model were divided into five
groups of services (See “Fig.  4.2”).

1. Data repository services, which provide  storage for all data objects
in the environment.

2. Data integration services, which enhance the services of the data
repository by inserting a layer of abstraction to provide high level
semantics and operations for  handling the stored data.

3. Message services, which provide managed communication between
all the facilities in the environment.

4. Task management services, which create a task-oriented environment
by inserting a layer of abstraction between the user and the fine detail
of the facilities in the environment.

5. User-interface services, which provide a consistent graphical user
interface for the whole environment.

The open systems approach for CACE integrates those data services that are
not specifically field dependent in a field-independent group of database services.
The remaining data integration services form a field dependent group of
modelli ng services for modelli ng the physical world. The benefits of open
systems is clear since they enable any tool from any vendor to work co-
operatively with other tools by sharing common data formats, control
mechanisms and user interface (See “Fig.  4.2” ). From this point of view
ANDECS ([Grübel, 1993] and [Grübel, 1995]) could be  taken as a representative
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example of open CACE environments architecture. ANDECS provides the
following seven classes of services:

1. Database services
2. Model-definition services
3. Algorithmic services
4. Tool-control services
5. Task-control services
6. User-interaction services
7. Process-communication services.

The functionality of these services is directly deduced from the previous
description. They provide the necessary infrastructure for “bottom-up”
evolutionary software engineering for CACE applications : They support
flexible-to-use tool systems where the application functionality is embodied in
the tools. These tools are thought to  operate stand-alone or within tasks of
computation chains and loops. This is because ANDECS is actually taken as the
reference point when talking about open CACE environments.

4.2.3. CACE and CACSD packages.

In the bibliography sometimes the difference between CACE and CACSD is
not clearly specified and the two groups of systems are confused. As a
consequence,  they are used indistinctly for denoting an environment especially
conceived for assisting control engineers. But, in fact,  the strict terminology
assigns different roles to these words : while CACSD packages are used to design
collections of tools for computational execution of control and system theory,
CACE frameworks allow the integration of such CACSD tools with more general
modelli ng, simulation and optimisation tools [Grübel, 1995]. This is the way in
which CACSD and CACE have been used in this text. According to these
differences, the majority of environments presented in the bibliography for
assisting control design in a specific domain are CACSD environments, since
they are conceived as a set of callable tools (routines) that do not match the
reference model presented in the last paragraph.

From the engineers’ point of view, CACSD are expected to provide the
necessary tools for associating process elements with simple representations and
some faciliti es for building and manipulating these models. With this scope, basic
and general features for CACSD environments were defined in [Jobling  et al.
1994]:

• sophisticated graphics to ensure that the model "looks" and "feels"
right;
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• excellent data handling which serves as the necessary basis of the
instrumentation of the model;
• powerful manipulative software so that the models can be simpli fied
for analysis and design
• software support for the design process itself in order to correctly
identify versions of the models with the results  generated and design
decisions made.
• powerful modelli ng paradigms in order to ensure that physical
behaviour of the system can be correctly identified and represented.

A relevant set of CACSD systems is presented in a special issue of the Control
Systems Magazine [IEEE Control Systems, 1995]. Some of them are open
environments that offer the possibilit y of linking with other external packages,
but they are not built according to the reference model of  CACE environments
(for example, in the mechatronic domain the package CAMeL (Computer Aided
Mechatronic Laboratory) [Rutz R. and Richert, 1995] supports all the design
cycle of a mechatronic system in an open CACSD system with access to external
tools as MATLAB or MAPLE). Others are conceived as sets of routines added to
a commercial framework for assisting  special control systems design and
analysis (for example, a special ToolBox is added to MATLAB/Simulink for
analysis and comparing  PID anti-Windup strategies [Bohn and Atherton , 1995]).

4.2.4. MATLAB/Simulink as a CACSD framework.

This section is especially devoted  to discuss about one of the most popular
frameworks in the control community, MATLAB(Matrix Laboratory)/Simulink,
and its importance as a CACSD framework. In fact, a recent questionnaire of the
Working Group on Software (WGS), created by The Commission of the
European Communities to co-ordinate the development of robust numerical
software for control systems analysis and design, has noted that MATLAB is the
most extended package in the control community (See [WGS Newsletter, 1997]).
MATLAB is a command-driven open system especially conceived for matrix
manipulation and visualisation, and its extended use is due to its  characteristics
as [Jobling  et al. 1994] pointed out below:

• It supports simple and yet fast and flexible command language
interface;
• The command language is interactively extendible ; and
• the basic data structure (the complex matrix) corresponds to the
primary data structure used in modern state-space control theory.

The MATLAB syntax is a de facto standard in matrix-based linear systems and
control theory. Therefore, a CACE framework must assist the use of this syntax
[Grübel, 1995]. Thus, for dealing with linear systems and classical control theory,
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MATLAB seems to be a reference point. In fact, nowadays, it is unquestionable
that MATLAB can be defined as the state-of-the-art  in CACSD, [Jobling  et al.
1994]. The increasing number of ToolBoxes (a ToolBox is a set of routines,
directly callable from the MATLAB command line,  focused on  a special topic)
related to control domain that have appeared in the last years strengthen this
aff irmation (for example [Bohn and Atherton , 1995] and [Chipperfield and
Fleming, 1995]). From CACE point of view, MATLAB is always taken into
account as a tool to add in the framework. In fact, frameworks as ANDECS,
CAMeL and GE-MEAD offer services to link with MATLAB.

In spite of this extended use of MATLAB, certain drawbacks of the system
became obvious  when dealing with some complex systems. This is resulting
from  the poor support that MATLAB provides for data structures, such as
transfer functions, non-linear system models and signals, which can not be
manipulated as easy as matrices. MATLAB is frequently criticised for the poor
support for representing complex structured entities and type checking
[Saifuddin, 1996] needed when dealing with large control problems, where
control entities should be represented by data structures to simpli fy. This has been
partially solved within the new version of MATLAB v. 5.0 that supports more
complex data-structures (not really objects, because encapsulation of methods
and data is not supported).

From the CACSD point of view, a friendly user interface is needed. The
command-line interface provided by packages like MATLAB, is enough for
simple applications and the possibilit y of group commands in script files enlarges
the use of this framework for more complex applications. However, there is no
doubt that the interactive graphical user interface offered by Simulink (extension
of MATLAB that provides a block representation of many functions defined in
MATLAB) allows users to input block-diagram models by simply dragging the
mouse to interconnect blocks. Simulink is not the only user interface with this
capabiliti es. Other similar graphical user interfaces include SYSTEM -BUILD
(ISI 1989) for MATRIXx  and  Model-C (SCT-1987) for CTRL-C.

Despite that  MATLAB/Simulink has some diff iculties in providing clean
functions for dealing with the more complex data objects that are found in control
systems analysis [Jobling  et al. 1994], it has been chosen as a platform to
develop a Computer Aided Supervisory System Design (CASSD) framework
[Melendez et al., 1996b]. With this approach  engineers can proceed first, to
design a control system, and second, to design a straightforward supervisory
system of the control system in the same framework. Simulink, instead of
MATLAB, has been chosen for this purpose because it provides an intuitive, user
friendly graphical environment employing visual representation widely accepted
in the automatic control domain. The use of block representation helps engineers
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to order ideas (it forces to analyse before they start connecting blocks) following
a declarative methodology. Thus, if a set of tools is available as simple blocks
and its use is as simple as selecting them and interconnecting in causal order, then
design becomes easier. The next chapter explains how some tools, from the AI
domain, have been developed as Simulink blocks with the special purpose of
assisting engineers in knowledge-based designs. The previous described
disadvantages have been overcome by using the object oriented approach in the
definition of variables managed by Simulink, which is also explained in the next
chapter.

 ® ¯ ® ° ± ² ³ ´ µ ¶ ° · ° ¸ ¹ º » ¼ ½ µ ¾ ± » ¿ À ®

The majority of CACSD frameworks have been developed to assist control
systems design from the point of view of classical control theory. In these cases,
only numeric data is managed and simple data structures, such as matrices, were
suff icient to perform a flexible mechanism for data management and model
representation (mainly transfer function or state space representations are used.).
As a consequence, popularity of some frameworks, such as  MATLAB or
MATRIXx has increased and they are evolved to complete environments with
modelli ng and simulation tools and advanced mathematical analysis and
visualising tools supported by a block based graphical interface. The main
shortcoming of these frameworks consists in poor support for use of  advanced
contemporary control techniques. This applies especially to the tools inherited
from the AI domain. The reason of this lack is basically the heterogeneous types
of tools and, consequently, the different types of data used by these tools. In fact,
the only modern techniques that have been introduced in these frameworks are
those that support a matrix representation as neural networks or fuzzy logic.
Consequently, problems that have not a description by means of  classical
formalism cannot be solved in these frameworks. Hence, it is clear that the
benefits of adding new approaches to these frameworks may be significant; the
new, extended systems would allow for combining symbolic methods from AI
research with more traditional numeric methods obtained from numerical
analysis, operation research and simulation. The result appears to constitute  a
more powerful and more useful problem solving the environment [Jacobstein and
Kitzmiller, 1988].

Historically, two reasons have been pointed to merge symbolic and numerical
approaches : the first, when domain-specific knowledge is needed and the
second, to guide non-expert users in problem-solving steps to fit the best solution.
Complete environments have been developed to solve specific problems,
coupling ES and numerical algorithms. Other attempts in coupling numerical and
symbolic information have been done linking independent packages. A survey of
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coupled  systems for CACSD is provided in [James, 1988][James et al., 1995]. In
all the proposals studied in that paper, a knowledge-based system is added to aid
engineers in the design of control systems. The majority of those systems have
implemented or intended to implement some method of integrating the symbolic
processing of expert system shells with numerical processing of conventional
control design software. Table  4-1 summarises  the projects overviewed in that
paper.
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Knowledge representation methods used in those projects include rules,
frames, and/or trees, predicate logic, scripts and objects. While the majority of
available shells offer a single knowledge representation scheme, some attempts
have been made to offer a combination of knowledge representation methods.
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The basic advantage offered by these schemes is that they allow the programmer
to use the method which best fits the problem at hand. On the other hand, the
majority of these projects have been developed using existing numerical
calculation packages that were conceived to be used as a single application.  In
consequence, coupling different methods obstruct the use of the whole system
since at the same time  several packages must be learned by the users.

James pointed one reason more for  applying the knowledge-based approach to
CACSD programming [James, 1988]: The abilit y of knowledge-based systems to
deal with complexity. The AI techniques offer the considerable advantage of
being easier to use in complex applications. Thus, it seems correct to suppose that
in developing supervisory systems, the availabilit y of a specific environment to
assist those tasks would be extremely advantageous. Moreover, it would be
desirable that this framework would be provided with  a graphical user interface
and all faciliti es embedded in the same framework to facilit ate its learning and
use.

4.3.1. Knowledge-based systems and MATLAB/Simulink.

If MATLAB is taken as the state-of-the art in CACSD, as is described in
paragraph 4.2.4, then it seems logical that some intents of adding AI features to
this framework would improve performance when working with complex
systems. In fact, some examples of linking MATLAB or Simulink with an
external KB can be found in the bibliography. For instance, in 1987,  Butz at
Temple University in Philadelphia, linked the OPS-5 expert system shell , under
VMS, with MATLAB and Ctrl-C to design a phase-lag compensator. MATLAB
was used as a numerical analysis package and the ES took care of symbolic
management of information. Both packages were interfaced by means of a file
transfer system. Another system used MATLAB as part of an ES for designing
lead-lag compensators based on given specifications. This is called CDES
(Controller Design Expert System) and is described in [Ong, 1992]. In this case,
the knowledge base is an external module and MATLAB  is used only for
numerical calculation of performance and representation. Subsequently,
MATLAB/Simulink and the shell G2 were linked by means of a synchronous
communication for developing a fault diagnosis system [Melendez  et al. 1995].
Later, the same application was  developed using the shell CEES (C++
Embedded ES, [De la Rosa J.Ll, 1994]) in the same group at the University of
Girona . In this case Simulink was used as simulator. Abstraction tools were
developed under Simulink to obtain significant qualitative information from
signals. This information was directly supplied to the ES during the simulation.

The described examples always focused on  linking MATLAB or Simulink
with external shells. MATLAB/Simulink was only used for numerical analysis. In
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consequence, work with these environments requires always to know two or more
different packages, and sometimes interface mechanisms are not transparent to
the user. Nowadays, most of commercial shells are provided with  mechanisms
for exchanging data which reduces the interface problem to simple programmes
for  data conversion and client/server communication. But, the problem of using
more than one packages still exists. Then, the proposal made in this thesis of
embedding the ES into a CACSD framework (for extending the use of this
CACSD to expert supervisory design) with graphical user interface, seems to
benefit the users because it is still  easier to use. For details about this topics see
section 5.5. The selection of Simulink to test this idea is reasonable since  it
offers this graphical user interface and it is presented as an open system from the
point of view of adding new functionality by means of using standard languages
as FORTRAN, C or C++.

4.3.2. Characteristics of Expert Systems for CACSD.

Regardless of the attitude towards the role of  knowledge-based system as
design assistant, as an intelli gent interface, as an autonomous or semi-
autonomous adaptive controller or as a tutor, the expert system shell should
provide  the following general features ([James, 1988]):

• Since the design process is an iterative one, the shell should provide
for the revision of previously believed facts (e.g. changes to
specifications or changes to parameters values) as the design process
proceeds.
• Since the design knowledge contained in an expert system can
become very large, some method should be available to support the
decomposition of the knowledge into manageable pieces.
• Given that many intermediate designs may be generated, the data
structures of the expert system should support the comparison required
for trade-offs.
• The explanation facilit y of the expert system should support a
hierarchy of levels of explanations which corresponds to a hierarchy of
progressively more fundamental justifications for steps in the design
process.
• The expert system shell should be open in the sense that the user has
the option of customising the shell to his own application.

These points must be taken in account, not only for selecting an ES shell , but
to focus on the development of the whole knowledge-based CACSD. In fact, they
are not restricted to control systems, design but in any application where an
interactive procedure is performed before  reaching the final design. Sometimes
the use of external shells linked with a CACSD framework obstructs the
conservation of these points for the whole environment, because of dealing with
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several  independent applications. Then, the best solution of merging knowledge-
based capabiliti es with CACSD frameworks is to embed rather than to link  the
ES into  the CACSD framework. Especially if  ES capabiliti es are not essential
for the design but are necessary as a tool to be incorporated in the design. Then
ES must be embedded as another tool in the framework. Thus, the addition of ES
in a CACSD with a graphical user interface must be performed preserving the
same interface as much as possible. This is the solution adopted in this work. It
was previously introduced in [Melendez et al., 1996b] and presented in the
complete framework in [Melendez et al., 1997a]. The inference engine of the
shell CEES has been embedded in Simulink as a new block because this offers an
easy-to-use user interface and multiple block-based tools. Additional features and
configuration options that do not have a block interpretation have been added
using the menu bar. The advantage of using block representation is clear from the
user point of view. Additional advantage of this representation dealing with ES is
that large knowledge bases could be structured as the simplest ones. Fig.  4.3
represents this characteristic with an ES reasoning about block input facts to
deduce output facts.
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The fact of using Simulink as support framework makes it easier to accomplish
the previously pointed features, because some of them are already available. For
example, the comparison between different solutions is performed simply by
adding both designs into the same window and taking benefit of the
representation capabilities of this framework.
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Previous sections have shown the benefits of using specialised frameworks for
solving engineering problems. In control domain the number of this kind of
frameworks have  increased in last years. They are especially centred on classical
control theory. Although some attempts  of adding AI capabiliti es have been done
with different goals in the control field, there is not any specialised framework
for assisting expert supervisory systems design. Two main reasons can be
pointed :

1. The heterogeneous nature of the data involved in these designs.
According to  the kind of application to be developed it is necessary
to start defining the kind of data to be used, declaring data types and
assigning labels to symbolic variables for representing qualitative
trends.

2. The majority of environments presented before are formed by linking
external applications, which results in a interfacing problem that, at
the end, must be solved for any new design.

Then, the proposal presented in this work tries to solve these two problems. At
the same time, the experience accumulated in CACSD frameworks development
is taken in account in this work.

4.4.1. Requirements for a CASSD framework.

Since expert supervisory design could be viewed as a way to improve control
systems by means of AI capabiliti es, it seems to be succeeded in expanding
CACSD frameworks by adding AI tools. Limitations in actual CACSD
frameworks appear with the necessity of incorporating reasoning tools and
knowledge representation. Consequently, basic faciliti es described in [Jobling  et
al. 1994] for CACSD environments are kept for CASSD environments and new
requirements are added. The basic faciliti es inherited from CACSD frameworks
are :

• sophisticated graphics to ensure that the model "looks" and "feels"
right;
• excellent data handling which serves as the necessary basis of the
instrumentation of the model;
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• powerful manipulative software so that the models can be simpli fied
for analysis and design
• software support for the design process itself in order to correctly
identify versions of the models with the results  generated and design
decisions made.
• powerful modelli ng paradigms in order to ensure that physical
behaviour of the system can be correctly identified and represented;

It is expected that a CASSD framework becomes an extension of CACSD with
additional specific features for assisting supervisory structure design at any step.
Capabiliti es for managing (modelli ng and simulation), processing (analysis,
estimation, calculate, etc.) and representing (graphical visualisation tools)
numerical data (present in the actual CACSD frameworks) are needed to
implement classical analytical approaches, such as model or signal based fault
detection. Despite analytical based fault detection theory has been widely
developed, it can not be applied in the majority of cases, neither in fault detection
nor in more complex supervisory structures. Diff iculties of obtaining an
acceptable model do not allow to use such techniques.

Therefore, AI tools must be added to this framework for dealing with
knowledge representation and processing. Since CASSD is required for
representing knowledge about process behaviour, these mechanisms must be
focused on both, process variables and human knowledge. Process variables are
supplied as numerical data while human descriptions are normally given as rules.
Another important aspect to be taken in account is the difference between the
developing and execution time of knowledge-based systems. Despite any
knowledge representation can be used for structuring knowledge, actual AI
techniques lead to ES based applications because of its knowledge processing
capabilities.

Expert knowledge from the engineers is not always given as quantifiable
magnitudes, but as case descriptions or representative activities. For assisting this
knowledge representation, the CASSD framework must be provided with some
mechanisms to force engineers to structure their knowledge in the design time.
Formal knowledge representation methods (logical formalisms, production rules,
semantic networks, frames or combinations of them) must be implemented in an
easy-to-use form transparently to the user. On the other hand, information about
process behaviour is extracted basically from process variables (measures,
simulations or predictions). This is numerical information that must be interfaced
with expert knowledge. In the execution time, this data will be processed to
obtain significant information according to expert knowledge. The CASSD
framework must provide these mechanisms to abstract information from row data
(abstractors or abstraction tools) needed as interface between numerical process
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variables and qualitative interpretation of process behaviour done by process
engineers.

Because not all the expert knowledge related to process variables is accessible,
a CASSD framework must be provided with some mechanism to deduce not
accessible dynamics. Numerical simulation or prediction could be useful when a
model is available. In other situations, some qualitative reasoning mechanism,
qualitative modelli ng or qualitative observers, should be available for roughly
deducing qualitative evolution of process variables (qualitative magnitudes or
trends). In many supervisory applications, this rough information is enough to
deduce a malfunction or to generate an alarm.

According to the described problems when dealing with this heterogeneous
sources of information, many different tools are needed to be integrated in the
same framework to facilitate:

• Numeric/Qualitative interfaces. Process variables are the main link
between process and supervisory system. Then knowledge processing
tools must be provided with qualitative representations of process
variables. These interfaces must be designed to provide multiple
representations and feature extraction from numerical variables. Not
only qualitative representation is needed, but also numerical features as
mean values, statistics, trends, regressions and so on. They can be
instantaneous features, parameters related to history of signals or
predictions and estimations of trends and numerical values.
• Knowledge representation. Several tools can be used to deal with
expert knowledge at several abstraction degrees. Knowledge of process
can be about process variables, the relationship between them,
description of situations (faults) related to physical elements,
functionality, behaviour and so on. All of these possibiliti es require
some specific tool with different representation capabiliti es to describe
trends of variables, relations between them or process states related to a
set of process variables.
• Knowledge processing. Usefulness of knowledge-based systems
resides in the capabilit y of deduction using knowledge representation.
Then,  those inference engines must also be present in the framework to
deal with qualitative relationship (qualitative reasoning), rules (ES),
logic, and other possible knowledge representations.
• Uncertainty and imprecision management, is necessary in this
framework because these are inherent to qualitative information. Then,
knowledge representation and processing tools integrated in the CASSD
framework must be provided with mechanisms to process this
imprecision.
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Some tools are selected and presented in chapter  five to assist in the design of
supervisory systems. The goal is to take advantage of the existent representation
and analysis tools used in control systems design, extending its capabiliti es with
knowledge-based techniques to assist engineers in such designs avoiding the
always diff icult problem of interfacing separated tools reasoning on dynamic
systems. A possible framework, based on MATLAB/Simulink, with these
capabiliti es has been presented in [Melendez et al., 1997a]. The main work has
been centred on solving the principle drawbacks in knowledge representation and
processing, and the integration of these into a numerical framework.

4.4.2. Selection of a platform.

For developing the previously presented idea of CASSD platform, two
solutions are possible. One of them is to develop a completely new framework to
assist expert supervisory systems design. The second possibilit y is to take
advantage of an existing CACSD framework and try to implement the required
faciliti es within it. The first solution can lead to implement a commercial
package, but in this the work second option has been selected in order to achieve
an open complement of the widespread use of MATLAB/Simulink environment
in process control design. Moreover, the goal of this thesis is to present some
ideas for integrating useful tools for supervisory systems design. Therefore
MATLAB offers the possibilit y of adding and combining new approaches to
improve the framework.

According to the features proposed in the previous paragraph for CASSD
frameworks, basic faciliti es are inherited from CACSD packages. Therefore, a
commercial CACSD package, MATLAB/Simulink, has been used as CACSD
framework and knowledge representation capabiliti es and qualitative reasoning
tools have been integrated by means of an object oriented approach [Melendez et
al., 1996b] to solve integration problems. MATLAB has been chosen because of
its openness, and faciliti es and because it is representative as a CACSD package,
as described in section 4.2.4.

4.4.3. Other frameworks with similar capabilities.

Other packages that could be used as support in this thesis such as G2, from
Gensym, or  MATRIXx, are not so extended in the control community. In fact,
Gensym offers an extension of G2, called GDA (G2 assistant for diagnosis), that
improved G2 features with a graphical block representation and some advanced
features that include fuzzy logic, neural network and temporal logic. With this
toolbox, G2 offers a complete environment to build applications for smart
alarming (filter events and alarms) and advanced control (statistical, neural, fuzzy
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control). This is thought to be a shell for intelli gent monitoring developments. It
is especially conceived for dealing with numerical data,  for sensors validating,
trends management and event discrimination,  and managing information flow to
operators.

Limitations of this package with respect to the proposed approach are centred
on the dealing with qualitative information. Without qualitative reasoning
capabiliti es, the qualitative representation of information is restricted to text
labels description. Although GDA incorporates fuzzy logic to deal with
imprecision in numerical data, the inference engine does not incorporate this
capabilit y to deal with certainty in the rules description and data management.
Despite of these drawbacks, G2 could be used as starting point but was in the first
place excluded because of its poor faciliti es for representing, analysing and
processing numerical data. An additional reason to discard this framework as
platform to implement the ideas developed in this thesis, was because it is more
process-oriented tool than to control,  and the original ideas of this work were
developed to deal with expert supervision of controllers.

Another package to be used in this purpose is MATRIXx. It is an open system
with similar capabiliti es to MATLAB/Simulink and more control oriented than
G2. The main drawback resides in that it is less extended in the control
community and maybe it is more a device oriented package.

ì í î ï ð ñ ò ó ô õ ö ÷ ñ ò ö ø

The necessity of a framework for dealing with expert knowledge when
designing expert supervisory systems has been introduced in this chapter.  This
necessity is clearly derived from diff iculties in knowledge representation and
interfacing. The development of expert systems and knowledge-based application
for reasoning about dynamic systems do always requires numerical to qualitative
interfaces.

From  a historical point of view, computer aided design has been introduced in
all specific domains where the use of adequate tools can help in the configuration
and building of specific applications. This is the case of control systems design
(CACSD) and other disciplines where engineers are involved.

Basic CASSD requirements for dealing with expert knowledge in control
systems have been inherited from previous CACSD experiences, adding AI
features for knowledge representation and reasoning and to facilit ate tools
integration avoiding data conversions. Graphical capabiliti es are expected to be
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present in the management of such tools with the aim to facilit ate engineers in
structuring and representing acquired knowledge. Modularity is also thought to
be present for better knowledge representation and partial validation.
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A set of tools from the AI domain has been integrated to sustain supervisory

systems design. Both numerical and knowledge-based tools are thought to be
useful for this purpose. Therefore, a qualitative representation language, called
ALCMEN, and a shell for developing ES have been added to an existent CACSD
framework. The goal is to take advantage of graphical representation mechanisms
and numerical methods used in the design, analysis, test and validation of control
systems. The use of MATLAB/Simulink with this purpose offers the possibilit y
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of a block based graphical user interface. Some interfacing problems appear due
to different capabiliti es in data management, and representation, of numerical and
knowledge-based tools. Diff iculties in data integration have been the main reason
why CAD has not been extended to supervisory systems domain. With the aim of
offering a simple approach to solve this question, object-variables have been
proposed in this work, and presented in this chapter, as objects encapsulating
multiple representations of process variables. Different representations are
possible using adequate algorithms for isolating desired features of signals. These
algorithms are called abstraction tools and in this chapter are proposed also as
numeric to qualitative interfaces.e f g h i j k l m n o p n q r l s k t m r n u v t w v v n t r r x y z { | } ~ � � � � � � � � | � ~ � �

Data encapsulation is one of the basic features of OOP. That is why the
classical approach of OOP in large applications ensures better structuring and
organisation. In this work, encapsulation is used to offer a multiple representation
of data for avoiding data type conversion and additional processing using object
structures in the definition of process variables. With this goal the concept of
object-variables is introduced.  The aim of object-variables is to provide the
adequate representation of process variables for any tool that require information
related to them. An additional contribution of this work has been done in
demonstrating the viabilit y of using these object-variables in a commercial
package, MATLAB/Simulink working  together with numerical and knowledge-
based tools under a graphical block representation.

5.2.1. Using process variables for reasoning.

Expert reasoning about process behaviour is usually not only associated to
selected, isolated values of process variables at a certain instant of time, but also
takes into account the whole process dynamics, including their history, trends,
numerical and qualitative characteristics, limitations, etc., together with their
influence on the behaviour of other individual  process variables. Such inference,
therefore, becomes easier if all i nformation from the process is clearly
encapsulated and located [Lynch and De Paso, 1992] [Jobling  et al. 1994].
Organisation of process related information must be done according to multiple
sources of information (sensors, analytical models, human experiences, etc.), then
different units for encapsulation of information can be defined. Taking this into
account, it seems reasonably that all i nformation concerning process variables
should be encapsulated in template structure. Thus, any information related to
this process variable would be accessible. This means that the values of  process
variables supplied by sensors or simulation tools should be encapsulated with all
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information related to them. Parameters, units, landmarks, qualitative
characteristics and additional knowledge supplied with the variables can facilit ate
the interpretation of process behaviour  providing all the auxili ary information
concerning the analysed signal grouped together. Further,  when designing
architecture for supervision and control, sometimes different tools can use the
same variable values, but simultaneously the variables are analysed at different
level of abstraction  (depending on current needs, numeric values, tendencies,
deviations, qualitative values, event generation, alarms, etc.  can be considered.).
See Fig.  5.1.  Unfortunately,  those different tools are not provided with methods
to obtain this information from purely numerical values given by sensors. This
auxili ary  calculation must be performed outside of those reasoning tools what
further causes an interfacing problem to occur.
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To summarise, the problem consists in the necessity of multi -aspect

representation of knowledge about  process variables. The main issues include
the following:

• Encapsulation of knowledge :  all knowledge referring to a specific
variable should be contained and accessible from/through the access to
this variable only, so that the search of many related sources is
eliminated. For example, the threshold used in alarm generation in Fig.
5.1.
• Multi -level knowledge representation :  knowledge about process
variables should be represented at several levels of abstraction, so as to
enable numerical, qualitative and symbolic information processing
when necessary, without drastic changes in knowledge sources and
knowledge representation mechanisms in use (Evolution of signal in
Fig.  5.1 has a smoothed and a qualitative representation associated to
the numerical acquired signal)
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• Multi -aspect knowledge representation : all necessary aspects of
knowledge representation should be covered, so that variables can be
analysed, taking into account the specific perspective and requirements
of different tools applied for knowledge processing. For example,
associated alarms and events related to process and acquired and
smoothed signal in Fig.  5.1.

The object oriented approach seems to offer the solution thanks to its
capabilit y of encapsulating structured data and methods in the same structure.
Using this approach in  the definition of template structure for process variables,
basic necessities, as mentioned above, can be covered.

5.2.2. Process variables at different levels of abstraction :
Object-variables.

The proposed solution for solving the necessity of this multi -aspect
representation of process variables presented in this thesis consists in embedding
not only numerical values of variables (measures, estimations, history, indices
and so on) and parameters (thresholds, landmarks, ranges, etc.), but also methods
for  obtaining the adequate description of signals behaviour for each tool (signal
processing and reasoning algorithms, abstraction tools), and methods for
manipulating and accessing this information.

Hence, variable values, parameters and methods will be encapsulated in the
same object structure, to be called an object-variable [Melendez et al., 1996b].
See “Fig.  5.1 and Fig.  5.2” . Thus, the same variable is shared by various tools
providing the adequate information (representation) for each of them. The
Object-oriented approach gives the possibilit y of representing one variable as a
single entity with its multiple representation and related information, such as
methods and parameters,  in a very flexible and powerful way.

[ â rzen, 1995] uses a similar proposal for representing process components that
can be used in a different context and that can only be represented once in a
knowledge base (they are called multi -view objects). Object-variables are used
with a similar goal to encapsulate in one object information and representation of
the same variable at different levels of abstraction. Whereas multi -view objects
are focused on the description of the plant and the user must insert this
description for further use, object-variables are used to automatically abstract and
store information from process variables. They are dynamically actualised.

Since the embedded information in an object-variable is obtained directly from
the numerical signals after performing certain simple operations (with use of
abstraction tools), sometimes external parameters are necessary. These
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parameters must be supplied to each object-variable in order to provide the
process knowledge concerning this variable. This kind of knowledge is necessary
to distinguish certain variables of processes. For instance, a control variable of a
level regulation process is qualitatively different from a DC motor speed control
variable, but both could be acquired as a voltage in the range of 0 to 10 volts.

Histograms
Qualitative

Representation

trendsFiltering
SUPERVISOR

Reasoning Tool

ALARM
GENERATION

peak
detectionFiltering

From
Plant

process
variables_

trends Qualitative
Representation

From
Plant

process
variables_

SUPERVISOR

Reasoning Tool

ALARM
GENERATION

N->O

 N->O Object-variables

Object-variable
builder

� � � � � � � � � 	 
 � � � 	 � �  � �
� � � � � � � � � � � �

� � � � � � � � � � � �  � � �
! " # $ % & ' # & ( " ' ( ) % * +

, - . / 0 1 2 3 4 5 6 4 - 7 / 8

9 : ; < = < > ? @ A B C D : E @ F @ G H D C I : H : @ F C J
: A B J K A K F H C H : @ F @ G C E L B K D M : E @ D N C D O P : H K O H L D K C F I

: A B J K A K F H C H : @ F L E : F ; Q R S T U V W X Y Z [ Y R \ T ] <

Implementation of object-variables in Simulink has been carried out within the
framework of S-function blocks. Simulink blocks have been used to graphically
represent the conversion of simple variables into objects (object-variables).
Optional parameters can be supplied externally, using dialogue windows
associated to each object-variable, as shown in “Fig.  5.3”.

The blocks, labelled as "N->O" in the figure, perform this conversion. Objects
are built from numerical variable values according to the object-variable
definition and supplied parameters. Therefore, the output of these blocks is not
numerical data but it constitutes object-variables, and all i nformation embedded
in them is accessible for the connected blocks. The figure, represents how two
object-variables are supplied to a diagnostic block.
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Object-Variable level_ 1{
Value= 12.3;
Derivative= 0.3;
History={ 12.3, 12.1, 12.0, 11.8} ;
Range={ 15, 13,8 ,7, 2, 0 } ;
Q-Value=”High” ;
trends= “Increrasing” ;
SampleTime = 1 ;
SlidingTime=10 ;
NumPoints=5 ;
method_A( );
method_C( ); }
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The same encapsulation can be applied not only to process variables, but also
to indices obtained from them or the combination of several variables. The aim is
to supply a multiple representation of the same variable (process variable, index,
ratio, and so on) with an easy access to facilitate

5.2.3. About objects in MATLAB-Simulink. Containers.

The idea of using objects in MATLAB was firstly put forward in
[Maciejowski and Szymkat, 1994] introducing the use of ‘containers’ . This work
presents ‘containers’ , which have some of the commonly accepted properties (but
not all ) of the ‘objects’ , to represent object-oriented models. Those ‘containers’
are used  to solve data management problems in a programming environment for
control systems analysis and design, selecting MATLAB as a test-bed. The
benefits of using ‘containers’ in CACE frameworks are also discussed in
[Saifuddin, 1996].
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The features of ‘containers’ common to objects are :

• Classes of containers can be defined,
• Properties of containers can be updated and queried,
• Containers can be interrogated about themselves,
• Data can be associated with methods .

After the work [Maciejowski and Szymkat, 1994], the evolution of MATLAB
has always pointed to the idea of incorporating object structures. In fact, the new
version (MATLAB 5.0) is supplied with five different classes of data and offers
the possibilit y of creating new classes defining a MATLAB structure that
provides data storage for the object [Matlab 1996]. These objects have some of
the basic properties assumed for objects such as inheritance and overloading of
the operators.

Another important characteristic of objects, is the encapsulation of methods
and data in the same structure (maybe the most important feature of objects). The
benefits of this property in a CACE framework are also discussed in [Saifuddin,
1996]. Despite of the importance of this feature, objects incorporated in
MATLAB 5.0 do not provide this possibilit y. In fact, methods to deal with the
desired objects must be defined apart form MATLAB objects, in separated files
(*.M, MATLAB files) and stored in a specific directory. Due to this drawback
Simulink 2.0 [Simulink 1996] deals only with numerical data at its input and
output, reducing the applicabilit y of this framework to numerical simulation and
analysis. In case of applications to complex information processing, including
elements of symbolic reasoning, the approach provided in the recent version of
MATLAB is still far from satisfactory. Despite of improved graphical capabiliti es
and the possibilit y of inheritance in some parameters (sample time, number of
input and output), the use of Simulink as an Object oriented Computer aided
control system design framework (OOCACSD) is still far, because of its poor
capability of managing objects as variables.

The idea presented in this work is slightly different from the one of ‘container’
since real ‘objects’ are defined, using an external language, in
MATLAB/Simulink. These objects are applied mostly to the description of
variables supported by a Simulink block representation (graphical
representation). The solution presented in this work is necessary for several tasks,
such as supervision or diagnostic applications where tools need to operate on
different kinds of data (qualitative, symbolic, numerical, logical, textual),
representing the same process variable.
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5.2.4. Classes of  object-variables.

The use of object-variables is defined to encapsulate information (data and
methods) into a data structure to be shared among different tools. It is assumed
that  an open architecture is used and new tools can be added into the framework.
Then, new features may be required to describe system variables and object-
variables must be endowed with new methods to supply them.  Taking this into
account, two possible solutions to modify the structure of object-variables are
proposed below.

The first solution is a straightforward one. It consists in  adding new features
to the original object-variable, in order to obtain the capabiliti es required  for any
newly added  tool. In this case, the data structure grows in size and some memory
is likely to be wasted, even though not all features will be used but only some of
them. This solution, although applicable directly, is not recommended in case of
complex systems because of the great number of variables involved.

The second possibilit y is to define several object-variables with a simple
common structure and particular methods to serve sets of tools with some
similarities. This option allows to define more accurate object-variables, fitting
the tool requirements in a more exact way; unfortunately in some cases a certain
degree of incompatibilit y with certain tools may occur and more than one object-
variable could be necessary to be used for representing several features of a
process variable. Both possibilities are represented “Fig.  5.4”.
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The necessity of having several classes of object-variables is basically due to
the necessity of integrating several tools for supporting the design of  supervisory
structures. The classes of the variables will be defined according to the specific
requirements of the applied tools. “Table  5-1” shows the relationship among the
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tools to be used to deal with abstracted information at several levels of
abstraction  and the kind of methods and data to be stored into the object-
variables.
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Several kinds of object-variables can be defined for working at multiples
abstraction degrees. The proposal consists in declaring a hierarchy of classes
capable of supplying adequate information to any tool. At this moment only two
levels have been defined (See Fig.  5.5 ). The first is assigned to object-variables
and to interface numerical process variables with qualitative reasoning tools. For
this purpose several methods can be used (abstraction tools, presented in the next
subsection). Object-variables can also be used as only qualitative variables
without numerical attributes. The second level consist in a higher level structure,
grouping object-variables and additional parameters and methods, called facts.
These are used to interface a rule-based system avoiding different kinds of data as
input. See subsection 5.5. Facts can be build directly without containing a
complete object-variable inside. This means that they can be used as user input at
run time to supply data to an ES.
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The internal structure of these classes is defined according to OOP because of
the possibilit y of embedding data and methods in the same structure, as is
exemplified in Fig.  5.3.

5.2.5. Embedding objects into MATLAB/Simulink. Technical
viability.

Due to the relevance of embedding objects into Simulink in respect to this
work a brief explanation is added as technical note. Through the mechanism of S-
functions defined in Matlab/Simulink, the user can add new general purpose
blocks or incorporate an existing 'C' or 'FORTRAN' code into the simulation. The
only constraint which  must be taken into account is that the new code must be
written with respect to the predefined structures or routines.  These routines will
be called by Simulink at each simulation step.

'SimStruct' [Simulink 1993][Simulink 1994] is the data structure used  by
Simulink designers to encapsulate the block’s information. Each block in a
Simulink representation has an associated ‘SimStruct’ , accessed by Simulink to
perform simulations correctly. Then, the information embedded in this data
structure allows Simulink to know the parameters associated to this S-Function,
as well as to access user defined routines.

SimStruct
Version
ModelName
Parent
Root
Sizes
Inputs.(NumArgs,Args)
Vectors.(RWork,IWork,PWork,BlockIO, BlockParam, DefaultParam)
T
TFinal
TCount
StepSize
MinorTimeStepSize
Events.(SampleTimes, OffsetTimes, NextTimes, PresentTimes,

SampleHits, Counters, SampleCount, OffsetCount,
SampleTimeTskIDs, PerTaskSampleHits)

ModelMethods.(mdlInitializeSizes, mdlInitializeSampleTimes,
mdlInitializeConditions, mdlOutputs, mdlUpdate,
mdlDerivatices, mdlterminate, mdlBlockInfo, mdlScopeInfo)

States.(U,Y,X,dX, Scopes)
Utili ty.(TempStore0, TempStore1, TempStore2, TempStore3,

TempStore4, TempStore5, TempStore6, TempY, UserData)
SFunctions

VAR_ OBJ  ProcessVar
 {
 public:
   // Signal;
    double Signal;
    double Der_Signal;
    int Q_Signal;
   WindowWSignal[MAX];
    ...  / ...
    //Methods:
    VAR_OBJ( );
    actualitzaST( );
    actualitzaWSignal( );
   ...  / ...
   };
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There are three fields where the user can save restricted information in the
'SimStruct' structure, only available for the object owner.  These three fields are
associated with work vectors that correspond to pointers to integers (int * ), to
doubles (double * ), and pointers to void pointers (void ** ).  In the 'SimStruct',
see ”Fig.  5.6” , these fields are labelled  as 'vectors.RWork', 'vectors.IWork' and
'vectors.PWork'. Therefore, the only method to embed external information into
Simulink 'SimStruct' consists in using these working vectors.

By taking advantage of this capabilit y, it is possible to associate an object to
Simulink blocks by saving a pointer (to this object) in the 'vector.Pwork' field in
its 'SimStruct'.  Moreover, to each Simulink block there can be  an object
associated [Melendez et al., 1996c][Melendez et al., 1996b].

In order to assure correct work of the components together, some further
constraints must be taken into account. The source file for getting a .MEX file (as
a result of a compilation of an S-function), is structured according to a template
structure defined by Simulink developers. This structure is composed of routines
where the user can insert his own code. In these routines of the  .MEX file under
design the following advice must be taken into account:
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The fact of working with objects implies using an object oriented compiler,
and at the same time, access to data pointers (C++ compiler) must be allowed. In
this case, Watcom 10.5 C++ compiler was chosen.
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In the previous subsection, the use of OOP in the definition of variables has
been introduced in order to give a multi -aspect representation to the process
variables.  Object-variables have been presented for encapsulating data and
methods used to obtain these multiple representations. But, what kind of
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information is needed from process variables and which methods can be used
with this purpose?. These topics are discussed below and several algorithms are
proposed. Thus, abstraction tools, also called abstractors, refer to such
algorithms that can be encapsulated into object-variables to supply qualitative
representation of process variables.

5.3.1. Significant information from process variables.

Process variables, coming from real data (sensors and controllers) or
simulation (analytical models) are mainly thought to be numerical data. This is
the kind of information used for control loops, monitoring, alarm generation and
fault detection in model-based systems. On the other hand, knowledge-based
systems (used in fault detection, diagnosis and supervision) use inference
methods for reasoning about both numerical (fuzzy reasoning) and qualitative
information (qualitative reasoning). This qualitative data can be abstracted from
the process, provided  by engineers or supplied from a qualitative simulator or
knowledge-based system.

The particular form  of abstract data obtained from process variables depends
on the process and on the application to be developed. Therefore, different
techniques for obtaining significant information (numerical, qualitative, symbolic
and logical) from process variables could be used. Moreover, they could be used
by qualitative reasoning tools as numerical to qualitative interfaces. See for
example Fig.  5.8. The significant information which can be obtained from
signals analysis, is :

• Numerical information (additional) :
+ Derivatives.
+ Trends.
+ Deviations.
+ Distances with respect to some predefined shapes.
+ Relative extreme.
+ Landmarks (significant points and alarms).
+ Indices and associated parameters (damping factor, areas,

overshoot, ...)
+ Frequency contents.
+ Integrals.
+ Certain mean values.

• Qualitative or symbolic description of signals (numerical to
qualitative interface) :

+ Labels.
+ Episodes.
+ Qualitative level of signal.



Ð Ñ Ò Ó Ô Õ Ö Ò × Ø Ñ Ø Ù Ú Ñ Ø Û Ü Ó Ý Ô Ó Þ ß Ö à Ó Ý á â ã Ö Ü × Ò Ö Ò × ä Ó á Ö Ñ Ý å ã æ Ó Õ × ç è Ø Ø Ü à
Ù Ø Õ é Ó Ö Ü è × æ Ó ê ë Ñ Ö æ × ç ì ë à Ò Ó æ à ì ã í Ó Õ ä × à × Ø Ñ

Chapter 5: Integration of tools for supporting supervisory systems design    - 73 -

+ Qualitative Trends.
+ Qualitative deviations, and so on.

These descriptions and additional information, such performance indices or
ratios, may be obtained on line with data acquisition. Moreover, their
combination could be applied in event generation or for obtaining trends of
certain parameters, for example. A wider enumeration and description can be
found in [Rakoto-Ravalontsalama N., 1993]. Several qualitative representations
of signals can be obtained with different methods as is depicted in Fig.  5.7 and
Fig.  5.8. The choice of one or the other depends on the tool that must use this
information.
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Further, elaborated numerical information is obtained using some classical
signal processing methods:
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• Derivatives permit to know instantaneous changes in dynamics of
variables.

• Polynomial regression could be useful for obtaining an analytical
description of variables before performing some additional
calculation.

• Filtering is applied not only  for smoothing signals, but also for
dynamics isolation.

• Fourier transform for frequency analysis of dynamics of variables
can help in tuning and selecting parameters.

• Wavelet transform gives a representation of signals at different
scales, in both frequency and time.

• Statistical signal processing methods are used to capture
statistical features, such as mean value, variance and standard
deviation, correlation analysis, and so on.

Other, non-classical methods can be used to obtain a qualitative description of
signals. As  a result of such application, a label (linguistic description) or a set of
labels  of signals is obtained. Thus, a label is used to describe in a symbolic way
signal behaviour during a certain time period. Some characteristic labels cover
particular general changes of the signal level, which are distinguished by the
description of selected episodes. A more complex signal characterisation can also
be formed in this way.

• Triangular episodes is another representation of signals that
allows time representation at several degrees of resolution.

• Amplitude splitti ng, is used to associate qualitative labels to
representative zones of the operative range of a variable.

• histogrames are used with the same purpose, but with low pass
filtering capabilities.

• Pattern matching gives a distance related to expected shapes of
trajectory behaviour.

 These methods could be combined to obtain a more elaborated description of
the process behaviour according to the process variables. Fig.  5.9 shows a more
extended classification of numerical methods to be used for obtaining qualitative
representation from numerical data. The main division is given between
frequency based and temporal methods according to the kind of features to
extract. Note that the majority of methods taken into account are based on not
only in a single sample but the history of signal. For example, frequency based
methods, such as FFT or Wavelet based need a representative number of samples,
while filtering methods could be implemented with less samples. Signal history is
also needed in window-based (histogrames, regression, pattern matching, ...)
temporal methods or triangular representations.
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5.3.2. A taxonomy/selection of abstraction tools.

Since the currently applied  sensors provide only numerical data, some tools
must be supplied to infer qualitative appreciation of the process behaviour from
these measures. Then, the necessity of tools designed to provide external
components  with significant information is clear. These tools are called
abstractors (abstraction tools).

Abstractors are useful in process supervision in three different ways: The first
one is to perform the numeric to qualitative conversion in order to provide expert
systems or reasoning tools with handily significative information and to reduce
the information overload. The second, from the analysis point of view, to avoid
meaningless information from measured signals and other variables, giving visual
representation of the process dynamics through abstractors li ke trends,
deviations, tendencies, and so on. Third, they are used to form the symbolic
information, constituting the input for knowledge-based inference tools, such as
ES and qualitative reasoning tools as is explained in following subsection.

Moreover, it is clear that sensors provide only dated samples of  a process
variable. Thus, interpretation of acquired values according to process behaviour
must be done by taking into account all additional information that can  be
supplied to  obtain the necessary knowledge of interest about process behaviour.
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5.3.3. Kinds of abstractors.

As pointed in [Aguilar-Martin, 1993] supervision and diagnosis tasks must
include expert knowledge and  reasoning about qualitative
information. Therefore, several methods have been proposed to obtain qualitative
representation of situations using process variables to generate qualitative
information for these tools for supervision, detection and diagnostic tasks [Dorf
R.C., 1993] and [Ganz, Kolb and  Rickli, 1993].
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Qualitative description of signals is inherent to the method applied to signals.
Thus, different methods applied to the same signal can supply distinct qualitative
information. Moreover, these qualitative representations of signals can be
supplied using several temporal references (synchronous or asynchronous
references). According to the time sequence, this text considers qualitative
information obtained from signals is divided into three categories (Fig.  5.10):

• Qualitative labels are  labels associated to the level of signals and
actualised at every sampling time or every  selected time period.
• Event generation. It is the description of specific situations. These
are asynchronous results related to process variable evolution used to
identify that a landmark is reached or to fire simple alarms when
applied directly to that task.
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• Episodes, or historic description of signals as sets of labels, used to
define a specific behaviour during an interval or period of time. An
episode is defined by a starting and an ending time point and a event.
Thus, the same label can be applied to episodes of different duration.

Different techniques for obtaining qualitative information from process
variables are described in the following paragraphs. Some of the most
representative include the following ones :

• Qualifi cation of filtered signals :  Signal filtering is a
straightforward way of isolating process dynamics from variables.
Filtering, and its later quali fication, allows to obtain global trends as for
example, the description based on qualitative representation of tendency
and a deviation from this tendency. This was employed in [Melendez  et
al. 1995] to provide an expert system with qualitative information. In
this case qualitative labels have been used.  This representation is
reproduced in Fig.  5.11.
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• Histogrames.  Histogrames [Rakoto-Ravalontsalama N., 1993]
perform a segmentation of the amplitude spaces of measured signals
during a period of time (temporary window). [Sarrate R. et al., 1995]
uses histograms to evaluate the signals in their evolution in a sliding
time window. Several histogram indices could be used in supervisory
applications. For instance, dominant mode is a simple way for obtaining
a qualitative label corresponding to the principal zone used in the time
interval corresponding to the chosen time window. Other indices, such
as dominance degree or entropy, offer numerical information to be
added to qualitative labels. Histogrammes have some characteristics of
low pass filter, which frequency cut corresponds to the length (or
memory) of the time window, reducing noise effects. In consequence, a
time delay is expected in the response. This technique can be directly
applied to signals before or after filtering. Fig.  5.12 shows the use of a
dominant mode to represent qualitative states of a noisy signal.
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• Triangular representation. [Bakshi B.R. et al., 1994], [Ayrolles,
1996] and [Cheung and G. Stephanopoulos, 1990]: Triangular
representation is a qualitative description of measured signals
behaviour. Using singular points of the signals (maxima, minima and
inflexion points) and time intervals between these points, triangular
episodes can be represented. These episodes give information about the
tendency and curvature of signals. If triangles are grouped in trapezes,
then the representation at different temporal scales is obtained (See
“Fig.  5.13”). This kind of representation is used in the multi -scale
qualitative description of trends. [Colomer et al. 1997] add numerical
information to this episodes  for describing areas, lines, slopes and so
on.
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• Wavelet transform [Bakshi B.R. et al., 1994]: Wavelet transform is a
signal decomposition technique in temporal and frequency domains
with various resolutions. In this way, several temporary and frequency
scales of representation can be achieved. This allows a description of
measured signals to contain quite different dynamics. These signals
decomposition could be very useful for supervisory processes to study
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the most distinguished signal features and dispose others without
interest, as suggested in [Bakshi and Stephanopoulos, 1994].
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• Pattern matching, could be used to detect special situations (for
instance in fault detection) comparing signal evolution with patterns
extracted from the previous faulty situations. A distance is used to
define the degree of coincidence (“Fig.  5.14”). Also correlation
methods can be applied with this goal. As a result, events are fired when
a threshold in the distance or correlation is surpassed.
• Linear (or polynomial) regression, of signals in a period of time
allows to represent tendencies and classify signals behaviour according
to polynomial parameters and properties.

Despite of the utilit y of such tools for obtaining qualitative representations of
process variables, the main drawback resides in the election of the adequate
method. Moreover, in the majority of such algorithms, it is necessary to tune
some parameters as crisp limits for qualitative zones, sampling time, orders,
number of samples (history length) and so on. For an adequate election of these
abstraction tools, sometimes it is necessary to know how the algorithm works or
the adequacy for obtaining specific information. Next table treats to resume some
dependencies among algorithm characteristics, process and abstracted
information.

For example, when using pattern matching techniques it is necessary to have a
register of signals stored in a previous failure.  Or the use of f iltering techniques
is associated to the presence of variations in the evolution of signals. The richer
the signal, in terms of frequency, the better results are reached. On the other
hand, all the algorithms that operate with signals history are submitted to a delay
in the response time, but their fiability increases.
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“Table  5-3” , extracted from [Melendez et al. 1996a] , resumes the main
features of these abstractors according to the facilit y in configuration, the
dependency with process dynamics and the information provided from numerical
signals. These features are obtained from the experience and the use of these
algorithms with different types of signals with the purpose of obtaining
qualitative representations of them.

5.3.4. Abstraction tools and object-variables.

Abstractors are the proposed tools or algorithms to interface purely numerical
process variables and components based on more abstract expert knowledge,
providing reasoning tools for the generation of qualitative representation of
variables. This interface is different depending on  the supervisory strategy to be
developed and the expert knowledge base. Taking benefit of the object-oriented
approach presented in the previous subsection for describing process variables as
object-variables, abstraction methods are proposed to be encapsulated in the
object structure as internal methods to obtain significant information for the
qualitative representation of process variables. Graphical representation of
object-variables as individual blocks are used to identify each process variable
and the abstracted information supplied by the embedded algorithms. Then, a set
of blocks representing object-variables with the same internal structure, can be
associated to different abstraction methods. The only difference resides in the
method or methods implemented and the information obtained and stored in
them.
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ALCMEN (Automaticians Language for Causal Modelisation for Expert
kNowledge) was conceived by [Aguilar-Martin, 1991a] as a language for
representing and dealing with imprecision and uncertainty in algebraic and
differential equations. The ultimate aim of the language is to facilit ate
communication between process engineers (domain experts) and control
engineers. In ALCMEN, algebraic and differential equations have a
representation for qualitative values. Because of the basic features in knowledge
representation and capabiliti es for dealing with simple qualitative relations,
ALCMEN has been chosen to be implemented in MATLAB/Simulink as a block
based ToolBox for dealing with qualitative data. The objective is to implement
this ToolBox with capabiliti es of dealing with qualitative data, embedded into
object-variables by means of simple connections between blocks. The goal is to
use abstraction tools as interface numeric to qualitative and ALCMEN to
represent simple qualitative dependencies between variables when analytical
relations are not known at all . ALCMEN has been tested as a tool for developing
qualitative observers as is explained in [Melendez et al. 1996a] , and reproduced
in chapter 6.

5.4.1. Fundamentals of ALCMEN.

The principal idea of ALCMEN consists in graphical knowledge
representation  with blocks having the  capabilit y of representing a relationship
among variables with imprecision. Basic operations in ALCMEN are thought to
provide a simple qualitative operator between variables. Therefore, numeric to
qualitative interfaces are needed. For this purpose abstraction tools can be useful
to give the adequate representation for each design. Despite some simple
algebraic operations  available in ALCMEN, it is not  defined as a qualitative
algebra but only as a mechanism for knowledge representation and  intuitive
relation of qualitative variables.

In ALCMEN  variables are thought to be structured as objects, encapsulating
attributes and methods. These attributes are type (numerical, qualitative or
mixed), range (set of possible values), subsets of values (desired or usual values,
landmarks, and other useful information). The methods are basically conceived to
perform operations or relationships between these variables and to obtain
qualitative representations from numeric values. Blocks are used to graphically
represent causal graphs where the input of blocks are variables, representing
causes and the output are the effect variables.
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ALCMEN variables allow both numerical and qualitative values in the same
representation according to the following descriptions :

• Numerical variable: Values are given by a real number (Notation: x).
• Lexical domain, Sis:  A set of ordered labels, describing symbolic (or
qualitative) values, indexed by correlative integer indices. Each label is
associated to one of these indices from the lowest, i, to the highest, s :

S (label , i),(label , i+ ), ,(label ,k) , ,(label ,s- ), label sk-i s i s iis = { }[ ] [ ] [ ] [ ] [ ]( , )0 1 11 1v v − − −

• Lexical variable, X : It is a qualitative variable. The set of possible
values is defined in the lexical domain, Sis. Thus, a lexical variable in
ALCMEN is represented by a pair formed by a label, <x>, and the
corresponding integer index, nx : (Notation : X=(<x>,nx)).

Qualitative representation of magnitudes in ALCMEN is given by indexed
labels or lexical variables (in the ALCMEN nomenclature). Labels are ordered
using correlated (or corresponding) integer indices. The mechanism used as
numerical to qualitative interface is called filtering, according to ALCMEN
nomenclature. It basically consists in splitti ng the amplitude space of a numerical
variable into crisp zones, see Fig.  5.15. The indexed set of labels associated to
these zones is called the lexical domain. Then, the filtering operation associates a
numerical variable, with a lexical variable from its  lexical domain at any time.
Thus, given a lexical domain, Sis,  formed by a set of qualitative labels and its
associated indices, k, ordered from the lowest, i, to the highest, s, the filtering
operator of numerical variable, x, is described by the operator F(x/i,s), (indices i
and s, separated by a slash from the numerical variable, x , are the inferior, i, and
superior, s , indices in the lexical domain used).

Given the lexical domain Sis :

S (label , i),(label , i+ ), ,(label ,k) , ,(label ,s- ), label sk-i s i s iis ={ }[ ] [ ] [ ] [ ] [ ]( , )0 1 11 1v v − − − Eq. 5-1

The filtering operator is applied to a numerical variable, x,  to obtain the
corresponding lexical variable,  X :

X nx= < > =( , )x F(x / i,s) Eq. 5-2

So, ind() and lab() operators are defnied to obtain nx and <x> from the lexical
variable,X :

n ind(X)x = Eq. 5-3
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< >x =lab(X) Eq. 5-4

Filtering is  defined to be applied to numerical values. Then, the index, nx, of
the lexical variable, X can also be filtered. When an index of a lexical variable,
X, defined in a lexical domain, Sis,  is filtered in the same lexical domain, the
same lexical variable, X, is obtained. Thus, if a numerical variable, x, is filtered
to obtain the lexical variable, X, with index nx :

X x nx= < > =( , ) F(x / i,s) Eq. 5-5

As a result of filtering this index nx, the same lexical variable, X, is obtained:

X x n nx x= < > =( , ) F( / i,s) Eq. 5-6

� � � � � � � �
� � �   ¡
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x

X =( <x>  ,  nx )

X =F(x/0,4)
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Filtering is the simplest way of obtaining qualitative representation of process
variables, although other mechanisms can also be applied to associate qualitative
labels to numerical variables. In fact, the previously presented abstraction tools
are thought to be used as numeric to qualitative interface. The only restriction, is
to use indexed labels in the resulting qualitative representation. Using this kind of
representation, ALCMEN language permits to perform a vast set of operations
and to represent different types of relationships. It is not defined as a complete
algebra, but it is intended to deal with simple and robust relationships between
qualitative variables. The aim of ALCMEN is to provide a mechanism of
comparison, representation of  relationship, and simple operations.
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The kind of operators admitted are grouped, as depicted in Fig.  5.16, in two
major sets : dynamic and static operators depending on the time dependence.
Dynamic operators involve not only the current value of the variable, but also the
previous values. This forces ALCMEN to be defined in the discrete domain. On
the other hand, static operators are evaluated at any sample time using the current
input to deduce the output. Implementation of static operators is performed by the
use of  tables. In the following subsections these operators are described.

5.4.2. Static operators

Lexical Arithmetic operations

• • Lexical difference, Θ, between two lexical variables, X=(<x>,nx)and
Y=(<y>,ny), in the same lexical domain S, is defined as :

X Y F n n i sx yΘ = −( / , ) Eq. 5-7

The result of filtering the difference of indices in a lexical domain, Sis, is
always an index in Sis. The lexical difference, is conceived for establishing
comparisons between qualitative variables. Then, the goal is not to calculate a
difference from the arithmetical point of view, but to see it as a measure of the
error or comparison between two variables. Fig.  5.17 shows the use of this
operator in feedback systems, as it is done in numerical systems.
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(<x>,nx)

(<y>,ny)

(<e>,ne)

E=XΘY

Numerical comparison

x

y

e

e=x-y
e’=(x-y)

2

Lexical difference
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• Lexical addition, ⊕, is defined between a lexical variable,
X=(<x>,nx), and an integer number, m, by using the indices of the
lexical variable. The purpose of a lexical addition is to increase or
decrease the qualitative variable m indices in the lexical domain. Thus,
the maximum and minimum value at the output of a lexical addition is
limited to the inferior and superior limits of the lexical domain.

X m F(n +m/i,s)x⊕ = Eq. 5-8

The generalisation of the addition for a lexical variable, X=(<x>,nx), and a real
number, y, is obtained by filtering the corresponding index of the lexical variable
and the real number:

X y F(n +y/i,s)x⊕ = Eq. 5-9

Linear and Extremal tables

A lexical function between X and Y is defined as a mapping  between the
domain of X and Y, so that any value of X has a correspondent value in Y. All
these functions are simply described using correspondence tables.

• Linear function (gain), is defined as follows for a pair of arguments,
a lexical variable X=(<x>,nx) and a real number, K (gain),

Y X K K n= ⊗ = F( / i,s)x• Eq. 5-10

It must be observed that the input and output set of indices are the same
because X and Y are defined with equal lexical domain.

Exampl es: The representation of the linear function gain is done by means
of an input/output table in Fig.  5.18. In these tables, cells fill ed with the symbol

ü  represents the relation between input and output, while symbol 0, represent not
permitted output for the correspondent input.  It is immediately deduced that
when K=1, then X=Y. Tables can also be used to represent gain given by real
numbers. For example, gain K=0.5 is represented in the same figure.
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• Extremal functions. Minima or maxima functions can be described as
associative relationships between the input and output of a block.

Defi ni t i on :  A normoide function, N(n) is a real function defined for the
indices (n) of a lexical domain, S, in another lexical domain P, with the
properties:

• (<0>,0)∈ P (the lexical domain P contains the label <0> and the
index associated is the integer 0,

• N(n) is semi-positive real,
• N(n)=0 for only one value of n n indo= ∈ [S] .

A  minimal lexical function is one given by:

Y E X F n N n i s

n ind X
e x

x

= = +
∈

( ) ( ( ) / , )

[ ]
Eq. 5-11

where the index ne corresponds to the minimum of the E(X) function obtained
when n=no by lexical addition to N(no). Analogously, a maximal lexical function
is obtained with the equation :

Y E X F n N n i s

n ind X
e x

x

= = −
∈

( ) ( ( ) / , )

[ ]
Eq. 5-12

Exampl es :  The tables in Fig.  5.19 represent, these extremal functions for
two different cases of maximal and minimal relations. Minimal and maximal
index is given by the cell marked by no. The first table gives a minimum value for
the input equal 2, and the output result is no =1. The same dependency is given in
the next minimal table where the input equal 1 gives the minimum output index
no = 0. Similar explanation can be given by a maximal relation.
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Combination Operators:

 Cause-effect qualitative relationship with more than one input has a
representation in ALCMEN using tables (or cubs or hypercubs according to the
number of inputs). The indices corresponding to inputs of tables are situated in
the axes and the output is selected by the cross-point of the co-ordinates. The
same tables used for logical operators are applied to define other qualitative
operations between variables (norm, distance, ...) similarly  to arithmetic
operators.

Exampl e : Conjunction operators (AND) for two inputs defined with a lexical
domain of five labels. This AND is defined as the minimum of both inputs.
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5.4.3. Dynamic operators (time depending relationships).

• Delay (∇ or elementary memory). Assume that  a temporal sequence
of indices corresponding to the evolution of a qualitative variable (X) is
given. The operator ∇ gives as output the value of the input in the
previous sample time (Xk-1). The following  equation shows this
property.

X Xk 1 k− = ∇ Eq. 5-13

 This is the basic operator used to describe temporal relationships as tendencies
and other monotonic causal relationships.

• Tendency (DX), of  a qualitative variable is obtained applying the
qualitative difference between one sample and the previous sample :

DX = X - X X Xk k 1 k k− = − ∇ Eq. 5-14

5.4.4. Qualitative representation of numerical signals.

This section discusses briefly the problem of splitti ng the amplitude space into
crisp zones and assigning them qualitative labels (signal level abstraction). The
selection of limits of these zones is clearly dependent on the particular
application and on the origin of the signal. As an example, a first order response
is studied and quali fied in five zones (Z1 to Z5). Two different criteria have been
used to decide about zone limits (Fig.  5.21):

1. Equi-spaced zones. Limits are selected dividing the range of signal
into five zones of equal amplitude.

2. Limits of zones are selected at amplitudes corresponding to systems
response at multiple of time constant.

2τ
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The shape of the qualitative variable obtained in either case for a first order
continuous system is different. The first case follows the first order system
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dynamics while the second option produces a linear change of zones and more
emphasis is put on how the permanent state is reached.
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The importance of numerical to qualitative interfaces is clearly application
dependent as is represented in Fig.  5.22. The same system is quali fied using
different a crisp due to the necessity of observing the amplitude evolution or time
dependency of the response (Fig.  5.21).

5.4.5. ALCMEN and qualitative reasoning.

Nowadays, qualitative reasoning is one of the fields of increasing interest in AI
and new paradigms are constantly added. The advantage of qualitative techniques
is the way of managing rough and imprecise information, but as a result of using
these techniques for reasoning rough and imprecise results are obtained.
Therefore, qualitative techniques would be really useful when mixed with other
techniques for reasoning, and not used as an isolated tool. Some suggestions have
been pointed in [Koch, 1993]. In order to improve the results obtained by
qualitative techniques in reasoning about system behaviour, one can also perform
complementary operations, such as for example:

• Adding quantitative information.
• Exploiting advanced mathematical methods, like the qualitative
methods theory of differential equations.
• Integration of more knowledge about physics of a system to capture
general physical laws or the specific context of a system.
• Integration and consideration of temporal information.
• Formalised common-sense knowledge and reasoning.
• Dropping postulates, such as non-overlapping intervals, and
• Finding ways to reason about larger, more complex, real-world
systems.
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All of these points coincide in using all available information for reasoning
tasks. Qualitative formalisms are really useful in process supervision when used
to establish dependencies between variables taking into account the complete
knowledge (physics, experimental knowledge, numeric/qualitative information,
dependencies, equations, and so on) related to these variables. Otherwise,
qualitative techniques  offer only a mechanism for dealing with a poor
representation of variables. Consequently, some mechanism for storing and
actualising information are needed for these variables. Object-variables
(previously described in this work) are conceived to assume this task embedding
numerical and qualitative information and external parameters supplied by users
in the representation of process variables. ALCMEN has been used to perform
simple qualitative relationships dealing with these object-variables performing
simple operations to establish qualitative dependencies between qualitative
representation of process variables.

5.4.6. Implementation in MATLAB/Simulink.

The implementation of ALCMEN has been done in MATLAB/Simulink as set
of blocks dealing with previous relations and operations. The aim is to add this
tool to assist users in developing knowledge-based supervisory systems.
ALCMEN static and dynamic relationships have been implemented in
MATLAB/Simulink as a set of blocks dealing with qualitative representation of
variables under object oriented approach, i.e. object-variables (See “Fig.  5.23”).
The blocks that form ALCMEN ToolBox, are designed to deal with only
qualitative representation of variables, but other blocks can access different fields
of objects associated to process variables to carry out numerical operations or to
deal with variables history.

N(s)

D(S)
Transfer Fcn ALCMEN

Object Builder Object-variables.
Numeric and qualitative
information are embedded.

Simulink
standard data.

ALCMEN
blocks

Other tools
(numeric/qualitative)
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This ToolBox has been implemented in order to deal directly with qualitative
data stored into object-variables. It implies that any ALCMEN block can be
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interconnected to the output of an object-variable to get the needed information
to perform an operation. The complete set of ALCMEN blocks is depicted in Fig.
5.24. The relation with previous defined operators can be extracted from the label
under blocks, according to the following notation: the first line describes the
associated file  and the following lines describe the implemented ALCMEN
operator. All of these blocks are implemented to deal with qualitative fields of
object-variables. Then, both input and output of these blocks are object-
variables. Although only qualitative attributes are used. The functionality of these
blocks is defined according to ALCMEN definitions and object-variables
structure here after :

Dynamic Relationsips
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ALCMEN operations represented in Fig.  5.24, are resumed here:

• � � � � � � � � � � � � � , performs filtering and embeds this information in an
object-variable structure.
• � � � � � � � � � � � , is the block that allows to access  any field of the
object-variable and supplies this data to the output of the block in
standard Simulink format. When the selected field has only a text
format representation, this is displayed in the MATLAB command
window.
•   ¡ ¢ £ ¤ ¥ ¦ § , offers similar functionality to the previous block but the
information is presented graphically by means of a scope. The text
attributes as description or units, are printed in the MATLAB command
window.
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• Æ Ç È É Ê Ë Ì É Í Ê Î Ï È É Í Ð Ê Ë Ñ  is an object_builder that performs
numerical to qualitative interface using the histogram abstraction tool
for this purpose. Several indices are available.
• Ò Ó Ô Õ Ö , performs a difference between qualitative indices of two input
object-variables.
• Ò Ó × Ø Ù , performs the addition between qualitative indices of two
input object-variables.
• Ú Û Ü Ý Û Þ ß à ß Û á , allows to perform any relationship between
qualitative variables that can be represented by a table. Indices of input
are used to fire the output from the table.
• â ã ä å  is the block that performs a product of a qualitative variable
and a constant. The output index is selected from the set of input
indices.
• æ ç ã ç ä è  relationship block is used to implement any  variable
function. A table is used to define the input/output dependency. This
could be used to implement extremal functions.
• é ê ê ë ì ç  block allows to shift indices of input variable. It is similar to
an addition, but the result is not filtered with input indices.
• í î ï ð ñ  stores the whole input object-variable during a sample time
to delay the output.
• ò ó ô õ ó ô ö ÷  of a qualitative variable is obtained by qualitative
difference of an input and its delayed value.
• ø ö ö ù ú ù û ü ý þ ÿ , is conceived to perform the integration of qualitative
indices of the input variable. The user can select the integration rate.

Additional blocks have been added to ALCMEN relationships, in this
ToolBox, for building object-variables from habitual numerical values supplied
by Simulink and to supply data from desired field of object-variables to standard
Simulink blocks (“Fig.  5.23”). Thus, a single line is used to represent one object-
variable and all features, numerical and qualitative, are embedded and actualised
in the same structure. The restriction is that all blocks interconnected to this line
must know how to access the desired fields.
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CEES, [De la Rosa J.Ll, 1994], (C++ Embedded Expert System Shell ) was
firstly conceived for supporting co-operative ES. From that time on, CEES was
subject to many modifications and extensions in order to make it useful in
industrial process supervision. Several efforts have been done in the context of
this thesis; see for example [Sàbat, 1996] and [Martinez, 1997]. This effort has
resulted in a new version of this shell , CEES 2.0. It has been developed in the
scope of this thesis following two parallel and complementary lines. The first one
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was to achieve a stand-alone application with external communication
capabiliti es and graphical user interface for assisting the definition of knowledge
through the development of  production  rules. This version has been called
LabCEES. The second, and more interesting from the point of view of this thesis,
consists in embedding the CEES 2.0 inference engine into a framework with
other tools for assisting the design of supervisory systems. It is called SimCEES.
With the same goal as previous presented tools, ALCMEN and abstraction tools,
SimCEES has been embedded in MATLAB/Simulink to assist supervisory
systems design in a friendly to use framework (CASSD). The use of a graphical
block representation for an ES representation facilit ates the comprehension and
use of this tool. The goal is to use the stand-alone application, LabCEES, for the
final application and the CASSD framework in the developing time. The benefit
of this redundant implementation of the ES is that rule bases could be directly
used by either.

5.5.1. CEES features. Advantages and drawbacks.

Object-oriented approach/methodology constitutes the core of this shell
(CEES) because it is intended to exhibit  capabiliti es of  encapsulation of
information, polymorphism of methods and data abstraction. Four basic classes
were defined to deal with variables, facts, inference engines and simulators.
Deductions are performed by inference engines through reasoning about its input
facts, but they also have the capabilit y of asking for information to other
inference engines (facts) or simulators (variables). In the new version (LabCEES
and SimCEES) some of these classes have disappeared  and only remains the
classes inference-engine and facts.  CEES main capabilities are pointed here :

• Facts are the kind of data supplied to the ES to perform some
reasoning. Facts are objects embedding both, numerical and/or
qualitative data and subjective information about this. For example
certainty is used to represent doubt about source of information and
fuzzy sets can be build around numerical data to perform fuzzy
comparisons.
• CEES is a rule-based system with specific syntax and forward
chaining inference mechanism.
• Co-operation among ES is performed by exchanging information
(encapsulated as objects representing facts) between inference engines
and asking  simulators about numeric variables.
• Qualitative values are defined in terms of orders of magnitude.
Simple operators were added to deal with them. Methods and
qualitative fields are encapsulated in the same object associated to
numeric variables.
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• Reasoning with temporal windows. Data history is stored in CEES
variables in temporal sliding windows for making inference about
trends of process variables in the temporal window.
• Fuzzy reasoning is incorporated in CEES on the base of logical
comparison of variables by means of the equal, lower and greater
operators.

Mainly, due to the fact that CEES is based on C++ objects, some advantages
turn into shortcomings at the moment of developing  the  ES application. Some of
these points are highlighted below:

The main advantages are :

• CEES is a flexible open shell subject to continuous evolution.
Addition of  methods or objects to solve specific situations is allowed.
• CEES variables are conceived as objects with encapsulation of data
and methods similarly to the object-variable structure described in the
previous sections.
• The implementation of facts used in CEES is directly applied as a
higher level data structure of object-variables. Thus, expert reasoning
about object-variables is accomplished directly.

Some drawbacks can also be pointed:

• The current version of CEES is  not user-friendly. The user must be
famili arised with  C/C++ programming and a training  period is needed
before starting the development  of ES applications.
• The use of C++ objects, with complex structure, in the definition of
systems (simulator and inference engines) and variables (variables and
facts) makes the interpretation of global architecture of ES difficult.
• No external interface is provided with CEES. Despite of this
drawback, DDE- Dynamic Data Exchange and any C/C++ library can
be directly used.

New version, CEES 2.0 has been developed in this thesis to avoid this
drawbacks. This is CEES 2.0 and the implementation has been designed for  two
platforms : LabCEES, directly under Windows  and SimCEES under Simulink.
CEES has evolved towards two separated and complementary products
(LabCEES and SimCEES), especially conceived to be used by  process
engineers :

• LabCEES is a stand-alone shell running under Windows. A friendly
user interface has been added to assist in configuring ESs architecture.
This is, the number of inference engines, rule bases, facts bases and
related parameters. A graphical user interface assist user in these tasks.
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• SimCEES, is conceived to run under Simulink as a block.  A
SimCEES ESs are conceived to deal with facts. Thus, both, input and
output are facts. Output is obtained as deduced facts from reasoning
about input facts. Any ES block is defined according to the structure of
a rule-based knowledge. Multiple architectures could be defined by
adding or moving ES blocks.

An additional feature of CEES 2.0 is the exportabilit y of rule bases between
SimCEES and LabCEES. This increases the flexibilit y to test and compare
different structures and knowledge bases before the final implementation.
Modularity is present in both implementations.

5.5.2. SimCEES : Implementation of an ES in MATLAB/
Simulink.

Simulink has been chosen to develop a set of ToolBoxes to deal with the
design of expert knowledge Supervisory systems. In previous sections
abstraction tools have been presented to process numerical information and to
interface with qualitative representation of process variables. ALCMEN has been
introduced as a mechanism for representing simple relationships between
qualitative data. When more complex knowledge structures are needed to
represent special expertise, as is the case of expert supervision applications,  then
ESs are used. Therefore,  the implementation of an ES ToolBox for Simulink is
needed to complete the framework for supervisory systems design.

The shell CEES has been chosen to be integrated into Simulink as a new
block. As a result, this shell has evolved to SimCEES (CEES 2.0) especially
conceived to work under the block representation. The object structure of CEES
has been simpli fied for this purpose. The simulator class has been suppressed
because this facilit y is supported by Simulink (for numerical simulation) and
ALCMEN (for qualitative simulation). The class variable has evolved to object-
variable definition to preserve the integration mechanism. Then, only facts and
inference engines remain as SimCEES classes.  Facts are the objects supplied to
the ES at its input and deduced and available at the output. Inference engine
include the reasoning mechanism used for these ES. Facts are basically objects
encapsulating object-variables and other attributes (certainty and landmark, for
instance) and methods needed for the inference engine mechanism.

The Simulink implementation of SimCEES is represented in Fig.  5.25. Any
Simulink block used to represent a knowledge base is formed by an inference
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engine and a rule-based. In execution time, facts base is created and actualised
according to deductions performed.
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SimCEES is intended to work on-line with process variables (object-
variables), encapsulated as input facts. Consequently, it works as a discrete
system according to a sampling period. The input facts encapsulate the
information related to process variables, object-variables is actualised each
sampling time. Consequently the rules base must be evaluated, by the inference
engine, at any actualisation of input data to deduce new facts. Results are also
given as facts and the outputs are selected from these deductions. The benefit of
working with facts only, at input and output, gives the possibilit y of connecting
directly to another ES blocks at the output, as depicted in  Fig.  5.26.

The main benefit of modular block representation, supported by Simulink,
when dealing with ES is the distributed knowledge representation because of:

• Modularity : The partition of large KB into smaller KBs.
• Specialisation and reusabilit y of knowledge bases. Supervisory
systems should be designed to reuse knowledge, especially in
distributed AI systems where the same KB can be applied in solving
similar problems in the same process. For example, expert tuning of
PID is a domain where the same KB can be reused for several purposes.
These KB can be reinforced by process knowledge declared in other KB
although basic rules are preserved.
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• Flexibilit y, in designing and testing ES-based architectures.
Modifications in the architecture of  the whole ES can be performed by
simply moving a block.
• The implementation and easy testing and comparison of special
architectures based on redundancy, competition, reinforcement or co-
operation.

Some problems are inherent to the choice of using Simulink interface instead
of developing a new one for SimCEES. Despite the graphical support for
manipulating ES as a single block  used in Simulink for representing an ES, there
is no support for editing rules. The user must use a standard editor for this
purpose.

5.5.3. Expert Reasoning with SimCEES.

In the previous section the benefits of modularity of SimCEES have been
introduced. The graphical support of Simulink by means of block representation
permits an easy reconfiguration of the ES associating a block to each KB. When
working with large and complex problems, the solution is easier if it is divided
into sub-problems, because small knowledge bases are better structured.
Modularity in SimCEES is possible because a single structure for data
representation is used. All available information in object-variables (numeric,
qualitative, symbolic or logic) coming form process variables is embedded
together with attributes and methods needed for the ES inference engine into a
new object structure called facts. These facts preserve the same structure for any
ES input and output. Consequently, inference engines must reason about
evolution of input facts, firing the appropriate rules in the knowledge base to
deduce about these input facts or other previously defined in the knowledge base.
ES outputs are selected from deduced facts base at each sampling time.
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In practice, output can provide not only deduced facts, but also input facts to
facilit ate the flow of facts among ES blocks, avoiding an unnecessary amount of
lines connecting blocks. Facts declared in a knowledge base cannot be supplied
as output, except when they have been deduced. When using parallel
configurations of ESs blocks (the output of these ESs, see Esii and ESiii i n  Fig.
5.26, are supplied to the same ES, ESiv in Fig.  5.26)  there exists the possibilit y
that the same fact will be supplied, at the same sample time by two or more
different blocks as input of another ES block. In such cases there exists a
possibilit y  to differentiate those facts or use only one of them. In case of the
second option is chosen, priority is given by graphical connection order.

An example of how this mechanism works with  facts is depicted in Fig.  5.26.
In this figure, facts are represented by symbols as  , , , , , ,  and  .
The evolution of these facts is represented in a sampling time, showing the facts
supplied for four interconnected ES blocks. For instance, ESi deduces , while at
the same time it can also supply input facts to be processed by the next block. On
the other hand, ESii  can only supply deduced  facts. It can be observed that some
deductions are from external input, , while other are defined in the same ES, .
A different situation is presented in ESiv. In this case, not all deduced facts are
supplied at the output (See fact ). A reason for this, could be that this deduction
causes a message to be printed; therefore, it is not needed at the output.
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A simpli fied example of how rules are described in SimCEES and declaration
of input and output facts is shown in Fig.  5.27. This could be the rule base
associated to ESiii , where output facts are selected from input ( -“ input1” , -
“ input2” ,  -“ input3” ) and deduced ( -“difer” and  -“ input2” ). Facts are used
at input and output to provide a fact flow. This is needed when working with
dynamic systems and facts represent some abstracted feature of this behaviour.
The final goal is to use the  facts to close the supervisory loop.

5.5.4. Exportability of rules. LabCEES, the stand-alone
application.

The new version of CEES (CEES 2.0) has a double implementation. The first,
SimCEES,  is described in the previous subsection and runs under Simulink. The
second, LabCEES ,  is complementary to the first one, and is conceived as a
Windows based stand-alone application. LabCEES is still under development, but
the goal is to provide this shell with a graphical user interface for assisting ES
configuration  and rules production. LabCEES is an open system with
communication capabiliti es for interfacing the application with monitoring
systems and other Windows based programmes using dynamic data exchange
(DDE).
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LabCEES is prepared for dealing with modular ES,  structured in more than
one inference engines. To achieve this goal, inference engines are provided with
communication mechanisms to interchange deduced information (facts)
according to their own rule base. This approach permits to reuse rule base in
SimCEES, building  identical structures representing the inference engine as
independent Simulink blocks.
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c d e f g h i j k l m n k o p n q i r l p s t

Object-variables, embedding data and methods, implementing numeric to
qualitative interfaces, based on abstraction tools,  for dealing with ALCMEN
qualitative relations and CEES expert rules,  have been implemented by means of
Simulink block-based graphical representation. As a result, MATLAB/Simulink,
the numeric CACSD framework, has been improved to support expert
supervisory strategies design becoming a CASSD framework.

5.6.1. Architecture and tools.

The previous described tools, abstractors, ALCMEN and SimCEES, have
been implemented in Simulink under an object oriented approach to facilit ate the
task of designing and testing supervisory structures, based on expert knowledge
[Melendez et al., 1996b][Melendez et al., 1997a].  Object-variables have been
defined to encapsulate information from process variables at different levels of
abstraction. Then, abstractors also called abstraction tools, are encapsulated in
object-variables to obtain a significant information from those variables related
to the process. This information is encapsulated using both numerical and
qualitative representations in the object-variables.  This data can be directly
supplied to a modular ES, SimCEES, by building facts that join all the
information encapsulated in object-variables and subjective appreciation about
certainty of this information with methods needed for the inference engine of ES.
Parameters are supplied using a dialogue window.
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Because not all expert knowledge concerns numerical information, ALCMEN
is added to deal with qualitative information, allowing the designer to implement
simple relations in order to obtain a rough evolution of not measurable process
variables. In the implementation of ALCMEN blocks, object-variables structure
have been used, despite of only qualitative fields are used and abstraction tools
are only used in the interface blocks (filtering), to preserve the structure and
encapsulation of information used with numerical data.

Fig.  5.29 shows how those tools are involved in the procedure of obtaining
significant information to be supplied to the ES. The heterogeneous kind of
information merged to reason about complex systems, needs the object-oriented
approach to be used as integration mechanism. In this case, it has been used in the
representation of information flow (object-variables and facts) and also to build a
modular ES able to deal with this encapsulated information.
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The previous schema is implemented as sets of blocks grouped in ToolBoxes
for each tool (CEES, ALCMEN and Abstraction Tools) forming the complete
CASSD framework.. The use of this CASSD framework for designing
supervisory structures allows partial validations of the structure when working
with complex systems. Simulink capabiliti es allow to group set of blocks into a
new one simpli fying the appearance and allowing knowledge encapsulation. At
the same time connectivity between tools is quickly solved by tracing lines
between inputs and outputs of blocks.
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5.6.2. Knowledge representation.

Processing and administration of expert knowledge requires of  knowledge
formalising and  structuring. Rule-based programming is not the only technique
used with this goal, within artificially intelli gent programs, but nowadays, it is the
more adequate technique for us to directly codify expertise. In spite of this, some
other classical formalism are more or less present in the proposed framework
taking in account the particular point of view of process supervision domain.
Procedures typically used to represent objects and their relationship are used to
represent process variables :

• Production rules,  for describing knowledge in the form of
“ IF...THEN...” rules  are present in CEES. Knowledge base associated
to any ES block is described as sets of IF-THE rules, as showing Fig.
5.31.
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• Semantic networks : Graphic representation of knowledge based on
objects and their relationship can be compared with the block-based
graphical distribution of knowledge provided by the graphical user
interface of Simulink. Interconnection of blocks represent dependencies
between process variables and the flow of information. This is the case
of ALCMEN relations or dependencies between several ES blocks.
• Frames, are thought to be data structures for representing objects. In
this work the object-oriented approach has been used for representing
process variables and information related to process behaviour. All of
these information is embedded into object-variables.

The modular conception of all those tools presented to help supervisory
systems design, supported by Simulink blocks, simpli fies modular design of
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reasoning systems. Simplicity and modularity, which combines quantitative and
qualitative knowledge, are important advantages when building on-line reasoning
systems that are embedded in conventional applications. According to the degree
of abstraction of knowledge about process variables the tools presented in the
previous sections are especially conceived to assist in three hierarchical levels
(Fig.  5.32):

• Level of Signal :  This is the interface level between the supervisory
structure and the process. It is the acquisition level where measures
from process and process engineers knowledge join together to supply
other levels with significant information extracted from measures. The
tools used to obtain qualitative information from measured signals are
the abstraction tools or abstractors and their output are a qualitative
representation of the trends of process variables (tendencies, oscill ation
degrees, alarms, degree of transient states, ...) needed not only in
supervision, but also in fault detection and diagnosis tasks. The use of
object-variables for this purpose is similar to a representation based on
frames.
• Level of Qualitative Relations : At this level is where engineers could
represent dependencies or relations between qualitative variables,
obtained or not from the first level. These relations could be used to
deduce roughly inaccessible dynamics according to a qualitative model,
physics or just observed dependencies between variables that are
diff icult to join in a numeric equation. ALCMEN is used to perform
these tasks (and knowledge is represented by semantic networks).
• Level of Rules :  This level reflects dependencies between facts that
could be represented by rules describing expert KBs. Thus,  ES are used
at this level. This is the final destination of inferior levels.
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Each level is able to deal with significant information coming from equal and
inferior levels (See ”Fig.  5.32”) . The mechanisms used in the representation of
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knowledge at  each level are associated with the respective tools, described in
previous subsections. These mechanisms, are always implemented using object-
oriented programming and encapsulated as blocks in a graphical representation
supported by the Simulink graphical user interface. Knowledge modularisation
and encapsulation is represented in Fig.  5.33.
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Row numerical data coming from process (measures or estimations) are
encapsulated into object-variables together with abstraction tools used to obtain
qualitative descriptions of process variables based on significant information.
Qualitative description of those signals are stored in temporal windows to be used
in reasoning task by other blocks. Finally they, can be supplied to ES as  facts
encapsulating additional information.

ú û ü ý þ ÿ � � � � � � ÿ � � �
A modular implementation of tools for dealing with  expert knowledge and

avoiding interfacing problems has been presented. The implementation of such
tools has been done under MATLAB/Simulink. The object-oriented approach has
been used in the variables implementation, to embed both data and abstraction
methods, and in the design of several tools to deal with information at different
abstraction degrees. Abstraction tools have been presented as numerical to
qualitative interfaces to provide simple qualitative representation, event
generation or temporal episodes.  Qualitative relations are thought to be managed
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by means of ALCMEN representation language, using block representation to
perform simple operations with qualitative representation of signals.  Both static
and dynamic qualitative relationships have been implemented. An ES shell CEES
has also been embedded into a Simulink block, encapsulating expert rules to
reason about input facts. This shell provides a forward chaining inference engine
and fuzzy reasoning for imprecision and uncertainty management.

The use of object oriented technologies is necessary to  integrate such tools in
a framework for assisting expert control land supervision. This methodology
could be useful for large projects  because of  the modularity and encapsulation
of knowledge into blocks.
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In the following subsections some developments carried out in the proposed

framework are described to demonstrate the capabiliti es of the integrated tools
and the benefit of avoiding data type conversion. Integration pitfall , derived from
the necessity of multiple representations of information related to process
variables, has been overcome. The advantage of disposing of numerical and
qualitative methods for dealing with process variables is tested. Fault diagnosis,
qualitative observers and estimations are exempli fied by means of simple
problems derived from real process. Although, these examples are an
intermediate step forward to complete supervisory schemes, they are enough to
shows the benefit of disposing of a framework to assist such developments.
Different situations have been proposed to ill ustrate the general usabilit y of this
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proposal, avoiding particular point of view derived from a single problem
discussion. Consequently, special interest, in the explanations in the following
examples, is focused on  describing framework capabiliti es more than in
discussing proposed solution.v w x y z { | } ~ � � { � � � � � � � � { � � � | } { ~ � � � } { � ~ �

The tools described in the previous chapter have been tested in a laboratory
plant. A model of this plant has been obtained for testing fault detection
structures and the flexibilit y to  modify these tools. The goal is to use the model
for developing a knowledge-based fault detection structure and then to use the
same CASSD framework to test and validate the design by means of substituting
the model by specific blocks to access hardware (plug in boards). The example
presented in following paragraph was firstly developed using different
applications ([Melendez  et al. 1995]), externally linked, for solving data
management (MATLAB/ Simulink for signal processing and simulation, G2 as
rule-based ES). An additional application was developed to manage and link the
environment. The application has been rebuilt using the CASSD framework, (See
[Melendez, et al., 1997b]) as it is explained in the text.

6.2.1. Laboratory plant description.

   The laboratory plant is composed by two coupled tanks connected by two
pipes, as depicted in “Fig.  6.1” . The liquid of tank_1 is spill ed into tank_2
through two pipes.

M otobombaM otorpump

Diposit 1Tank 1 Diposit 2Tank 2

V 2V 2
V 1V 1

Level
1 Level 2

Set PointSet Point

PID +
-

Erro
r
Erro
r

ControlControl

Diposit 1Auxili ary tank

PID

PID discret,

2Tanks +Pump:
Alecop CPI-100

� � � � � � � �

� � � � � �� � � �� � � � � �
� º »   ¡   ¢ > £ ? ¤ ¥ £ ¦ ¤ ¥ § ¨ © £ ª ¦ « ¬ B ¤  ¤ D ¨ © ® C ¦ £ ª ¯ °  ± º ² D © º ª ¯ ² ¤ C ® ©  



³ ´ µ ¶ · ¸ ¹ µ º » ´ » ¼ ½ ´ » ¾ ¿ ¶ À · ¶ Á Â ¹ Ã ¶ À Ä Å Æ ¹ ¿ º µ ¹ µ º Ç ¶ Ä ¹ ´ À È Æ É ¶ ¸ º Ê Ë » » ¿ Ã¼ » ¸ Ì ¶ ¹ ¿ Ë º É ¶ Í Î ´ ¹ É º Ê Ï Î Ã µ ¶ É Ã Ï Æ Ð ¶ ¸ Ç º Ã º » ´

Chapter 6: Some illustrative examples in using the CASSD framework    - 108 -

The flow between both tanks could be modified by closing a valve, placed in
one of the interconnecting pipes (V1). Tank_2 spill s liquid, depending on the
state of the output valve (V2), to an auxili ary tank placed below of the laboratory
plant. This auxili ary tank is used as fluid source to pump liquid to the tank_1. A
PID measuring the level of tank_2 drives a motor-pump filli ng tank_1 in order to
reach the desired set point of level 2. The magnitudes of this system are restricted
to 31 cm. (tanks height), for the measure of both levels, 0-10 volts for the control
signal. The evolution for several changes in the set point is represented in Fig.
6.2.
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The normal operation mode is defined when both valves (V1 and V2) are open

and the PID parameters are accurately tuned to regulate level 2. The pump is also
supposed to work correctly. Fault situations have been reproduced by closing
valves (to simulate an obstruction of pipes) and switching the pump off . Levels of
both tanks and the set point are the only available measures. Four possible
malfunction situations to detect are typified. Simultaneous situations are not
considered to simplify the example.â ã ä å æ ä ã ç è é ê ë ì í î ì ë ï ð ñ ò ó ô õ ö ô ó ÷ ø ù ú û ü ý þ ü û ÿ �
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When failures are introduced, then the expert diagnostic system must be able

to detect and identify them. Therefore, the goal of the supervisory system is to
track the process and detect situations that incite failures or process malfunctions,
as well as to know when the process works in the normal operating conditions.
With this goal, existent numerical tools and representation capabiliti es have been
used to study the influence of faults in the behaviour of the process.



( ) * + , - . * / 0 ) 0 1 2 ) 0 3 4 + 5 , + 6 7 . 8 + 5 9 : ; . 4 / * . * / < + 9 . ) 5 = ; > + - / ? @ 0 0 4 8A B C D E F G H I J E K L M F J I N O L P Q E J P O R S E C T I P I B M

Chapter 6: Some illustrative examples in using the CASSD framework    - 109 -

6.2.2. Implementation of a knowledge-based fault detection
system in the CASSD framework.

In order to test the CASSD framework to design a fault detection system, two
representative signals have been studied : the difference of levels (level tank_2
minus level tank_1) and the error (set point minus level tank_2). These two
signals have been used because of process behaviour is reflected on them. The
error signal joins the evolution of the set point and the dynamics of the level of
tank_2. The difference of levels supplies information related to both tanks and the
interconnection between them. The evolution of these signals has been studied in
several simulations of normal operation conditions and fault situations as
described in last paragraph (Fig.  6.3 and Fig.  6.4). Although, numerical signals
are provided from simulation, human reasoning is performed at a more abstracted
level of these signals. Visual appreciation of signals evolution is used to define
process behaviour. Consequently the set of rules obtained for supervising this
process uses a qualitative interpretation of numerical signals.

Filtered signal
Original signal

Process variable : Error and filtered signal

0 500 1000 1500 2000 2500 3000
-10

-5

0

5

 
0 500 1000 1500 2000 2500 3000

0

5

10

15

Filtered signal
Original signal

Process variable :Level1-level2 and filtered signal

U º » V Ó V ¼ A W X Y D Z º X [ X \ ] ? ^ Z _ ] ` Z a C C ] Z ] B b a [^ a W a _ ] Y ^ a Z c X º [ Z ` b ] [ » a ^ ] _ a c a _ \ X _ d a C V

0 500 1000 1500 2000 2500 3000
0

5

10

15

0 500 1000 1500 2000 2500 3000
-5

0

5

L evel 1 - level 2

Error

V alve 2 is
closed

V alve 2 is
closed

V alve 2 is
open

V alve 2 is
open

Set point
form 6 to 10

Set point
form 6 to 10

0 500 1000 1500 2000 2500 3000
5

10

15

20

0 500 1000 1500 2000 2500 3000
-2

-1

0

1

2

Level 1 -Level 2

Error

Fault in V1

Fault in V1

Set Point
change

Set Point
change

time

U º » V Ó V e f _ X ` a ^ ^ g h [ ] d º ` ^ º ^ _ a \ Y a ` Z a g º [ Z b aa W X Y i Z º X [ X \ a _ _ X _ ] [ g g º \ \ a _ a [ ` a X \ Y a W a Y ^ V j b a\ º » i _ a ^ _ a c _ a ^ a [ Z ^ k b a [ W ] Y W a ^ ] _ a ` Y X ^ a g ] [ g` b ] [ » a ^ º [ Z b a ^ a Z c X º [ Z V
It means that situations are described by experts from trends of signals or

deviations from normal situation and  global appreciation of the regime of the
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process (transient state or steady state).  For instance, in the normal operation
mode (when the valves are not closed, PID is well tuned and motor-pump is
running) difference of levels, in permanent regime, remain in a short range
between 6 and 9.5 cm (See Fig.  6.3). Another observation example is shown in
Fig.  6.4, when valve 1 is closed, then the system is stabili sed in a longer time
than in normal operation conditions. This appreciation about steady state are
easier to represent in rules than those related to transient state. Because acquired
knowledge is not only related to numerical values of signals, it is necessary to
interface both numerical signals (from simulated process in this case) and KB
defined according to qualitative appreciation of these signals. With this aim
qualitative representations of some features of numerical signals will be useful.
This task is performed by the abstraction tools. Abstractors are defined to supply
ES with qualitative and numeric significant information obtained from numerical
signals. In the example qualitative tendency and qualitative deviation from this
have been used together with a smoothed signal of original process signals (See
Fig.  6.5).
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Using qualitative representations of process variables, it is easier to supply
adequate information about process to rule-based ES to diagnose about
behaviour. For example a rule deciding about transient state could be defined
according to both numerical and qualitative descriptions of information related to
process variables (Fig.  6.6).

    

K         B

ES_DIP1

K         B

ES_DIP2

Deduced
FACTs

FACT
Builder

NEW FACT FACTs NEW FACT FACTs

ES I ES II

Deduced
FACTs

M
E
A
S
U
R
E
S

D
I
A
G
N
O
S
T
I
C
S

Access
FACT

U º » V î V ï ð X g i Y ] _ º d c Y a d a [ Z ] Z º X [ X \ ñ ò º [ Z k XY a W a Y ^ V ó i Z c i Z \ ] ` Z ^ ` X d a \ _ X d g a g i ` Z º X [ ^ X _g º _ a ` Z Y h \ _ X d Z b a º [ c i Z V
Fig.  6.7 show the how the ES deals with input data supplied as facts. The first

ES block decides about system regime (transient, permanent) and deduces simple
situations of abnormal operation mode assigning a certainty value to these new
facts. The second level yields final deductions about process behaviour when a
fault is provoked.  This second level uses both, deductions of previous level (ES
block) and input facts supplied to first block. The division in two levels is
performed after observing the KB obtained from observations and structuring it
as two sets of rules.

Final implementation of the complete system in the proposed CASSD
framework, is depicted in Fig.  6.8. The information elaborated by the abstraction
tools is supplied to the ES for fault detection. Facts are the kind of data structure
that the ES can manage, then a dedicated block, , performs this task (See Fig.
6.8). In this case, input facts are obtained from : set point, difference of levels
(qualitative tendency, qualitative deviation and filtered signal), error (qualitative
tendency, qualitative deviation and filtered signal),and time. The ES is structured
in two KB for reasoning about process behaviour using abstracted information.
NIQO error and NIQO N1-N2 represent the abstraction tools applied to signals
error and difference of levels to supply qualitative information about its
qualitative tendency and degree of deviation respect this tendency. Numerical
input is filtered and also supplied to the ES. This information is encapsulated as
facts to be used by the ES. This is the task of blocks connected as input to the
multiplexer (Mux) in Fig.  6.8.
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Abstraction tool used in this example has been implemented by means of
Simulink blocks. Thus, qualitative information provided by NIQO block is
obtained smoothing input data for rejecting oscill ations. Then, a qualitative
tendency is obtained from derivative of this smoothed signal splitti ng the
amplitude space in five zones (five categories or labels of tendency are obtained).
At same time smoothed signal is subtracted from original signal for obtaining a
qualitative index related with the deviation respect to tendency (in this case only
three possible qualitative deviations are used). A complete description of this
abstractor can be consulted in [Colomer et al. 1996] and Fig.  6.9 for a graphical
representation ins Simulink blocks. Thus, each NIQO block supplies three output
(smoothed signal, qualitative tendency and qualitative deviation respect this
tendency).
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Evolution of difference of levels is represented in Fig.  6.10 when "Valve 1" is
closed to simulate and obstruction in the interconnecting pipe. The evolution of
deduced diagnostics is reproduced below abstracted information. Diagnostics are
given in a permissible delay of time. The elapsed time for diagnostics could be
reduced but this implies that uncertainty of these deductions increases.
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Rules are arranged according to the CEES syntax as shown in Fig.  6.11. They
can use both numerical and qualitative information as facts, and the certainty
associated to these facts is combined when the rule is fired. The deduced facts
inherit the resulting certainty.
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This example has been used to demonstrate the benefit of using abstraction
tools for interfacing process variables and ES. The abstraction tools are used to
obtain significant information at higher abstraction levels (qualitative
information) from numerical signals. The kind of tool to use in each development
will be different and the goal is not to build a dedicated abstractor for each
application, but to choose the best for each application from an abstraction
ToolBox. This simple application shows that different information can be used
from a single signal. Thus, it will be better if all the information abstracted from
this signal will be encapsulated in object-variables and accessible without using a
dedicated output line for every attribute. In this case the realisation will be as it is
depicted in Fig.  6.12.
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The benefit of using this architecture is to reduce time in the integration task
and to design new abstraction tools. Although a large set of abstraction tools
have been developed and tested, they are not yet implemented under object-
variables and only simple ones are translated to this architecture.
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In the following paragraphs an example of how the representation language
ALCMEN is used to estimate qualitatively a variable. After the numeric to
qualitative conversion using the filtering approach proposed in ALCMEN, the
qualitative process variables are combined using static and dynamic operators to
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obtain a new qualitative variable. This example has been presented in [Melendez
et al. 1996a] . A simulated process and controller is used in this example, namely
the previous described laboratory plant composed by two coupled tanks with a
PID controller that regulates the level of  Tank_2 (See Fig.  6.1in previous
subsection).

In this case, the goal is to deduce roughly the qualitative evolution of the level
of tank_1  (Level 1) by means of regulator input and output variables (control and
level in tank_2). It is presupposed that not information is available about pipes
calibre and diameter or shape of tanks. Information about the process is reduced
to ranges of process variables. This is 0-10 volts for control variable and 0-31 cm
for tank levels. Level 1 from the simulated plant will be used, exclusively,  to
validate results obtained from qualitative relations used to deduce the qualitative
Level 1 (L1), as it is explained in the following paragraphs.
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For this purpose, control and Level 2 are used as numerical process variables.
They are converted into a qualitative representation by using a block for building
object-variables with the ALCMEN filtering method (C and L2 are the
qualitative representation of control and level2, respectively). ALCMEN blocks
will be used to perform simple relationships between the qualitative
representation of process variables in order to deduce the Level 1 evolution.
According to physics laws and simple dependencies from common sense, simple
qualitative dependencies can be used to estimate level 1 dynamics (L1).
Variations of the level of tanks (∆L) are produced because a change in the input
(Qin) or output flow (Qout) of the liquid. Then, level 1 is interrelated to its input
(Q1) and output (Q12) flow, at any sample time (k), by (αα operator means a kind
of direct dependency between both sides of the equation) :

∆L1(k) Q1(k) - Q12(k)α Eq. 6-1

L1(k) L1(k 1) L1(k)= − + α ∆ Eq. 6-2
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Thus, the problem of representing level 1 is reduced to deduce both the input
(Q1) and output (Q12) flow of tank_1. Q1 is directly related to the control signal
considering the motor-pump with rapid response :

Q1(k) C(k)α Eq. 6-3

And Q12 depends only on the difference of levels. If both levels are equal,
then there is no flow and the variations on one level provoke a proportional
variation in the flow. This is expressed in the relation :

Q12(k) L1(k) - L2(k)α Eq. 6-4

Using ALCMEN representation, these simple ‘equations’ can be reproduced.
Level 2 and control are defined as numerical variables, and filtering is applied for
obtaining a qualitative representation (L2 and C) in their lexical domain (Ls, Lc).
The lexical domains Ls and Lc are defined :

Ls={(<empty>,0),(<very low>,1),(<low>,2),(<normal>,3),(<high>,4),(<very high>,5)}

Lc={(<low>,1),(<normal>,2),(<high>,3)}

Numeric limits for the crisp zones of their ranges are selected to design each
label, according to the observation referred to normal operation mode. For
example, permanent regime is establish with control variable around 5 volts.
Then, normal label is selected to design this zone (4-6 volts) and inferior and
superior regions are labelled as low and high.

Level 2 (m.): [0 5 10 15 20 25 30]

Indices:       0       1       2       3       4       5
Labels : empty  v. low   low  normal   high    v. high

Control (volts): [0 4 6 10]

Indices : 1 2 3
Labels :           low        normal          high

And filtering is applied

L2 = F(level2 / 0,5) Eq. 6-5

C2 = F(control / 1,3) Eq. 6-6
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Using these qualitative variables, C and L2, the evolution of L1 is deduced at
any sample time, k, according to the previous relationship by following the
qualitative ALCMEN dependencies :

Q1(k) C(k)= Eq. 6-7

Q12(k) L1(k) - L2(k)= Eq. 6-8

∆L1(k) = Q1(k) - Q12(k) Eq. 6-9

L1(k) L1(k 1) g L1(k)= − + • ∆ Eq. 6-10

Using ALCMEN block representation in the CASSD framework, previous
relation are implemented as is depicted in Fig.  6.14,  where blocks labelled as L2
and C, encapsulate numeric and qualitative data in their respective object-
variables. Filtering (embedded in the same object-variable) has been used as
numeric to qualitative interface. The block labelled as � � � � � � �  is used to
estimate the qualitative difference (comparison) between L1 and L2, and the
output is supplied to � � � � � � � . This block performs the difference between the
input and output flow, but due to the fact that different lexical domains are used
in this relationship, the lexical difference can not be used. In spite of this,
drawback, a difference between both magnitudes can be calculated using tables.
In this case, block � � � � � � �  has been used.
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Block � � � � � � �  is defined to calculate a modified difference at same time that
some non-linearity is added to this operation.  The table used is represented in
Fig.  6.15.
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Lexical  domain C
label low normal very high

indices 1 2 3

Lexical  domain L1-L2
label nul v. low low normal high v. high

indices 0 1 2 3 4 5

Lexical  domain ∆L1
label neg. high negative nul positive pos. high

indices -2 -1 0 1 2
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Level 2 can take any value between maxima and minima, depending on the set
point value. The evolution of Level 1 is always tied to Level 2. Therefore, the
zones used to quali fy Level 2 and Level 1 will be analogous; moreover, the
lexical domain must be the same for both variables. This supposition has been
taken into account when using lexical difference between both variables.
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To test the benefits of this qualitative observator, the result obtained has been
compared with the filtered value of the simulated level1. This task is done by the
block labelled F(label 1) in Fig.  6.16.  Both behaviours are depicted in Fig.  6.17
when changes in the set point are ordered. Note that L1 and F(level1) are
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coincident in a permanent regime. Dynamics are also preserved although some
undesirable transition between indices is given. This is due to the nature of the
qualitative simulation with crisp transitions between zones. For example at the
beginning of Fig.  6.18, level 1 and level 2 have undesirable transitions because
limit of zones election is exactly the value in the steady state (5cm. for level 2).
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In a larger and more accurate simulation, several situations can be introduced
in the process. For example, process dynamics can be changed by narrowing the
fluid pass between tanks. This has been done closing valve V1. The evolution of
process variables (level2 and control) and the qualitative observed level1 (L1) are
represented in the next figures, when the valve is open (Fig.  6.18) and closed
(Fig.  6.19) and the set point is changed every 750seg.  Process dynamics are
different because of this introduced structural change (V1 closed).
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For instance, this qualitative machines could be used to provide ESs with
meaningful information, avoiding to perform relations between variables into the
ES. In the example, a non-accessible process variable is roughly deduced.
Although the evolution of L1 is not very precise, it seems suff icient to deduce
some changes in the dynamics of process.
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Next step is to deal with this qualitative deduced data,  using it for reasoning
tasks. For instance the previous example of fault diagnosis system of two coupled
tanks can be reproduced, using control and level 2 as accessible process variables
and using the  ALCMEN relationship to roughly estimate the level 1 dynamics.
The configuration for this example is depicted in Fig.  6.20 ALCMEN blocks are
prepared to deal with object variables, using only their stored qualitative
information and rebuilding new object-variables at their output. This object-
variables are stored into facts to be supplied to the ES.

This configuration is being tested. The main diff iculty is using the qualitative
deduced information because of the crisp zones. Changes in the qualitative
estimated variables produce sudden transitions from one diagnostic to the
opposite one. Fuzzy capabiliti es of ES are being used to smoothen these
transitions, but this is not always satisfactory.
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Simple qualitative relationships have been used to predict the evolution of the
temperature in a furnace for the incineration of a municipal solid waste (MSW).
This is a real plant established in Girona (Spain). The activity of the plant is to
burn MSW coming from the metropolitan area for producing electricity. MSW
are used as row material to heat water for producing the steam flow that moves a
turbine. M7SW are burned in a furnace to produce high temperature flue gases
(1000 ºC) that are used to heat the water. The main diff iculties in controlli ng the
furnace, and consequently, the evolution of the output temperature,  are due to the
diversity of calorific value and humidity of the input (MSW). This temperature
must be controlled to assure a regular steam flow.

This section is reproducing the partial work done to determine the influence of
the quality of MSW on the evolution of the temperature of the furnace’s output
fumes. The goal is to establish a qualitative model to predict the output
temperature of the furnace. This work is not finished yet, but partial results are
reproduced here to demonstrate the capabiliti es of using block representation of
ALCMEN relationship in qualitative modelling.

6.4.1. Plant description : the furnace.

The main component of a furnace used to burn MSW is the grate. In the plant
of Girona, this is a Martin grate with two inclined conveyors with backward
movement. An hydraulic ram is used to activate the grate to produce a to-and-
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from movement to make the refuse to advance while it is burning. Ashes are
separated by gravity. Fig.  6.21 shows the situation of the main components in the
furnace. The MSW passes through three different areas in the grate. The first one
is the drier, where the refuse is heat at high temperature to decrease its humidity.
Later on, in the combustion area, the refuse is burned and transformed in ashes
and slag. Finally, the fire extinguishes in the third area and the slag is ejected.
Although the refuse is dried in the first area, when it goes trough the second area,
the calorific value and the humidity of this material is not constant, and it is
difficult to control the furnace to assure an uniform flue gas.
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The burning capacity of this kind of ovens is basically determined by the
following variables:

• Quality of  MSW (calorific value, humidity, density, composition,
volatile components, ashes).
• Temperature (in the oven, of the output gas, combustion air)
• Air flow ( In the primary and secondary circuit)
• O2 contents.
• Steam flow.

These variables are strongly interrelated. It is diff icult to establish a dynamic
model of the furnace, because some of these variables are diff icult to measure or
present a non-uniform distribution in the oven. Despite that the exact
dependencies are not quite known, the influence of some variables on the
evolution of the furnace is clear and, in fact, control is basically performed
actuating on three variables:
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• Combustion air flow.
• Grate movement. Velocity and displacement.
• Quantity of input waste.

Actions on these variables are decided according to the temperature evolution,
MSW-quality and steam flow in the normal operation mode. O2 contents are
taken into account in start and stop modes. The first variable, combustion air
flow, is automatically regulated according to the set point established. And the
second and third variables are manually tuned according to the temperature
variations (in the furnace and steam flow) and MSW-Quality.

6.4.2. About MSW quality.

Municipal waste include a wide range of materials, such as rubbish,
vegetables, fruits, paper, plastic, glass, tin  and so on. All of these materials arrive
to the plant mixed in different proportion according to the point of origin in the
city (market, city centre, residential area, service enterprises, ...) and the time, and
they are stored mixed within a bunker to be supplied to the furnace.
Consequently, the evolution of the furnace is strongly dependent on the quality of
these MSW, which is a parameter diff icult to measure or estimate. The influence
of humidity and calorific value of the material in determining the quality of MSW
for incineration as depicted in Fig.  6.22 is obvious, but it is also diff icult to
measure both parameters since it is not an homogeneous mixture.
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Therefore, the charge of the furnace is always assisted by an human operator
who observes the composition of the row material and decides about its quality.
This information is used to adjust the grate movement and the input quantity.
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6.4.3. Qualitative estimation of temperature.

The main problem in controlli ng the furnace described before, is the kind of
row material used as input and the inherent diff iculty to measure it. As a
consequence, the temperature measured of the flue gas, used in the steam
production, suffers sudden variations as shown in the register of Fig.  6.23. The
output temperature is not very useful in controlli ng the furnace because of the
thermal inertia of the furnace. Therefore, it seems better to undertake some action
to anticipate process dynamics.
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Thus, the challenge is to take benefit of the operator experience and process
engineer knowledge and to try to predict the evolution of the furnace. Expert
engineer established the influences depicted in Fig.  6.24 between process
variables and MSW, when a positive variation is given one of the MSW
parameters depicted in the figure :
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With the goal of using expert observances, process operators were asked to fill
a table to roughly classify the quality of MSW input, according to their expert
criteria, and the changes performed in the furnace parameters (grate velocity and
variation of MSW quantity). This information has been used to estimate the
temperature variations in the furnace without taking into account the regulation
of the combustion air flow. ALCMEN has been used with this goal to establish a
graph and to simulate these dependencies. It has been tested with the data of a
fortnight during the summer. The lexical domain for the all the variables involved
is defined with two positive labels for positive increasing (indices 1 and 2) and
two negative, for decreasing situations (indices -1 and -2) from the normal mode
(index = 0). The MSW-Input quantity and grate velocity are obtained directly as
qualitative variables according to the position of commands selected by the
operator. On the other hand, the indices corresponding to MSW quality are
estimated to be centred  between 25% and 30% because the period of year during
which the measures have been acquired, i.e. summer, is characterised by wet
garbage (due to the big amount of fruits and vegetables).  Then, the indices used
are :

MSW-Quality :  - 2        -1       0            1                 2

    20     25     30                    55 % MSW-Quality

MSW-Input quantity : - 2           -1             0            1         2

Grate velocity : - 2           -1             0            1         2

And the ALCMEN relationship in the CASSD framework, modelli ng the
positive influence of these variables in the evolution of temperature, are depicted
in Fig.  6.25.
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 Two simple blocks (Qsum and Qsum2) have been used to add the MSW
influence (Quality, Grate-velocity and quantity of MSW Input). The behaviour of
this qualitative estimator is tested using qualitative data supplied by the operators
as input and the register of temperature in the oven. The temperature evolution
has been smoothed and quali fied in 5 zones around the average value. The
comparison of both can be observed in Fig.  6.26.
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The validity of these results is up to 215 hours because after that all i nput
remains constant (it was because an emergency occurred and operator left the last
value). When the time equal 260h. the temperature is decreasing very fast due to
a stop in the plant and which is not reflected in the input set of values. Then, the
final set of data must be rejected. The evolution of qualitative estimated
temperature and the quali fication of real data have similar behaviour. There does
not exist a perfect matching between both, but large oscill ations are more or less
detected. A delay between both can be observed, because the temperature
transmitter is placed very far from the input of MSW, and the data given,  refers
to the input MSW. Moreover,  MSW quality is given outside of the input hopper.
Although the general evolution is satisfactory, it must be contrasted with more
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data and added with the influence of the air flow although it remains constant
when selected a working point.
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In the process of developing an ES for fault diagnosis the validation of KBs is
very important. When the design admits a modular partition of the ES in
specialised tasks, the validation becomes easier. This example is to show how a
CASSD framework can be used to validate one module of the ES.  In this case,
the application was built as a stand-alone application linking the ES LabCEES
with a SCADA system monitoring a central heating plant used for training. The
CASSD framework was used to test and tune rule parameters (limits, certainties,
ranges) in the ES using real data stored in the SCADA system.

A synoptic of this training plant, extracted from the SCADA system, is
reproduced in Fig.  6.27. Three boilers (one petrol boiler and two gas boilers)
heat water in the primary circuit and this water is pumped by two motor-pumps.
A heat exchanger is used to transmit the heat to the secondary circuit. The
primary circuit is auto-regulated by means of three ways valves to avoid returning
water to be excessively cold. This situation could cause damage in the boiler.
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The role of the ES is to supervise the primary circuit to prevent obstructions in
the pipes by using measured pressures and temperatures. The obstructions are
simulated by closing valves at different points.

In this case, some faults (obstructions) have been reproduced by closing valves
and storing data using the SCADA system. These data have been analysed in the
CASSD framework. Simple ES modules have been developed to prevent fault
situations. The idea is to develop simple supervisors specialised in detecting a
single fault. Measures are directly converted into facts, and supplied to the ES
module to reason about them. One of these modules is tested in Fig.  6.28 to
diagnose about status of valve labelled as VBPrp. Its normal state is closed and
misbehaviour is simulated closing this valve. In this case fault detection is
diff icult because the presence of a regulated valve in parallel with this one that
compensates the perturbation introduced when VBPrp is open. Additional
drawback in this process is due to instrumentation restrictions. Measures of
pressures are only available in pairs. Thus, we can only get simultaneously the
pairs of pressures labelled as : Pa1-Pa2, Pb1-Pb2, Pc1-Pc2, Pd1-Pd2 and Pe1-
Pe2.
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In this kind of process, primary circuit is closed. It means that an obstruction
or a similar functional misbehaviour is reflected in the pressures sensors in
similar way independently of the localisation of the obstruction. Moreover, the
evolution of Pa1 and Pa2 is similar for all obstruction and is better to use Pc1 and
Pc2. Thus, following paragraphs are related to this second fault in Fig.  6.29.
Therefore, if it is diff icult to detect a fault using only pressures (Fig.  6.29), the
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use of temperatures (T1-T7) and additional information about openness degree of
the three ways valve (Fig.  6.30) is necessary to locate the fault (diagnose).
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In this case the difference of temperatures T1 and T7 related to the position of
the valve (openness degree) is used to differentiate valve VBPrp from valves
VOg1b2 and VIg1b2 during the uncertainty time. The evolution of output facts
certainty in the successive approaches of rules can be observed in the graphs of
Fig.  6.31. When additional relations are taken into account, faults can be
isolated.
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After validation of each module rules they can be interconnected to validate
the whole ES. In this case, the CASSD framework was only used in validation of
partial KB modules using acquired data. The final implementation was performed
in LabCEES connected with the SCADA system by means of dynamic data
exchange (DDE) because diff iculties in acquiring pairs of pressures. This task is
managed by the SCADA systems according to data asked by the ES. This final
implementation is described in [Martinez, 1997]. This is the report of a
complementary work of this thesis.
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Global conclusions are summarised here, while partial conclusions have been
added at the end of each chapter. Main points developed in the work are
emphasised and commented in the first subsection while future work and open
lines derived from this work are added in the second subsection.- . / 0 1 2 3 4 5 6 7 8 2 3 7 0

Despite of the great number of tools and techniques to assist engineers in the
design of supervisory systems there is not an unified theory and methodology to
follow in such developments. While analytical methods have been proved to be
successful in the first stage of supervisory systems, i.e. analytical model-based
fault detection, following steps are always needed of knowledge-based
techniques. Moreover, the diff iculty in obtaining accurate models of process,
causes that expert knowledge will be necessary in many applications even in fault
detection. Consequently, AI techniques must be used together with numerical
faciliti es for representing and processing expert knowledge into computers. At
this point, main diff iculties are in managing different kind of information, such as
data (numerical, qualitative, symbolic or logic) and knowledge, and in integrating
the tools needed for this purpose. It would be very convenient of disposing of all
of these tools, from the AI domain and numerical methods, available in the same
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framework to facilit ate design task. Additional tools for  representing, evaluating
and testing are also necessary.

Major effort in the work has been focused on  obtaining a framework for
assisting supervisory tasks in the design time. The proposal is centred on
integrating such tools that are required for dealing with expert knowledge.
Consequently, the presented framework has been developed by adding artificial
intelli gence techniques into a CACSD framework. Several mechanisms have
been developed to support engineers to represent knowledge in a graphical user
interface. The benefit of using a graphical user interface simpli fies learning and
development tasks.

MATLAB/Simulink has been chosen as starting point because its openness,
graphical user interface (block  based graphical user interface), proximity to
control community (control ToolBoxes and extended use) and numerical faciliti es
(representing capabiliti es and signal processing ToolBoxes). The same proposal
could be tested in another CACSD framework with similar capabiliti es. In fact,
G2 was tested at the beginning, because its more extended use in industrial
environments, but it was left behind because its poor support for signal analysis
and processing, needed in the interface between expert system and process
(abstraction tools) and diff iculties for dealing with uncertainty and imprecision in
the rule-based ES.

MATLAB/Simulink openness has given the opportunity of testing OOP as
integration technology. Integration has been done at level of process variables.
The concept of object-variable has been introduced in this thesis as objects
dealing with dynamic data (process variables). Object-variables are used to
encapsulate all necessary information related to variables, such as numerical data
(from sensors, simulations or other numerical sources), qualitative data
(qualitative description of process variable, landmarks, and so on), methods (to
obtain significant numerical or qualitative data) and parameters (supplied by
users). Specific Simulink block has been designed to deal with object-variables
building preserving some of the commonly accepted properties of objects such as
inheritance, encapsulation and data hiding. Some attributes of the  object-
variables are dynamically actualised at each sampling time (process related
information) while others can be changed asynchronously by users (parameters).
Object-variables are used to obtain a plain integration of tools. The objective
consists in that any tool can access process variables in the best representation
(acquired signal, abstracted significant information or qualitative representation).

A set of tools from the AI (Abstraction tools, ALCMEN, CEES), have been
selected to be integrated in this framework to assist developing of supervisory
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structures avoiding interfacing problems. Tools have been adapted to have a
Simulink block representation with capabilities of dealing with object-variables.

Abstraction tools or abstractors are the set of algorithms tested to be useful as
numeric to qualitative interfaces. These are the algorithms to embed into object-
variables to provide the adequate representation of process variables at each tool.
Multiple algorithms can be used with this purpose and the goal is to dispose of a
library of object-variable builders with different capabiliti es for qualitative
representation and abstraction of significant information. The election of one or
other for any task depend on both, the process  variables and the application to be
developed. Until now, only two different types of object-variables have been
build according to two abstraction methods (histogrames and ALCMEN filtering)
but several types of  abstractors are being tested to be added as  object-variables.
Special emphasis is done in methods based on temporal window and triangular
representation. The first, because they give smoothed representation of signals
behaviour that avoid undesired changes in the qualitative representation of
signals and they offer the possibilit y of event generation. Triangular
representation is though to provide qualitative representation of signals in
episodes.

ALCMEN has been chosen as a representation language for representing
simple qualitative relationship and dependencies. It is not conceived as a
simulation language, but its utilit y as qualitative observer, to roughly deduce or
estimate not accessible process variables, has been demonstrated. Intuitive
relationship, or more formal qualitative models, can be build to be driven with
numerical variables. ALCMEN has been tested with success in several
applications because its simplicity and easy use and tuning. A more complete and
formal qualitative simulation language, is thought not to be useful in supervisory
tasks because the imprecision and uncertainty degree introduced after several
iterative steps.

The necessity of production rules for knowledge representation has been
solved with the shell CEES. It has been selected because its capabiliti es of
dealing with uncertainty and imprecision in both data and rules. CEES is based
on the object oriented approach where ES are objects reasoning about facts. Facts
are build from object-variables. ES and fact builders have a block representation
in the framework for an easy use.

Nowadays, the development of object oriented technologies offers a good
solution to structure information. This is very useful when developing large
applications. This is the case of supervisory systems where several tools can be
applied but all of them dealing at  different abstraction levels. When this tools
comes from the artificial intelli gence domain, the problem of managing and
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interfacing them increases and the manipulation and reformatting of data  become
necessary. In such applications the use of objects allows both data and tools
encapsulation facilit ating its use. In this work, data is encapsulated at two
different levels as object-variables or facts. Data flow from one tool, represented
by a block,  to another block. The interface between data levels is performed by
‘object-builders’ blocks. Other blocks give direct access to any field in the object
to work as numerical Simulink data.

Capabiliti es of using this framework in several steps of the supervisory chain
have been tested in several applications. ALCMEN has been validated as useful
tool for building qualitative observers. It has been used to estimate a process
variable by using qualitative representation of available numerical process
variables and performing qualitative relationship between them. In this case
ALCMEN blocks takes the qualitative representation of numerical variables from
the object-variable structure. Simple qualitative models based on variables
interaction have also been built . The use of ES interfaced by abstraction tools to
provide adequate representation of dynamic process variables through time has
also been successfully tested. Main diff iculties are in choose adequate parameters
to tune abstraction tools to interface description of variables given by experts
with numerical variables coming from process. The use of qualitative
observations provided by ALCMEN relationship,  together with the ES is being
proved. Diff iculty increases in this case because the imprecision (in time and
magnitude) of qualitative observed variables.

Experiences with this framework have demonstrated its usefulness for
developing supervisory strategies according to rapid prototyping methodology.
This is the iterative procedure based on the steps of concept development,
knowledge implementation, testing and analysis to reach the desired goals.

To summarise the main results presented in this thesis consist of the following
developments :

• Conceptual study, analysis, development and implementation of
qualitative and symbolic knowledge processing tools for computer
aided supervisory system design .
• Incorporation of object oriented technology into MATLAB/Simulink
environment.
• Implementation and incorporation of ALCMEN, set of tools for
dealing in representation and reasoning with qualitative information, as
a set of blocks as a Simulink ToolBox.
• Implementation and incorporation of rule-base object-oriented
methodologies into the MATLAB/Simulink environment. The expert
system CEES ToolBox.
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• Study of possible practical applications on the base of several
examples presented in the thesis.

All the tools were implemented within the same computational platform.  This
is an important factor deciding about easy access to user friendly environment for
developing practical applications. The implemented tools provide extended
capabiliti es, especially with respect to symbolic information processing which are
not accessible in the original system. The augmented in this way extended
numerical-symbolic design environment should constitute  a new paradigm for
Computer Aided Supervisory System Design.± ² ³ ´ µ ¶ · ¶ ¸ ¹ º » ¸ ¼ ´

Necessity of dispose of a framework to design and test supervisory
architectures was in the aim of the thesis. It is an actual and open research line.
This thesis is only a starting point and it is still open in many points. More
emphasis must be put in defining objects hierarchy and architecture for both data
encapsulation and tools management. In fact actual framework can be enhanced
in following topics :

• The use of object-variables has been tested to be useful as numerical
to qualitative interfaces. Therefore, a complete set of these object-
variables must be build as a complete library according to presented
abstraction algorithms.
• More complex object-variables, as actual facts, can build in a
hierarchical architecture to represent knowledge about process
variables. This will be useful for new tools dealing with knowledge
representation and processing.
• ALCMEN, can be improved adding imprecision management in the
relationship. Fuzzy logic can be applied in the tables implementation
performed. In the same way numeric to qualitative conversion, filtering,
can be implemented as a fuzzyfication and actual qualitative variables
can be converted to fuzzy sets.
• The ES, CEES, it is being redesigned to obtain a more flexible
architecture to deal with any object-variable. The inference mechanism
can be improved with backward tracking and multiple step reasoning.
• Additional tools, analytical and AI,  must be integrated to deal with
object-variables. For instance statistical methods or classification
algorithms can be used to improve supervisory strategies.
• Data base management could be added to this framework to deal
with case-based reasoning. The combination of several reasoning
methods with different types of knowledge representation can be useful
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for the reuse of stored cases in order to detect specific situations and
prevent abnormal operation conditions.

All of these improvements must be done under the new version of MATLAB
(v.5) and Simulink (v.1.2) taken into account additional features and capabiliti es
offered by MathWorks. New structures, near to objects, and ToolBoxes such as
Stateflow and enhanced user interface controls are in the same line an will
improve final result.

Moreover, actual tendencies in distributed application could also be used to
implement a framework for designing supervisory applications. With this aim
integration capabiliti es can be extended to be used as an in open framework of a
distributed architecture. For this purpose, it is necessary to rebuild the
environment according to a reference model. One possibilit y is to adopt the
Object Model proposed by the OMG (Object Management Group) . The benefit
of using this model is in the interfacing stage of new and distributed (in the
network) tools [Vinoski, 1997]. The CORBA (Common Object request Broker
Architecture) specifications  adopted by the OMG [OMG, 1995] , details the
characteristics and interfaces to access to other object tools. Using this reference
model for the supervisory tool can facilit ate the  design of supervisory  structures.
Object-variables implemented under this model, or higher object structure
grouping several object-variables can be used as server application to provide all
necessary information related to process measures.
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Acronyms and Abbreviations :

AI : Artificial Intelligence
ALCMEN : Automaticians Language for Causal Modelisation for

Expert kNowledge
CAD : Computer Aided Design
CAE : Computer-Aided Engineering
CASE: Computer-Aided Software Engineering.
CACE: Computer-Aided Control Engineering.
CACSD: Computer-Aided Control Systems Design.
CASSD : Computer -Aided Supervisory Systems Design
CEES : C++ Embedded Expert System.
CORBA: Common Object Request Broker Architecture
ES: Expert System
ECMA: European Computer Manufacturers' Association
FIR : Fuzzy Inductive Reasoning
KB: Knowledge Base
NIST: National Institute for Standards and Technology (USA)
OOCACSD: Object Oriented Computer Aided Control Systems Design.
OOES : Object Oriented Expert System.
OOP : Object Oriented programming
QR : Qualitative Reasoning
SCADA : Supervisory Control and Data Acquisition. 
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Packages

G2 Trademark of Gensym
MATLAB Trademark of the Math Works, Inc.
Matrixx Trademark of Integrated Systems, Inc.
Simulink Trademark of Math Works, Inc.
Windows Trademark of Microsoft.



� � � � � �  � ! " � " # $ � " % & � ' � � ( )  * � ' + , -  & ! �  � ! . � +  � ' / - 0 � � ! 1 2 " " & *# " � 3 �  & 2 ! 0 � 4 5 �  0 ! 1 6 5 * � � 0 * 6 - 7 � � . ! * ! " �

Bibliography    - 139 -

8
9 : 9 ;

[Aguilar-Martin, 1991a], “ALCMEN,A language for qualitative/quantitative
knowledge representation in expert supervisory process control” . LAAS
Report. Jan, 1991.

[Aguilar-Martin, 1991b], “Representación simbólico numérica para sistemas
expertos de control en tiempo real” , Curso de Verano Universidad
Internacional Menendez Pelayo, Santander, 1991.

[Aguilar-Martin, 1993], “Knowledge-based Real Time Supervision of Dynamic
Processes : Basic Principles and Methods” , Applied Control : Current
Trends and Applied Methodologies, Ed. Marcel Dekker, Inc. , 1993.

[Aguilar-Martin, 1994], “Qualitative control, diagnostic and supervision of
compelx processes” , Mathematics and Computers in Simulation, 36, pp
115-127, 1994.

[ < rzen, 1995], “Experiences of using G2 for real-time Process Control” , in
“ Supervision de processus à l’aide du système expert G2” , Ed. Hermes,
Paris.

[ < rzen, 1995b], “AI in the feedback loop : A survey of alternative approaches” ,
in IFAC Workshop on “Artificial Intelli gence in Real Time Control” , pp :
207-218,Bled, 1995

[ < str = m, Anton and > rzén, 1986], “Expert Control” in Automatica, 22 :3, pp :
277-286, 1986.



? @ A B C D E A F G @ G H I @ G J K B L C B M N E O B L P Q R E K F A E A F S B P E @ L T R U B D F V W G G K OH G D X B E K W F U B Y Z @ E U F V [ Z O A B U O [ R \ B D S F O F G @

Bibliography    - 140 -

[ ] str ^ m et al., 1993], ] strom, T. Hägglund, C.C. Hang, W.K. Ho,  "Automatic
Tuning and adaption for PID controllers- A survey", Control Eng.
Practice, Vol 1, N4, pp 699-714, 1993.

[Ayrolles et al., 1995], Ayrolles L., Aguilar-Martin J., Guerin F., "Interprétation
Symbolique pour la Supervision Multi -Résolution de Processus
Dynamiques", Supervision de Processus à l'aide du Système Expert G2,
pp 73-90, Ed Hermes, 1995.

[Ayrolles, 1996], _ Abstraction temporelle et interprétation quantitative/
qualitative de processus à dynamiques multiples. Application aux
processus biologiques̀ , These de Doctorat Universite Paul Sabatier,
Toulouse, France, 1996.

[Bakshi and Stephanopoulos, 1994],  B.R Bakshi and G. Stephanopulos,
"Representation of process trends, part III and part IV", in Computer
Chem. Engng. Vol 18, No 4 pp267-332, 1994.

[Bakshi B.R. et al., 1994], "Analysis of operating data for evaluation,diagnosis
and control of batch operations", Journal of Process Control, vol 4, nº 4,
pp 179-194, 1994.

[Barker, 1995], Barker H.A., "Open-environmets and Object-oriented methods
for computer-aided control systems design", Control Eng. Practice, Vol.
3, pp 347-356, 1995.

[Blankenship et al., 1995], Blankenship G.L., Ghanadan R., Kwatny H.G.,
LaVigna C., Polyakov V., "Tools for Integrated Modeling, Design, and
Nonlinear Control", IEEE Control Systems, vol 15 nº 2, pp 65-77, 1995.

[Bohn and Atherton , 1995], "An Analysis Package Comparing PID Anti-Windup
Strategies", IEEE Control Systems, vol 15 nº 2,pp 34-40, 1995.

[Bobrow, 1984], “Qualitative reasoning about Physical Systems : An
Introduction”, Artificial Intelligence, 24, pp : 1-5, 1984.

[Cassar and Staroswiecki, 1996], “Pour una approche unifiée de la surveill ance”
in Preprints of Surveill ance des systèmes continus, Tome 1, Ecole d’Eté
d’Automatique de Grnoble, Sept. 1996.

[Cheung and G. Stephanopoulos, 1990], “Representation of process trends - Part
I and Part II“, Computer Chemical Engineering, 14, pp 495-540, 1990.

[Chipperfield and Fleming, 1995], "PARSIM: A parallel Optimization Tool",
IEEE Control Systems, vol 15 nº 2, pp 48-53, 1995.

[Colomer et al. 1996],  Colomer J., C. Pous, J. Melendez, J. Ll de la Rosa, J.
Aguilar,”Abstracting Qualitative Information for process Supervision” ,
IEEE International Symposium on CACSD, pp. 410-415, Dearborn, MI,
1996.



a b c d e f g c h i b i j k b i l m d n e d o p g q d n r s t g m h c g c h u d r g b n v t w d f h x y i i m qj i f z d g m y h w d { | b g w h x } | q c d w q } t ~ d f u h q h i b

Bibliography    - 141 -

[Colomer et al. 1997], Colomer J, Melendez, J, De la Rosa J.L., Aguilar, J. “A
qualitative/quantitative representation of signals for supervision of
continuous systems”, in ECC97, ECC382.pdf, Brussels, 1997.

[De Kleer and Brown, 1984] “A qualitative physics based on confluences” ,
Artificial Intelligence, Nº 24, pp 7-83, 1984.

[De la Rosa J.Ll, 1994], "Heuristics for cooperation of expert systems.
Application to process control", Universitat de Girona, 1994.

[De la Rosa et al., 1995], De la Rosa J.Ll., Colomer, J., Meléndez, J., “Qualitative
Modelli ng for partially known biotechnological process” , in 'Current
trends In Qualitative Reasoning and Applications” , pp. 114-119,
Monograph CIMNE Nº 33, Barcelona (Spain), 1995.

[Denoeux, Masson and Debuisson, 1996] “System diagnosis using Pattern
Recognition Techniques : A Survey” , in Surveill ance des systèmes
continus, Tome 1, Ecole d’Eté d’Automatique de Grenoble, Sept, 1996.

[Dorf R.C., 1993], "Exploring Control Design Variables", Proceedings of the
American Control Conference, pp 3062-3066, 1993.

[Du, Elbastawi and Wu, 1995a] R. Du, M.A. Elbastawi and S. M. Wu,
“Automated process monitoring., Part I : Monitoring methods” , in
Journal of Engineering for Industry, 117 : 121-132, 1995

[Du, Elbastawi and Wu, 1995b] R. Du, M.A. Elbastawi and S. M. Wu,
“Automated process monitoring., Part II  : Applications” , in Journal of
Engineering for Industry, 117 : 133-141, 1995

[Frank, 1996], “Analytical and Qualitative Model-based Fault Diagnosis -A
Survey and Some New Results” , in European Jouranl of Control ,2 :6-
28, 1996.

[Frank and Köppen-Seliger, 1995] “New developments using AI in fault
daignosis” , in IFAC/IMACS International Workshop, Bled Slovenia,
Dec. 1995.

[Ganz, Kolb and  Rickli , 1993], "A Data Management Tool for Computed Aided
Control Engineering", Proceedings of the American Control Conference,
pp 3076-3080, 1993.

[Gentil , 1996], “ Intelli gence Artificialle pour la Surveill ance des procédés
continus” , in Surveill ance des systèmes continus, Tome 1, Ecole d’Eté
d’Automatique de Grenoble, Sept, 1996.

[Grübel, 1993], “ANDECS and CACE ‘Frameworks Reference Models ” , OPEN-
CACSD : Newsletter of the IFAC/IEEE-CSS Working Group Guidelines
for Open CACSD Software, Swansea, 1 (11), February, 1993

[Grübel, 1995], "The ANDECS CACE Framework", IEEE Control Systems, vol
15 nº 2, pp 8-13, 1995.



� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Bibliography    - 142 -

[IEEE Control Systems, 1995], "Special Issue on CACSD", IEEE Control
Systems, Vol 15, N2, pp6-85, April 1995.

[Isermann and Ballé, 1996], “Trends in the application of model based fault
detection and diagnosis of technical processes” , in IFAC -13th Triennial
World Congress, ref. 7f-01 1, San Francisco, USA.

[Jacobstein and Kitzmill er, 1988], “ Integrating Symbolic and Numerical Methods
in Knowledge-Based Systems : Current Status, Future Prospects, Driving
Events” , in  “Coupling symbolic and numerical computing in expert
systems, II ” ,  JS Kowalik and CT Kitzmill er Edt., Elsevier Science
Publishers B.V., North Holland, 1988.

[James et al., 1995], "The state of Computer-Aided Control System Design",
IEEE Control Systems, vol 15 nº 2, pp 6-7, 1995.

[James, 1988], "Lessons learned in coordinating symbolic and numeric
computing in knowledge-based systems for control design", Coupling
Symbolic and Numerical Computiong in Expert Systems II , J.S. Kowalik
and C.T.Kitzmiller Edts., Elsevier Science Publishers B.V., 1988.

[Jobling  et al. 1994], Jobling C.P., Grant P.W., Barker H.A., Townsed P,
"Object-oriented Programming in Control System Design: a Survey",
Automatica, vol 30, nº 8, pp 1221-1261, 1994.

[Koch, 1993], "Modular Reasoning. A new approach towards intelli gent control",
Doctoral thesis Swiss Federal Institute of technology, Zurich, 1993.

[Kuipers, 1986], “Qualitative simulation” , Artificial Intelli gence, Vol 29, pp289-
338, 1986.

[Lee et al. , 1993], LeeT.H., C.C. Hnag, W.K. Ho, P.K. Yue, "Implementation of
a knowledge-based PID Auto-tuner", Automatica, Vol. 29, No 4, pp
1107-1113, 1993.

[Lynch and De Paso, 1992], "An Object Oriented Intelli gent Control
Architecture", American Control Conference, 1992.

[Maciejowski and Szymkat, 1994],  “Containers - a step towards objects with
Matlab” , Proc. IFAC/IEEE Joint Symp. on Computer Aided Control
System Design, Tucson, AZ, March, 1994.

[Mallat, 1989], Mallat S.G. � A theory for multi resolution signal descomposition:
the wavelet transform� , IEEE Transactions on pattern analysis and
machine intelligence, vol 11, nº 7,pp 674-693, 1989.

[Maquin and Ragot, 1996], “Méthodes de base de la surveill ance: systèmes
statiques et dynamiques” , in Surveill ance des systèmes continus, Tome 1,
Ecol d’Eté d’Automatique de Grenoble, Sept., 1996.



�   ¡ ¢ £ ¤ ¥ ¡ ¦ §   § ¨ ©   § ª « ¢ ¬ £ ¢  ® ¥ ¯ ¢ ¬ ° ± ² ¥ « ¦ ¡ ¥ ¡ ¦ ³ ¢ ° ¥   ¬ ´ ² µ ¢ ¤ ¦ ¶ · § § « ¯¨ § ¤ ¸ ¢ ¥ « · ¦ µ ¢ ¹ º   ¥ µ ¦ ¶ » º ¯ ¡ ¢ µ ¯ » ² ¼ ¢ ¤ ³ ¦ ¯ ¦ §  

Bibliography    - 143 -

[Martinez, 1997], Martinez Arteaga, A.,“Exemple d'aplicació del sistema expert
CEES a una planta industrial en temps real” , PFC-EPS, Universitat de
Girona, 1997.

[Matlab 1996], Matlab 5.0 Using Matlab,  The MathWorks, Inc, Dec 1996.

[Melendez  et al. 1995], Melendez, J., Colomer J. and De la Rosa J.Ll., "Linking
G2 and Matlab for Developing an Expert Diagnostic System", in
'Supervision de processus à l'aide du système expert G2TM'', pp. 91-110,
Ed. Hermès, Paris, 1995.

[Melendez et al. 1996a] Melendez J., Colomer J., De la Rosa J.Ll., Vehí J.,
“Dealing with Qualitative Information in Simulation for Supervisory
Systems design” , in Modelli ng and Simulation, ESM’96, June, Budapest,
1996.

[Melendez et al., 1996b], Melendez  J. , J. Colomer, J. Ll De la Rosa, J. Aguilar
and J. Vehi, "Embedding Objects into Matlab/Simulink for Process
Supervision", IEEE International Symposium on CACSD, pp.20-25,
Dearborn, MI, 1996.

[Melendez et al., 1996c], Melendez J., J.LL. de la Rosa, J. Colomer, J. Vehí i C.
Pous, “ Incrustación de objetos en Simulink. Integración de herramientas
de ayuda al diseño de estructuras de supervisión” , II Congreso de
usuarios de MATLAB (MATLAB'96)",pp. 423-429, Madrid, Sept. 1996.

[Melendez J., 1996d] “ Integrating tools for computer aided expert supervision
design” ,  1r seminari de treball en automàtica robòtica i percepció,
Edicions UPC, pp: 29-43,  Barcelona, 1996.

[Melendez et al., 1997a], Melendez J., J.Ll. de la Rosa, J, Colomer, J. Aguilar-
Martin, O. Contreras “A Framework for Dealing with Significant
Information and Knowledge Representation in Espert Supervisory
Systems Design” 7th IFAC Symposium on Computer Aided Control
System Design (CACSD’97), pp :397-402. Gent  (Belgium) April 28-30,
1997.

[Melendez, et al., 1997b], Melendez J., Colomer J.,De la Rosa J Ll, Waissman-
Vilanova J, Aguilar-Martin J., “Supervisory diagnostic structure using
qualitative signal abstraction and rule-based inferential reasoning : A two
tank ill ustrative example” , COMADEM '97, Helsinki (Finland), 1997,
June 9-11.

[Melendez, 1998], Melendez J., Colomer J., De la Rosa J.Ll., Contreras O.,
“Expert diagnostic using qualitative data and Rule-based inferential
reasoning” , submitted at the 11th, International Conference onIndustrial
and Engineering Applications of Artificial Intelli gence and Expert
Systems, IEA’98, Castellon de la Plana, June, 1998.



½ ¾ ¿ À Á Â Ã ¿ Ä Å ¾ Å Æ Ç ¾ Å È É À Ê Á À Ë Ì Ã Í À Ê Î Ï Ð Ã É Ä ¿ Ã ¿ Ä Ñ À Î Ã ¾ Ê Ò Ð Ó À Â Ä Ô Õ Å Å É ÍÆ Å Â Ö À Ã É Õ Ä Ó À × Ø ¾ Ã Ó Ä Ô Ù Ø Í ¿ À Ó Í Ù Ð Ú À Â Ñ Ä Í Ä Å ¾

Bibliography    - 144 -

[Mill ot, 1996] “ De la Surveill ance à la Supervision : l’ integration des Operateurs
Humains” , in Surveill ance des systèmes continus, Tome 1, Ecole d’Eté
d’Automatique de Grenoble, Sept, 1996.

[Milne, 1987], “Strategies  for diagnosis” , IEEE transactions on Systems, Man
and Cybernetics, SMC-17, pp. 333-339, 1987.

[Munro, 1990], “ECSTASY-A Control System CAD Environment” , in Proc. 11th

IFAC World Congress on Automatic Control, Talli n, Estonia, 13-17
August, 1990.

[Nebendahl, 1988] Nebendahal Dieter, “Expert Systems. Introduction to the
Technology and Applications” , Siemens Aktiengesellschaft, John Wiley
and Sons Limited, 1988.

[Ogunnaike, 1995], Ogunnaike, B.A.,”The Role of CACSD in Contemporary
Industrial Process Control” , IEEE Control Systems, vol 15 nº 2 ,pp 41-47,
1995.

[OMG, 1995], “The Common Object Request Broker : Architecture and
Specification ”, 2 Ed., Object Management Group, July 1995.

[Ong, 1992], "Autonomous Control System Design", ACC/TM3, p.p. 1898-1899,
1992.

[Pal, 1995], Kajnal Miklos Pal, “Model Based Fault Detection” , Contribution to
TEMPUS project MODIFY, Duisburg, 1995.

[Piera, 1995], Piera N., “Current trends In Qualitative Reasoning and
Application” , pp. 114-119, Monograph CIMNE Nº 33, Piera Ed.,
Barcelona (Spain), 1995.

[Rakoto-Ravalontsalama N., 1993],  "Sur l’ interface numerique-symbolique dans
un schema de supervision de systemes dinamiques a l’aide de systemes
experts", These de Doctorat Universite Paul Sabatier, Toulouse, France,
1993.

[Rengasamy, 1995], “A framework for integrating process monitoring, diagnosis
and superviosy control” , PhD. Thesis of the Purdue University, August,
1995

[Rimvall et al., 1994], Rimvall C.M, Farrell J.A, Radecki M, Idelchick M, “An
open architecture for Automatic Code Generation using the BEACON
CACE environment” , Joint IEEE/IFAC Symposium on Computer-Aided
Control System Design, Tucson, AZ; March 1994. And also http://
www.phrantic.com/  j_alan/  hitech/ case/ beacon.html  (Sept. 1997).

[Rutz R. and Richert, 1995], "CAMel: An open CACSD environment", IEEE
Control Systems, vol 15 nº 2,pp 26-33, 1995.



Û Ü Ý Þ ß à á Ý â ã Ü ã ä å Ü ã æ ç Þ è ß Þ é ê á ë Þ è ì í î á ç â Ý á Ý â ï Þ ì á Ü è ð î ñ Þ à â ò ó ã ã ç ëä ã à ô Þ á ç ó â ñ Þ õ ö Ü á ñ â ò ÷ ö ë Ý Þ ñ ë ÷ î ø Þ à ï â ë â ã Ü

Bibliography    - 145 -

[Sàbat, 1996], ‘Supervisió experta mitjançant el sistema expert CEES. Exemple
d’utilit zació’ , Proyecto Fin de Carrera, ETET,Vilanova i la Geltru, UPC,
1996.

[Sarrate R. et al., 1995], "Generación de eventos por análisis de datos basado en
ventanas deslizantes", XVI Jornadas de Automática, Donostia, Spain,
1995.

[Saifuddin, 1996] Saifuddin, Anita Bilqees, “Computing Environments for
Control Engineering” , Ph. D. Thesis at the University of Cambridge, UK,
March, 1996.

[Saifuddin et al., 1996], Saifuff in A.B., Maciejowski J.M. and Szymkat M.,
(1996), "Computational chains for CACSD Using Matlab Containers",
Proceedings of the 1996 IEEE international Symposium on CACSD, pp.
392-397, Dearborn. MI, 1996.

[Shen and Leitch, 1993], “Fuzzy Qualitative simulation” ,IEEE, Trans. on Systems
Man and Cybernetics, V. 23, N4, pp :1038-1064, 1993.

[Simulink 1993], Simulink 1.3 User's Guide, The MathWorks, Inc, April 1993.

[Simulink 1994], Simulink 1.3 Release Notes,  The MathWorks, Inc, May 1994.

[Simulink 1994], Simulink 1.3 Release Notes,  The MathWorks, Inc, May 1994.

[Simulink 1996], Simulink 2.0 Using Simulink,  The MathWorks, Inc,Dec 1996.

[Taylor et al., 1990], Taylor J.H., Frederick D.K., Rimvall C.M., Sutherland
H.A., “A computer aided control engineering environment with expert
aiding and data-base management” , IFAC World Congress, Talli m
USSR, 13-17, Aug. 1990.

[Taylor et al., 1993], Taylor J.H., Rimvall , C.M., Sutherland, H.A. “Computer-
Aided Control Engineering Environments” , Chapter 17, CAD for Control
Systems, D.A. Linkens Ed. Marcel Dekker Inc. 1993.

[Vinoski, 1997], “CORBA : Integrating Diverse Applications Within Distributed
Heterogeneous Environments” , Communications Magazine, Vol.14,
No.2, February, 1997.

[WGS Newsletter, 1997], Working Group on Software, nº 11, http://
www.win.tue.nl/ wgs/ NEWSLETTER/ NEWSL11/ wgsnews11.html,
January, 1997.



ù ú û ü ý þ ÿ û � � ú � � � ú � � � ü � ý ü � � ÿ 	 ü � 
 � � ÿ � � û ÿ û �  ü 
 ÿ ú � � � � ü þ � � � � � � 	
� � � � � � � � � � � � � � � � � �  � ! " � � !  # $ � � % � ! � � �

Chapter 6 :Some illustrative examples in using the CASSD framework - 146 -


