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Abstract

The mathematical quantitative models are simpli�cations of the reality and hence the behaviour

obtained by simulation of these models di�er from the real one� The use of complex quantitative

models is not a solution because in most cases there is some uncertainty in the real system

which can not be represented using these models� A way to represent this uncertainty is by

using qualitative or semiqualitative models� A model of this kind represents a set of models

indeed�

The simulation of the behaviour of quantitative models provides a trajectory across time for

each output variable� This can not be the result of the simulation when a set of models is used�

In this case� one way to represent the behaviour is by means of envelopes� The exact envelope

is complete� i�e� includes all the possible behaviours of the model� and sound� i�e� every point

inside the envelope belongs to the output of at least one instance of the model�

The generation of such an envelope is usually a hard task that can be approached� for

instance� using algorithms of global optimisation or consistency checking� For this reason� in

many cases approximations to that envelope are obtained� A complete but not sound approx�

imation to the exact envelope is an overbounded envelope� whereas a sound but not complete

envelope is an underbounded envelope� These properties are assessed for several simulators for

uncertain systems�

One possible use of the envelopes is for fault detection by means of analytical redundancy�

In this case� the system is considered as faulty when the measured output of the system is

outside the envelope� If the measured output is inside the envelope� the system may also be

faulty� but this is not detectable due to the dynamics of the system� This is what would happen

if the exact envelope was used� If the envelope used for fault detection is overbounded there

xii



can be missed alarms� the system is faulty but it is not detected because the measured output

remains inside the envelope� If the envelope is underbounded then there can be false alarms�

the system is said to be faulty� although it is not� because the measure goes out of the envelope�

Therefore� these properties of the envelopes are very important when they are used to detect

faults�

The approach proposed in this thesis is the use of error�bounded envelopes� This approach

consists in the simultaneous computation of an underbounded and an overbounded envelope�

These two envelopes determine three zones� the inner zone included in the underbounded

envelope� the intermediate zone between the two envelopes and the outer zone outside the

overbounded envelope� If the measure is in the outer zone� the system is guaranteed to be

faulty� If the measure is in the inner zone nothing can be said because either the system is

not faulty or if the system is faulty it can not be detected� Finally� if the measure is in the

intermediate zone the situation is one of the previous but better approximations to the exact

envelope are needed to decide which one of them�

An iterative algorithm to compute the two envelopes has been developed� It computes

better approximations at every iteration� The condition to stop can be either the situation of

the measured output of the system or the distance between the two envelopes� It is based on

an interval model� that is a model in which the parameters are interval values instead of real

numbers� and uses Modal Interval Analysis� an extension of interval arithmetic�

If it is assumed that the parameters of the system are uncertain but time invariant� the

envelopes at each time step have to be computed starting from the initial state� This makes

the algorithm unusable for long simulations� An approach to this problem is the use of sliding

time windows� In this case the parameters of the model are allowed to vary in time at a speed

that depends on the length of the window� Either the measured output of the system �real or

interval� or the error�bounded envelopes can be used for the initial state at the beginning of

the window�

The application of this simulator to fault detection gives di�erent results depending on the

options that are used for the simulation� One of these options is the length of the window�

The adequate length depends on many factors� To help the user to choose it� several window

lengths can be used simultaneously�
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This technique has been applied to several examples and real cases� Some of the results are

presented�

xiv



Resum

Els models matem�atics quantitatius s�on simpli�cacions de la realitat i per tant el comportament

obtingut per simulaci�o d�aquests models difereix dels reals� L��us de models quantitatius com�

plexes no �es una soluci�o perqu�e en la majoria dels casos hi ha alguna incertesa en el sistema real

que no pot ser representada amb aquests models� Una forma de representar aquesta incertesa

�es mitjan�cant models qualitatius o semiqualitatius� Un model d�aquest tipus de fet representa

un conjunt de models�

La simulaci�o del comportament de models quantitatius genera una traject�oria en el temps

per a cada variable de sortida� Aquest no pot ser el resultat de la simulaci�o d�un conjunt de

models� Una forma de representar el comportament en aquest cas �es mitjan�cant envolupants�

L�envolupant exacta �es complete� �es a dir� inclou tots els possibles comportaments del model� i

correcta� �es a dir� tots els punts dins de l�envolupant pertanyen a la sortida de� com a m�inim�

una inst�ancia del model� La generaci�o d�una envolupant aix�� normalment �es una tasca molt

dura que es pot abordar� per exemple� mitjan�cant algorismes d�optimitzaci�o global o compro�

vaci�o de consist�encia� Per aquesta ra�o� en molts casos s�obtenen aproximacions a l�envolupant

exacta� Una aproximaci�o completa per�o no correcta a l�envolupant exacta �es una envolupant

sobredimensionada� mentre que una envolupant correcta per�o no completa �es subdimensionada�

Aquestes propietats s�han estudiat per diferents simuladors per a sistemes incerts�

Un dels possibles usos de les envolupants �es per a detecci�o de fallades mitjan�cant redund�ancia

anal�itica� En aquest cas� es considera que hi ha una fallada en el sistema quan la mesura de la

sortida del sistema est�a fora de l�envolupant� Si la mesura de la sortida est�a dins de l�envolupant�

tamb�e pot haver�hi una fallada en el sistema� per�o que no es pot detectar degut a la din�amica

del sistema� Aix�o �es el que passaria si es fes servir l�envolupant exacta� Si l�envolupant que es

xv



fa servir per detecci�o de fallades est�a sobredimensionada hi pot haver alarmes perdudes� hi ha

una fallada en el sistema per�o no �es detectada perqu�e la mesura de la sortida roman dins de

l�envolvent� Si l�envolupant �es subdimensionada llavors hi pot haver falses alarmes� es diu que

hi ha una fallada en el sistema� tot i que no hi �es� perqu�e la mesura surt fora de l�envolupant�

Per tant� les propietats de les envolupants s�on molt importants quan es fan servir per a detectar

fallades�

L�enfoc que es proposa en aquesta tesi �es l��us d�envolupants amb l�error acotat� Aquest

enfoc consisteix en el c�alcul simultani d�una envolupant subdimensionada i una envolupant so�

bredimensionada� Aquestes dues envolupants determinen tres zones� la zona interior inclosa en

l�envolupant subdimensionada� la zona interm�edia entre les dues envolupants i la zona exterior

fora de l�envolupant sobredimensionada� Si la mesura est�a en la zona exterior� est�a garantit que

hi ha una fallada en el sistema� Si la mesura est�a en la zona interior no es pot dir res perqu�e

o b�e no hi ha cap fallada o si hi �es no es pot detectar� Finalment� si la mesura est�a en la zona

interm�edia la situaci�o �es una de les dues anteriors per�o cal millors aproximacions a l�envolupant

exacta per a discernir entre elles�

S�ha desenvolupat un algorisme que calcula les dues envolupants� Aquest algorisme calcula

aproximacions millors a cada iteraci�o� La condici�o per parar les iteracions pot ser o b�e la

situaci�o de la mesura de la sortida del sistema o b�e la dist�ancia entre les dues envolupants�

L�algorisme es basa en un model intervalar� �es a dir un model en el qual els par�ametres tenen

valors intervalars en comptes de n�umeros reals� i utilitza l�An�alisi Intervalar Modal� una extensi�o

de l�aritm�etica intervalar�

Si se suposa que els par�ametres del sistema s�on incerts per�o invariants en el temps� les

envolupants a cada instant de temps s�han de calcular a partir de l�estat inicial� Aix�o provoca

que l�algorisme no es pugui fer servir per simulacions llargues� Una possible soluci�o a aquest

problema �es l��us de �nestres temporals lliscants� En aquest cas es permet que els par�ametres

del model vari�in a una velocitat que dep�en de la longitud de la �nestra� Es poden utilitzar tant

les mesures de la sortida del sistema �reals o intervalars� com les envolupants amb error acotat

com a estat inicial al principi de la �nestra�

L�aplicaci�o d�aquest simulador a la detecci�o de fallades proporciona resultats diferents segons

les opcions triades per a fer la simulaci�o� Una d�aquestes opcions �es la longitud de la �nestra�
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La longitud de �nestra adequada dep�en de molts factors� Per ajudar l�usuari a triar�la� es poden

utilitzar diverses longituds de �nestra simult�aniament�

Aquesta t�ecnica s�ha aplicat a diversos exemples i casos reals� Es presenten alguns dels

resultats�
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Chapter �

Introduction

��� Motivation

The original motivation for the work described in this thesis arose� on one side� from the

collaboration� in the years ���	����
� of its author in the Esprit III project �TIGER � Real�

Time Situation Assessment of Dynamic� Hard to Measure Systems� and� on the other side�

from the development of the MIA �Modal Interval Analysis� by the SIGLA�X Group �	� �

The goal of the TIGER Project ���� 
�� 
	 was the design of an automated mechanism

to monitor the state of a gas turbine continuously� It focused on to gas turbines� One of the

components of this mechanism was a MBDS �Model�Based Diagnostic System� which applied

the principle of the analytic redundancy� In order to apply this principle� it is necessary to

have a measurement and a prediction of a variable� The comparison between these two values

indicates whether the system is behaving as expected or not�

The predicted value is obtained through a model of the system and prediction or simulation

��prediction� is used for a one step ahead prediction whereas �simulation� implies multi�steps

prediction� of this model� The model of a system usually has uncertainties or imprecisions due

to di�erent reasons� In the TIGER Project these uncertainties were included in the model by

expressing the parameters of the model with intervals instead of real numbers� The problem

was then to simulate such a model�

This was done by the Ca�En �Causal Engine� �
� � which� among other modules� includes a

simulator that generates envelopes� The envelopes provide an upper and a lower bound for the

�



value of a variable at each sampled instant� Therefore� the comparison between the measured

and the predicted value is done by indicating if the measurement is inside or outside of the

predicted envelope� Although the detection mechanism runs on a one step prediction mode

when the measurement is inside of the envelope� it switches to a simulation mode when it is

not�

The problems were that in the simulation mode the envelopes were not tighten enough and

moreover they were unstable� These are consequences of the simulation method implemented

and of the use of an interval�based reasoning� To solve the former problem� the simulation

method must be revised and enhanced� whereas the latter problem seems that can be solved

using enhanced extensions of interval arithmetic in order to deal with intervals� One of these

extensions is MIA� �rstly introduced by Garde�nes �	� and now being under development at

the Universities of Barcelona and Girona�

��� Goals of this thesis

The aims of this thesis are�

�� to critically examine existing simulators that can generate envelopes to identify their

strengths and weaknesses�

�� to use the information thus gleaned to design and construct a new simulator based on

MIA and

	� to test the resulting simulator in the domain of FD �Fault Detection� with examples and

real applications�

��� Summary of original contributions of this work

The original work contained in this thesis consists of the following items� the analysis of existing

envelope generators� the design and production of the di�erent versions of the MIS �Modal

Interval Simulator� and the experimental testing of the features of MIS�

The novel features of each of these are as follows�

�



� A critical and comparative analysis of some existing envelope generators with regard to

the properties of the envelopes they generate�

� The design of a new simulation technique arising from the analysis of the existing simu�

lators� Its novelty comprises the following aspects�


 A branch and bound algorithm based on MIA that computes interval extensions of

functions with adequate semantic properties� This algorithm is used to determine

approximations to the range of functions in a parameter space�


 The use of an implementation of modal intervals arithmetic which uses directed

roundings�


 The use of this algorithm for the generation of error�bounded envelopes�


 The generation of envelopes using sliding time windows�


 The use of multiple sliding time windows�


 The implementation in Matlab to facilitate its future integration into a supervision

framework that is being developed based on Matlab and Simulink �
� �

� Application of these simulators to FD in academic and real examples�

��� Thesis organisation

The work contained in this thesis is in the following parts� The �rst part consists of chapters �

and 	� It involves a presentation of the problem of the simulation of the behaviour of uncertain

systems� making special emphasis in the use of envelopes to represent this behaviour� and an

overview of the simulators that can be used for this task� The second part consists of chapters 


and �� which introduces the new simulators that have been developed� A third part consisting of

chapters � and � in which the simulators are applied and conveniently adapted for FD� Finally�

chapter 
 summarises this work and gives conclusions and directions for the future work�

The following are the summaries of the individual chapters�

Chapter � presents the problem of the simulation of the behaviour of uncertain systems and

some of the approaches that have been used� The approach used in this work is based on the

	



use of interval models� which include a representation of the uncertainty� and envelopes� The

properties of the envelopes are also discussed�

Chapter 	 provides an overview of the di�erent techniques that have been applied to the

simulation of uncertain systems� A description of some simulators is presented and the proper�

ties of the envelopes that each of them generate are outlined and compared� These simulators

use many di�erent techniques that range from the pure qualitative ones to the pure quantitative

ones and between these two ends there are many semiqualitative methods�

Chapter 
 presents a simulator for interval models based on the range computation method

with a new approach� the use of MIA� which is also introduced� The advantages and disadvan�

tages of this method� which intends to obtain the exact envelopes� are discussed�

Chapter � shows that in many cases it is not necessary to obtain the exact envelopes� Hence�

a new simulator that computes error�bounded envelopes is introduced and its properties are

discussed�

Chapter � shows one of the applications of envelopes� FD� One of the approaches to FD

consists in comparing the output of a system with a reference one generated through simu�

lation and the faults are detected using the discrepancies� This technique is situated in its

context� formed by the model�based analytical redundancy methods� Error�bounded envelopes

are applied to FD�

Chapter � presents applications of the new simulators to real cases� This shows their

strengths and weaknesses�

Chapter 
� �nally� contains and extended summary that outlines this work� It also provides

some general conclusions and introduces some lines for the future work�






Chapter �

Simulation of uncertain systems

��� Introduction

This chapter presents the problem to model and simulate uncertain systems� Quantitative

models do not represent the uncertainty of the systems� so other kinds of models �qualitative�

semiqualitative� are needed� The results of the simulation of these qualitative and semiquali�

tative models �envisionments and envelopes among them� and the results of the simulation of

quantitative models are also di�erent� Envisionments and envelopes are presented�

��� Models

A model is an abstraction of a system� It describes some of the characters of the system that

are of interest for the work to be done� Therefore� a model is a simpli�cation of the real world

and is not unique� i�e� di�erent models for di�erent goals can be obtained from a single system�

There are many kinds of models ��� �

� Physical models� Scale models� analog computers� An analog computer is based on

systems analogy and allows to create an electric system that behaves the same as a given

system which can be of a very di�erent nature �mechanical� chemical� thermal� etc���

� Mental models� An understanding of how a particular system works�

� Symbolic models�

�




 Not mathematical�

� Linguistic models� A linguistic description of the behaviour of a system under

di�erent circumstances�

� Graphical models� Diagrams� graphs� charts�

� Schematics models� Trees� networks� task��ow charts�


 Mathematical�

This work is based on mathematical models� which describe the relations between the vari�

ables of the system �the state� by means of mathematical equations� There are many types of

mathematical models� which can be classi�ed attending to the characteristics of these mathe�

matical equations�

� Static or dynamic�

� Linear or not linear�

� Lumped parameter or distributed parameter�

� Continuous�time or discrete�time �including discrete�event��

� Deterministic or probabilistic �stochastic��

For example� a dynamic model may describe the behaviour of a system by means of dif�

ferential �continuous�time� or di�erence �discrete�time� equations� ODE �Ordinary Di�erential

Equations� can be used for a lumped parameter model while PDE �Partial Di�erential Equa�

tions� are used for distributed parameter models�

The mathematical models can also be classi�ed attending to the way they have been ob�

tained�

� Modelling� The model is obtained studying the physical laws that a�ect to the system�

� Identi�cation� Inputs and outputs are known but the system is assumed to be a black

box� i�e� its contents are unknown� The model is a mathematical function that relates

the output to the input�

�



��� Simulation

To simulate the behaviour of the system means to predict the sequence of future states using

the model ��
 or� in other words� to reproduce the evolution of the system across time by

means of the model ��� � In the case that ODEs are used for the model� traditionally this task

has been performed integrating analytically the di�erential equations in order to obtain time

functions for the variables of the system� The problem is that an analytical solution can be

obtained only in relatively simple cases ��� � Another option is the use of digital computers to

integrate numerically these equations�

There are many numerical integration algorithms with di�erent degrees of complexity and�

hence� di�erent degrees of precision in the results� Some of them are Euler� Runge�Kutta�

Adams� Gear� linsim� LSODE� etc� �
�� 
 � All of them make time a discrete variable and

approximate temporal trajectories of variables with straight lines� Usefulness of each algorithm

depends on the characteristics of the system� linearity� sti�ness� sampling time� etc�

Nowadays� there are many simulators and simulation languages based on these algorithms�

They can be classi�ed according to di�erent characteristics�

� Field of application� In all�purpose or general simulators� models are expressed using

di�erential equations� state space models or transfer functions� so they can be used for

any kind of system� chemical� mechanical� electrical� etc� Examples are Matlab�Simulink

�
 and ACSL �� � On the other hand� there are specialised simulators� For instance�

SPICE �
 is a simulator for electrical systems� It includes libraries with models of electric

and electronic components� These components can be combined into circuits that can

be analysed by means of simulation� There are similar simulators for other �elds like

chemistry� hydraulics� mechanics� etc�

� Model characteristics ��
 � Many simulators deal only with continuous�time or discrete�

time models� There are also simulators for discrete�event models like Witness �� and

Microsaint �� � Finally� there are hybrid simulators� which can combine all these types of

models� like ACSL or Shift �� �

� Model reusability� Many simulators can not reuse the models due to causality problems�

For instance� a model of a resistor is a gain R if the input is the current and the output

�



is the voltage and a gain �
R

in the opposite case� Nevertheless� object�oriented simulators

allow reusing the models� Some simulators of this kind are Dymola �� and Omola �� �

These models are grouped into libraries and simple models can be combined to create

more complex models� Important active research is being done in this �eld� A great e�ort

must be done to �nish their de�nition and� above all� to create the libraries of models�

��� Models of uncertain systems

In most of the cases there is a di�erence between the real behaviour of a system and the

predicted one� These di�erences are due to the sensors �the measures are only approximations

to the real values� and to the model of the system� because usually it is not very accurate

although it is precise ��
 � This inaccuracy of the model is intrinsic� as it has been seen above�

because a model is an approximation of the reality� In some cases� it is possible to have an

accurate model of the system but it is too complex and a simpli�ed one is more appropriate

for the task to be undertaken ��� � This happens� for instance� when a non�linear system is

linearised around an operating point and� therefore� a linear model is used to represent it� This

happens� too� when a low order model is used to represent the behaviour of a higher order

system in a range of frequencies�

However� in many cases there are uncertainties or imprecisions that make di!cult� if not

impossible� to obtain accurate models� Some sources of this inaccuracy of the models are�

� The knowledge of the system is not complete because the real system can not be observed

or does not exist yet �a factory before it is built or a product before it is manufactured�

���� 
� �

� There are physical phenomena that are di!cult to identify or to predict �
� �

� The parameters of the system can change across time due to unknown� unpredictable or

di!cult to model phenomena �
� �

These uncertainties can be unstructured �the equations that model the system are not

known� or structured �the equations are known but the values of their parameters are not

known�� They can not not be represented with quantitative models� i�e� models in which the






parameters are real numbers� If it is necessary to consider these uncertainties� other kind of

models are needed to overcome this shortcoming of the quantitative models� Some types of

models that can represent the uncertainty of the systems are qualitative� fuzzy and interval

models�

����� Interval models

Consider the example of a crane� Its behaviour is di�erent for di�erent loads and di�erent

lengths of the rope� The model structure remains the same but its parameters change if the

load or the rope length change� If there were a �nite set of possible di�erent loads and rope

lengths� this system could be represented by a discrete set of quantitative models� As this

set is not �nite� a model space is needed �

 � This model space represents uncertainties or

imprecisions explicitly and can be expressed by an interval model� i�e� a model in which there

are parameters represented by intervals instead of real numbers� For instance� such an interval

model could be given by the following di�erential equation�

An
dny

dtn
" An��

dn��y

dtn��
" � � � " A�

dy

dt
" A�y � x �����

where�

� Ai are the interval parameters of the model�

Ai �
�
ai� ai

�
�����

� x is the input to the system�

� y is the output of the system�

� t is the time�

Therefore� an interval model is in fact a family� a class or a space of models ��
 and a

quantitative model can be viewed as a particular interval model in which interval widths are

zero� Hence� as interval widths decrease� the precision of the model increases �
� � An interval

model is also referred to as a semiqualitative model �
� because it allows an easy integration
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of qualitative and quantitative knowledge� For instance� the ranges of the parameters can be

de�ned by the experts�

An interval model is useful when the uncertainties are structured� i�e� the structure of the

model is known and only the parameters of the equations undergo imprecisions or uncertainties�

This happens in many real cases� in which a real value for a particular parameter can not be

determined but it can be bounded�

This kind of model can be used in multiple cases�

� To represent in a single model the behaviour of a system in di�erent situations�

� To represent time variant systems� The parameters can vary across time following a

known or unknown time function� In both cases� each parameter can be bounded by an

interval including all possible values�

� To model complex processes with simple interval models �
� �

��� Representations of the behaviour of uncertain systems

When the behaviour of a quantitative model is assessed using an adequate simulator� the result

is a single trajectory across time for each variable� This can not be the result of the simulation

of the behaviour of a semiqualitative or a qualitative model� which represents some uncertainty�

The behaviour of such a model can be represented in di�erent ways� In the following� the

envisionments and the envelopes are presented� They are complementary representations� De�

pending on the particular application one of them will be more appropriate than the other and�

in some cases� both of them should be used�

����� Envisionment

The behaviour of the system is represented globally using a graph like the one in �gure ���

��	� 
� � This graph is a tree in which all the possible behaviours of a system starting from

an initial state are qualitatively represented� It is a tree and not a single path because of the

propagation of the uncertainty ��
� ��� �� � There are di�erent types of envisionments depending

on whether the initial state is speci�ed or not�

��



Figure ���� Envisionment�

� Total envisionment ��
 � When the initial state is not speci�ed� For instance� if there is

a tank with an input �ow and an output �ow� the level can increase� decrease or stabilise

depending on the relation between these two �ows� Hence� three di�erent behaviours can

follow one single initial state �the tank with two non�zero �ows��

� Complete envisionment ��� � When the initial state is speci�ed� that is� initial values

of exogenous variables �inputs and outputs� are known but initial values of endogenous

variables �internal variables� state variables� are unknown� In the previous example of

the tank� if the input �ow is zero and the output �ow is not zero� only one of the three

behaviours is possible�

One of the envisionment simulators is VE �Vector Envisionment� ��� � QSIM� that will be

presented in section 	�
��� and some simulators derived from QSIM can produce envisionments�

too�

Envisionments will not be used in this work and only envelopes will be considered�

����� Envelope

In geometry� an envelope is de�ned as the curve or surface that is tangent to each member of a

system or curves or surfaces� the form and position of the members of this system being allowed

to vary according to some continuous law�

In the context of simulation� the system of curves is formed by all the possible behaviours

of an uncertain system starting from a speci�c initial state� precise or not� These curves are
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trajectories across time and� according to the de�nition of envelope used in geometry� there are

two envelopes in this case� the upper one and the lower one� In simulation� both of them are

considered as a whole and are referred to as an envelope�

Hence� an envelope represents all the possible behaviours of an uncertain system in one

single image� It splits the set of possible values of a speci�c output variable at a time point into

two subsets� the allowed values and the forbidden ones according to the model and the input

applied to the system�

Envelopes can be obtained using di�erent techniques� methods derived from numerical

integration algorithms� qualitative reasoning� consistency check� fuzzy logic� etc� Some authors

call attainable envisionments ��
 or partial envisionments ��� to the envelopes obtained by

means of qualitative simulation�

��� Properties of the envelopes

An envelope� according to its de�nition� includes all the possible behaviours of the model given

an input and every point inside the envelope belongs to the output of at least one instance of

the model� i�e� one of the quantitative models that belong to the space of models� Therefore�

it is complete and sound�

The generation of the envelope is not a realistic goal in most cases� It is di!cult or even

impossible� so in many cases approximations to it are obtained� Then� in a broader sense�

a complete �resp� sound� approximation to the envelope is referred to as a complete �resp�

sound� envelope� From now onwards the complete and sound envelope is referred to as the

exact envelope�

It is worth noticing that this is the terminology used in �
� � Some authors use the same

words in the opposite sense ��� �

De�nition � An envelope is overbounded if it is complete but not sound�

An overbounded envelope is wider than the exact one� all the possible outputs of the models

that belong to the model space are inside the envelope but there are points inside the envelope

that do not belong to any of these outputs and hence includes zones that can not be reached

by any of the models belonging to the family�
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De�nition � An envelope is underbounded if it is sound but not complete�

An underbounded envelope is tighter than the exact one� so all points inside the envelope

belong to at least one of the outputs of the models belonging to the model class but there are

points of these outputs outside the envelope� Therefore� there are models belonging to the set

whose output is outside the envelope� hence the envelope does not represent their behaviour�

These properties are summarised in �gure ����

time

ou
tp

ut

Overbounded
Exact
Underbounded

Figure ���� Properties of the envelopes�

��	 Summary

In this chapter� the problems related to modelling and simulation of uncertain systems have

been presented� There are many techniques to perform the simulation of di�erent types of

quantitative models� This is a problem already solved� The problem is that usually there are

uncertainties and then the model is only an approximation of the system� These uncertain�

ties can be represented in the model by means of qualitative or semiqualitative models� The

behaviour of these models can be represented� for instance� by envisionments or envelopes�

The properties of the envelopes have been discussed in this chapter�

Next chapter provides an overview of the di�erent techniques that have been applied to

simulate the behaviour of uncertain systems�
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Chapter �

Simulators for uncertain models� an

overview

��� Introduction

The use of a quantitative model and its simulation by means of an appropriate simulator is

enough to solve many problems� Nevertheless� there are other cases where the knowledge is

incomplete and a whole set of models must be considered� The simulation algorithms for

quantitative models can not be used in these cases ��� and� therefore� appropriate simulation

techniques must be used� A lot of research on the simulation of models which include a rep�

resentation of the uncertainty has been done in the �elds of systems engineering and arti�cial

intelligence ��� � It is one of the hardest tasks of systems supervision because each one of the

quantitative models included in a qualitative or semiqualitative one has a di�erent behaviour

���� 
� � The way to deal with uncertainty depends on the available information �numeric� qual�

itative� etc�� and the future use of the results� There are many methods� qualitative� statistics�

Monte Carlo� interval� error treatment� etc� All of them try to make robust simulations� This

means to predict the behaviour of all the quantitative models that belong to the model space

�

 �

This chapter presents a survey of di�erent simulators that can be used to deal with qualita�

tive and semiqualitative models focusing on the generation of envelopes ��� � These simulators

use many di�erent techniques that range from the pure qualitative ones to the pure quantita�
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tive ones and between these two ends there are many semiqualitative methods� Semiqualitative

simulators combine characteristics of the previous two types and its classi�cation can be sub�

divided into di�erent groups� as shown in �gure 	��� It can be seen in this �gure that there

are semiqualitative simulators built starting from a qualitative simulator to which quantitative

modules that perform interval or fuzzy set calculus have been added� Other semiqualitative

simulators are not based on a qualitative simulator�

Quantitative
simulation

(Numeric calculations)

Qualitative
simulation

(Based on Qualitative Reasoning)

Interval arithmetic

Semiqualitative simulation

Interval arithmetic Fuzzy sets

Figure 	��� Classi�cation of simulators�

A description of some of these simulators is presented and the properties of their respective

envelopes are outlined and compared�

��� Quantitative simulation

Quantitative or numeric simulation makes numeric predictions of the system states� This implies

the prediction of the values of the variables at determined time points�

The following provides a description of di�erent quantitative methods to simulate the be�

haviour of interval systems�
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����� Threshold calculus

This technique is based on the passive generation of residuals described in section ��
��� The

envelope is generated by superimposing a threshold ��xed or adaptive� to the trajectory of the

nominal system� obtained using a simulator for quantitative models�

The model can be obtained� for instance� using parameter identi�cation� In this case� mean�

variance� probability distribution� etc� are obtained for each parameter� Then the nominal

system can be a system in which every parameter takes its mean value and the threshold can

be computed� for instance� through variance propagation �
� � This threshold represents an

estimation of the error at each point or the likelihood or con�dence degree of the envelope at

each time point�

Therefore� the results actually can not be considered as envelopes so neither completeness

nor soundness can be guaranteed�

One disadvantage of these methods is that they are applicable only if the system is linear�

accessible� measurable and the uncertainty can be modelled as a probability �
�� �� � Another

disadvantage is that it is necessary to deal with great amounts of data to model uncertainty as

a probability distribution�

����� Quantitative models method

Another way to study a family of models is studying many quantitative models belonging to

the family and� then� extracting conclusions for the whole family� Using these techniques�

sometimes it is not possible to extrapolate the properties of the studied models to the whole

family� Not studied models to which the extrapolation is not valid may exist �
� � This is the

reason to say that these methods do not have guarantee� This will be demonstrated with a

practical case in the next paragraphs�

In the case of simulation� models belonging to the family must to be chosen and simulated�

The envelopes are obtained by superimposing all the trajectories generated by the simulations�

which can be performed with any of the existing simulators for quantitative models�

An intuitive choice of the quantitative models to be simulated can be the extreme models�

the ones obtained combining the ends of each interval� For instance� given the interval model

F �s� � k
�s�� � �����������

������s�� the extreme models are F� �s� � ����
�s�� � F� �s� � ����

��s�� � F	 �s� � ����
�s��
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and F
 �s� � ����
��s�� �

The output of these models when the input is � between t � � s and t � �� s and ���

after this time point� is shown in �gure 	��a� In this �gure� the outputs of the four extreme

models are represented with dotted lines and the resulting envelope in dashed lines� Moreover�

the output of the model F� �s� � ����
�
s�� is represented in solid line� This model belongs to

the considered family but its output is� for some period of time� outside the extreme models

envelope� as it can be seen in the zoom of �gure 	��b�
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Figure 	��� �a� Simulation of the extreme models and another quantitative model and �b� zoom�

The envelope obtained simulating only the extreme models is sound but not complete hence

underbounded� It can be widened simulating other models belonging to the family� These

additional models can be chosen systematically by making a grid in the parameter space� as

it is shown in �gure 	�	a� or randomly �Monte Carlo�� as it can be seen in �gure 	�	b� In the

latter case� the possibility to chose a particular quantitative model can be conditioned or not

by the probability distribution of each parameter�

However� the result is always of the same kind� the widened envelope will be closer to the

exact one but it remains underbounded� An unstudied quantitative model whose output is

outside the envelope can still exist� Hence� this is a method with no guarantee of completeness�

conclusions can be taken out from the studied quantitative models� but not from the unstudied

ones� Nevertheless� a good property of this method is convergence� as the number of studied
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Figure 	�	� Quantitative models chosen �a� systematically and �b� randomly�

quantitative models increases� the envelope converges towards the exact one� In the limit� if

in�nity quantitative models belonging to the family could be simulated� the obtained envelope

would be the exact one ��
 �

A limitation of this method is that it is valid only for time invariant systems because time

variant systems can not be simulated� Finally� this method is not recursive and it can not

be used in real time� The reason is that it is necessary to simulate the behaviour of all the

considered quantitative models from time point � to time point t and search for the maximum

and the minimum outputs in order to compute the bounds of the envelope at a speci�c time

point t�

����� Range computation

The recurrence problem can be solved using a discrete representation of the system� For in�

stance� assume that the behaviour of a n�th order dynamic SISO �Single Input� Single Output�

system is represented by the following di�erence equation�

yt �
m��X
i��

aiyt�iT "

p��X
j��

bjut�jT �	���

�




in which it can be observed that the output of the system at any time point �yt� depends on

the values of the previous outputs �yt�iT � and inputs �ut�jT �� being T the sampling time� This

dependency is given by the parameters of the system model �ai and bj�� The output can have

di�erent values if any of the other variables or parameters is an interval� The maximum and

the minimum of these values determine the envelope� This will happen in the following cases�

� The model is an interval one� In this case� there are parameters of the model which value

is an interval�

� The input of the system is an interval� This is the case if there are uncertainties in the

actuator or in a sensor that is used to measure the input�

� The initial output y� is an interval�

In this case the di�erence equation can also be seen as the expression of a function into a

parameter space� For instance� the di�erence equations at the steps n and n"� of a discrete�time

model are�

yn �
m��X
i��

aiyn�i "

p��X
j��

bjun�j �	���

yn�� �

m��X
i��

aiyn�i�� "

p��X
j��

bjun�j��

The parameter space has the shape of a hypercube and its number of dimensions is the sum of

interval parameters appearing in the function� outputs� inputs and parameters of the model�

Therefore� the computation of the exact interval output� that is the output envelope� is equiv�

alent to �nding the maximum and the minimum of the function in that parameter space� This

is a range computation problem�

One way to solve this problem is by using a global optimisation algorithm� Some simulators

that are presented in the next sections are based on this conversion of a simulation problem

into a range computation one�

The parameters of the model and some previous inputs and outputs appear in both di�erence

equations of �	���� If the range of yn and the range of yn�� are calculated independently� it

may happen that the value of a parameter that maximises yn is not the same that the one that
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maximises yn��� This means that these parameters may take di�erent values at each step of

the simulation and hence it is considered that the system is a time variant one�

There are cases where it is known that the parameters have a �xed value� although it is not

precisely known due to some uncertainty� In this case the system is time invariant and hence

the value of each parameter must remain the same at each step of the simulation� The method

presented above does not take this into account� It considers the function at each time step as

independent when there is a dependency between them�

One way to consider that every time that a parameter appears in di�erent equations is not

an independent parameter is by merging these equations into a single expression� Then� the

expression for the step n is obtained in a recursive way by substituting yn within the previous

equation down to y�� For instance� in the simplest case the following expressions are used�

y� � a�y� " b�u� �	�	�

y� � a��y� " a�b�u� " b�u�

y	 � a	�y� " a��b�u� " a�b�u� " b�u�

���

yn � an�y� " b�

nX
i��

ai��� un�i

The range of yi in these expressions has to be determined in order to obtain the exact

envelopes for time invariant systems� These envelopes are tighter than the ones for time variant

systems due to the dependency that now is taken into account� The overview presented in this

chapter considers that the systems are time invariant� Hence the properties of the envelopes

generated by the simulators are given comparing their envelopes with the exact ones based on

this consideration�

In the case of this method� the properties of the envelopes depend on the particular applica�

tion as it is a generic method� For instance� if these ranges are computed by means of a global

optimisation method that provides local optima� the envelopes are underbounded�

This method of simulation based on the range computation is the one used in the work

presented in this thesis� A similar option is the re�formulation of the simulation problem as a

set of optimal control problems with �xed �nal time ��� � An analytic solution is obtained for
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linear systems� Although it is di!cult to use in the practical case because the solution is not

�nite� it provides a reference to the exact solution�

��� Semiqualitative simulation based on quantitative simula


tion and interval arithmetic

Interval arithmetic allows to consider the whole range of possible instances represented by an

interval model� It hence guarantees that the envelopes are not underbounded �	� �

Methods that use interval arithmetic are de�ned as semiqualitative methods because they

use more than numeric knowledge�

����� Introduction to interval arithmetic

Computers work with digital numbers� not with real ones� To express a real number with

a digital one� it is truncated and rounded� Therefore� it is only an approximation of the real

number� When an arithmetic operation is performed� there is some imprecision in the result and

when many operations are performed the results can be not only imprecise but also incorrect�

It may seem that a possible solution to this problem is an increase of the number of digits� It

may seem that another possible solution is to compute twice with di�erent number of digits�

Then� if the results coincide until a particular digit� these digits are correct� Hansen �	� shows

that this is not correct by using an example�

Example � The value of the function

f �x� y� � 			���y� " x�
�
��x�y� � y� � ���y
 � �

�
" ���y
 "

x

�y
�	�
�

is computed for x � ����� and y � 		��� with a S���� computer� Input data do not have

representation problems� The only errors are due to truncation and rounding� The obtained

values obtained using single� double and extended precision� which correspond approximately to

�� 	� and �
 digits� are�

� Single precision� f � �������	 � � �

��



� Double precision� f � �������	�
���	� � � �

� Extended precision� f � �������	�
���	��
 � � �

The �rst seven digits after the decimal point are equal� However� all of them are incorrect�

Even the sign is incorrect� The correct result is f � ���
��	������
�
��	� This has been

tested using Maple �	 � The correct result is obtained using 	� or more digits but even in this

case there is not guarantee on the result� Some examples of the consequences of these erroneous

computations are the explosion of the Ariane � and the failure of a Patriot missile during the

Gulf War ��� �

Interval arithmetic is de�ned over a set of intervals instead of being de�ned over a set of

real numbers� Whereas computations performed using a �oating�point representation are a

mere estimate of the correct result� interval�based computing methods provide an interval and

guarantee bounds for this correct result� considering truncations and rounding conveniently�

The advantage of interval arithmetic is not just a matter of checking computing errors# it also

o�ers ways to reason on the range of values of variables�

There are older antecedents� but it can be considered that the main ideas about interval

computations appear for the �rst time in ��� � In his Ph� D� thesis� R�E� Moore studied the errors

caused by truncation and rounding in arithmetic operations performed using digital computers�

The �rst monograph on interval analysis ��� is the starting point of interval analysis�

Nowadays� interval analysis is mostly developed in USA and Germany� Good introductions

to interval analysis can be found in ��� and ��
 �

Intervals

An interval is de�ned as a set of real numbers fxjx � x � xg and is noted X � �x� x � in which x

is the in�mum and x is the supremum� Interval numbers are an extension of the real numbers�

as a real number x is the degenerate interval �x� x � The interval arithmetic rules� which will be

shown in 	�	��� are simpler when they are used with degenerate intervals�

The set of closed intervals of IR is I �IR � �
�

�a� b � j a� b � IR � a�b��

��



Interval arithmetic

The addition of the intervals X � �x� x and Y �
�
y� y

�
is the set fx " yjx � X� y � Y g� This is

also an interval� Z � �z� z �
�
x " y� x " y

�
� In a similar way� the di�erent arithmetic operations

can be de�ned� If op denotes an arithmetic operation for real numbers� the corresponding

interval arithmetic operation is

Z � X op Y � fx op y j x � X� y � Y g �	���

The interval Z� result of the arithmetic operation X op Y � consists of all the possible values

that can be obtained operating every x � X with every y � Y �

This de�nition is applied to obtain the rules of the arithmetic operations starting from the

ends �in�mum and supremum� of the intervals�

� Addition�

X " Y �
�
x " y� x " y

�
�	���

� Di�erence�

X � Y �
�
x� y� x� y

�
�	���

� Product�

X � Y �
�
min

�
xy� xy� xy� xy

�
� max

�
xy� xy� xy� xy

��
�	�
�

which can be broken down depending on the signs of the ends of each interval factor�

X � Y �

�����������������������	
����������������������


�
xy� xy

�
if x � � and y � ��

xy� xy
�

if x � � and y � � � y�
xy� xy

�
if x � � and y � ��

xy� xy
�

if x � � � x and y � �

�xy� xy if x � � � x and y � ��
xy� xy

�
if x � � and y � ��

xy� xy
�

if x � � and y � � � y�
xy� xy

�
if x � � and y � ��

min
�
xy� xy

�
� max

�
xy� xy

��
if x � � � x and y � � � y

�	���

�	



� Division�
�

Y
�

�
�

y
�

�

y

�
if � �� Y �	����

X

Y
� X �



�

Y

�
if � �� Y �	����

� Interval to the power of a real number�

Xn �

�������	
������


��� � if n � �

�xn� xn if x � � and n is even� or if n is odd

�xn� xn if x � � and n is even

���max �xn� xn� if x � � � x and n is even

�	����

Addition and product have the associative and commutative properties� Unfortunately� the

inverses for the sum and the product do not exist� in general� and they do not always ful�l the

distributive property� It is ful�lled only in some cases� For instance�

� If x is real and Y and Z are intervals� x �Y " Z� � xY " xZ�

� If Y 	 Z � �� X �Y " Z� � XY "XZ�

In the rest of the cases only a subdistributivity is ful�lled�

X �Y " Z� 
 XY " XZ� �	��	�

Therefore� interval arithmetic is a generalisation of real numbers arithmetic� If interval oper�

ations are performed between degenerate intervals� the properties are the ones of the arithmetic

of real numbers�

Interval functions

Given a real function f of real variables x� �x�� x�� � � � � xn T which belong to the intervals

X� �X��X�� � � � �Xn T � the ideal interval extension of f would be a function that provides the

exact range of f in the domain X��X�� � � � �Xn�

If D 
 IR n� then I �D� � fX � In jX 
 Dg is the set of all the hypercubes included in D�

�




De�nition � The united extension Rf �X� � I �D� � I �IR � of a continuous function f � D � IR

is

Rf �X� �

�
min
x�X

ff �x�� ���xn�g � max
x�X

ff �x�� ���xn�g
�

�	��
�

in which Rf is the range of the function f into X � I �D��

In the general case this extension is hardly computable� Hence the goal of interval arithmetic

is to �nd computable interval extensions which include the exact range of the function Rf �

In the following� the de�nition of interval extension and the needed properties to allow the

computation of overbounded approximations of Rf are given�

An interval function is an interval value that depends on one or several interval variables�

Consider f as a real function of the real variables x�� x�� � � � � xn and F as an interval function

of the interval variables X��X�� � � � �Xn�

De�nition � The interval function F is an interval extension of f if F �x�� x�� � � � � xn� �

f �x�� x�� � � � � xn� �x � D�

Therefore� if the arguments are degenerate intervals the result of computing F �x�� x�� � � � � xn�

must be the degenerate interval �f �x�� x�� � � � � xn� � f �x�� x�� � � � � xn� � This de�nition assumes

that interval arithmetic is exact� In practice� there are rounding errors and the result of com�

puting F is an interval that contains f �x�� x�� � � � � xn��

f �x�� x�� � � � � xn� � F �X��X�� � � � � Xn� �	����

To compute the range of the function f � it is not enough to have an interval extension F �

Moreover� F must be an inclusion function and must be inclusive monotonic�

De�nition � Let Rf �X� be the range of the function f intoX � I �D�� A function F � I �D� �
I is an inclusion function of f if Rf �X� 
 F �X� �X � I �D� and F �x� � f �x� �x � D

Hence the range obtained computing the interval extension F �X� is an overbounded ap�

proximation of the exact range of f into X�

De�nition 	 An interval function is inclusive monotonic if Xi 
 Yi �i � �� �� � � � n� implies

F �X��X�� � � � �Xn� 
 F �Y�� Y�� � � � � Yn�

��



Therefore� if X� �X� � X� an inclusive monotonic function veri�es

Rf �X� 
 F �X�� � F �X�� 
 F �X� �	����

The usual procedure to compute the range of a function f into a speci�ed domain X� consists

of �nding an inclusive monotonic function and computing an overbounded approximation of

the range� Better approximations can be obtained splitting the domain�

Therefore� inclusive monotonic functions for real function have to be found�

When f is a rational function� the natural extension FR �X� can be de�ned�

The natural extension of a rational function f is obtained by substituting each real variable

by the corresponding interval one and the rational operations by the corresponding interval

ones ��
 �

An interval arithmetic operation is inclusive monotonic according to the de�nition given

by equation �	���� Therefore� if FR �X� is a rational interval function� i�e� F includes only

additions� di�erences� products and divisions� then F is inclusive monotonic� Moreover� it has

been proved that the natural extension FR �X� is an inclusion function of f over X �

Rf �X� 
 FR �X� �	����

Hence� overbounded approximations of Rf �X�can be obtained simply computing the nat�

ural extension by means of interval arithmetic�

Example � The exact range of the function

y � x
 � ��x	 " 	�x� � ��x " �
 �	��
�

in the parameter space X � ��� 
 is Y � ���� �
 � The overbounded approximation to the range

that is obtained using the natural extension is

Y � X
 � ��X	 " 	�X� � ��X " �
 � �	����

� ��� 
 
 � ���� �� 	 ��� 
 	 " �	�� 	� 	 ��� 
 � � ���� �� 	 ��� 
 " ��
� �
 � ��
��� 

� 

��



Most of the functions used in computer science and in applied mathematics can be expressed

combining basic arithmetic functions� Interval rational inclusion functions of irrational functions

can also be found� including basic functions like the trigonometric ones� exponential� logarithms�

etc� An important research line in interval arithmetic ��
 intends to �nd rational inclusion

functions of irrational functions that allow to compute overbounded ranges as tight as possible�

Therefore� the general procedure to compute the range of an interval function consists of

obtaining a rational inclusion function which is computed using interval arithmetic�

Computation of rational interval functions

Interval arithmetic can be used to compute rational interval functions� that is interval functions

in which only arithmetic operations are used�

The main limitation of interval arithmetic is that it has not some of the properties of real

number arithmetic� for instance the distributive property� This means that the exact range of a

function is not always computable� However� the natural interval extension has some interesting

properties�

� Reliability� FR �X� � Rf �X��

� The exact range Rf �X� is obtained if there are not multi�incident variables in FR �X� �

De�nition � A variable is multi�incident in a function if it appears more than once in the

expression of the function�

Therefore� the determination of the exact range of a function is a problem only when there

are multi�incident variables� because each incidence is considered as an independent variable�

In this case� this problem is similar to a global optimisation one ���� �� �

Example � The range of the function

f �x� �
x

x " �
�	����

in the parameter space X � ��� 	 is
�
�
	 �

	



�
according to the graphical representation of the

function in 
gure ��
� where it can be observed that it is monotonic in the interval X� If the

��



range of the function is calculated using its natural extension and interval arithmetic

F �X� �
��� 	 

��� 	 " �
�

��� 	 

�	� 
 
�

�
�



�
	

	

�
�

�
�

�
� �

�
�	����

which is overbounded as �
�

	
�
	




�


�

�

�
� �

�
�	����
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Figure 	�
� f �x� � x
x�� for � � x � 	�

The research on interval arithmetic has produced many techniques to compute the range of

functions� Their main interest is the guarantee on the results� which always are overbounded

approximations of the exact ones� The precision can be �xed to the desired value� Among these

techniques there are numeric and algebraic ones� Bernstein polynomials� etc�

Numeric algorithms Inclusive monotonic extensions of interval functions produce over�

bounded approximations to their range� According to �	����� better approximations can be

obtained splitting the domain of the function� The parameter space of the function� a hyper�

cube� is split into subspaces smaller and smaller and the result is closer and closer to the exact

one� In some cases� to split a subspace into subsubspaces does not produce a better result and

hence it is not necessary to do it� Therefore it is possible to do branch cutting in these cases�

which is based on the study of the properties of the function� �rst and second derivatives�

etc� Many algorithms apply both techniques simultaneously� Details and examples about these

branch and bound algorithms can be found in �	� �

�




Algebraic techniques As a consequence of the subdistributivity property of interval arith�

metic �	��	�� the results of computing the range of functions by means of interval extensions

are highly dependent on the syntactic expression of the function�

Example � For instance� the function f �x� � x��x can also be written f �x� �
�
x� �

�

��� �

 �

The natural extension of the 
rst one in the parameter space X � ��� � gives an overbounded

approximation of its range�

F� �X� � X� �X � ��� � � � ��� � � ���� 
 �	��	�

while the natural extension of the second function provides the exact range�

F� �X� �
�
X � �

�

�� � �

 �

�
��� � � �

�

�� � �

 �

���

 � �
�

�	��
�

The reason is that in F� �X�� the variable X is multi�incident and in F� �X� it is uni�incident�

Therefore� a way to obtain tighter� but always guaranteed� results is expressing the function

with the lowest number of multi�incidences� Many techniques search for the best way to express

a function to obtain the tightest results ��� � Some of them are �
� �

� cascade evaluation �	�� 	
 �

� alternative expressions for polynomials ��
� �� like�


 Horner forms�


 centred forms ��� �

� mean value form�

� Baumann form�

� Taylor forms�


 Bernstein polynomials�

� for univariate polynomials ���� �	 �

� for multivariate polynomials �	�� 		 �

� adequate inclusion functions for rational functions like sin �x�� exp �x� or
p
x ��
 �

��



Implementations of interval arithmetic

The limits a and b of a given interval �a� b may not be represented by a computer� In this

case it must be rounded outwards� i�e� a must be rounded to the biggest representable number

smaller or equal to a� and b must be rounded to the smallest representable number greater or

equal to b� This requires direct rounding� that is rounding upwards or downwards depending

on what is needed� This is direct rounding� which is speci�ed in IEEE ��
 standard on �oating

point arithmetic as an option� It was �rst implemented in the microprocessor Intel 
�
� and is

essential for interval arithmetic implementations in order to guarantee the results �
� �

One of the �rst implementations of interval arithmetic is INTLIB ��� � It was developed

�rst in Fortran �� and after in Fortran ��� It consists of a set of subroutines and functions for

basic interval operations based on BLAS �Basic Linear Algebra Software�� Direct rounding is

simulated� This makes it portable but increments computation time� As a consequence� the

precision of the computations can be �xed to the desired value�

PROFIL�BIAS ��
 is probably the most complete and fastest interval library� It is written

in C"" and supports many common interval and real operations� Data types are INT� REAL�

INTERVAL and works with vectors and matrices of these types and also with complex numbers�

PROFIL �Programmer�s Runtime Optimised Fast Interval Library� is based on BIAS �Basic

Interval Arithmetic Subroutines�� which was developed starting on BLAS� BIAS intends to

provide an interface for interval operations� Its goals are to take advantage of the hardware�

portability and independence of the speci�c interval representation� PROFIL�BIAS is a public

domain software in continuous evolution� Project INTBLAS �Interval Basic Linear Algebra

Software� intends to enhance BIAS for instance improving the memory access� Researchers

from �� countries participate in this project� The software is being implemented in C"" and

Fortran ���

RVInterval �
� is a public domain interval arithmetic package implemented in C""� It is

much more simpler than PROFIL�BIAS and also slower� but can be useful for small applica�

tions�

IN C"" is a commercial software by Delisoft implemented in C"" as well �	� �

Commercial environments for linear algebra like Mathematica or Maple V also include com�

mands to perform interval computations� but automatic simpli�cation of symbolic expressions

	�



and the lack of direct roundings make them obtain bad results in some cases� INTPAK ��
� �� 

is a package for Maple V that overcomes some of these defects�

Finally� Interval Solver �
�� 
�� 
�� 
	 is a commercial package that allows Microsoft Excel to

work with intervals� It is the �rst interval arithmetic implementation for a standard commercial

spreadsheet� Interval Solver uses cascade evaluation �	�� 	
 to compute the range of functions�

Applications of interval arithmetic

There are applications of interval arithmetic in many �elds� mainly since there are implemen�

tations of interval arithmetic� One of these �elds is global optimisation �	� � The computation

of the range of a function into a parameter space is a problem of global optimisation with

constraints� However� according to the point of view of interval arithmetic it is a problem of

global optimisation without constraints�

Other �elds are astrophysics� geology� image processing� robotics� navigation� spectral anal�

ysis� computer graphics �

 � etc� Fields in which data are imprecise or obtained by indirect

measurement� In ��� there are described applications of interval arithmetic to global opti�

misation algorithms� solving of linear systems� fuzzy logic� economic models� quality control�

medical expert systems� etc� A �eld where there are many applications is systems engineering�

semiqualitative simulation �the subject of this thesis�� system identi�cation ��� � analysis and

design of robust controllers for uncertain systems �
�� 

 � etc�

Conclusions

This section has introduced interval arithmetic and shows that it has reached a certain degree of

maturity� It has been implemented in di�erent platforms and programming languages and some

of the software has even been commercialised� However� interval arithmetic applications have

the limitations inherent to interval arithmetic� Hence� often the results are much overbounded

and if tighter results are needed� high computational e�orts are required� Moreover� as the

results are overbounded� conclusions can not be drawn in all cases�

	�



����� Use of interval arithmetic for simulation

There are some semiqualitative simulators based on interval arithmetic and monotonic inclusion�

Some of them assume that the model is quantitative or nearly precise and the imprecision is due

to arithmetic errors in the computer or to the rounding errors that are produced when the real

numbers are translated to �oating point numbers �
� � These simulators use numeric integration

algorithms revised for intervals� so they can easily become general and the simulations are fast�

However� the results are highly overbounded if there is a bigger imprecision in the models

���� 

� 
� �

The �rst interval simulator was the one of Moore ���� �
 � This simulator works with k�

order Taylor expansions of the di�erential equations of the system model and with the Euler

integration algorithm �

 � The envelopes obtained are much overbounded because it ignores

multi�incidences� In other words� when there are multi�incident variables� part of the available

information is not used�

Moreover� the wrapping problem appears� This problem is linked to the use of interval

arithmetic and was described for the �rst time by Moore ��� � Consider a system described by

a set of variables� Since every variable has an interval value� the system�s state at some time

point may be represented by an hypercube� However� it may be that the system�s state does

not evolve into another hypercube at the next time point� In �gure 	�� an example is shown in

which there are two state variables and� therefore� the hypercube in the parameter space is a

rectangle� This rectangle evolves to a rhombus �it could evolve to any �gure in two dimensions�

in the following time step� As the value of each variable is still expressed with an interval� the

new state is represented with a new rectangle that includes all possible states �the rhombus�

but also spurious states� shown in shadow in the �gure� Hence� the obtained envelopes will

be overbounded and� possibly� unstable� This problem can not be solved by the use of smaller

steps in the simulation� because more steps will be needed�

Other simulators based on these algorithms are the interval simulator by Markov and An�

gelov ��� and the simulator AWA ��
 � The latter tries to minimise the wrapping e�ect by

moving the system�s co�ordinates along the trajectory of the system in the parameter space�

This goal is achieved in some cases �
� �

The description of two simulators based on interval arithmetic� NSIM and NIS� follow�
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Figure 	��� The wrapping problem�

NSIM

NSIM �Numerical Simulator using Interval Methods� �
�� 

� 
� is based on QSIM �see section

	�
���� It uses the same models than QSIM and has inherited a limitation from it� NSIM works

only with monotonic functions�

NSIM is an enhancement of Moore�s interval simulator when there exists quasi�monotonicity�

It is said that a system is quasi�monotonic if the exact envelopes can be obtained by simulating

the extreme quantitative models �see section 	����� �
� �

This simulator generates static envelopes� Given an interval di�erential equation �a di�eren�

tial equation in which the parameters are intervals�� it searches for a pair of functions �extreme

functions� which bound the original function in a certain domain� Hence� completeness is guar�

anteed� After this� a simulator for quantitative models is used for the simulation� This is one

of its advantages� it is not necessary to develop a specialised simulator and� therefore� it makes

good use of speed and e!ciency of existing simulators and exploits their possible enhancements�

The disadvantage is that if there are multi�incident or correlated variables� the extreme

functions do not belong to the initial family of functions and� therefore� they are outside its

domain� For instance� the function f �x� � x
x�� has the following extreme functions�

� Upper function� f �x� � x
x��

� Lower function� f �x�� x
x��

which do not belong to the family of functions f �x��

		



The results of the simulation are overbounded envelopes due to ignored correlations and to

the wrapping problem� These envelopes are tighter than the ones obtained with the simulators

described in ��
� �� � but they can diverge and become unstable with certain oscillatory systems�

To solve these problems� Kay proposes various ways�

� Wrapping problem� To de�ne the intervals with respect to a mobile system of co�ordinates

instead of using a �xed one� In other words� he proposes to work into the error state

space� This implies the computation of Jacobean and sensitivity matrices� Research must

be done to determine if this can be done when the available di�erential equations are

imprecise� It is not clear if an imprecise Jacobean matrix gives su!cient information to

work into the error state space�

� Ignored dependencies� To build models without ignored dependencies� That is� decrease

the number of multi�incident variables and their number of incidences�

� Split state space into smaller subspaces� As it was noted in section 	�	��� when there are

multi�incident variables� the result of evaluating the range of the functions using interval

arithmetic is proved to be closer to the exact range�

As a conclusion� the problem of interrelations between variables is still unsolved by NSIM�

NSIM has inherited from QSIM an advantage� too� This advantage is the qualitative repre�

sentation� which is used to generate di�erent envelopes for qualitatively di�erent behaviours�

NIS

NIS �Numerical Interval Simulation� �
� is an extension of the fuzzy simulation methods for

linear systems proposed in ���� �� � It works with state variables� Therefore� the ODE used are

�rst order ones� They can be non�monotonic� must be continuous in the considered parameter

space and can contain the following operations� sum� di�erence� product� division� exponentia�

tion� logarithm� sine� cosine and constants� The parameters of the model and the initial values

of the state variables can be intervals�

Some simulators use interval arithmetic to compute� at every time step of the simulation� the

maximum and the minimum values of the derivative of each variable� Then these values are used

	




for Euler or Runge�Kutta integration algorithms� These simulators obtain highly overbounded

envelopes due to ignored multi�incidences� In order to avoid this source of overbounding� NIS

computes the maximum �resp� minimum� value of the derivative at the current time step only

in the point where the function has its maximum �resp� minimum� value in this step� The

consequence is that it is not complete� because� as it is shown in section 	����� not necessarily

the maximum value at a time point is a consequence of the maximum value at the previous

time point� There can be a point where the maximum derivative is greater than the one of the

maximum point and hence it determines the maximum point in the following time step�

Therefore NIS is based on the same principle than NSIM� it generates a pair of functions

�upper limit of the envelope and lower limit of the envelope� given a function with incomplete

knowledge and then it simulate these functions numerically� The di�erence is that NSIM gen�

erates the extreme functions before the simulation and NIS uses interval arithmetic at every

simulation step�

NIS also can become unstable with certain oscillatory systems�

Gasca�s simulator

As stated in section 	�	��� one way to avoid the wrapping problem when using interval arithmetic

is to de�ne the intervals with respect to a mobile system of co�ordinates� instead of de�ning

them with respect to a �xed one� This can be done by computing the trajectory of one of the

quantitative models that belong to the family under study and then superimposing a threshold

to it �see section 	������ This simulator �	�� 	
 is based on this principle� The models are

represented by band functions and the parameters are represented by intervals covering all the

real values corresponding to each qualitative label� The trajectories of the family of systems are

represented by polyhedrons in the state space de�ned from a point� a transformation matrix

and an uncertainty vector�

Given that the transformation matrix is obtained after some simpli�cations and approxi�

mations� the properties �completeness� soundness� stability� of the resulting envelopes are not

known� They are generally unsound because when using interval arithmetic multi�incidences

are not taken into account and incomplete because sometimes it predicts a single value at a

particular time point�
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��� Qualitative simulation

Arti�cial Intelligence proposes di�erent non�probabilistic formalisms to deal with uncertainty�

theory of possibility �based on fuzzy sets theory�� evidence theory and qualitative reasoning ��� �

To perform qualitative reasoning it is necessary to have a qualitative model� Some motivations

for developing qualitative models are ��
 �

� to provide simpler computational mechanisms�

� to provide a description for systems where traditional methods are ine�ective�

� to provide modelling paradigms that accord more closely with common sense intuition of

the operation of physical systems�

� to develop modelling methods based on the principles of knowledge based systems�

The main approaches to qualitative modelling are constraint� component� and process cen�

tred approaches ��
 � which lead to concepts like quantity space� landmark� sign� magnitude�

etc� The model expresses qualitative information about the relations between the variables�

For instance� if the value of the variable a increases� the value of the variable b also increases�

The information about the variables� from a purely qualitative point of view� can be a

positive value� a negative value or zero �there is a fourth possibility to be considered� the

unknown value�� Hence� the real axis is divided into three parts� This information is used

by an inference engine� generally simple �

 � and some conclusions are obtained ��	 � These

tools for reasoning are very useful to solve problems in which the information is poor� as is the

qualitative knowledge� but given that the information is poor� the results are poor as well� If

there is more information� it can be used� for instance� introducing more landmarks and hence

dividing the quantity space in more than three parts� But there are still notable de�ciencies in

the attempts that have been made to take advantage of a richer information� If the complexity

increases� the predictions become poorer ��� and the computational e�ort to be made increases

as well�

The qualitative simulation makes a prediction of the qualitative states in which the system

will be using a non�numeric model� It distinguishes qualitatively �with labels� not with numer�

ical values� the states where the system will be or the values that the variables will have� The

	�



qualitative simulators are used when the knowledge about the system has important limitations

or when it is interesting to have qualitative results�

Most of the qualitative simulators are not causal and hence do not consider time� Therefore�

they predict which states will exist in the future but neither when they will occur nor how long

they will last� Some qualitative simulators� however� are causal and consider time�

The qualitative simulation consists in two phases ��	 � In the �rst one� called TA �Transition

Analysis�� many transitions are generated without using the model of the system� In the second

phase� called QA �Qualitative Analysis�� these transitions are �ltered using the model� Hence�

the transitions that do not ful�l the constraints of the model are eliminated� This is called

constraint propagation�

A criterion to classify qualitative simulators is the degree of constructivity ��	 � A quantita�

tive simulator is constructive because it uses the model of the system to generate the values of

the variables of the system� it solves the equations and� if it is a dynamic system� it integrates

them� In other words� it �constructs� the future values of the variables starting from the model

of the system� On the other hand� a qualitative simulator is not constructive because the model

of the system is used only to �lter out the impossible states that have been generated before�

Semiqualitative simulators are somewhere between these two extreme points� according to the

degree of use of the system model� If a simulator is more constructive than another one� it is

more e!cient in order to take advantage of the available information and hence it generates

less impossible states ��	 � In spite of this� in some cases a non�constructive simulator is very

useful� For instance� when there are algebraic loops a non�constructive simulator can be used

but a constructive simulator can not�

Some qualitative simulators �QSIM� PA and Ca�En� are described below� They are only a

sample of the existing ones� SQUALE ��	 � DIAPASON ��� � etc�

����� QSIM

QSIM �Qualitative Simulator� is the most popular qualitative simulator� Since it was �rst

implemented ��� � many new functions have been added continuously� Hence� probably it is

also the most sophisticated simulator� due to its constant evolution ��	 �

Each variable is represented by its value and the value of its derivative� The value of the
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derivative is expressed in a purely qualitative way� inc for increasing �positive derivative�� dec

for decreasing �negative derivative� or std for steady �zero derivative� stationary variable�� The

value of the variable can be expressed also in a purely qualitative form or� if more information

is available� its value space can be split in more than three parts �labels� using landmarks�

The model of a system is represented by the relations between its variables� These relations

can be algebraic operations �sum� product� sign change�� derivative �one variable is the deriva�

tive of another one�� monotonicity �if the value of a variable increases� the value of the other

increases too�� etc�

The algorithm of simulation consists of three parts� transition rules� constraint and Waltz

�lters� and global �lter�

The transition rules are tabulated� There are two types of transition rules� P and I� As each

variable is represented with a pair magnitude�derivative� the temporal function of the value of

the variable is approximated with a �rst order Taylor series� Therefore� the transition rules are

based on the Euler numeric integration algorithm ��	 � They are based on the intermediate value

theorem and the mean value theorem� The intermediate value theorem de�nes the direction

of the change of the value of a variable between two time points� The mean value theorem

indicates that in a continuous system it is compulsory to pass through zero to change the sign

��	 �

The transition rules are applied to each variable individually� as if each variable was indepen�

dent from the others� In consequence� impossible transitions are generated� In the subsequent

phase� some of these impossible transitions are eliminated because they do not ful�l the con�

straints� QSIM is not a constructive simulator because it does not use the model of the system

to generate the transitions�

The result of the simulation is a representation of the qualitative states �expressed by the

variables� values and the values of their derivatives� that will succeed to the present state� The

duration of these states is not given because QSIM is not causal and hence it does not consider

time�

The original QSIM was complete ��� � as it found all the possible behaviours of the system�

However� new �lters� which optionally can be used or not� have been added through the years

and some of them make QSIM to lose this property ��	 � On the other hand� it is not sound

	




because it can �nd spurious behaviours� One of the reasons is that the constraints must contain

only two or three variables� If there are actual constraints with more than three variables�

they must be decomposed into other constraints introducing intermediate variables in order to

introduce them into QSIM� A value space is assigned to these intermediate variables� Therefore�

if a predicted state coincides totally or partially with various labels� QSIM considers that the

variable can take any of the values included in these labels� including the ones that have not

been predicted�

Other characteristics of QSIM are that the only non�monotonic function allowed is the

product and that inputs like sinus� for instance� are not allowed as they could produce a

combinatorial explosion �
� �

In the following sections� it will be shown that this simulator has been the starting point of

many other simulators� Q�� Q	� NSIM� SQSIM� PA� FuSim� Mycroft� etc�

����� PA

PA �Predictive Algorithm� ��	 is a qualitative simulation algorithm integrated in PE �Predictive

Engine� ��
 � It belongs to the same family as QSIM but it is more constructive than QSIM�

The problem of QSIM is that in the TA phase of the simulation� many impossible transitions

are generated and some of them can not be eliminated in the QA phase� One solution is to

restrict the generation of impossible transitions in the TA phase� making it more constructive�

more similar to a quantitative simulator�

In PA� the user chooses the number of successive derivatives to be used for each variable�

QSIM only uses the value of each variable and the value of its �rst derivative� If the user wants

to use higher order derivatives� new intermediate variables must be created and these variables

will be considered independently in the �rst phase of the simulation� For example� if somebody

wants to use the second derivative of the variable x� the �rst derivative must be de�ned as a

new variable y � dx
dt

which will be represented with its value and the value of its derivative

dy
dt

� d�x
dt�

�

Therefore� PA has more �exibility to represent the model of the system� which can be

interpreted as a set of di�erential planes� Hence� there are two planes in QSIM and the desired

number of planes can exist in PA ��	 � Such a description of the model implies a set of constraints
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that are used to generate the states of the variables� The procedure to generate the transitions

begins at the plane of the highest order derivatives and decreases the order of the derivatives

until it ends at the plane with no derivatives �zero order derivatives�� Therefore� PA already

uses the system model in the TA phase of the simulation� while QSIM uses it only in the QA

phase for �ltering� That is the reason why PA is more constructive than QSIM�

Another aspect that makes PA more constructive than QSIM is that in QSIM the order

of the equations is not important and� in the TA phase of the simulation� all variables are

considered independent� However� equations must be causally ordered in PA so less impossible

transitions are generated in the TA phase�

In spite of that� PA is not totally constructive and hence the temporal information obtained

from the simulation is insu!cient�

In the phase of �ltering� the generated transitions are checked for consistency using the

constraints� If a transition does not ful�l all the constraints� it is eliminated� If a transition ful�ls

all the constraints� the transitions still unveri�ed are eliminated and the simulation continues

hence ignoring other possible transitions� This makes PA incomplete�

��� Semiqualitative simulation based on qualitative simulation

and interval arithmetic

As a conclusion� neither quantitative techniques nor qualitative ones �they do not take advantage

of the available numerical information� are appropriate for interval systems simulation� For this

reason� it can be said that interval systems simulation is still an unoccupied gap ��� �

Quantitative information must be added to qualitative methods in order to enhance them�

This will reduce the uncertainty of the qualitative state variables ��� � This can be done� for

instance� by discretising the real axis hence splitting it in more than three parts� Therefore�

a new value space� which is more complex than the pure qualitative one� is de�ned� The

discretisation can be prede�ned� �xing the existing qualitative values a priori� or not� allowing

any subinterval� In the former case� the qualitative knowledge is represented easily and it can

be di!cult to represent the quantitative knowledge properly� The latter case is the opposite to

the former one because the representation of the quantitative information is favoured ��� � The


�



simulators described in section 	�
 o�er the �rst possibility�

The combination of quantitative and qualitative methods are semiqualitative ones� The

semiqualitative simulation gives quantitative and qualitative information of the predicted states

of the system� It combines advantages of the qualitative simulation �ability to work with limited

information� and advantages of the quantitative simulation �quantitative prediction� ��
 �

The present tendency is the increasing use of the quantitative information in qualitative

simulation� In fact� there are some simulators that are quali�ed as semiqualitative and it is not

clear which are their semiqualitative aspects� hence it could be better to call them quantitative

simulators ��	 �

Some of the existing semiqualitative simulators based on qualitative simulators are described

in this section�

����� Q�

Q� ��� is an extension of QSIM �
� � Its name derives from the fact that it is a qualitative and

quantitative simulator� The basis of this simulator is QSIM to which an interval arithmetic ��
 

module has been added� This module works in parallel with QSIM and computes the value of

each variable using the numeric constraints� The �nal value is computed by intersecting the

values given by this module and by QSIM �
� � Therefore� the value of each variable is no more

qualitative �a prede�ned label�� It is an interval value� whose ends are not prede�ned ��	 �

Sometimes the intersection reduces the range of the variable and sometimes the result of

the intersection is an empty set� The second possibility means that the state predicted by

the qualitative simulator is impossible so it must be eliminated� In conclusion� the envelopes

given by the qualitative simulator are tightened through a �lter� These new envelopes are less

overbounded than the ones obtained using only qualitative simulation�

Simulators that use numeric information for �ltering� like Q�� are enhancements with respect

to qualitative simulators� However� this is not a big enhancement because they do not take

a great advantage of the quantitative knowledge of the system� hence the envelopes could be

tighter�

The values of the time points can be calculated using �rst order Taylor�Lagrange formula�

However� it is proved in ��	 that this method does not provide relevant information in the
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neighbourhood of critical points with zero derivatives �
� � Unfortunately� most of the QSIM

state events correspond to such points�

����� Q�

Many semiqualitative simulators� like Q�� are divided into two parts� the qualitative one and

the quantitative one� These two parts are not separated in Q	 ��
 so it can be seen as a

qualitative simulator that gives numeric information or as a quantitative simulator that gives

qualitative information�

An interval is a way to represent information that links conceptually quantitative and qual�

itative representations� The simulator Q	 uses intervals to represent partial information in a

�exible way and interval arithmetic for constraint propagation�

Some simulators like QSIM obtain a series of qualitatively di�erent states� The time points

in which there are changes from one state to another are not indicated or they are indicated

imprecisely �giving a time interval instead of a time point� for instance�� The outputs of the

quantitative simulators are more precise if the simulation time step decreases� This principle

is applied by Q	 to the qualitative simulation� It inserts intermediate states in the qualitative

simulation hence the number of states increases� the number of constraints increases and the

precision increases too� It is convergent� if more intermediate states are added� the results are

more precise�

It is also a stable simulator� because when the precision of the initial conditions increases�

the precision of the results increases too� This is due to the use of the Waltz �lter for the

constraints� A constraint to be used for the Waltz �lter can not require widening an interval

when another one tightens�

The intervals obtained would be correct if the operations performed by the computer were

correct� Nevertheless� the computers work with digital numbers instead of working with real

numbers and there are rounding errors� Hence� Q	 adds� if it computes the higher end of an

interval� or subtracts� if it computes the lower end of an interval� ���� at each operation� An�

other problem is the computing e�ort needed� which increases when the number of intermediate

states increases� The importance of these two problems increases faster than precision�
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����� SQSIM

SQSIM �Semiqualitative Simulator� �
� is a combination of several simulators� QSIM� Q�� Q	

and NSIM� It intersects the results given by each of these simulators� If various overbounded en�

velopes are intersected� a new tighter overbounded envelope is obtained� If any of the envelopes

intersected is not overbounded� the result will be tighter� but it will not be overbounded� This

is the problem of SQSIM� some of the simulators used� give envelopes with unknown properties�

Hence the envelopes obtained using SQSIM are tighter but have unknown properties as well�

����� Ca�En

Ca�En ��� is a model�based supervision system for on�line applications� It includes a semi�

qualitative simulator that is based on causal and constraint reasoning� It uses an explicit

representation of time given by a logical clock� Its frequency is adjusted depending on the

characteristics of the process� It is used to synchronise the simulator with the measurements of

the process and to evaluate the duration of the states and the dates of the events�

The value of a variable is an interval of the real axis� The models are represented using two

levels� a local constraint level and a global constraint level� Both levels can manage imprecise

knowledge�

In the local constraint level� the in�uences between the variables are made explicit by the

use of an oriented graph� An in�uence is a causal relation between two variables� For instance�

if A increases then B increases too� hence A in�uences B� There are four types of in�uences�

dynamic� integral� static and constant� The dynamic in�uence is supposed to be a �rst order

one� Therefore� some parameters must be indicated� static gain� time constant� delay� etc� A

condition to activate the relation can be speci�ed� If the relation is not a �rst order one or

it is not linear� it must be linearised and approximated by a �rst order relation� The internal

representation of in�uence relations is in the form of discrete time equations�

On the other hand� in the global constraint level� constraints derived from physical laws are

implemented� They are functions relating numeric variables�

Therefore� Ca�En uses a multi�model knowledge representation ��� �

The simulation algorithm is synchronous and includes two phases� The �rst one propagates

the values of the variables� given as numeric intervals� through the oriented graph� using interval


	



arithmetic and optimisation� As the relations are linear in the local constraint level� the values of

the variables are updated applying the superposition principle� The updated value of a variable

is obtained as a weighted sum �attending the in�uences� of the values of all the variables that

in�uence it� The second phase uses the global constraint model to re�ne the values obtained

from the �rst phase� They must be re�ned due to the use of interval arithmetic and due to

linearisations� The output of the system is the trajectory of each process variable represented

by an envelope�

In a �rst version of Ca�En the value spaces for the variables and their derivatives were

prede�ned� Hence� they could be considered as qualitative values� Later versions eliminated

these value spaces and now the value of each variable can be any interval�

Although the one step ahead prediction is optimised in order to take the multi�occurrence

of the variables and their dependencies into account� the obtained envelopes are overbounded

due to ignored dependencies across time� i�e� the systems are considered time variant�

��� Semiqualitative simulation based on qualitative simulation

and fuzzy logic

This section presents a description of some semiqualitative simulators based on fuzzy logic� It

will be seen that all of them end up using interval arithmetic� like the simulators described in

section 	��� after fuzzy sets are converted in intervals through ��cut� which can be seen in �gure

	���
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Figure 	��� Interval obtained by ��cut at ��� of a fuzzy number�







����� FuSim

FuSim �Fuzzy Qualitative Simulator� ��� is an extension of QSIM� It is not constructive� like

QSIM� In FuSim� variables� values are given by intervals instead of qualitative labels� It is

based on the same two phases than QSIM� qualitative generation of all possible transitions and

�ltering� using numeric information� of the transitions that do not ful�l the constraints� The

mean value theorem is used for the �ltering phase�

The only time information that gives QSIM is the order of the future states� FuSim indicates

the time that the system will remain in each state ��	 � It can generate this information

because there is a di�erence with respect to QSIM� Like QSIM� FuSim represents the variables

with their value and the value of their derivative� but the derivative can have a fuzzy value

so it is not limited to be positive� negative or zero� This allows� for instance� comparing the

predictions of FuSim with the measurements of the variables� This time is computed using the

�rst order Taylor�Lagrange formula �see section 	������ like Q� does� and hence it has the same

disadvantages than Q� near the points with zero derivatives�

FuSim converts the fuzzy numbers to intervals using ��cut� However� the intervals obtained

are of a special kind because there is a limited number of possible intervals� This number is

�xed when the value space for each variable is de�ned�

At each time point� the value of each variable is a fuzzy number belonging to the value

space of that variable� This value space is prede�ned discretising the real axis� that is to say

splitting the real axis in a �nite number of subsets� The predicted values of the variables do not

coincide� in general� with the possible fuzzy values in the quantity space of the variables� Then

the algorithm chooses the likeliest value using the metric distance �a measure of the similarity

of two fuzzy numbers� and the state priorisation �a single variable can not have di�erent values

for di�erent constraints�� This action makes FuSim unsound �it includes spurious states� and

incomplete �all possible states are not included��

����� Mycroft

Mycroft ��	 includes two simulators �a non�constructive simulator and a semi�constructive one�

plus other elements� These simulators are centred in dynamic continuous systems� linear or not�

and they are based on QSIM� FuSim and PA� Mycroft takes advantage of the best characteristics
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of each one and enhances some of them� For instance� some characteristics inherited from these

simulators are�

� It works with n derivatives of each variable� like PA� QSIM and FuSim work only with

the �rst derivative�

� The value of the variables is expressed with fuzzy sets� hence it generates time information�

This is a characteristic that FuSim and the quantitative simulators have and QSIM and

PA do not have�

� The equations are causally ordered� hence the simulation is more constructive� PA is

constructive� but QSIM and FuSim are not constructive�

Some of the new features are�

� The way to deal with intermediate variables�

� Only the future values of the state variables are computed� The three simulators men�

tioned above compute the future values of all variables� It is not necessary to do it if the

equations are causally ordered�

� A new priorisation algorithm� This is an enhancement with respect to FuSim�

� The problem of the prediction of impossible behaviours is partially solved because the

intermediate variables have interval values and they do not have a prede�ned value space

�see section 	�
���� To do this� the fuzzy numbers are converted to intervals using ��cut

and interval arithmetic is used to compute the predicted states� The computed results

still include impossible states due to the use of interval arithmetic �monotonic inclusion�

multi�incidences� etc�� but they do no longer include impossible values due to the use of

value spaces�

The semi�constructive simulator uses the transition rules for the generation of possible new

values and for �ltering and erasing impossible values as well� It is not complete� A proof is that

in some simulations there are not predicted future states because all the generated transitions

are �ltered out�
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Both simulators �the constructive one and the semi�constructive one� are not envelope gen�

erators because the result of the simulation is a tree that indicates the successive states of the

system� The time information that is generated is used only to determine the priority between

the di�erent transitions� It does not inform the user when these transitions will occur�

����� Qua�Si�

Qua�Si� ���� �� are three simulators �Qua�Si� I� II and III� for continuous dynamic systems�

The system model is given in the form of di�erential equations in which parameters or initial

conditions are uncertain and can take fuzzy values� The goal is to extend the traditional quanti�

tative simulators by means of Fuzzy Sets Theory� hence considering the mathematics of the real

numbers as a particular case of fuzzy mathematics� Therefore� if the model is quantitative the

results must be the same than the ones that would be obtained with a quantitative simulator�

One way to solve the di�erential equations could be converting the fuzzy numbers to inter�

vals� by means of ��cut� and applying interval arithmetic� The results will not be good because

interval arithmetic considers that each incidence of a single variable is independent one from

another�

The description of the problem follows� At the initial state� there is an uncertainty region in

the state space� The shape of this region is an hypercube and it is desired to know its evolution

across the time� It is not necessary to study the evolution of every point that belongs to the

initial hypercube� Under general conditions of continuity and di�erentiability� it is necessary

to study only the evolution of all the points that belong to the hypercube surface� The number

of trajectories to be studied still is in�nite� although it is of a smaller order of magnitude�

One way to solve this problem is transforming a sampling problem into an optimisation

problem� The goal is �nding the maximum and the minimum values for each variable at each

time step� taking into account that the initial value must be in one of the sides of the hypercube�

Qua�Si� I

Qua�Si� I uses a scalar systems method� described in section 	����� reconstructing the hypercube

at every time step� It simulates characteristic points of the hypercube in the state space� the

vertices� the centre of the edges� the centre of the faces� etc� Therefore� it produces incomplete
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envelopes� Moreover� the envelopes are unsound� due to the wrapping problem� and unstable�

The model of the system can be described with algebraic and di�erential equations� There

is a possibility to do it with fuzzy rules as well�

Qua�Si� II

In Qua�Si� II� the hypercube is not reconstructed at every time step hence avoiding the wrapping

problem� Therefore� external behaviours are not added and envelopes are underbounded� as

was proven in section 	�����

Qua�Si� III

Qua�Si� I and Qua�Si� II use heuristic criteria to select the trajectories� Qua�Si� III treats

the propagation of the fuzzy distributions across the phase space as an optimisation problem

with multivariable constraints� This allows the use of advanced numerical techniques whose

results are similar� in precision� to the ones obtained using optimisation methods� To enhance

the performance of the optimisation algorithm� the function to be optimised and its partial

derivatives are used�

The optima that it �nds are not guaranteed because it uses optimisation methods with no

guarantee� The computational complexity grows exponentially with time because at each time

point the optima are computed with respect to the initial state� It was demonstrated in section

	���� that the maximum at one time step and the maximum at the previous one perhaps do

not belong to the same trajectory� Hence� all the trajectories starting at the initial state must

be computed to �nd the optima� The computational complexity also grows exponentially with

the order of the system because the initial hypercube has more surfaces�

Conclusions

According to the description made of these three simulators some conclusions can be extracted�

� Qua�Si� I� The envelopes obtained can be unstable� They are unsound due to the addition

to the hypercube of states that do not belong to it� Moreover� they can be incomplete

because it simulates only quantitative models� Therefore� they are neither sound nor

complete�







� Qua�Si� II� The envelopes are no longer unsound� but they can still be incomplete� Hence�

they are underbounded�

� Qua�Si� III� The simulation problem is translated into an optimisation problem� The

obtained envelopes can be incomplete and hence underbounded because the optimisation

algorithm used can provide local optima�

These simulators are based on interval arithmetic� although uncertainties are given by fuzzy

distributions� because these distributions are converted into intervals by means of ��cut in order

to perform mathematical operations�

����� FRenSi

FRenSi �Fuzzy Region Simulator� ��	 is a simulator based in the quantitative models method

�see section 	����� hence its results are underbounded� The parameters of the model can be

represented by fuzzy sets� FRenSi also deals with these parameters by using the ��cut�

��	 Summary

Di�erent options to simulate the behaviour of uncertain systems have been presented in this

chapter� The existing simulators can be classi�ed into three groups�

� Quantitative� Numerical techniques are applied to deal with uncertainty expressed with

intervals�


 Fixed threshold calculus� The completeness of the envelopes is guaranteed only if

the threshold is high� but this is not very useful because then the envelopes are much

overbounded�


 Adaptive threshold calculus using stochastic methods� These methods are useful

when the uncertainty can be expressed with probability distributions� Their results

are envelopes with a certain degree of con�dence� They are not adequate for interval

systems�


 Simulation of quantitative models� The obtained envelopes are underbounded�
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 Simulation as a range determination problem� If an optimisation method is used

and there is no guarantee that it will �nd the global optima� the envelopes will be

underbounded�

� Qualitative� They are based on qualitative reasoning� These simulators are designed to

deal with qualitative information� not with quantitative information like the information

provided by an interval model� Hence� they do not take advantage of this numerical

information� Therefore� the original QSIM brings overbounded envelopes� but there are

some optional �lters that make it give incomplete envelopes� On the other hand� PA is

incomplete because it �nds only one possible behaviour� not all of them�

� Semiqualitative� There are two types of semiqualitative simulators�


 Based on qualitative reasoning plus numerical knowledge� Q� and Q	 obtain tighter

envelopes than QSIM adding numerical techniques �interval arithmetic� to it� The

properties of the envelopes �completeness� soundness� have not been studied� SQSIM

intersects envelopes produced by QSIM� Q�� Q	 and NSIM� If all the envelopes gen�

erated by these simulators were overbounded� the intersection will be overbounded

too� but tighter� However� as it was stated above� some of these simulators have un�

known properties� Hence� the envelopes are tighter but their properties are unknown�

Ca�En provides overbounded envelopes� The semiqualitative simulators based on

fuzzy logic FuSim and Mycroft can be included in this group because� as it has

been seen� they also use interval arithmetic� FuSim gives unsound and incomplete

envelopes� The envelopes provided by Mycroft are incomplete�


 Not based on qualitative reasoning� The interval methods can be combined with

some numerical methods like the adaptive threshold calculus or the optimisation

thus giving semiqualitative methods� The interval methods guarantee the results

because the natural extension of a function has the monotonic inclusion property�

The envelopes obtained are overbounded� much overbounded� This is the case of

NSIM and NIS� The properties of the simulator of Gasca et al have not been studied

yet� Some simulators based on fuzzy logic can be included in this group� All the

Qua�Si� simulators generate incomplete envelopes� Qua�Si� I and Qua�Si� II because
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they are based on the quantitative models method� like FRenSi� Moreover� the

envelopes of Qua�Si� I are unsound� The envelopes of Qua�Si� III also are incomplete

because it uses optimisation methods without guarantee�

These conclusions are summarised in table 	��� When the resulting envelopes are neither

complete nor sound they can not be considered neither as overbounded nor as underbounded�

This does not mean� unfortunately� that the envelopes are exact�

Type Simulator O
ve
rb
ou
n
d
ed

N
ei
th
er
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le
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n
or
so
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d

U
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er
b
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n
d
ed

Quantitative Fixed threshold $ $ $
Adaptive threshold $ $ $
Quantitative models

p
Optimisation $ $ $

Semiqualitative quantitative " interval Moore
p

NSIM
p

NIS
p

Gasca %
qualitative " interval Q� %

Q	
p

SQSIM %
Ca�En

p
qualitative " fuzzy FuSim

p
Mycroft %

I
p

Qua�Si� II
p

III
p

FRenSi
p

Qualitative QSIM original
p

opt� �lters %
PA %

Table 	��� Summary of the properties of the simulators�
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The properties of the envelopes obtained by means of some methods depend on their par�

ticular application� For instance� a simulator based on the range determination method will

provide overbounded or underbounded envelopes depending on the particular algorithm used� If

it is an optimisation algorithm and �nds inner approximations to the optima� the envelopes are

underbounded and if this algorithm gives outer approximations the envelopes are overbounded�

These methods are indicated by $�

In conclusion� there exist many simulators for models in which uncertainty is represented�

They can generate underbounded or overbounded envelopes or envelopes which are neither

complete nor sound� In many cases the authors of the simulator do not assess the properties of

the envelopes� In some of these cases the properties can be deduced studying the algorithms

used to simulate� but in other occasions the properties remain unknown� In these cases� the

properties are indicated by % if there are doubts about them�

��



Chapter �

Generation of envelopes

��� Introduction

One of the techniques to generate envelopes is the conversion of the simulation problem into

a problem of determination of the range of a function into a parameter space� The properties

of the obtained envelopes will depend on the properties of the obtained approximation to the

range�

This chapter presents a simulator for interval models based on this technique but in a new

approach� the use of MIA� which is also introduced� The main goal for presenting this simulator

is to have a deeper knowledge of this method� This will show its advantages and disadvantages

and will allow to de�ne the characteristics of a new simulation method�

��� Global optimisation methods

The goal of a global optimisation method is to �nd the maximum and the minimum of a

function� That is �nding the maximum �resp� the minimum� value of the function and its

location� i�e� the combination �or combinations if there are several maxima� of parameters

that maximise �resp� minimise� the function� There can be constraints� for instance when the

function is optimised in a parameter space� or not� They are called global to distinguish them

from the optimisation methods that in some cases give local optima instead of the global ones�

In the case of the computation of the range of a function in a parameter space� it is necessary

�	



to determine the optima of the function� but it is not necessary to determine where these optima

are located�

There are many methods for global optimisation ��� � Global optimisation methods based

on interval arithmetic �	� obtain overbounded results due to the monotonic inclusion property

of the interval extensions of functions� When the range of a function f in a parameter space

A is computed by means of its interval natural extension fR �A�� the obtained result is an

overbounded approximation of the exact range f �A��

fR �A� � f �A� �
���

The degree of overbounding depends on the width of the input intervals� The tighter are

the inputs� the tighter is the result� but always overbounded� Therefore� a way to obtain less

overbounded results is splitting the parameter space into subspaces

A � A� �A� � � � � �An �
���

and computing the range of the function at each subspace� The union of these ranges is a less

overbounded approximation of f �A��

fR �A� � �fR �A�� � fR �A�� � � � � � fR �An�� � f �A� �
�	�

Therefore� successive better approximations are obtained when the parameter space is split

in subspaces smaller and smaller� but it is not necessary to split some of the subspaces� This is

what branch and bound algorithms do�

One of the drawbacks of interval arithmetic when used for this task is that it does not

take into account that a variable appearing several times into an expression is a single variable�

Similarly� it is unable to take into account dependencies of other types� interdependent variables

�there is a relation among them� or variables that depend of the same variable� This drawback

is overcome in some cases by MIA� which is introduced in the next section� In addition to the

treatment of multi�incidences� MIA has some interesting properties for the work presented in

this thesis� For instance� it can be used not only to obtain overbounded approximations of the

�




range of functions� In addition to them� underbounded approximations can be obtained as well�

��� Introduction to Modal Interval Analysis

����� De�nitions and properties

MIA �	�� ��� 	� extends real numbers to intervals� Unlike classical interval analysis which

identi�es an interval by a set of real numbers� MIA identi�es the intervals by the set of predicates

that are ful�lled by the real numbers�

In the following� some of the properties of modal intervals that are interesting for envelope

generation are stated� The proofs of all the results presented in this section as well as other

recent results of modal intervals can be found in ��� �

Given the set of closed intervals of IR � I �IR � �
�

�a� b � j a� b � IR � a�b�� and the set of

logical existential and universal quanti�ers fE�Ug� a modal interval is de�ned by a pair�

X ��
�
X �� QX

�
�
�
�

in which X � � I �IR � and QX � fE�Ug� X � is called the extension and QX is the modality�

In a similar way that real numbers are associated in pairs having the same absolute value but

opposite signs� the modal intervals are associated in pairs too� each member corresponding to

the same closed interval of the real line but having each one of the opposite selection modalities�

existential or universal�

The universal and existential quanti�ers are represented by U and E� using a more general

notation than the classic � and �� Moreover� since the quanti�ers are operators which transform

real predicates into interval predicates� it will be written E �x�A��P �x� and U �x�A��P �x�� in�

dicating both arguments� the real index x and the interval argument A�� The notation E �x�A��

P �x� is preferred to the more verbalistic and intuitive form ��x � X �� P �x�� Indeed� when the

second argument is not a set� like in the following de�nition� the later notation is outwardly

misleading�

��



The canonical notation for modal intervals is�

�a�� a� ��

�	


�
�a�� a� 

� � E
�

if a� � a��
�a�� a� 

� � U
�

if a� � a�

��
� �
���

A modal interval
�
�a�� a� 

� � E
�

is called �existential interval� or �proper interval� whereas�
�a�� a� 

� � U
�

is called �universal interval� or �improper interval��

����� Modal interval relations and operations

The set of modal intervals is denoted by I� �IR �� The modal quanti�er Q associates to every

real predicate P ��� � Pred �� a unique interval predicate� for a variable x on R and a modal

interval
�
A

�

� QA
�
� I� �IR ��

Q
�
x�
�
A�� QA

��
�� QA

�
x�A�

�
�
���

De�ning the set of real predicates accepted by a modal interval

Pred
��

A
�

� QA
��

��
n
P ��� � Pred �IR � j Q

�
x�
�
A

�

� QA
��

P �x�
o

�
���

the equivalent of the inclusion of classical intervals can be introduced into the system of modal

intervals� for A�B � I� �IR �

A 
 B �� Pred �A� 
 Pred �B� �
�
�

In terms of the canonical notation� the inclusion is characterised by

�a�� a� 
 �b�� b� �� �a� � b�� a� � b�� �
���

In a dual way� it is possible to de�ne the set of predicates rejected by a modal interval

Copred
��

A
�

� QA
��

��
n
P ��� � Copred �IR � j �Q

�
x�
�
A

�

� QA
��

P �x�
o

�
����

Pred and Copred are complementary by means of the Dual operator�

��



Dual ��a�� a� � � �a�� a� �
����

and

A 
 B �� Dual �A� � Dual �B� �� Copred �A� � Copred �B� �
����

An aspect to be taken into consideration is the rounding of computations� Computers

work with digital numbers� not with real numbers� In order to maintain the relations� direct

roundings �up or down� have to be used� If DI 
 IR is a digital scale for real numbers� then

the set of modal digital intervals is I� �DI� � f�a� b � I� �IR � j a� b � DIg and the modal outer

and inner roundings of A � I� �IR � are de�ned by�

Inn ��a� b � � �Right �a� �Left �b� � I� �DI� �
��	�

Out ��a� b � � �Left �a� �Right �b� � I� �DI� �
��
�

The condition

Inn ��a� b � 
 �a� b 
 Out ��a� b � �
����

is ful�lled and the equality

Inn �A� � Dual �Out �Dual �A��� �
����

makes unnecessary the implementation of the inner rounding�

The structure �I� �IR � �
� is a lattice and the minimum and the maximum for a family of n

modal intervals fA �i� j A �i� � I� �IR � � i � I � ��� � � � � n�g are called meet and join� In terms

of the bounds of A �i� � �a� �i� � a� �i� they become�

� Meet�

� �i� I�A �i� � �max �i� I� a� �i� �min �i� I� a� �i� �
����

� Join�

� �i� I�A �i� � �min �i� I� a� �i� �max �i� I� a� �i� �
��
�

��



Generalising� the set of n�dimensional intervals is

I� �IR n� �� f��a�� b� � � � � � �an� bn � j �a�� b� � I� �IR � � � � � � �an� bn � I� �IR �g �
����

and� given A � �A�� � � � � An� and B � �B�� � � � � Bn� � the inclusion becomes

A 
 B �� A� 
 B�� � � � � An 
 Bn �
����

����� Semantic extensions of continuous real functions

The dual formulation of the modal intervals allows one to de�ne two �semantic� interval func�

tions� noted by f� and f�� respectively� These play a very important role in the theory because

they are in close relation with the modal interval extensions and provide meaning to the interval

computations�

De�nition 
 �� and ���semantic functions� If f is an IR n to IR continuous function and

A � I� �IR n� then

f� �A� �� � �ap� A�

p

� � �ai� A�

i

�
�f �ap� ai� � f �ap� ai� �
����

�
�
min

�
ap� A

�

p

�
max

�
ai� A

�

i

�
f �ap� ai� �max

�
ap� A

�

p

�
min

�
ai� A

�

i

�
f �ap� ai�

�

f�� �A� �� � �ai� A�

i

� � �ap� A�

p

�
�f �ap� ai� � f �ap� ai� �
����

�
�
max

�
ai� A

�

i

�
min

�
ap� A

�

p

�
f �ap� ai� �min

�
ai� A

�

i

�
max

�
ap� A

�

p

�
f �ap� ai�

�

where �f �ap� ai� � f �ap� ai� is a point interval �a� � a�� and �ap� ai� is the component splitting

corresponding to A � �Ap� Ai�� with Ap a subvector containing the proper components of A and

Ai a subvector containing the improper components of A�

Using this de�nition� the expressions of the arithmetic operations by means of the interval

bounds can be obtained� As an example� this de�nition is applied in the following to the

operation addition�

�




Being f the function a"b and given A� �
�
a�� a�

�
and A� �

�
a�� a�

�
� the semantic extensions

f� and f�� will be�

�� A� and A� are proper�

f� �A� � �min �a�� min �a�� �a� " a�� �max �a�� max �a�� �a� " a�� �
��	�

�
�
a� " a�� a� " a�

�

f�� �A� � �min �a�� min �a�� �a� " a�� �max �a�� max �a�� �a� " a�� �
��
�

�
�
a� " a�� a� " a�

�

�� A� is proper and A� is improper�

f� �A� � �min �a�� max �a�� �a� " a�� �max �a�� min �a�� �a� " a�� �
����

�
�
a� " a�� a� " a�

�

f�� �A� � �max �a�� min �a�� �a� " a�� �min �a�� max �a�� �a� " a�� �
����

�
�
a� " a�� a� " a�

�

	� A� is improper and A� is proper�

f� �A� � �min �a�� max �a�� �a� " a�� �max �a�� min �a�� �a� " a�� �
����

�
�
a� " a�� a� " a�

�

f�� �A� � �max �a�� min �a�� �a� " a�� �min �a�� max �a�� �a� " a�� �
��
�

�
�
a� " a�� a� " a�

�

��




� A� and A� are improper�

f� �A� � �max �a�� max �a�� �a� " a�� �min �a�� min �a�� �a� " a�� �
����

�
�
a� " a�� a� " a�

�

f�� �A� � �max �a�� max �a�� �a� " a�� �min �a�� min �a�� �a� " a�� �
�	��

�
�
a� " a�� a� " a�

�

In this case f� �A� � f�� �A� �
�
a� " a�� a� " a�

�
for any modality of A� and A� and hence

the sum of two intervals is noted A� " A� and in terms of the bounds of Ai becomes

A� " A� �
�
a� " a�� a� " a�

�
�
�	��

In a similar way� the de�nition can be applied to the other arithmetic operations and then

the rules for their modal interval extensions are obtained�

� Interval to the power of a real number�

An �

�������������	
������������


��� � if n � �

�an� an if n is odd

�an� an if a � � and a � �

�an� an if a � � and a � �

���max �an� an� if a � � and a � �

�max �an� an� � � if a � � and a � �

��������
�������

if n is even

�
�	��

� Di�erence�

A� �A� �
�
a� � a�� a� � a�

�
�
�		�

��



� Product�

A� �A� �

��������������������������������������������	
�������������������������������������������


�
a�a�� a�a�

�
if a�� �� a� � �� a�� � and a� � ��

a�a�� a�a�
�

if a�� �� a� � �� a�� � and a� � ��
a�a�� a�a�

�
if a�� �� a� � �� a�� � and a� � ��

a�a�� a�a�
�

if a�� �� a� � �� a�� � and a� � ��
a�a�� a�a�

�
if a�� �� a� � �� a�� � and a� � ��

max
�
a�a�� a�a�

�
�min

�
a�a�� a�a�

��
if a�� �� a� � �� a�� � and a� � �

��� � if a�� �� a� � �� a�� � and a� � ��
a�a�� a�a�

�
if a�� �� a� � �� a�� � and a� � ��

a�a�� a�a�
�

if a�� �� a� � �� a�� � and a� � �

��� � if a�� �� a� � �� a�� � and a� � ��
min

�
a�a�� a�a�

�
�max

�
a�a�� a�a�

��
if a�� �� a� � �� a�� � and a� � ��

a�a�� a�a�
�

if a�� �� a� � �� a�� � and a� � ��
a�a�� a�a�

�
if a�� �� a� � �� a�� � and a� � ��

a�a�� a�a�
�

if a�� �� a� � �� a�� � and a� � ��
a�a�� a�a�

�
if a�� �� a� � �� a�� � and a� � ��

a�a�� a�a�
�

if a�� �� a� � �� a�� � and a� � �

�
�	
�

� Division�
A�

A�
� A� � �

A�
if � �� A� �
�	��

being
�

A
�

�
�

a
�

�

a

�
if � �� A �
�	��

These rules are similar to the ones used in interval arithmetic �see section 	�	��� taking into

account that now intervals can be improper�

The value of f� or f�� extensions may have� with further thought� no clear meaning con�

cerning the values of f in its domain� Two key theorems reverse this perspective� giving a

complete meaning to the interval results f� and f�� and characterizing them as modal interval

extensions� previously de�ned in logical terms�

��



Theorem � ���Semantic Theorem� If A � I� �IR n�� f � IR n � IR is continuous in A� and

there exists an interval which is called F �A� � I� �IR �� then

f� �A� 
 F �A� �� U
�
ap� A

�

p

�
Q �z� F �A��E

�
ai� A

�

i

�
�z � f �ap� ai�� �
�	��

This interpretation can be read� �For all elements belonging to the proper intervals there

exists at least one element in the improper intervals that ful�l the function��

Example � ���� �� " ���� �� � �	�� 	� means

U
�
a� ���� �� �

�
E
�
f� �	�� 	� �

�
E
�
b� ���� �� �

�
�a " b � f� �
�	
�

Dual semantics for proper and improper modal intervals are established by the dual semantic

theorem�

Theorem � ����Semantic Theorem� If A � I� �IR n�� f � IR n � IR is continuous in A� and

there exists an interval which is called F �A� � I� �IR �� then

f�� �A� � F �A� �� U
�
ai� A

�

i

�
Q �z�Dual �F �A���E

�
ap� A

�

p

�
�z � f �ap� ai�� �
�	��

Example 	 The only semantic interpretation of

��� � " ��� � � ��� � �
�
��

in the context of Interval Arithmetic is

U
�
a� ��� � �

�
U
�
b� ��� � �

�
E
�
f� ��� � �

�
�a " b � f� �
�
��

In addition to this one� in the context of MIA the semantics

U
�
f� ��� � �

�
E
�
a� ��� � �

�
E
�
b� ��� � �

�
�a " b � f� �
�
��

is possible� too�

��



The semantics �
�
�� is valid for the $�extension of the function and the semantics �
�
�� is

valid for the $$�extension� In this case� both extensions are equal and hence both interpretations

are valid� When all the intervals are proper� it can be said that the $�extension is complete and

the $$�extension is sound� Therefore� when both extensions are equal the result is exact�

In the following example one of the semantics is lost because� although the two extensions

of the operation are the same� the two operands are not independent�

Unfortunately� the computation of the $� and $$�extensions is� in general� a di!cult challenge

and hence the usual procedure is to �nd overbounded computations of f� and underbounded

computations of f�� which maintain the semantic interpretations�

When the continuous function f is a rational function� there exist two modal rational

extensions� They are obtained by using the computing program de�ned by the syntax tree

of the expression of the function� in which the real arguments are transformed into interval

arguments and the real operators are transformed into their $ or $$�semantic extensions�

For a general class of operators� for instance the arithmetic operations considered above�

both $� and $$�semantic extensions are equal� In this case� the function de�ned by the com�

putational program indicated by the syntax of f is called modal rational function� fR �A�� In

general� fR �A� is not interpretable� The interpretation problem for a modal rational function

consists in relating it to the corresponding semantic functions� which have standard meaning

de�ned by the semantic theorems�

There are several theorems relating the modal rational function fR �A� to the modal se�

mantic extensions f� and f��� The following ones give two $ and $$�interpretable coercions�

De�nition � A component xi of x is uni�incident in a rational function f �x� if it occupies

only one leaf of the syntactical tree of f � otherwise� xi is multi�incident in f �x� �

Theorem � If in fR �A� all arguments are uni�incident� then

f� �A� 
 fR �A� 
 f�� �A� �
�
	�

In particular� if all the components of A are uni�incident and with the same modality�

f� �A� � fR �A� � f�� �A� �
�

�

�	



Theorem � If in fR �A� there are multi�incident improper components and if AT � is obtained

from A by transforming� for every multi�incident improper component� all incidences but one

into their duals� then

f� �A� 
 fR �AT �� �
�
��

If all components of A are proper� then AT � � A and

f� �A� 
 fR �A� �
�
��

When these computations are performed using digital numbers� appropriate roundings have

to be made�

f� �A� 
 Out �fR �AT ��� �
�
��

Theorem � If in fR �A� there are multi�incident proper components and if AT �� is obtained

from A by transforming� for every multi�incident proper component� all incidences but one into

their duals� then

f�� �A� � fR �AT ��� �
�

�

If all components of A are improper� then AT �� � A and

f�� �A� � fR �A� �
�
��

In this case� the roundings that have to be performed in order to maintain the semantics

are�

f�� �A� � Inn �fR �AT ���� �
����

An interpretable rational interval computation program fR �A� may nevertheless result in

a loss of information far more important than the one produced by numerical roundings� Then

it is very important to �nd out criteria to characterise the rational interval functions for which

fR �A�� with an ideal computation �in�nite precision�� is such that

f� �A� � fR �A� � f�� �A� �
����

In this case� it is said that fR ��� is optimal for A�

�




There are several results which characterise the optimality of a modal rational function

according to its monotonicity properties�

De�nition �� A continuous function f �x� y�� is an uniformly monotonic function with respect

to x in a domain
�
X

�

� Y
�

�

 �IR � IR m� if it is a monotonic function with respect to x in X

�

and keeps the same direction of monotonicity for all the values y � Y
�

�

De�nition �� A continuous function f �x� y�� is a totally monotonic function with respect to

a multi�incident variable x in a domain
�
X

�

� Y
�

�

 �IR � IR m� if it is a uniformly monotonic

function with respect to x in X
�

and� for every incidence of x considered as an independent

variable� it is also a uniformly monotonic function�

Theorem 	 �optimal coercion for uni�modal arguments� Let A be an interval vector and

fR de
ned in the domain A
�

and totally monotonic for all its multi�incident components� Let

AD be the enlarged vector of A� such that each incidence of every multi�incident component is

included in AD as an independent component� but transformed into its dual if the correspond�

ing incidence�point has a monotonicity sense contrary to the global one of the corresponding

A�component� Then

f� �A� � fR �AD� � f�� �A� �
����

Theorem � ���partially optimal coercion� Let A be an interval vector and fR de
ned in

the domain A
�

and totally monotonic for a subset B of multi�incident components� Let ADT �

be the enlarged vector of A� such that each incidence of every multi�incident component of

the subset with total monotonicity is included in ADT � as an independent component� but

transformed into its dual if the corresponding incidence�point has a monotonicity sense contrary

to the global one of the corresponding B�component� for the rest� the multi�incident improper

components are transformed into their dual in every incidence except one� Then

f� �A� 
 fR �ADT �� �
��	�

Theorem 
 ����partially optimal coercion� Let A be an interval vector and fR de
ned

in the domain A
�

and totally monotonic for a subset B of multi�incident components� Let

ADT �� be the enlarged vector of A� such that each incidence of every multi�incident component

��



of the subset with total monotonicity is included in ADT �� as an independent component� but

transformed into its dual if the corresponding incidence�point has a monotonicity sense contrary

to the global one of the corresponding B�component� for the rest� the multi�incident proper

components are transformed into their dual in every incidence except one� Then

f� �A� � fR �ADT ��� �
��
�

����� Examples of range computations

Follow some examples of the application of these theorems to the determination of the range of

a function in a parameter space� The �rst one shows the application of theorem � when there

are multi�incident variables and the function is optimal�

Example � Determination of the range of f � x � x in the parameter space X � ��� � � The

exact range is Rf � ��� � because all possible values of x ful
l x � x � �� The modal rational

function

fR �X� � X �X � �x� x � �x� x � �x� x� x� x � ���� � �
����

is an overbounded approximation to f� �X�� according to theorem 
� Therefore it is ��semantically

interpreted

U
�
x� ��� � �

�
E
�
f� ���� � �

�
�x� x � f� �
����

The function is monotonic with respect to x

�f

�x
� �� � � � �
����

and with respect to every incidence of x considered as an independent variable

�f

�x�
� � � � �
��
�

�f

�x�
� �� � �

and therefore it is totally monotonic and theorem � can be applied to obtain the exact range of

��



the function�

f� �X� � f�� �X� � fR �XD� � X �Dual �X� � Dual �X��X � ��� � �
����

This result is ��semantically interpretable

U
�
x� ��� � �

�
E
�
f� ��� � �

�
�x� x � f� �
����

and ���semantically interpretable

U
�
f� ��� � �

�
E
�
x� ��� � �

�
�x� x � f� �
����

The following example shows that sometimes it is necessary to use splitting algorithms

because the function is not totally monotonic�

Example 
 Determination of the range of the function f � x�x� � x�� � �x� in the param�

eter space X� � ��� � and X� � �	� 
 � The range of the function is Rf � �����	��� � An

overbounded approximation is obtained using the natural extension

f� �X� 
 fR �X� � ���� � �
����

The function is monotonic with respect to x�

�f

�x�
� x� � � � ���� � � � �
��	�

and with respect to every incidence of x� considered as an independent variable

�f

�x��
� x� � ��� � � � �
��
�

�f

�x��
� �� � �

hence it is totally monotonic� Nevertheless� it is not totally monotonic with respect to x�

�f

�x�
� x� � �x� � ���� � � � �
����

��



Therefore� theorem � can be applied to x� to obtain a better approximation of the range of the

function�

f� �X� 
 fR �XDT �� � X�Dual �X���X�
� � �X� � ��
��� �
����

In this case� to obtain even better approximations of the exact range� the parameter space has to

be split� The advantage provided by theorem � is that it indicates that only the variable x� must

be split� Moreover� the range in each sub�space can be computed more exactly because theorem

� has already been applied to x�� In fact� the function whose range has to be determined now is

F � X� �
� 	 �X�
� � ��� 
 

which is an interval function of one variable�

As a conclusion� the number of sub�spaces to be considered to compute an approximation

of the range of the function is smaller when modal intervals are used� This is illustrated in �
� �

where modal intervals combined with a branch and bound algorithm have been applied to the

analysis and design of robust controllers�

The next example shows that sometimes it is necessary to compute the range of higher

order derivatives in order to compute the range of a function� It has been seen that to study

the monotonicity of a function� it is necessary to compute approximations to the range of

its derivative� In the examples above� the variables in the derivative are uni�incident so the

range obtained using the natural extension is exact� If there are multi�incident variables in the

derivative� this range is overbounded�

Example � Determination of the range of the function f � x��x�� �x�� " �x�� in the parameter

space X� � ��� � and X� � �	� 
 � The range of the function is Rf � ���� 
� � An overbounded

approximation is obtained by means of the natural extension

f� �X� 
 fR �X� � ��	� 
� �
����

The function is totally monotonic with respect to x�� as it is monotonic with respect to x��

�f

�x�
� X�

� " 
X� � ��	� �� � � �
��
�

�




and with respect to every incidence of x� considered as an independent variable�

�f

�x��
� X�

� � ��� 
 � � �
����

�f

�x��
� 
X� � ���� �� � �

It seems that the function f is not monotonic when the range of its derivative with respect to

x� is computed by means of the natural extension�



�f

�x�

�
�

�X� 
 �f

�x�
R �X� � �X�X� � 
X� � ���� �� � � �
����

However� this is an overbounded approximation of this range� as x� is multi�incident� The exact

range of the 
rst derivative can be computed studying the monotonicity of the second derivative�

��f

�x��
� �X� � 
 � ��� 
 � � �
����

��f

�x���
� �X� � ��� 
 � �

��f

�x���
� �
 � �

Hence� the exact range of the 
rst derivative is�



�f

�x

�
�

�X� �



�f

�x

�
��

�X� �
�f

�x
R �X� � �X�X� � 
 	Dual �X�� � ��� 
 � � �
����

and the function f is totally monotonic�

�f

�x��
� �X�X� � ��� 
 � � �
��	�

�f

�x��
� �
 	Dual �X�� � ��
��
 � �

Then� the exact range of f is�

f� �X� � f�� �X� � fR �XD� � X�
�X� � � �Dual �X���

� " �X�
� � ���� 
� �
��
�
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��� An exact envelope simulator for particular cases

To obtain the exact envelope for a time invariant system� it is necessary to determine the range

of the functions at each time step taking into account the two types of multi�incidences that

appear in these functions�

The �rst type of multi�incidence is given when a parameter appear several times into a

function� Sometimes these multi�incidences do not appear explicitly� for instance if some in�

termediate operation has been performed or if some parameters depend on another parameter�

The second type of multi�incidences is given when the system is assumed to be time invariant

and there are parameters that appear in the functions of di�erent time points� These multi�

incidences of the second type are converted in multi�incidences of the �rst type by merging the

functions� Then� the range of functions in a parameter space de�ned by the parameters of the

function that are intervals has to be determined�

MIA provides tools to calculate these ranges� These tools are useful in this case as it is

necessary to di�erentiate the function to apply some theorems and the models that are used

are di�erence equations� which are easily di�erentiable�

A problem appears when the function is not monotonic� In this case� a splitting algorithm

has to be used� As the exact envelope is searched for� this algorithm should have to iterate

until the exact range is found� In many cases this is not possible because the parameter space

can not be split in rectangular monotonic subspaces and moreover there is always an error due

to roundings�

A simulator has been implemented� It has been given the name MIS� as it is based on MIA

and generates the exact envelope �the envelope with error �� in some special cases�

The characteristics of this simulator are�

� It simulates the behaviour of SISO systems modelled using discrete�time interval equa�

tions�

� The system is considered time invariant and hence the envelopes at any time point are

determined starting from the origin of the simulation�

� There can be some uncertainty on this origin� hence the initial state can be an interval�

��



����� Experimental results

This simulator has been implemented in Maple V release 
 �	 � but it can be launched from

Matlab � �
 by means of the Extended Symbolic Toolbox�

It has been used to simulate the behaviour of a generic �rst order system

yn �



�� T

	

�
yn�� "

kT

	
un�� �
����

with the following parameters�

� static gain� k � ������ ���� 

� time constant� 	 � ��� �� s

� initial state� Y� � ��� � �

� input� u is � from � to �� s and ��� beyond that point�

� sampling time� T � � s�

The results are shown in �gure 
��� There are three envelopes in this �gure� They all have

the same lower bound� but the higher bound is di�erent� The dashed line one was obtained

by simulating the four extreme quantitative models� The dotted line one was obtained making

a grid for the two parameters and simulating all the scalar systems belonging to the grid�

Finally� the solid line one is the exact envelope obtained by means of MIS�� It can be seen that

the exact envelope contains the envelopes obtained by simulating quantitative models� which

are underbounded� and that these envelopes are closer to the exact one when the number of

quantitative models increases�

��� Summary

This chapter presents the problem of the generation of the exact envelopes� In the general case�

this problem can be translated to another problem of range determination� Tools like global

optimisation algorithms can be used for this problem� Some of these algorithms are based on

Interval Arithmetic� which obtains overbounded results when there are multi�incidences in the

��
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Figure 
��� Exact envelope�

function at a time point because they are not considered� The results are more overbounded

when the systems are considered time invariant� because then another type of multi�incidences

appears� multi�incidences between functions at di�erent time points�

Multi�incidences between functions may be converted in multi�incidences in a function com�

bining these functions to form new ones� Then� these multi�incidences in a function can be

taken into account using MIA� an extension of Interval Analysis which is introduced in this

chapter� The main theorems related to this work� which are applied to some examples� are

presented�

A new simulator based on this tool has been developed� MIS�� It can be used to simulate

the behaviour of some particular SISO systems with interval models� inputs or initial states�

The output is the exact envelope in these cases� Some examples of simulations are presented�

This simulator has been used to show the problems that appear when the determination

of the exact envelopes is intended� As these problems are common to any simulator with this

goal� whatever is the method used� the algorithm of MIS� is not given� These problems are�

� The exact envelope is not always obtained due to the rounding errors�

� If the exact envelope is obtained� an important computational e�ort may be needed�

� The procedure is not incremental and therefore the computing e�ort increases at each

step�

��



In many cases it is not necessary to compute the exact envelopes and hence it is not nec�

essary to make such a computational e�ort� Next chapter discusses this question and then an

appropriate simulator� which is not based on MIS�� is introduced�

�	



Chapter �

Generation of error�bounded

envelopes

��� Introduction

The most important conclusion of the overview in chapter 	 is that all that simulators� inde�

pendently of the properties of the envelopes that they generate� have a common characteristic�

the distance between the obtained envelope and the exact one is not known� i�e� the degree of

over or underbounding is unknown�

It is necessary to know the exact envelope to know the distance between an envelope and the

exact one and it is assumed that the exact envelope is of course not known� as the exact envelope

problem is actually highly complex� The proposed alternative way in order to approach this

problem is to bound the error� i�e� to determine the maximum distance� This can be achieved

by computing both an underbounded envelope and an overbounded envelope for a given model

and a given input� The underbounded envelope is included in the exact one� which is unknown

and� in addition� included in the overbounded one� Therefore� these two envelopes bound the

exact one and the distance between them indeed gives the maximum error� These envelopes

are de�ned as error�bounded envelopes�

The error between the envelopes can be reduced either widening the underbounded envelope

or tightening the overbounded one� Obviously� the computation e�ort increases when the error

decreases�

�




The used approach to generate the underbounded and overbounded envelopes is based on

the reformulation of the simulation problem into a range determination problem and requires

the search for inner and outer approximations to the exact range� Both possibilities are achieved

by means of MIA�

��� Error
bounded envelopes simulation

MIA is used to generate both envelopes as it allows to approximate the two semantic extensions

of a function f � f� �X� and f�� �X�� whose semantic interpretations correspond to those of the

overbounded and the underbounded envelopes�

� Overbounded envelope� Its semantics is� �For every �universal quanti�er� model param�

eter� input and initial state� the output belongs to the envelope �existential quanti�er���

which corresponds to the $�extension�

� Underbounded envelope� Its semantics is dual� �For every output belonging to the en�

velope there exist parameter� input and initial state values that produce this output��

which corresponds to the $$�extension�

A new simulator� MIS� has been created� It is based on a branch and bound algorithm�

����� Algorithm

This branch and bound algorithm computes an external and an internal approximations to the

range of the function at each time point� The algorithm applies the coercion theorems to the

monotonic variables� which are determined assessing the monotonicity by using only the �rst

derivative� If the function is not totally monotonic and possibly the maximum or the minimum

of the function is in a parameter space� this space is split along the edges of the not monotonic

variables� The condition to stop this iterative algorithm is that the error between the two

envelopes is lower than the desired one� which is �xed at the beginning of the simulation�

The input arguments of the algorithm are a function f of a set of variables X � fx� � � � xng
and the parameter space determined by the interval values of the variables�

Q �
n
q � �q�� q�� � � � � qn T j qi �

�
qi� qi

�
� i � � � � � n

o
�����

��



The output arguments are the external and internal approximations to the range�

function �external� internal� �approx range�f�Q�

finish � false

internal �inner�f�Q�

save�Q� read list�

DO

external � internal

DO

P �get�read list�

IF not monotonic�f� P � � � THEN

partial �exact�f� P �

internal � internal � partial

external � external � partial

ELSE

partial �inner�f� P �

internal � internal � partial

partial �outer�f� P �

external � external � partial

IF not�partial 
 internal� THEN

�P�� P�� �split�P �

save�P�� write list�

save�P�� write list�

ENDIF

ENDIF

WHILE not�is empty �read list��

IF is empty�write list� THEN

finish � true

ENDIF

IF stop condition THEN

��



finish � true

ENDIF

exchange�read list� write list�

WHILE not�finish�

The functions that are used by the algorithm are described in the following�

function b �not�c� returns true if c is false and vice versa�

function save�Q� list� adds the subspace Q to the list of subspaces list� The length of the

list is increased by one unit�

function Q �get�list� picks one of the elements of the list of subspaces list� This element

is deleted in the list� so the number of elements in the list is decreased by one unit�

function b �empty�list� returns true or false depending on whether the list of subspaces

list is empty or not� respectively�

function exchange�list�� list�� exchanges the lists of subspaces list� and list��

function a �not monotonic�f�Q� returns the real number a� that is the number of vari�

ables with respect to which the function f is not monotonic in the parameter space Q� The test

is performed using only the �rst derivative and using the $�partially optimal coercion theorem�

function Z �exact�f�Q� applies the optimal coercion theorem for uni�modal arguments

�theorem �� to have the exact range of the totally monotonic function f in the parameter space

Q� which is returned as the interval Z�

function Z �inner�f�Q� applies the $$�partially optimal coercion theorem �theorem 
� to

have an internal approximation of the range of f in the parameter space Q� which is returned

as the interval Z�

function Z �outer�f�Q� applies the $�partially optimal coercion theorem �theorem �� to

have an external approximation of the range of f in the parameter space Q� which is returned

as the interval Z�

function �Q�� Q�� �split�Q� splits the parameter space Q in two subspaces Q� and Q�

such that Q� �Q� � Q and Q� �Q� � �� Di�erent criteria may be used for the splitting� The

implemented function splits along the largest edge among the not monotonic variables�

��



The function stop condition computes the maximum distance between the intervals external

and internal� which must ful�l external � internal� The function returns true if it is lower or

equal to 
�

function b �stop condition�external� internal� 
�

IF external � internal � 
 AND internal�external � 
 THEN

b � true

ELSE

b � false

END

����� Implementation

This simulation algorithm has been implemented using Matlab version ��� for Unix �
 � Sym�

bolic computations are performed using Maple V r
 �	 through the Symbolic Math Toolbox�

Moreover� it uses C"" programs as MEX��les to perform modal interval computations with

direct rounding and to accelerate the branch and bound algorithm� Direct rounding is necessary

to maintain the semantic interpretations when computing by means of intervals� as computers

use digital numbers� not real ones�

����� Example of simulation

This simulator is used to study the behaviour of the generic �rst order system used in section


�
���

The functions provided to the branch and bound algorithm are the ones of �	�	�� which are

not linear� Figure ��� shows the input applied to this system �steps of di�erent lengths and

magnitudes��

With this input it is more di!cult to compute the exact envelope because there is no

monotonicity� so error�bounded envelopes are determined using MIS� Figure ��� also shows the

obtained output envelopes �the overbounded one drawn with two solid lines and the under�

�




bounded one drawn with two dotted lines� when the error between the envelopes is �xed at a

maximum of 
 � ����
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Figure ���� Error�bounded envelopes�

����� Conclusions

MIS provides error�bounded envelopes for an interval model expressed with di�erence equations

and a given interval input� The computation e�ort needed depends on the error between

the two envelopes� which is given to the simulator as a parameter� As an example of the

computation e�ort� in the simulation of the previous section� where the maximum error has

been �xed to ���� at time point t � 	� s the exact envelope is ���������� 	�	��
�� 
 Env �	�� 

���������� 	�	��
�� �

The exact envelope at a time point t can only be obtained by computing the range of the

function that relates the current time point to the initial one� i�e� all the previous states must

be considered in order to obtain the exact envelope� This means that the procedure is not

incremental and hence this method needs a computation e�ort that increases at each step of

the simulation� which is a drawback� A pretty good approximation to the computation time

has been obtained by means of a polynomial of degree 	�

��



��� Semantics of envelopes using sliding time windows

A possible solution to overcome the problem of the continuous increment in the computation

time is the use of sliding temporal windows� Due to the dynamics of the systems� it is known

that the in�uence of the previous states over the current one decreases with time� Hence� it

should be possible to obtain close results with a shorter temporal window length� This approach

solves the computation e�ort problem but introduces new problems related to the semantics of

the results� This section discusses the problems related to the semantics of the envelopes when

sliding time windows are used�

����� Overbounded envelope

In the case of the overbounded envelope� the semantics associated to the envelope at a time

point w� being w the window length� is�

U �y ��� � Y ����U �u ��� � U ���� ���U �u �w � �� � U �w � ���U �pi� Pi� �����

E �y �w� � Y �w�� �y �w� � f �y ��� � u ��� � � � � � u �w � �� � pi��

In this expression� y ��� is the output of the system at the initial state� u �i� are the inputs�

pi are the parameters of the system model and y �w� is the calculated overbounded envelope at

the time point w� This expression is read� �for every initial state� input and model parameter�

the output belongs to the envelope��

If the envelope at the time point �w is computed using this overbounded envelope at the

time point w as its initial state� the semantics of this envelope will be

U �y �w� � Y �w��U �u �w� � U �w�� ���U �u ��w � �� � U ��w � ���U �pi� Pi� ���	�

E �y ��w� � Y ��w�� �y ��w� � f �y �w� � u �w� � � � � � u ��w � �� � pi��

It could seem that combining these two expressions the semantics with respect to the initial

state will be

U �y ��� � Y ����U �u ��� � U ���� ���U �u ��w � �� � U ��w � ���U �pi� Pi� ���
�


�



E �y ��w� � Y ��w�� �y ��w� � f �y ��� � u ��� � � � � � u ��w � �� � pi��

which is the semantics of the desired overbounded envelope� However� there are implicit multi�

incidences that have not been taken into account� These multi�incidences are due to the pa�

rameters of the system pi� As stated in section 	���	� the parameters of the model appear in the

di�erence equation of every time point and� if the physical system is assumed to be invariant�

they can not be treated as independent variables� If they are treated as so� the system is consid�

ered time variant and the exact envelopes are wider than the one of the time invariant system�

This is what is done when sliding time windows are used� The parameters of the model in the

window from � to w�� and the parameters from w to �w�� are considered independent� Table

��� shows very close approximations to the exact envelopes at time point t � �� s for di�erent

window lengths� being the exact envelope of the time invariant system the one computed with

a window length of �� s� The results of this table have been obtained using the generic �rst

order system and applying to it the same input as in section ����	�

window length overbounded envelope

�� �����
	� ���	�� 
�� �������� ��
��� 
�� ����	�
� ������ 
� �����	�� ��
�
� 

Table ���� Overbounded envelopes for di�erent lengths of the sliding time windows

Therefore� the combination of the expressions ����� and ���	� in fact is

U �y ��� � Y ����U �u ��� � U ���� ���U �u ��w � �� � U ��w � ���U �pi� Pi� j����w�� �����

U �pi� Pi� jw����w��E �y ��w� � Y ��w�� �y ��w� � f �y ��� � u ��� � � � � � u ��w � �� � pi��

which means that the parameters of the system are allowed to vary in time at a speed depending

on the size of the window� The smaller is the window� the higher is the allowed variation speed

and the wider are the exact envelopes�

The overbounded envelope using a particular window length includes the exact envelope

corresponding to that window length� which includes the exact envelope for the time invariant

system� Therefore� that envelope is also an overbounded one for the time invariant system�


�



In conclusion� the use of time windows to obtain an overbounded envelope for a time in�

variant system reduces the computation time and allows the simulation to be recursive but� on

the other hand� increases the minimum achievable width for this envelope� In ��
 � it has been

proved that the minimum window length that achieves to produce a non�diverging envelope

is in the order of the time constant of the system� It becomes not practical to increase the

time window length beyond this value because it has been observed that the computing e�ort

increases faster than the precision�

����� Underbounded envelope

The problem is more complicated in the case of the underbounded envelope� The envelope at

a time point w has the following semantics�

U �y �w� � Y �w��E �u ��� � U ���� ���E �u �w � �� � U �w � ���E �pi� Pi� j����w�� �����

E �y ��� � Y ���� �y �w� � f �y ��� � u ��� � � � � � u �w � �� � pi��

If it is used as the starting point to compute the envelope at time point �w� the semantics of

this envelope is

U �y ��w� � Y ��w��E �u �w� � U �w�� ���E �u ��w � �� � U ��w � ��� �����

E �pi� Pi� jw����w��E �y �w� � Y �w�� �y ��w� � f �y �w� � u �w� � � � � � u ��w � �� � pi��

which can not be combined with ����� because E �pi� Pi� j����w�� and E �pi� Pi� jw����w�� do not

imply E �pi� Pi� j�����w��� The envelope obtained in this case is included in the exact envelope of

the corresponding time variant system� which includes the exact envelope of the time invariant

system� Therefore� the relation between the �rst and the last of these envelopes is not clear�

A possible approach to this problem is to compute envelopes with other semantics such

that when they are combined the resulting semantics is the one of the underbounded envelope�

This is the case when the semantics of the envelope from � to w� � ����� is combined with the

semantics

U �y ��w� � Y ��w��U �pi� Pi� jw����w��E �u �w� � U �w�� ���E �u ��w � �� � U ��w � ������
�


�



E �y �w� � Y �w�� �y ��w� � f �y �w� � u �w� � � � � � u ��w � �� � pi��

of the envelope from w to �w � �� The resulting semantics is

U �y ��w� � Y ��w��E �pi� Pi� j�����w��E �u ��� � U ���� ���E �u ��w � �� � U ��w � ��� �����

E �y ��� � Y ���� �y ��w� � f �y ��� � u ��� � � � � � u ��w � �� � pi��

which is the one of the underbounded envelope�

It is worth noticing that y ��w� in ���
� can not be determined using global optimisation

methods� The envelopes obtained by this approach may be much more underbounded than the

exact envelopes for the time invariant system because the use of a weaker semantics implies a

loss of information� This is shown in tables ��� and ��	�

window length underbounded envelope

�� �����

� ���	�� 
�� ����	
�� ������ 

Table ���� Underbounded envelopes at time point t � �� s

window length underbounded envelope

�� ����

�� ������ 
�� ����	
�� ��
�	� 

Table ��	� Underbounded envelopes at time point t � �� s

��� Summary

This chapter presents a simulator that generates error�bounded envelopes� The generation of

these envelopes needs a computation e�ort that depends on the desired error between them�

This e�ort increases at each step of the simulation� A way to stabilise the e�ort at each

time step is by using sliding time windows� In this case� the system is considered time variant

and the envelopes obtained correspond to such a system� not to the time invariant one� The

allowed speed of the variation of the parameters depends on the length of the window�

The exact envelope of the time invariant system is included in the exact envelope of the


	



time variant system� so an overbounded envelope of the time variant system is an overbounded

envelope of the time invariant system� Such a comparison can not be established for the

underbounded envelopes� Therefore� the underbounded envelope of the time variant system

may not be an underbounded envelope of the time invariant system�

A possible solution is the use of a di�erent semantics for the determination of the under�

bounded envelope� This approach has been assessed but the resulting envelopes are highly

underbounded�







Chapter �

Application of error�bounded

envelopes to the fault detection

problem

��� Introduction

The envelopes can be used for many applications� estimation of non�measurable variables�

predictive control� analysis of uncertain systems� design of controllers� etc� One of them is FD�

This chapter gives an introduction to this �eld in order to situate the envelopes in the context

of the di�erent techniques that are used in FD� A special emphasis is made on the aspects

related to the applications of envelopes to it�

The properties of the envelopes have radical implications on the properties of the FD systems

built upon them� If the envelopes have unknown properties� it is unknown if there will be false

or missed alarms or not� If the envelopes are overbounded �resp� underbounded�� there will be

missed �resp� false� alarms� Finally� if they are neither complete nor sound there will be false

and missed alarms� Therefore� the properties of the envelopes are very important when they

are used for FD as they indicate the possibility to have� or not� missed or false alarms�

Moreover� the ratio of missed �resp� false� alarms depends on the degree of overbounding

�resp� underbounding�� So� in this case� it may not be su!cient to exhibit the properties of the
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envelopes in a binary manner and it is necessary to provide some kind of measure of the degree

of overbounding or underbounding in order to measure the sensitivity of the FD system� This

is de�nitely an important problem which opens new perspectives for approaching imprecise

model�based FD�

An approach to this problem is given by the error�bounded envelopes� If the error between

the envelopes is reduced to the minimum� then the ratio of missed or false alarms will be also

the minimum�

However� it will be seen that for FD applications it is not necessary to work with a small

error except in the case when the measure is between the two envelopes� Therefore� the desired

error can be taken as a dynamic parameter of the simulation and its value can be updated

on�line� This reduces signi�cantly the computational e�ort needed and facilitates the use of

this method in real�time systems� MIS is adapted for this particular application so it includes

some new features�

��� The fault detection problem

In the world of today it is not enough to produce what the markets demand� It has to be

produced at the lowest possible price� Hence� the reduction of the production costs is a major

concern in the industry� One way to reduce costs is producing as much time as possible hence

reducing to the minimum the time in which the production is stopped� These stop times occur

when the process is under reparation after a breakdown or when there has to be a maintenance

operation� In the ideal situation� maintenance has to be done as late as possible in order to

reduce the number of maintenance operations but not too late because then there can be a

breakdown� The traditional way to deal with this problem is by �xing a plan of maintenance

operations based on the knowledge of the process� For instance� the oil of the cars is changed

every ����� km independently of the use of the car� although it is known that the life length

of the oil is di�erent if the car is used mostly in the city or in the highway�

Another way to deal with the maintenance problem is by observing the behaviour of the

process and detecting changes in it� This is a FD problem� considering a fault as an unexpected

change in a system� such as a component malfunction and variations in the operating condition�
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that tend to degrade overall system performance ��� � Consequences of degradation are not only

economic loss� they can be extremely serious in terms of environmental impact or danger for

the population� In order to design a reliable� fault tolerant system� or to maintain a high level

of performance for complex systems it is crucial that such changes are detected promptly and

diagnosed so that correcting action can be taken to recon�gure the system and accommodate

the change�

It is important to distinguish between faults and failures� A fault denotes a malfunction and

may denote something tolerable in its early stage while a failure suggests a complete breakdown�

a catastrophe� However� the early detection of a fault can help to avoid major plant breakdowns

and catastrophes� that is failures� Faults are specially di!cult to detect in controlled systems

because the task of the controller is keeping the output of the system at the set point even if

there are faults ��� � which in this case are viewed as perturbations�

There are several tasks related to the FDI �Fault Detection and Isolation� �eld �

 �

� Fault detection� the indication that something is going wrong in the system�

� Fault diagnosis�


 Fault isolation� the determination of the kind and exact location of the fault�


 Fault identi�cation� the determination of the size� type� nature� magnitude� cause of

the fault�

� Fault accommodation� the recon�guration of the system using healthy components�

This work is focused on FD� although it will be seen that in the future it can be extended

to fault isolation�

The performance of a FD system can be measured with the following indices�

� Missed alarms ratio� There is a missed alarm when there is a fault and the FD system

does not detect it�

� False alarms ratio� There is a false alarm when the FD system indicates a fault and the

system is not faulty�
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� Detection delay� It is the delay between the appearance and the detection of a fault�

An ideal FD system detects faults as soon as they appear and there are neither missed

alarms nor false alarms� A more realistic goal is to reduce these three indices to the minimum�

��� Physical redundancy� the traditional approach to fault de


tection

In the past� the FD problem was approached by several techniques� frequency spectrum analysis�

fault dictionary approach� limit and trend checking� etc� One of them is highlighted here�

physical redundancy� Some examples of physical redundancy are�

� Installation of multiple sensors� Di�erent sensors are used to measure the same variable�

If there is a serious discrepancy between the di�erent measurements� it is clear that at

least one sensor is faulty�

� Installation of multiple hardware or software� For critical operations like the launching of

a spacecraft� hardware and software is doubled or tripled to increase safety�

In all these cases there is a comparison between several devices and it is assumed that their

behaviour is the normal one if all of them behave the same� In other words� the behaviour of

the system that is necessary for the work to be done is compared with the behaviour of another

system that is used only for comparing purposes �see �gure ����� The simplest and most e!cient

way to generate this reference behaviour is working with an exact copy of the real system in

the same environmental conditions� This way provides the real behaviour� Nevertheless� in

many cases this is not practical because of economical reasons or other kinds of constraints�

An alternative to overcome these problems is the use of a model to generate the reference

behaviour� i�e� to perform analytical redundancy�
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Figure ���� Physical redundancy

��� Analytical redundancy� the modern approach to fault de


tection

Any kind of model can be used as a reference to see if the system is faulty or not� For

instance� an approach to FD can be performed by using an expert system based on the human

knowledge of the system in normal and faulty situations� In the literature� the approaches

of this kind are referred to as knowledge�based approaches� while the approaches based on a

mathematical model of the system are called model�based approaches� All these approaches

�physical redundancy� knowledge�based approaches and model�based ones� can be used for FD�

Even� for complex systems� they can be combined into a single FD system�

This work is based on model�based approaches ��� � which aim to detect faults by comparing

the measurement of a variable and its prediction obtained by simulation using the mathematical

model of the system ��	� �
� 
�� �� �see �gure �����
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Figure ���� Analytical redundancy

A quantitative model and a usual simulator for this kind of models can be used to predict
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the values of the variables of the system� In the ideal case� the measurements and the predicted

values match exactly if the behaviour of the system is normal� so the system is said to be faulty

when there is a di�erence between them� Nevertheless� section ��
 has shown that� in general�

these values are di�erent in the reality due to the uncertainties of the system and the sensors�

Therefore� in the real case� the rule based on the exact match between the predicted value and

the measured one is no more valid� One approach to this problem is by evaluating the residual�

which in this case would be the di�erence di�erence between these two values� using statistical

or interval�based methods�

����� Passive generation of residuals

This approach indicates a fault when the residual is greater than a threshold �see �gure ��	��

The main problem now is choosing the threshold� If it is too small there will be false alarms

and if it is too large there will be missed alarms� as can be seen in the example of �gure ��
�
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Figure ��	� Analytical redundancy using a �xed threshold�

The threshold can be computed trying to take into account the uncertainties and impreci�

sions that existed in the modelling process� the noise of the sensors� etc� This �xed threshold

usually is not very useful for dynamic systems because the model is an approximation that is

better or worse depending on the operating point of the system� For instance� if the system is

non�linear and it is approximated by a linear model� the linearisation is done around an oper�

ating point and hence the model is a good approximation only for points close to this nominal

operating point� In this case� it is better to compute a new threshold every time step� This is

an adaptive threshold �see �gure �����

This approach predicts the behaviour of a nominal model of the system and then the un�

��
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Figure ���� Analytical redundancy using an adaptive threshold�
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certainties are managed somehow to predict the worst discrepancies between the real system

and the nominal model �threshold� �
� � Therefore� the set of allowed values of the measured

output a a time point consists of all the values such that their di�erence with respect to the

predicted one is not greater than the threshold�

YN � fy jjy � byj � &byg �����

where�

� YN is the set of allowed values of y�

� by is the predicted value of y�

� &by is the threshold for by�

In general� for dynamic systems� the performances of adaptive thresholds are better than

the ones of �xed thresholds �see �gure ��
� but they are also more di!cult to compute �	� �

Envelopes

The envelopes are a way to represent the thresholds� The envelope can be obtained using a

speci�c adaptive threshold as a tolerance that is added and subtracted to the trajectory of some

nominal model�

YN � fy jby �&by � y � by " &byg �����

When the envelopes are used to detect faults� a fault is indicated if the measure is outside

of the envelope �see �gure ����� It could seem that using the exact envelope there are not

neither missed alarms nor false alarms� This is not completely true due to the dynamics of

the systems� as the measure can remain inside the envelope for some time after a fault has

occurred� Therefore� the fault is not detected immediately and some time� dependent on the

distance between the actual values of the system parameters and their nominal values� is needed

to detect the fault� If this distance is small� the time necessary to detect the fault is larger�

The properties of an envelope are very important when they are used for FD� They deter�

mine the possibility or not to have missed or false alarms� On one hand� if an overbounded

��
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envelope is used� there can be missed alarms but not false alarms� On the other hand� when an

underbounded envelope is used for FD� there can be false alarms but there will never be missed

alarms� In each particular case it has to be assessed if it is worse to have either false alarms or

missed alarms� but in any case the goal is to produce either a minimum overbounded envelope

or a minimum underbounded envelope�

����� Active generation of residuals

An alternative way to deal with this problem is the active robust generation of residuals ��� �

The passive solution ��xed and adaptive thresholds� focuses on the decision making stage� i�e�

the comparison of the residual and the threshold� Therefore� the threshold is critical� The active

solution proposes to focus on the residual generation stage� that is to generate residuals that are

very di�erent when there is a fault and when there is not� This can be achieved computing the

residuals not only by making the di�erence� but computing them by more complex functions

that try to be insensitive to modelling uncertainties and sensitive to faults �see �gure ����� In

this case the threshold is not so critical�

��� Fault detection using error
bounded envelopes

The computation of an overbounded envelope and an underbounded one simultaneously has

an interesting application in FD� These two envelopes de�ne three zones �see �gure ��
�� It is

guaranteed that there is a fault when the measure is in the outer zone� outside the overbounded

envelope� but the measure can be inside this envelope even when the system is faulty�

�	
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Figure ���� Active generation of residuals�
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� The three zones de�ned by error�bounded envelopes
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One reason is that the overbounded envelope includes spurious points that cannot be reached

by any of the systems represented by the interval model� The second reason is that the measure

can remain inside the envelope for some time after a fault has occurred due to the dynamics

of the system� Therefore the fault is not detected immediately and some time� dependent on

the distance between the actual system parameter values and their nominal values� is needed

to detect the fault� The smaller the distance� the larger the time�

Therefore� the output of a faulty system can be in any of these three zones whereas the

output of a not faulty system can be in the inner zone or in the intermediate one� but never in

the outer zone� This is summarised in table ����

System
Not faulty Faulty

Inner Allowed Allowed
Zone Intermediate Allowed Allowed

Outer FORBIDDEN Allowed

Table ���� The three zones determined by the error�bounded envelopes�

If a measurement of the output of the system is taken and it is in the outer zone� an alarm

can be indicated� independently of the error between the two envelopes� If it is in the inner zone�

nothing can be said about the behaviour of the system� It is not known if it is faulty or not�

This is valid whatever is the distance between the two envelopes� Finally� if the measurement is

in the intermediate zone� possibly a fault should be detected if closer envelopes are calculated

and actually the measurement is in the outer zone�

This comparison is made by MIS adapted to the detection of faults� It generates error�

bounded envelopes and compare them to the measurements in order to detect faults� The

results of FD are indicated in the following way�

� fault � �� The measurement is in the outer zone� The fault is detected�

� fault � ���� The measurement is in the intermediate zone� The fault is not detected�

� fault � �� The measurement is in the inner zone� The fault is not detected�
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����� Example

MIS is used for the example at section ����	 to detect that the generic �rst order system

yn �



�� T

	 �t�

�
yn�� "

k �t�T

	 �t�
un�� ���	�

is faulty when its parameters degrade with time�

� Static gain�

k �t� � k� " mkt ���
�

with k� � ���� and mk � ������ �
s �

� Time constant�

	 �t� � 	� " m� t �����

with 	� � � s and m� � ����
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Figure ���� FD with error�bounded envelopes�

As the nominal values are k � ������ ���� and 	 � ��� �� s� initially the system is not faulty

and the time constant gets more and more far from its nominal value with time� This is shown

��



in �gure �����
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Figure ����� Faulty model represented in its parameter space�

Figure ��� shows the results� The upper half of the �gure shows the error�bounded envelopes

�the overbounded envelope in solid line and the underbounded envelope in dashed line� jointly

with the output of the faulty system �crosses�� The lower half of the �gure shows the FD results�

����� Conclusions

The example above shows that in the cases where the measurement is in the outer or in the inner

zone it would probably be in the same zone if less calculations were performed and the distance

between the envelopes was larger� And� on the other hand� more computations should be

performed to get the envelopes closer in the case where the measurement is in the intermediate

zone� This is what is introduced in MIS in the following section�

��� Fault detection using dynamic error
bounded envelopes

To reduce the amount of measurements in the intermediate zone is necessary to calculate

error�bounded envelopes with a small error� This requires a high computation e�ort that is

unnecessary in many cases� This e�ort only has to be done when the measurement is in the

intermediate zone and until the measurement belongs to the inner or to the outer zones�

Therefore� when a �xed error between the two envelopes is used� more calculations than

needed are performed in some cases while less calculations than needed are performed in other

cases� A new feature that is introduced in MIS avoids this problem� Now a measurement of

��



the output of the system is needed� This measurement is used to stop the iterations instead of

using a maximum distance between the envelopes� The iterations stop when the measurement

is at the outer zone or at the inner zone� i��e� it is not in the intermediate zone� This is done at

the new function stop condition� which substitutes the one of the same name in the branch

and bound algorithm of section ������

function b �stop condition�external� internal�measurement�

IF measurement � external THEN

b � true

ELSEIF measurement � internal AND measurement � internal THEN

b � true

ELSEIF measurement � external THEN

b � true

ELSE

b � false

END

This new algorithm also has been implemented using Matlab� Maple and C""�

����� Example

MIS is applied to the example of section ������ The results of the simulation are shown in �gure

����� Comparing it with �gure ���� it may be observed that FD results have been enhanced�

measurements in the intermediate zone have disappeared� In addition� these results have been

obtained with a smaller computational e�ort� This can be seen observing that there are several

time points where the overbounded envelope is much more overbounded than in �gure ���� In

fact� the overbounded envelope is outside the �gure at some of these points because the scale

of �gure ��� has been mantained in �gure ���� to facilitate comparisons� At these points the

overbounded envelope is so overbounded because at one of the �rst iterations of the algorithm

already has been seen that the measurement is not in the intermediate zone so it is not necessary

�




to obtain better �less overbounded� approximations of it�
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Figure ����� FD using error�bounded envelopes with variable error�

����� Conclusions

The measurements can be used to stop the branch and bound algorithm that calculates the

envelopes� This saves computational e�orts when the measurement is in the inner or in the

outer zones and avoids measurements in the intermediate zone� This has been implemented in

MIS�

MIS computes the envelopes with respect to the initial state and hence the computing time

needed increases at every step of the simulation� Next section shows that this time can be

stabilised if sliding time windows are used�

��	 Use of sliding time windows

In section ��	� the problems related to the use of sliding time windows in the simulation have

been discussed� These problems are due to the use of error�bounded envelopes at the beginning

of the window to calculate error�bounded envelopes at the end of the window� They are intrinsic

��



with the simulation� the output is obtained starting from the model of the system� its initial

state and the input� i�e� the measurement of the output is used only for the initial state�

When the error�bounded envelopes are used for FD� the measurements are needed during

the simulation if they are used to stop the algorithm� Therefore� there is another option in

this case� The measurements can be used at the beginning of a window to calculate the error�

bounded envelopes at the end of that window� There are no semantical di�erences between

the calculation of the envelopes starting from the measured initial state and the calculation of

the envelopes at the end of a window starting from the measured state of the system at the

beginning of that window� Therefore� the use of the measurements reduces the computation

e�ort and� simultaneously� avoids the semantic problems that appear when the measurements

are not used�

Some new features have been added to MIS� Now there is the possibility to use sliding time

windows and there are several options for the starting point of each window�

� The error�bounded envelopes�

� The measurement�

� The error�bounded envelopes or the measurement depending on the system being faulty or

not� respectively� This possibility is the one used by Ca�En and avoids that the envelopes

�follow� the measurements when the system is known to be faulty�

The �rst option is not very adequate when the condition to stop the algorithm is only

the location of the measurement with respect to the envelopes because the error between the

envelopes at the beginning of the window may be very large and the consequence is a large error

at the end of the window� This can be solved using a double condition to stop the algorithm�

the measurement is not in the intermediate zone and the error between the envelopes is lower

than a �xed one�

The use of sliding time windows allow to use these simulators for long simulations because

the computational e�ort no more increases with time� The only problem is to choose the length

of the window because the computing time needed at every step and the allowed speed for the

variation of the parameters depend on it� In ��
 there is a discussion about the window length

���



and the distance between the envelopes that are obtained using sliding time windows and the

envelopes of the time invariant system� The conclusion is that a length in the order of the time

constant of the system is recommended to avoid that this distance increases too fast�

It is worth noticing that� on one hand� the measurement at a time point is a real number

and� on the other hand� it has an imprecision associated with it� so it should be better expressed

with an interval� This should to be taken into account when this measurement is compared

with the error�bounded envelopes to detect faults and when it is used as the starting point of

a window� In the former case� a comparison between the envelopes and an interval has to be

performed� This is a task that will be considered for the future work� In the latter case� the

starting point of the window has to be an interval� For this reason� MIS uses interval�valued

measurements to generate the envelopes� although the measurements are still considered as real

numbers when they are compared with the envelopes in order to detect faults�

��� Comparison of di
erent sliding time windows

The application of sliding time windows shows that good results can be obtained using adequate

window lengths� The problem is choosing the adequate window length� It depends on several

factors� the fault that is to be detected� the noise in the measurements� the use of interval

measurements or not� etc� To help the user to choose the window length� a new feature has

been added to MIS� the use of multiple windows� It allows the user to simulate not only with a

single window length but also with several window lengths at the same time� In this case� the

result of the FD may be di�erent for the di�erent window lengths� There is clearly a fault if

it is indicated by all of them� If there are not indications of fault� possibly there is a fault but

there are no means to detect it� at least with these tools�

��	�� Example

MIS is used to detect faults in the example of section ������ Now the simulator uses sliding

time windows to generate error�bounded envelopes� The measurements are obtained from the

faulty system
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� static gain�

k �t� � k� " mkt �����

where
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� time constant�
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where
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 s


 m� � ����
 s
s �

� initial state� y� � �

� sampling time� T � � s

which is a system that is degrading with time� It belongs to the nominal system until the

time instant t � �� s and after this time point it becomes faulty� as its is shown in �gure �����
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Figure ����� System that is faulty after t � �� s�
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When the envelopes are computed starting from the initial state it can be considered that

sliding time windows are not used or that they are used and the windows are longer than the

simulation� That is the case of sliding time windows of length w � �� The results of the FD

based on the simulation of this model and w � �� are shown in �gure ���	 with the label

w � �� s�
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Figure ���	� FD using window lengths �� �� s and ��

As the time constant is 	 � ��� �� s and a window length in the order of the time constant

is recommended in ��
 � the results using a window length w � �� s are also shown in �gure

���	� In this case� the error�bounded envelopes at the end of the window are computed starting

from the measurements at the beginning of the window� It can be observed that the results are

similar when an adequate shorter window length is used�

However� if the window is too short� the results are di�erent� This is shown in the same

�gure when a window length w � � s is used� In this case� the number of transitions between �

�the fault is detected� and � �the fault is not detected� is larger� This happens because� when

the sliding time window is too short� the dependency of the envelopes with respect to the last

measurement is very high and hence they �follow� the measurements�

This �gure shows that there are not false alarms but� on the other hand� faults can not be

detected in some periods of time independently of the window length used�

As there can be some uncertainty in the measurements� new simulations taking it into

account are performed� Assume that this uncertainty can be represented by an additive random

number in ������ ��� � then the noisy measurement at a time point t �ymn �t�� can be obtained
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from the measurement without noise at a time point �ym �t���

ymn �t� � ym �t� " rand ������� ��� � � ym �t�� ��� " ��� 	 rand ���� � � �����

being rand ��x� y � a random number between x and y� Therefore� a noisy measurement vector

ymn is used for FD and to generate the envelopes� In �gure ���
 there are represented the noisy

measurement vector and the noise that has been used to obtain it�
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Figure ���
� Measurement with additive noise�

The results of FD for window lengths �� ��� �� s and � are shown in �gure ����� The

results using window lengths �� s and � are similar� both detect faults after t � �� s and do

not detect faults before this time point� as there is not any fault yet� It happens the same with

window length w � �� s� but w � � s detects faults even when there are not� i�e� it generates

false alarms�

Finally� the uncertainty in the measurements is considered when the envelopes are generated

and an interval measurement vector yim � �ymn � ���� ymn " ��� is used at the beginning of

the windows� The results of this FD for w � � and w � �� s again are similar� They are

represented in �gure ����� On the other hand� for w � � s the results are worse� as faults are

not detected most of the time�
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0 10 20 30 40 50

0

1

w = 50 s

0 10 20 30 40 50

0

1

w = 20 s

0 10 20 30 40 50

0

1

w = 1 s

time (s)

Figure ����� FD using interval measurements and window lengths �� �� s and ��

���



��	�� Conclusions

The exact envelope for a time invariant system is obtained simulating from a starting point�

that is with an in�nity window length� This needs a high computation e�ort which can be

avoided using sliding time windows� In this case it is allowed that the parameters of the system

vary at a certain speed depending on the length of the window� i�e� the system is considered

time variant�

The error�bounded envelopes at the end of a window can be computed starting from�

� the error�bounded envelopes at the beginning of that window�

� the measurements at the beginning of that window� which are represented by means of

intervals if there is some uncertainty in them�

� a combination of both previous options�

The �rst option is the only one for simulation� as there are not available measurements� In

the case of FD� the other options are valid alternatives as the measurements are needed� They

are compared to the envelopes to decide if either there is a fault or nothing about faults can be

said�

��� Summary

One approach to the problem of the detection of faults is the redundancy� a system is compared

with a reference one and a fault is detected when there are discrepancies� This reference can

be another system �physical redundancy� or a model of the system �analytical redundancy�� In

the latter case� the reference behaviour is generated through simulation�

As a quantitative model is an approximate representation of the system� the real system

and the model have di�erent behaviours and there are always discrepancies between them� This

is a source of false alarms� One way to approach this problem is based on the generation of

robust residuals� Another one is using thresholds ��xed or adaptive� to decide between normal

and abnormal discrepancies�

An envelope can be seen as a combination of the simulated output of a nominal model and

a threshold� In this case� a fault is indicated if the measure is outside of the envelope�
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The exact envelope for a time invariant system is obtained simulating from a starting point�

When sliding time windows are used the computation e�ort is lower� but the system is considered

time variant�

The are several options for the starting point at the beginning of a window when sliding

time windows are used to compute error�bounded envelopes�

There are also several options for the condition to stop the algorithm�

� the error between the envelopes is lower than a �xed one�

� the measurement is not in the intermediate zone�

� a combination of both previous options�

So� there are several di�erent possibilities when sliding time windows are used� Results are

not good for all the possible combinations� For instance� if the error�bounded envelopes at the

beginning of the window are used and the condition to stop is that the measurement is not in

the intermediate zone� the distance between the envelopes at the beginning of the window may

be very large� Then� the distance between the envelopes at the end of the window can not be

small and possibly the measurement will be in the intermediate zone�

The results of the FD based on envelopes and sliding time windows show that adequate

lengths of the sliding time windows allow to obtain useful results with a much lower computa�

tional e�ort than the one needed for in�nity lengths�

The capability to detect a particular fault depends on several factors� One of them is the

length of the window� If it is too short� the output of the simulation highly depends on the

last measurement� If it is noisy� which is a common situation� the FD system can produce false

alarms and missed alarms in this case� If it is too long� the computing e�ort is too high� On the

other hand� a degradation of the parameters of the system can only be detected if the window

is su!ciently long�

To help the user to deal with the window length� MIS includes the possibility to use several

window lengths simultaneously� This �lters in some way the results provided by each of the

di�erent window lengths�
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Chapter �

Practical cases

	�� Introduction

This chapter presents some examples that have been used to test and validate MIS� These tasks

are performed by applying it to FD�

The �rst example� the TIGER �nd stage nozzles system� comes from the Esprit project

TIGER �see section ����� It is a real example with real data�

The second example is based on the two tanks benchmark ��� � It is used in the framework

of an exchange between LEA�SICA �Laboratori Europeu Associat � Sistemes Intel	ligents i

Control Avan�cat� and the Technische Universit�at Hamburg�Harburg within the PROCOPE

programme as a benchmark to allow the comparison between di�erent approaches to FD and

fault diagnosis�

In the following� there is a description of these examples and some illustrative FD results�

	�� TIGER �nd stage nozzles system


���� Introduction

This example comes from the TIGER project ��� � The goal of that project was to detect and

diagnose faults in gas turbines� These devices are very complex and include many subsystems�

compressor� fuel system� cooling air� cooling water� hydraulic system� inlet guide vanes� lubri�

cation oil system� steam injection system� etc� To deal with this task� data of about ��� analog

��




or digital variables are collected once per second�


���� Model

One of the subsystems of two shafts gas turbines is the �nd stage nozzles system� It is formed

by the nozzles� which are used to open and close the air �ow through the turbine� and their

associated actuator and controller� This is represented in �gure ���� where the names of the

variables are the ones used in the TIGER project�

� TSNZ is the actual position of the nozzles�

� TSRNZ is the reference position of the nozzles�

� TANZ is the output of the controller and the input to the actuator of the nozzles�

Controller Nozzles TSNZTSRNZ

TANZ

Figure ���� The nozzles subsystem�

The controller is modelled by the following di�erence equation�

TANZn � na� 	TANZn��"na� �TSRNZn � TSNZn�"na	 �TSRNZn�� � TSNZn���"na


�����

where�

� the subindex n indicates the time point�

� nai are the parameters of the model� Their values are real numbers and are not given

here for con�dentiality reasons�
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On the other side� the set formed by the nozzles and their actuator is modelled by means

of the following di�erence equation�

TSNZn � TSNZn�� " ns�TANZn�� " ns� �����

where nsi are the parameters of the model� The values of these parameters are intervals and

are not given here for con�dentiality reasons�

It is shown that the model of the nozzles is an interval one but the model of the controller

is not� This is because there are uncertainties in the model of the nozzles that have been

included in the model by means of interval parameters� However� the model of the controller

is completely known�


���� Data

The values of the variables are collected once per second� so there are many data from the gas

turbine� Most of these data belong to situations of normal behaviour and hence are not very

interesting� But sometimes there are abnormal situations� unusual events or incidents that are

more interesting� Data from these situations are saved and called �scenarios�� Among them�

there are scenarios with vibration problems� oil leaks� sensor failures� sensors bad positioned

or calibrated� poorly tuned controllers� problems with valves� problems of gas supply� problems

with the steam system� etc� The examples shown in this section use data from the following

scenarios�

� Scenario ��� Normal behaviour� There is an oscillation in the reference that is perfectly

followed by the nozzles�

� Scenario 	� Faulty behaviour� The nozzles are not responding� They are given a reference

to close but they keep open�

� Scenario 
�� Faulty behaviour� The actuator of the nozzles is not enough powerful so it

can not close the air�ow�
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���� Related work

In the TIGER project� Ca�En �
� was used to detect and diagnose faults� The FD was

performed by one of the components of Ca�En� based on a simulator that generates envelopes�

This simulator is based on the method of range computation� It computes this range at each

step of the simulation� If the measurement is inside the predicted envelope it is considered as

a valid measurement and is used as the starting point of the envelope at the next step� If the

measurement is outside the predicted envelope a fault is indicated and the envelope at the next

time step is computed starting from the envelope at the current step�

One drawback of this method is that the envelope is highly dependent on the measurement�

The measurements of the TIGER gas turbine are noisy� so very often the measurement is outside

the envelope even when there are not faults� To avoid this� the indication of fault is �ltered and

a fault is indicated only if the measurement is outside the envelopes during several consecutive

time points� This number of times is adjusted by the user�

Another drawback of this method is that it does not take into account the multi�incidences

of the parameters in the functions of the di�erent steps� This happens when the measurement

is outside the envelope and the new envelope is computed starting from the current one� There�

fore� Ca�En considers that the systems are time variant and that their variation speed can be

very high� The result of it is that the envelopes are very wide after some steps� hence the mea�

surement might come back into the envelope� even if the system is faulty� Another consequence

is that Ca�En may be unable to detect that a system whose parameters are slowly degrading

is faulty�


���� Fault detection results

This section shows some results obtained by MIS using real data from the TIGER gas turbine�

MIS has di�erent possibilities for the starting point of the windows and the condition to stop

the algorithm� The ones that have been chosen are�

� The starting point of a window is the measurement at that time point�

� The condition to stop the algorithm is that the measurement is not in the intermediate

zone between the error�bounded envelopes�
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Two models have been used�

� The open loop model� Only the model of the nozzles subsystem is used� The input is

TANZ and the output is TSNZ�

� The closed loop model� The model of the nozzles and the model of the controller are

used� The input is TSRNZ and the output is TSNZ�

The results obtained by Ca�En are also shown to allow the comparison between them and

the ones obtained by MIS�

Scenario ��

This scenario shows that in response to a step change in some variable� the nozzles must open�

Due to the tuning of the controllers� the nozzles are given a reference �TSRNZ� which consists

of a change with a damped oscillation� The nozzles �TSNZ� follow the reference so there is

not any fault� This can be seen in �gure ���� where TSRNZ is the dashed curve and TSNZ

is the solid one� There is some o�set between them�
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Figure ���� Scenario ��� TSRNZ and TSNZ�

When this scenario is simulated with Ca�En� the obtained envelopes for TSNZ are the ones

at the top of �gure ��	 represented in dotted lines� The measured TSNZ is also represented

in solid line� If there is an indication of fault every time that the measurement is outside the

envelope� in this scenario faults are indicated at some time points because the measurement of

TSNZ is noisy� These indications of fault are also represented at the center of �gure ��	�
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To avoid these indications of fault when measurements are noisy� a �lter was added to

Ca�En� It consists of indicating a fault only if several consecutive measurements are outside

the envelope� The amount of measurements outside the envelope to indicate a fault is adjusted

empirically� In this case it was adjusted to �� Using this �lter� the indications of fault are the

ones at the bottom of �gure ��	� i�e� there are not indications of fault�
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Figure ��	� Scenario ��� �top� envelopes for TSNZ and corresponding faults generated by
Ca�En �center� without and �bottom� with �lter�

The same scenario is assessed using MIS� First� the open loop model is used� The window

lengths used are� �� �� �� ��� �� s and �� Figure ��
a shows that the results of w � � s are

similar to the ones of Ca�En without the �lter� If the closed loop model is used� the results

are the ones of �gure ��
b�

In both cases the unique window length that detects faults in this scenario that is not faulty

is w � � s� hence it is considered that it is not adequate in this case�
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Figure ��
� Scenario ��� indications of fault using �a� the open loop model and windows of
length �� �� �� ��� �� s and � and �b� the closed loop model and windows of length �� �� �� ��
and �� s�

Scenario �

In this scenario� the reference for the nozzles TSRNZ is decreasing after some time� but the

position of the nozzles is steady� This can be seen in �gure ����
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Figure ���� Scenario 	� TSRNZ and TSNZ�

Figure ��� shows that Ca�En clearly detects the fault�

The results obtained using the open loop model and MIS with the window lengths �� �� ���

�� s and � are shown in �gure ���a� Now w � � s is not used because it has been discarded

in the previous scenario� Figure ���b shows the results using the closed loop model and the
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Figure ���� Scenario 	� faults indicated by Ca�En �top� without and �bottom� with �lter�

following window lengths� �� �� �� and �� s� It shows that w � � s is not very adequate�
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Figure ���� Scenario 	� indications of fault using �a� the open loop model and windows of length
�� �� ��� �� s and � and �b� the closed loop model and windows of length �� �� �� and �� s�

Scenario ��

This scenario had a special interest in the TIGER project� as it helped to discover a problem

that was hidden before� Due to some circumstances� the nozzles are given a reference to close

for a while and open again� They close� but less than expected� as it can be seen in �gure ��
�

It was due to a lack of power of the actuator� as it was discovered after�

The indications of fault of Ca�En are shown in �gure ����

���



0 50 100 150 200
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

time (s)
po

si
tio

n

Figure ��
� Scenario 
�� TSRNZ and TSNZ�

0 50 100 150 200

0

1

time (s)

fa
ul

t

0 50 100 150 200

0

1

time (s)

fa
ul

t

Figure ���� Scenario 
�� faults indicated by Ca�En �top� without and �bottom� with �lter�
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The results of MIS using the open loop model and windows of length �� ��� ��� ��� ��� s

and � are shown in �gure �����
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Figure ����� Scenario 
�� indications of fault using the open loop model and windows of length
�� ��� ��� ��� ��� s and ��

It can be seen in this �gure that the window lengths ��� s and � never indicate faults�

Figure ����a shows the error�bounded envelopes for w � �� s� The measured value of

TSNZ is outside the overbounded envelope during some time� This means that none of the

models belonging to the interval one can give an output inside the exact envelope given the

measurement that existed �� s before and the inputs that existed during that period of time�

Nevertheless� �gure ����b shows that it is possible to have the output inside the exact envelope

when ��� s are considered�

The results obtained with the open loop model are con�rmed when the closed loop one is

used� This is shown in �gure ����� where windows of lengths �� �� and �� s are used�


���� Conclusions

The results obtained by MIS using a window length of � s are similar to the ones obtained by

Ca�En without the �lter� These results are not good because they are highly dependent on

the last measurements� which can be noisy� and because then it is not taken into account that

the system is time invariant�

Ca�En deals with the former problem� the noise� by means of the �lter� The results obtained

by MIS using longer windows are similar to the ones obtained by Ca�En with the �lter� To
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obtain these results using Ca�En� the parameter of the �lter had to be adjusted empirically�

Now� using MIS� the length of the window has to be adjusted�

The latter problem� the time invariance of the system� is not taken into account by Ca�En�

In scenario 
� the fault is not detected with long windows� The interpretation of those

results is not the goal of this work� Anyway� some possible interpretations are�

� There are reasons to avoid the use of too short windows� In a similar way� there can exist

reasons to avoid the use of too long windows� at least to detect faults of short length

like the one of scenario 
�� The di�erent examples show that the time to detect a fault

depends on the length of the window� The longer is the window� the longer is the detection

time� If the duration of the fault is shorter than this time� it is not detected� This is a

question that may be studied in the future�

� The model of the system is too imprecise� i�e� the intervals are too wide� MIS is a

useful tool in this case� as it can be used to obtain tighter interval models using them

in an iterative procedure� adjustment of the interval parameters� simulation in di�erent

scenarios� new adjustment according to the simulation results� and so on�

In both cases� MIS is very useful� either to help to choose the window length or to help to

adjust the interval model�

The results using the open loop model and the closed loop one are similar in all the scenarios�

As the �rst model does not include the controller and the second one does it� it can be concluded

that the controller is not faulty in any of the scenarios�

	�� Two tanks benchmark


���� Introduction

This example comes from the project �Methodes qualitatives pour la commande supervis�ee et le

diagnostic�� This is the project number �
��� in the framework of the PROCOPE programme

and involves a French team of LEA�SICA headed by Dr� Louise Trav�e�Massuy�es �LAAS�

CNRS� Toulouse� and a German team headed by Dr� Jan Lunze �TUHH� Hamburg�� In order

���



to compare the approaches of both teams to di�erent problems of control and supervision� a

benchmark based on a two tank system is used ���� �� �

This system is non�linear and consists of two interconnected tanks of circular cross�section�

It is shown in �gure ���	� There is a pump that provides the incoming �ow qpump �t�� For the

simulation of blockages and leaks in the tanks� various valves are installed�

1z

A

pumpq

12q

2z

A
2q

Tank 1 Tank 2

Figure ���	� Two tanks system


���� Model

The dynamic model of the system in normal situation is derived using the incoming and outgoing

mass �ow and is described by the following di�erence equations�

� Tank ��

A 	 z� �n�� z� �n� ��

T
� qpump �n� ��� q�� �n� �� ���	�

� Tank ��

A 	 z� �n�� z� �n� ��

T
� q�� �n� ��� q� �n� �� ���
�

The values of the parameters of the model are the ones used in the PROCOPE project�
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� T is the sampling time�

� n indicates the time point�

� A is the section of both tanks�

A � �����
 m� �����

� zi is the level of the liquid in the tank i�

� qpump is the incoming �ow provided by the pump�

qpump �n� � kp 	 u �n� �����

where

kp � cp 	A �����

being

cp � ��� 	 ����
m

s
���
�

and u indicates the state of the pump �o� or on��

u � f�� �g �����

� q�� is the �ow from tank � to tank ��

q�� �n� �

�	

 k��

p
z� �n�� z� �n� if z� �n� � z� �n�

�k��
p
z� �n�� z� �n� if z� �n� � z� �n�

������

where

k�� � c�� 	A ������

being

c�� � ���� 	 ���	
p

m

s
������

� q� is the out�ow�

q� �n� � k�
p
z� �n� ����	�
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where

k� � c� 	 A ����
�

being

c� � ��	� 	 ���	
p

m

s
������

There can exist additional mass �ows caused by leaks or blockages in the various tanks or

pipes� They will be considered to simulate di�erent faulty behaviours�

Therefore� the non�linear model of the system is�

� Tank ��

z� �n� �

�������	
������


z� �n� �� " cp 	 T 	 u �n� ��� c�� 	 T 	
p
z� �n� ��� z� �n� ��

� if z� �n� �� � z� �n� ��

z� �n� �� " cp 	 T 	 u �n� �� " c�� 	 T 	
p
z� �n� ��� z� �n� ��

� if z� �n� �� � z� �n� ��

������

� Tank ��

z� �n� �

�������	
������


z� �n� �� " c�� 	 T 	
p
z� �n� ��� z� �n� ��� c� 	 T 	

p
z� �n� ��

� if z� �n� �� � z� �n� ��

z� �n� ��� c�� 	 T 	
p
z� �n� ��� z� �n� ��� c� 	 T 	

p
z� �n� ��

� if z� �n� �� � z� �n� ��

������


���� Data

Input

The considered input sequence is indicated in table ��� and represented in �gure ���
�

Measurements

There are several available measurements� They are generated using the model of the system

and the following values for the initial levels of the tanks� z�� � ��
�� m and z�� � ����� m�

It is considered that there are uncertainties in the measures�
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time interval �s� input u

��� 
� �
���� �� �
���� �� �
�
�� ��� �
����� �
� �
����� �
� �
����� ��� �
����� �
� �
����� ��� �
�	���� �

Table ���� Input of the two tanks system�

0 50 100 150 200 250 300

0

1

time (s)

u

Figure ���
� Input of the two tanks system�
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� Level of the tanks zi� They can range from ����� m to ����� m�

� Out�ow q�� As a consequence of the range of z�� q� can range from � to ����	� 	 ���� m�

s �

There is some uncertainty in the initial levels of the tanks� It is represented by the following

intervals�

� Tank ��

z�� � ���
��� ����� m ����
�

� Tank ��

z�� � ������� ����� m ������

There are not interval parameters in the model of the two tanks system� so the only interval

parameters are in the initial state�

Tests

Several tests have to be made in order to consider the following cases�

�� No fault�

�� Leakage in tank ��

	� Blockage between tank � and ��


� Blockage between tank � and � and leakage in tank ��


���� Related work

This benchmark is used by several people working on FD ���� �� � The comparison between

the di�erent approaches can be made using the results and the computational e�ort needed to

obtain them�

One of the approaches is the methodology that is being developed by the German team

of the PROCOPE project� This FD system obtains a kind of envelopes in the qualitative

parameter space and performs not only FD but also diagnosis�

��





���� Fault detection results

The main di!culties of this example are�

� It is not a SISO system� the levels at both tanks have to be taken into account to calculate

the out�ow�

� There are non�linearities in the model�


 There are two models depending on whether the level of tank � is higher than the

level of tank � or not�


 The equations are non�linear due to the presence of square roots� which are non�linear

functions�


 The saturations of the tanks� there is a maximum level and a minimum one in each

tank�

Due to these original characteristics of the system� MIS has had to be adapted to deal with

this system� This section shows some results obtained using the adapted MIS for the di�erent

tests� In all tests a window length of � is used�

No fault

In this test the system is behaving normally� i�e� without faults�

The obtained envelopes for z�� z� and q� are represented in �gures ���� and ����� Figure

����a shows that the envelopes are very narrow from the point where they reach the maximum

level of tank � onwards� At that point the uncertainty on the level of tank � disappears and

after that point there is some uncertainty on that level due only to the uncertainty on the level

of tank �� There are not other sources of uncertainty because the model is a quantitative one�

The uncertainties on the level and the out�ow of tank � decrease with time because the only

source of uncertainty is the initial state and its in�uence decreases with time� This is shown in

�gures ����b and ����� There are also represented in these �gures the corresponding measured

variables�

In this case there are not indications of faults� as it is shown in �gure ����� This is the

expected result�
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Figure ����� Not faulty tanks� indications of fault

Leakage

In this test there is a leakage in tank �� so now the system is faulty� The additional �ow in

tank � is�

q� �n� � kleak
p
z� �n� ������

where

kleak � cleak 	A ������

being

cleak � ���
 	 ���	
p

m

s
������

Therefore� now the model of tank � is�

z� �n� �

�������	
������


z� �n� �� " cp 	 T 	 u �n� ��� c�� 	 T 	
p
z� �n� ��� z� �n� ��� cleak 	

p
z� �n� ��

� if z� �n� �� � z� �n� ��

z� �n� �� " cp 	 T 	 u �n� �� " c�� 	 T 	
p
z� �n� ��� z� �n� ��� cleak 	

p
z� �n� ��

� if z� �n� �� � z� �n� ��

����	�

This leakage causes that all variables are lower than expected �see �gure ���
�� The out�ow

of tank � is not represented because it is very similar to the level of tank ��

The fault is clearly detected by the envelopes of z�� z� and q�� as it can be seen in �gure

���



0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

z 1 (
m

)

0 50 100 150 200 250 300
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

time (s)

z 2 (
m

)

�a� �b�

Figure ���
� Tanks with leakage� measurements and envelopes for the levels of �a� tank � and
�b� tank ��

�����

0 50 100 150 200 250 300

0

1

fa
ul

t z
1

0 50 100 150 200 250 300

0

1

fa
ul

t z
2

0 50 100 150 200 250 300

0

1

time (s)

fa
ul

t q
2

Figure ����� Tanks with leakage� indications of fault�

Some time is necessary to detect the fault when long windows are used because of the

uncertainty on the initial state� This is clearly shown in �gure ���
b for z��

Blockage

There is now a blockage in the valve between tank � and tank �� The consequences are that

tank � gets full ��gure ����a�� tank � gets empty ��gure ����b� and hence out�ow becomes ��

��
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The di�erent indications of fault are represented in �gure �����
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Figure ����� Tanks with blockage� indications of fault�

Blockage and leakage

Both previous faults happen in this case� The behaviour of z� is similar to the case when only

the leakage occurs �see �gure ����a�� The indication of fault is represented in �gure ���	� On

the other hand� z� and q� behave exactly the same in this case and when only the blockage

occurs �see �gure ����b�� Therefore� the indication of fault� represented in �gure ���	� is the

same as well�
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Figure ���	� Tanks with blockage and leakage� indications of fault�
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Summary

MIS has been adapted to this system due to its special characteristics� Some of these particu�

larities will be extended in the future to allow the use of MIS for a wider kind of models�

This example shows that there are not false alarms and faults are detected clearly�

One of the goals of the PROCOPE project is to de�ne a benchmark allowing to compare

di�erent techniques� MIS is a useful tool that allows to extract some conclusions and hence

helps to rede�ne the benchmark� These conclusions are�

� The model is not an interval one�

� The cases that have been considered are not faults� They are better de�ned as failures

��� � as they are abrupt changes in the behaviour of the system�

� Some uncertainty in the measurements� for instance noise� should be considered�

The obtained results can be compared with some results obtained by the German team of

the PROCOPE project that are still unpublished� On one hand� the envelopes obtained by the

German team are overbounded and wider than the ones shown here due to the use of qualitative

labels� At this point� it seems that with MIS the results are better and are obtained with less

computational e�ort� Nevertheless� it is worth noticing that MIS only detects faults and the

German team performs FD and diagnosis�

	�� Summary

This chapter has presented the application of MIS to several examples� They have been used

to develop� test and validate them�

The �rst example is based on a real system and uses real data� It is the �nd stage nozzles

system of a gas turbine that was used in the Esprit project TIGER� which� as it has been stated

in section ���� was the motivation of this work�

The window length used by Ca�En is � s� As the results using this window length are

highly dependent on the measurements� which are noisy� a �lter is used� The parameter of this

�lter is empirically adjusted� With MIS� similar results are obtained using longer windows and
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without �lters� Now the length of the window has to be adjusted� MIS helps the user to choose

the adequate window length allowing the use of di�erent window lengths simultaneously�

MIS also can be used to obtain better interval models in an iterative procedure�

The second example is also based on a real system� It is the two tanks benchmark that

is being used in the PROCOPE project number �
��� to compare di�erent approaches to FD

and diagnosis� As the benchmark is not completely de�ned yet� this is one of the goals of the

project� the results that have been presented are only partial� Nevertheless� these results will

help to rede�ne the benchmark in order to allow comparisons�
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Chapter 	

Summary� conclusions and future

work

��� Introduction

This chapter presents a general summary of the work� making special emphasis on its original

contributions� It also provides some conclusions and outlines directions for future work�

��� Summary

This work presents the problem of the simulation of the behaviour of dynamic systems with

uncertain parameters� The approach used in this work is based on the use of interval models�

which include a representation of the uncertainty� and envelopes� The properties of the envelopes

are introduced� Then� an overview of the simulators that can be used to generate envelopes is

made in order to identify the properties of their envelopes and hence some of their strengths and

weaknesses� A description of some simulators is presented and the properties of the envelopes

that each of them generate are outlined and compared� These simulators use many di�erent

techniques that range from the pure qualitative ones to the pure quantitative ones passing

through the many semiqualitative methods that exist between these two ends�

The conclusions of this overview are used to design and develop new simulators for interval

models� They are based on the range computation method with a new approach� the use of
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MIA� which is also introduced� The advantages and disadvantages of these new simulators are

discussed� These discussions allow to improve their features and add new ones� The common

features of these simulators are�

� Simulation of interval models of SISO systems expressed with di�erence equations�

� The step size of the simulation is �xed� but the user can choose it at the beginning of the

simulation�

� Based on MIA�

� Directed roundings have been implemented�

� Input can be a sequence of intervals�

� The systems are considered time invariant� so the envelopes at a time point are determined

computing them from the starting point of the simulation�

Moreover� the particularities of each of them are�

� MIS��


 Generates the exact envelope in some particular cases�


 Applies optimal coercion theorem�


 Monotonicity is studied deriving as many times as needed�


 There can be at most one multi�incident non�monotonic variable�


 The study with respect to this single non�monotonic variable is based on the splitting

of its parameter space in monotonic subspaces�


 It is launched from Matlab ��� �
 � although it is implemented in Maple V release 


�	 � Therefore it needs the Symbolic Math Toolbox of Matlab�

� MIS�


 Generates error�bounded envelopes�


 Based on a branch and bound algorithm�
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 Applies coercion theorems�


 Monotonicity is studied only with �rst derivative�


 Options to stop the iterations�

� The error between the error�bounded envelopes is smaller than a maximum �xed

at the beginning of the simulation�

� The measurement is outside the overbounded envelope or inside the under�

bounded envelope�

� Both options above at the same time�


 Sliding time windows of di�erent lengths can be used simultaneously�


 Options for the starting point of each window�

� The error�bounded envelopes�

� The measurement�

� The error�bounded envelopes or the measurement depending on the location of

the measurement with respect to the envelopes�


 Implemented using Matlab version ��� for Unix �
 � Symbolic computations are

performed with Maple V release 
 �	 through the Symbolic Math Toolbox� Moreover�

it uses C"" programs as MEX��les�

The implementation in Matlab facilitates their future integration into a supervision frame�

work that is being developed based on Matlab and Simulink �
� � It is also planned to be used

to improve the prediction and FD algorithms of the Ca�En simulator �
� �

The simulators are tested and validated applying them for FD in several examples� both

academic and real� The problem of the faults and their detection and some of the approaches

that have been used for this task are introduced� There are� among them� the analytical

redundancy methods based on the model of the system� which include the approach used

in this work� These methods compare the output of a system with a reference one generated

through simulation and the faults are detected using the discrepancies� In this case the reference

are the envelopes and a fault is detected when the measurement is outside the envelope� The

importance of the properties of the envelopes related to FD is discussed�
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The approach used in this work is based on the error�bounded envelopes� The fault is

detected when the measurement is outside the overbounded envelope�

The only way to consider that the system is time invariant is simulating with respect to

the starting point� This means that the computational e�ort increases at each step of the

simulation� Sliding time windows can be used to avoid this�

When sliding time windows are used for FD� the envelopes at the end of a window can be

computed either from the envelopes at the beginning of the window or from the measurements

�which can be intervals� at that point� In the �rst case� there is a propagation of the uncertainty�

In the second case� the envelopes are highly dependent on the measurements� which can be

noisy� There is a third option� the one used by Ca�En� consisting in using the �rst option if

the measurement is outside the overbounded envelope and the second one if it is not�

The systems are considered time invariant when sliding time windows are used� The vari�

ation speed depends on the length of the window� Hence� this length has an in�uence over

the capability to detect some kinds of faults� To help the user to deal with the length of the

window� MIS can use several window lengths simultaneously�

��� Original contributions of this work

To obtain the exact envelopes is a computationally unfeasible task� A new simulator that does

it in very special cases has been developed� But it is not necessary to obtain the exact envelopes

when they are to be used for FD� It has been shown that the same results can be obtained

using error�bounded envelopes� i�e� a pair of envelopes� an overbounded one an underbounded

one� The computation of these envelopes is simpler and needs less computations� Hence�

new simulators that compute error�bounded envelopes are introduced and their properties are

discussed�

If the error�bounded envelopes are computed starting form the initial state� the computation

e�ort increases at each simulation step� This is solved using sliding time windows� Then there

is a relation between the computation e�ort and the characteristics of the results� when the

window length increases the computation e�ort is lower and the amount of false alarms and

missed alarms is lower as well� MIS helps the user to choose the window length by allowing to
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simulate using di�erent window lengths simultaneously�

The main advantage of the use of sliding time windows is that it allows the use of the

error�bounded envelopes in real time for on�line FD�

Therefore� the contributions of this work that are original are�

� A comparative analysis of some existing envelope generators with regard to the properties

of the envelopes they generate�

� The de�nition of error�bounded envelopes�

� The design and development of di�erent simulators that generate error�bounded en�

velopes�

� The use of an implementation of MIA� which uses directed roundings to maintain the

semantics� to generate the error�bounded envelopes�

� The use of multiple sliding time windows�

� The implementation of these simulators in Matlab to facilitate its future integration into

a supervision framework that is being developed based on Matlab and Simulink �
� �

� The application of these simulators to FD in academic and real examples�

��� Conclusions

From the overview on the simulators that can generate envelopes� it can be concluded that many

authors of simulators did not try to assess the properties of the envelopes for their simulators�

These properties are very important for FD as they indicate the possibility to have missed

alarms and false alarms� In some of the cases in which the properties are not assessed� they

can be deduced studying the algorithms used to simulate� but in other occasions the properties

remain unknown�

When the properties of the envelopes are known� it has been seen that there are some

simulators that generate overbounded envelopes� so they will miss alarms� and other simulators

that generate underbounded envelopes� so they will indicate false alarms� Moreover� there are

simulators that generate envelopes that are neither underbounded nor overbounded because
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they are neither complete nor sound� These simulators will result in missed alarms and false

alarms�

The results are highly dependent on the goodness of the model and the measurements�

Modelling and simulation are interdependent tasks� To test if a model is good� a good

simulator is needed and to have a good simulation� a good model is needed� MIS allows to

re�ne the modelling process by providing guaranteed simulation results� For instance� if the

model of the system is too imprecise �resp� too precise�� i�e� the intervals are too wide �resp�

tight�� the envelopes also will be too wide �resp� tight� and there will be missed �resp� false�

alarms� MIS is then a useful tool� as it can be used to obtain better interval models adjusting

the interval parameters in an iterative procedure�

The use of sliding time windows is necessary to perform FD on�line� The problem is to

choose the length of the window� which has consequences on the computation e�ort needed and

the characteristics of the results of the FD� This can be seen when the measurements are noisy�

as false alarms can be generated due to the noise of the sensors� This problem can be dealt

with by several ways�

� Including in the interval model the uncertainty of the measurements�

� Using interval measurements� which include their uncertainty� to compare the measure�

ments and the envelopes� This matter is under study according to the point of view of

modal intervals�

The use of di�erent window lengths and the comparison of the results obtained by each of

them help the user to choose the window length� This can be done with MIS� which allows to

use several window lengths simultaneously�

Therefore� the tools presented in this work help the user to set up a FD system based on

error�bounded envelopes by providing means to adjust the model and to �x the length of the

sliding time windows�

��� Future work

This section enumerates some questions that are still open after this work or that have been

originated by it�
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It has been shown with several examples that it is no good to use too short windows because

the results are highly dependent on the last measurements� which can be noisy� and because

then it is not taken into account that the system is time invariant� In a similar way� it can be

studied if there exist reasons to avoid the use of too long windows� at least to detect faults of

short length �see section �������

The measurement at a time point is a real number and has an uncertainty associated with

it� so it should be better expressed with an interval� This should to be taken into account when

this measurement is compared with the error�bounded envelopes to detect faults� This implies

to perform a comparison between the envelopes and an interval and hence the possible answers

are not only �the measurement is inside of the underbounded envelope� or �the measurement

is outside of the overbounded envelope�� The semantic implication of these answers have to be

studied under the optics of modal intervals�

As it has been shown� a very interesting feature of modal intervals is the semantics� A future

work is to study whether envelopes with di�erent semantics can be used not only to detect the

faults but also to diagnose the faulty parameter� For instance� if a system has two physical

parameters a and b� envelopes with the semantics �for every a there exists b so that���� or �for

every b there exists a so that���� can be obtained� If a system is faulty and its output belongs

to only one of these two envelopes� it should be possible to determine whether it is a or b that

is faulty�

This future work is based on the use of new algorithms that are under development and

that overcome some of the limitations of the current algorithms�

� The current algorithms are limited to SISO systems� New algorithms will deal with MIMO

�Multiple Input� Multiple Output� systems� This is a requirement of� for instance� the

two tanks benchmark �see section ��	�� which is a system with two outputs� In this case�

however� an adaptation to the particular model has been done�

� A similar question is the adaptation of the algorithms to deal with non�linearities� non�

linear models� saturations� etc� The necessary adaptation in the case of the two tanks

benchmark is particular�

In ��� it is claimed that it is not necessary to study the evolution of all the points belonging
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to an uncertainty region in order to know the evolution of the region� The study of the evolution

of the points belonging to its surface is enough� The possible application of this to modal interval

simulation gives another direction for research�

The user�friendliness of the simulators has to be increased to facilitate their use� One step

in that direction is their implementation in Simulink� which is under development� Some of the

consequences of this implementation will be an improved �exibility of the simulators and the

possibility to combine several simulators to detect faults in complex systems� This will allow

to use them� with a minimum of di!culties� in new applications in which now it is di!cult or

even impossible�

This task is part of a more important one� the integration of these simulators into a su�

pervision framework that is under development �
� � A similar task that is planned for the

future is the integration of these simulation methods in the Ca�En simulator �
� to improve

its prediction and FD algorithms�
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