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Qúımica F́ısica de la Universitat de Girona i el professor doctor Miquel
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i dolentes. Les dolentes les deixarem per un altre dia, que si estic escrivint
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o menor mesura, m’han canviat. Me’n deixaré molts. No m’ho tingueu en
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en Juanma Barroso (Zape), la Mireia Güell (talons llunyans), en David Asturiol
(no tothom pot ser campió d’Espanya d’slot), la Śılvia Osuna (divina), la
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Abstract

Català

Un pont de dihidrogen (dihydrogen bond, DHB) és un tipus de pont d’hidrogen
at́ıpic que s’estableix entre un hidrur metàl·lic i un donador de protons com
un grup OH o NH. Es pot representar com a A−H · · ·H−M, on A és un
element electronegatiu que potencia l’acidesa del protó, com en el cas del pont
d’hidrogen t́ıpic, i M és un metall menys electronegatiu que l’hidrogen i fa que
el parell d’electrons σ de l’enllaç H−M actuin com un acceptor. Els ponts
de dihidrogen són claus en les caracteŕıstiques geomètriques i altres propietats
de compostos que en presenten. Poden ser els causants de l’estructura ge-
omètrica espećıfica tan de molècules petites com el d́ımer de NH3BH3, com
d’estructures superiors més complicades com complexes metàl·lics o sòlids.
Tenen la capacitat de canviar els punts d’ebullició i de fusió, propietats mag-
nètiques i espectroscòpiques i altres caracteŕıstiques, tal com ho fan també els
ponts d’hidrogen encara que els enllaços hidrogen-hidrogen no són tan forts
com els anteriors. En aquest sentit els ponts de dihidrogen poden ser útils,
fins a cert punt, quan es poden aplicar a certes molècules o en śıntesis molec-
ulars concretes per a obtenir nous materials amb propietats o caracteŕıstiques
especials o fins i tot fetes a mida. El treball desenvolupat en aquesta tesi
està orientat a millorar la comprensió dels ponts de dihidrogen, aprofundint
en certs aspectes de la seva naturalesa atòmica/molecular utilitzant mètodes
teòrics basats en la qúımica f́ısica quàntica i treballant per a obtenir models
fiables com a base d’investigacions futures.

En aquesta tesi s’investiguen els DHBs des de diferents punts de vista,
començant per sistemes petits i incrementant la seva mida aplicant diferent
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2 CONTENTS

mètodes. S’utilitzen geometries, energies, densitats electròniques i interaccions
orbitalàries per a descriure’ls. En un primer estadi, i com a exemple de sis-
temes senzills, s’estudien els sistemes M−H · · ·H−X (M = Li, Na, H− Be,
H2 − B i X = F, Cl, Br) que presenten DHBs a nivell HF, DFT/B3LYP i
MP2. Alguns d’aquests complexes tenen punts estacionaris amb dues freqüèn-
cies imaginàries degenerades, mentre que d’altres es consideren punts mı́nims
en la superf́ıcie d’energia potencial (SEP o PES). La correcció de counter-
poise (CP) s’ha aplicat a tota la PES per a obtenir punts estacionaris lliures
de l’error de superposició de base (BSSE). Es demostra que l’ús de PES cor-
regides per CP és necessari si es vol aconseguir una bona descripció d’aquests
enllaços dèbils. Alguns dels complexes de liti i sodi presenten un punt mı́nim
nou amb una topologia diferent, per exemple en el número de freqüències imag-
inàries. A més a més, el BSSE a nivell MP2 dels complexos M−H · · ·H−X
(M = H− Be, H2 − B i X = F, Cl, Br) és del mateix ordre que les energies
d’interacció. Per tant, es poden obtenir conclusions errònies si només es té en
compte la PES sense corregir.

Seguidament s’ha aplicat la teoria d’àtoms en molècules (atoms in molecules,
AIM) a sèries de sistemes amb ponts d’hidrogen i de dihidrogen calculats a niv-
ell B3LYP i MP2 utilitzant la base 6-31++G(d,p). S’ha analitzat la topologia
de la densitat electònica i la densitat energètica als respectius punts cŕıtics
d’enllaç (bond critical points, BCP), optimitzats al seu mı́nim d’energia. En-
cara que no hi ha diferències importants quan aquestes propietats es represen-
ten com a funció de l’energia de dimerització, es poden separar en dos grups
ben definits si aquestes propietats es relacionen amb distàncies intermolecu-
lars. Quan s’analitza la dependència de diferents propietats amb les distàncies
d’enllaç optimitzades, les tendències espećıfiques dels sistemes amb pont de di-
hidrogen són per una banda una densitat electrònica més baixa al punt cŕıtic
d’enllaç i per l’altra una concentració/exhauriment més baixa d’aquesta den-
sitat que es pot traduir com a un comportament diferent pels components de
la Laplaciana. A més, els conjunts de molècules creen dos gràfics diferents
que permeten la seva classificació entre sistemes amb ponts d’hidrogen i de
dihidrogen.

El següent objectiu de la investigació és determinar si un sistema amb una
distància entre hidrògens H · · ·H molt curta és un pont de dhidrogen o una
molècula H2. L’enllaç central H−H en el complex lineal H4 pot existir en dos
tipus d’enllaç qualitativament diferents, corresponent a dos estats electrònics
diferents, que són un DHB donador-acceptor i una molècula H2 central amb
un parell electrònic enllaçant. Aquest punt de vista es desenvolupa a partir
d’un anàlisi utilitzant el funcional de Kohn-Sham i s’aplica en sistemes més



CONTENTS 3

comuns per entendre’n l’enllaç. S’estudia l’enllaç central H−H en els sistemes
H4 lineal, Li−H · · ·H−X, BH4 · · ·H−X i AlH4 · · ·H−X, amb diferents X,
utiltizant el model orbitalari molecular quantitatiu inclós en la teoria del fun-
cional de densitat de Kohn-Sham al nivell de teoria BP86/TZ2P. Primer es
resolen les qüestions de com es pot distingir teòricament entre un enllaç DHB
H · · ·H donador-acceptor o la formació d’un enllaç molecular H2, utilitzant el
sistema model de l’H4. A partir dels resultats d’aquest anàlisi s’obté una com-
prensió dels enllaços en sistemes més reals (alguns dels quals s’han estudiat
experimentalment), i com difereixen de l’enllaç del sistema H4.

Finalment, es fa un estudi de les caracteŕıstiques geomètriques i energè-
tiques del cristall molecular de BH3NH3 per estudiar el paper dels ponts de
dihidrogen en un sistema cristal·ĺı. Les modelitzacions a nivells HF i DFT
(B3LYP, PW91, PBE i PBE0) indiquen que les molècules de BH3NH3 es co-
hesionen dins del cristall mitjançant ponts de dihidrogen. Els hidrògens en el
cristall interaccionen amb un o dos dels seus hidrògens vëınals. Les distàncies
d’enllaç dels DHBs són més llargues per HF que pels mètodes DFT, variant
entre 2.488 a 1.895 Å, una distància d’enllaç que cau dins dels estàndards dels
DHB. La força d’aquestes interaccions és dèbil i depèn de la distància en la que
interactuen els hidrògens. Altres càlculs sobre una llosa del cristall de BH3NH3

indiquen una expansió del sistema en el seu punt mı́nim d’energia respecte el
cristall, apuntant a un comportament diferent quan es modelitzin interaccions
sobre la seva superf́ıcie. La comparació de les freqüències d’stretching anhar-
mòniques dels grups N−H i B−H del cristall amb les de la molècula äıllada,
presenten un desplaçament cap al vermell, reafirmant que hi ha ponts de di-
hidrogen al cristall.
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English

A dihydrogen bond (or DHB) is a kind of unconventional hydrogen bond, es-
tablished between a metal hydride bond and a proton donor like OH or NH. It
can be represented as A−H · · ·H−M, where A is an electronegative element
which enhances the proton acidity as in the typical hydrogen bond, and M is a
metal less electronegative than H and makes the σ electron pair of the H−M
bond act as an acceptor. They are the key to important structure features and
properties in compounds which have them. They can be responsible for the
specific geometry not only of small molecules like the NH3BH3 dimer, but also
of higher structures like metallic complexes or solids. They can also change the
boiling and melting points, magnetic and spectroscopic properties and other
characteristics like hydrogen bonds, although hydrogen-hydrogen bonds are
not as strong as the former. It is in this fashion that dihydrogen bonds can be
profitable, up to a plausible extent, when they can be used in certain molecules
or certain syntheses to obtain a new material with particular or even tailored
properties or geometries. The work developed in this thesis is aimed to have a
deeper understanding of dihydorgen bonds, deepening on certain aspects using
theoretical methods and working towards having reliable models to set a basis
of further investigations.

In this thesis, the DHB are investigated from different points of view,
starting from small systems and increasing its size through different methods.
Geometries, energies, frequencies, electronic densities and orbital interactions
have been used to characterize them. The first step, and as an example of
simple systems, dihydrogen bonded systems M−H · · ·H−X (M = Li, Na,
H− Be, H2 − B and X = F, Cl, Br) are studied at the HF, DFT/B3LYP and
MP2 levels of theory. Some of these complexes are found to be stationary
points with two degenerated imaginary frequencies, while the others are con-
sidered as minima in the potential energy surface (PES). Counterpoise (CP)
corrections are considered on the whole PES in order to get basis set superpo-
sition error (BSSE) free minima. It is shown that the use of CP-corrected PES
is necessary in order to obtain a good description of these weak bonds. Some
of the lithium and sodium complexes present a new minimum with different
topology, i.e. number of imaginary frequencies. Furthermore, the BSSE at the
MP2 level of M−H · · ·H−X (M = H− Be, H2 − B and X = F, Cl, Br) and
the interaction energy are about the same order. So, wrong conclusions may
be obtained if only the uncorrected PES is considered.

The next step in the research is to apply the atoms in molecules theory
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(AIM) to a series of hydrogen- and dihydrogen-bonded systems calculated at
B3LYP and MP2 level, with a 6-31++G(d,p) basis set. The topology of the
electron density and the energy densities at the respective energy-optimized
bond critical points has been analysed. Even though there are no significant
differences when these properties are represented as a function of the dimeriza-
tion energy, they can be separated into two well-defined sets if those properties
are correlated with intermolecular distances. When analyzing the dependence
of various properties with equilibrium bond lengths, the specific trends of di-
hydrogen bond systems consist of lower electron density at the bond critical
point and lower concentration/depletion of that density which can be trans-
lated in a different behavior for the Laplacian components. Furthermore, the
sets of molecules form two different plots which allow for a valuable classifica-
tion between hydrogen- and dihydrogen-bonded systems.

The following objective in this investigation is to determine if a close in-
teracting H · · ·H system is a dihydrogen bond or a H2 molecule. The central
H−H bond in linear H4 can exist in two qualitatively different bonding modes
corresponding to two different electronic states, namely a donor-acceptor DHB
and a central H2 molecule with an electron-pair bond. This insight evolves
from Kohn-Sham density functional analysis and it is further applied here to
understand the bonding in more realistic model systems. The central H−H
bond in linear H4, Li−H · · ·H−X, BH4 · · ·H−X and AlH4 · · ·H−X com-
plexes with various X is studied by using the quantitative molecular orbital
model contained in Kohn-Sham density functional theory at the BP86/TZ2P
level of theory. First are addressed the questions of how one can distinguish, in
principle, between a H · · ·H donor-acceptor DHB and the formation of an H2

molecule by using the simple H4 model system. The results of these analyses
have been used to obtain an understanding of the bonding in more realistic
model systems (some of which have been studied experimentally), and how
this differs from the bonding in H4.

Finally, a study on the geometric and energetic characteristics of the am-
mino borane (BH3NH3) crystal has been carried out to investigate the role
of dihydrogen bonds in a crystalline system. Modellizations at HF and DFT
(B3LYP, PW91, PBE and PBE0) levels show that the BH3NH3 molecules hold
together inside the crystal by means of dihydrogen bonds. Hydrogens in the
crystal interact with one or two of its hydrogen neighbours. DHBs lengths
are longer for HF than for DFT methods, ranging from 2.488 to 1.895 Å, a
standard DHB length. The strength of these interactions is a weak interaction
which depends on the length of the interacting hydrogens. Further calcula-
tions on the ammino borane crystal slab show an expansion of the system at
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its minimum energy point with respect to the crystal, pointing to a different be-
havior when modelling surface interactions. Comparing the crystal N−H and
B−H anharmonic stretching frequencies with those of the isolated molecule,
a displacement to the red is shown, reaffirming that the DHB interactions are
present.



Chapter 1

Introduction

The Force is what gives a Jedi his power. It’s an
energy field created by all living things. It
surrounds us and penetrates us. It binds the
galaxy together.

— Obi-Wan Kenobi
Star Wars: A new Hope (1977)

1.1 Types of interaction

When an interaction takes place between two or more particles, different forces
appear where one acts upon the others. The resultant net force obtained from
the sum of all force vectors involved is proportional to the mass of the body
times the amount of acceleration. Following Newton’s Second Law of Motion:

7
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The rate of change of momentum of a body is proportional to the
resultant force acting on the body and is in the same direction.

Besides, for each set force an opposite one appears as a reaction to the first
one. As stated in Newton’s Third Law:

All forces occur in pairs, and these two forces are equal in magni-
tude and opposite in direction.

If the net force resulting from the sum of all acting forces on a body is null,
then there is no change in the body state of motion:

Every body perseveres in its state of being at rest or of moving
uniformly straight forward, except insofar as it is compelled to
change its state by force impressed.

Those three laws were written down by Sir Isaac Newton (1643–1727) in
his Philosophiæ Naturalis Principia Mathematica [188], setting the basis of
classical mechanics. What Newton’s laws don’t explain is the inner nature of
these forces and where do they come from.

More than 300 years after Newton’s principles, Physics has a deeper insight
on the nature and typology of forces. Nowadays it is widely assumed that there
are four fundamental interactions: gravitational, strong, electromagnetic and
weak. Each of them acts in a different scale, range and strength. In table 1.1
the fundamental interactions are listed with their strength magnitude:

Table 1.1: Comparison between the four fundamental forces. Relative
strengths are approximate and depend on the particles and energies involved.

Interaction
Relative
strength Range (m)

Long-distance
behaviour

Gravitation 1 ∞ Gm1m2
r2

Weak 1025 10−18 e
−mW,Zr

r

Electromagnetic 1036 ∞
1

4πε0

q1q2
r2

Strong 1038 10−15 *
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All non-charged particles of any size and mass interact in an infinite range
due to gravitation. Any body in the universe is attracted to the other bodies,
as well as, in turn, it attracts them. Although it is the weakest of all four
fundamental forces, it describes the movement of astronomic bodies, from
orbits to the galactic dynamics.

In a shortest range there are the weak interactions which are set at an
atomic scale and take part in α and β decays and other nucleus related reac-
tions. These interactions are responsible for the energy liberated in fusion and
fission reactions.

At really short distances (10−15 m) is where the strongest interaction of
all four fundamental ones happens: the strong interaction. It is responsible
for the tighten up of the positively charged protons and neutrons in a really
compressed space, like the atomic nucleus, and not allowing them to scatter
away.

The last fundamental interaction to consider is precisely the model which
explains the chemical interactions between atoms and molecules. The elec-
tromagnetic interactions act between charged particles, attracting those with
different sign and repelling those with the same one. The “magnetic” part
of the term comes from the fact that when charged particles move, e.g. elec-
trons orbiting around the nucleus, they create a magnetic field that induces
movement in other charges at range. Electromagnetism is much more stronger
than gravitation, and therefore can describe almost any natural phenomena:
from the impenetrability of macroscopic bodies to light scattering. The differ-
ent strength interactions which are showed in chemical bonding are an effect
of electromagnetism acting in different ways, resulting in various balances of
pull-push forces among electrons, their orbits, protons and neutrons. Thus,
all the atomic interactions studied in this thesis are based on this interaction
model.

1.1.1 Electrostatic interactions and chemical bonds

As it has been stated in the latter section 1.1, electromagnetism has a part
in the explanation behind the electronic orbit around the nucleus. Nowa-
days, the most widely spread atomic model is based on the one proposed by
Niels Bohr [35], where a positively charged nucleus is surrounded by orbiting
electrons. These must observe three postulates, one of them being that the
electron, due to its centripetal force induced by the positive charges at the
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nucleus, spins around it in orbit-shaped paths without emitting or absorbing
energy. This postulate is needed otherwise the electron should fall towards
the nucleus as stated in the electromagnetic theory. The electron is a moving
charge and it should radiate energy, which will lead to a decrease of its me-
chanical energy, reducing its speed and lowering its orbit; collapsing eventually
into the nucleus. In section 2.1 a deepest mathematical insight of the atomic
model will be given.

Atoms group themselves to form molecules, higher structures that usually
have different properties than the atoms that compound them. These are hold
together through the chemical bond , which is, again, an electromagnetic in-
teraction amongst the nuclei and the electrons. Theoretically, all the atomic
particles in an isolated molecule affect each other no matter how far apart
they are, but usually there is an interaction between two atoms that is pre-
dominant over the rest. Moreover, this interactions are restrained to atoms
separated in an approximate range of 3 Å, depending on a wide set of involved
properties but being the electronic configuration of the participating atoms
the most important of them. If the molecule is in the neighbourhood of other
molecules—same, similar or different to itself—interactions between them are
possible and usually they are less strong than the intramolecular ones.

In energetic terms, a chemical bond entails a lowering in the total energy
of the compound. Thus, there is a liberation of energy and atoms achieve a
stability which could not be obtained while they were set apart. The amount
of energy liberated is related to the attraction and repulsion terms between
the subatomic particles participating in the bond, which are in balance be-
tween them, but not always. Positively charged nuclei repel other nuclei and
negatively charged electrons do the same between them, while nuclei attract
electrons. These attraction forces make the atoms get close to one another
up to a certain distance, known as bond length, where an energy minimum is
achieved. Figure 1.1 depicts the total energy of a two atom interaction referred
to the distance between these atoms:

At ro falls in the length between the nuclei where the system’s energy
reaches a minimum and is below zero. At this point is where the stable geom-
etry of the molecule stands. In fact, this is not a fixed distance, as the atoms
vibrate back and forth due to their internal energy and temperature. If the nu-
clei get close to each other, the repulsion terms prevail over the attraction ones
and the total energy increases exponentially. If, on the other hand, they move
away from each other, the bond decreases its energy towards zero but, since
electrostatic interactions have an infinite range of action, it will theoretically
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Figure 1.1: Diatomic potential energy curve.

never reach this value.

The attraction forces exerted by the nuclei of one atom to the electrons of
another one, apart from bringing the atoms nearer, lightly distort the atom’s
valence orbitals and so the electronic clouds are displaced, inducing the atom
to have more electrons in one zone that it should have, and having less in
another one. That creates a charge gradient between the two zones of the
atom and generates an electric dipole moment . A dipole moment is a vector
~µ of magnitude ~µ = q ~R with its origin on the negative charge and pointing
towards the positive one, both having the same value q—but different sign—
and separated a distance ~R. The mean electric dipole density of an atom, or
more frequently a molecule, is referred in chemistry as polarisation, specially
when an atom or a functional group induces the dipole. There are molecules,
mainly asymmetric ones, which polarisation is not induced but permanent,
e.g. water. However it can be induced as well by an electric field or another
nearby polarised compound. The atoms no longer have their charge equally
distributed along its orbits, and electrostatic forces are set among the slightly
positively-charged part of one molecule to the negatively-charged end of an-
other molecule. Atoms under a induced dipole tend to rearrange their electrons
to obtain the most stable configuration, that of minimum energy. This is the
first step to different types of bonding. Depending on the electronegativity of
the atoms involved, electrons of the outer valence shield can be transferred to,
acquired from or shared with other atoms in the dipole, lowering their internal
energy and achieving a more stabilised configuration.
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1.1.1.1 Strong chemical bonds

One of the possible outcomes of this first steps towards an stable interaction is
that one or more electrons leave an atom and are accepted by another one. This
case is a ionic bond model. Two ions are formed with a strong electrostatic
interaction inbetween. The stabilisation of the electronic configuration will
drive the atoms tendency to create an ionic bond. Atoms reach the most
stable state when all of its electron shells are filled or semi-filled. Atoms with
high electronegativities are close to these configurations by acquiring one or
two electrons—and becoming anions—, while others with lower ones should
release them to be more stable—thus being cations. When the difference
of electronegativities between the atoms in the molecule is large, the most
electronegative one takes one or more electrons from the less electronegative,
forming the ionic bond. Although the formation of the ions is endothermic,
the attraction to each other lowers their total energy.

Another possibility is that both atoms have similar electronegativities.
Their configuration is energetically too far from reaching a filled or semi-filled
shell, and the energetic lowering due to the strong electrostatic interaction is
not enough to counteract the initial energetic investment. What happens in
this conditions is that atoms share their electrons with each other and the
electronic cloud makes a strong bond, a covalent bond .

Figure 1.2: Formation of molecular orbitals by combination of two atomic
orbitals in a diatomic model. Arrows represent electrons from the two atoms.

The energy stabilisation derives from the combination of the approaching
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nuclei atomic orbitals (AO) to form molecular orbitals (MO) into which the
covalent bond is coherent. In figure 1.2 a molecular orbital diagram shows
qualitatively how two atomic orbitals combine using the linear combination
of atomic orbitals (LCAO) method, to form two new molecular orbitals, a
bonding one of lower energy and another one of higher energy than the starting
ones known as anti-bonding. The electrons are resettled in the new orbitals
and, if their total energy is lower than the one they had in the isolated atoms,
the bond is set. Then, these electrons can move along the new orbitals around
the atoms, and they don’t belong to a particular atom, but to both of them.
It is said that they are delocalised . Even so, electrons are more likely to stay
around the most electronegative atom, so the delocalisation is higher when
the electronegativities are more similar. Usually electrons are shared in pairs,
but the number of shared pairs is not limited to one. The bond order is the
number of electron pairs shared in a covalent bond. The combination of AOs
can lead to MOs of different energy and symmetry which can be occupied by
electron pairs. Thus, a single bond involves a pair of electrons and has a bond
order of 1, a double bond has two pairs of electrons and a bond order of two,
and so on.

A metallic bond is another type of electron sharing bond. In this situation
a grid of positively charged metal ions are completely immersed in a cloud of
electrons. Every valence orbital of each atom participates in the bonding and
combines with the other ones, forming a MO around the lattice and allowing
all the electrons to move freely around any of the centres. This leads to a
complete delocalisation of the electrons among the whole solid and a major
decrease in the system’s total energy.

1.1.1.2 Weak chemical bonds

Another kind of chemical bond is that of the weak type. In fact, most of
them are not much of a bond but mainly an electrostatic interaction between
molecules or parts of a molecule. Electrons are neither transferred like the
ionic bond nor shared as in the covalent or metallic ones. Instead, the interac-
tion occurs due to the forces formed between dipoles, quadripoles, multipoles,
charges, polar molecules or a mix of them. Although they are far less stronger
than the ionic, covalent or metallic bonds, they are of major importance, as
they are involved in the supra-structure of macromolecules like proteins, dock-
ing of proteins in specific zones to activate or deactivate certain processes in
living organisms or make water keep its liquid state between 0 and 100 degrees.
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There are many types of weak chemical interactions, as any electrostatic
interaction set among molecules could be classified in this section, but there are
three main types. One of them is the dipole-dipole model and is set between
two or more molecules with a permanent dipole (or multipole). These are
very directional interactions: a small variation in the angle or distance and
the strength of the interaction diminishes rapidly. There are subtypes of this
interaction, like charge-dipole interaction or dipole-induced dipole. The first
one is set between an ion and a dipole and generally is stronger than a dipole-
dipole interaction and less direction dependent. The second one occurs when
a dipole is near a neutral molecule and polarises it. The dipole’s different
electronic densities attract or repel the electrons of the other molecule and
induce a temporal dipole, which can interact with the permanent dipole. They
are weaker than the dipole-dipole interactions and due to the nature of the
bond, they usually don’t last for a long time and dissociate.

The dipole-induced dipole interaction has its extreme in the induced dipole-
induced dipole interactions. This particular case takes place in gas state atoms
or non-polar symmetric molecules, where the difference of the composing atoms
electronegativity is null or close. In this conditions, an electrostatic interac-
tion should not arise as the compounds doesn’t have any dipole and cannot
produce any. But due to the quantum distribution of the electrons, there is a
small probability where all the electrons are piled together in a certain region
of the molecule. This fact produces that a dipole is formed in a moment, and
then disappears. In this short time the molecule or atom can interact with an-
other molecules with a multipole or even induce a dipole on another molecule.
This phenomenon are the London dispersion forces and are the weakest of the
chemical bonds. They are short term interactions with weak forces, but they
can explain why noble gases still interact even in long distances.

There is the hydrogen bond in the weak interactions as well, but as it is
part of the scope of this thesis, it will be thoroughly explained in the next
section.

1.1.2 Hydrogen bonds [79, 125, 126, 130, 211]

Many substances have properties related to the “strong” chemical bonding
between atoms and ions which cannot be explained by it, but suggest that
there are more interactions between them and that they are important enough
to keep water in its liquid state while other compounds similar to it are gases
at the same temperature. Such interaction is called hydrogen bonding (or
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HB) and, though normally weak (2.39–14.34 kcal per mol of each hydrogen
which is H-bonded), it frequently has a decisive influence on the structure
and properties of the substance. Two atoms A and B, which usually would
stand at a certain distance, approach more closely to each other and lower
the total energy of the system when a bond is set between them with the
presence of a hydrogen. The bond is represented as A−H · · ·B and usually
occurs when A is sufficiently electronegative to enhance the acidic nature of H
(proton donor) and where the acceptor B has a region of high electron density
(such as a lone pair of electrons) which can interact strongly with the acidic
hydrogen. The interaction can take place in different ways and geometries
as shown in figure 1.3. A hydrogen bond is not necessarily linear: it can be
linear, bended or it can even interact with two or more acceptors. In the
same way, two hydrogens can interact with a single acceptor to produce a two-
joined bifurcated interaction. However, the most common structure found in
H-bonded systems is the unbranched one, and the others are just a small part
present in some complexes.[254]

Figure 1.3: Different examples of H-bonds structures.

The strength of the H-bond depends on the different combinations between
the atom acceptors and donors. Experimental evidence suggests that strong
H-bonds can be formed when the donor A is F, O or N; weaker H-bonds are
sometimes formed when A is C or a second row element, P, S, Cl or even Br
or I. On the other hand, when the acceptor B is F, O or N the interaction is
bigger than when it is Cl, Br or I. However when these last three halogens act
as charged species, the hydrogen bond is stronger. Other acceptors can be C,
S and P, but they produce weak H-bonds.



16 CHAPTER 1. INTRODUCTION

1.1.2.1 Influence on properties

It is well known that the melting and boiling points of NH3, H2O and HF are
anomalously high when compared with the melting and boiling points of the
hydrides of other elements in Groups 15, 16 and 17, as shown in figure 1.4.
The explanation given normally is that there is some different interaction (i.e.
H-bonding) between the molecules of NH3, H2O and HF which is absent for
methane, and either absent or much weaker for heavier hydrides. This argu-
ment is probably correct in outline but is deceptively oversimplified since it
depends on the assumption that only some of the H-bonds in solid HF (for
example) are broken during the melting process and that others are broken on
vaporisation, though not all, since HF is known to be substantially polymerized
even in the gas phase. But sometimes, attributing anomalously high melting
points to hydrogen bonds can be deceiving. The melting point is the tempera-
ture at which there is zero free-energy change on passing from the solid to the
liquid state. As the free-energy equation ∆G = ∆H − T∆S equals to zero,
then the melting temperature can be written as directly proportional to the
enthalpy of melting and inversely to the entropy of melting Tm = ∆Hm

∆Sm
. High

melting points involve either a high melting enthalpy, a low melting entropy or
both of them. Thus, high melting points can not be always related to hydro-
gen bond in means of high enthalpy of melting, as a small variation in entropy
causes a high temperature increment too. Similar arguments can be applied
to boiling points and indicate the difficulties in quantifying the discussion.
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Figure 1.4: Values of melting and boiling points of hydrides.

There are many other properties that depend on H-bonds, like solubility,
miscibility, heat of vaporization, heat of mixing, phase-partioning properties,
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the existence of azeotropes ad the sensitivity of chromatographic separation.
Liquid crystals (or mesophases) which can be regarded as“partly melted”solids
also frequently involve molecules that have H-bonded groups (e.g. cholesterols,
polypeptides, etc.). Again, H-bonding frequently results in liquids having a
higher density and lower molar volume than would otherwise have been ex-
pected, and viscosity is also affected (e.g. glycerol, anhydrous H2SO4, H3PO4,
etc.).

Electrical properties of liquids and solids are sometimes crucially influenced
by H-bonding. The ionic mobility and conductance of H3O+ and OH− in
aqueous solutions are substantially greater than those of other univalent ions
due to a proton-switch mechanism in the H-bonded associated solvent, water.
For example, at 298 K the conductance of H3O+ and OH− are 350 and 192
ohm−1cm2mol−1, whereas for other ions the values fall mainly in the range
of 50–75 ohm−1cm2mol−1. It is also notable that the dielectric constant is
not linearly related to molecular dipole moments for H-bonded liquids, being
much higher due to the orientating effect of the H-bonds: large quantities
of species are able to align in an applied electric field so that the molecular
dipoles reinforce one another rather than cancelling each other due to random
thermal motion. Even more dramatic are the properties of ferroelectric crystals
where there is a stable permanent electric polarisation, as hydrogen bonding
is responsible of ordering these molecules in the domain.

Direct information about the nature of the H-bond has come from vibra-
tional spectroscopy (infrared and Raman), proton NMR spectroscopy, and
diffraction techniques (X-ray and neutron). In vibrational spectroscopy the
presence of a hydrogen bond A−H · · ·B is manifest by diverse effects, all of
them related to an interaction taking place between the hydrogen and the ac-
ceptor. One of them is that the A−H stretching frequency ν shifts to lower
wave numbers and its breadth and intensity increase markedly, often more than
tenfold. The increase in intensisty and breadth is due to a small amount of elec-
tron density (0.01–0.003 electrons) transferred from the proton acceptor B to
the proton donor molecule A−H. The A−H bending varies as well shifting to
higher wave numbers, and finally sometimes the stretching and bending modes
of the H-bond appear at very low wave numbers (20–200 cm−1). Most of these
effects correlate roughly with the strength of the H-bond and are particularly
noticeable when the bond is strong. For example, for isolated non-H-bonded
hydrogen groups, ν(O-H) normally occurs near 3500–3600 cm−1 and is less
than 10 cm−1 broad whereas in the presence of O−H · · ·O bonding νantisym

drops to ∼1700–2000 cm−1, which is several hundred cm−1 broad, and much
more intense. A similar effect of ∆ν ∼1500-2000 cm−1 is noted on F−H · · ·F
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formation and smaller shifts have been found for N−H · · ·F(∆ν ≤1000 cm−1),
N−H · · ·O(∆ν ≤400 cm−1), O−H · · ·N(∆ν ≤100 cm−1), etc. Besides, there
is as well an important effect coming from the solvent, concentration, tempera-
ture and pressure. The magnitude of the effect is much grater then expected on
a simple electrostatic theory of hydrogen bonding, and this implies an appre-
ciable electron delocalisation, related to covalency, particularly for the stronger
H-bonds. This effect is known as red shift . It includes elongation of the A−H
bond in the complex A−H · · ·B and its correlated lower stretching frequency.

But there are reports of hydrogen bonded systems showing a blue shift . In
blue shifting, opposed to the red one, the A−H bond length decreases and
the A−H frequency increases. It is the reverse effect of the classical hydrogen
bond: there is a shortening of the A−H bond while interacting with the pro-
ton acceptor B instead of a lengthening, referring them as improper hydrogen
bonds. In many blue-shift cases, the hydrogen is bonded to a carbon in the
donor molecule, but other examples are known in which it is on an atom of
a different element, like nitrogen or sulphur. The IR spectrum of triformyl-
methane in chloroform has a distinct, sharp band close to the C−H stretch of
chloroform but slightly shifted toward higher wavenumbers: 3028 cm−1 com-
pared to 3021 cm−1, the typical C−H stretch value for chloroform). There
are other reported shifts in chloroform, deuterochloroform, and bromoform in
mixed systems containing proton acceptors such as carboxy, nitro, and sulfo
compounds which present shifts of 3–8 cm−1 to higher frequency compared to
their position in CCl4. Larger shifts in the C−H stretch frequency can be
found in the Cl− · · ·H3CBr and I− · · ·H3CI ionic complexes with a blue shift
bigger than 100 cm−1.

Proton NMR spectroscopy has also proved to be valuable in studying H-
bonded systems. In NMR the nuclei are under a magnetic field that rises
different energy levels and resonance frequencies, which are the same for each
atom. But these nuclei have electrons with a magnetic moment of their own
and other local magnetic fields from the surrounding molecules or solvent. The
chemical shift is the variation of the resonance frequencies of the same nucleus
due to variations in the electron distribution. As might be expected, substan-
tial chemical shifts are observed and information can be obtained concerning
H-bond dissociation, proton exchange times and other relaxation processes.
The chemical shift always occurs to low (magnetic) field and some typical val-
ues are tabulated below for the shifts which occur between the gas and liquid
phases or on dilution in an inert solvent:

The low field shift is generally interpreted, at least qualitatively, in terms
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Table 1.2: Chemical shifts of diverse compounds.

Compound CH4 C2H6 CHCl3 HCN NH3 PH3

δ ppm 0 0 0.30 1.65 1.05 0.78
Compound H2O H2S HF HCl HBr HI
δ ppm 4.58 1.50 6.65 2.05 1.78 2.55

of a decrease in diamagnetic shielding of the proton: the formation of a
A−H · · ·B tends to draw H towards B and to repel the bonding electrons
in A-H towards A thus reducing the number of electrons in H and reducing
the shielding too. The strong electric field produced by B also inhibits the dia-
magnetic circulation within the H atom and this further reduces the shielding.
In addition, there is a magnetic anisotropy effect due to B ; this will be positive
(upfield shift) if the principal symmetry axis of B is towards the H bond, but
the effect is presumably small since the overall shift is always downfield.

Ultraviolet and visible spectra are also influenced by H-bonding, but the
effects are more difficult to quantify and have been rather less used than IR
and NMR. It has been found that the n→ π∗ transition of the base B always
moves to high frequency∗ on H-bond formation, the magnitude of ∆ν being
∼300–4000 cm−1 for bands in the region 15000–35000 cm−1. By contrast,
π → π∗ transitions on the base B usually move to lower frequencies and shifts
are in the range from -500 cm−1 to -2300 cm−1 for bands in the region 30000–
47000 cm−1. Detailed interpretations of these data are somewhat complex
and obscure, but it will be noted that the shifts are approximately of the same
magnitude as the enthalpy of formation of many H-bonds (83.59 cm−1 per
atom ≡ 0.24 kcal/mol).

1.1.2.2 Influence on structure [202, 269]

The crystal structure of many compounds is dominated by the effect of H-
bonds. Ice is perhaps the classic example, but the layer lattice structure of
B(OH)3 and the striking difference between the α- and β-forms of oxalic and
other dicarboxylic acids is notable. The more subtle distortions can lead to fer-
roelectric phenomena in KH2PO4 and other crystals. Hydrogen bonds between
fluorine atoms result in the formation of infinite zigzag chains in crystalline

∗Although it’s a blue shift, it only refers to the higher frequencies, not the shortening
between of the covalent bond between the hydrogen and the proton donor.
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hydrogen fluoride with F−H · · ·F distance 2.49 Å between fluorines and the
angle H-F-H 120.1°. Likewise, the crystal structure of NH4HF2 is completely
determined by H-bonds, each nitrogen atom being surrounded by 8 fluorines,
4 in tetrahedral array at 2.80 Å due to the formation of N−H · · ·F bonds,
and 4 further away at about 3.10 Å; the two sets of fluorine atoms are them-
selves bonded pairwise at 2.32 Å by F−H− F interactions. Ammonium azide
NH4N3 has the same structure as NH4HF2, with N−H · · ·N distance between
nitrogens of 2.98 Å. Hydrogen bonding also leads NH4F to crystallise with
a structure different from that of the other ammonium (and alkali) halides:
NH4Cl, NH4Br and NH4I each have a low-temperature CsCl-type structure
and a high-temperature NaCl-type structure, but NH4F adopts the wurtzite
(ZnS) structure in which each NH+

4 group is surrounded tetrahedrally by 4 F
to which it is bonded by 4 N−H · · ·F bonds at 2.71 Å. This is a very similar
to the structure of ordinary ice. Typical values of A−H · · ·B distances found
in crystals are given in table 1.3.

The precise position of the H atom in crystalline compounds containing
H-bonds has raised considerable experimental and theoretical interest. In sit-
uations where a symmetric H-bond is possible in principle, it is frequently
difficult to decide whether it is vibrating with a smaller amplitude about a
single potential minimum or whether it is vibrating with a smaller amplitude
but is also statistically disordered between the two sites being small.[79, 126] It
now seems well established that the F−H− F bond is symmetrical in NaHF2

and KHF2, and that the O-H-O bond is symmetrical in HCrO2.

In summary, we can see that H-bonding influences crystal structure by
linking atoms or groups into larger structural units. These may be finite groups
(HF−2 , dimers of carboxylic acids like formic acid, etc.), infinite chains (HF,
HCN, HCO−3 , HSO−4 , etc.), infinite layers (N2H6F2, B(OH)3, B3O3(OH)3,
H− 2SO4, etc.) and three-dimensional nets (NH4F, H2O, H2O2, etc.). H-
bonding also vitally influences the conformation and detailed structures of the
polypeptide chains of protein molecules and the complementary intertwined
polynucleotide chains which form the double helix in nucleic acids.[141, 202]
Thus, proteins are built up from polypeptide chains using the peptide bonds
which are amides linking a carboxylic acid and an amine.

These chains are coiled in a precise way which is determined to a large
extent by N−H · · ·O hydrogen bonds of length 2.79 ± 0.12 Å depending on
the amino-acid residue involved. Each amide group is attached by such a
hydrogen bond to the third amide group from it in both directions along the
chain, resulting in a α-helix of pitch about 5.38 Å per turn, corresponding to
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Table 1.3: Length of typical H-bonds.[126, 269]

Bond Length (Å) Σ (Å)∗ Examples
F−H− F 2.27 (2.70) NaHF2, KHF2

F−H · · ·F 2.45–2.49 (2.70) KH4F5, HF

O−H · · ·F 2.65–2.87 (2.75) CuF2 · 2H2O, FeSiF6 · 6H2O
O−H · · ·Cl 2.95–3.10 (3.20) HCl · 2H2O, (NH3OH)Cl, CuCl2 · 2H2O
O−H · · ·Br 3.20–3.40 (3.35) NaBr · 2H2O, HBr · 4H2O
O−H−O 2.40–2.63 (2.80) Ni dimethylglyoxime, KH maleate,

HCrO2, NaH(CO3)2 · 2H2O
O−H · · ·O 2.48–2.90 (2.80) KH2PO4, NH4H2PO4, KH2AsO4,

AlOOH, α−HIO3

O−H · · · S 3.10–3.40 (3.25) MgS2O3 · 2H2O
O−H · · ·N 2.68–2.79 (2.90) N2H4 · 4MeOH, N2H4 · 4H2O

N−H · · ·F 2.62–2.96 (2.85) NH4F, N2H6F2, (N2H6)SiF6

N−H · · ·Cl 3.00–3.20 (3.30) Me3NHCl, Me2NH2Cl, (NH3OH)Cl
N−H · · · I 3.46 (3.65) Me3NHI
N−H · · ·O 2.81–3.04 (2.90) HSO3NH2, (NH4)2SO4, NH4OOCHCl,

CO(NH2)2

N−H · · · S 3.23, 3.29 (3.35) N2H5(HS)
N−H · · ·N 2.94–3.15 (3.00) NH4N3, NCNC(NH2)2

P−H · · · I 4.24 (4.05) PH4I
∗Σ = Sum of van der Waals’ radii (in Å) of A and B (ignoring H which
has a value of ∼1.20 Å) and using the values F 1.35, Cl 1.80, Br 1.95,
I 2.15; O 1.40, S 1.85; N 1.50, P 1.90.

3.60 amino-acid residues per turn. These helical chains can, in turn, become
stretched and form hydrogen bonds with neighbouring chains to generate either
parallel-chain pleated sheets (repeat distances 6.50 Å) or antiparallel-chain
pleated sheets (7.00 Å).

Nucleic acids, which control the synthesis of proteins in the cells of living or-
ganisms and which transfer heredity information via genes, are also dominated
by H-bonding. Their structure involves two polynucleotide chains intertwined
to form a double helix. The complementariness in the structure of the two
chains is ascribed to the formation of H-bonds between the pyrimidine residue
(thymine or cytosine) in one chain and the purine residue (adenine or guanine)
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in the other. Whilst there is still some uncertainty as to the precise configu-
ration of the N−H · · ·O and N−H · · ·N hydrogen bonds in particular cases,
the extraordinary fruitfulness of these basic ideas has led to a profusion of
developments of fundamental importance in biochemistry.[141]

1.1.2.3 Strength of hydrogen bonds and theoretical description [160]

Measurement of the properties of H-bonded systems over a range of tempera-
tures leads to experimental values of ∆G, ∆H and ∆S for H-bond formation,
and these data have been supplemented in recent years by increasingly reli-
able ab initio quantum-mechanical calculations. Some typical values for the
enthalpy of dissociation of H-bonded pairs in the gas phase are in table 1.4.

Table 1.4: Enthalpy of dissociation of H-bonded pairs in the gas phase,
∆H298(A−H · · ·Y), in kcal/mol.

Weak Medium Strong
HSH · · · SH2 1.673 FH · · ·FH 6.931 HOH · · ·Cl− 13.145
NCH · · ·NCH 3.824 ClH · · ·OMe2 7.170 HOCNH2 · · ·OCHNH2 14.101
H2NH · · ·NH3 4.063 FH · · ·OH2 9.082 HCOOH · · ·OCHOH 14.101
MeOH · · ·OHMe 4.541 HOH · · ·F− 23.422
HOH · · ·OH2 5.258 H2OH+ · · ·OH2 36.089

FH · · ·F− 40.391
HCO2H · · ·F− ∼48

The uncertainty in these values varies between ±0.2 and ±1.5 kcal/mol.
In general, H-bonds of energy < 6 kcal/mol are classified as weak; those in
the range 6–10 kcal/mol are medium; and those having ∆H > 10 kcal/mol
are strong. Until recently, it was thought that the strongest H-bond was
that in the hydrogenfluoride ion [F−H · · ·F]−; this is difficult to determine
experimentally and values in the range 36–60 kcal/mol have been reported.
A recent theoretically computed value is 40.391 kcal/mol which agrees well
with the value of 39 ±1 kcal/mol from ion cyclotron resonance studies.[80] In
fact, it now seems that the H-bond between formic acid and the fluoride ion,
[HCO2H · · ·F−], is some 7.1 kcal/mol stronger than that calculated on the
same basis for HF−2 .[81]

Early discussions on the nature of the hydrogen bond tended to adopt an
electrostatic approach in order to avoid the implication of a covalency greater
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than one for hydrogen. Indeed, such calculations can reproduce the experimen-
tal H-bond energies and dipole moments, but this is not a particularly severe
test because of the parametric freedom in positioning the charges. However,
the purely electrostatic theory is unable to account for the substantial increase
in intensity of the stretching vibration ν(A-H) on H-bonding or for the lowered
intensity of the bending mode δ(A-H). More seriously, such a theory does not
account for the absence of correlation between H-bond strength and dipole
moment of the base, and it leaves the frequency shifts in the electronic tran-
sitions unexplained. Nonlinear A−H · · ·B bonds would also be unexpected,
though numerous examples of angles in the range 150-180° are known.[126]

Valence-bond descriptions predict up to five contributions to the total bond
wave function,[211] but these are now considered to be merely computational
devices for approximating to the true wave function. Perturbation theory
has also been employed and it shows that the resultant energy bond is com-
posed of different parts. First there is the electrostatic energy of interac-
tion between the fixed nuclei and the electron distribution of the component
molecules, second is the Pauli exchange repulsion energy between spin-like
electrons, third is polarisation energy resulting from the attraction between
the polarisable charge cloud of one molecule and the permanent multipoles of
the other molecule, fourth is the quantum-mechanical charge-transfer energy,
and fifth is the dispersion energy, resulting from second-order induced dipole-
induced dipole attraction. The results obtained by Umeyama and Morokuma
suggest that in general electrostatic effects predominate, particularly for weak
bonds, but that covalency effects increase in importance as the strength of
the bond increases.[263] It is also possible to tell the contributions of the
energy obtained from ab initio SCF-MO calculations in this way. For exam-
ple, in one particular calculation for the water dimer HOH · · ·OH2, the five
energy terms enumerated above were calculated to be: Eelectstat = –6.33,
EPauli = 4.3, Epolar = –0.5, Ech tr = –1.8, Edisp = 0 kcal/mol. There was
also a coupling interaction Emix = –0.1, making in all a total attractive force
∆E0 = Edimer−Emonomers = –4.4 kcal/mol. To calculate the enthalpy change
∆H298 it is also necessary to consider the work of expansion and the various
spectroscopic degrees of freedom:

∆H298 = E0 + ∆(PV ) + ∆Etrans + ∆Evibr + ∆Erot

Other methods able to decompose the molecules energy to its different parts,
like ADF or SAPT, render similar results. Such calculations can also give
an indication of the influence of H-bond formation on the detailed electron
distribution within the interacting components. There is general agreement
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that in the system X−A−H · · ·B−Y as compared with the isolated species
XAH and BY, there is a net gain of electron density by X, A and B and a
net loss of electrons by H and Y. There is also a small transfer of electronic
charge (∼0.05 electrons) from BY to XAH in moderately strong H-bonds (5–
10 kcal/mol). In virtually all neutral dimers, the increase in the A-H bond
length on H-bond formation is quite small (< 0.05 Å), with an exception as
ClH · · ·NH3, where the proton position in the H-bond is half-way between
completely transferred to NH3 and completely fixed on HCl.

It follows from the preceding discussion that the unbranched H-bond can
be regarded as a 3-centre 4-electron bond A−H · · ·B in which the 2 pairs
of electrons involved are the bond pair in A-H and the lone pair on B. The
degree of charge separation on bond formation will depend on the nature of
the proton donor group AH and the Lewis base B. The relation between this
3-centre bond formalism and the 3-centre bond descriptions frequently used
for boranes, polyhalides and compounds of xenon is particularly instructive.
Numerous examples are also known in which hydrogen acts as a bridge between
metallic elements in binary and more complex hydrides.

1.2 Dihydrogen bonds [15, 56, 68, 219]

A dihydrogen bond (or DHB) is a kind of unconventional hydrogen bond, es-
tablished between a metal hydride and a proton donor like OH or NH. It
can be represented as A−H · · ·H−M, where A is an electronegative element
which enhances the proton acidity as in the typical hydrogen bond, and M is a
metal less electronegative than H and makes the σ electron pair of the H−M
bond act as an acceptor. A possible scheme could be:

Scheme 1.1.

A−H · · ·
H
|
M

Although the interactioning elements are the hydride σ bond and the pro-
tonic hydrogen, a dihydrogen bond is usually depicted as an hydric-to-protonic
interaction between hydrogens. Thus, the latter scheme is usually depicted as:

Scheme 1.2.

A−H · · ·H−M
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By this sort dihydrogen bonds are also called proton-hydride bonding,
H · · ·H hydrogen bonding or hydrogen-hydrogen bonding. This interaction
has a weaker strength but similar to a regular hydrogen bond, as well as its
directionality. Thus, it can influence structure, reactivity and selectivity in so-
lution and solid state, and so it has a potential in catalysis, crystal engineering
and materials science.

1.2.1 Structural and energetic characterisation

After Moore and Winmill found the hydrogen bonds in 1912,[184] the possi-
bility of a hydrogen-hydrogen interaction was not out of place. In 1934 there
was a possible evidence found by Zachariasen and Mooney when they char-
acterized the crystal structure of ammonium hypophosphite NH+

4 H2PO−2 and
stated that “the hydrogen atoms of the hypophosphite group behave toward
ammonium as if they were H− ions”.[277] A paper published in 1964 by Burg
suggested a hydrogen bond inbetween the hydrogens bonded to a nitrogen and
those of the borane (N−H · · ·H3 − B) in liquid (CH3)2NH · BH3, this time us-
ing IR spectroscopy band perturbation.[51] Four years later, a work by Titov
and co-workers use as an explanation to the enhanced chemical reactivity of
aminoboranes toward H2 loss, the “close spatial arrangement of the oppositely
charged hydrogen atoms”.[258]

The first dihydrogen bond was reported in 1968 by Brown and Heseltine
while working on of the boron coordination compounds L · BH3 (L = Me3N,
Et3N, Py, Et3P) and Me3N · BH2X (X = Cl, Br, I) in the presence of proton
donors such as MeOH, PhOH, and p− F− C6H4 −OH in CCl4.[45, 46] They
observed two intense absorption bands in the IR wavelengths of 3300 cm−1

and 3210 cm−1, in a solution of Me2NH · BH3 and (RNH · BH2)3 (R = Pr,
Bu) in CCl4. The first one was assigned as a normal N−H vibration, and the
second one was assigned to the same bond, but they theorised that it could be
interacting with the B−H group. At lower dilutions, the band at 3210 cm−1

reduced its intensity and the one at 3300 cm−1 increased its, which is indicative
of intermolecular association. They proposed the formation of a novel type of
hydrogen bond in which the BH3 and BH2 groups acted as proton acceptors,
despite their lack of lone pairs or π electrons. They measured the strengths of
these interactions by variable temperature IR spectroscopy, finding association
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energies in the range of 1.7–3.5 kcal/mol, comparable with moderately strong
conventional hydrogen bonds.[47]

An intramolecular example of dihydrogen bond was first found in the com-
plex cis− [IrH(OH)(PMe)4] [PF6] in 1986.[182] A low temperature neutron
diffraction study was carried out later,[251] showing a short O−H · · ·H− Ir
distance of 2.40 Å, a short Ir−O−H angle of 104.4° and an eclipsed
H− Ir−O−H conformation, which was thought to be a result of a dipole-
dipole interaction and indicating an attractive H · · ·H interaction. Another
O−H · · ·H− Ir interaction was discovered by Crabtree and co-workers in the
iridium complex shown in figure 1.5a, based on NMR evidence, as no hydro-
gen atoms could be detected in the X-ray crystal structure.[159] The H · · ·H
distance was estimated as ca. 1.8 Å from the NMR data. Other related com-
plexes were prepared and the first N−H · · ·H− Ir (figure 1.5b) interaction
was observed.

Figure 1.5: Scheme of Crabtree and co-workers’ Ir complex.[159]

Theoretical HF calculations were performed on a model of complex 1.5b.[208]
The energy of the model IrH3(PH3)2(HNCHNH2) was lower by 14.4 kcal/mol
when the N-H group was in the same plane as IrH3, as in 1.5b, showing a ro-
tation barrier due to the break of the N−H · · ·H− Ir interaction. This value
was corrected to 9.9 kcal/mol to account for the difference between formami-
dine (model) and 2-aminopyridine, which results are in good agreement with
the experimental value of 10.8 kcal/mol. The strength of the hydrogen bond
was estimated as 7.1 kcal/mol. The ligand trans to the hydride participating
in the hydrogen bond may affect the bond; a poorer σ donor will cause the
hydride to be less negatively charged, decreasing the electrostatic interaction
between the H2 and the H+, and therefore leading to a weaker hydrogen bond.

At the same time, Morris and co-workers discovered another intramolec-
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ular H · · ·H interaction example in another iridium hydride complex, using
X-ray diffraction in the solid-state and NMR spectroscopy in solution.[170]
The crystal structure of figure 1.6a indicated a close contact between the pyri-
dinium protons and the Ir-H hydridic hydrogens, which unfortunately could
not be located precisely from the electron density difference maps. Neverthe-
less, their 1H NMR data provided clear evidence for N−H · · ·H− Ir hydrogen
bonding in CD2Cl− 2, with a H · · ·H contact distance of about 1.75 Å, cal-
culated from the observed T1 (spin-lattice relaxation time) relaxation times
of the protonic and hydridic hydrogens. Theoretical calculations by Hoffmann
et al. on the model complex 1.6b confirmed the attractive H · · ·H interaction
and concluded that its nature is mostly electrostatic.[169] Interestingly, when
THF was used as a solvent, the dihydrogen bonds were switched off in 1.6a,
presumably due to the formation of conventional N−H · · ·O hydrogen bonds
with the solvent.[170]

Figure 1.6: Scheme of Morris and co-workers’ Ir complex.[170]

Bifurcated N−H · · ·H(Ir) · · ·H−N dihydrogen bonds were also detected
by Morris et al. in complexes depicted in figures 1.7a and 1.7b by X-ray crys-
tallography and NMR spectroscopy, and their H · · ·H contact distances were
estimated around 1.80 and 1.86 Å, respectively, in solution.[197] The same
group also found an interesting bifurcated Ir−H · · ·H(N) · · ·F− B interac-
tion in figure 1.7c complex, in which the N-H proton is shared by a hydridic
Ir-H hydrogen and a conventional B-F electron donor from the BF−4 counte-
rion.[196]

The search for an intermolecular H · · ·H dihydrogen bond had the first
univocal result in the co-crystallisation of the complex ReH5(PPh3)3 with in-
dole. A neutron diffraction structure showed that two of the hydrides were
interacting with the N-H bond of the indole (H · · ·H distances of 1.75 and
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Figure 1.7: Different styles of bifurcated H · · ·H interaction in an Ir com-
plex.[170]

2.25 Å). Theoretical calculations led to a relatively good reproduction of the
geometrical features (H · · ·H distances 1.92 and 2.48 Å) and gave an interac-
tion energy of 8.0 kcal/mol.[270] Reaction of the Re precursor with imidazole
afforded ReH5(PPh3)2(imidazole), where two of the hydrides were involved in
hydrogen bonding with the N-H of a free imidazole molecule (H · · ·H distances
1.68 and 1.99 Å).[201] The strength of the interaction was estimated from IR
data to be 5.4 kcal/mol. The related derivatives containing pyridine and o-
or p- NHR substituted pyridine, were prepared and the hydride fluxionality
studied by NMR and theoretically.[37, 200] The rate was accelerated with the
introduction of the o-NHR substituent in pyridine, and ascribed to intramolec-
ular dihydrogen bond formation. Comparisons were made with the p-NHR
derivative as this substituent cannot form intramolecular hydrogen bonds but
electronic substituent effects are similar. The turnstile mechanism, with simul-
taneous rotation of three hydrides, was found to be the preferred both from
experimental and theoretical results, leading to comparable barriers. A de-
tailed study of the reaction mechanism showed that, for the 2-aminopyridine
complex, strong hydrogen bonding was found in an intermediate along the re-
action pathway. There was a barrier before reaching the transition state, owing
to repulsion between two hydrides, and this prevented more powerful conse-
quences of hydrogen bond toward lowering the activation barrier for hydride
rotation.

In a thorough analysis, Epstein, Berke, and co-workers surveyed dihydro-
gen bonding in solution in the tungsten hydride-alcohol octahedric complexes
W(CO)2(ON)L2H · · ·HOR, where HOR is a phenol, hexafluoro-2-propanol
(HFIP), or perfluoro2-methyl-2-propanol (PFTB).[238] Using IR and NMR
spectroscopies, they ruled out hydrogen bonding to the CO or NO groups and
proved the exclusive formation of the unconventional O−H · · ·H−W interac-
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tions. As expected, the strengths of these dihydrogen bonds increase with the
donor abilities of the ligand L (PMe3 > PEt3 > P(Oi− Pr)3 > PPh3) and are
directly proportional to the acidities of the proton donors (PFTB > HFIP >
PhOH). Their association energies fall in the estimated range 4.1–6.9 kcal/mol,
based on both the observed shifts in the corresponding ν(O-H) bands, and the
variation of the association constants K with temperature. In addition, NMR
experiments (δ shifts, NOE, and T1 relaxation times) all supported the for-
mation of O−H · · ·H−W dihydrogen bonds, with H−H contact distances
as short as 1.77 Å, as observed in the case of HFIP. A linear O−H · · ·H−W
orientation was arguably suggested for these interactions, in sharp contrast to
the previously established propensity of dihydrogen bonds for a strongly bent
geometry.

In an analogous series of rhenium hydride complexes (ReH(CO)2(ON)L2H),
the same two research groups proved the occurrence of intermolecular
O−H · · ·H− Re dihydrogen bonding in solution.[24, 181] When PFTB was
used as proton donor, interaction energies between 4.5 and 6.1 kcal/mol were
calculated from the observed ν(O-H) shifts in the IR spectra in hexane. In
toluene, however, the ∆H values, derived from variable temperature NMR
spectroscopy, are smaller by about 3.0 kcal/mol, apparently due to competitive
O−H · · ·π interactions with the solvent.[181] The H · · ·H contact distances
calculated from T1 relaxation times range between 1.78 and 1.94 Å. The phos-
phine ligand appears to have an important influence over the regioselectivity
of the H-bonding formation. Thus, when L = PMe3, an interaction with one
of the hydridic hydrogens is preferred, but the NO group competes more and
more effectively for the proton donor as the bulkiness of L increases, to the
point where only O−H · · ·O−N hydrogen bonds are observed for L = PiPr3.
DFT calculations on a ReH2(CO)(NO)(PH3)2 ·H2O model indicated that the
H · · ·H interaction is energetically preferred by about 3.0–3.5 kcal/mol.[24]
Also, a stronger interaction is predicted with the Re-H hydride trans to the
NO group, with a H · · ·H distance of 1.49 Å, as compared to the Re-H trans
to CO, H · · ·H distance 1.79 Å, and confirmed experimentally by the high re-
gioselectivity displayed by both PFTB and HFIP alcohols toward the former,
as shown by NMR spectroscopy.

The experimental results obtained by Epstein and Berke on the intermolec-
ular dihydrogen bonding in solution were complemented by the theoretical
work by Scheiner et al. on the Mo and W hydride complexes
M(CO)2L2L1H · · ·HA, where M = Mo and W, L = PH3 and NH3, L1 = NO,
Cl and H and A = F, OH and H2O+.[191] Their theoretical calculations with
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different methods confirmed that the H · · ·H interactions are favoured over
conventional hydrogen bonding involving the NO group. The dihydrogen
bonds in this complex become stronger and shorter as the donating ability
of the cis-ligand or the acidity of the proton donor increase, which is consis-
tent with experiment. However, the strongly acidic H3O+ induces complete
proton transfer, resulting in the formation of an η2 −H2 dihydrogen complex.
The H−H−M angles are strongly bent in all the optimized structures. For
the Mo(CO)2(PH3)2(ON)H · · ·HF dihydrogen-bonded system, a 2.6 kcal/mol
destabilisation energy was calculated for a linear F−H · · ·H−Mo orientation.

As seen with the boron hydrides, C-H sites may interact as the protonic
partners with transition metal hydrides. Recent X-ray structural studies and
CSD surveys confirmed the existence of intra-[134, 144, 220] as well as in-
termolecular[43] C−H · · ·H−M close contacts in transition metal hydride
complexes. A large number of these examples were observed in complexes
containing R3−x(Ph)xP (x = 1–3) ligands, in which one or more ortho C-H
bonds point toward the M-H hydridic hydrogens.

While the H · · ·H distances and M−H · · ·H angles in these complexes
were found to fall essentially in the same range as observed for the more
“conventional” dihydrogen bonds involving N-H or O-H proton donors, the
C−H · · ·H angles usually tend to be smaller, due to the inherent constraints
imposed by the chelation.[220] Caution is advisable in interpreting some of
these C−H · · ·H−M short contacts, however, as steric compression by bulky
ligands or packing forces may make a significant contribution to the observed
H · · ·H close proximities. Additional evidence is needed before close H · · ·H
contacts may be interpreted as attractive dihydrogen bonding interactions in
such questionable cases.

The comprehensive analysis of the manganese hydride complex
HMn(CO)4P(Ph)2C6H5 carried out by Brammer and collaborators provided
convincing evidence for an intramolecular C−H · · ·H−Mn dihydrogen bond.[2]
Their combined low-temperature neutron and X-ray diffraction study revealed
a short intramolecular C−H · · ·H−Mn contact of 2.10 Å, with H · · ·H−Mn
and C−H · · ·H angles of 126.5 and 129.0°, respectively, and an essentially
coplanar relative orientation of the Mn-H and C-H bonds (approximately 0.7°).
The experimental atomic charges found for the Mn-H hydridic and ortho CH
protonic hydrogens, of -0.40 and +0.32 e, clearly indicate an attractive electro-
static interaction, whose magnitude was calculated to be 5.7 kcal/mol. More-
over, topological analysis of the experimental charge density using the “atoms
in molecules” theory unequivocally supported the existence of a moderately
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strong intramolecular C−H · · ·H−Mn hydrogen bond.

Several searches in the CSD for crystals exhibiting short intra- and inter-
molecular H · · ·H contacts were made.[40, 44, 237] Many of the examples refer
to intramolecular interactions involving X−H · · ·H−M, where X is an elec-
tronegative atom (O, N, S), starting with the already mentioned cis− [IrH(OH)
(PMe3)4][PF6]. Other cationic complexes belong to this group, such as [IrH2

(CO)(PPh3)2(pzH−N)][BF4] · C6H5Me with H · · ·H 1.998 Å,[16] [IrH(Cl)(L)]
[PF6] (L = 7-methyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15--
triene) with H · · ·H 2.335 Å,[31] as well as the neutral compounds IrH(Cl)
(PEt3)2 [NHPh(C7H10)] with H · · ·H 2.242 Å,[59] Ru(H)2 − (CO)2(PHPh2)
(PPri3)2, with H · · ·H 2.63 Å, and the cis-dicarbonyl [OsH(CO)2(PHPh2)
(PPri3)2][BF4] with H · · ·H 3.04 and 2.83 Å.[50] Spectroscopic evidence sug-
gested the presence of M−H · · ·H−N interactions in Ru complexes (NMR),[60]
although no crystals of the product could be obtained. Polynuclear complexes
and clusters also exhibit short H · · ·H distances between a hydride and a X-
H hydrogen. Examples are given by Cp2Zr(NHAr)(µ−H)(µ−NBut)IrCp∗,
with an H · · ·H distance of 1.717 Å,[17] the two related complexes [Rh2H2

(µ− SH2)2MeC(CH2PPh2)3][BPh4] ·HCONMe2 [25] and [(µ−H)2Ir2

(µ−NH2)2(PEt3)4(NH3)2]·Me2CO,[58] with H · · ·H 1.891 Å and 2.260, 2.189 Å,
respectively for the Rh and the Ir complex, (µ−H)Ru3(CO)9(µ− C6H2−
−1−NH− 2−NH2 − 4, 5−Me2), with H · · ·H 2.383 Å,[55] [Ru6 (µ−H)6

(µ3 − η2 − ampy) (CO)14] (ampy = 2-aminopyridine), with H · · ·H 2.064 Å.[54]
N−H · · ·H−M interactions have also been detected in compounds without
structural characterization, such as OsH (NH3) (CO)9,[3] and [{η5 − C5H4

CH (CH2)4 NMe} Ir(PPh3)H2].[1] The observation of these interactions in the
polynuclear complexes containing bridging hydrides is particularly interesting,
as these hydrides often behave like acids. A close observation of the struc-
ture, however, suggests that steric constraints are responsible for the observed
short H · · ·H contacts.[44] The M-H bond can also participate in M−H · · ·O
hydrogen bonding,[41] as seen from many structures, but most of the hydrides
involved are doubly or triply bridging hydrides which are very likely to carry a
positive charge, so that the situation is not so surprising from an electrostatic
point of view.

Theoretical studies were performed on some of the complexes, the most in-
teresting results relating to the two cationic species, cis− [IrH(OH) (PMe3)4]
[PF6] and [IrH2 − (CO) (PPh3)2 (pzH−N)] [BF4].[44, 177] The geometries
of the cations were optimised (using PH3 instead of PMe3 or PPh3) and the
agreement with the experimental structures was not particularly good. Intro-
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duction of the counter ion (PF−6 or BF−4 ) in the calculations led to a better
geometry as the charge distribution in these complexes is compatible with an
electrostatic interaction between the negatively charged hydride and the posi-
tive hydrogen attached to N or O. When the torsion angle H-Ir-O-H changes
from 0 to 180°, thus making the H · · ·H interaction vanish, the energy in-
creases by 5.0 kcal/mol in the cation. The corresponding energy difference is
10.5 kcal/mol when the PF−6 anion is present. The relevant conclusion is of a
non-negligible role of the counter ion in helping to stabilise the short H · · ·H
arrangements.

The effect of charges in hydrogen bonds has also been assessed in the study
of O−H− · · ·O− interactions in chains of oxalate anions which are repulsive
interactions. The reason why the atoms hold together is that they simultane-
ously participate in attractive interactions with the counter ion K+.[42] This is
a situation where a short O−H− · · ·O− distance does not indicate a hydrogen
bond.[43] The point is controversial, and brings forward the question whether
distances by themselves provide an answer to the existence of a bond.[249] As
the previous example shows, short distances in O−H− · · ·O− chains can co-
exist with repulsive interactions, because a stronger cation-anion electrostatic
attraction holds all ions in their place. A similar effect seems to take place in
the dihidrogen bonded cis− [IrH(OH)(PH3)4][PF6].

So far the different examples of dihydrogen bonding molecules presented
here have been complexes, but there are other simpler structures which have
an H · · ·H interaction. Boron is an atom whose hydrides can act as a proton
acceptor in hydrogen bonds, as pointed out by Epstein and co-workers.[83,
235, 239] They studied the interaction of neutral NEt3BH3 and P(OEt)3BH3

as well as ionic Bu4N+BH−4 with different alcohols as proton donors, by IR
and NMR spectroscopy in CH2Cl2, C6H14, and C6D12, and concluded that the
properties of these unconventional O−H · · ·H− B interactions are similar to
those found in classical hydrogen bonds. Their association energies were found
to increase proportionally with the proton donors’ acidities, being situated
in the range 1.1–3.7 and 2.3–6.5 kcal/mol, for the neutral and ionic boron
hydrides, respectively. Theoretical calculations confirmed the attractive nature
of these proton-hydride interactions.

The solution studies, however, cannot unambiguously establish whether
these unusual interactions involve the boron atom, the hydridic hydrogen, or
the BH group as a whole. It has been determined the X-ray and neutron
crystal structures of NaBH4 · 2H2O and NaBD4 · 2D2O to probe the existence
of O−H · · ·H− B dihydrogen bonding in the solid state and provide a detailed
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structural description of it.[69] Three close H · · ·H contacts of 1.79, 1.86, and
1.94 Å, respectively were found, substantially shorter than the 2.4 Å distance
corresponding to twice the van der Waals radius of a hydrogen atom. The
O-H vectors clearly point toward the middle of the B-H bonds, suggesting
association with the σ-bond electrons, rather than B or H atoms.

The same conclusion can be drawn from the systematic CSD search done
by Richardson et al. for boron-nitrogen compounds.[219] There were found 26
N−H · · ·H− B intermolecular short contacts in the range of 1.7 to 2.2 Å, for
which the term “dihydrogen bonds” was suggested, and they showed a strong
preference for a bent geometry, with NH · · ·H− B angles typically within 95
and 120°, and N−H · · ·H angles from the N−H · · ·H− B interaction tending
to be larger, most of them ranging from 150 to 170°. These side-on struc-
tures from bigger compounds were rationalised in terms of negative density
charges on both B and H atoms, with the bending allowing the protonic NH
to approach the partially negative B atom, thus maximising the attractive
electrostatic interaction. They also investigated theoretically the NH3BH3

dimer, whose C2 symmetrical geometry (figure 1.8a) optimized using theoret-
ical methods (PCI-80/B3LYP) showed two identical H · · ·H interactions, with
contact distances of 1.82 Å and NH · · ·H− B and N−H · · ·HB angles of 98.8
and 158.7°, respectively, falling in the range found by the CSD search. The
calculated dimerisation energy of -12.1 kcal/mol corresponds to 6.1 kcal/mol
per N−H · · ·H− B interaction, which, as suggested by Richardson, could ac-
count for the strikingly higher melting point of aminoborane, +104℃, relative
to the isoelectronic ethane, -181℃.[219]

(a) C2 symmetry (b) C2h symmetry

Figure 1.8: Isomers of the NH3BH3 dimer.

A similar head-to-tail arrangement was also found by Cramer and Glad-
felter in their theoretical study of the (NH3BH3)2 dimer.[66] However, us-
ing different theoretical methods from the ones used by Richardson, mainly
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HF, DFT and MP2 levels of theory, they found a C2h symmetrical struc-
ture as the global minimum (figure 1.8b), which lies only 0.2 kcal/mol un-
der the C2 isomer reported by Richardson et al. This geometry allows the
formation of bifurcated dihydrogen bonds with H−H distances of 1.990 Å,
and NH · · ·H− B and N−H · · ·HB angles of 88.6 and 144.8°, respectively, as
calculated at the MP2/cc-pVDZ level. The association energy obtained at
the same level of theory is -15.1 kcal/mol.

Experimental data obtained using neutron diffraction on the crystal struc-
ture of NH3BH3 by Crabtree and co-workers in 1999, shows a packing that re-
sults in three short intermolecular N−H · · ·H− B interactions, with the short-
est one exhibiting a H−H distance of 2.02 Å and values for the NH · · ·H− B
and N−H · · ·HB angles of 106 and 156°, respectively.[149] Again, the N−H
vectors point toward the middle of the B−H bonds, suggesting that the σ-
bond as a whole represents in fact the proton acceptor partner in these inter-
actions.

Further insight into the nature of the N−H · · ·H− B interaction was pro-
vided by Popelier, who applied the “atoms in molecules” theory on the same
(NH3BH3)2 dimer and concluded that this interaction can indeed be classified
as a hydrogen bond.[216] Other intermolecular N−H · · ·H− B interactions
have also been described in other molecules, for example the (CH3)2NH− BH2−
−N(CH3)2 − BH3 crystal determined by Noth et al., which self-assembles into
dihydrogen-bonded dimers, different enough from the NH3BH3 crystal, which
can produce a grid.

There are also examples of an intramolecular N−H · · ·H− B , as found in
the crystal structure of the 2’-deoxycytidine-N(3)-cyanoborane, which shows
a close H · · ·H contact of 2.05 Å.[243, 281] These close contacts can be re-
sponsible to the stabilisation of molecules. In aminoboron hydrides there are
C−H · · ·C−H intramolecular interactions that are thought to lead to a sta-
bilisation, which otherwise could not be achieved.[194] Their X-ray crystal
structures show multiple H−H distances below 2.65 Å, which was considered
as the threshold intermolecular distance for H · · ·H due to be less than the van
der Waals radius. The heterocyclic rings adopt almost coplanar orientations
relative to the B-H bonds, maximising thus the intramolecular H · · ·H asso-
ciations. The relatively small H-C-N exocyclic angles next to the B-H bonds
in some of these complexes, as compared to the free heterocycles, also suggest
attractive interactions between the protonic hydrogens on the α-carbons and
the hydridic BH hydrogens. Intramolecular C−H · · ·H− B dihydrogen bonds
were also proposed to play an important role in controlling the conformation
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of the azacyclohexane-borane adducts.[91] Thus, the BH3 groups are always
found in the equatorial position in these complexes, which appears to be the
result of favourable attractive interactions between the hydridic B-H hydro-
gens and the positively charged H atoms of the α-CH2 groups. Associations
with the C-H hydrogens of the N− CH3 group also seem to stabilise these
structures, as indicated by the short H−H distances and the decrease of the
H3C−N− BH3 angles relative to the H3C−N− CH3 angle in the (CH3)2N+

derivative.

The hydrides of the heavier group 3 elements are also capable of form-
ing dihydrogen bonds. Thus, in 1994, Raston and co-workers provided X-ray
crystallographic evidence for an intramolecular N−H · · ·H−Al interaction in
an alane-piperidine.[9] The H-Al-N-H unit has an eclipsed conformation in the
solid state, allowing the two oppositely charged hydrogen atoms to approach to
2.31 Å, in direct contrast to the previously reported structures of aminoalanes,
which are known to exhibit a staggered conformation about the Al-N bond.
This arrangement, Raston noted, represents an intermediate prior to H2 evolu-
tion, to form an amidometal species. Gallium can also be involved in dihydro-
gen bonding, as Gladfelter’s neutron diffraction crystal structure of cyclotri-
gallazane (a three member N-Ga ciclohexane-type ring, Ga3N3H12) demon-
strates.[57] In the solid state, it forms an α-network, by participating in four
N−H · · ·H−Ga intermolecular interactions, with H−H distances of 1.97 Å.
The observed NH · · ·H−Ga and N−H · · ·HGa angles are rather close, with
values of 131 and 145°, respectively. The strength of these dihydrogen bonds
was estimated by theoretical calculations on the [(NH2GaH2)3]2 dimer. As in
the aluminium analogue, the monomer prefers the twist-boat conformation by
2.6 kcal/mol, favouring thus intramolecular H · · ·H interactions involving the
oppositely charged H atoms from the flagpole positions. However, for direct
comparison with the solid-state structure, the chair conformation was consid-
ered for the geometry optimization of the dimer. The highest dimerisation
energy was found for the Cs symmetrical structure, from which an interaction
energy of about 3.0 kcal/mol could be estimated for each N−H · · ·H−Ga di-
hydrogen bond. In the case of the (NH3GaH3)2 dimer, theoretical calculations
by Cramer and Gladfelter predicted a C2 symmetrical geometry similar to
the one found in the aluminium analogue, with N−H · · ·H−Ga dihydrogen
bonds of approximately 7.2 kcal/mol in strength.[66]

Formation of dihydrogen-bonded complexes by other main group hydrides
such as LiH, BeH2, or the recently discovered XeH2, has been investigated
theoretically by a number of researchers.[4, 154, 155, 169, 171, 218] A theo-
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retical study at MP2 and B3LYP level of the dihydrogen-bonded complexes
between the hydrides LiH, NaH, BeH2, MgH2, CH4, SiH4, GeH4, SnH4, and
hydrofluoric acid demonstrated the existence of direct correlations between
H · · ·H distances and H-bonding energies.[123] Also, the H · · ·H separations
have been found to be inversely proportional to the F-H bond lengths, as is
seen in conventional O−H · · ·O or N−H · · ·O hydrogen bonds.[115, 123]

1.2.2 Reaction control and selectivity with dihydrogen bonds

As it has been previously stated in section 1.1.2.2, weak interactions are in-
volved on molecular suprastructures like the secondary, ternary and quater-
nary conformation of proteins. Nevertheless, dihydrogen bonds have been
regarded also as a useful tool to control reactivity and selectivity in some reac-
tions. Thanks to their substantial strength and directionality they are used in
supramolecular molecule synthesis. However, what makes dihydrogen bonding
particularly interesting is the special reactivity conferred by its peculiar na-
ture. It has been recently demonstrated that H · · ·H bonds have a role in the
formation of dihydrogen η2-H2 complexes and the reverse heterolytic splitting
of H2, as well as σ-bond metathesis (see scheme 1.3). In the solid state, this
transformation can be topochemical, transferring the initial order present in
the starting dihydrogen-bonded crystal to the newly formed covalent network,
thus providing access to novel crystalline materials with desired structures and
properties.

Scheme 1.3.

M−H + H−A → M−H · · ·H−A 
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The Ir-Hb bond in 1.5a has been found to be activated by dihydrogen bond-
ing for a number of reactions.[158] Thus, the hydridic and protonic hydrogens
Ha and Hb involved in the H · · ·H interaction can interchange relatively easily,
whereas the noninteracting Hc is exchanged much more slowly with Ha and
Hb. The ∆H 6 = for the Ha/Hb exchange was estimated by variable tempera-
ture NMR spectroscopy at around 14.0–15.9 kcal/mol and found to go down
as the R group becomes more electron-withdrawing, consistent with a mecha-
nism involving proton transfer from the OH group to the Ir-Ha bond, to give
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an η2-H2 intermediate complex. Rotation of the H2 ligand in this complex and
transfer of the proton back to the oxygen completes the exchange.

The first direct observation of a dynamic equilibrium between a H · · ·H
bonded system and an η2-H2 complex resulting from proton transfer along
a dihydrogen bond was made by Chaudret and coworkers, using NMR spec-
troscopy on (dppm)2HRuH · · ·H−OR.[10] Thus, the ruthenium hydride com-
plex RuH2(dppm)2 · PhOH exists as a mixture of dihydrogen-bonded cis and
trans isomers in benzene or toluene solutions. The trans isomer is also in-
volved in a dynamic equilibrium with the dihydrogen forming a σ bond with
Ru, which lies 17.0 kcal/mol lower in enthalpy than the initial complex show-
ing a Ru−H · · ·H−OR. It was proposed that the reversibility of the pro-
cess originates in the strong dihydrogen bonding in (dppm)2HRuH · · ·H−OR.
In the presence of the more acidic hexafluoro-2-propanol, the corresponding
dihydrogen complex showing the η2-H2 further reacts by H2 loss, to ulti-
mately give (dppm)2Ru(OR)2. Theoretical calculations by Scheiner et al.
on a HOH · · ·H2Ru(PH2CH2PH2)2 model confirmed the higher stability of
the dihydrogen complex, which lies 10.7 kcal/mol lower in energy than the
dihydrogen-bonded adduct in this case.[192] The activation energy for the pro-
ton transfer was estimated around 10.0 kcal/mol. However, when the stronger
proton donor HF was used in the calculations, no F−H · · ·H− Ru adduct
could be identified, and the system evolved directly toward a dihydrogen com-
plex, which in this case was found to be 23.8 kcal/mol lower in energy than
the separated HF and ruthenium hydride complex.

Using IR and NMR spectroscopy techniques, Epstein et al. studied the re-
versible proton transfer in the dihydrogen-bonded complexes between (triphos)−
−Re− (CO)2H and phenol, tetrafluoroboric acid (HBF4 ·OMe2), chloroacetic
acid (ClCH2CO2H), hexafluoro-2-propanol (HFIP), or perfluoro-2-methyl-2-
propanol (PFTB), as proton donors, at 200-260 K.[236] The η2-H2 complexes
were found again to be thermodynamically more stable than their H · · ·H
bonded precursors. Higher temperatures induced H2 loss with the formation
of the covalent products with O− R. The proton transference to form a η2-H2

in a complex is dependent on the proton donor capacity of the protonated
species as found by Scheiner et al.[190] They used the HRu(Cp)(CO)(PH3)
ruthenium hydride model, and made it interact with H3O+, CF3OH, or H2O,
representing strong, moderate, and weak proton donors, respectively. While
in the first case spontaneous transfer of proton with the formation of a corre-
sponding hydrated η2-H2 complex was observed, the other two weaker acids
did not transfer the proton at all, suggesting that the activation barrier for
this process is largely determined by the proton donor ability of the acidic
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partner. The critical role of the proton donor acidity has also been recently
recognised by Lau et al., who concluded that strongly acidic conditions give
η2-H2 complexes, while weakly acidic conditions favour dihydrogen-bonded
species.[61]

Other examples of dihydrogen bonds involved in a reaction were shown
by Lau et al., intramolecular N−H · · ·H− Ru dihydrogen bonds also appear
to mediate proton transfer and subsequent formation of N-Ru bonds in the
first complex depicted in scheme 1.4, which illustrates the H2 loss.[60] H/D
exchange of both protonic and hydridic hydrogen atoms with D2O strongly
suggest the existence of η2-H2 intermediate species in equilibrium with the
H · · ·H bonded complexes. H2 loss with the formation of a Ru-N bonded
chelate structure is easy in the second form, and the reverse Ru-N bond hy-
drogenolysis can be done at 60℃ under 60 atm. This system was found to
catalyse the reduction of CO2 to formic acid, although with low yields.

Scheme 1.4.

A very interesting dihydrogen-bonded system and its hydrogen exchange
dynamics have been recently described by Jalon et al.[53] They reported a
three centre py2H · · ·H− Ru intramolecular interaction in the first complex in
shceme 1.5, in which fast scrambling between the hydridic and protonic hydro-
gens occurs most probably via an η2-H2 complex intermediate. An activation
energy of about 13.6 kcal/mol was determined for this process, using variable
temperature 1H NMR spectroscopy. Moreover, this system proved to be a very
active catalyst for D+/H2 exchange. Thus, when a solution of the species in
scheme 1.5 in CD3OD as solvent was exposed to a hydrogen atmosphere at
room temperature and 1 atm, more than 90% of H2 was exchanged for D2 in
about half an hour.

The last examples show many studies regarding the dynamics of dihydrogen-
bonded systems in solution, and conclude that proton transfer from the acidic
AH partners to the transition metal hydrides MH, along the H · · ·H bonds, gen-
erally leading to η2-H2 nonclassical complexes, which subsequently eliminate
hydrogen upon heating, with the formation of covalent M-A bonds (scheme 1.3).
An analogous process appears to occur in the case of the borohydride an-
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Scheme 1.5.

ion. In aqueous solutions, BH−4 is very likely dihydrogen-bonded to H2O,
as suggested by the crystal structure of NaBH4 · 2H2O, as well as theoreti-
cal and experimental studies by Epstein et al.[83, 235, 239] Under neutral or
acidic conditions, borohydrides undergo hydrolysis to boric acid (B(OH)3),
for which the established mechanism involves slow proton transfer result-
ing in a BH5 intermediate, followed by fast H2 loss and B-O bond forma-
tion.[72, 152, 180, 204] Theoretical work by Elguero et al. indicates that H2

generation from dihydrogen-bonded borohydrides can also be induced by the
internal forces within a crystal.[224] This considerations, added to the proven
ability of borohydrides to self-assemble into extended dihydrogen-bonded net-
works, suggested that A−H · · ·H− B dihydrogen bonds could be employed
in topochemical assembly of covalent materials.[67] Such weak H · · ·H inter-
actions, in principle, may be used to organise and hold a structure form while
it is more firmly fastened together by A-B bond formation, transferring thus
the initial order from the starting crystal to the newly formed covalent frame.
This strategy makes dihydrogen bonding a potentially powerful tool for ratio-
nal assembly of new crystalline covalent materials with controlled structures
and properties.

Cyclotrigallazane, which its solid structure is reviewed in page 35, is an
example of topochemical control by dihydrogen bonding with its solid-state
conversion into nanocrystalline gallium nitride, reported by Gladfelter and co-
workers.[137] Initial loss of H2 at 150℃ resulted in an amorphous GaN phase,
which upon annealing at 600℃ led to the metastable crystalline cubic gal-
lium nitride, as a 1:1 mixture with the thermodynamically favoured hexagonal
GaN. The crystallisation in the cubic system appears to be dictated by the
initial crystal packing in the cyclotrigallazane, consisting of N−H · · ·H−Ga
dihydrogen-bonded chains (figure 1.9), which can be considered essentially“hy-
drogenated” cubic GaN. For comparison, decomposition of cyclotrigallazane in
thin films obtained by vapour deposition, a process that presumably disrupts
the dihydrogen-bonded network, yields exclusively hexagonal GaN. It is re-
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markable that despite the huge contraction of the unit cell accompanying the
conversion of cyclotrigallazane into cubic GaN, the reaction still maintains
partial topochemical character. The price to pay, however, was the initial loss
of crystallinity and the consequent requirement for high annealing tempera-
tures to restore it. Although this thermal treatment had no detrimental effect
upon the robust GaN, more delicate structures would not tolerate such high
temperatures, limiting the general applicability of this approach.

Figure 1.9: Solid state self-assembled cyclotrigallazane.

A low temperature procedure for topochemical dihydrogen to covalent
bonding transformations would allow the extension of this strategy into the
structurally more diverse domain of organic materials. Like many solid-state
processes, this reaction includes two threats to the crystalline order. One is
the geometry change upon bond reorganisation, and the other is gas release
within the lattice. Clearly, careful design of the starting dihydrogen-bonded
networks is necessary to meet these challenges. Success, however, would mean
that the well-developed tools of molecular synthesis could now be applied to
the rational construction of crystalline covalent solids with desired structures
and functions.

One step beyond of the reaction selectivity leads to the field of hydro-
gen storage.[62, 275, 278, 75, 146] The convenience of stabilizing large quan-
tities of hydrogen for storage and transportation is paramount as it has a
low-temperature ignition, ease of leakage and metal embrittling properties.
One of the trends to deal with this problem is the use of solid surface ad-
sorbents to fix or even break the hydrogen molecules and recover them when
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needed.[146, 173, 183, 189, 250, 129, 248] Most of the reactions involve steps
where a dihydrogen bond is established. Pyykkõ and Wang made a study
on the boron-nitrogen compound N− TMPN− CH2C6H4B(C6F5)2, TMPN
is 2, 2, 6, 6− tetramethylpiperidine and N is the place where the ligand is
attached, which reversibly adsorbs hydrogen.[217] Their study remarks that
without using bulky ligands, the energy of the hydrogenated system would
be lower than using them, as well as that a relatively tiny dihydrogen bond-
ing contribution has the potential to influence the process too. But the most
studied compounds are the amino borane complexes, as it will be further stud-
ied in this thesis too. They have good hydrogen storage properties as their
potential active hydrogen content is very high and the release of hydrogen at
25℃ is almost thermoneutral,[76, 124] although the reverse reaction is unlikely
to happen at moderate pressures.[183] The different studies of this group of
molecules point to a formation of dihydrogen bonds during the adsorption and
desorption of hydrogen molecules, a facet which will be extended in this work.

1.3 Overview of the thesis

Through this chapter different aspects and points of interest about dihydrogen
bonds have been showed and highlighted, exposing them as the key to impor-
tant changes in the structure and properties of different compounds. They can
be responsible for the geometry of not only small molecules like the NH3BH3

dimer, but also for higher structures like metallic complexes or solids. They
can also change the boiling and melting points, magnetic and spectroscopic
properties and other characteristics like hydrogen bonds, although hydrogen-
hydrogen bonds are not as strong as the former. It is in this fashion that
dihydrogen bonds can be profitable, up to a plausible extent, when they can
be used in certain molecules or certain syntheses to obtain new materials with
particular or even tailored properties or geometries. The work developed in
this thesis is aimed to have a deeper understanding of dihydorgen bonds, deep-
ening on certain aspects using methods that have not been used up to date, and
working towards having reliable models to set a basis for further investigations.

The chapters in this thesis are arranged in an increasing system size scale.
This chapter has been a general picture to introduce where does the dihydrogen
bond stand with respect to other forces and its general properties. It has
followed a deeper insight in the first hints of dihydrogen bonds, mainly in
complexes, and the consequent research in both experimental and theoretical
level, giving further information of them. Chapter 2 provides an overview of
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the theory and methods used in this thesis. In the first section there is a general
explanation of quantum theory and some mathematical representations which
will be used later in the theoretical methods. Next, the ab initio Hartree-
Fock or self-consistent field methods are first explained as they provide the
basis for the other post-hartree-fock methods like Møller-Plesset or any other
algorithms which include it. Other methods and theories briefly explained in
chapter 2 are density functional theory, perturbation theory, a small part of
the wide basis set superposition error correction problem and a way to correct
a potential energy surface, Bader’s atoms in molecules theory which is useful
for knowing the topology of the interactions, Kohn-Sham orbital theory to
study the orbital interactions which are taking place, and finally some hints of
solid state simulation.

Chapters 3, 4, 5 and 6 apply all the aforementioned theories and methods
to different systems, starting from simple model systems and increasing their
complexity to solid state. In chapter 3 small systems are used to understand
the behaviour and properties which later will help us understand bigger sys-
tems. First a geometric and energetic analysis is performed on dimers which
are known to have dihydrogen bonds. The basis set superposition error is
important in systems like these, which have really small interaction energies
and its potential energy surfaces are smooth and flat. In specific cases a small
change of energy might represent a drastic geometry reorganisation. It fol-
lows a deeper insight in chapter 4 on the electronic structure using atoms in
molecules theory to describe the bond through bond critical points, electron
densities, electron delocalizations and other related properties. From this data,
a H · · ·H can be classified as a hydrogen molecule, a typical hydrogen bond,
or a dihydrogen bond. Afterwards, the same systems have been studied at
orbital level using Kohn-Sham orbital theory, looking at the different energy
contributions to the system and finding which is responsible for the system’s
stabilisation.

Chapter 5 focus on the reactive importance of dihydrogen bonds while
needing to increase the size of the model systems, using experimental molecules
known to have DHB interactions in the intermediate species of the reaction,
usually resulting in a dehydrogenation. There is a small discussion in this
chapter dealing with H2 storage, as DHBs have a small interaction energy,
they could be used as an easy energetically-inexpensive way to store and release
hydrogen. Finally, chapter 6 deals with the simulation of a solid state BH3NH3

simulation, whose DHBs differ each other in range and energy depending on
the position they occupy the crystal, but are interactions of the branched type.
An analysis on geometry, energies and frequencies is commented in order to
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find new characteristics in these DHBs and define the strengths of each DHB
interaction separately. The last chapter resumes the conclusions obtained from
all the previous sections.



Chapter 2

Methodology

Karma police
arrest this man
he talks in maths
he buzzes like a fridge
he’s like a detuned radio

— Radiohead
Karma police (1997)

2.1 From continuum to quantum [8, 203, 210]

Right in the beginning of the twentieth century, physics was thought to be
thoroughly set and described. The macroscopic world had been studied and
models on matter and waves could describe and predict their motion or other
behaviours. It was thought to be just a matter of time to perfect the theories
and increase the precision of the different universal constants found up to date.

45
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But there were several evidences for which the Newtonian physics could not
account. When models were applied to a scale different from the human-size
one in which they were observed, they failed repeatedly to predict the expected
results. The smallest and the most massive bodies, as well as interactions at
the highest speeds, looked as if they were not subjected to those models. Two
objects approaching at more than the speed of light cannot be approaching
each other at more of the speed of light itself, matter can be transformed
into energy, time progresses slower in the proximity of a massive object, really
small bodies cannot be traced as an entity but a probability... scales which
were thought to be constant didn’t behave as such.

2.1.1 Old quantum theory

Huygens, Newton, Young and Fresnel, Maxwell and Hertz made different ex-
periments regarding the nature of light. Its characteristics were in a contro-
versy between some who thought of it as a particle (Newton) and others who
devised it as a wave (Huygens), which was an inconvenience since in classi-
cal physics these theories are contradictory. Their different experiments led
to think that the corpuscular model which Newton came up with was not
adequate to explain all of them. Hints were taken from photoconductivity:
when light hits certain electrical conductors, it creates an electron flow. If
the intensity is raised, more electrons move, but they do not move faster as
it was thought in the corpuscular model. Instead, intensity controls current
that translates to energy. On the other hand, light frequency controls electron
speed or voltage. A packet or quantum model was needed.

2.1.1.1 Planck constant

Max Planck was the first scientist to shed the idea of quantized energy in his
theoretical hypothesis of the black body radiation.[213] In physics, a black body
is an impermeable object capable of absorbing any type of radiation without
reflecting it, and at the same time should emit all the absorbed radiation,
thus being in thermal equilibrium with the surroundings. Rayleigh and Jeans
used classical physics while assuming that the whole black body as a group of
electromagnetic oscillators of all possible frequencies, obtaining:

ρ =
8πkT
λ4

(2.1)
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where ρ represents the energy density (or the density of states), k is the Boltz-
man’s constant (k = 1.381·10−23 J·K−1), T is the temperature and λ is the
wavelength. Rayleigh-Jeans law checks with experimental data at long wave-
lengths, but predicts infinite energy density at short wavelengths. This implies
that, for example, at room temperature, there is a large quantity of energy ra-
diated in high-frequency modes (ultraviolet and X-rays) which has not any
experimental back-up. This is known as the ultraviolet catastrophe.

Planck used a different approach to the energy density distribution: he
postulated that the harmonic oscillators (i.e. the vibrating particles of matter)
do not emit or absorb light continuously but instead they do it in discrete
quantities of magnitude hν proportional to the frequency ν of the light, that
is:

E = nhν n = 1, 2, 3 . . . (2.2)

ρ =
8πhc

λ5
(
ehc/λkT − 1

) (2.3)

There are two new constants compared with equation 2.1: c is the speed
of light, and the proportionality constant h is Planck’s constant and has a
value of 6.626·10−34 J·s. It is what quantizes the energy of the oscillator,
forbidding it to take any value independently from the frequency at which it
moves, describing the wave as small packets which Planck named as quanta. In
some sense this discovery was an approach of the wave to the particle. Later,
Einstein suggested that the quantity of radiant energy sent out in the process of
emission of light was not emitted in all directions but instead unidirectionally,
like a particle.[78] In the same work, he described a possible explanation for
the photoelectric effect, postulating the energy in a beam of light occurs in
concentrations that he called light quanta, later known as photons. Photons
can have more or less energy, but that only depends on their frequency.

2.1.1.2 Bohr atom

In 1909 Geiger and Marsden under the direction of Rutherford came up with an
experiment which discarded the Thomson’s plum pudding atomic model, where
the electrons, discovered back in 1897 by Thomson himself, were surrounded by
a soup of positive charges. The experiment is known as Geiger-Marsden, Gold
foil or Rutherford experiment .[109] They fired a flux of α-particles through a
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thin gold foil looking for deviations in the particles beams, expecting none or
few to happen if the Thomson model was correct. They found that few rays
were deflected, but some rays were deflected back, which should not happen
and thus discarding the model. Rutherford processed the data from the ex-
periment, and two years later he devised a simple atomic model where a dense
positively charged centre was orbited by small electrons.[225] The model fit in
the Geiger-Marsden experiment as there was much empty space between the
nucleus and the electrons, thus avoiding the deflection of the α-particles, but
the dense nucleus made for the explanation of the returning beams. Yet it had
one flaw: if electrons were to move in orbits, they should radiate energy which
would precipitate them towards the nucleus.

Niels Bohr joined the Rutherford atomic model and Planck’s quantization
to produce a new model of the atom. The model was based on Rutherford’s
one but avoided the electron fall into the nucleus by issuing two postulates:

1. The Existence of Stationary States. An atomic system can exist in cer-
tain stationary states, each one corresponding to a definite value of the
energy E of the system; and transition from one stationary state to an-
other is accompanied by the emission or absorption as radiant energy, or
the transfer to or from another system, of an amount of energy equal to
the difference in energy of the two states.

2. The Bohr Frequency Rule. The frequency of the radiation emitted by a
system on transition from an initial state of energy E2 to a final state of
lower energy E1 (or absorbed on transition from the state of energy E1

to that of energy E2) is given by the equation 2.4:

ν =
E2 − E1

h
(2.4)

With these postulates, Bohr gave a method of determining the quantized
states of motion of the stationary states of atoms. It explained the orbits
electrons can take by relating the angular momentum of electrons in each al-
lowed orbit to Planck’s constant h and considered one revolution in orbit to
be equivalent to one cycle in an oscillator, which is in turn similar to one cy-
cle in a wave. The number of revolutions per second is the frequency of that
electron or orbital. Each orbit is described by its frequency which must be
an integer multiple of Planck’s constant and hence, quantized. At that time,
scientists were looking at hydrogen spectra and trying to model the hydro-
gen atom. Working with the Balmer series of spectra, Bohr introduced that
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the electrons angular momentum in its orbit, L, was quantized as well. This
method of quantization involving the restriction of the angular momentum of
circular orbits to integral multiples of the quantum h/2π lead to satisfactory
energy levels related to spectrographic information, but was soon superseded
by a more powerful method, described in next section 2.1.2.

The old quantum theory did not provide a satisfactory method of calcu-
lating the intensities of spectral lines emitted or absorbed by a system, that
is, the probabilities of transition from one stationary state to another with
the emission or absorption of a photon. Qualitative information was provided
by an auxiliary postulate, known as Bohr’s correspondence principle, which
correlated the quantum-theory transition probabilities with the intensity of
the light of various frequencies which would have been radiated by the sys-
tem according to classical electromagnetic theory. In particular, if no light of
frequency corresponding to a given transition would have been emitted classi-
cally, it was assumed that the transition would not take place. The results of
such considerations were expressed in selection rules. In Bohr’s atomic model,
comparing with the experimental data, the transition between orbitals was
only possible if ∆n = ±1: an electron can jump one orbital at a time.

2.1.1.3 Wave-particle duality

The way an electron jumps in a transition happening between orbitals is far
from a classic problem. In Bohr’s model, electrons disappeared from one orbit
and appeared in the other one, without moving through the space inbetween
orbitals. The electrons taking one quantum of energy leap automatically to
the orbital above them, more energetic; and the ones emitting one quantum
of energy fall to the orbital under them, closer to the nucleus and with less
energy. A fraction of quanta is not possible, so there is no trip from one orbital
to the other.

Up to the point where Bohr had his model set, the nature of light, and
by extension the behaviour of electrons, was still in doubt whether it was a
wave or a particle. Bohr enunciated the complementarity principle, where he
stated that wave and particle were paired, i.e. sometimes subatomic particles
behaved following the wave analogy, sometimes reacted like particles, but never
simultaneously as both. It allows wave and particle attributes to co-exist, but
postulates that a stronger manifestation of the particle nature leads to a weaker
manifestation of the wave nature and vice versa. Luis de Broglie worked on this
theory, adding Planck’s and Einstein’s discoveries as well, and pushed for its
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application beyond hydrogen and tried to find an equation which could explain
the wavelength characteristics of all matter. He postulated in his thesis—
and latter in the journal Annales de Physique—that subatomic entities have
properties of both waves and particles.[73] He generalised Planck’s equation 2.2
to all matter:

λ =
h

p
(2.5)

De Broglie conclusions applied to electrons implied that they could only
appear under conditions that permit a standing wave. The only standing waves
that can occur are those with zero amplitude at two fixed ends if they are not
continuous. A standing wave can only be formed when the wavelength fits
the available vibrating entity. In other words, no partial fragments of wave
crests or troughs are allowed. In a round vibrating medium, the wave must
be a continuous formation of crests and troughs all around the circle. Each
electron must be its own standing wave in its own discrete orbital.

The decline of the old quantum theory began with the introduction of half-
integral values for quantum numbers in place of integral values for certain
systems, in order to obtain agreement with experiment. There were cases in
which agreement with the observed energy levels could not be obtained by the
methods of the theory developed by Bohr or by any such subterfuge or arbitrary
procedure, and cases where the methods of the old quantum theory led to
definite qualitative disagreement with experiment. Moreover, the failure of the
old quantum theory to provide a method of calculating transition probabilities
and the intensities of spectral lines was recognised more and more clearly as
a fundamental flaw. This dissatisfaction culminated in the formulation by
Heisenberg in 1925 of his quantum mechanics, as a method of treatment of
atomic systems leading to values of the intensities as well as frequencies of
spectral lines.

2.1.2 New quantum theory

Werner Heisenberg approached the problem left by Bohr in a slightly different
way as his academical advisor had done. He made correlations with observ-
able quantities from spectrographic experiments, where the transition between
known orbitals and its frequency of occurrence could be discerned. The find-
ings differed from the classic point of view, as the relations were not always
commutative, like matrices. Besides, filling in the arrays of information was
not a simple fact, as any observation made on one single quantum system gives
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one value but has the potential of changing other values. This leads to a prob-
lem: a precise determination of one characteristic’s value necessarily creates
an uncertainty in the value of its correlate. Heisenberg stated the fact that
to observe unobservable quantities, i.e. quantum properties such as the posi-
tion and period of an electron, was not possible without using mathematics,
as they predicted the relations actually observed in experiments that worked
different depending on the sequence they were applied.[127] The mathemati-
cal apparatus suitable for this kind of operations are matrices, which he used
to understand the relations between momentum and position of electrons ob-
taining intensity. It proved that the math gave an exact description of the
quantum behaviour of the electron. Matrix mechanics was the first complete
definition of quantum mechanics, its laws, and properties that described fully
the behaviour of the electron. It was later extended to apply to all subatomic
particles.

2.1.2.1 Wave function

Then again, and at the same time, Erwin Schrödinger used a different approach
to obtain information from the electrons in an atom using mathematics as
well.[234] However, instead of attempting to find equations such as Newton’s
equations, which enable a prediction to be made of the exact positions and
velocities of the particles of a system in a given state of motion, he devised a
method of calculating a function of the coordinates of the system and the time
(and not the momenta or velocities), with the aid of which probable values of
the coordinates and of other dynamical quantities can be predicted for the sys-
tem. Particles could be described as waves, as stated by Bohr and de Broglie,
so Schrödinger formulated an equation for an electron like a wave around the
nucleus of the atom. Each electron had its own wave function, Ψ, called the
Schrödinger wave function or probability amplitude function. Originally, this
representation included three properties: the principal quantum number n re-
ferred to the proximity of the electron to the nucleus, the shape of the orbital l
referred to the angular momentum of the orbital, and the magnetic moment of
the orbital ml that depends upon l. Later, Pauli introduced a fourth quantum
number ms, which is the spin projection referred to the angular momentum
of the electron, because spectroscopic experiments had showed that two elec-
trons could occupy a single orbital. The square of the absolute value of a given
wave function is interpreted as a probability distribution function for the co-
ordinates of the system in the state represented by this wave function. It was
later recognised that the acceptance of dynamical equations of this type in-
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volves the renunciation of the hope of describing in exact detail the behaviour
of a system. Although it is referred to a wave due to the similitude its second
order derivative on the coordinates has with the wave equation of the classical
theory, there are no further similarities.

The wave equation of Schrödinger used previous mathematical develop-
ments made by Newton, Lagrange and Hamilton. Thus, it’s still applicable on
a system consisting of N point particles of masses m1,m2, . . . ,mn moving in a
three-dimensional space under the influence of forces expressed by the poten-
tial function V (x1, x2, . . . , y1, y2, . . . zN , t), being x1, . . . , zN the 3N Cartesian
coordinates of the N particles. The potential function V represents the inter-
action of the particles with one another, with an external field or both, and
may be time dependent or not, in the latter case corresponding to a conser-
vative system. The wave function describing the system depends on the 3N
Cartesian coordinates and time as well: Ψ (x1, . . . , zN , t). The energy of the
system, dependent on time, is assumed to be

− h2

8π2

N∑
i=1

1
mi

(
∂2Ψ
∂x2

i

+
∂2Ψ
∂y2

i

+
∂2Ψ
∂z2
i

)
+ V̂Ψ = − h

2πi
∂Ψ
∂t

(2.6)

The Laplace operator or Laplacian is the second derivative of all Cartesian
coordinates and can be written for the ith particle as:

∇2
i =

∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

so equation 2.6 is written like:

− h2

8π2

N∑
i=1

1
mi
∇2
iΨ + V̂Ψ = − h

2πi
∂Ψ
∂t

Schrödinger wave function resembles much to the equation of classical New-
tonian mechanics:

Ĥ (px1 . . . pzN , x1 . . . zN , t) = T̂ (px1 . . . pzN ) + V̂ (x1 . . . zN , t) = E (2.7)

Equation 2.7 is referred to as the Hamilton operator or Hamiltonian. It
states that the total energy of the system E is expressed as the sum of the ki-
netic energy from the T̂ operator and the potential energy from the V̂ operator.
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Introducing explicitly the momenta px1 . . . pzN becomes:

Ĥ (px1 . . . pzN , x1 . . . zN , t) =
∑
i

1
2mi

(
p2
xi + p2

yi + p2
zi

)
+ V̂ (x1 . . . zN , t) = E

(2.8)

Each term of each particle’s momentum in Cartesian form px1 . . . pzN can
be arbitrarily substituted by the corresponding differential operators
h

2πi
∂
∂x1

, . . . , h
2πi

∂
∂zN

, and the total energy E can be substituted by − h
2πi

∂
∂t , and

applied to the function Ψ (x1, . . . , zN , t):

Ĥ

(
h

2πi
∂

∂x1
, . . . ,

h

2πi
∂

∂zN
, x1 . . . zN , t

)
= − h2

8π2

N∑
i=1

1
mi
∇2
iΨ+V̂Ψ = − h

2πi
∂Ψ
∂t

(2.9)
which is identical to equation 2.6, and is usually symbolically written in the
conspicuous expression:

ĤΨ = EΨ (2.10)

The Schrödinger wave function including time can be split into two func-
tions: the 3N coordinate part times the time dependent function:

Ψ (x1, . . . , zN , t) = ψ (x1, . . . , zN )ϕ (t) (2.11)

After introducing this in equation 2.6 and dividing through by
ψ (x1, . . . , zN )ϕ (t), it becomes

1
ψ

(
− h2

8π2

N∑
i=1

1
mi
∇2
iψ + V̂ ψ

)
= − h

2πi
∂ψ

∂t
(2.12)

The right side of this equation is a function of the time t alone and the left
side a function of the 3N Cartesian coordinates. It is consequently necessary
that the value of the quantity to which each side is equal be dependent on
neither the 3N coordinates nor t that is, that it must be a constant, called
arbitrarily as E. Equation 2.12 can then be written as two equations, namely:

dϕ (t)
dt

= −2πi
h
Eϕ (t) (2.13)

− h2

8π2

N∑
i=1

1
mi
∇2
iψ + V̂ ψ = Eψ (2.14)
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Equation 2.14 is known as the Schrödinger wave function, explained before
in this chapter, and determines the amplitude of the function Ψ (x1, . . . , zN , t)
for a conservative system of point particles. The equation has various satis-
factory solutions, when limited to a certain set of conditions, for each of the
3N coordinates that generate 3N quantum numbers, which correspond to the
various values of the constant E, all them denoted as En. Each value of En
has a ψn function associated.

Equation 2.13 can be forwardly integrated as

ϕ (t) = e−2πiEnh t (2.15)

and the various particular solutions of the wave equation are hence

Ψn (x1, . . . , zN , t) = ψn (x1, . . . , zN ) e−2πiEnh t (2.16)

which turns into the general solution of the wave equation as

Ψ (x1, . . . , zN , t) =
∑
n

anΨn (x1, . . . , zN , t) =
∑
n

anψn (x1, . . . , zN ) e−2πiEnh t

(2.17)
where an are constants. The symbol

∑
n represents summation for all discrete

values of En and integration over all continuous ranges of values.

The conditions on which a good wave function can be constructed are based
on the following auxiliary postulates regarding the nature of wave functions:

To be a satisfactory wave function, a solution of the Schrödinger
wave equation must be continuous, single-valued, and finite through-
out the configuration space of the system.

The functions ψ which satisfy equation 2.14 and this auxiliary conditions
are variously called wave functions or eigenfunctions (from German Eigenfunk-
tionen), or sometimes amplitude functions, characteristic functions, or proper
functions. It is found that satisfactory solutions ψn of the wave equation exist
only for certain values of the parameter En (which is interpreted as the energy
of the system). These values En are characteristic energy values or eigenvalues
(from German Eigenwerte) of the wave equation.

In page 51 the probability distribution function was defined as the square
of the absolute value of a wave function. This is true when the wave functions
don’t have an imaginary part, but when they do, the probability distribution
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function is defined as the product of the Ψ function and its complex conjugate
(changing the sign of the imaginary part of the function) Ψ∗. A new postulate
is introduced:

The quantity Ψ∗ (x1, . . . , zN , t) Ψ (x1, . . . , zN , t) dx1, . . . , dzN is the
probability that the system in the physical situation represented by
the wave function Ψ (x1, . . . , zN , t) have at the time t the configu-
ration represented by a point in the volume element dx1, . . . , dzN
of configuration space.

and the volume element dx1, . . . , dzN can be represented as dτ . Thus, Ψ∗Ψdx
is the probability that the particle lie in the region between x and x+dx at the
time t. In order that this postulate can be made, the wave function Ψ must
be normalised to unity. To do so, the constants an of equation 2.17 must be
chosen to satisfy the relation∫

Ψ∗ (x1, . . . , zN , t) Ψ (x1, . . . , zN , t) dτ = 1 (2.18)

which is integrated in the whole space from −∞ to +∞. The amplitude
functions ψn (x1, . . . , zN , t) should also be normalised:∫

ψ∗n (x1, . . . , zN )ψn (x1, . . . , zN ) dτ = 1 (2.19)

Moreover it is found that the independent solutions of any amplitude
equation can always be chosen in such a way that for any two of them,
ψm (x1, . . . , zN ) and ψn (x1, . . . , zN ), are orthogonal, satisfying the orthogo-
nality equation:∫

ψ∗m (x1, . . . , zN )ψn (x1, . . . , zN ) dτ = 0 m 6= n (2.20)

Following the equality in equation 2.16, a wave function is normalised if it
satisfies the equation ∑

n

a∗nan = 1 (2.21)

The probability function depends on the time, except when the coefficients
an are zero for all except one value of En. Then Ψ∗Ψ is independent of t, and
the state is called a stationary state.
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2.1.2.2 Heisenberg uncertainty principle

After Schrödinger released his research on quantum mechanics, Heisenberg
was still on the subject of the momentum and position of electrons. Working
through his data, he found out that the difference of momentum times position
and position times momentum was of h/4π. The more certain is the position of
a particle, the less certain is its momentum. Two years later releasing his article
about the mathematical apparatus that should be used for subatomic particles,
he published a new paper exposing the Heisenberg uncertainty principle:[128]

The values of two dynamical quantities f and g of a system can
be accurately measured at the same time only if their commutator
is zero; otherwise these measurements can be made only with an
uncertainty ∆f∆g whose magnitude is dependent on the value of
the commutator. In particular, for a canonically conjugate coordi-
nate q and momentum p the uncertainty ∆q∆p is of the order of
magnitude of Planck s constant h, as is ∆E∆t for the energy and
time.

A commutator of two operators or matrices is defined as

[f, g] = fg − gf (2.22)

and what Heisenberg uncertainty principle establishes is when fg − gf 6= 0
the dynamical variables f and g cannot be accurately measured at the same
time: applied to a stationary wave function Ψ, due to the nature of it and its
probability distribution function, the energy and momentum can be known;
but the uncertainty in the position is infinite as the probability distribution
function Ψ∗Ψ is constant for all values of the coordinates. On the contrary,
when fg − gf = 0, both variables can be measured.

2.1.3 Approximate solutions of wave equations

The solution of the wave equation for any molecule is a very difficult prob-
lem. Only the simplest ones like atomic hydrogen can be solved exactly. The
Born-Oppenheimer approximation explained in section 2.1.3.1 reduces drasti-
cally its complexity by cutting out the nuclei movement from the Hamiltonian
operator, but the interactions between electrons and nuclei sum up to

„
n
2

«
terms, considering just pair-interactions. However, the information extracted
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from molecular spectra points that the energy of the molecule can be split in
several parts: the electronic energy, the vibrational energy and the rotational
energy. Each one can be described as an independent wave function which
can be combined to approximately solve the molecular wave equation. Even
then, system information cannot be conveniently treated by direct solution
of the wave function. Nevertheless, there are methods available which enable
approximate values for the energy of certain of the states of the system to be
computed.

2.1.3.1 Born-Oppenheimer approximation [36]

The mass of an electron is about two thousand times smaller than the mass of
a proton, and this rate increases as an atom’s atomic number raises. Moreover,
the speed of the electrons moving around the nuclei is much faster than their
translation speed, which is affected by the nucleus own translation. Thus, the
nucleus can be considered as a reference point in a fixed frame by the electrons.
Born and Oppenheimer were able to show that an approximate solution of the
complete wave equation for a molecule can be obtained by first solving the
wave equation for the electrons alone and then solving a wave equation for
the nuclei alone, in which a characteristic energy value of the electronic wave
equation, regarded as a function of the internuclear distances, occurs as a
potential function. Let us suppose a molecule consisting of r nuclei and s
electrons. The 3r coordinates of the r nuclei are represented by ~ξ, relative to
a frame of reference fixed in space, and the 3s coordinates of the s electrons
are represented with letter ~x, relative to the nuclei axes. The wave function
of the system is represented as ψn,ν

(
~x, ~ξ
)

, where ν are the quantum numbers
associated with the motion of the nuclei, and n are those associated with the
motion of the electrons. The complete wave equation for this molecule is

− h2

8π2

(
r∑

A=1

1
MA
∇2
A +

1
m0

s∑
i=1

∇2
i

)
ψ + V̂ ψ = Eψ (2.23)

in which MA is the mass of the Ath nucleus, m0 the mass of each electron,
∇2
A the Laplace operator in terms of the coordinates of the Ath nucleus, and
∇2
i the same operator for the ith electron. V̂ is the potential energy of the

system, of the form

V̂ =
∑
i,j>i

e2

rij
+

∑
A,A>B

ZAZBe
2

rAB
−
∑
i,A

ZAe
2

riA
(2.24)



58 CHAPTER 2. METHODOLOGY

the sums including each pair of particles once (indicated by the j > i term).
Here ZA is the atomic number of the Ath nucleus. Applying the Born-
Oppenheimer approximation, a solution of equation 2.23 can be obtained of
the form:

ψn,ν

(
~x, ~ξ
)

= ψn

(
~x, ~ξ
)
ψn,ν

(
~ξ
)

(2.25)

The different functions ψn
(
~x, ~ξ
)

, which may be called the electronic wave
functions, correspond to different sets of values of the electronic quantum
numbers n only, being independent of the nuclear quantum numbers ν. On
the other hand, each of these functions is a function of the nuclear coordinates
~ξ as well as the electronic coordinates ~x. These functions are obtained by
solving a wave equation for the electrons alone, the nuclei being restricted to
a fixed configuration. This wave equation is

− h2

8π2

1
m0

s∑
i=1

∇2
iψn

(
~x, ~ξ
)

+ V̂
(
~x, ~ξ
)
ψn

(
~x, ~ξ
)

= Un

(
~ξ
)
ψn

(
~x, ~ξ
)

(2.26)

and is known as the electronic wave equation. It is a variation of the complete
wave equation 2.23, omitting the terms involving the kinetic energy of nuclei
and replacing the time independent wave function for the electronic part, giv-
ing the electronic energy Un

(
~ξ
)

. It is seen that for any fixed set of values of
the s nuclear coordinates this equation is an ordinary wave equation for the s
electrons, the potential energy function V̂ being dependent on the values se-
lected for the nuclear coordinates. In consequence the characteristic electronic
energy values Un and the electronic wave functions ψn will also be depen-
dent on the values selected for the nuclear coordinates; accordingly written as
Un

(
~ξ
)

and ψn
(
~x, ~ξ
)

. The first step in the treatment of a molecule is to solve
this electronic wave equation for all configurations of the nuclei. It is found
that the characteristic values Un

(
~ξ
)

of the electronic energy are continuous

functions of the nuclear coordinates ~ξ.

After having evaluated the characteristic electronic energy Un
(
~ξ
)

, the ex-

pressions for the nuclear wave functions ψn,ν

(
~ξ
)

should be found. These
functions are the acceptable solutions of a wave equation in the nuclear coor-
dinates ~ξ where the characteristic electronic energy function Un

(
~ξ
)

plays the
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role of the potential energy; that is, the nuclear wave equation is

− h2

8π2

r∑
A=1

1
MA
∇2
Aψn,ν

(
~ξ
)

+ V̂ ψn,ν

(
~ξ
)

= En,νψn,ν

(
~ξ
)

(2.27)

There is one such equation for each set of values of the electronic quantum
numbers n, and each of these equations possesses an extensive set of solutions,
corresponding to the allowed values of the nuclear quantum numbers ν. The
values of En,ν are the characteristic energy values for the entire molecule: they
depend on the electronic and nuclear quantum numbers n and ν.

This approximation does not consider the electron-nucleus coupling term
due to their movement. When these terms are critical enough to be consid-
ered, like systems with two potential energy surfaces close to each other, the
approximation cannot be applied. Some systems may present multiconfigura-
tional crossings between potential energy surfaces and the movement of the
nuclei should be taken into consideration.

2.1.3.2 The variation method

Finding a suitable wave equation is a question of solving the Schrödinger inte-
gral E =

∫
Ψ∗ĤΨdτ , where Ĥ is the complete Hamiltonian operator and Ψ is

a normalised wave function. It can be applied to the time-independent wave
function ψ as well, obtaining the energy of a stationary state. This equality
has to observe the Schrödinger’s postulates for a wave function (see page 54)
and so a set of eigenfunctions is generated as suitable solutions, some exactly
describing the different energy levels of the system and others being mere ap-
proximations to those. The variation theorem states that any wave function
φ from this set will always have an energy higher than that of the basal state,
this being described by ψ0 and with an energy equal to E0. The variation
function φ can be constructed as a linear combination of the orthonormalised
(orthogonal and normalised) functions ψ0, ψ1, . . . , ψn, . . .:

φ =
∑
n

anψn
∑
n

a∗nan = 1 (2.28)

Substitution to the Schrödinger energy integral, leads to

E =
∑
n

∑
n′

a∗nan′

∫
ψ∗nĤψn′dτ =

∑
n

∑
n

a∗nanEn (2.29)
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as each ψn is an eigenfunction of the Hamiltonian operator. The lowest energy
E0 can be subtracted to both sides

E − E0 =
∑
n

∑
n

a∗nan (En − E0) (2.30)

and since En is greater than or equal to E0 for all values of n and the coefficients
a∗nan are all positive or zero, the right side of equation 2.30 is positive or zero.
E is always an upper limit to E0 that is,

E ≥ E0 (2.31)

This theorem can be used to calculate the lowest energy level of a system.
Given a set of variation functions φ1, φ2, . . . , φn the corresponding energy to
each one will be E1, E2, . . . , En, neither of them greater than the energy level
E0, and the lowest energy one being the nearest to E0. This is useful in
theoretical and computational chemistry as φ functions only differ from each
other on the values of some parameters. The process consists to achieve the
lowest E trying different variation functions. If E is equal to E0 then φ is
identical with ψ0, so that it is natural to assume that if E is nearly equal to
E0 the function φ will approximate closely to the true wave function ψ0.

2.1.3.3 Perturbation theory

When a wave function Ψ cannot be solved exactly, an approximate solution can
be obtained from a solvable wave equation ψ0 similar to the time-independent
exact one ψ but differing from it in the omission of certain terms whose effect
on the system is small. The approximate equation is solved and then small
correction terms are added. This is the Rayleigh-Schrödinger perturbation
theory (RSPT). It should stick as always to the Schrödinger equation Ĥψ =
Eψ. In RSPT the Hamiltonian operator is expanded in a Taylor series in terms
of some parameter λ

Ĥ = Ĥ(0) + λĤ(1) + λ2Ĥ(2) + . . . (2.32)

The first term of the equation Ĥ(0) is the unperturbed part of the Hamilto-
nian, whereas the terms to its left λĤ(1) + λ2Ĥ(2) + . . . are called the pertur-
bation. Any of its possible solution eigenfunctions ψi—non-degenerate—and
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associated eigenvalues Ei can be expanded in a Taylor series like the Hamil-
tonian, as the perturbation introduced is small enough and the series will
converge. So:

ψi = ψ
(0)
i + λψ

(1)
i + λ2ψ

(2)
i + . . . (2.33)

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + . . . (2.34)

The parameter λ has been chosen in such a way that when λ → 0, the
Schrödinger equation reduces to Ĥ(0)ψ

(0)
i = E

(0)
i ψ

(0)
i . The wave functions of

Ĥ(0) are chosen normalised and at the same time they normalise with the exact
function ψi so∫

ψ
(0)∗
i ψidτ =

∫
ψ

(0)∗
i ψ

(0)
i dτ + λ

∫
ψ

(0)∗
i ψ

(1)
i dτ + λ2

∫
ψ

(0)∗
i ψ

(2)
i dτ + . . . = 1

(2.35)
which is called an intermediate normalisation and can always be made unless
ψ

(0)
i and ψi are orthogonal. It holds for all values of λ and therefore, coefficients

of λn on both sides must be equal, and hence∫
ψ

(0)∗
i ψ

(n)
i dτ = 0 n = 1, 2, 3, . . . (2.36)

Combining equations 2.32, 2.33 and 2.34 to the Schrödinger wave equation:(
Ĥ(0) + λĤ(1) + λ2Ĥ(2) + . . .

)(
ψ

(0)
i + λψ

(1)
i + λ2ψ

(2)
i + . . .

)
=
(
E

(0)
i + λE

(1)
i + λ2E

(2)
i + . . .

)(
ψ

(0)
i + λψ

(1)
i + λ2ψ

(2)
i + . . .

)
(2.37)

developing and equating the λn coefficients of each side and grouping them,

Ĥ(0)ψ
(0)
i = E

(0)
i ψ

(0)
i n = 0

(2.38)

Ĥ(0)ψ
(1)
i + Ĥ(1)ψ

(0)
i = E

(0)
i ψ

(1)
i + E

(1)
i ψ

(0)
i n = 1

(2.39)

Ĥ(0)ψ
(2)
i + Ĥ(1)ψ

(1)
i + Ĥ(2)ψ

(0)
i = E

(0)
i ψ

(2)
i + E

(1)
i ψ

(1)
i + E

(2)
i ψ

(0)
i n = 2

(2.40)

Let us consider as a first step to a general perturbation expression the
equation 2.39. The unknown function ψ

(1)
i can be constructed as a linear
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combination of a known orthonormal function from another state ψ(0)
k ,

ψ
(1)
i =

∑
k

akψ
(0)
k (2.41)

which when substituted in the first term of equation 2.39 it becomes

Ĥ(0)ψ
(1)
i =

∑
k

akĤ
(0)ψ

(0)
k =

∑
k

akE
(0)
k ψ

(0)
k (2.42)

and the same is done on the first term on the left:

E
(0)
i ψ

(1)
i =

∑
k

akE
(0)
i ψ

(0)
k (2.43)

Joining all the pieces, 2.42 and 2.43, to 2.39, the expression becomes:∑
k

akE
(0)
k ψ

(0)
k + Ĥ(1)ψ

(0)
i =

∑
k

akE
(0)
i ψ

(0)
k + E

(1)
i ψ

(0)
i (2.44)

When each side is multiplied by ψ
(0)∗
i and integrated over the whole con-

figuration space, the terms containing the known function ψ
(0)
k vanish since∫

ψ
(0)∗
i

∑
k

akE
(0)
k ψ

(0)
k dτ = 0∫

ψ
(0)∗
i

∑
k

akE
(0)
i ψ

(0)
k dτ = 0

and as they are orthonormal, when i 6= k their integral is zero, and when i = k,
both integrals have the same value and they cancel each other as they are on
different sides of the equality 2.44. Hence, the equation 2.44 is reduced to∫

ψ
(0)∗
i Ĥ(1)ψ

(0)
i dτ =

∫
ψ

(0)∗
i E

(1)
i ψ

(0)
i dτ (2.45)

and since E(1)
i is a constant and

∫
ψ

(0)∗
i ψ

(0)
i dτ = 1, the first correction to the

unperturbed energy can be written as

E
(1)
i =

∫
ψ

(0)∗
i Ĥ(1)ψ

(0)
i dτ (2.46)

Following the same steps, the second correction is E(2)
i =

∫
ψ

(0)∗
i Ĥ(1)ψ

(1)
i dτ ,

and the nth as well:

E
(n)
i =

∫
ψ

(0)∗
i Ĥ(1)ψ

(n−1)
i dτ (2.47)
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2.1.3.4 Density functional theory

An alternative to the conventional ab initio methods∗ is the density functional
theory (DFT)[198] which introduces the electronic correlation† effects to the
electronic Schrödinger equation. The method was developed initially by Ho-
henberg and Kohn[131] for non-degenerate ground states in the absence of a
magnetic field and later generalised by Levy.[163] In this method, the energy
calculation for the fundamental state of a many-electron system is based on
the probability distribution function of the system. Traditional methods in
electronic structure theory, in particular Hartree-Fock theory and its descen-
dants, are based on the complicated many-electron wave function. The main
objective of density functional theory is to replace the many-body electronic
wave function with the electronic density as the basic quantity. Whereas the
many-body wave function is dependent on 3N variables, three spatial variables
for each of the N electrons, the density is only a function of three variables
and is a simpler quantity to deal with both conceptually and practically. Un-
fortunately the exact relation between the electronic density and the energy is
not known, and approximate expressions are needed. Even so, these approxi-
mations still lead to a different range of acceptable results, although there is
no systematic way to improve them.

As explained in section 2.1.2.1, the probability of finding an electron (any
electron) belonging to an N -electron system described by the spatial orbital
wave function—see page 68 for further reference—ψa (~r1, ~r2, . . . , ~rN ) = ψa (~r)
in the ~r1 + d~r1 space region is the integral∫

ψ∗a (~r1)ψa (~r) d~r2 . . . d~rN (2.48)

and due to the indistinguishability of the electrons

ρ (~r1) = N

∫
ψ∗a (~r)ψa (~r) d~r2 . . . d~rN = N

∫
|ψa (~r)|2 d~r2 . . . d~rN (2.49)

it calculates the probability of finding an electron in a region independently of
the situation of the other electrons and is known as the first order density .
Over integration the spin coordinate ω, the electronic density ρ (~x) or charge

∗The ab initio methods are those able to compute chemical properties based on quantum
chemistry.
†The electronic correlation is the interaction between the different electrons in a system.
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density is obtained:

ρ (~x1) =
∫
ρ (~r) dω1 = N

∫
ψ∗a (~r)ψa (~r) dω1d~r2 . . . d~rN

= N

∫
|ψa (~r)|2 dω1d~r2 . . . d~rN (2.50)

Provided that ψa (~x) is a normalised function, the integral of this electronic
density ρ (~x) is the number of electrons N :∫

ρ (~x) d~x = N (2.51)

Equation 2.49 can be expressed in the form of the molecular orbital ex-
pansion in 2.88 using a Slater determinant (see page 72) in a restricted closed
shell system :

ρ ( ~x1) = N

∫
ψ∗a (~x)ψa (~x) d~x2 . . . d~xN =

= 2
N/2∑
a

ψ∗a (~x)ψa (~x) =

= 2
N/2∑
a

∑
ν

C∗νaφ
∗
ν (~x)

∑
µ

Cµaφµ (~x) =

=
∑
µν

N/2∑
a

CµaC
∗
νa

φµ (~x)φ∗ν (~x) =

=
∑
µν

Pµνφµ (~x)φ∗ν (~x)

(2.52)

where P is the first order density matrix , its elements defined as

Pµν = 2
N/2∑
a

CµaC
∗
νa (2.53)

From 2.52, given a set of known basis functions {φµ} the matrix P specifies
completely the charge density ρ (~x). It is directly related to the expansion
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coefficients C by 2.53. For a non-restricted Slater determinant, the density
matrix distinguishes from α and β electrons, and its definition becomes

Pαµν =
Nα∑
a=1

CµaC
∗
νa , P βµν =

Nα+Nβ∑
a=1+Nα

CµaC
∗
νa , PTµν = Pαµν + P βµν (2.54)

On the other hand, it is possible to define a probability to find two electrons
in two different space regions ~r1+d~r1 and ~r2+d~r2, and again it does not depend
on the coordinates of the other electrons:

γ2 (~r1, ~r2) = N(N − 1)
∫
|ψa (~r)|2 d~r3 . . . d~rN (2.55)

where N(N − 1) are all the possible electron pairs and γ2 (~r1, ~r2) is known as
the second order density . Integrating over the spin coordinates

γ2 (~x1, ~x2) =
∫
γ2 (~r1, ~r2) dω1dω2 (2.56)

gives γ2 (~r1, ~r2), which is the bielectronic density . The difference between this
density and the second order one is that this one considers all the spin com-
binations of the paired electrons, i.e. αα, αβ, βα and ββ. Similar to the
unrestricted first order density matrix, the second order density matrix or pair
density is defined in the all possible spin combinations of the paired electrons:

Γααµνσλ = PασµP
α
λν + PαλµP

α
σν

Γαβµνσλ = PασµP
β
λν

(2.57)

The αα and ββ combinations are identical except for the electrons used.

On both cases of electronic and bielectronic densities is possible to restrict
the density and refer it to the electronic spin part. In the electronic density it
is as simple as to consider the number of α (Nα) or β (Nβ) electrons instead
of the total number of electrons N . The total electronic density will be the
sum of the two separate densities. In the bielectronic density the possible
combinations of the electronic spins increase the number of adding terms up
to four.

Then, the energy or any observable of a polielectronic system can be ex-
tracted from the first and second order densities using the appropriate opera-
tors. Hohenberg and Kohn set the guidelines of the DFT and announced two
theorems,[131] the first one being
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It exists a one-to-one relation between the ground state electronic
density and the ground state wave function of a many-particle sys-
tem, thus any observable can be written as a functional of the
ground state electronic density.

As the electronic density determines the total number of electrons in the
system (from equation 2.51) and also sets the external electron-nucleus po-
tential V̂iA [ρ] (electron-electron potential and kinetic energy do not depend
on the external potential), according to the first theorem it is concluded that
the electronic density determines the Hamiltonian and the wave function of the
fundamental state, and by extension all observable properties of the fundamen-
tal state, including the kinetic energy of the electrons, the coulombic repulsion,
and so on. In particular, E = E [ρ]. Thus, there is a direct correlation between
the density and the wave function through the external potential. It is impor-
tant to note that this theory only holds for the non-degenerate fundamental
states, ρ (~r) must be defined as positive in all the space and its integral must
be equal to the total number of electrons in the system. In addition, there
must be an external potential from which this ρ (~r) density could be derived.
In the cases which this theorem is valid it can be written that

E [ρ] = T̂ [ρ] + V̂iA [ρ] + V̂ij [ρ]
(

+V̂AB
)

(2.58)

The operators T̂ [ρ] and V̂ij [ρ] do not depend on the external potential and
usually gets included in the Hohenberg-Kohn functional FHK [ρ] term, and so

Eν [ρ] =
∫
ρ (~r) ν (~r) d~r + FHK [ρ] (2.59)

where FHK [ρ] stands for

FHK [ρ] =
∫
ρ∗ (~r)

(
T̂ + V̂ij

)
ρ (~r) d~r (2.60)

The second theorem proves that the ground state density minimises the
total electronic energy of the system:

The exact electronic density of a non-degenerate fundamental state
can be calculated by determining the density which minimises the
energy of the ground state.
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It sets the variation method for the DFT. Given a test density function
ρ̃ (~r) defined in the same conditions as in the first theorem, it holds that:

Eo ≤ Eν [ρ̃ (~r)] (2.61)

Eighteen years later Levy proposed a new formulation on the topic.[164] It
is another proof that a bijective function exists between the electronic density
and the ground state wave function. In Levy’s demonstration the electronic
density does not need an external potential to be derived. Moreover, it can
also be applied to degenerate ground states. Even choosing a restricted set of
base functions, it can be applied to excited states.[198]

In order to minimise the energy with respect to the electronic density, its
is needed that δEν [ρ] = 0. Furthermore, the electronic density must keep the
premises of being positive all along its space and its integral must result to the
total number of electrons. This last premise is secured by the equation∫

ρ (~r) d~r −N = 0 (2.62)

and is introduced using the Lagrange multipliers in an expression which has
to be minimised:

δ

[
Eν [ρ]− λ

(∫
ρ (~r) d~r −N

)]
= 0 (2.63)

The differential of any functional F [f ] can be written as

δF =
∫

δF

δf (x)
δf (x) dx (2.64)

and after combining it into equation 2.63 and working with the expression,
it leads to the condition of restricted minimisation and the value of λ that
minimises the functional:

λ =
δEν [ρ]
δρ (~r)

= νn (~r) +
δFHK [ρ]
δρ (~r)

(2.65)

2.2 Theoretical chemistry methods

The exact wave function for many-electron atoms remains unknown up to date.
Nevertheless, there are many methods and approximations that can lead to a
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sufficiently accurate wave function for energy levels calculation. Increasing
the number of atoms and electrons leads to an exponential growth of the
Hamiltonian complexity due to the proliferation of the possible interactions
between single particles to other particles. The general Hamiltonian for a
N -electron M -atom system can be expressed as

Ĥ = − h2

8π2

(
1
m0

N∑
i=1

∇2
i +

M∑
A=1

1
MA
∇2
A

)
+

N∑
i,i>j

e2

rij

+
M∑

A,A>B

ZAZBe
2

rAB
−
N,M∑
i,A

ZAe
2

riA
(2.66)

which is formed from equations 2.23 and 2.24. The first two left terms in the
parentheses are the operator for the kinetic energy of the electrons and the
nuclei, respectively; the other ones are the potential energy operators due to
coulombic attractions or repulsions: the third term is repulsion between elec-
trons, the fourth is the repulsion between nuclei and the fifth is the attraction
between electrons and nuclei. Applying the Born-Oppenheimer approximation,
the second term of equation 2.66 can be neglected as the nuclei are static, and
the fourth term, the repulsion of the nuclei, can be considered to be a constant;
and so it becomes the electronic Hamiltonian:

Ĥ = − h2

8π2

1
m0

N∑
i=1

∇2
i +

N∑
i,j>i

e2

rij
−
N,M∑
i,A

ZAe
2

riA
(2.67)

This equation still can’t be solved for more than one electron, even con-
sidering the coulomb attraction between electrons and nuclei as a dependence
on the electrons under a constant electric field. Thus, the wave functions
should be approximate. One way to treat this problem is to construct the
wave function as a linear combination of monoelectronic wave functions. This
wave functions are known as the spin orbitals χ(~x) and describe the posi-
tion of one electron—a non-relativistic property—and its spin—a relativistic
property—,both combined in ~x, a four dimensional variable. The wave func-
tion can be defined as a product of the three dimensional spatial orbital part,
ψ(~r), which describes the spatial distribution of the electron, and the spin
function, which can be α(ω) or β(ω) for spin up (↑) or down (↓) respectively.
If the spatial orbitals are orthonormal, so are the spin orbitals. Then, each
spatial function can generate two spin orbitals:

χ (~x) =
{
ψ(~r)α(ω)
ψ(~r)β(ω) (2.68)
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Now that each electron can be defined with a spin orbital wave function, a
group of electrons can be defined in turn as a combination of the spin orbitals
of each electron interacting independently

φ1 (~x1, ~x2, . . . , ~xN ) = χi (~x1)χi′ (~x2) · · ·χiN (~xN ) (2.69)

Such a many-electron wave function is termed a Hartree product , with elec-
tron one being described by the spin orbital χi, electron two being described
by the spin orbital χi′ and so on. As each spin orbital is independent and
an eigenfunction of its Hamiltonian ĥi, the Hamiltonian of the collective wave
function and its eigenvalues is:

Ĥ =
N∑
i=1

ĥi (2.70)

ĥiχi′ (~xi) = εi′χi′ (~xi) (2.71)
E = εi + εi′ + · · ·+ εiN (2.72)

But the wave function obtained from a Hartree product is not a valid one
as it is uncorrelated for the electrons. Another acceptable solution for the
electronic wave function 2.69 is

φ2 (~x1, ~x2, . . . , ~xN ) = χi (~x2)χi′ (~x1) · · ·χiN (~xN ) (2.73)

and all the other possible permutations of electrons and positions, as the elec-
trons are indistinguishable. In general, the solution wave function for an energy
level can be written as

φ (~x1, ~x2, . . . , ~xN ) =
1√
N !

∑
P

(−1)P Pχi (~x1)χi′ (~x2) · · ·χiN (~xN ) (2.74)

where P represents all the possible permutations of the electron coordinates
and the term 1/

√
N ! is the normalisation factor (as there are N ! possible

combinations) and (−1)P is introduced to apply the antisymmetry principle.
An antisymmetric wave function is that one which changes its sign when two
electrons are interchanged:

φ (χ1, . . . , χi, . . . , χj , . . . , χN ) = −φ (χ1, . . . , χj , . . . , χi, . . . , χN ) (2.75)

, A symmetric wave function, on the other hand, does not change its sign in the
same circumstances. The antisymmetry is used in the antisymmetry principle
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to comply with the Pauli exclusion principle‡ to choose those functions with
a physical significance:

A many-electron wave function must be antisymmetric with respect
to the interchange of the coordinate ~x (both space and spin) of any
two electrons.

The wave function 2.74 is an antisymmetric function, thus the (−1)P term.
It may be also written as a Slater determinant :

φ (~x1, ~x2, . . . , ~xN ) =
1√
N !

χi (~x1) χi′ (~x1) · · · χiN (~x1)
χi (~x2) χi′ (~x2) · · · χiN (~x2)

...
...

. . .
...

χi (~xN ) χi′ (~xN ) · · · χiN (~xN )

(2.76)

This Slater determinant does not specify which electron is in which orbital.
Note that the rows of an N -electron Slater determinant are labeled by electrons
and the columns are labeled by spin orbitals. Interchanging the coordinates of
two electrons corresponds to interchanging two rows of the Slater determinant,
which changes the sign of the determinant. Hence Slater determinants meet the
requirement of the antisymmetry principle. Having two electrons occupying
the same spin orbital corresponds to having two columns of the determinant
equal, which makes the determinant zero. Therefore no more than one electron
can occupy a spin orbital (Pauli exclusion principle).

As it has been pointed out before, the Hartree product is an independent-
electron wave function. The probability of finding electron one in d~x1 at ~x1,
electron two d~x2 at ~x2, etc. is equal to the product of probabilities of finding
these electrons in their d~x. Antisymmetrising a Hartree product to obtain a
Slater determinant introduces exchange effects, so-called because they arise
from the requirement that the probability of ψ (

∫
ψ∗ψdτ) be invariant to the

exchange of the space and spin coordinates of any two electrons. In particular,
a Slater determinant incorporates exchange-correlation, which means that the
motion of two electrons with parallel spins is correlated. Since the motion of
electrons with opposite spins remains uncorrelated, it is customary to refer to
a single determinantal wave function as an uncorrelated wave function.
‡The Pauli exclusion principle was formulated by Wolfgang Pauli in 1925 and it states

that two identical fermions cannot have the same quantum state simultaneously. It relates
to the antisymmetry principle as for two identical fermions the total wave function must be
anti-symmetric. Electrons are fermions, so in a single atom two electrons cannot have the
same four quantum numbers.
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2.2.1 The Hartree-Fock approximation

The Hartree-Fock method is a simple approach to find an approximate solution
to the electronic Schrödinger equation. It is also the first step for an approx-
imation for other methods towards more accurate results. The method uses
the Slater determinants as an antisymmetric wave function and the variation
principle to choose the best wave function in a given range. Starting with an
electronic wave function constructed from spin orbitals of N electrons like the
one described at 2.69

φ = χ1 (~x1)χ2 (~x2) · · ·χN (~xN ) (2.77)

the terms χi (~xi) are varied to determine each one. This variation has to lead to
lower energies than the previous ones, resolving E =

∫
φ∗Ĥφdτ and supposing

that φ is normalised, and thus using the variational principle explained in
section 2.1.3.2. The operator Ĥ can be written as:

Ĥ =
∑
i

ĥ (~xi) +
∑
i,j>i

e2

rij
(2.78)

where the first term is a core-Hamiltonian and creates all the one-electron
integrals. Each core-Hamiltonian describes the kinetic and potential energy in
the field of the nuclei:

ĥ (~xi) = − h2

8π2m0
∇2
i −

M∑
A

ZAe
2

riA
(2.79)

All the spin orbitals are integrated upon all their complex conjugates, pro-
ducing 1 when the spin orbital, Hamiltonian applied if suited, and its complex
conjugate are the same or 0 when they are not equal. Thus, from the last
equation, the one-electron integrals only affect the spin orbitals to whom the
operator affects.

The second term of equation 2.78 refers to the repulsion between electrons
and involves the spin orbital functions χi and χi′ of two electrons and their
positions ~xi and ~xj , which can be interchanged between orbitals. When this
operator acts on the φ wave function, it generates two two-electron integrals,
due to the antisymmetric nature of the determinantal wave function. For ex-
ample, in a two electron wave function, the application of the e2/r12 repulsion
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term leads to:∫
φ∗

e2

r12
φ dτ =

∫
1√
2
{χ1 (~x1)χ2 (~x2)− χ2 (~x1)χ1 (~x2)}∗

× e2

r12

1√
2
{χ1 (~x1)χ2 (~x2)− χ2 (~x1)χ1 (~x2)} d~x1d~x2

=
1
2

∫
χ∗1 (~x1)χ∗2 (~x2)

e2

r12
χ1 (~x1)χ2 (~x2) + χ∗2 (~x1)χ∗1 (~x2)

e2

r12
χ2 (~x1)χ1 (~x2)

−χ∗1 (~x1)χ∗2 (~x2)
e2

r12
χ2 (~x1)χ1 (~x2)−χ∗2 (~x1)χ∗1 (~x2)

e2

r12
χ1 (~x1)χ2 (~x2) d~x1d~x2

(2.80)

Since r12 = r21, the dummy variables of integration can be interchanged in
the second term of the expression and show that it is equal to the first term.
Similarly, the third and fourth terms are equal.∫

φ∗
e2

r12
φ dτ =

∫
χ∗1 (~x1)χ∗2 (~x2)

e2

r12
χ1 (~x1)χ2 (~x2) d~x1d~x2

−
∫
χ∗1 (~x1)χ∗2 (~x2)

e2

r12
χ2 (~x1)χ1 (~x2) d~x1d~x2 (2.81)

In systems with more than two electrons the deductive steps of the equation
are the same but the number of combinations which make up the φ function
escalates to N2 possible combinations, but the equation of the two-electron
integral is the same as 2.81. The first integral is the coulomb integral and the
second one is the exchange integral . The coulomb and the exchange integrals
take, respectively, this general form:

Jii′ =
∫
χ∗i (~x1)χ∗i′ (~x2)

e2

r12
χi (~x1)χi′ (~x2) d~x1d~x2 (2.82)

Kii′ =
∫
χ∗i (~x1)χ∗i′ (~x2)

e2

r12
χi′ (~x1)χi (~x2) d~x1d~x2 (2.83)

The coulomb integral can be written as the Coulomb operator applied to a
spin orbital χi (~x1)

Ĵi′ (~x1)χi (~x1) =
[∫

χ∗i′ (~x2)
e2

r12
χi′ (~x2) d~x2

]
χi (~x1) =[∫

|χi′ (~x2) |2 e
2

r12
d~x2

]
χi (~x1) (2.84)
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The coulomb term has a simple interpretation. Electron 1 feels a potential
associated with the instantaneous position of electron 2, but is replaced by a
one-electron potential, obtained by averaging the interaction e2/r12 of electron
1 and electron 2, over all space and spin coordinates ~x2 of electron 2, weighted
by the probability χi′ (~x2) |2d~x2 that electron 2 occupies the volume element
d~x2 at ~x2. The total averaged potential acting on the electron in χi arising
from the N − 1 electrons in the other spin orbitals is obtained by summing
over all i 6= i′.

The Coulomb operator can be defined as a local stand-alone operator, but
the exchange operator needs another spin orbital to be defined as it swaps
electrons from one orbital to the other:

K̂i′ (~x1)χi (~x1) =
[∫

χ∗i′ (~x2)
e2

r12
χi (~x2) d~x2

]
χi′ (~x1) (2.85)

Applying operator K̂i′ on ~x1 involves an “exchange” of electron 1 for elec-
tron 2 on the right of the e2/r12 in 2.85, relative to 2.84. K̂i′ is a non-local
operator, since there does not exist a simple potential K̂i′ (~x1) uniquely defined
at a local point in space ~x1. The result of operating with K̂i′ (~x1) on χi (~x1)
on the value of χi throughout all space, not just at ~x1.

The core-Hamiltonian, coulomb and exchange operators act only on one
electron at a time, and thus the Hartree-Fock equation is summed up in a op-
erator including summation over all the spin orbitals, named the Fock operator ,
which is

f̂ (~x1) = ĥ (~x1) +
∑
i′

Ĵi′ (~x1)−
∑
i′

K̂i′ (~x1) (2.86)

so that the Hartree-Fock equations become

f̂ (~x1)χi (~x1) = εiχi (~x1) (2.87)

the equation onto which the variational principle has to be applied to minimise
the energy and obtain the best spin orbital combination. The solving procedure
starts from a starting spin orbital group guess the equation 2.87 is solved
and the process is repeated—iterated—with the new set of spin orbitals until
the energetic difference between one set and its predecessor is lower than an
accepted error. For this reason, Hartree-Fock approximation is also known as
self-consistent field (SCF) method.
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2.2.1.1 Restricted Hartree-Fock method (RHF)

Many-electron systems have a complexity which can be numerically solved
when they are atomic calculations. Otherwise, in a molecular system there
is no method of calculus to obtain a numerical solution. Roothaan[223] con-
structed the molecular orbitals from a known spatial set of basis functions,
using the LCAO method. This way the differential equations can be solved
by standard matrix techniques. It restricts the spin orbitals of two electrons
in a same atomic or molecular orbital to have the same spatial function and
differ only in the spin part. Dropping the spin function α (ω) and β (ω) from
the spin orbital χi (~x1), a spatial orbital ψi (~r1) can be expanded in a set of K
known basis functions {φµ (~r1)}:

ψi =
K∑
µ=1

Cµiφµ i = 1, 2, . . . ,K (2.88)

The description of ψi improves as the number of basis set functions {φµ} is
increased. If the set was complete, the expansion would be provide the “exact”
molecular orbitals, i.e. the molecular orbitals would converge to those of equa-
tion f̂ψi = εiψi, the true eigenfunction of the Fock operator. Unfortunately,
computational restrictions oblige to truncate the complete basis set to a few
basis, leading to an approximate description of the spatial orbital ψi. More-
over, this truncation is one of the origins of the basis set superposition error
(BSSE) artifact, which will be explained later in section 2.3. Nevertheless,
it is important to choose a basis set that will provide, as far as possible, a
reasonably accurate expansion for the exact molecular orbitals ψi, particularly
for those orbitals ψa which are occupied in Ψo and determine the ground state
Eo. Thus, now the problem is to calculate the set of expansion coefficients:

f̂ (~r1)
∑
ν

Cνiφν (~r1) = εi
∑
ν

Cνiφν (~r1) (2.89)

operator f̂ (~ri) being:

f̂ (~ri) = − h2

8π2mo
∇2
i −

M∑
A

ZAe
2

riA
+
N/2∑
b

[
2Ĵb (~ri)− K̂b (~ri)

]
(2.90)

The N/2 factor on the second summation appears as a consequence of the
restriction of the spin orbitals to have the same spatial function, as it only
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needs to be solved for half the electrons. Thus this technique can be only
applied to closed shell configurations, which have two electrons in each atomic
or molecular orbital. The coulomb and exchange integrals Jab and Kab are
the same as in equations 2.82 and 2.83 but instead of spin orbitals χi they
use the spatial orbitals ψi. The summation term including them is sometimes
represented as ν̂HF .

By multiplying equation 2.89 by φ∗µ (~r1) on the left and integrating:

∑
ν

Cνi

∫
φ∗µ (~r1) f̂ (~r1)φν (~r1) d (~r1) = εi

∑
ν

Cνi

∫
φ∗µ (~r1)φν (~r1) d (~r1)

(2.91)
two matrices can be defined from this expression. The overlap matrix S is an
Hermitian matrix of elements

Sµν =
∫
φ∗µ (~r1)φν (~r1) d (~r1) (2.92)

and is a positive-definite matrix as its eigenvalues are necessarily positive num-
bers. The other matrix is Hermitian as well and it is the Fock matrix F, its
elements defined as

Fµν =
∫
φ∗µ (~r1) f̂ (~r1)φν (~r1) d (~r1) (2.93)

where f̂ (~r1) is a one-electron operator, and any set of one-electron functions
defines a matrix representation of this operator. The Fock matrix F is the
matrix representation of the Fock operator with the set of basis functions
{φµ}. Now equation 2.91 can be written in terms of F and S:∑

ν

FµνCνi = εi
∑
ν

SµνCνi i = 1, 2, . . . ,K (2.94)

known as the Roothan equations, which can be written more compactly as the
single matrix equation

FC = SCε (2.95)

where C is a K ×K square matrix of the expansion coefficients Cνi and ε is
a diagonal matrix of the orbital energies εi.

A variation of the RHF method can be applied to open shell systems which,
apart from having spin orbitals doubly occupied, they have one or more atomic
or molecular orbitals with a single electron. This is the restricted open-shell
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Hartree Fock method (ROHF). In this case the Fock operator in 2.90 could
not be applied because the Fock matrix F is not unique: it can take different
forms leading to different orbitals and different orbital energies, but the same
total eigenfunctions, energy, and other observables.

2.2.1.2 Unrestricted Hartree-Fock method (UHF)

Not all molecules, nor all states of closed-shell molecules, can be described by
pairs of electrons in closed-shell orbitals, so the previous closed-shell formalism
should be generalised to accommodate situations in which a molecule has one
or more open-shell (unpaired) electrons. an unrestricted set of spin orbitals
has the form:

χi (~x) =
{
ψαj (~r)α (ω)
ψβj (~r)β (ω)

(2.96)

There are different spatial orbitals for α or β spin electrons. In restricted
Hartree-Fock ψαj = ψβj = ψj . Now electrons of α and β spin are described by
different spatial functions and thus have a different set of orbital energies. The
general Hartree-Fock equations when χi equals to ψαj and ψβj are respectively

f̂ (~r1)ψαj (~r1)α (ω1) = εαj ψ
α
j (~r1)α (ω1)

f̂ (~r1)ψβj (~r1)β (ω1) = εβj ψ
β
j (~r1)β (ω1)

(2.97)

which multiplied respectively by α∗ (ω1) and β∗ (ω1) and integrated over spin
is

f̂α (~r1)ψαj (~r1) = εαj ψ
α
j (~r1)

f̂β (~r1)ψβj (~r1) = εβj ψ
β
j (~r1)

(2.98)

where the Fock operators are defined as

f̂α (~r1) =
∫
α∗ (ω1) f̂ (~r1, ω1)α (ω1) dω1

f̂β (~r1) =
∫
β∗ (ω1) f̂ (~r1, ω1)β (ω1) dω1

(2.99)

This operator includes the kinetic energy, nuclear attraction and effective
potential of an electron of α or β spin. The effective potentials of the α-spin
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electron are calculated as the addition of the coulomb and exchange inter-
actions with all other α-spin electrons plus only a coulomb interaction with
electrons of β-spin.

f̂α (~r1) = ĥ (~r1) +
Nα∑
a

[
Ĵαa (~r1)− K̂α

a (~r1)
]

+
Nβ∑
a

Ĵβa (~r1)

f̂β (~r1) = ĥ (~r1) +
Nβ∑
a

[
Ĵβa (~r1)− K̂β

a (~r1)
]

+
Nα∑
a

Ĵαa (~r1)

(2.100)

The formalism includes the interaction of an electron with itself, but in
this case the coulomb and exchange terms are the same, and the resulting
interaction is zero.

Again, the Fock operators f̂α and f̂β cannot be solved independently, for
they are coupled, and they should be solved by an iterative process. As in the
Roothaan’s equations, an expanded basis set is linearly combined to obtain
the spatial functions ψαi and ψβi and solve equation 2.98. The expansion is

defined in orthonormal sets of {ψαi } and
{
ψβi

}
, but not necessarily between

them, although they overlap with each other. The set is defined as

ψαi =
K∑
µ=1

Cαµiφµ ψβi =
K∑
µ=1

Cβµiφµ i = 1, 2, . . . ,K (2.101)

Using ψαi and substituting in 2.98∑
ν

Cανj f̂
α (~r1)φν (~r1) = εαj

∑
ν

Cανjφν (~r1) (2.102)

then multiplying by φ∗µ (~r1) and integrating over the spatial coordinates of
electron-one ∑

ν

FαµνC
α
νj = εαj

∑
ν

SµνjC
α
νj j = 1, 2, . . . ,K (2.103)

where S is the overlap matrix and Fα is the matrix representation of f̂α in the
basis {φµ}

Fαµν =
∫
φ∗µ (~r1) f̂α (~r1)φν (~r1) d (~r1) (2.104)
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For β-spin electrons, the procedure is identical. This equations can be
combined into two matrix expressions:

FαCα = SCαεα

FβCβ = SCβεβ
(2.105)

Roothaan equations are a particular case of the unrestricted ones, known
as Pople-Nesbet equations. The solution method is similar to the Roothaan
equations, but Fα and Fβ depend both on Cα and Cβ so the two matrix
eigenvalue problems must be solved simultaneously.

The application of the Hartree-Fock method has its main flaw in neglecting
the electron correlation due to the mean field approximation, and leads to
large deviations from experimental results. Alternatives exist and are known
as the post-Hartree-Fock methods, devised to include electron correlation and
which usually use the Hartree-Fock method to provide a starting wave function
which will be later corrected. One of these approaches is the Møller-Plesset
perturbation theory, which treats correlation as a perturbation of the Fock
operator.

2.2.2 Møller-Plesset perturbation theory

The idea behind the Møller-Plesset perturbation theory is improving the Hartree-
Fock energy using RSPT (see section 2.1.3.3 for more details) and use the per-
turbation to obtain the correlation energy, i.e. the energy difference between
the Hartree-Fock energy and the exact one. The unperturbed Hamiltonian
Ĥ(0) is the summation of all the N one-electron Hartree-Fock operators

Ĥ(0) =
N∑
i

f̂ (~xi) =

=
N∑
i

− h2

8π2mo
∇2
i −

M∑
A

ZAe
2

riA
+
N/2∑
b

[
2Ĵb (~xi)− K̂b (~xi)

] =

=
N∑
i

[
ĥ (~xi) + ν̂HF (~xi)

]
(2.106)

The perturbation term Ĥ(1) is defined as the difference between the Coulomb
operator describing the exact electron-electron interactions and the potential
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operator from RHF:

Ĥ(1) =
N∑
i<j

e2

rij
−

N∑
i

N/2∑
b

[
2Ĵb (~xi)− K̂b (~xi)

]
=

N∑
i<j

e2

rij
−

N∑
i

ν̂HF (~xi) (2.107)

The zeroth-order perturbation energy is the sum of the one-electron ener-
gies, as the eigenfunction of the Hamiltonian Ĥ(0) is Ψ(0)

0 and its eigenvalue
E

(0)
0 :

Ĥ(0)Ψ(0)
0 = E

(0)
0 Ψ(0)

0 E
(0)
0 =

∑
a

εa (2.108)

Subindex a refers to the occupied spin orbitals. They are labeled as
a, b, c, . . ., while unoccupied ones are labeled as r, s, t, . . .. The first-order cor-
rection of the energy is:

E
(1)
0 =

∫
Ψ(0)∗

0 Ĥ(1)Ψ(0)
0 dτ

=
∫

Ψ(0)∗
0

∑
i<j

e2

rij
Ψ(0)

0 dτ −
∫

Ψ(0)∗
0

∑
i

ν̂HF (~xi) Ψ(0)
0 dτ

=
1
2

∑
ab

∫
χ∗a (~x1)χ∗b (~x2)

e2

rij
χa (~x1)χb (~x2) dτ−

−
∑
a

∫
χ∗a (~x1)

∑
b

(
Ĵb − K̂b

)
χa (~x1) dτ =

= −1
2

∑
ab

∫
χ∗a (~x1)χ∗b (~x2)

e2

rij
χa (~x1)χb (~x2) dτ

(2.109)

The sum of the zeroth and the first-order energies is the Hartree-Fock
energy

E0 = E
(0)
0 + E

(1)
0 =

∑
a

εa −
1
2

∑
ab

∫
χ∗a (~x1)χ∗b (~x2)

e2

rij
χa (~x1)χb (~x2) dτ

(2.110)
and thus the first correction to the Hartree-Fock energy occurs in the sec-
ond order of perturbation theory. The second-order energy corrections from
section 2.1.3.3 can be rewritten to

E
(2)
0 =

∑
n

′

∣∣∣∫ Ψ(0)∗
0 Ĥ(1)Ψ(0)

n dτ
∣∣∣2

E
(0)
0 − E(0)

n

(2.111)
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where Ψ(0)
n represents the excitations of the system. Single and triple excita-

tions are forbidden due to the two-particle nature of the perturbation. Thus,
only double excitations are allowed represented by Ψrs

ab and the eigenvalues of
the Hamiltonian for this eigenfunction are

Ĥ0Ψrs
ab =

(
E

(0)
0 − (εa + εb − εr − εs)

)
Ψrs
ab (2.112)

and because all possible double excitations are added by summing over all a
and all b > a states and over all r and all s > r excitations, the second-order
energy is

E
(2)
0 =

∑
a<b
r<s

∣∣∣∫ Ψ(0)∗
0

(∑
i<j

e2

rij

)
Ψrs
abdτ

∣∣∣2
εa + εb − εr − εs

(2.113)

and expressed as a spin-orbital combination is

E
(2)
0 =

∑
a<b
r<s

∣∣∣∣∣
R
χ∗a(~x1)χ∗b (~x2)

“P
i<j

e2
rij

”
χr(~x1)χs(~x2)d(~x1)d(~x2)

−
R
χ∗a(~x1)χ∗b (~x2)

“P
i<j

e2
rij

”
χs(~x1)χr(~x2)d(~x1)(~x2)

∣∣∣∣∣
2

εa + εb − εr − εs
(2.114)

This is the energy which Møller-Plesset theory uses in its second-order
correction and is referred to as MP2. Clearly, through second-order in the
correlation potential, the total electronic energy is given by the Hartree-Fock
energy plus second-order Møller-Plesset correction: E ≈ EHF + EMP2. A
zeroth-order degenerated energy can be observed between occupied and virtual
orbitals. When these orbitals do not have a sensible energy gap between them,
MPPT cannot be used for these systems. MPPT can also use third and upper
orders of correction, but generally the computational costs are too high to the
small corrections they get.

2.2.3 Exchange-correlation functionals

In section 2.1.3.4 it has been pointed out that the main problem in DFT
is to establish a relationship between the electronic density and the energy.
The kinetic energy functional is known exactly, but the exact functional for
exchange and correlation (XC) is not known except for the free electron gas.
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Nevertheless it exists a relation between the XC potential and the XC energy
although the exact operator is unknown:

EXC [ρ] =
∫
ρ (~r) ν̂XC (~r) d (~r) =

∫
ρ (~r) εXC [ρ] d (~r) =

∫
eXC [ρ] d (~r)

(2.115)

ν̂XC (~r) =
δEXC [ρ]
δρ (~r)

=
δ (ρ (~r) εXC [ρ])

δρ (~r)
=
δeXC [ρ]
δρ (~r)

(2.116)

where the variable εXC is the XC energy per particle, whereas eXC is the XC
energy per volume.

However there are several approximations which make the calculation of
certain physical properties possible in a quite accurate way. The simplest and
at the same time most widely used is the local density approximation(LDA). In
this method, the functional εXC depends only on the local electronic density.
The exchange and correlation parts are treated separately: the exchange part
uses the exact exchange energy for a uniform electron gas[245] and fitting its
correlation part by an interpolating method.[267] LDA is a good approxima-
tion for systems where the electronic density is approximately homogeneous.
In other cases where important variations exist, an approach using infinitesimal
portions from Monte Carlo simulations of the electron gas is used. Open-shell
systems where α and β densities are not the same need a different treatment
than the LDA. The local spin density approximation(LSDA) is similar to the
treatment used in UHF and minimises both densities independently. Although
a simple approximation, LDA and LSDA reproduce geometries, frequencies
and charge densities reasonably well, but are not appropriate for systems with
weak interactions, zones near the nucleus or making thermodynamic calcula-
tions. They have a tendency to elongate distances and overvalue the bond
energy. Furthermore, one of the turndowns of LDA is that it undervalues the
exchange energy by 10–15%.

One way to improve LDA is to introduce the density gradient in the XC
effects using the generalized gradient approximation(GGA) This method ac-
counts for how density varies around a coordinate, besides the local density.
The LDA XC energy is modified so it has an adequate asymptotic behaviour
and escalates correctly. GGA improves the geometries, frequencies and charge
density compared to LDA, and it works reasonably well with hydrogen bonded
systems, although complexes presenting van der Waals interactions are not so
well described.

There are many corrections to the GGA for the different exchange and
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correlation parts. Becke improved the GGA exchange energy adding a correc-
tion term to the LDA expression, defining it as the sum of the LDA exchange
energy plus a parameter which depends on the density gradient to introduce
the gradient effects.[20] This is the most used correction to the exchange part
up to date. The correlation parts have other corrections, those most widely
applied are the ones proposed by Perdew[205] and those by Lee, Yang and
Parr.[156]

The hybrid functionals are a type of approximations to the XC energy func-
tional in DFT that incorporate a portion of exact exchange from Hartree-Fock
theory with exchange and correlation from other sources (ab initio, such as
LDA, or empirical). The justification of the connection between the exact ex-
change from Hartree-Fock goes through the adiabatic connection for the XC
energy using an external potential exponentiation with a variable set between
0 and 1. The hybrid approach to constructing density functional approxima-
tions was introduced by Becke in 1993.[21] Hybridisation with Hartree-Fock
exchange—which is exact— provides a simple scheme for improving many
molecular properties, such as atomisation energies, bond lengths and vibration
frequencies, which tend to be poorly described with simple ab initio function-
als.

2.3 Basis set superposition error

The molecular orbitals used in theoretical chemistry methods are expanded on
a set of functions or basis set , whose linear combination creates the whole func-
tion space in which the MO are defined with the weights of the coefficients to be
determined. Usually these functions are AOs as they are centred on the atomic
nuclei and form orbitals, but they can be centred in bonds, lone pairs or in
the two lobes of a p-orbital as well, all them known as floating functions.[136]
The first basis sets used in molecular calculations were typically Slater-type
orbitals(STO),[244] which correspond to a set of functions which decay ex-
ponentially with distance from the nuclei. Later, this approximation was in
turn approximated as linear combinations of Gaussian-type orbitals(GTO),[38]
which overlap and other integrals are easier to calculate, leading to huge com-
putational savings. The minimum basis sets are those which a single basis
function is set on each atom in the molecule in a Hartree-Fock calculation
on free atoms. More functions can be added to obtain a better description
of the atom, for example basis functions of the p-type to atoms which have
p orbitals. Furthermore, auxiliary functions can be introduced to add some
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additional needed flexibility within the basis set. These polarisation functions
add one more node to the valence orbitals: they can be from the p-type orbitals
for hydrogen atoms to the f -type for heavier ones. Polarisation allow atoms to
be more asymmetric about the hydrogen nucleus. This is an important result
when considering accurate representations of bonding between atoms, because
the very presence of the bonded atom makes the energetic environment of the
electrons spherically asymmetric. Another improvement to the basis sets are
the addition of diffuse functions, which are a very shallow type of Gaussian
basis functions, which more accurately represent the tail portion of the atomic
orbitals, distant from the atomic nuclei. Diffuse functions can be important
when considering anions and other large, “soft” molecular systems.

As it has been pointed out early in section 2.2.1.1, using an infinite set of
basis functions leads to an exact description of the system’s atomic orbitals,
but on the other hand it needs, at least to date, an infinite time to compute.
Thus, the infinite basis sets are truncated to obtain finite basis sets which allow
calculations with finite time, but with an error associated to the observable—
e.g. energy. Usually bigger basis sets lead to better system descriptions§ but
in turn increase calculation time exponentially. If the finite basis is expanded
towards an infinite complete set of functions, calculations using such a basis
set are said to approach the basis set limit.

The use of finite basis sets leads to a mathematical artifact known as the
basis set superposition error (BSSE) when used to calculate interaction en-
ergies of separate molecules, different parts of the same one or approaching
molecules. In order to obtain the binding energy of two interacting fragments
A · · ·B the usual method is to calculate the energy of the complex and then
substract the corresponding energy of the isolated fragments. The total basis
set used by the complex is the sum of these of the two separated fragments,
obtaining a bigger basis set and thus a potentially better, lower energy for
the complex than these of the fragments. This effect was first pointed out by
Jansen and Ros,[140] although the terminology BSSE was first introduced by
Liu and McLean.[168] The expression used to calculate the interaction energy
is, without taking into account the nuclear relaxation,

∆E(AB) = Eα∪βAB (AB)− EαAB(A)− EβAB(B) (2.117)

where superindices α and β are the basis sets of the A and B fragments,
respectively; and the expression α ∪ β refers to the union of the two basis

§Remember that in variational methods, the lower the energy obtained, the better the
description of the system.
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sets or the extended basis set. Inbetween parenthesis there is the fragment
to which the energy term refers, being AB the complex. Subindices refer to
the geometry of the fragment in which the energy has been calculated. Thus,
EαAB(A) is the energy of the fragment A using its own base α and the geometry
it has in the complex AB (not isolated as A).

Taking into account that as the basis set grows, the energy of the complex
diminishes, the resulting interaction as for the expression 2.117 will be much
more attractive (lower energy) than the real value. This is the BSSE, and
the magnitude of this error is related to the size of the basis set used, the
geometry of the system and the definition of the fragments. In complexes
where the bonding energy is small, BSSE can account for the same value as
the interaction energy.

2.3.1 BSSE correction

Over the years different approaches, methods and strategies have been devel-
oped to avoid or at least minimise the BSSE effects. Most of these methods are
based on modifying or adapting the basis set they use. The most immediate
approach is to increase the size of the basis sets used, with the consequent
increase of the calculation costs. Introducing diffuse functions the BSSE is
reduced for a small expense in computing time.[229, 231, 195] Another option
is to saturate the system’s space with basis sets and fix them through the
molecule optimization process, but this model would not be valid as the sys-
tem wave function would change if translated or rotated, apart from the fact
that linear dependencies in the basis set could arise if the space was too satu-
rated with them. Another option is the use of the plane waves (PW) as basis
set. Plane waves are expanded independently of the position and number of
nuclei of the molecule, and the real space representation of the wave function
is obtained after the application of fast Fourier transform techniques. Unfor-
tunately, the results obtained are not so good as the ones using atom-centred
functions.

A different approach to solve the problem is to develop a methodology
which takes into account the BSSE. They are called a priori methods, and
there exists a wide range of possibilities, all of them more or less successful
and/or accepted. One of these methods is developed by Mayer,[174] applying
the second quantization theory to split the Hamiltonian into the sum of all the
intramolecular terms as well as the pure-energy terms of the intermolecular
operator. The BSSE is eliminated by projecting all the intramolecular terms



2.3. BASIS SET SUPERPOSITION ERROR 85

into the subspace spawned by the basis functions of the corresponding complex
fragment. This method is known as the chemical Hamiltonian approach (CHA)

Another a priori method is the constrained dimer function[226] (CDF),
which removes the BSSE by introducing constraints to the wave function at
SCF level. The constraints made that the occupied orbitals of the dimer would
not mix with those of the monomers which are approximate solutions of the
system, as the orbitals of the fragments are orthogonal with each other. On
the other hand, this produces modelled results which sometimes are artifacts.
Calculations made on this method pointed out flaws in the supermolecule
geometry description[175, 227], and thus is no longer used.

There are other a priori methods working on different methodologies. Some
modify the SCF methodology, constraining it, locating or imposing conditions
to the basis set or wave functions, so the result is usually an under-correction
of the BSSE compared to better established methods.[89, 110, 187] Others
focus on electron correlation, the most successful ones are called local cor-
relation methods although they started as a way to reduce computational
costs.[222, 228, 271] The electronic excitations of the correlation are restricted
to those occurring in the same fragment and the ones from the ground level of
a fragment to the virtual orbitals of the other are excluded.

Finally, corrections can be made a posteriori as well. The counterpoise
method falls in this group and nowadays is the most used to correct BSSE and
is the one used in this thesis.

2.3.2 The counterpoise correction

The counterpoise correction (CP) was developed by Boys and Bernardi in 1970
as an a posteriori correction of the BSSE.[39] The idea behind CP is to use
the same basis for all the calculations: the complex and fragments. As the
supermolecule basis set is the combination of the fragments ones, it is easier to
use the complex extended basis to calculate the energy of the fragments. At
practical effects that means using the extended basis set for each fragment, or
eliminating the other fragment from the complex setting its nuclear charges to
zero and omitting its electrons. Thus the expression 2.117 is now written as:

∆ECP (AB) = Eα∪βAB (AB)− Eα∪βAB (A)− Eα∪βAB (B) (2.118)

Of course, one of the drawbacks of this method is that the calculation time
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used for the fragments will be longer than the fragments with the original
basis.

As it has been stated before, the interaction energy is the difference be-
tween the the energies of isolated objects and their assembly. This includes
the deformation energy that the monomers undergo to adapt to the interact-
ing geometry. The CP correction in 2.118 does not consider this effect, thus
the fragment relaxation term is introduced to take into account the defor-
mation energy which is always positive.[264] It’s counterpart is the fragment
preparation, which energy is the same as the relaxation energy but with its
sign changed. The total interaction energy including the deformations of the
monomers is

∆E(AB) = Eα∪βAB (AB)− EαA(A)− EβB(B) (2.119)

which is different of that in 2.117 in the geometry used. This energy can be
divided into two terms: the interaction energy Eint and the relaxation energy
Erel

∆E(AB) = ∆Eint(AB)−∆Erel(A,B) (2.120)

where the interaction energy is that of equation 2.117. The relaxation term
includes the energy needed by the monomer to modify its geometry to the
complex one

∆Erel(A,B) = −
(
EαAB(A)− EαA(A) + EβAB(B)− EβB(B)

)
(2.121)

The CP idea is to calculate all the fragments in the extended basis set,
including the relaxation terms, and the only term which has to be BSSE cor-
rected is the interaction term. Thus,

∆ECP (AB) =
[
Eα∪βAB (AB)− Eα∪βAB (A)− Eα∪βAB (B)

]
+

+
[
EαAB(A) + EβAB(B)− EαA(A)− EβB(B)

]
(2.122)

which can be rearranged in

∆ECP (AB) =
[
Eα∪βAB (AB)− EαA(A)− EβB(B)

]
+

+
[
EαAB(A) + EβAB(B)− Eα∪βAB (A)− Eα∪βAB (B)

]
= ∆E(AB) + δCPAB (2.123)

where now the interaction energy ∆E(AB) is corrected by the CP-BSSE cor-
rection term δCPAB , which can also be considered as a sum of each of the frag-
ments BSSE, δCPAB = δA + δB . The value of this correction is usually positive
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due to the variational principle, producing more attractive uncorrected inter-
actions; it diminishes as the monomer basis grows to the upper basis set limit,
approaching to that of the complex; and depends on the geometrical proper-
ties of the complex, as indicated in the subindex (AB). This dependence on
the geometry makes this term nor constant nor additive for all the systems
calculated on the same basis sets.

Note that in the initial energy equation 2.121 the calculation of three terms
was needed to obtain the interaction energy, and after applying the CP correc-
tion and the fragments relaxation, the number of terms needed to compute the
interaction is seven, four of which are in the δCPAB term. In case of a trimer or
superior aggregate, CP can also be applied considering all the combinations of
all the fragments with their basis and the extended one, increasing even more
the number of terms needed. In this situation the calculation time increases
exponentially.[82, 229] When a single atom is defined as a fragment, there is
no need to calculate its own energy in its basis set more than once.

2.3.3 CP corrected PES [241]

The CP correction is usually applied as a one-point correction of a system at
a particular geometry, usually the minimum interaction energy obtained from
the potential energy surfaces (PES). The PES is constructed using the different
approaches to solve the electronic Schrödinger wave function at different ge-
ometries, using iteration methods until a stationary state energy—a minimum
energy state, but not necessarily—is found, which complies with the condition
to be an absolute minimum. But CP-correcting this point leads to a higher
energy which could not correspond to the system absolute minimum energy,
as the BSSE depends on the geometry, the PES are anharmonic potentials
and basis sets extensions increase as the fragments come close together. Thus,
the geometry will have associated energies which might not be the minimum
for the system, and geometry might have longer interaction distances. Never-
theless, the CP correction can be applied to the whole PES, adding the δCPAB
term along the PES, and use the CP-BSSE free PES for finding the stationary
points. This can be easily seen in scheme 2.1, where points a and c represent
the optimized structures on the uncorrected and corrected PES, respectively,
while points b and d are the energy of those two geometries on the other PES.
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Scheme 2.1.

Point c, representing the corrected minimum energy and where the stable
geometry lies, is different from point b which is the punctual energy correction.
The whole PES changes, and it can lead to different geometries and energies
from those on the uncorrected PES. BSSE magnitude depends on the geometry
where it is calculated, making it change its position and topology. Usually, the
fact that the corrected energy is less attractive induces longer intermolecular
distances for the system. This new PES curvature will also change due to the
correction, and so will the corrected vibration energies.

Anyway, any stationary point on the corrected PES is a correction of
the same stationary point on the uncorrected PES. From this fact, the CP-
corrected interaction PES can be used to find stationary geometries. To do
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so, equation 2.123 should be derived:

∂
(
∆ECP (AB)

)
∂qi

=
∂ (∆E(AB))

∂qi
+
∂
(
δCPAB

)
∂qi

=
∂
(
Eα∪βAB (AB)

)
∂qi

− ∂ (EαA(A))
∂qi

−
∂
(
EβB(B)

)
∂qi

+
∂ (EαAB(A))

∂qi

+
∂
(
EβAB(B)
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∂qi

−
∂
(
Eα∪βAB (A)

)
∂qi

−
∂
(
Eα∪βAB (B)

)
∂qi

=
∂
(
Eα∪βAB (AB)

)
∂qi

+
∂ (EαAB(A))

∂qi
+
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(
EβAB(B)

)
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−
∂
(
Eα∪βAB (A)

)
∂qi

−
∂
(
Eα∪βAB (B)

)
∂qi

,∀qi ∈ {AB}

(2.124)

Note that the partial derivatives on the isolated fragments ∂(EαA(A))
∂qi

and
∂(EβB(B))

∂qi
are null with respect to the variation of the geometry of the complex

as their stationary points are calculated independently of each other and are
constants. Besides, it can be seen that a point on the uncorrected PES will be
stationary also on the CP corrected PES when the CP correction surface δCPAB
is stationary as well, i.e.

∂(δCPAB)
∂qi

= 0.

However, in order to obtain the interaction energies between fragments,
the corrected PES of the complex must be constructed, d can be constructed
adding the correction CP term to the energy of the supermolecule:

∆ECP (AB) = Eα∪βAB (AB) + δCPAB = Eα∪βAB (AB)

+
[
EαAB(A) + EβAB(B)− Eα∪βAB (A)− Eα∪βAB (B)

]
(2.125)

This is the description of the complex corrected PES and from this the
CP-BSSE free interaction should be calculated. The difference between equa-
tion 2.123 and 2.125 is a BSSE-free constant term which depends only on the
system and the definition of the fragments, the terms of the monomers sta-
tionary points pointed out before. Then, this equation can be derived and
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generalized to the N th-order energy derivatives:

∂n
(
ECP (AB)

)
∂nqi

=
∂n
(
Eα∪βAB (AB)

)
∂nqi

+
∂n
(
δCPAB

)
∂nqi

=
∂n
(
Eα∪βAB (AB)

)
∂nqi

+

∂n (EαAB(A))
∂nqi

+
∂n
(
EβAB(B)

)
∂nqi

−
∂n
(
Eα∪βAB (A)

)
∂nqi

−
∂n
(
Eα∪βAB (B)

)
∂nqi


(2.126)

Second and third derivatives are used to calculate the harmonic and an-
harmonic vibration frequencies. Unfortunately, there is no definition for a
CP-corrected electronic density for the complex.

2.4 Atoms in molecules theory [11]

Using the first order electronic density ρ (~r), Bader developed the atoms in
molecules theory (AIM) which can, among other characteristics, analyse the
electronic density of a given molecule in atomic fragments. With this analysis,
the contributions for every atom to the molecule of a property which depends
on the electronic density can be studied; properties like the bond critical points
or the bielectronic densities. The methodology to obtain such properties is
based on densities, not on the molecular structures, only on the topology of
the electronic density. Results should adapt to the quantum molecular model
which does not consider “defined” bonds between atoms. Furthermore, as AIM
theory is based on first order densities, which are observable magnitudes, its
results should have a physical significance that others obtained from analytical
methods based for example on LCAO, although Bader uses them as well.

In order to divide the molecule in subatomic spaces it needs to exist a
condition of zero flux surface to define these subspaces called basins:

∇ρ (~r) · n (~r) = 0 ,∀~r ∈ S (~r) (2.127)

where S (~r) is the surface defining the atom and n (~r) the normal vector at ~r
on the surface. The surface can occupy all the available space, in this case the
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zero flux condition will be met at infinite, because is where ∇ρ (~r) is null, and
thus it will be delimited. The other zones where the condition is also observed
are those on the limits of the atomic volume, usually containing one single
atom. This way, the properties of the atoms can be isolated for a molecule.

Using the gradient of the first order density, the critical points of a molecule
are the points where the gradient of the first order electron density is zero. Crit-
ical points can be classified using the values that their diagonalised Hessian¶

has. The rank ω is the number of the Hessian curvature matrix eigenvalues dif-
ferent from zero; and the signature σ is expressed as the algebraic sum over the
signs of these curvatures. Using this nomenclature, critical points with rank
3, whose usually found associated with first order densities, can be described
as:

(3,−3) Attractor : At these points, all the curvatures of the Hessian are nega-
tives, pointing a density maximum.

(3,−1) Bond critical point (BCP): At these points the density has a positive
curvature at one direction and two negative ones at the other two. This
type of points can be found among atoms separated by zero flux surfaces.
When two atoms share a bonding point and an interatomic surface, they
can be considered to be bonded. Furthermore, the values of the electronic
density and other properties on the bond critical point can give important
information on the type of interaction.

(3,+1) Ring critical point (RCP): A ring critical point has two positive density
curvatures and a negative one. This type of critical points are usually
found in the centre of rings, e.g. benzene.

(3,+3) Cage critical point (CCP): It is related to a minimum of the electronic
density. This type of critical point can only be found inside a group of
cage-shaped bonded atoms

At critical points with rank 2 the electronic density curvature is null at one
direction. There are three possibilities: (2,−2), (2, 0) and (2,+2). In fact, it is

¶The Hessian matrix is the square matrix of second-order partial derivatives of a function,
i.e. it describes the local curvature of a function of many variables,

Hij =
∂2ρ (~r)

∂xi∂xj
, i ∈ {1, 2, 3}

where 1,2 and 3 represent the Cartesian coordinates.
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more appropriate to call them critical circles as this is the shape they present.
On the other hand, there are the critical spheres which correspond to the two
possible structures with rank 1: (1,−1) and (1,+1).

Studying the derived functions from the first order density brings forth
important data. For example, in the same guidelines of the density gradient
flux

∇ρ (~r) =
∂ρ (~r)
∂x

+
∂ρ (~r)
∂y

+
∂ρ (~r)
∂z

(2.128)

the molecular connectivity can be established: when two atoms are bonded to
each other, there must be some gradient vectors that connect a common BCP
of both atoms to each of the attractors. Following these vectors for all the
attractors, a molecular graphic can be generated that indicates in which way
are bonded the atoms make up the molecule. Gradient vectors which do not
come from a (3,−1) critical point can come out from the (3,+1) or (3,+3)
critical point types or from infinity.

The density Laplacian is used as well

∇2ρ (~r) =
∂2ρ (~r)
∂2x

+
∂2ρ (~r)
∂2y

+
∂2ρ (~r)
∂2z

= λ1 + λ2 + λ3 (2.129)

particularly its sign shows an electron accumulation or deficiency at any point.
When the Laplacian sign is positive there is an electron shortage, and vice
versa. The Laplace operator can give a different information than that of the
gradient. For example, when applied on a bond critical point, the bond type
can be characterized as covalent (negative Laplacian, high electronic density
at this point, open shell); or ionic or van der Waals (positive Laplacian, low
electronic density, closed shell). Moreover, the accumulation of non-bonding
electronic pairs can be detected with the density Laplacian too.

The bond ellipticity is a measure that allows to determine if there is a
higher charge density in some of the bond directions than others. It is defined
as

ε =
λ1

λ2
− 1 (2.130)

where λ1 and λ2 represent the eigenvalues of the density Hessian perpendic-
ulars to λ3, which stands for the bond direction, being λ3 positive as it is a
minimum. Thus, the ellipticity is always positive as λ1 < λ2 < 0. In case of a
σ-bond, the ellipticity value will be zero due to fact that the charge distribu-
tion perpendicular to the bonding path is homogeneous. In case of a π-bond,
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its value will be different from zero as in one of the perpendiculars there will
be more charge density than in the other one.

Apart from the first order densities, second order densities can be obtained
as well. In this case, the function will represent the probability of finding two
electrons in two different positions, similar to equation 2.55,

ρ (~r1, ~r2) =
N (N − 1)

2

∫
ψ∗ (~x1, . . . , ~xN )ψ∗ (~x1, . . . , ~xN ) dω1dω2d~x3 . . . d~xN

(2.131)
which integrated over the whole space will produce the number of electron
pairs of the system. Bear in mind that the equation refers to two electrons
leading to four possible combinations of electron pairs: αα, αβ, βα and ββ.

Second order density function can be used to localize electronic pairs in
the molecule.[103] The electronic localization and delocalization rate at dif-
ferent space regions can be defined using the Fermi hole, which describes the
probability to find an electron in a position ~r1 near another electron with the
same spin located in a ~r2 position. Starting from this bielectronic density, the
localisation and delocalisation atomic indeces can be defined, which grades the
XC importance, depending on the method used, between electrons belonging
to different atoms of the same molecule.[215] Hence an electron localisation
index can be defined by integrating the two electronic coordinates associated
to the electronic density that in turn are associated to the XC density inside
an atomic basin:

λ (A) =
∫
A

f (~r1, ~r2) d~r1d~r2 (2.132)

where f (~r1, ~r2) is the Fermi correlation function. In a similar way, an inter-
atomic electron delocaliation index can be defined integrating over a different
atomic basin

δ (A,B) =
∫
A

∫
B

f (~r1, ~r2) d~r2d~r1 (2.133)

λ (A) is an index that represents the number of electrons localized inside
the atomic basin of a certain atom. At the extreme possibility of an atom with
a null interaction with its neighbours, λ (A) value will be the electronic popu-
lation of the atom A. On the other hand, δ (A,B) refers to the delocalization
degree of the electrons between atoms A and B. The value of δ (A,B) will be
higher for atomic pairs presenting an open-shell or covalent interaction. Take
into consideration that the delocalisation index can be applied to any atom
pair in a molecule, it does not matter if they are or are not formally bonded.
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2.5 Kohn-Sham equations [26]

Equation 2.65 explained in section 2.1.3.4 is the expression to calulate the
minimal energy and determine the electronic density of the ground state. The
problem is, as it has been yet stated, that the relation between FHK [ρ] and
the density is not known exactly. Specifically, T [ρ] is the term which is not
known with enough precision, in opposition to the kinetic energy which is easily
calculated when ψ is known. Kohn and Sham tried to solve the problem using
the Hartree-Fock approximation as a starting point.[151] The model is made
up of N -electrons not interacting among them but experiencing the coulombic
attraction from the nuclei; and moving under an external potential νs (~r),
which generates a wave function ψs with the same electron density as the real
one. Its Hamiltonian only contains the one-electron operators, and solving the
HF equations provides the exact orbital equations for this ideal system, the
wave function being the Slater determinant. The exact density for this system
is

ρ (~r) =
Nocc∑
i=1

|χi (~r) |2 (2.134)

and the exact kinetic energy

Ts [ρ] = − h2

8π2

Nocc∑
i=1

∫
χ∗i (~r)

1
mi
∇2χi (~r) d~ri (2.135)

The total energy for this HF system can be written as

Eν [ρ] =
Nocc∑
i=1

εi = Ts [ρ] +
∫
ρ (~r) νs (~r) d~r (2.136)

which differs from the real one which is

Eν [ρ] = T [ρ] +
∫
ρ (~r) νn (~r) d~r + Vee [ρ] (2.137)

Ts [ρ] and T [ρ] are equal only when the HF solution is the exact one. The
real energy equation 2.136 can be reordered and modified introducing the Ts [ρ]



2.5. KOHN-SHAM EQUATIONS 95

term and a new Coulombic repulsion term J [ρ]:

Eν [ρ] = Ts [ρ] +
∫
ρ (~r) νn (~r) d~r + J [ρ] + (T [ρ]− Ts [ρ]) + (Vee [ρ]− J [ρ])

(2.138)

J [ρ] =
e2

2

∫
ρ (~ri) ρ (~rj)

rij
d~rid~rj (2.139)

The total exchange-correlation energy EXC [ρ] can be defined grouping the
T [ρ]−Ts [ρ] term into Tc [ρ], which is the kinetic energy difference between the
real system and the HF one, and Vee [ρ]− J [ρ] into WXC [ρ], which represents
the exchange-correlation energy from the electronic part

EXC [ρ] = (T [ρ]− Ts [ρ]) + (Vee [ρ]− J [ρ]) = Tc [ρ] +WXC [ρ] (2.140)

and parallelly the same XC energy can be defined similarly to equation 2.59
as

EXC [ρ] =
∫
ρ (~r) νXC (~r) d~r (2.141)

Thus, equation 2.138 will be transformed into

Eν [ρ] = Ts [ρ] +
∫
ρ (~r) νn (~r) d~r+

e2

2

∫
ρ (~ri) ρ (~rj)

rij
d~rid~rj +EXC [ρ] (2.142)

This functional is then minimized with respect to the density with the DFT
fundamental equation

λ =
δEν [ρ]
δρ (~r)

=
δTs [ρ]
δρ (~r)

+ νn (~r) +
∫
ρ (~rj)
rij

d~rj +
δEXC [ρ]
δρ (~r)

(2.143)

which is usually shortened as

λ =
δTs [ρ]
δρ (~r)

+ (φ (~r) + νXC (~r)) =
δTs [ρ]
δρ (~r)

+ νeff (~r) (2.144)

and where φ (~r) is the Coulomb potential defined as

φ (~r) = νn (~r) +
∫
ρ (~rj)
rij

d~rj (2.145)
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and νXC (~r) is the exchange-correlation potential which is

νXC (~r) =
δEXC [ρ]
δρ (~r)

(2.146)

The reference system used at the beginning of the section has an external
potential νs (~r) under which the electrons move, can be applied to the DFT
fundamental equation 2.65 as well, in which case it will produce the following
equation

λ =
δEν [ρ]
δρ (~r)

=
δTs [ρ]
δρ (~r)

+ νs (~r) (2.147)

which ressembles the later equation 2.144. The solution to both equations is
the same swapping νs (~r) for νeff (~r). The Kohn-Sham equations to solve from
the effective potential will be

ĥKSχi = εiχi (2.148)

ĥKS = −e
2

2
∇2 + νeff (~r) (2.149)

and the spin orbitals used must be othogonal with each other. These orbitals
are known as the Kohn-Sham orbitals and allow to calculate the electron den-
sity from expression 2.134. The procedure to obtain the spin orbital wave
functions is similar to the used in HF, where a starting set of molecular or-
bitals is used to begin the iteration process through the different equations
exposed lately and repeated until the convergence is reached. Note that the
only unknown term is the νXC (~r) at the νeff (~r). The electronic density will
be closer to the real one as long as the exchange-correlation potential gets
closer to the real one. The DFT has the property of including the whole XC
energy, compared to HF that cannot. Apart from the different approximation
at the beginning, both DFT and HF are similar. The fundamental differences
are that DFT uses an approximate Hamiltonian to obtain a good approxima-
tion of the exact electronic density, while HF is the reverse: it uses an exact
Hamiltonian but an Slater determinant as wave function, which is always an
approximate solution. Using the Kohn-Sham orbitals to construct the Slater
determinant and calculate its energy using the exact Hamiltonian, the energy
obtained is higher than that obtained using HF.[13]
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2.6 Bloch theorem [138, 212, 232]

The study of condensed matter is a subject field of physics focusing on the
microscopic and macroscopic properties of matter. Condensed phases appear
when the number of constituents in a system is extremely large and the inter-
actions between them are strong. The typical examples are solids and liquids,
but there are other less known examples like superfluids. Interactions take
place between close and far apart molecules or atoms at different degrees of
importance, but in some cases the weaker interactions can modify drastically
the behaviour of the system. The background idea is that all the atom dis-
tribution and properties usually add up to create the global properties of the
condensed phase. A branch of the condensed matter physics, the largest one, is
the study of solid-state matter: atoms packed tightly under strong interaction
forces responsible of the properties of the solid. Depending on the material in-
volved and the conditions in which it was formed, the atoms may be arranged
in a regular, geometric pattern (crystalline solids, which include metals and
ordinary water ice) or irregularly (an amorphous solid such as common win-
dow glass). Most of the investigations done in this field are made on crystals,
as its space regularity due to atom periodicity is an advantage which can be
used to simplify mathematical modelling or for engineering purpouses.

Nowadays the application of ab initio methods makes possible to calcu-
late PESs and other properties of at most medium-sized molecules, due to
the restrictions from computer capacities. Although improvements have been
made in the applied quantum theory methodology, molecules composed by
more than 50 atoms take a long time to compute using the simplest approx-
imation. Of course, the bottleneck is not only the hardware but the building
up complexity as the system increases its constituent atoms. Thus, when it
comes to model big systems like those in condensed phase, the aforementioned
theoretical chemistry metods are constrained by both complexity and hard-
ware. Alternatives can be designed especifically for each system, coping with
the different aspects to be focused on and avoiding an overcharge of atoms.
For example, a crystal could be modeled with only a few atoms recreating the
Brillouin zone—the primitive cell of a structure—or some repetitions of this
zone, trying to approximate the model to the data obtained in that piece of
solid. These models are called finite or cluster models. Problems arise when
this system must be fine tuned like in catalysis or properties come out from
small deficiencies in the crystal, and this approach cannot be used. Besides,
the interruption of the sequence at the edges of the model could make up
deformed geometries, different electron densities and other inaccuracies.
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However, there is a method which uses the periodicity of the crystals to
provide wave functions adapted to the symmetry, like that of the molecular
orbitals. Bloch constructed the wave function of a particle placed in a periodic
crystal using a plane wave ei~k~r and a periodic Bloch function u (~r) which has
the same periodicity as the potential affecting the particle.[32] The concept
is that as the crystal is a periodic structure, the observables of a zone wave
function will be the same if a translation operator is applied to this wave
function and moves it to the another period, like the limits of the Brillouin
zone.

ψ
~k (~r) = u (~r) ei~k~r (2.150)

where ψ
~k (~r) is named Bloch function. Bloch used previous work made by

Floquet regarding periodic functions in his work. Floquet theorem is referred
to ordinary differential equations and basically states that any function φ (t)
which is solution to a periodic system with a period T will be solution again
after the period: φ (t) = φ (t+ T ). Translating these concepts into operators
and wave functions of the theoretical chemistry, applying a translation operator
T̂ on a periodic wave function will obtain the same wave function moved a
vector ~T . At the same time, the translation operator, which can be made of
any vector set but they must be eigenvalues of the wave function to be applied
to it, holds its own solutions:

T̂ψ (~r) = ψ
(
~r + ~T

)
= λ

(
~T
)
ψ (~r) (2.151)

In order to this condition to hold true, the electronic density |ψ|2 must be
periodic and so |ψ (~r) |2 = |ψ

(
~r + ~T

)
|2 and |λ

(
~T
)
|2 = 1. The eigenvalue of

the Bloch function must have a quadratic value of one, further on this section
a solution is proposed.

On the other hand, a translation operator can be applied as well on the
Schrödinger wave equation, with which it can commute as the Hamiltonian
doesn’t change its form after the translation:

T̂ Ĥψ (~r) = Ĥψ
(
~r + ~T

)
= ĤT̂ψ (~r) (2.152)

For the same reason, two different translation operators T̂ and T̂ ′ can
commute T̂ T̂ ′ = T̂ ′T̂ . Commuting makes it possible to choose the eigenvectors
of the Hamiltonian and the translation operator separately

Ĥψ (~r) = Eψ (~r) and T̂ψ (~r) = λ
(
~T
)
ψ (~r) (2.153)
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and hence their transaltion operator eigenvalues are the first translation times
the other one as they cover all the space in which they have moved

λ
(
~T + ~T ′

)
= λ

(
~T
)
λ
(
~T ′
)

(2.154)

The translation vector ~T can be written as the summatory of all the space
basis vectors ~k times an integer n

~T =
3∑
j=1

nj~kj (2.155)

which is known as the Born-von Karman boundary condition. The basis set
vectors ~k are those of the reciprocal lattice of the Bravais lattice which comply
for all the lattice point vectors ~R that ei~k ~R = 1. Of course, ~k could be any
vector and thus there will be infinite sets of vectors, but it suffices to consider
those of the Brillouin cell to produce a non-redundant translation, although
they are infinite as well. The translation eigenvalues λ

(
~T
)

are then defined
as a product of its basis vectors egienvalues exponentiated to the integer n

λ
(
~T
)

=
3∏
j=1

λ
(
~kj

)nj
= ei

P3
j=1 nj

~kj = ei
~k~T (2.156)

and indeed |λ
(
~T
)
|2 = |ei~k~T |2 = 1, observing the condition aforementioned.

Then equation 2.151 can we rewritten as

ψ
~k
(
~r + ~T

)
= ei

~k~Tψ
~k (~r) (2.157)

This means that any bloch function ψ
~k
(
~r + ~T

)
that is a solution to the

Schrödinger equation of the problem, differs only by a phase factor of ei~k~T

between its equivalent positions in the lattice. This implies immediately that
the probability of finding an electron is the same at any equivalent position.

Still, a periodic system is an infinite repetitive lattice, and although the
wave function is the same, modelling the system involves its infinite repetition,
leading in an infinite calculation time. The solution is considering the system
as a cyclic system, and any translation vector ~TN leads to the origin point,
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defining it as

~TN = 2π
3∑
j=1

Nj~kj (2.158)

which compared to 2.155 should comply that

~kj =
nj
Nj

; nj = 0, 1, 2, 3, . . . , Nj (2.159)

and all the ~k vectors in the Brillouin zone are not infinite anymore, their
number is equal to the number of crystal cells. In this way, the index has
become discrete although the number of cells under consideration should be big
to mantain the cyclic conditions true. Equation 2.157 will be newly rewritten
to

ψ
~k
(
~r + ~TN

)
= ei

~k~TNψ
~k (~r) (2.160)

and as the translation must return to the starting point making ψ~k
(
~r + ~TN

)
=

ψ
~k (~r), the plane wave ei~k~TN must be 1.

The orbitals used in Bloch waves are linear combinations of Bloch basis
sets constructed from localized functions φ~kBZµ (~r) or plane waves

ψ
~k
n (~r) =

∑
µ

c
~kBZ
µn φ

~kBZ
µ (~r) (2.161)

where the n subindices are referred to the different bands whose PES falls
into the Brillouin zone. The coefficients c~kBZµn are determined by solving the
equations from the variation principle

H~kBZC~kBZ = S~kBZC~kBZε
~kBZ (2.162)

C~kBZ∗S~kBZC~kBZ = I (2.163)

in this case assuming a one-electron Hamiltonian.

The translation vector ~k can no longer be taken as a direct representation
of momentum ~p of the Bloch wave function as in ~p = h

2π
~k or its wavelength

λ = h
~k

. The electronic momentum at the edges fo the Brilluin zone is zero, be-

cause velocity is zero, but ~k is not. Thus the momentum is no longer constant
through the system. Besides, if a plane wave is used, there is no unique wave-
length when chosen arbitrarily with another function, and choosing a good one
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to keep the momentum is difficult. To solve this situation, a crystal momen-
tum is defined as ~P = h

2π
~k which is still a constant and is the combination

of the electron and the crystal momenta. It is related to a particular Bloch
wave function ψ

~k (~r). Only when the external potential is zero, the electron
momentum is equal as the crystal momentum. Although the crystal momen-
tum cannot be concieved as mass times velocity, is an approximation to the
momentum and still holds some of its properties like its conservation.



Chapter 3

Counterpoise-corrected PES for
dihydrogen-bonded systems

–“What’re quantum mechanics?”
–“I don’t know. People who repair quantums, I
suppose.”

— Terry Pratchett
Eric (1990)

3.1 Introduction

There are many studies of series of gas phase dihydrogen-bonded systems which
can be found in literature (see for example [5, 115, 120, 123, 154, 155, 172, 176,
218, 221, 224] as the most recent studies). One of the MH molecules mostly
used is LiH, where the hydrogen atom has clear hydride behaviour, holding

103
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a charge about -0.8 au. This molecule can interact with a HX molecule, be-
ing X a halogen atom, forming a dihydrogen bond. When these dimers are
taken into account to describe this kind of interaction, they are considered as
a linear arrangement of monomers. One of the features found in the study of
MH · · ·HX (M = Li, Na and X = F, Cl, Br) was that this type of complexes are
not minima in the gas phase. The calculated stationary points have an imag-
inary harmonic vibrational frequency, which was already observed previously
by different authors.[154, 169, 176] The analysis of these stationary points, as
well as those formed with NaH is one of the objectives of this section. In order
to study the behaviour these dimers present in gas phase, they have been com-
pared to MH · · ·HCN and MH · · ·HCCH, which are known to have a minima
with all real harmonic vibrational frequencies.[4, 5, 218] The other series of
dihydrogen-bonded systems studied in this section are those with M = Be and
B with the same halogens defined before.

An extra problem appears when H · · ·H contacts between monomers are
studied. When finite basis sets are used while describing dimer potential en-
ergy surfaces, the so-called basis set superposition error (BSSE) appears, as
explained in section 2.3. Although these systems exhibit a weak interaction
with an important amount of BSSE with finite basis sets, no studies have
dealt, to our knowledge, with their BSSE-corrected potential energy surfaces.
As it has been studied before, when BSSE is corrected along the whole surface,
important changes in the potential energy surface appear and the uncorrected
and corrected-PES may indeed be different, not only in the energy but also in
the position of the minimum as well as its topology [231, 241]. In this section
the counterpoise correction (CP) proposed by Boys and Bernardi [39] is used
to correct the potential energy surface BSSE, geometry and frequencies. The
study of the influence of CP correction in the position and topology of different
minima is the central discussion of this work.

3.2 Methodology

For all complexes, geometry and harmonic vibrational frequencies calcula-
tions have been computed using the Hartree–Fock (HF) level, second-order
Møller–Plesset perturbation theory (MP2) and the non-local hybrid three-
parameter B3LYP density functional approach. The 6-31++G(d,p) basis set
was chosen not only for having a smaller BSSE effect, but also because counter-
poise-corrected values are in good agreement with those obtained with larger
basis set such as 6-311++G(3df,2pd).[39] All calculations, non-CP-corrected
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and CP-corrected potential energy surfaces, were performed with the Gaussian
98 package.[104]

3.3 Results and discussion

Tables 3.1 and 3.2 gather interaction energies, geometrical parameters and
dihydrogen bond formation harmonic vibrational frequencies for LiH · · ·HX
and NaH · · ·HX complexes, being X = F, Cl, Br, CN, CCH. Superindex CP
is used to signal parameters calculated on their correspondent CP-corrected
PES (in italic number). Frequency calculations are preformed to confirm the
number of imaginary frequencies and the existence of this minimum in gas
phase. The number of non-degenerated imaginary frequencies is collected in
the last column of tables 3.1 and 3.2.

Different studies about these complexes, LiH · · ·HX, can be found, specially
about LiH · · ·HF.[115, 123, 154, 169] Almost all these complexes, MH · · ·HX
(M = Li, Na and X = F, Cl, Br), yield to C∞V complex (linear arrange-
ment of monomers) with two degenerated imaginary frequencies (they are
counted as 1 imaginary frequency in tables 3.1 and 3.2). LiH · · ·HCl and
LiH · · ·HBr present minimum stationary points with real frequencies in the
non-CP-corrected potential energy surface. However, when CP correction is
considered along the whole PES, these minima become stationary points with
two degenerated imaginary frequencies. This change in the topology of the
PES caused by the inclusion of CP correction along the PES is found as well
in the next series of complexes with M = Be and B.

NaH · · ·HX complexes have similar behaviour: all the complexes present a
linear arrangement of monomers with two degenerated imaginary frequencies.
Non-CP-corrected PESs give a better description of the stationary point than
LiH · · ·HX complexes non-CP-corrected PES, since the inclusion of CP correc-
tion along the whole PES does not change its topology (except for NaH · · ·HCl
at HF level).

To get a better understanding of the stationary point found for these com-
plexes, an intrinsic reaction coordinate (IRC) calculation has been carried out.
These calculations have been performed for all complexes, which present imagi-
nary frequencies in the non-corrected PES at each level of theory. Results show
that the normal mode corresponding to the imaginary frequencies leads to a
weakly bound complex MCl · · ·H2 , and a posterior dehydrogenation. This
reaction can be represented as:
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Scheme 3.1.

M−H + H−X → [M−H · · · H−X]] → M−X · · · H2 → M−X + H2

where [M−H · · · H−X]] are the dimers studied in this section. Figure 3.1
depicts the dehydrogenation IRC for LiH · · ·HF complex at B3LYP level of
theory. It can be seen from this figure that the flatness of the TS region makes
the characterization of the stationary point quite difficult, being the inclusion
of CP correction necessary. Vibrational normal mode corresponding to the
imaginary frequency is represented for TS complex. All complexes present
similar potential energy surfaces with different energetic barriers. The results
obtained for these systems are totally in agreement with previous studies made
by different authors who noticed the dehydrogenation reaction for these com-
plexes.[169, 224]

Figure 3.1: Intrinsic reaction path for the dehydrogenation of LiH · · ·HF at
B3LYP level of theory. Abscissa corresponds to the reaction coordinate.

Significant differences can be found in the dihydrogen bond energies. As
it is widely known, interaction energies are related to the intermolecular dis-
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tances, i.e. dihydrogen bond distances, and this relation can be observed in
tables 3.1 and 3.2. From this point of view MH · · ·HX (X = F, Cl, Br) sys-
tems can be mainly separated in two groups depending on the interaction
energy and H · · ·H distance. This first geometrical analysis brings up an idea
of two different bonding types between hydrogen atoms. Dihydrogen bond
distances will decrease, generally, with the increase of the electronegativity
of the halogen atom (Pauling values for electronegativities: F=3.98, Cl=3.16
and Br=2.96.), as it can be noticed from results in tables 3.1 and 3.2. For
MH · · ·HBr complexes, H · · ·H bond is quite similar to H2 bond length, which
will be related to a more covalent description of this interaction. This fact will
be analysed within the atoms in molecules theory in chapter 4 of this thesis.
Similar trends were observed by Grabowski for a set of charged dihydrogen-
bonded dimer.[120]

Intermolecular stretching frequencies corresponding to the dihydrogen bond
formation are collected in tables 3.1 and 3.2 for LiH · · ·HX and NaH · · ·HX
complexes, respectively. It can be observed that they follow the same trend as
intermolecular distances do. The shorter the dihydrogen bond is, the higher
value the dihydrogen bond formation frequency has, being the highest frequen-
cies the ones corresponding to those complexes with dihydrogen bond distance
nearer to H2 bond length.

MH · · ·HCN and MH · · ·HCCH results are collected in tables 3.1 and 3.2
too. These four complexes have been chosen because they are known to have
stable minima and they are widely studied. All results agree reasonably well
with previous structures of McDowell et al. [176] where the isotope effect of
Li · · ·HCN and Li · · ·HCCH was discussed. Li · · ·HCCH and Li · · ·HCN com-
plexes are found to have a linear arrangement of monomers in the non-CP-
corrected PES, while Na · · ·HCN and Na · · ·HCCH present a Cs symmetry,
with torsion angles about 70–80 degrees. All stationary points present no
imaginary frequencies, confirming they are minima in the PES. Although some
variations can be observed when a different level of theory is used, they are
not as important as they were in the previous complexes (X = F, Cl, Br).
All these dimers can be classified as conventional hydrogen bonds as it was
shown before in the framework of the atoms in molecules theory.[5] The fact
that the electronegativity of X = CN, CCH) is very low compared to (X = F,
Cl, Br), causes these complexes to be thermodynamically less stable, with
weaker interaction energies, larger dihydrogen bond lengths and lower values
of intermolecular formation of vibrational frequencies.

When CP-corrected potential energy surface is calculated it can be ob-
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Table 3.1: Li−H · · ·H−X (X = F, Cl, Br, CN, CCH) interaction ener-
gies (kcal/mol) and single-point CP-corrected interaction energy (kcal/mol),
Li−H bond distances (Å), dihydrogen bond distance (Å), intermolecular fre-
quency corresponding to the formation of the dihydrogen bond (cm−1) and
number of imaginary frequencies.

Eint Eint + CP rLi−H rH···H ν
ECPint rCPLi−H rCPH···H νCP ]

LiH · · ·HF HF -10.91 -10.79 1.618 1.599 223.8 1
-10.79 1.619 1.605 222.6 1

B3LYP -14.72 -14.53 1.599 1.347 282.5 1
-14.53 1.603 1.353 281.8 1

MP2 -13.56 -12.85 1.605 1.383 260.2 1
-12.87 1.613 1.414 253.0 1

LiH · · ·HCl HF -7.83 -7.41 1.624 1.686 172.9 0
-7.42 1.626 1.719 167.6 1

B3LYP -12.89 -12.37 1.613 1.176 281.5 0
-12.38 1.618 1.196 246.8 1

MP2 -9.95 -8.82 1.617 1.419 190.6 1
-8.88 1.622 1.500 178.6 1

LiH · · ·HBr HF -8.35 -6.46 1.620 1.653 151.8 0
-6.50 1.629 0.986 142.7 1

B3LYP -15.69 -13.26 1.626 0.981 346.7 0
-13.28 1.640 0.959 347.9 1

MP2 -13.39 -10.00 1.629 0.935 342.4 0
-10.05 1.647 0.960 357.9 1

LiH · · ·HCN HF -7.80 -7.54 1.624 1.966 164.3 0
-7.54 1.629 1.981 162.1 0

B3LYP -8.63 -8.26 1.605 1.756 185.2 0
-8.26 1.613 1.771 182.8 0

MP2 -8.40 -7.66 1.616 1.841 176.3 0
-7.64 1.624 1.887 166.7 0

LiH · · ·HCCH HF -3.38 -3.19 1.625 2.223 119.3 0
-3.18 1.629 2.251 118.3 0

B3LYP -4.48 -4.16 1.607 1.980 141.3 0
-4.16 1.613 2.008 135.2 0

MP2 -4.17 -3.60 1.618 2.045 139.2 0
-3.58 1.630 2.112 126.0 0

Note. Italic numbers correspond to the CP-corrected PES parameters.
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Table 3.2: Na−H · · ·H−X (X = F, Cl, Br, CN, CCH) interaction ener-
gies (kcal/mol) and single-point CP-corrected interaction energy (kcal/mol),
Na−H bond distances (Å), dihydrogen bond distance (Å), intermolecular fre-
quency corresponding to the formation of the dihydrogen bond (cm−1) and
number of imaginary frequencies.

Eint Eint + CP rNa−H rH···H ν
ECPint rCPNa−H rCPH···H νCP ]

NaH · · ·HF HF -11.91 -11.81 1.911 1.582 159.2 1
-11.81 1.911 1.588 158.8 1

B3LYP -15.21 -15.02 1.871 1.328 194.8 1
-15.02 1.876 1.335 195.7 1

MP2 -14.78 -14.08 1.901 1.349 185.4 1
-14.10 1.903 1.377 181.2 1

NaH · · ·HCl HF -8.81 -8.35 1.919 1.611 115.1 0
-8.36 1.919 1.653 111.7 1

B3LYP -15.20 -14.58 1.891 0.963 222.2 1
-14.58 1.899 0.977 225.5 1

MP2 -11.86 -10.06 1.920 0.992 229.0 1
-10.33 1.916 1.275 107.3 1

NaH · · ·HBr HF -14.19 -11.90 1.921 0.805 151.1 1
-11.91 1.921 0.811 152.2 1

B3LYP -19.84 -17.78 1.905 0.881 176.2 0
-17.80 1.920 0.889 178.5 0

MP2 -20.08 -17.18 1.931 0.832 166.9 1
-17.19 1.933 0.842 171.4 1

NaH · · ·HCN HF -8.43 -8.27 1.923 1.964 113.8 0
-8.27 1.923 1.972 112.6 0

B3LYP -8.70 -8.42 1.884 1.747 124.8 0
-8.42 1.888 1.767 127.4 0

MP2 -8.90 -8.28 1.916 1.836 121.2 0
-8.27 1.916 1.873 116.6 0

NaH · · ·HCCH HF -3.55 -3.41 1.920 2.236 82.9 0
-3.41 1.921 2.259 81.2 0

B3LYP -4.39 -4.14 1.882 1.977 96.4 0
-4.14 1.886 2.015 93.3 0

MP2 -4.33 -3.82 1.914 2.051 96.9 0
-3.80 1.915 2.114 89.9 0

Note. Italic numbers correspond to the CP-corrected PES parameters.
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served that LiH · · ·HX (X = F, Cl, Br) present doubly degenerated frequen-
cies, so they were not real minima in gas phase. The nonphysical attraction
produced by basis set superposition error can change the topology of the whole
PES, leading to some wrong conclusion. When BSSE is corrected, complexes
become less stable with larger optimized intermolecular distances and lower
values of dihydrogen bond harmonic frequencies compared to CP-uncorrected
optimized systems. NaH · · ·HX (X = F, Cl, Br) were found to have a dou-
bly degenerated imaginary harmonic frequency when non-CP-corrected PES
was calculated. If CP correction is included, no change in the topology is ob-
served, being NaH · · ·HCl at HF level the only exception. MH · · ·HCN and
MH · · ·HCCH complexes present a molecular symmetry change. LiH · · ·HCN
and LiH · · ·HCCH change to an angular geometry, with an angle of torsion
about 70 degree, while NaH · · ·HCN and NaH · · ·HCCH, which had Cs sym-
metry in non-CP-corrected PES, go in a linear arrangement of monomers when
the CP-corrected PES is calculated.

Single-point-corrected energies do not differ very much from those ob-
tained with the CP-corrected PES. Due to the nonphysical attraction that
BSSE represents, intermolecular distances will increase with the inclusion of
CP correction in the whole PES. The relative change due to the BSSE cor-
rection is linearly related to the percentage of CP correction.[240]. It can
be observed that MP2 calculations present the largest amount of BSSE, in
agreement with previous studies.[242]. Consequently, for all complexes stud-
ied, the MP2 CP-corrected potential energy surfaces are those which exhibit
largest changes in the dihydrogen bond, M−H distances and the intermolec-
ular stretching frequencies. On the other hand, if different complexes are
compared, MH · · ·HCCH, which are the weakest ones, are those with largest
variation in the geometry and frequencies.

The other series studied are MH · · ·HX with M = HBe, H2B and X = F, Cl,
Br. Table 3.3 gathers the results for these complexes. Note that parameters
with superindex CP are referred to CP-corrected PES. Furthermore, figure 3.2
shows their structural description. Frequency calculations display that they
are actual minima on the CP-uncorrected and corrected PES. Results are
in agreement with previous calculations by Grabowski,[115, 114] although in
those calculations most of the complexes were restricted to be linear.

Single-point corrected interaction energies in the CP-uncorrected surface
are very similar to those obtained in the CP-corrected PES, as it was seen
in other studies.[240] The HBeH · · ·HBr complex presents the largest differ-
ence between energies at MP2 level, but it is mainly due to the change in the
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linearity of the dihydrogen bond. This complex presents an angular arrange-
ment in the uncorrected surface while it becomes linear when CP correction is
considered in the whole PES.

Figure 3.2: Geometrical parameters for HBeH · · ·HX (X = F, Cl, Br).

The linear or angular arrangement of monomers for the different com-
plexes does not change when CP-corrected PESs are considered, except for the
HBeH · · ·HBr complex at the MP2 level. Like earlier studies,[240, 242, 241] the
most important changes when a CP-corrected PES is used lie in the intermolec-
ular distances, hence the focus on dihydrogen bond distances. As expected,
CP-corrected intermolecular distances are larger than CP-uncorrected PES
distances. In a recent study of a series of hydrogen bonded systems,[240] it was
already found a good linear relationship between the percentage of BSSE and
the relative change in intermolecular distances. This relationship is also found
for HBeH complexes with the three different proton donors at different levels
of theory. HBeH · · ·HF is the system which presents smaller BSSE, leading to
less important changes in the intermolecular parameters than HBeH · · ·HBr.
For these complexes (HBeH · · ·HBr), the CP correction is about 50% of the in-
teraction energy, resulting in changes on the dihydrogen bond distances about
0.15 Å

The intermolecular stretching frequencies corresponding to the dihydrogen
bond formation are collected in table 3.3. It can be observed that they follow
the same trend as intermolecular distances do. This value is shifted to lower
frequencies when they are calculated on the CP-corrected PES. The change
in the frequency is also linearly dependent on the percentage of BSSE, being
more important in the HBeH · · ·HBr complex.

MP2 calculations present, in general, a very large amount of BSSE [242]
and the results reported in this communication show it. For all three complexes
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Table 3.3: HBe−H · · ·H−X (X = F, Cl, Br) interaction energies (kcal/mol)
and single point CP-corrected interaction energy (kcal/mol), dihydrogen bond
distance (Å), angles (degrees) and intermolecular frequency corresponding to
the formation of the dihydrogen bond (cm−1).

Eint Eint + CP rH···H αBe−H···H ν
ECPint rCPH···H αCPBe−H···H νCP

HBeH · · ·HF HF -2.49 -2.38 1.904 180.0 118.2
-2.38 1.915 180.0 115.8

B3LYP -4.02 -3.85 1.594 131.2 291.5
-3.86 1.605 130.4 292.8

MP2 -3.48 -2.92 1.694 130.4 260.5
-2.98 1.749 141.2 214.4

HBeH · · ·HCl HF -1.49 -1.26 2.161 180.0 81.2
-1.27 2.241 180.0 73.0

B3LYP -2.30 -2.01 1.786 180.0 117.5
-2.02 1.826 180.0 110.3

MP2 -2.13 -1.62 1.974 177.0 101.1
-1.65 2.073 180.0 87.3

HBeH · · ·HBr HF -1.90 -0.95 2.174 180.0 79.0
-1.01 2.358 180.0 59.1

B3LYP -2.78 -1.51 1.788 167.9 120.6
-1.57 1.908 165.8 104.5

MP2 -2.69 -1.38 1.963 156.7 126.8
-1.50 2.123 180.0 76.6

Note. Italic numbers correspond to the CP-corrected PES parameters.

studied, the MP2 CP-corrected potential energy surfaces are those which ex-
hibit largest changes, both in the dihydrogen bond distances and the inter-
molecular stretching frequencies.

The results for H2BH · · ·HX (X = F, Cl, Br) are collected in table 3.4.
Figure 3.3 shows their structural parameters. For these systems, it was also
checked that they are minima on the CP-uncorrected and the corrected PES,
respectively. All minima exhibit an asymmetric bidentate structure, in agree-
ment with previous calculations performed by Kulkarni.[154, 155].
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Figure 3.3: Geometrical parameters for H2BH · · ·HX (X = F, Cl, Br).

In general, like in the HBeH complexes, the single point corrected interac-
tion energy calculated in the CP-uncorrected PES is very similar to the CP-
corrected interaction energy. For the H2BH · · ·HCl complex, the largest differ-
ence is found at the MP2 level, where the arrangement of monomers changes
from asymmetric to symmetric if geometry is optimized taking into account the
CP correction. More important differences are observed in H2BH · · ·HBr com-
plex, which presents very flat CP-uncorrected and corrected PES. At the HF
level there are two different minima when the CP correction is not considered.
The asymmetric arrangement of monomers turns out to yield an unphysical
positive interaction energy after applying the CP correction, while the symmet-
ric has a single-point CP-corrected interaction energy about -0.20 kcal/mol.
When the CP-corrected PES is studied, only the symmetric arrangement of
monomers is found, with little change in interaction energy, as expected. At
the MP2 level two minima can be found again, one asymmetric and another
symmetric. The order of stabilization varies depending on which PES is used,
the CP-uncorrected or the corrected one. On the CP-uncorrected PES an
asymmetric arrangement of monomers is the most stable system (being un-
physically repulsive if single-point CP correction is added), while for the CP-
corrected PES a symmetric arrangement becomes the most stable complex.
As mentioned above, it is well known that the MP2 level of theory usually
overestimates BSSE, hence leading to different kinds of wrong conclusions.

Intermolecular distances for H2BH complexes are not so easy to compare
as they were for HBeH. Not only there is a change in dihydrogen bond dis-
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tances, but also different arrangements of monomers appear upon reoptimiz-
ing with CP. Most systems show an asymmetric bidentate dihydrogen bond
at both CP-uncorrected and corrected PES. All these systems present also
a symmetric stationary point with an imaginary frequency, thus not being a
true minimum in the PES and not considered in table 3.4. Noteworthy, a
linear relationship between the percentage of BSSE and the relative change
in H3 · · ·H4 distance can be generally observed, being H3 · · ·H4 the shorter
dihydrogen bond in the bidentate complex. However, there is no general be-
haviour for the H2 · · ·H4 distances. In some complexes it increases when a
CP-corrected PES is considered while in others it decreases. This behaviour
can be understood considering that the main contribution to the interaction
energy arises from the shortest bond.

Two intermolecular stretching frequencies belonging to the formation of
dihydrogen bonds are considered in table 3.4. In all cases their related fre-
quencies decrease when CP correction is included in the PES. However, when
the symmetry of the bidentate complex changes, these two frequencies are not
directly comparable. Frequencies which correspond to the H3 · · ·H4 stretching
show larger changes because the bond distances are those modified most when
reoptimizing in the CP-corrected PES.

3.4 Conclusions

The inclusion of the CP correction along the whole PES clarifies the topo-
logical characterization of dihydrogen-bonded complexes MH · · ·HX (M = Li,
Na and X = F, Cl, Br). In these complexes the BSSE correction has lead to
new PES where they are not minima but have imaginary vibrational harmonic
frequencies, except NaH · · ·HBr at B3LYP or the ones that yet have them in
the non-corrected PES. Almost all complexes present two degenerated imagi-
nary frequencies resulting in transition states systems, which give a posterior
dehydrogenation.

On the other hand, dihydrogen-bonded complexes HBeH · · ·HX and
H2BH · · ·HX (X = F, Cl, Br) on the CP-corrected PES do not differ so dras-
tically from the uncorrected PES, as all minima detected on the corrected
PES are similar to those on the CP-corrected one. Nevertheless, the interac-
tion lengths and energies changes are important enough to consider the BSSE
correction.
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The results of calculations presented in this communication show the im-
portance of considering the CP correction over all the whole PES of dihydrogen-
bonded systems. Not only changes in the interaction energy are found, but also
the arrangement of monomers is modified noticeably. Thus, it is shown that
the study of weekly bonded system must be performed on the BSSE-corrected
PES.



Chapter 4

Atoms in molecules analysis of
dihydrogen bonds

Any sufficiently advanced technology is
indistinguishable from magic.

— Arthur C. Clarke
British science fiction writer and inventor

(1917–2008)

4.1 Introduction

Hydrogen bonds (and intermolecular interactions in general) can be classified
using energetic or geometrical criteria. For instance, topological characteriza-
tion of the electron density ρ (~r) in the intermolecular regions allows for an
accurate analysis based on quantitative interpretation of the electron density

117
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distribution, its Laplacian, and its principal curvatures at the bond critical
points (BCP). Nowadays, such a topological analysis is one of the most useful
tools to characterize atomic and molecular interactions; thus, many studies of
hydrogen bonding from the point of view of the Atoms in molecules theory
(AIM)[11] can be found in the literature. In particular, Koch and Popelier
have proposed a set of topological criteria that a bond must fulfill in order to
be considered as a hydrogen bond; such criteria were applied to classify the
dihydrogen bond interaction.[150, 216]

Among all topological properties used to analyze the electron density, en-
ergetic properties of the electron density distribution at the bond critical point
(G (rBCP ) and V (rBCP )) are quite useful to assess the character of the bond.
For instance, Espinosa et al. have discussed the relationship between the prin-
cipal curvatures of ρ (~r) at the BCP and the energetic properties of ρ (rBCP ),
G (rBCP ), and V (rBCP ), thus leading to a new representation of the topolog-
ical characteristics of electron density in terms of those properties of ρ (~r) and
vice versa.[85, 86, 87] Furthermore, the same authors have tried to classify hy-
drogen bonds using topological and energetic properties of intermolecular BCP
derived from experimental electron densities.[88] In another study, Grabowski
has used the AIM theory as a measure of hydrogen-bonding strength in con-
ventional and unconventional hydrogen bonds.[119, 116, 117, 118] Moreover,
the electron localization function (ELF)∗ has been used to established topo-
logical criteria to distinguish between weak, medium, and strong hydrogen
bonds.[106, 107]

During the last years, very strong hydrogen-bonded systems have deserved
increased attention. One can find in the literature different studies of the co-
valent contribution to this very short hydrogen bond. Espinosa et al. studied
the X−H · · ·F−Y interaction by performing a comprehensive analysis of the
intermolecular topology and energetic properties of ρ (~r) from weak to strong
hydrogen bonds.[84] Their conclusions were supported by Gálvez et al., who
analyzed different intermolecular interactions.[108] Espinosa et al. classified
weak and strong hydrogen bonds from pure closed-shell interactions (weak in-
teraction) to pure shared-shell interaction (very strong HB), including various
levels of contributions of covalent character. Pacios claimed that topologi-
cal indices cannot be used to identify equilibrium structures, because their
change with intermolecular distances does not show special trends.[193] Con-
cerning dihydrogen-bonded systems, some theoretical and experimental studies

∗ELF is a measure of the likelihood of finding an electron in the same neighborhood of
space as a reference electron located at a given point and with the same spin.
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have recently appeared, where very short H · · ·H distances have been reported,
mainly related to a dehydrogenation reaction, including results in the previous
section 3.3 of this thesis.[5, 121, 145, 166, 179] Grabowski et al. studied, in
the framework of AIM theory and energy decomposition analysis, how short
the dihydrogen intermolecular distance contact may be, concluding that very
short H · · ·H intermolecular distances are partly covalent.[122, 121]

Very recently, CHδ+ · · · δ+HC, CH · · ·O, and CH · · ·C weak interactions in
three organic crystals have been compared by analyzing experimental densi-
ties at the H · · ·H and hydrogen bond critical points.[272] This study stresses
also the importance of the assessment of the bond type to understand the
conformation of molecules in their crystalline state and their stability.

Indeed, dihydrogen bonds and hydrogen bonds share a common trend; how-
ever, dihydrogen bonds are very particular because a bond is formed between
two very particular atoms: hydrogens. This special bond has received the focus
of earlier studies, especially on the relationship between topological parame-
ters and energetic properties of ρ (rBCP ); furthermore, their studies have not
assessed clearly enough the different trends shown between dihydrogen-bonded
systems and other hydrogen-bonded complexes when geometric parameters are
considered. Moreover, the Wolstenholme’s above-mentioned study[272] on the
relationship between H · · ·H electron density at the bond critical point and
hydrogen bond length is limited to a few, particular, organic interactions.

In this chapter some general studies of dihydrogen-bonded systems
M−H · · ·H−X (M = Li, Na and X = F, Cl, Br) are analyzed using the
AIM theory and afterwards they will be complemented on differences between
hydrogen- and dihydrogen-bonded systems, focusing especially on the depen-
dence of density parameters with geometries, while dealing with complexes
ranging from weak to very strong. For this purpose, the intermolecular elec-
tron density, its Laplacian, and also its components at the bond critical point
(and optimized equilibrium geometry) will be analyzed. This analysis will be
performed first as a function of the hydrogen/dihydrogen equilibrium bond
length and later as a function of the interaction energy as a measure of inter-
molecular strength in order to assess which parameters are the most suitable
to separate HB and DHB interactions.



120
CHAPTER 4. ATOMS IN MOLECULES ANALYSIS OF DIHYDROGEN

BONDS

4.2 Methodology

For all monomers and dimers considered in this study, molecular geometries
were optimized at the nonlocal three-parameter hybrid B3LYP and at the MP2
levels of theory.[22, 156] MP2 is one of the most economical post-Hartree-Fock
methods that account for the full range of intermolecular interactions: electro-
static, induction, and dispersion effects. Even though the B3LYP approach
does not account for dispersion interactions, several studies have shown a
reasonably good performance of DFT methods.[240] In order to check DFT
results, a comparison of both methods will be discussed in the next section.
MP2 calculations were performed correlating all the electrons except the inner
shells.

The 6-31++G(d,p) basis set was chosen for being one of the most popu-
lar basis sets used in the study of medium- and large-sized hydrogen-bonded
systems as well as for yielding a very small BSSE with countepoise-corrected
values comparable to those of the larger 6-311++G(3df,2pd) basis set.[230]
The countepoise correction (CP) proposed by Boys and Bernardi has been
calculated to the dimerization and interaction energies in order to compare
MP2 and B3LYP energetic data.[39] Vibrational analyses of optimized sys-
tems show that their structures are always a minimum on the potential energy
surface, except for XH · · ·HM (M = Li, Na) as seen in chapter 3. The latter
systems exhibit a double degenerate imaginary frequency which corresponds
to the formation of H2. All calculations were carried out with the Gaussian
03 package.[105]

Bond critical points were characterized using the AIM2000 program based
on Bader’s Atoms in Molecules Theory.[11, 30] The electron density and its
Laplacian were obtained for each intermolecular interaction, as well as the
kinetic and potential energy densities (G (rBCP ) and V (rBCP )) evaluated at
the BCP.

4.3 Results and discussion

This section is split into three parts. The discussion starts with the AIM results
and natural charges of linear M−H · · ·H−X dihydrogen bonds with M = Li,
Na and X = F, Cl, Br. This first approach is intended to obtain a better
understanding of the electronic density of DHBs using different indeces. It will
follow a comparison of these properties with those of various hydrogen-bonded
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systems, looking for the behavior of topological and energetic properties as an
intermolecular distance function. Finally, in order to compare the DHB bond
strength, the dimerization energies will be plotted with some of the electronic
density indeces to find possible correlations. In figure 4.1 the structure of all
different dimers studied in this section and how they are bonded is depicted.
In all cases, hydrogen halides (H−X, where X = F, Cl, Br) were used as
proton donor, while seven different atoms or groups were chosen as proton
acceptors. As pointed out before, when the proton acceptor is a hydrogen
atom, the interaction is defined as a dihydrogen bond.

Tables 4.1 and 4.2 collect all the energetic, geometric and topological data
of the various complexes considered in the present study at the B3LYP and
MP2 levels of theory, respectively. Interaction energies (Eint, in kcal/mol)
correspond to the dimer formation taking into account the nuclear relaxation
of each monomer (i.e. to De, the difference between the absolute energy of
the minimum and separate, optimized monomers) while the dimerization en-
ergy (Edim, kcal/mol) does not take into account the nuclear relaxation (i.e.
it is the difference in energy between the absolute energy of the minimum
and the energies of the monomers with the geometry they have at the dimer
minimum). Both energies are single-point-corrected for BSSE using the CP
correction (Eint + CP , and Edim + CP ). rH···B stands for the intermolecu-
lar distance, whereas ρ (rBCP ) and ∇2ρ (rBCP ) are the electron densities and
their Laplacians at the bond critical point. Two of the main three curvatures
at the bond critical point are collected as λ1 and λ3, the latter being parallel
to the bond. Kinetic (G (rBCP )) and potential energy (V (rBCP )) densities at
the BCP are also reported.

4.3.1 Linear MH · · ·HX with M = Li, Na and X = F, Cl, Br study
based on AIM and natural charges.

In chapter 3 of this thesis it was found, from a geometrical point of view, that
MH · · ·HX (M = Li, Na and X = F, Cl, Br) complexes can be classified in
two different sets. In order to have a deeper insight in these interactions these
dihydrogen bond systems are going to be analysed from an electron density
point of view, within the atoms in molecules (AIM) formalism. Table 4.3
resumes data from tables 4.1 and 4.2 for the aforementioned complexes and
extends it to natural charges. Bond critical point and its topological properties
are calculated in the non-corrected potential energy surface. Natural charges
for both hydrogen atoms in the complex are collected too. Last columns in
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Figure 4.1: Molecular structure of the dimers. Geometrical parameters can be
found in references [6, 115, 114, 154, 155, 172, 214, 218, 221, 240], in chapter 3
and in table B.1 in appendix B.
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tables 4.1 and 4.2 are referred to the charge transfer between monomers when
the dimer is formed. Due to the fact that the tendencies presented by both
LiH and NaH complexes is similar, the next discussion will be referred to both
of them together.

Table 4.3: M−H · · ·H−X (M = Li, Na and X = F, Cl, Br) dihydrogen
bond critical point distance respected to the dihydrogen bond distance, density
at the bond critical point (a.u.), Laplacian at the bond critical point (a.u.),
natural charges of hydrogen Atoms (a.u.) and difference of monomer charges
(a.u.).

rBCP /rH···H ρ (rBCP ) ∇2ρ (rBCP ) qH1 qH2 qH2 − qMH

LiH−HF
B3LYP 0.578 0.047 0.033 -0.793 0.558 0.097
MP2 0.597 0.040 0.052 -0.838 0.602 0.072

LiH−HCl
B3LYP 0.554 0.078 -0.022 -0.669 0.230 0.221
MP2 0.572 0.041 0.036 -0.804 0.302 0.097

LiH−HBr
B3LYP 0.548 0.130 -0.210 -0.533 0.145 0.355
MP2 0.574 0.140 -0.034 -0.547 0.201 0.386

NaH−HF
B3LYP 0.578 0.051 0.025 -0.736 0.544 0.117
MP2 0.599 0.046 0.045 -0.814 0.591 0.096

NaH−HCl
B3LYP 0.551 0.014 -0.250 -0.471 0.166 0.386
MP2 0.576 0.120 -0.022 -0.570 0.230 0.359

NaH−HBr
B3LYP 0.548 0.017 -0.490 -0.383 0.118 0.459
MP2 0.579 0.200 -0.770 -0.399 0.185 0.553

For all complexes, the relative position of bond critical points is similar.
This position is defined from the hydride hydrogen atom, where a value of
rBCP /rH···H=0.6 means that the BCP is near to the protonic hydrogen. More
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interesting is the analysis of the electron density as well as the laplacian at
BCP. It can be rapidly observed that the shorter the dihydrogen bond is, a
higher value in the electron density is found. As it was seen for the geometrical
parameters, the H · · ·H distances in LiH · · ·HBr, NaH · · ·HCl and NaH · · ·HBr
were deriving near to the molecular hydrogen distance. These two factors can
be analysed as the covalent character becomes more dominant. A similar
conclusion can be found when the Laplacian is analysed. Complexes with
larger intermolecular distances present a positive laplacian about 0.03 a.u.,
which is one of the criteria that Popelier defined to characterize a hydrogen
bond in the framework of AIM theory.[216] For the second group of complexes,
those with shorter intermolecular bond length, a negative Laplacian is found,
which describes shared interactions, i.e. covalent bonds. These results totally
agree with optimized geometrical parameters, leading to the conclusion that
these complexes describe the formation of a hydrogen molecule.

Natural charges can help us in the analysis of the covalent character that
presents these complexes. Table 4.3 gathers the natural charges for both hy-
drogen atoms when they are part of the complex. MH · · ·HF dimer present a
very large charge for both hydrogen atoms leading to an electrostatic domina-
tion in the intermolecular energy. Last column in table 4.3 is referred to the
charge transfer between monomer when the dimer is formed.

From these data, it can be observed that as intermolecular distances get
smaller, there is an increase in the charge transfer between monomers. This
fact totally agrees with the increment of the covalent character that present
this set of complexes.

4.3.2 Dependence on optimized (equilibrium) intermolecular dis-
tances.

Figure 4.2 plots electron density values at the bond critical point ρ (rBCP )
vs. the hydrogen or dihydrogen optimized bond length rH···B at B3LYP/6-
31++G(d,p) (solid lines) and MP2/6-31++G(d,p) (dash lines). For both sets
of systems (HB and DHB) and both levels of calculation, ρ (rBCP ) shows a
typical exponential behavior with the intermolecular distance. No meaningful
differences between the results in tables 4.1 and 4.2 are observed. In general, at
the MP2 level the interaction between monomers exhibits lower ρ (rBCP ) than
B3LYP calculations. Analysis of both set of complexes reveals clearly that
DHB systems have smaller ρ (rBCP ) as compared to HB dimers. This general
trend is found for all systems, ranging from the weakest to the strongest ones.
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Figure 4.2: Electron density at the bond critical point (e·Å−3) versus inter-
molecular distance (Å). Solid circles and triangles are for B3LYP calculations
(DHB and HB, respectively), the solid lines being their fitted curves. Empty
circles and triangles are for MP2 calculations (DHB and HB, respectively), the
dashed lines being their fitted curves.

Since all dihydrogen-bonded systems consist of the same proton acceptor (a
hydrogen atom), the change of its ρ (rBCP ) with the intermolecular distance is
much more homogeneous (R2 = 0.999) than it is for hydrogen-bonded systems
(R2 = 0.936 and 0.870 for B3LYP and MP2, respectively), where different
proton acceptors are considered.

Some authors have classified interaction energies by means of∇2ρ (rBCP ).[11,
84] It is well-known that not only ρ (rBCP ) is interesting to be analyzed, but
also the way that this electronic charge density is distributed around the in-
termolecular region. The sign of the Laplacian will determine if the electronic
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Figure 4.3: Laplacian of the electron density at the bond critical point (e·Å−5)
versus intermolecular distance (Å). Solid circles and triangles are for B3LYP
calculations (DHB and HB, respectively), while empty circles and triangles are
for MP2 (DHB and HB, respectively).

charge is locally concentrated (∇2ρ (rBCP ) < 0) or depleted (∇2ρ (rBCP ) > 0).
Figure 4.3 plots ∇2ρ (rBCP ) vs. equilibrium rH···B for this purpose.

The discussion of figure 4.3 can be focused on two different aspects: first,
the comparison between HB and DHB ∇2ρ (rBCP ), and second, the observed
change of Laplacian sign. Regarding topological differences between both in-
termolecular bonds (HB and DHB), it can be seen that DHB display lower
Laplacian values than HB complexes. The different electronic structure of the
atoms involved in the intermolecular interactions will bring about a different
behavior when the classification is based merely on ρ (rBCP ) values. This is
the main reason that DHB systems have a smaller ρ (rBCP ) than HB systems.
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A more interesting analysis can be carried out by checking the sign of
Laplacian values. It is well-known that positive values indicate a closed-shell
interaction, while negative values correspond to shared-shell interactions. All
studied hydrogen-bonded complexes exhibit a positive value of the Laplacian,
thus indicating a depletion of the charge. This fact, along with the low values
of ρ (rBCP ), allows classifying the HB interaction as closed-shell. On the con-
trary, for dihydrogen-bonded systems both positive and negative values of the
Laplacian are founds the stronger complexes having the most negative values.
This behavior was already found in earlier studies and in chapter 3 for very
strong hydrogen and dihydrogen bonds.[5, 120, 145, 166, 179] Likewise, the
trend of Laplacian as a function of distance is in very good agreement with
previous studies.[84, 108] Starting from large intermolecular distances (pure
closed-shell systems), there is a smooth increase of ∇2ρ (rBCP ) while short-
ening the bonds, the Laplacian value reaching a maximum; from this point,
∇2ρ (rBCP ) starts decreasing along with the distance, being very steep when
the Laplacian becomes negative. Interestingly, the largest difference between
MP2 and B3LYP results can be found for very short intermolecular distances.

To get a deeper insight on the different behavior of the ∇2ρ (rBCP ) in
HB and DHB systems, the Laplacian has been decomposed into its three cur-
vatures: λ1 and λ2 (negative curvatures perpendicular to the bond) and λ3

(positive parallel curvature), and analyzed independently. The curvatures per-
pendicular to the bond (λ1 and λ2) will be discussed together, as they have a
similar value due to the cylindrical symmetry of the bond.

In figure 4.4 λ1 and λ3 are plotted as a function of the intermolecular dis-
tance, rH · · ·B. It can be noted that the dependence of curvature vs bond
length is again more homogeneous for DHB systems than for HB complexes
for both the MP2 and B3LYP levels of theory (i.e. at the MP2 level of theory
R2 = 0.9997 for DHB/λ1 while R2 = 0.926 for HB/λ1). At large distances of
DHB systems, λ3 is more sensitive than λ1 to the decrease of the equilibrium
bond length, as compared with the corresponding decrease in HB complexes.
The fact that the variation of λ3 values vs. λ1 values is more noticeable in
HB complexes is the reason for the decrease in the Laplacian values of DHB
complexes (recall that the Laplacian is calculated as the sum of the three cur-
vatures). For both curvatures, DHB values are always much lower, exhibiting
larger differences as the intermolecular distance becomes shorter. It is worth
mentioning that these curvatures show a very well-defined trend versus inter-
molecular distances, which is in very good agreement with earlier works where
the positive curvature was found to be the most meaningful parameter for
hydrogen bond characterization and classification.[88]
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Figure 4.4: λ1 and λ3 (e·Å−5) at the bond critical point versus the intermolec-
ular distance (Å). Solid circles and triangles are for B3LYP calculations (DHB
and HB, respectively), the solid lines being their fitted curves. Empty cir-
cles and triangles are for MP2 calculations (DHB and HB, respectively), the
dashed lines being their fitted curves.

Among all topological characteristics that can be considered, the energetic
properties of ρ (rBCP ) at the bond critical point are a good representation
of the intermolecular interaction. In this scope is centered the discussion of
the HB and DHB systems in terms of energy component densities, that is, ki-
netic and potential energies (G (rBCP ) and V (rBCP )). Thus, in figure 4.5 the
relation between G (rBCP ) and V (rBCP ) with the intermolecular distance is
plotted at the B3LYP/6-31++G(d,p) and MP2/6-31++G(d,p) levels of theory.
As Espinosa et al. showed, for closed-shell systems there is a linear relation-
ship between G (rBCP ) and λ3, while V (rBCP ) is linearly related to the sum
of the other two curvatures (λ1 + λ2).[85, 86, 87] Having this fact in mind, at
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Figure 4.5: Potential (V (rBCP )) and kinetic (G (rBCP )) energy densities (a.u.)
at the bond critical point versus the intermolecular distance (Å). Solid circles
and triangles are for B3LYP calculations (DHB and HB, respectively), the
solid lines being their fitted curves. Empty circles and triangles are for MP2
calculations (DHB and HB, respectively), the dashed lines being their fitted
curves.

large intermolecular distances, figure 4.5 shows a shape similar to that in fig-
ure 4.4. G (rBCP ) can be interpreted as a contribution of the electron dilution
involved in the bond formation. As pointed out above, DHB systems display
high ρ (rBCP ) values as well as lower concentration/depletion of this electron
density. This fact is in full agreement with the lower value of G (rBCP ) shown
by DHB complexes. There is also a decrease of DHB V (rBCP ) as compared to
HB dimers. In that way, a lower ρ (rBCP ) is related to V (rBCP ), due to weaker
capacity to accumulate electrons. Once again, there is a similar behavior for
both MP2 and B3LYP levels of calculation.
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A second point to be considered here concerns the distance shortening and
∇2ρ (rBCP ) becoming negative. While λ3 keeps increasing when shortening
the distance (see figure 4.4), G (rBCP ) presents a maximum for DHB with a
final decrease for NaH · · ·HBr; this is actually the complex with the shortest
intermolecular distance. Espinosa et al. had already found this behavior for
XH · · ·FY, hence classifying the shorter distance complexes as shared-shell
interactions.[84]

A very appealing separation between HB and DHB systems can be ob-
tained for complexes characterized as closed-shell (figure 4.5). Note that the
correlation between G (rBCP ) and rH···B is very good at both levels of theory
and all systems (R2 = 0.988 for DHB/MP2 and R2 = 0.992 for the others).

4.3.3 HB/DHB strength dependence.

So far, the characterization of dihydrogen-bonded systems has been analyzed
in terms of intermolecular distances (rH···B) and electronic densities. However,
another usual attractive point of view can be considered in terms of strength,
that is, considering the energy implied in the formation of DHB.

Figure 4.6 shows how the CP-corrected dimerization energy (with no nu-
clear relaxation) correlates with intermolecular distance. As found in previ-
ous studies, there is an exponential relationship between geometrical parame-
ters (rH···B) and the interaction strength (Edim +CP ).[119] Figure 4.6 shows
how DHB complexes with dimerization energy similar to HB systems present
shorter distances. Since in the first part of this section it was concluded that,
in general, DHB have lower ρ (rBCP ) and also a lower curvature, the present
conclusion fully agrees with the fact that DHB are weaker at the same inter-
atomic distance. A common behavior is found for the B3LYP and MP2 levels
of theory. It must be noted that the NH3 −HBr complex presents a rH···B
distance (1.543 Å) which is too short compared to complexes of similar dimer-
ization energy. The reason may be found in its very large BSSE (2.45 kcal/mol
estimated by CP). In a previous paper,[214, 240] it was shown that there is a
linear relationship between the amount of CP correction to the energy and the
change in the intermolecular distance if the geometry is reoptimized using the
CP-corrected scheme.[214, 240] In this particular case, reoptimizing in a CP-
corrected surface would increase the NH3 −HBr distance and thus improve
the correlation with that of others complexes.

As a result of the trend shown in figure 4.6, it was interesting to reanalyze
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Figure 4.6: BSSE-corrected dimerization energy (kcal/mol) versus intermolec-
ular distance (Å). Solid circles and triangles are for B3LYP calculations (DHB
and HB, respectively), the solid lines being their fitted curves. Empty cir-
cles and triangles are for MP2 calculations (DHB and HB, respectively), the
dashed lines being their fitted curves.

the topology of the HB/DHB interactions and energy density values V (rBCP )
and G (rBCP ) at the bond critical point as a function of the energetic crite-
ria. Therefore, ρ (rBCP ) was plotted as a function of the dimerization energy
(Edim + CP ) (figure 4.7). Comparing this graphic with 4.2 (electron density
represented as a function of rH···B), it can readily be observed that there is
no actual, clear separation between HB and DHB systems. Furthermore, com-
paring the solid line (B3LYP data) with the dashed line (MP2 data), one can
assess again that no significant differences are observed, as far as topological
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Figure 4.7: Electron density at the bond critical point (e·Å−3) versus dimeriza-
tion energy (kcal/mol). Solid circles and triangles are for B3LYP calculations
(DHB and HB, respectively), the solid line being their fitted curve. Empty
circles and triangles are for MP2 calculations (DHB and HB, respectively), the
dashed line being their fitted curve.

behavior is concerned. A similar behavior is observed by plotting the Laplacian
(∇2ρ (rBCP )) or the two curvatures λ1 and λ3 vs. Edim.

To further assess the relationship between density topological parameters
and energetic data, a final analysis of the kinetic and potential energy densi-
ties at rBCP is made. Because of the linear relationship existing for closed-
shell interactions between the curvatures (λ1 + λ1 and λ3) at the BCP and
V (rBCP ) and G (rBCP ), respectively, it might be expected from figure 4.8
that no significant differences will be found between HB and DHB when en-
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ergy densities are analyzed. This fact can be verified in figure 4.8, where
V (rBCP ) and G (rBCP ) are represented vs. the dimerization energy. Focusing
on the systems with larger intermolecular distances, there is no actual differ-
ence between HB and DHB. However, when the distance decreases there is a
maximum in G (rBCP ). Espinosa et al. claimed that this fact (the increase and
further decrease of G (rBCP ) while shortening the intermolecular distance) is
related to the covalent contribution to the bond.[84] Comparing figure 4.8 and
figure 4.5 (G (rBCP ) versus rH···X and CP-corrected dimerization energy, re-
spectively), one can observe that, for DHB complexes, all MH · · ·HX (M = Li,
Na) systems deviate significantly from the HB set. As mentioned above, all
these systems have very short intermolecular distances, which can be trans-
lated into an important covalent contribution. In that way, the representation
of G (rBCP ) versus dimerization energies assess in a better way the separation
between closed-shell and shared-shell systems.

The results presented so far show that hydrogen- and dihydrogen-bonded
systems have topological and energetic properties which show a similar depen-
dence with intermolecular strength, that is, with dimerization energies.[123,
216] This fact is in complete agreement with previous studies which found a
similar behavior for HB and DHB. The present study evidence that, on the
contrary, when the intermolecular distance is considered, meaningful differ-
ences can be found between the set of HB or DHB complexes; such differences,
induced by lower density and concentration/depletion electron charge density,
allow for a remarkable separation of both sets of intermolecular bonds and
thus provide a nice way for their classification. Overall, they provide a neater
way to understand HB and DHB systems, which enhances earlier studies.

4.4 Conclusions

B3LYP/6-31++G(d,p) and MP2/6-31++G(d,p) calculations for various dif-
ferent hydrogen-bond and dihydrogen-bond systems have been carried out in
order to analyze their electron density topological and local energetic proper-
ties at the bond critical point at the optimized geometries. MP2 and B3LYP
topological and energetic data give rise to very similar conclusions. Both levels
of calculations predict the same topological differences between HB and DHB
complexes.

Electron density and geometrical analysis of the MH · · ·HX (M = Li, Na
and X = F, Cl, Br dimers show mainly two different set of complexes depending
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Figure 4.8: Potential (V (rBCP )) and kinetic (G (rBCP )) energy densities (a.u.)
at the bond critical point versus the dimerization energy (kcal/mol). Solid cir-
cles and triangles are for B3LYP calculations (DHB and HB, respectively),
and empty circles and triangles are for MP2 calculations (DHB and HB, re-
spectively). Solid lines correspond to fitted curves for all MP2 and B3LYP
data together. For G (rBCP ), only purely closed-shell data are considered in
the fitted data.

on the covalent contribution to the dihydrogen bond. From both points of
view it can be concluded that the set with larger dihydrogen distances, can be
classified as hydrogen bond, while the second one present a covalent hydrogen
bond.

H · · ·H interactions exhibit shorter dihydrogen bond lengths as compared
with hydrogen-bonded systems with the same strength. This behavior can be
rationalized from the lower ρ (rBCP ), as well as a lower concentration/depletion
of that density, which is due to the different electronic structure of both atoms
taking part in the interaction. The proton acceptor hydrogen has a smaller
radius than the hydride hydrogen of a hydrogen bond, and thus the difference.
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While there are no significant differences when properties are represented
as a function of the dimerization energy, they can be separated into two well-
defined sets when intermolecular hydrogen bond distances are considered.

For dihydrogen-bonded complexes it can be observed that their trends are
more homogeneous, due to both atoms involved in the intermolecular interac-
tion being the same in all complexes. Ranging from very weak to very strong
dihydrogen-bonded complexes, it has been found that results for the topo-
logical and energetic values of ρ (rBCP ) are similar to those found earlier for
density by Espinosa et al. for XH · · ·FY complexes, thus revealing important
covalent contribution for very strong systems.

All in all, the relationship between ρ (rBCP ) properties and intermolecu-
lar distances has been characterized; this relationship is different for the set
of dihydrogen-bonded systems and for the set of other standard hydrogen-
bond complexes. Thus it has been possible to assess the differences between
these two types of systems and to stress the importance of taking into ac-
count hydrogen-bond-optimized equilibrium distances instead of energetic (i.e.
dimerization energies) values. The latter parameters do not give rise to a clas-
sification and separation of both sets of hydrogen-bonded systems. Plotting
against bond length does, and hence it allows for better understanding of the
different properties of HB and DHB complexes.



Chapter 5

Kohn-Sham density functional
theory analysis of dihydrogen bonds

The saddest aspect of life right now is that
science gathers knowledge faster than society
gathers wisdom.

— Isaac Asimov
Russian-born professor of biochemistry and

english science fiction writer (1920-1992)

5.1 Introduction

The electronic nature of classical hydrogen bonds has been researched a lot
in recent years, in particular the question as to the extent of covalent (orbital
interaction) versus electrostatic character.[111, 112, 113, 214] Morokuma and

139
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Scheme 5.1.

A−Hδ− · · ·δ+H−X
(a)

A+ · · ·H−H · · ·−X
(b)

A• · · ·H−H · · ·•X
(c)

coworkers have found that hydrogen bonds in simple dimers, e.g., of water,
have a dominant electrostatic but a non-negligible contribution of some 20%
from donor-acceptor orbital interactions.[147] Fonseca Guerra et al. showed
that the hydrogen bonds in Watson-Crick pairs as well as in mismatches of
DNA bases receive a contribution of some 40% from donor-acceptor orbital
interactions between N or O lone pairs and N−H σ∗ acceptor orbitals.[92, 95,
94, 93, 97, 96, 98, 101] Furthermore, Isaacs and coworkers confirmed through
X-ray scattering measurements that the hydrogen bonds in ice have indeed
partial covalent character.[139] Likewise, the driving force of DHB formation
has been ascribed to a combination of a larger term of electrostatic attraction
and a smaller but non-negligible term of donor-acceptor interactions between
the hydridic and protonic hydrogens.[5, 70, 121, 145, 166, 179, 191]

In the last chapters complexes with very strong DHBs were studied, and
recently there has been some interest on this subject in other works as well.[71,
120, 121] These complexes feature extremely short H · · ·H distances of 1.2 to
1.4 Å and relatively high binding energies of some 20 kcal/mol. Theoretical
analyses have classified these DHBs as partially covalent (see chapter 4 and
citation [71]). They appear as precursor complexes AH · · ·HX to a proton
transfer reaction yielding cationic dihydrogen complexes A(H2)+ · · ·X−.[23,
111, 133] Very strong DHBs can achieve H−H bond distances not much longer
than that in the H2 molecule. Interestingly, based on this H−H distance, it
has been argued that the H · · ·H share in a DHB is a more loose donor-acceptor
bond between A−H and H−X (scheme 5.1a) or that it can be conceived as
a H2 molecule with a strong H−H electron-pair bond, interacting with A and
X (schemes 5.1b and 5.1c). Liao, for example, classified the H−H moiety
in microsolvated LiH · · ·HF either as a DHB or a H2 molecule, based on the
computed H−H distance which varies as a function of the number of water
molecules.[165]

There are three objectives developed in this chapter. The first one is
the question if the formation of a DHB (scheme 5.1a) or a molecular hydro-
gen (schemes 5.1b and 5.1c) can be distinguished, and how can it be distin-
guished. For this fundamental issue, the linear H4 is used, as it is the simplest
model system possible. In second place, more realistic (but still simple) model



5.2. METHODOLOGY 141

systems are used, such as LiH · · ·HX with X = Cl, F and CN, as well as
BH−4 · · ·HF, which feature hydridic and protonic hydrogens forming a DHB.
The discussion of how the electronic structure and the bonding of these species
differ from that of H4 is introduced as well. The third and last objective is, after
having examined the basic principles of DHB, modelling more realistic com-
plexes, some of which have been studied experimentally, namely, BH−4 · · ·HX
and AlH−4 · · ·HX. These bonding analyses are based on the quantitative molec-
ular orbital (MO) model contained in Kohn-Sham density functional theory
(DFT)[12, 14, 20, 18, 33, 90, 100, 102, 153, 205, 245, 246, 255, 256, 265, 267] at
the BP86/TZ2P level. For selected model systems, a quantitative bond-energy
decomposition was carried out as a function of the H−H bond distance, into
the classical electrostatic interaction, Pauli repulsive orbital interactions (be-
tween closed shells), and bonding orbital interactions (e.g., donor–acceptor
and electron-pair bonding).

5.2 Methodology

All calculations were performed using the Amsterdam Density Functional
(ADF) program developed by Baerends and others.[12, 14, 20, 18, 33, 90,
100, 102, 153, 205, 245, 246, 255, 256, 265, 267] The numerical integration
was performed using the procedure developed by te Velde et al.[33, 255] The
MOs were expanded in a large uncontracted set of Slater-type orbitals (STOs)
containing diffuse functions: TZ2P (no Gaussian functions are involved).[246]
The basis set is of triple-ζ quality for all atoms and has been augmented with
two sets of polarization functions, i.e. 3d and 4f on C, N and O; and 2p and 3d
on H. The 1s core shells of carbon, nitrogen and oxygen were treated by the
frozen-core approximation.[12] An auxiliary set of s, p, d, f and g STOs was
used to fit the molecular density and to represent the Coulomb and exchange
potentials accurately in each self-consistent field cycle.[153]

All the equilibrium structures were optimized using analytical gradient
techniques.[265] Geometries and energies were calculated at the BP86 level
of the generalized gradient approximation (GGA): exchange is described by
Slater’s Xα potential [245] with nonlocal corrections due to Becke [20, 18]
added self-consistently and correlation is treated in the Vosko-Wilk-Nusair
(VWN) parameterization [267] with nonlocal corrections due to Perdew [205]
added, again, self-consistently (BP86).[90]
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5.2.1 Bonding energy analysis

The overall bond energy E is made up of two major components,

∆E = ∆Eprep + ∆Eint (5.1)

where the preparation energy ∆Eprep is the amount of energy required to
deform the separate molecular fragments from their equilibrium structure to
the geometry that they acquire in the DHB complex. The interaction energy
∆Eint corresponds to the actual energy change when the prepared fragments
are combined to form the DHB complex. It is analyzed in the framework of the
Kohn-Sham MO model using a decomposition of the bond into electrostatic
interaction, exchange repulsion (or Pauli repulsion), and (attractive) orbital
interactions,[26, 27, 28, 147, 185, 280, 279]

∆Eint = ∆Velstat + ∆EPauli + ∆Eoi (5.2)

in which ∆Velstat corresponds to the classical electrostatic interaction between
the unperturbed charge distributions of the prepared (i.e. deformed) molecular
fragments and is usually attractive. The Pauli repulsion ∆EPauli comprises
the destabilizing interactions between occupied orbitals and is responsible for
the steric repulsion. The orbital interaction ∆Eoi in any MO model, and
therefore also in Kohn-Sham theory, accounts for charge transfer (i.e., donor-
acceptor interactions between occupied orbitals on one moiety with unoccupied
orbitals of the other, including the HOMO-LUMO interactions) and polariza-
tion (empty/occupied orbital mixing on one fragment due to the presence of
another fragment). Since the Kohn-Sham MO method of DFT in principle
yields exact energies and, in practice, with the available density functionals
for exchange and correlation, rather accurate energies, we have the special
situation that a seemingly one-particle model (an MO method) in principle
completely accounts for the bonding energy.[256] In particular, the orbital-
interaction term of the Kohn-Sham theory comprises the often distinguished
attractive contributions charge transfer, induction (polarization) and disper-
sion. One could in the Kohn-Sham MO method try to separate polarization
and charge transfer, as has been done by Morokuma in the Hartree-Fock model,
but this distinction is not sharp. In fact, contributions such as induction and
charge transfer, and also dispersion, can be given an intuitive meaning, but
whether, or with what precision, they can be quantified, remains a controver-
sial subject. In view of the conceptual difficulties, further decomposing the
Kohn-Sham orbital interaction term is not adequate in this work, except by
symmetry. It has been observed that the orbital interactions are mostly of
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the donor-acceptor type, and it is therefore justified to denote the full orbital
interaction term for brevity just as “charge transfer” or “covalent” contribu-
tion, as opposed to the electrostatic and Pauli repulsion contributions. How-
ever, the straightforward denotation“orbital interaction”avoids confusion with
the charge-transfer energy, which features in other elaborate decomposition
schemes [253, 252] that also give rise to induction and dispersion contribu-
tions, which are not attempted to be quantified here but which are all lumped
together in the Kohn-Sham orbital interaction.

5.2.2 Analysis of the charge distribution

The electron density distribution is analyzed using the Voronoi deformation
density (VDD) method.[29, 99] The VDD charge QA is computed as the (nu-
merical) integral of the deformation density ∆ρ(~r) = ρ(~r)−

∑
B ρB(~r) associ-

ated with the formation of the molecule from its atoms over the volume of the
Voronoi cell of atom A,

QA = −
∫

Voronoi
cell A

ρ (~r)
∑
B

ρB (~r) d~r (5.3)

The Voronoi cell of atom A is defined as the compartment of space bounded
by the bond midplanes on and perpendicular to all bond axes between nucleus
A and its neighboring nuclei (cf. the Wigner-Seitz cells in crystals).[148, 266]
Here, ρ(~r) is the electron density of the molecule and

∑
B ρB(~r) the super-

position of atomic densities ρB of a fictitious promolecule without chemical
interactions that is associated with the situation in which all atoms are neu-
tral. The interpretation of the VDD charge QA is rather straightforward and
transparent. Instead of measuring the amount of charge associated with a par-
ticular atom A, QA directly monitors how much charge flows, due to chemical
interactions, out of (QA > 0) or into (QA < 0) the Voronoi cell of atom A, i.e.,
the region of space that is closer to nucleus A than to any other nucleus.

The chemical bond between two molecular fragments can be analyzed by
examining how the VDD atomic charges of the fragments change due to the
chemical interactions. In reference [98] however, Fonseca and coworkers have
shown that equation 5.3 leads to small artifacts that prohibit an accurate de-
scription of the subtle changes in atomic charges that occur in case of weak
chemical interactions, such as hydrogen bonds or dihydrogen bonds. This is
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due to the so-called front-atom problem that, in fact, all atomic-charge meth-
ods suffer from. To resolve this problem and, thus, enabling a correct treat-
ment of even subtle changes in the electron density, the change in VDD atomic
charges ∆QA is defined by equation 5.4, which relates this quantity directly to
the deformation density ∆ρ(~r) = ρcomplex(~r) − ρfragment1(~r) − ρfragment2(~r)
associated with forming the overall molecule (i.e., the DHB complex) from the
joining the molecular fragments, fragment 1 and fragment 2.

∆QA = −
∫

Voronoi
cell A in
complex

ρcomplex (~r)− ρfragment1 (~r)− ρfragment2 (~r) d~r (5.4)

Again, ∆QA has a simple and transparent interpretation: it directly mon-
itors how much charge flows out of (QA > 0) or into (QA < 0) the Voronoi
cell of atom A as a result of the chemical interactions between fragment 1 and
fragment 2 in the complex.

5.3 Results and discussion

5.3.1 Linear H4: donor-acceptor H2 −H2 dihydrogen bond versus
electron-pair bonded central hydrogen molecule •H · · ·H2 · · ·H•

The formation of linear H4 from two hydrogen molecules is a generic and
idealized model for analyzing the nature of dihydrogen bonding and, in partic-
ular, for addressing the question if one can distinguish qualitatively between
donor–acceptor H · · ·H bonding and the formation of a hydrogen molecule with
an electron-pair bond. Interestingly, this turns out indeed to be the case. This
follows from the quantitative Kohn-Sham MO analyses at BP86/TZ2P which
are schematically illustrated in figure 5.1 for the frontier-orbital interactions
between two H2 fragments in H4.

Thus, two closed-shell hydrogen molecules approaching each other in a lin-
ear manner yield an H4 molecule (see figure 5.2) with a closed-shell singlet
(S) ground state that is essentially unbound. Pushing the H2 fragments to-
gether, i.e., reducing the central H−H bond leads to 2-orbital–4-electron (or
Pauli) repulsion between the occupied H2 σ orbitals which go into the occu-
pied bonding H4 1σ and occupied antibonding H4 1σ∗ MOs (see figure 5.1a).
In this situation, any stabilizing contribution to the net interaction, besides
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(a) (b) (c)

Figure 5.1: Schematic orbital-interaction diagram for linear H4 in terms of two
H2 molecules.

electrostatic attraction, is provided by donor-acceptor interaction between the
occupied 1σ of one H2 fragment with the unoccupied σ∗ of the other H2 frag-
ment and vice versa. Due to the relatively large HOMO-LUMO gap between
σ and σ∗ in molecular hydrogen, this donor-acceptor interaction is weak and
therefore dominated by the σ ± σ Pauli repulsion; for clarity, figure 5.1a only
shows the latter.

If the two H2 fragments are pushed together, below a certain, critical central
H−H distance, the H2 −H2 antibonding σ− σ combination (1σu in H4) rises
above the H2 −H2 bonding σ∗ + σ∗ combination (2σg in H4) as shown in
figure 5.1b. The original closed-shell singlet configuration is no longer the
ground state at such shorter central H−H distance. Instead, as shown in
figure 5.1c, an open-shell triplet ground state occurs as one of the electrons
drops from the H2 −H2 antibonding 1σu into the H2 −H2 bonding 2σg. This
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substantially reduces the σ ± σ Pauli repulsion and introduces a σ∗ + σ∗ one-
electron bond. Thus, effectively, a central H−H electron-pair bond emerges
in the linear •H · · ·H2 · · ·H• diradical.

The discussion so far highlights the important role of the HOMO-LUMO
gap between σ and σ∗ in each of the two H2 fragments. This, in turn, de-
pends on the internal H−H distance in the H2 fragments, i.e., the terminal
H−H distance in linear H4. In the following text, an overview of numerical
experiments is provided. The objective is to explore how the relative energy
of the singlet (S) and triplet state (T) of H4 depends in central and termi-
nal H−H distances (see figure 5.2). First, two H2 molecules are considered,
each with a frozen internal H−H distance RH of 0.75 Å, that are brought
together from a central H−H distance Rcentral in the resulting linear H4 (see
figure 5.2a). At any dihydrogen bond distance Rcentral that we probe, singlet
H4 is significantly more stable than triplet H4. Both configurations present a
minimum on the PES, the singlet at about Rcentral = 3 Å whereas the higher-
energy triplet state, with its effective electron-pair bond, achieves a minimum
at Rcentral = 0.75 Å. Note that this corresponds to the H2 equilibrium distance.

Next, two H2 molecules that are brought together in linear H4 are consid-
ered again, but now each of these H2 fragments has a somewhat longer frozen
internal H−H distance Rterminal of 1.25 Å (see figure 5.2b). Still, singlet H4

is more stable than triplet H4, at any dihydrogen bond distance Rcentral, but
the energy difference has become smaller.

Finally, the experiment is repeated with long terminal H−H distances
bond distance Rterminal of 2.5 Å (see figure 5.2c). In this situation, in which
the σ−σ∗ gap in the terminal H2 moieties has become relatively small (1.3 eV
as compared to 11.3 eV in the equilibrium H2 molecule), the inversion of orbital
energies between the H4 1σu and H4 2σg occurs at an early stage of approach
and the triplet state is thus easily reached. Indeed, as can be seen in figure 5.2c,
the triplet state drops below the singlet state at all central H−H distances
probed. In other words, H4 with long terminal H−H bonds has a ground state
with an effective central H−H electron-pair bond. Note that the formation of
a central H2 molecule nicely agrees with the optimum central H−H distance
of about 0.75 Å. Note also that the optimum central H−H distance in the
singlet state also becomes shorter as the terminal H−H distances get longer
(compare figures 5.2a–5.2c). Likewise, the energy wells get deeper. The reason
is that, as the σ − σ∗ orbital-energy gap in H2 becomes smaller, also σ + σ∗

donor-acceptor bonding between the H2 moieties in H4 becomes stronger and
eventually overrules the σ ± σ Pauli repulsion.
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(a) Central H−H distance with terminal

bonds kept frozen to 0.75 Å

(b) Central H−H distance with terminal

bonds kept frozen to 1.25 Å

(c) Central H−H distance with terminal

bonds kept frozen to 2.50 Å

(d) Terminal H–H distances with the central

bond kept frozen to 0.75 Å

Figure 5.2: Energy of the singlet (black curves) and triplet groundstate (dashed
curves) of linear H4 as a function of different geometry parameters, computed
at BP86/TZ2P relative to ADF basic atoms.



148
CHAPTER 5. KOHN-SHAM DENSITY FUNCTIONAL THEORY ANALYSIS

OF DIHYDROGEN BONDS

(a) (b) (c)

Figure 5.3: Schematic orbital-interaction diagram for linear H4 in terms of a
central H2 molecule interacting with two outer H• radicals, one to the left and
one to the right.

The question whether the central H2 moiety has a donor–acceptor DHB
character or is best described as a covalent H2 molecule clearly depends on the
terminal H−H distances. It is therefore instructive to consider an alterna-
tive decomposition of linear H4, namely, the central H2 fragment interacting
on each side with a hydrogen atom, i.e., H4 =• H + H2 + H•. Figure 5.2d
shows the corresponding energies of closed-shell singlet and open-shell triplet
H4 (relative to •H + H2 + H• as a function of the terminal H−H distances
(i.e., the approach of the H• atoms) for a central H2 moiety with its H−H
distance frozen to the equilibrium value of molecular hydrogen, 0.75 Å. The
corresponding frontier-orbital interactions that emerge from our quantitative
Kohn-Sham MO analyses are schematically represented in figure 5.3.

When the outer H atoms are far away from the central H2 moiety (i.e., at
large terminal RH), the overall H4 species has a triplet ground state: the dashed
curve is below the solid curve in figure 5.2d. Importantly, the central H2 moiety
in this situation has effectively an electron-pair bonding valence configuration
that interacts with two hydrogen radicals, as shown in figure 5.3c.

As the two outer H atoms are brought closer to the central, frozen H2

moiety (i.e., as Rterminal decreases while Rcentral remains fixed at 0.75 Å), the
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singlet configuration is stabilized and, around Rterminal < 1.5 Å, it becomes the
ground state of H4 (see figure 5.2d). Note that this corresponds to a change of
the valence configuration of the central H2 moiety from an electron-pair bonded
hydrogen molecule to an excited triplet state •H−H• which is intrinsically
unbound. Such a valence excitation is facilitated as the central H−H distance
is expanded because this leads to a small HOMO-LUMO (σ−σ∗) orbital-energy
gap in the central H2 moiety (see figure 5.3a).

In conclusion, the central H−H bond in linear H4 can exist in two quali-
tatively different bonding modes. The first one as donor–acceptor DHB (with
no net bonding in this model system), and the second one as a central H2

molecule with an electron-pair bond. Short terminal H−H distances in H4

favor a central donor–acceptor DHB whereas long terminal H−H bonds lead
to an effectively electron-pair bonded central H2 molecule. In the “H2 + H2

perspective”, this is can be understood in terms of a large (DHB) or small
HOMO–LUMO gap (central electron-pair bond) within the two terminal H2

fragments. In the “•H + H2 + H• perspective”, on the other hand, the same
phenomenon arises from either strong Pauli repulsion, which leads to valence
excitation of the central H2 molecule from bound singlet to unbound triplet, or
weak Pauli repulsion, which keeps the central H2 molecule in the electron-pair
bonded singlet state. Both descriptions are, of course, equivalent.

5.3.2 Dihydrogen bonding in linear AH · · ·HX

The above analyses show that weak donor-acceptor DHB bonding between
two hydrogen molecules is the most stable global situation for linear H4, and
that this bonding cannot surmount closed-shell Pauli repulsion between the
two fragments in this particular model system (see figure 5.2a). The next
step is to modify the linear A−H · · ·H−X model system from A, X = H
towards somewhat more realistic DHB model systems involving a hydridic
hydrogen bound to an electropositive A = Li, BH3 and a protonic hydrogen
bound to an electronegative X = Cl, F, CN. Results for the model systems
LiH · · ·HX and linear BH−4 · · ·HF are collected in table 5.1 (bond analyses) and
figure 5.4 (geometries). Orbital-interaction diagrams, as they emerge from
our quantitative Kohn-Sham MO analyses, are schematically illustrated in
figure 5.5. For clarity, the latter has been simplified to showing the essential
frontier-orbital interactions in the σ-electron system.

Donor-acceptor DHB is significantly stabilized, compared to H4, in the lin-
ear AH−HX model systems LiH · · ·HCl, LiH · · ·HF, LiH · · ·HCN and linear
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Table 5.1: Analysis of H · · ·H dihydrogen bond in selected complexes.†

LiH · · ·HCl LiH · · ·HF LiH · · ·HCN BH−4 · · ·HF
(linear)

Rcentral(H · · ·H) 1.13 1.30 1.70 1.27

Energy decomposition (in kcal/mol)
∆Eoi -40.9 -19.1 -8.1 -18.8
∆EPauli 42.7 21.1 11.8 18.2
∆Velstat -22.2 -18.9 -12.7 -21.3
∆EPauli + Velstat 20.6 2.2 -0.9 -3.1
∆Eint -20.4 -16.9 -8.9 -21.9
∆Eprep 6.7 1.8 0.4 2.4
∆E -13.7 -15.1 -8.5 -19.5
%∆Eoi ‡ 65 50 39 47

Fragment orbital overlaps
〈σAH |σHX〉 0.26 0.16 0.15 0.14
〈σAH |σ∗HX〉 0.56 0.67 0.59 0.44
〈σ∗AH |σHX〉 0.08 0.05 0.04 0.08
〈σ∗AH |σ∗HX〉 0.04 0.01 0.01 0.43

Fragment orbital energy (in eV)
AH

σAH -4.4 -4.4 -4.4 -0.5
σ∗AH -1.3 -1.3 -1.3 0.2

HX
σHX -11.3 -13.3 -9.3 -13.6
σ∗HX -2.1 -1.1 -1.1 -1.1

Fragment orbital population (in a.u.)
AH

σAH 1.71 1.95 1.97 1.82
σ∗AH 0.01 0.01 0.00 0.01

HX
σHX 2.00 2.00 2.00 1.95
σ∗HX 0.34 0.07 0.05 0.19

Fragment VDD Charge (in a.u.)§

∆QAH = −∆QHX 0.15 0.07 0.03 0.08
†Computed at BP86/TZ2P.
‡∆Eoi = ∆Eoi

(∆Eoi+∆Velstat)
× 100%

§Sum of atomic charges ∆QA of all atoms A in a fragment as defined
in equation 5.4, i.e., net change in charge relative to separate AH and
HX.
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2a LiH···HCl 2b  LiH···HF 2c  LiH···HCN

1.273
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-···HF 3b(b)  BH4
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3e(b)  BH4
-···HOCH3
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-···HOH

1.890

3g BH4
-···HNH2

2.059

3h(l)  BH4
-···HSiH3

2.519
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2.497

3h(t)  BH4
-···HSiH3

2.161

3i(l)  BH4
-···HCH3
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2.489

3i(b)  BH4
-···HCH
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2.667

3i(t)   BH4
-···HCH3
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-···HOCH3

3f(b)  BH4
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1.360
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2.051

Figure 5.4: Structures (in Å) of dihydrogen-bonded complexes, computed at
BP86/TZ2P. Numbers correspond to different proton acceptors (2 : LiH, 3:
BH−4 , 4: AlH−4 ), letters to different proton donors (a: HCl, b: HF, c: HCN,
d: CF3OH, e: CH3OH, f : H2O, g: NH3, h: SiH4, i: CH4). Subscripts refer
to connectivity: (l) = linear DHB, (b) = bifurcated DHB, (t) = trifurcated
DHB, (d) = double DHB.
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(a) (b) (c)

Figure 5.5: Schematic orbital-interaction diagram showing relationships and
differences between dihydrogen bonding (DHB) in: (a) HH · · ·HH, (b)
AH · · ·HX and (c) H−H.

BH−4 · · ·HF which are all bound with respect to dissociation into AH and HX
with central H−H bonds of 1.13 Å and -13.7 kcal/mol in LiH · · ·HCl to 1.70 Å
and -8.5 kcal/mol in LiH · · ·HCN (see table 5.1). Thus, except LiH · · ·HCN,
these DHB complexes present relatively short DHB distances, in agreement
with the difference in the proton-donor acidity constant, as pointed out by
Gilli et al. in the qualitative electrostatic-covalent model.[112]

In the cases of LiH · · ·HCl, LiH · · ·HF and linear BH−4 · · ·HF, these lin-
ear stationary structures are second-order saddle points with doubly degen-
erate transition vectors with pronounced A−H−H and H−H−X bending
amplitude, such that molecular hydrogen is eliminated from LiH · · ·HCl and
LiH · · ·HF (scheme 5.2) whereas a bent, but still dihydrogen-bonded structure
bifurcated BH−4 · · ·HF emerges from linear BH−4 · · ·HF (see figure 5.4).

Scheme 5.2.

A−H · · ·H−X −→ AX + H2
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The essential change in electronic structure and DHB bonding mechanism,
from model H4 to LiH · · ·HX or BH−4 · · ·HX, is that the σ∗AH and σHX or-
bitals leave the scene of frontier orbital interactions. The interactions are then
constituted, in good approximation, by a σAH + σ∗HX donor-acceptor orbital
interaction (compare figure 5.5a and 5.5b). This interaction is reinforced as
the σAH gets destabilized and localized on the hydridic H while the σ∗HX is
stabilized and more localized on the protonic H (see figure 5.5b). The σ∗AH
and σHX are still present, of course, but the point is that their orbital energies
have moved out off the HOMO-LUMO regime and, in addition, they have only
little amplitude on the hydridic and protonic hydrogens, respectively, which
together form the DHB.

In line with this, we find that the 〈σAH |σ∗HX〉 overlaps of 0.44–0.67 are
up to one order of magnitude larger than the 〈σ∗AH |σHX〉 which range from
0.04–0.08 (see table 5.1). Also, the gross populations of the σ∗AH and σ∗HX
fragment orbitals show a donation of a few hundredths (LiH · · ·HCN) up to
one third of an electron (LiH · · ·HCl) from the former to the latter. This is
furthermore consistent with the net fragment VDD charges ∆QAH = −∆QHX
of 0.03 (LiH · · ·HCN) to 0.15 a.u. (LiH · · ·HCl).

The corresponding DHB energy decomposition shows that the interac-
tion energy ∆Eint receives an important part of its stabilizing character from
the orbital interaction term ∆Eoi (see table 5.1). Thus, electrostatic attrac-
tion ∆Velstat amounts to -12.7 (LiH · · ·HCN) to -22.2 kcal/mol (LiH · · ·HCl)
whereas the corresponding orbital interaction ∆Eoi is -8.1 (LiH · · ·HCN) to
-40.9 kcal/mol (LiH · · ·HCl). Note that the stronger the DHB, the greater the
relative importance of the orbital interactions. For example, along the series
LiH · · ·CN, LiH · · ·HF and LiH · · ·HCl, the interaction energy goes from -8.9
to -16.9 to -20.4 kcal/mol while the percentage ∆Eoi of all bonding forces (i.e.,
∆Eoi + ∆Velstat) increases from 39% to 50% up to 65%. Interestingly, the lat-
ter is even larger than the highest percentage (some 40%) orbital interactions
found, so far, for regular hydrogen bonds.[92, 95, 94, 93, 97, 96, 98, 101] Impor-
tant covalent contributions to dihydrogen bonding also agree with topological
analyses of the electron density (see chapter 4).

The variation from apolar H−H · · ·H−H to more polar (and stable)
AH · · ·HX species LiH · · ·HCl, LiH · · ·HF, LiH · · ·HCN and linear BH−4 · · ·HF
constitutes a spectrum of donor-acceptor dihydrogen bonding mechanisms that
ranges from clear donor-acceptor bonding, i.e., at variance to the qualitatively
different electron-pair bonded central H2 molecule, to a situation in which
the hydridic and protonic character if the respective hydrogen atoms becomes
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strong. The polar extreme of this spectrum corresponds to a hydride H−

that enters into a 1s+ 1s donor-acceptor interaction with the proton H+ (fig-
ure 5.5c). Thus, the clear-cut difference between donor–acceptor DHB and
central hydrogen molecule turns into a more gradually changing spectrum in
asymmetric model systems AH · · ·HX.

5.3.3 Dihydrogen bonding in MH−4 · · ·HX

To broaden the scope of the above analyses, our set of model systems has
been extended (from LiH · · ·HCl, LiH · · ·HF, LiH · · ·HCN and linear and bi-
furcated BH−4 · · ·HF) to include more DHB complexes involving boron hydride
(BH−4 ) and aluminum hydride (AlH−4 ) fragments as hydride donors, and HCl,
HF, HCN, CF3OH, CH3OH, H2O, NH3, SiH4 and CH4 as proton donors.
Geometries and bond analyses are collected in figure 5.4 and table 5.2, respec-
tively. Note that all species discussed in this section are stable equilibrium
structures with zero imaginary frequencies, except BH−4 · · ·HOH with a dou-
ble DHB which is a TS for the automerization reaction between two equivalent
bifurcated BH−4 · · ·HOH.

Our set of model system covers the full range from very strong and short
DHB (e.g., AlH−4 · · ·HOCF3: ∆E = -22.6 kcal/mol and Rcentral = 1.16 Å)
to very weak and long (e.g., trifurcated BH−4 · · ·HCH3: ∆E = -1.8 kcal/mol
and Rcentral = 2.64 Å). Important donor-acceptor bonding is again revealed by
a strong orbital interaction component ∆Eoi in combination with a sizeable
transfer of charge from BH−4 or AlH−4 to the various proton donors HX (see
table 5.1). Note that the three methane complexes BH−4 · · ·HCH3—linear,
bifurcated and trifurcated—are only very weakly bound, due to the high energy
of the methane σ∗HX acceptor orbitals.

As the energy of this σ∗HX acceptor orbital decreases, e.g., along bifurcated
BH−4 · · ·HOCF3, bifurcated BH−4 · · ·H2O and bifurcated BH−4 · · ·HOCF3, the
DHB bond contracts, becomes stronger and acquires a higher percentage of
donor–acceptor orbital interactions. This trend in bonding may serve as the
basis for a design principle of hydrogen storage materials. Thus, by varying the
electronegativity difference between H and X in H−X (but also between A and
H in AH), one can tune the stability or lability of the DHB system towards
conservation or elimination of the central H2 unit, i.e., uptake or release of
molecular hydrogen as shown in scheme 5.2.
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5.4 Conclusions

The nature of strong dihydrogen bonds (M−H · · ·H−X) that occur, e.g. in
organometallic reaction mechanisms and potential hydrogen-storage materials,
is very similar to that of regular hydrogen bonds (Y · · ·H−X): it is provided
by roughly 40–60% donor-acceptor orbital interactions and a complementary
percentage of electrostatic attraction. This follows from our analyses of the
central H−H bond in LiH · · ·HX, BH−4 · · ·HX and AlH−4 · · ·HX complexes
using the quantitative molecular orbital (MO) model contained in Kohn-Sham
density functional theory (DFT) at BP86/TZ2P.

It has also been shown that, in principle, there can be a qualitative dif-
ference between donor-acceptor DHB and H2 formation which, in the generic
(and idealized) case of H4, correspond to two different electronic states, namely,
closed-shell H−H · · ·H−H and open-shell •H · · ·H−H · · ·H•. This clear-cut
difference can, however, turn into a more gradually changing spectrum in asym-
metric model systems AH · · ·HX that feature hydridic and protonic hydrogens.

The results of our analyses suggest a design principle for hydrogen storage
materials. Thus, by varying the electronegativity difference between H and X
in H−X (but also between A and H in AH), the stability or lability of the
DHB system can be tuned towards conservation or elimination of the central
H2 unit, i.e., uptake or release of molecular hydrogen.
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Chapter 6

Periodic systems

L’univers desconegut ès una cadena
d’esdeveniments
que ens afecten més o menys.

— Antónia Font
Astronauta rimador (2004)

6.1 Introduction

Obtaining a safe, reliable hydrogen storage system is one of the backbones
of the air pollution reduction and one of the trend topics in science nowa-
days.[62, 75, 157, 189, 275, 278] Hydrogen gas combustion is highly exothermic,
it doesn’t liberate greenhouse gases and its production through electrolysis is
efficient and easy to implement. Thus, hydrogen has been thought as a way to
store energy not only on static uses, but also on mobile ones, as cars, trucks
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and other nowadays fuel-powered engines. But as a turndown, storing it is dif-
ficult and dangerous for everyday use, especially with automobiles. Traditional
tanks and gas cylinders have problems with leakages and can explode when
their walls broke as a consequence of a strong impact. More secure means of
storage include absorption of the hydrogen gas on different compounds, which
will avoid the immediate release of the gas in case of structural fail. But the
space the absorber occupies, the ratio between the hydrogen captured in the
absorber and the absorber itself, sometimes makes it ineffectual to use it as a
valid practical holder. Besides, the speed at which the material can liberate
hydrogen is another bottleneck on developing the technology, as sometimes this
speed is slower than the needs of the combustion system. Some other materials
could not be recycled and others need too much temperature to release the
hydrogen, making the energetic balance too negative. A promising compound
for hydrogen storage is ammonia borane, (AB), named also as boraneamine
or amineborane.[183] Amineborane has a rate of 194 g of H2 per kg, is stable
at room temperature and starts the release of hydrogen at 70℃. Heldebrant
and coworkers released an study on synthesizing boraneamine to exploit it as
hydrogen storage.[129]

Those recent investigations on boraneamine are not the only ones using
this molecule as the focus of study. One of the early evidences of dihydro-
gen bonds were found in mid-fifties in different boraneamine structural X-ray
study [135, 167] but were overlooked as DHBs until Richardson et al. conducted
a search on the CSD looking for complexes with N−H · · ·H− B distances less
than 2.2 Å,[219] as exposed in section 1.2.1. Indeed, the solid structure of
BH3NH3, a molecular crystal, has been studied and checked for a long time
in literature, not only experimentally but theoretically as well. Lippert and
Lipscomb [167] used X-ray to determine the structure of ammonia borane at
room temperature and deducted it to have a body-centered tetragonal struc-
ture, which was later supported by Hughes.[135] Nevertheless, Sorokin and
co-workers published in their results that BH3NH3 structure was face-centred
orthorhombic unit cell.[247] Hoon and Reynhardt used powder X-ray data for
BH3NH3 both to confirm that the body-centered tetragonal structure at room
temperature and also to show that the compound undergoes a phase transi-
tion to a low-temperature primitive orthorhombic form at ca. 200 K, also in
the primitive orthorhombic space group.[49, 34, 132] Klooster and co-workers
refined the boraneamine structure using neutron diffraction scattering and es-
tablished that the structure of boron and nitrogen atoms is reversed from the
ones published in the last studies, being boron paired with nitrogen and not a
boron-boron/nitrogen-nitrogen pair.[149]
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Although tridimensional solid state BH3NH3 structure is well defined, the
interactions keeping it altogether are not so deeply studied. The hydrogen
interactions within a single BH3NH3 molecule are of a σ-bond type: three hy-
drogens bonded to the boron atom, giving them hydride character, and three
hydrogens bonded with the nitrogen, giving them the acid properties.[143]
Boron is bonded to nitrogen through a dative bond, formed by the donor-
acceptor complex between the lone pair of electrons from NH3 and the 2p
empty orbital of BH3.[7] Intermolecular interactions can be set between dif-
ferent atoms or groups of atoms. Long distances and sterical impediments
prevent boron and nitrogen atoms from different molecules to interact. A
classical hydrogen bond between the acidic hydrogen from the amine group
and boron is discarded as well, as the interaction distance is again too long.
The most sterically probable interaction is the weak dihydrogen bond between
the proton from the NH part and the hydride from BH, as pointed out by
Cramer [66] and later Klooster [149]. Klooster and co-workers discussed that
in principle, a classical hydrogen bond should be strong enough to hold the
crystal altogether depending on the species involved (see table 1.4) if the ac-
ceptor was a strong one. But weaker acceptors like π-bonds yield to weaker
interactions and are worse interacting with acidic hydrogens,[162] and thus the
interaction which could be established between the much weaker σ-bond ac-
ceptor should be null and the crystal would be not stable at room temperature.
Klooster found out that the interaction which takes place is actually a dihy-
drogen bond, but they could not be sure if it was a σ-type. Four years earlier
Richardson and co-workers had studied—combined with their CSD search for
DHBs—the [BH3NH3]2 dimer using PCI-80/B3LYP methodology and the op-
timized geometry found had features seen in other typical boron compounds.
A particularly interesting aspect of these bonds with boron is that a linear
B−H · · ·H−X arrangement is an exception. The boraneamine dimer has a
calculated B−H−N angle of 98.8° and N−H−H is 158.7°. Although bent
bonds were observed in other cases for weak bonds, here they seem to be the
rule. An explanation lies in the large negative charge carried by the boron
atom, compared to the small negative charge carried by the hydrogen. In or-
der to take advantage of the charge distribution, the H−N points toward the
B−H bond rather than toward H.

Then again, BH3NH3 has remarkable solid/gas structural differences and
is not suitable to study it as a single gas molecule and extrapolate the re-
sults to solid state. Differences between solid and gas states in other weak
donor-acceptor complexes have been discussed in many works [49, 52, 143,
149, 161, 209, 216, 219, 236, 238, 257, 276] and boraneamine has the less sig-
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nificant structural differences due to its strong B−N bond. This complex
has a shorter B−N bond length in the solid (1.58 Å [149]) than in the gas
phase (1.657 Å [257]). Yokoyama and co-workers noted that the dihydrogen
bonding might play an important role in molecular aggregations affecting crys-
tal packing and supramolecular assembly.[276] In the case of BH3NH3, it has
the proton from the amine group partnering with the hydride from the bo-
rane group, providing the means of self-association. Merino et al. studied the
boraneamine molecule, and furthermore the dimer, trimer and tetramer aggre-
gates, applying the atoms in molecules theory and the topological analysis of
the electron density.[179] The PESs obtained were flat and with various sta-
tionary points, similar to these of DHB (see chapter 3), and distances between
hydrogens at the aggregates systems were less than the van der Waals radi
of hydrogen. The electron density analysis showed bond critical points only
along the shorter H · · ·H directions, although hydrogens are geometrically set
on the triangle vertices, and closed-shell interactions (see chapters 4 and 5).
Besides, they also found ring critical points in the cells formed by the interact-
ing hydrogens. Their final conclusions were that the cooperative dihydrogen
interactions are not the main organizing factors in the molecular aggregations,
but dipole-dipole interactions are.

Previous results published in this thesis indicate that the interactions that
hold the boraneamine crystal together are possibly dihydrogen bonds, as Merino
et al. suggested. However, this study is focused on simulating a whole crystal
using ab initio periodic methods, not only a portion of it. Morrison and Siddick
performed the first boraneamine crystal modelling approach using plane waves
density functional theory.[186] The average interactions inside the solid-state
structure their models showed were dihydrogen bonds of the weak kind. In the
boraneamine crystal, each hydrogen could interact with more than two hydro-
gens from other molecules and thus leading to a more attractive energy within
the lattice and a stronger crystal. BH3NH3 is a relatively simple structure and
has a small unit cell which allows to perform a large number of calculations
with a small computational cost associated. Geometries, energies and M−H
frequencies will be calculated in order to obtain data about the intermolecular
interaction type and to clarify if the crystal presents DHBs and if they are im-
portant to its binding. The downside of the periodic ab initio method is that
right now the topological analysis and use of the Kohn-Sham density func-
tional theory are not implemented, thus depriving from good characterization
parameters. The theoretical geometries will be compared with the experimen-
tal data, not to reproduce them, as this would mean to include long-range
dispersion effects that are missing in the functionals used here,[268, 273, 274],
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but for a better study completness.

6.2 Methodology

All calculations in this chapter were made using the CRYSTAL03 periodic
code.[233] CRYSTAL is able to use local Gaussian-type orbitals (GTO) as basis
sets in all crystalline levels: molecules, one-dimensional periodic polymers, two-
dimensional periodic surfaces (slabs), and three-dimensional crystals (bulks).

The selection of Gaussian-type orbitals or plane waves basis sets depend
on the level of accuracy desired and computational power at hand. Both types
of basis sets have different properties which make them able to describe some
systems better than others. Plane waves were commonly used in former calcu-
lations on periodic systems as their computational time expense was lesser than
using Gaussian-type orbitals. Energies and geometries converge faster and ac-
curacy is achieved introducing a pseudopotential to account for core electrons.
In PW there are only Hellmann-Feyman forces present, in contraposition with
GTOs where the calculation of Pulay forces consumes much more time and
their implementation is more complex. Plane waves are easier to define with
the inclusion of the electronic kinetic energy cutoff Ekin, a single parameter.
The larger the Ekin, the better the basis set. GTOs, on the other hand, are
more difficult to adjust for condesed matter systems. In particular, the diffuse
functions overlapping in the GTOs could cause linear dependence problems if
exponents are not correctly set. One of the most interesting characteristics of
PWs is that they do not include the BSSE effect. It is worth using them while
studying systems presenting weak interactions as the energies and geometries
do not need to be corrected. On the other hand, GTOs do have BSSE but
this effect can be corrected using the counterpoise method, explained in chap-
ter 2.3.2. As stated before, the counterpoise effect is an a posteriori method
and thus the corrected energy could not correspond to a stationary point.
CRYSTAL03 includes a BSSE correction based on the counterpoise method,
but does only a point correction and not a whole corrected PES optimization.

But although PWs do not have BSSE, they create other artifacts. Plane
waves occupy the whole space where the molecule is modelled, a periodic
wave repeating uniformly through all three dimensions, whenever the system
modelled is a molecule, a slab or a polymer. This causes specious results
as electronic interactions between molecules or slabs and their replica images
are created. Using Gaussian-type orbitals the dimensionality of the system is
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complied and such artifacts are not present. While energies and geometries
converge faster, they require to store much more data when norm-conserving
potentials were adopted. Finally, plane waves can be used in hybrid functionals
but at high computational costs because of the Fock-exchange; and even now,
the number of PWs used in those methods is limited. That can be a turndown
as hybrid functionals like B3LYP are more accurate than the standard GGA
functionals. GTOs, on the other hand, allow exact exchange calculations as
well as hybrid functionals.

The basis set chosen in this work was the Gaussian-type orbital 6-311G(d,p)
as recommended by Tosoni et al. [259]. It is well balanced between BSSE effect
and computational costs. Bigger basis sets only increase the computational
time without obtaining more accurate results.[39] Plane waves were discarded
as the computational costs to avoid periodic images were bigger than those of
the GTOs, although not having BSSE could have been a major advantage.

Choosing an appropriate functional to model systems with a hydrogen in-
teraction in their structure is primordial as former studies have shown.[260,
261, 262] Five different functionals have been chosen to model the boraneamine
periodic system in its different dimensional geometries: HF, B3LYP,[156, 19]
PW91,[207] PBE[206] and PBE0. Studies on alcoholic molecules with hydro-
gen bond interactions report that B3LYP is more reliable than PW91,[199, 262]
and another work using formic acid and urea as test crystal structures report
that structural features are well reproduced by hybrid methods and GGA.[63]
Specifically, for acid formic and urea, results of structure, BSSE-corrected in-
teraction energies and vibrational analysis show that hybrid methods are more
accurate than HF and both LDA and GGA functionals, with a trend in the
computed properties similar to that already described in the hydrogen bonded
molecular complexes. But although dihydrogen bonds resemble to hydrogen
bonds (see former chapters), one of the scopes of this work is to obtain more
data for a better discussion of the results. For further computational details,
see appendix C.

Specifically previous ab-initio works on formic acid and urea, although
not dihydrogen bond examples, with these functionals in a periodic structure
depict a good reproduction by hybrid methods and GGA.
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6.3 Results and discussion

Molecular structure of boraneamine is depicted in figure 6.1. Reference bo-
raneamine molecule has been optimized at different levels of theory in order
to have data to compare to the crystallographic structure, and computed dis-
tances and angles can be found in table 6.1. The boraneamine crystal has an
orthorhombic lattice and falls into the Pmn21 space group, with 2 molecules in
the conventional cell. The initial parameters used in the calculations are taken
from the experimental results of Klooster and coworkers in determining the
BH3NH3 structure using neutron diffraction techniques.[149] Figure 6.2 shows
the ammonia borane crystal with the unit cell. Moreover, calculations on the
boraneamine slab have been made as well in order to complete the experiment
as a two-closest-molecule thick layer on the [010] plane.

Figure 6.1: Boraneamine molecule.

Table 6.1: Distances (Å) and angles (degrees) of the BH3NH3 molecule, opti-
mized at different levels of theory.

HF B3LYP PW91 PBE PBE0
Distances

N−H 1.003 1.019 1.025 1.026 1.016
B−H 1.208 1.210 1.217 1.219 1.213
N− B 1.687 1.668 1.656 1.657 1.647

Angles
B−N−H 110.6 111.0 111.2 111.2 110.9
N− B−H 104.4 104.6 104.8 104.9 105.0
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(a) [100]

(b) [010]

(c) [001]

Figure 6.2: Boraneamine crystal structures oriented at different planes, Miller
indices indicated. Unit cell defined by thin lines.
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6.3.1 Structure analysis

Relevant geometric parameters for the ammonia borane crystal dihydrogen
bonds, theoretical and experimental data from citation [149], are listed in
table 6.2 and their reference nomenclature for the different molecules, atoms,
bonds and angles can be seen in figure 6.3. Due to the the point group of
ammonia borane, symmetry restrictions produce some of the N−H, B−H
and H · · ·H distances are equal although they are from different hydrogens
and repeat in different ways in the crystal. In this case, there are two different
bonding distances for each hydrogen-nonmetal pair, i.e. B−H and N−H.
Distances and angles in table 6.2 have been grouped, and thus the N−Hb,c

row means that the bonding lengths between N−Hb and N−Hc are equal at
the same level, experimental or theoretical.

Comparing the intramolecular crystalline distances to the molecular ones
there is a minuscule elongation of the N−H and B−H bond length in the
crystal, from 0.001 Å of the N−H at HF level to 0.014 Å of the B−H at
PW91 and PBE, opposed to a more significant shrink in the N− B distance,
from 0.066 Å at HF to 0.056 Å of the PW91, PBE and PBE0. These variations
in the bonding are in agreement with the BH3NH3 molecule establishing an
interaction with the surrounding molecules. As explained in section 3.3, when
molecules interact with each other by means of a dihydrogen bond, as this
should be the case, the trend is to elongate their hydrogen covalent bonding
distances. On the rebound, the bonds next to those elongated are prone to
shorten due to an electron density redistribution (see section 4.3). In this
case, although the difference between the distance in the molecule and in the
crystal is near to negligible in HF, the shortening of the N− B bonds is more
important as it collects the small contributions of all six covalent bonds with
hydrogens which have been modified. As for angles, their change is not more
than two or three degrees from the isolated molecule to its integration within
the crystal. Changes in angles are not known to be notorious as for setting
in a DHB, as it is in the boraneamine crystal which gets at least flatter as
changing angles tend to increase. The bigger changes are in the borane angle
(N− B−H), at PW91 and PBE at its maximum, as the B−H distance is
longer than the N−H and makes the N− B−H more sensible to variation.

Theoretical results behave accordingly to their original Hamiltonian. Hy-
brid functional methods (i.e. B3LYP, PW91, PBE and PBE0) have much more
similar results compared to HF, as expected. Globally, theoretical results
nearly match with the experimental ones. All theoretical methods overesti-
mate the cell boundaries and bonding distances at the intramolecular level,
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Table 6.2: Experimental and optimized geometries of the BH3NH3 crystal.
Distances in Å and angles in degrees. Refer to figure 6.3 for the hydrogens
subindeces. Hydrogen atoms Hb and Hc are equivalent in symmetrical terms,
as Hd and He, and so are the geometric values.

Experimental HF B3LYP PW91 PBE PBE0
[149]

Cell parameters
a 5.40(2) 5.723 5.350 5.283 5.316 5.373
b 4.89(2) 5.173 5.053 4.976 4.969 4.951
c 4.99(2) 5.448 5.412 5.344 5.296 5.214

Intramolecular distances
N−Ha 1.07(4) 1.004 1.022 1.028 1.029 1.019
N−Hb,c 0.96(3) 1.006 1.025 1.034 1.035 1.024
B−Hf 1.15(3) 1.219 1.222 1.231 1.233 1.226
B−Hd,e 1.18(3) 1.214 1.215 1.223 1.225 1.219
N− B 1.58(2) 1.621 1.608 1.600 1.601 1.591

Intermolecular distances
Ha · · ·Hd,e 2.21(4) 2.488 2.286 2.245 2.243 2.279
Hb · · ·He,

Hc · · ·Hd 2.23(4) 2.451 2.302 2.211 2.220 2.215
Hf · · ·Hb,c 2.02(3) 2.181 1.956 1.895 1.904 1.938

Intramolecular angles
B−N−Ha 106(4) 111.8 112.4 112.6 112.6 112.5
B−N−Hb,c 111(2) 111.3 111.2 111.1 111.1 111.0
N− B−Hf 114(2) 106.6 106.5 106.6 106.6 106.7
N− B−Hd,e 112(1) 107.4 108.3 108.7 108.7 108.6

Intermolecular angles
N−Ha · · ·Hd,e 130(1) 131.6 133.0 133.3 132.6 132.4
N−Hb · · ·He,

N−Hc · · ·Hd 137(2) 137.4 136.4 135.5 135.5 135.2
N−Hb,c · · ·Hf 156(3) 163.7 162.6 160.7 160.1 159.8
B−Hd · · ·Ha 156(3) 162.3 161.4 160.0 160.0 159.2
B−Hf · · ·Hb,c 106(1) 104.6 104.2 101.9 101.8 101.3
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Figure 6.3: Detail of one molecule of the boraneamine crystal interacting with
its eight neighbours. Hydrogens have been arbitrarily named clockwise on the
[001] plane, starting from the hydrogen bonded to the nitrogen with a different
bonding distance.

except for the N−Ha bonds, which are underestimated. The closest distances
obtained with a modelling method to the experimental ones come from HF
method for nonmetal-hydrogen bonds, but the hybrid methods describe better
the N− B covalent bond. It is interesting to note that the N− B dative bond
is shorter in the crystal than in the molecule. Allis et al. proposed this effect
was due to the short-range dipole-dipole interactions in the molecular ammo-
nia borane crystal.[7] Regarding the cell parameters, differences are more acute
than the ones in the bondings but otherwise small, although hybrid methods
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get closer to the experimental data than HF. Angles show a different tendency.
The B−N−Hb,c angles at all levels of theory match to the experimental one,
but the other ones have a difference around 6 degrees, leading to wider angles
at B−N−Ha and narrower at N− B−Hd,e,f .

Looking at the intermolecular parameters, it can be seen that they be-
have accordingly to the intramolecular ones. There is a similitude between
parameters from hybrid functional origin with respect to the HF data. Again,
angles have a variation compared to the experimental values of 6 degrees or
less. Morrison and Siddick obtained shorter intermolecular H · · ·H and B−N
bond lengths using plane waves, the intermolecular ones between 1.909 and
2.271 Å and the boron-nitrogen at 1.580 Å.[186] Predicted distances between
the closer hydrogens from neighbouring molecules are longer than those ex-
perimental, except for the hydrogen bonded to the boron, Hf · · ·Hb,c, which
are shorter. Experimental figures corroborate that the length of the Ha · · ·Hd,e

bond is similar to those of the Hf · · ·Hb and Hc · · ·Hd, with 2.21 and 2.23 Å re-
spectively, which renders the crystal as a continuous grid of molecules equally
separated through all the space. However, the difference between these lengths
in the theoretically modelled system ranges from 0.3 to 0.4 Å, and the system
is no longer homogeneous because one layer of molecules is significantly closer
to one of its neighbours on the [100] plane (see figure 6.2a for reference). On
the other planes the distances are kept more or less constant and it can be con-
sidered that molecules are equally spaced. The gap can be thought as a model
artifact, but the fact that all Hamiltonians yield to the same results, within a
reasonable interval and all checked as minima, makes the unevenly separated
layers model plausible. Extra tests with different Hamiltonians (BLYP, LDA-
P86) were preformed obtaining similar geometries, but again they belong to
the DFT methods. A possible explanation can be found at the interactions set
on the different distances. The hydrogen Hb from molecule ○1 is near to Hf

and He from the same molecule ○2 (distances in the 1.895 Å at PW91 to 2.451
at HF range). On the other hand, the two hydrogens at the same distance
from Ha are Hd and He, from molecules ○7 and ○6 respectively. The next
closest ones are He from molecule number ○7 and Hd from number ○6 which
stand around 4 Å. Interactions at such a long distance are not much probable,
especially if there are hydrogens at half this length. Thus, having a closed
four-atom ring (He · · ·Hb · · ·Hf − B) suggests a stronger interaction than a
hydrogen interacting with two others without closing a ring. The interaction
energies will be further discussed in the next section 6.3.2.

In order to have a deeper insight on the crystal nature, a slab consisting
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of the two closest layers of borazane on the [010] plane was modelled and
optimized. The objective is to compare it with the crystal geometry, mainly
to check the behaviour of hydrogens Ha, Hd and He which in this system will
not interact with other hydrogens. The starting geometries were obtained from
the optimized crystal at its different levels of theory and results are shown in
table 6.3.

Analyzing collected data, HF and DFT methods lead, again, to similar
results in intramolecular lengths and angles but show a different tendency for
the intermolecular ones, the DFT methods being less different to each other
than to HF. The deletion of the molecules in one of the three dimensions
over which the crystal spreads out is expected to produce an expansion of the
minimum energy cell and the molecules within in the other two dimensions
and a constriction in the deleted one.[77] As it can be seen in table 6.3, the
expansion is more acute at the cell borders and intermolecular bonds and
angles than at the intramolecular bonds and angles. The N−H, B−H and
N− B covalent bonds length variations with respect to the crystal geometry
are zero or close to zero, whereas the Hf · · ·Hb,c elongate up to 0.1 Å or more
in the DFT methods. On the other hand, Hb · · ·He and Hc · · ·Hd interactions
shorten more appreciably than the latter. These interactions are nearly parallel
to the c border in whose direction the crystal no longer replicates, and the
attraction from the surrounding molecules along the c axis has disappeared.
The other two cell boundaries, a and b, stretch and become larger as well
in order to accommodate the lengthening of the dihydrogen bonds. The only
value which does not to grow is the b side calculated at HF level, which shrinks
imperceptibly. Angles have a similar tendency as distances: intramolecular
angles do not change or change less than one degree, while intermolecular
angles bend to more narrower geometries as the H · · ·H increase as well.

6.3.2 Bonding energy analysis

A close-packed crystal structure as boraneamine produces a high number of
possible interactions between hydrogens, let alone other atoms. Long-range
interactions are part of the crystal and part of its lattice energy. The theoretical
methods herein used do not treat this long-range interactions and so a cutoff
has been decided in order to define a dihydrogen bond. Most authors [158,
197, 219, 65, 64, 149] set the distance between hydrogens of a dihydrogen bond
around 1.7–2.2 Å, shorter than the van der Waals radius of a hydrogen atom,
but in former chapters of this thesis it has been demonstrated that DHBs can
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Table 6.3: Experimental and optimized geometries of the BH3NH3 slab. Text
in italics are the variation percentage of the above parameter relative to the
crystal equivalent. Distances in Å and angles in degrees. Please refer to
figure 6.3 for the hydrogens subindeces.

HF B3LYP PW91 PBE PBE0
Cell parameters

a 5.888 5.714 5.670 5.679 5.733
2.9 6.8 7.3 6.8 6.7

b 5.149 5.197 5.079 5.056 5.008
-0.5 2.8 2.1 1.8 1.2

Intramolecular distances
N−Ha 1.004 1.019 1.025 1.026 1.017

0.0 -0.3 -0.3 -0.3 -0.2
N−Hb,c 1.006 1.025 1.035 1.036 1.025

0.0 0.0 0.1 0.1 0.1
B−Hf 1.221 1.222 1.229 1.232 1.225

0.2 0.0 -0.2 -0.1 -0.1
B−Hd,e 1.213 1.215 1.223 1.226 1.219

-0.1 0.0 0.0 0.1 0.0
N− B 1.624 1.613 1.605 1.605 1.595

0.2 0.3 0.3 0.2 0.3
Intermolecular Distances

Hb · · ·He, Hc · · ·Hd 2.492 2.164 2.043 2.045 2.061
1.7 -6.0 -7.6 -7.9 -6.9

Hf · · ·Hb,c 2.200 2.051 2.010 2.014 2.048
0.9 4.9 6.1 5.8 5.7

Intramolecular angles
B−N−Ha 112.4 112.7 111.0 113.9 113.3

-0.5 -0.3 1.4 -1.2 -0.7
B−N−Hb,c 111.4 111.1 112.6 110.8 111.0

0.0 0.0 -1.4 0.3 0.0
N− B−Hf 105.9 106.3 106.1 105.8 106.2

0.7 0.2 0.5 0.8 0.5
N− B−Hd,e 107.4 107.9 108.3 108.6 108.4

0.0 0.4 0.3 0.1 0.2
Intermolecular angles

N−Hb,c · · ·Hf 157.5 105.8 146.6 146.7 146.5
-19.7 -20.5 -10.0 -10.6 -10.6

B−Hf · · ·Hb,c 103.7 95.8 91.9 92.0 91.9
0.9 8.0 9.8 9.7 9.2
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be formed even at a longer distance. For those reasons, the dihydrogen bonds
cutoff has been set at 2.5 Å between two molecules. The geometry of the
BH3NH3 crystal discussed in the last section included H · · ·H bond lengths
between 1.895 and 2.488 Å. From this upper value, the next possible contact
is at more than 3 Å, and it is discarded. With these parameters, there are
only 10 possible DHBs contacts, six of which are paired and have a common
hydrogen from the ammonia. These interactions are in table 6.2 and depicted
in figure 6.3, except the Hb · · ·He and Hc · · ·Hd interactions are not depicted.

There are different possible approaches to calculate the DHB interaction
energy EH···H . One of them is to consider that all of the interactions have the
same energy, no matter which distance separates the hydrogens. To calculate
it, the energy of one standing-alone optimized borazane molecule Emolecule is
substracted from the total energy of the crystal cell Ecell, leaving the energy of
the intermolecular interactions which is then divided by the number of bonds
inside the crystal, including those bridging two different cells. In the working
example there are two molecules per unit cell which hold twelve DHBs, half of
them inside the cell, the other six crossing the borders of the defined cell.

EH···H =
Ecell − 2Emolecule

12
(6.1)

A single point counterpoise correction has been also applied to the opti-
mized bonding energies in order to correct the BSSE. The method is similar
to that explained in section 2.3.2 but as it is a periodic system, the extension
of the ghost atoms to the whole crystal has some computational and method-
ological problems. Instead, a zone of ghost atoms is defined and used as an
approximate result to the energy of the molecule in its extended basis set. To
calculate the mean energy of one bond for this system can be expressed as

ECPH···H =
Ecell − 2Emol|GHOST + 2Emol|CRY − 2Emolecule

12
(6.2)

where Emol|GHOST refers to the energy of one boraneamine molecule in the
crystal geometry and neighbouring atoms as ghosts, Emol|CRY is the energy
of the boraneamine molecule at crystal geometry, Emolecule is the energy of
the isolated molecule and Ecell the energy of the crystal cell. The molecule
referred energies are multiplied by two as there are two identic molecules in
the crystalline cell. Were this not the case, the terms should be splitted and
would be different for each molecule.

Results for each level are under the Mean column in table 6.4. For this
energetic distribution the bond strengths are overestimated for the long dihy-



172 CHAPTER 6. PERIODIC SYSTEMS

Table 6.4: Dihydrogen bond interaction energies in the optimized boraneamine
crystal at different levels of theory, in kcal/mol. EH···H columns refer to the in-
teraction without taking into account the BSSE correction and ECPH···H columns
include the BSSE using the counterpoise correction.[39] Under the Mean col-
umn fall the interaction energies of the DHBs considering that all of them
contribute the same amount to the crystal. The other two columns list the
interaction energies of the bondings between specific hydrogens.

Mean Ha · · ·Hd,e Hf · · ·Hb,c,
Hb · · ·He,Hc · · ·Hd

EH···H ECPH···H EH···H ECPH···H EH···H ECPH···H
HF -2,21 -1,97 -1,03 -0,92 -2,80 -2,49
B3LYP -2,81 -2,36 -1,26 -1,07 -3,58 -3,12
PW91 -3,54 -3,00 -1,66 -1,43 -4,48 -3,76
PBE -3,41 -2,89 -1,57 -1,35 -4,34 -3,65
PBE0 -3,21 -2,80 -1,43 -1,25 -4,11 -3,57

drogen bonds (Ha · · ·Hd,e) and underestimated for the short ones (Hf · · ·Hb,c).
Their ranges do not fall outside the interval of the molecules studied in previous
chapters. In any case, they can not be compared straightly to the borane data
(table 3.4 as ammine borane has a covalent bond which makes its electronic
distribution different. Plane wave DFT modelling from Morris and Siddick
lead to similar mean interaction energies of 12.7 kJ/mol (3.0 kcal/mol).[186]
Even so, there is a relation between distance and bond energy: longer bonds
have higher energy (less energy). Counterpoise correction increases the bond
energy around a half of a kcal. per mol for the DFT methods and less than a
quarter of kcal/mol for the HF Hamiltonian. The amount of BSSE is bigger
than in other cases of isolated molecules, like the M−H · · ·H−X series in
chapter 3.

In order to differentiate the energy contribution to the various bonds inside
the crystal, another method has been used. A slab has been cut from the
crystal with the same composing molecules and dimensions as that described
in table 6.3—cut along the [010] plane between molecule ○1 and molecules ○6 ,
○7 , ○8 and ○9 . A single point energy calculation from the optimized crystal
has been made on this structure. This slab does not have the interactions from
Ha · · ·Hd,e dihydrogen bonds, but all the others. Thus, if the energy of the
crystalline cell Ecell is substractd from the energy of this slab Eslab|CRY , it
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results to the whole energy of all of the dihydrogen bonds plus the long-range
interactions in the cut axis of the slab, the c axis. The long-range interactions
are small enough, especially with the Hamiltonians used, and the contributions
to the slab-slab energy can be approximated only to the dihydrogen bonds. As
there are four DHBs crossing the [010] plane, four “halves” for each side, the
gross total should be divided by four:

EHa···Hd,e
=
Ecell − Eslab|CRY

4
(6.3)

Note that this interaction energy does not include the relaxation term usu-
ally included in the bonding energy definition, as it uses the slab in the crystal
geometry, not the optimized isolated molecule. Using the optimized slab en-
ergy would not either lead to the proper binding energy as there are other
interactions which deform the original boraneamine molecule. On the other
hand, using an isolated molecule will not allow the differentiation with the rest
of the dihydrogen bonds.

A similar approach could be used to calculate the Hb · · ·He, Hc · · ·Hd, both
with the same length, and Hf · · ·Hb,c. But the problem is that the definition of
the slab cell, which has to measure the same dimensions as the crystal, is not
possible without breaking a B−H or a N−H bond in a molecule. Besides,
there will be two different H · · ·H bonds broken. Alternatively, the method
used to calculate the bonding energy of these interactions uses the energy of
the slab previously calculated from which the energy of the molecules forming
the slab cell is substracted. The energy obtained contains the intermolecular
interactions and the long-range interactions, which are considered negligible
in front of the bonding energies. The intermolecular interaction energy is then
divided by the number of bonds contributing to it. This slab has two molecules
and eight dihydrogen bonds per cell, thus:

EHf···Hb,c
= EHb···Hc = EHc···Hd

=
Eslab|CRY − 2Emolecule

8
(6.4)

In this case the bonding energies include the relaxation term as it uses
the optimized isolated boraneamine molecule to calculate the dihydrogen in-
teractions. Moreover, a distinction between Hf · · ·Hb,c and both Hb · · ·Hc

and Hc · · ·Hd could not be done, although they have different bond length
and theoretically each group should have different bonding strength. Coun-
terposie correction has been applied as well to the bonding values using the
same method summarized in equation 6.2, but changing the parameters for
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the corresponding ones of number of bonds and energies of the crystal, slab,
and molecules with and without ghost atoms.

Data from the processes described above is collected under the last columns
of table 6.4. As it can be seen, the Ha · · ·Hd,e interaction energy approximately
halves the bonding energy of all Hamiltonians under the Mean column. This
difference should be bigger due to the relaxation term, not included in the
Ha · · ·Hd,e interaction. The BSSE correction rises the interaction energy from
0.1 kcal/mol for HF to 0.23 kcal/mol for PW91, making the interaction weaker.
The Ha · · ·Hd,e interaction has a longer bond distance in all cases except at
B3LYP. Hence, the dihydrogen interaction energies for Ha · · ·Hd,e should be
the weakest in the crystal. The other listed DHBs are stronger, but they cannot
be compared directly as they have different bond length and possibly different
bonding energies as well. Hb · · ·Hc and Hc · · ·Hd are longer than Hf · · ·Hb,c

and should contribute less to the arithmetic mean. PW91, PBE and PBE0 give
bigger energies than B3LYP and HF, being the latter the smaller one. The
BSSE corrected energies have a similar trend: DFT methods have bonding
energies stronger than HF, being PW91 the strongest. The BSSE correction
varies around 0.1 and 0.25 kcal/mol which is similar to the values applied to the
Ha · · ·Hd,e interaction. Still, this BSSE corrected energies are an arithmetic
mean calculation, and energies should be different for each distance. The grand
total for each interaction energy is 11.8 kcal/mol for HF and between 14.2
and 18 kcal/mol for the DFT methods, having B3LYP the smaller correction
and PW91 the bigger. This is not an important error compared to the total
binding energy, as it has been intended in choosing the basis set, although the
interactions are of a DHB type. This can be possible due to the fact that there
are a high number of DHBs formed inside the crystal whose individual flat and
shallow PESs add up to make a deeper potential well, with less BSSE.

6.3.3 Dihydrogen bond frequencies analysis

In this last section, B−H and N−H anharmonic frequencies are used to study
how do they vary in the crystal with respect to the isolated molecule, as they
are a good indicator of the bonding formation and its strength. The N−H
stretching frequencies usually fall into the ∼3500–3700 cm−1, while B−H
stretching falls into the 2500 cm−1 region. In table 6.5 there are the stretch-
ing anharmonic frequencies for the different Hamiltoninans for the BH3NH3

molecule and crystal. Molecular stretching frequencies fall into the aforemen-
tioned ranges: N−H frequencies are between 3325 and 3661 cm−1 and B−H
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between 2388 and 2502 cm−1. Meng and coworkers obtained similar results
for the ammonia borane molecule and dimer at B3LYP level with a bigger
base.[178]

Table 6.5: Anharmonic frequencies (in cm−1) for the N−H and B−H stretch-
ing modes in the BH3NH3 molecule and crystal at their optimized geometries.
Numbers in italics are the frequency shift with respect to the free boraneamine
molecule for the crystal.

Molecule Crystal Molecule Crystal
N−H N−Ha N−Hb,c B−H B−Hd,e B−Hf

HF 3661 3648 3617 2502 2491 2399
-14 -44 -11 -103

B3LYP 3406 3366 3284 2432 2420 2323
-41 -122 -12 -109

PW91 3329 3272 3142 2395 2369 2277
-57 -187 -26 -118

PBE 3325 3269 3143 2388 2364 2273
-56 -182 -24 -115

PBE0 3459 3415 3307 2443 2416 2327
-44 -153 -26 -115

As well as the molecular frequencies, in table 6.5 there are the data for
each of the particular X−H bond stretching in the crystal. Under them there
are their differences with molecular values in italics. In all cases HF leads
to higher frequencies than DFT methods. The N−H stretching frequency
is similar amongst the DFT methods, less than 150 cm−1 in both types of
hydrogen, and about 200 cm−1 between HF and the highest DFT frequency.
N−Ha frequencies change less than the N−Hb,c, and the most acute change
occurs in the DFT methods, while HF changes from one third to one fourth
of the total DFT variation. N−Hb,c has the biggest frequency difference
between DFT and HF: 310 cm−1 for the PBE0 compared to HF. As for the
B−H group, differences between DFT methods and HF are not so important.
All molecular frequencies move in a range of 59 cm−1, less than the N−H
ones, which is a trend even in the crystalline frequencies. All DFT methods
for B−Hd,e fall inside the 56 cm−1 region and there is a difference 71 cm−1

between B3LYP and HF, which is not much. A similar trend is shown for
B−Hf, where DFT are similar around 54 cm−1 and HF is 72 cm−1 higher
than PBE0.
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Focusing on the frequency changes in the crystal and the molecule, hy-
drogen bonds usually produce a decrease in the value of the X−H stretching
with respect to its free counterpart, broadening at the same time its vibra-
tional band. As for dihydrogen bonds, there are reported both red and blue-
shifted changes.[5] Meng and coworkers reported that IR intensities for the
BH3NH3 dimer modelled with the B3LYP Hamiltonian decrease when DHBs
are formed.[178]. Furthermore, there is a good correlation between the shift
and the strength of the bond.[74] Remember the hypothesis from the last sec-
tion that Ha interacts with hydrogens Hd and He, while Hb and Hc interact
with Hf as well as with Hd and He. In this case, it can be seen that in all
levels of theory there is a shift to the red, more or less acute. Thus, molecules
interact with each other in the crystal and as the variation is different for
each ammine and borane hydrogens, interactions should be different. The
smaller change are in the N−Ha and B−Hd,e, while the bigger ones happen
at the N−Hb,c and B−Hf stretching frequencies. It can be induced that the
former hydrogens are entangled in weaker interactions than the latter. The
frequencies variations are in accordance with the interaction energies obtained
in table 6.4. The Ha · · ·Hd,e has a weaker interaction energy and the involved
hydrogen have a lesser change in the anharmonic frequencies, while the other
interactions are stronger and their change in the stretching frequencies are big-
ger. This ties in with distances too: bond with longer distances usually have
smaller frequency changes as their energies are smaller. HF shifts are lower
than DFT shifts, in agreement with their lower interaction energy results. As
it has been stated before, the Hb · · ·Hc, Hc · · ·Hd and Hf · · ·Hb,c interaction
energies can not be differentiated and frequency results do neither shed a light
on this issue. There is a fit between the sum of all their interactions ener-
gies and their frequency shift, but otherwise the exact proportion of the shift
produced by one interaction or the other remains unknown.

6.4 Conclusions

The present theoretical study on the amminoborane crystal shows that dihy-
drogen bonds are present amongst its constituent molecules and act as co-
hesive forces in the crystal. These dihydrogen bonds have different lengths
and strengths as evidenced by the anharmonic frequency shifts. There is an
inverse proportionality relation between the anharmonic frequency shifts and
the interaction strength. The lengths and strengths of these interactions are
typical for a dihydrogen bond type of interaction. The crystal structure has
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been studied using different Hamiltonians including HF and DFT methods
showing that the latter methods group are more similar to each other than to
HF. However, DFT methods still tend to underestimate the interaction energy
and to elongate the H · · ·H distances, similar to the effect pointed out by other
authors.[260, 199]

Basis set superposition error for each single interaction remains unknown as
their own exact error could not be distinguished and only a mean approxima-
tion for each bond can be obtained. Nevertheless, looking at the total BSSE
for all the intermolecular interactions in the crystal, HF leads to a smaller
BSSE than DFT methods. There are no radical changes in the total binding
energy of the crystal when applying the BSSE correction, leading to think that
the CP-corrected PES does not differ much from the uncorrected one near the
optimized geometries.

The BH3NH3 slab simulation, apart from being useful to calculate the
Ha · · ·Hd,e interaction, has also provided information on the fact that there is
an expansion when there are no crystal restrainments on one of the directions of
the primitive cell. This should be taken into account while simulating surface
dynamics, e. g. removing hydrogens on from the crystal using heat.

Frequency shifts in the ammonia borane molecule isolated and inside the
crystal are red-shifted in all methods. It has been checked that the Ha · · ·Hd,e

displacement is proportional to the strength of the interaction. The energy of
the other interactions could not defined exactly, but frequency shifts reaffirm
the idea that Hf · · ·Hb,c, Hb · · ·He and Hc · · ·Hd are stronger than Ha · · ·Hd,e.

Further investigations on this material, focusing on its hydrogen storage
properties, should study the removal and insertion of hydrogens, as the net of
interacting intermolecular hydrogens could break or change, leaving the crystal
unable to recharge and being reused. There is a high probability that all the
interactions can make the crystal a good hydrogen absorbent, even without
removing hydrogens beforehand. Also, the ratio at which hydrogens could be
transferred outside the crystal is an important factor for its appliance to the
hydrogen storage capabilities and should be studied.



Chapter 7

Final conclusions

I ens ha costat Déu i ajuda
arribar fins aqúı.

— Manel
Corrandes de la parella estable (2008)

FIRST While calculating dihydrogen bonds, it is important to consider the
basis set superposition error as the PESs of the DHBs are flat and shal-
low. The changes are not only found in the interaction energy, but also
the arrangement of monomers is modified noticeably. Thus, the BSSE-
corrected PES should be favoured over the non-corrected one in the study
of weekly bonded systems.

SECOND Not only distances and energies change from the non-corrected
PES to the CP-corrected PES, but their topology changes as well.

THIRD Analysis of the electron density topological and local energetic prop-
erties of a series of representative hydrogen-bonded and dihydrogen-

179
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bonded systems at their bond critical point at B3LYP and MP2 level us-
ing a double-polarized, double-diffuse Gaussian type base (6-31++G(d,p))
has shown that there are not any noteworthy differences between the re-
sults of the two Hamiltoninans. Both levels of calculations predict the
same topological differences between HB and DHB complexes.

FOURTH H · · ·H interactions exhibit shorter dihydrogen bond lengths as
compared with hydrogen-bonded systems with the same strength. Due
to the different electronic structure of the atoms taking part in the in-
teraction, the electronic density has a lower concentration/depletion, as
well as that ρ (rBCP ) has a low value.

The representation of different properties of hydrogen-bonded and dihydrogen-
bonded systems versus the dimerization energy lead to no important
differences but can be divided into two well-defined groups when inter-
molecular hydrogen bond distances are included.

SIXTH Dihydrogen MH · · ·HX (M = Li, Na and X = F, Cl, Br) complexes
have an homogeneous trend in the electron density topologic analysis.
The range of strenghts of the dihydrogen bonded complexes spans from
very weak to very strong. In all cases, the topological and energeitc val-
ues of ρ (rBCP ) are similar to those found in other studies from other
authors,[84, 85, 86, 88, 87] and reveals the important covalent contribu-
tion of very strong systems.

SEVENTH There is a relation between ρ (rBCP ) properties and intermolecu-
lar distances which is different for the dihydrogen-bonded complexes and
standard hydrogen-bonded ones. Using these properties and hydrogen-
bond-optimized equilibrium distances instead of energetic (i.e. dimeriza-
tion energies) values, it is possible to find the differences between HBs
and DHBs. Although the latter parameters do not give rise to a clas-
sification and separation of both groups of hydrogen-bonded systems,
when plotted against bond length does, and hence it allows a better
understanding of the different properties of HB and DHB complexes.

EIGHTH The analyses of the central H−H bond in LiH · · ·HX, BH−4 · · ·HX
and AlH−4 · · ·HX complexes using the quantitative molecular orbital (MO)
model contained in Kohn-Sham density functional theory (DFT) at BP86/
TZ2P indicate that there is a similitude in the nature of the dihydrogen
bonds in organometallic reaction mechanism and that of regular hydro-
gen bonds (Y · · ·H−X). The donor-acceptor interactions are roughly
40–60% and complemented by a percentage of electrostatic attraction.



181

NINTH Varying the electronegativity difference between H and X in H−X
(but also between A and H in AH) in a dihydrogen interaction, the stabil-
ity or lability of the DHB system can be modified towards conservation
or elimination of the central H2 unit, i.e., uptake or release of molecular
hydrogen.

TENTH Dihydrogen bonds are present in the BH3NH3 ammino borane crys-
tal and act as cohesive forces amongst the constituent molecules. These
dihydrogen bonds are not identical: they have different lengths and
strengths. There is an inverse proportionality between strength and an-
harmonic frequency shift. The lengths and strenghts of the interactions
fall into the dihydrogen bond category type. Data from all Hamiltoni-
ans used point to the same conclusion, although the data from the DFT
Hamiltonians behave more simlilarly. However, DFT methods tend to
underestimate the interaction energy and to elongate the H · · ·H dis-
tances.

ELEVENTH The exact amount of BSSE that each interaction has in the
ammonia borane crystal can not be known using the method employed
in the study, only a mean approximation. The total amount of BSSE
per crystal cell is not very important but changes the DHBs interac-
tion energies sensibly. HF method leads to a smaller BSSE than DFT
methods.

TWELFTH The slab simulation of the BH3NH3 crystal leads to an expan-
sion of the cell in the not occupied direction at all levels of theory, mainly
due to the inexistent molecular restrainments in such direction.

THIRTEENTH It has been checked that the frequency shift of the Ha · · ·Hd,e

in the ammonia borane crystal is proportional to the strength of the
interaction. All methods show red-shifted displacements in the B−H
and N−H crystalline anharmonic frequencies when compared to those
of the isolated ammino borane molecule. The energy of the other in-
teractions in the crystal could not defined exactly, but frequency shifts
reaffirm the idea that Hf · · ·Hb,c, Hb · · ·He and Hc · · ·Hd are stronger
than Ha · · ·Hd,e.
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[71] H. Cybulski, E. Tymińska, and J. Sadlej. The Properties of Weak and Strong
Dihydrogen-Bonded D − H · · ·H − A Complexes. ChemPhysChem, 7(3):629–
639, 2006. [cited at p. 140]

[72] R. E. Davis. Boron Hydrides. IV. Concerning the Geometry of the Activated
Complex in the Hydrolysis of Borohydride Ion by Trimethylammonium Ion. J.
Am. Chem. Soc., 84(6):892–894, 1962. [cited at p. 39]

[73] L. de Broglie. Recherches sur la théorie des quanta. Ann. Phys., 3:22–128,
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Appendix A

Dirac notation

The Schrödinger wave functions can be regarded as N -dimensional complex
vector spaces, and to simplify operations involving terms within the function,
the Dirac notation is a concise simple notation to do so. The vector −→a can
be written in terms of its N -dimensional basis

−→
i in the form of a ket , and its

complex conjugate as a bra, which respectively are written as:

|a〉 =
N∑
i=1

|i〉ai 〈a| =
N∑
i=1

a∗i 〈i| (A.1)

Thus, the scalar product of two wave functions is∫
ψ∗m (x1, . . . , zN )ψn (x1, . . . , zN ) dτ = 〈m|n〉 (A.2)

and when ψ∗m (x1, . . . , zN ) and ψn (x1, . . . , zN ) are orthonormal, the product
can be written as

〈m|n〉 = δmn (A.3)

where δmn is the Kronecker delta, a function that is 1 when n = m and 0
otherwise.

If Â is a linear operator, it can be applied to the function ψm to obtain
a new function ψn. The original function is symbolised by the ket |m〉 and
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applying the Â operator, the ket Â|ψ〉 is obtained and transformed to |n〉. In
the same manner, it can act on a bra from the right hand side 〈φ| forming
〈φ|Â. In quantum mechanics it is common to project the eigenfunctions of a
function after applying an operator to a different or the same function:(

〈φ|Â
)
|ψ〉 = 〈φ|

(
Â|ψ〉

)
= 〈φ|Â|ψ〉 (A.4)

When the psi and phi wave functions are the same, this expression gives the
expectation value, also known as mean value or average value, of the observable
A represented by operator Â for the physical system in the state |ψ〉.

The notation for two-electron integrals over spin orbitals χn can be ex-
pressed like this:

〈ij|kl〉 = 〈χiχj |χkχl〉 =
∫
χ∗i (~x1)χ∗j (~x2)

1
r12

χi (~x1)χj (~x2) d~x1d~x2 (A.5)

so the antisymmetrised two-electron integral can be represented as:

〈ij||kl〉 = 〈ij|kl〉 − 〈ij|lk〉 =∫
χ∗i (~x1)χ∗j (~x2)

1
r12

(
1− P̂12

)
χi (~x1)χj (~x2) d~x1d~x2 (A.6)

where P̂12 is an operator which interchanges the coordinates of electron one
and two.



Appendix B

Extra information on the AIM
analysis

The following information complements data in Chapter 4.

Table B.1: Equilibrium geometries at the B3LYP and MP2 levels of theory.

B3LYP/6-31++G(d,p) MP2/6-31++G(d,p)
Z x y z x y z

NH3 −HF
9 0.000000 0.000000 0.000000 -0.015846 0.000000 0.000000
1 0.971200 0.000000 0.000000 0.947541 0.000000 0.000000
7 2.614900 0.000000 0.000000 2.620625 0.000000 0.000000
1 2.981067 0.000000 -0.949009 2.992327 0.000000 -0.943399
1 2.981067 -0.821866 0.474504 2.992327 -0.817008 0.471700
1 2.981067 0.821866 0.474504 2.992327 0.817008 0.471700

Continues on next page. . .
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Table B.1 – continued from previous page

B3LYP/6-31++G(d,p) MP2/6-31++G(d,p)
Z x y z x y z

NH3 −HCl
17 0.673465 0.000000 -0.000033 0.618622 0.000000 -0.000001
1 2.031811 0.000000 0.000042 1.928357 0.000000 0.000000
7 3.715001 0.000000 0.000000 3.745819 0.000000 0.000000
1 4.076440 0.000000 -0.950775 4.118947 0.000000 -0.943062
1 4.076460 -0.823384 0.475383 4.118946 -0.816716 0.471531
1 4.076460 0.823384 0.475383 4.118946 0.816716 0.471531

NH3 −HBr
35 0.612264 0.000000 -0.000108 0.549878 0.000000 0.000097
1 2.161126 0.000000 0.000074 2.025983 0.000000 -0.000079
7 3.704578 0.000000 0.000041 3.742833 0.000000 -0.000044
1 4.057089 0.000000 -0.954180 4.110448 0.000000 -0.945442
1 4.057290 -0.826339 0.477086 4.110248 -0.818784 0.472733
1 4.057290 0.826339 0.477086 4.110248 0.818784 0.472733

H2O−HF
9 0.000000 0.000000 0.000000 0.010872 0.000000 -0.027755
1 0.000000 0.000000 0.949400 -0.000173 0.000000 0.915730
8 -0.086864 0.000000 2.620544 -0.099581 0.000000 2.628999
1 -0.503154 0.775618 3.018626 -0.502145 0.771566 3.045110
1 -0.503154 -0.775618 3.018626 -0.502145 -0.771566 3.045111

H2CO−HF
9 0.000000 0.000000 0.000000 -0.001273 0.000000 -0.041258
1 0.948700 0.000000 0.000000 0.941177 0.000000 0.003107
8 2.615613 0.000000 -0.329617 2.657399 0.000000 -0.303523
6 2.922759 0.000000 -1.506346 2.924262 0.000000 -1.503711
1 3.980384 0.000000 -1.821566 3.963596 0.000000 -1.845591
1 2.154114 0.000000 -2.298254 2.136409 0.000000 -2.264806

Continues on next page. . .
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Table B.1 – continued from previous page

B3LYP/6-31++G(d,p) MP2/6-31++G(d,p)
Z x y z x y z

H2O−HCl
17 0.045883 0.001709 -0.390437 0.078343 -0.000013 -0.430277
1 0.013061 -0.001844 0.918092 -0.001013 0.000008 0.851103
8 -0.111560 -0.000318 2.754178 -0.165321 0.000017 2.746947
1 -0.520384 0.774472 3.161545 -0.502648 0.770113 3.219707
1 -0.520171 -0.774019 3.163817 -0.502532 -0.770125 3.219715

H2O−HBr
35 0.065664 0.000143 -0.528822 0.095473 -0.000056 -0.569525
1 0.009735 0.000035 0.91117 -0.002718 0.000219 0.849772
8 -0.116855 -0.000048 2.802215 -0.169805 0.000037 2.793879
1 -0.525867 0.773686 3.211338 -0.508133 0.76978 3.266707
1 -0.525848 -0.773817 3.211293 -0.507988 -0.769981 3.266362

PH3 −HF
9 0.420823 0.000000 -0.000162 0.405407 0.000000 0.000001
1 1.364540 0.000000 -0.000013 1.343716 0.000000 0.000001

15 3.668339 0.000000 0.000178 3.689371 0.000000 0.000000
1 4.398330 0.000000 -1.214722 4.403714 0.000000 -1.205873
1 4.398803 -1.051978 0.607359 4.403715 -1.044315 0.602935
1 4.398803 1.051978 0.607359 4.403715 1.044315 0.602935

H2S−HF
9 -0.056388 -0.000545 0.388807 -0.004575 0.00002 0.320056
1 -0.029909 0.000498 1.331426 -0.031862 0.000017 1.25629

16 -0.075715 0.000051 3.57966 -0.121906 0.000013 3.552056
1 -0.985912 0.979094 3.755002 -0.987796 0.968352 3.840422
1 -0.985924 -0.979098 3.754353 -0.987709 -0.968403 3.840424

Continues on next page. . .
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Table B.1 – continued from previous page

B3LYP/6-31++G(d,p) MP2/6-31++G(d,p)
Z x y z x y z

H2CO−HCl
17 -0.242504 0.000000 0.231547 -0.237489 0.000000 0.169067
1 1.059120 0.000000 0.102165 1.046675 0.000000 0.130464
8 2.866618 0.000000 -0.396752 2.915867 0.000000 -0.372427
6 3.102898 0.000000 -1.587970 3.105655 0.000000 -1.585569
1 4.141458 0.000000 -1.963469 4.119817 0.000000 -1.999845
1 2.293980 0.000000 -2.341305 2.271045 0.000000 -2.297474

H2CO−HBr
35 -0.290544 0.000000 -0.015377 -0.262061 -0.000007 -0.093234
1 1.142784 0.000000 0.134893 1.141568 0.000007 0.152775
8 3.013699 0.000001 -0.323390 3.063471 -0.000001 -0.298495
6 3.093304 0.000000 -1.535303 3.086342 0.000000 -1.526797
1 4.073011 0.000000 -2.044797 4.033300 -0.000004 -2.077160
1 2.189317 0.000000 -2.171809 2.158950 0.000005 -2.112871

HF−HF
1 0.164454 0.502847 0.000000 -0.000785 0.000000 -0.031349
9 0.036542 -1.300729 0.000000 -0.013118 0.000000 1.826341
9 0.036542 1.429346 0.000000 -0.181147 0.000000 -0.945752
1 -0.822214 -1.660403 0.000000 -0.829215 0.000000 2.271327

HBr−HF
1 0.080415 1.732067 0.000000 0.094503 1.775479 0.000000

35 0.029796 -0.714200 0.000000 0.013629 -0.756824 0.000000
9 0.029796 2.666171 0.000000 0.036746 2.704834 0.000000
1 -1.391420 -0.730620 0.000000 -1.396291 -0.770071 0.000000

Continues on next page. . .
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Table B.1 – continued from previous page

B3LYP/6-31++G(d,p) MP2/6-31++G(d,p)
Z x y z x y z

PH3 −HCl
17 0.000000 0.000000 0.000000 -0.044726 0.000000 0.000000
1 1.305100 0.000000 0.000000 1.234694 0.000000 0.000000

15 3.780900 0.000000 0.000000 3.820383 0.000000 0.000000
1 4.521212 0.000000 -1.210578 4.546428 0.000000 -1.200952
1 4.521212 -1.048391 0.605289 4.546428 -1.040055 0.600476
1 4.521212 1.048391 0.605289 4.546428 1.040055 0.600476

H2S−HCl
17 0.000000 0.000000 0.000000 0.084532 0.000000 -0.107991
1 0.000000 0.000000 1.304500 -0.013712 0.000043 1.166163

16 -0.103377 0.000000 3.722191 -0.169634 0.000141 3.689439
1 -1.015236 0.978553 3.891279 -1.017807 0.966816 4.030762
1 -1.015236 -0.978553 3.891279 -1.017228 -0.967001 4.030875

HBr−HCl
1 0.054086 1.322083 0.000000 0.073051 1.363271 0.000000

35 0.025752 -1.270262 0.000000 0.011731 -1.302493 0.000000
17 0.025752 2.616589 0.000000 0.023671 2.636313 0.000000
1 -1.393179 -1.344938 0.000000 -1.396043 -1.373618 0.000000

HBr−HBr
1 0.064351 0.630233 0.000000 0.073600 0.666456 0.000000

35 0.019104 -2.017006 0.000000 0.005108 -2.036629 0.000000
35 0.019104 2.056431 0.000000 0.026586 2.077610 0.000000
1 -1.401600 -2.010106 0.000000 -1.404335 -2.047885 0.000000

H2S−HBr
35 -0.039161 -0.000093 0.121181 0.017645 0.000067 0.018957
1 0.028941 0.000143 1.556872 -0.018741 0.000073 1.435195

16 -0.094275 0.000223 4.031492 -0.167314 0.000197 3.990234
1 -1.015061 0.977811 4.149843 -1.015871 0.966483 4.331928
1 -1.014294 -0.978085 4.149861 -1.015119 -0.966732 4.331976

Continues on next page. . .
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Table B.1 – continued from previous page

B3LYP/6-31++G(d,p) MP2/6-31++G(d,p)
Z x y z x y z

PH3 −HBr
35 -0.095481 -0.000001 -0.001833 -0.118531 -0.000001 -0.000145
1 1.342373 0.000000 0.000895 1.300117 0.000000 0.000127

15 3.853843 0.000000 0.001376 3.882007 0.000000 0.000000
1 4.593812 0.000000 -1.209962 4.608691 0.000000 -1.200789
1 4.597545 -1.047732 0.604762 4.608676 -1.039920 0.600403
1 4.597545 1.047732 0.604762 4.608676 1.039920 0.600403

HF−HCl
1 0.142509 0.042997 0.000000 0.156693 0.009443 0.000000
9 0.024317 2.063053 0.000000 0.003802 2.068957 0.000000

17 0.024317 -1.244066 0.000000 0.027325 -1.257776 0.000000
1 -0.774749 2.538643 0.000000 -0.771426 2.580003 0.000000

HCl−HF
1 0.188296 1.212283 0.000000 0.183170 1.239610 0.000000

17 0.040694 -1.130914 0.000000 0.019376 -1.131341 0.000000
9 0.040694 2.134634 0.000000 0.067341 2.162896 0.000000
1 -1.246337 -1.198451 0.000000 -1.246540 -1.253612 0.000000

HF−HBr
1 0.116158 0.610567 0.000000 -0.007028 1.168744 0.000000
9 0.014807 2.723507 0.000000 -0.292542 -0.955137 0.000000

35 0.014807 -0.809925 0.000000 0.078403 2.577724 0.000000
1 -0.767660 3.225228 0.000000 -1.066423 -1.467857 0.000000

HCl−HCl
1 0.153398 0.687429 0.000000 -0.010851 0.000000 -0.034355

17 0.032060 -1.892334 0.000000 -0.027289 0.000000 2.568303
17 0.032060 1.973778 0.000000 -0.152251 0.000000 -1.299282
1 -1.243452 -2.071972 0.000000 -1.256918 0.000000 2.890631

Continues on next page. . .
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Table B.1 – continued from previous page

B3LYP/6-31++G(d,p) MP2/6-31++G(d,p)
Z x y z x y z

HCl−HBr
1 0.15439 0.02922 0.00000 0.138153 0.009927 0.000000

17 0.02120 2.69015 0.00000 -0.003585 2.653995 0.000000
35 0.02120 -1.38885 0.00000 0.053248 -1.398637 0.000000
1 -1.25697 2.84797 0.00000 -1.247990 2.913202 0.000000

NaH−HBr
11 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.000000 0.000000 1.904723 0.000000 0.000000 2.028719
1 0.000000 0.000000 2.785559 0.898987 0.000000 1.881709

35 0.000000 0.000000 4.617331 2.484085 0.000000 1.847870

LiH−HBr
3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.000000 0.000000 1.625594 0.000000 0.000000 1.629306
1 0.000000 0.000000 2.607082 0.000000 0.000000 2.564315

35 0.000000 0.000000 4.299905 0.000000 0.000000 4.285631

NaH−HF
11 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.000000 0.000000 1.871019 0.000000 0.000000 1.959308
1 0.000000 0.000000 3.198749 1.093136 0.000000 1.692306
9 0.000000 0.000000 4.177426 2.139527 0.000000 1.867717

NaH−HCl
11 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.000000 0.000000 1.890902 0.000000 0.000000 1.863954
1 0.000000 0.000000 2.854047 0.786377 0.000000 1.710672

17 0.000000 0.000000 4.428599 2.751322 0.000000 1.310419

Continues on next page. . .
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Table B.1 – continued from previous page

B3LYP/6-31++G(d,p) MP2/6-31++G(d,p)
Z x y z x y z

LiH−HF
3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.000000 0.000000 1.598739 0.000000 0.000000 1.605196
1 0.000000 0.000000 2.945819 0.000000 0.000000 2.988400
9 0.000000 0.000000 3.918268 0.000000 0.000000 3.952618

LiH−HCl
3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.000000 0.000000 1.612590 0.000000 0.000000 1.617388
1 0.000000 0.000000 2.788951 0.000000 0.000000 3.037263

17 0.000000 0.000000 4.209290 0.000000 0.000000 4.363663

HBeH−HF
4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 1.324165 0.000000 -0.015202 1.321540 0.000000 -0.013741
1 -1.335136 0.000000 -0.015328 -1.331749 0.000000 -0.013847
1 -2.399579 0.000000 1.171436 -2.438114 0.000000 1.268709
9 -2.981758 0.000000 1.908112 -2.967626 0.000000 2.037494

HBeH−HBr
4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 1.326854 0.000000 -0.004751 1.324142 0.000000 -0.009444
1 -1.331642 0.000000 -0.004768 -1.328312 0.000000 -0.009474
1 -3.081146 0.000000 0.363224 -3.136584 0.000000 0.753729

35 -4.469857 0.000000 0.704734 -4.405397 0.000000 1.374579

HBeH−HCl
4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 1.326215 0.000000 0.000016 1.323699 0.000000 -0.000394
1 -1.334107 0.000000 0.000016 -1.330019 0.000000 -0.000396
1 -3.119714 0.000000 -0.001318 -3.301205 0.000000 0.103359

17 -4.416520 0.000000 -0.002001 -4.572842 0.000000 0.182798

Continues on next page. . .
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Table B.1 – continued from previous page

B3LYP/6-31++G(d,p) MP2/6-31++G(d,p)
Z x y z x y z

H2BH−HF
5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 1.189094 0.000000 0.000000 1.183276 0.000000 0.000000
1 -0.611732 -1.022199 0.000000 -0.614531 -1.011184 0.000000
1 -0.571915 1.052864 0.000000 -0.582696 1.035989 0.000000
1 -2.410566 0.629705 0.000057 -1.563514 2.779922 -0.000132
9 -3.34146 0.676398 0.000082 -2.018474 3.588876 -0.000213

H2BH−HBr
5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 1.193800 0.000000 0.000000 1.184784 0.000000 0.000000
1 -0.592324 -1.034646 0.000000 -0.604275 -1.016359 0.000000
1 -0.603216 1.029841 0.000000 -0.598715 1.028077 0.000000
1 1.411295 2.344258 0.000007 0.796056 2.517979 0.000025

35 2.141810 3.562406 0.000089 1.266335 3.318613 0.000068

H2BH−HCl
5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 1.190500 0.000000 0.000000 1.184083 0.000000 0.000000
1 -0.606122 -1.026392 0.000000 -0.607183 -1.016554 0.000000
1 -0.583405 1.044171 0.000000 -0.586214 1.032965 0.000000
1 -2.720609 0.732567 -0.000071 -1.641421 2.892363 0.000182

17 -4.003826 0.859707 -0.000120 -2.268999 3.998224 0.000299
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Table B.2: Correlations for graphics represented in the AIM section

Method Curve fit R2

Figure 4.2
B3LYP y = 2.192e−2.905x + 0.004 0.9998
MP2 y = 2.311e−2.984x + 0.004 0.9992

B3LYP y = 160.15e−5.037x + 0.016 0.936
MP2 y = 62.99e−4.458x + 0.013 0.870

Figure 4.4
λ3 B3LYP y = 4.342e−2.330x + 0.010 0.998

MP2 y = 2.488e−1.850x − 0.013 0.992
B3LYP y = 117.845e−3.718x + 0.055 0.986
MP2 y = 304.672e−4.232x + 0.053 0.982

λ1 B3LYP y = −20.715e−4.208x − 0.008 0.9998
MP2 y = −24.110e−4.399x − 0.007 0.9997

B3LYP y = −1271.000e−5.832x − 0.017 0.971
MP2 y = −593.536e−5.373x − 0.013 0.926

Figure 4.5
G (rBCP ) B3LYP y = 0.124e−1.420x − 0.001 0.992

MP2 y = 0.794e−2.855x + 0.003 0.988
B3LYP y = 2.948e−2.809x + 0.006 0.992
MP2 y = 7.794e−3.337x + 0.006 0.992

V (rBCP ) B3LYP y = −6.272e− 4.205X − 0.005 0.998
MP2 y = −10.030e−4.624x − 0.005 0.998

B3LYP y = −113.060e−4.923x − 0.008 0.972
MP2 y = −13.754e−3.656x − 0.006 0.949

Figure 4.6
B3LYP y = −351.254e−2.395x + 1.810 0.971
MP2 y = −630.547e−3.091x + 0.701 0.949

B3LYP y = −3.206· 103e−3.594x − 1.986 0.812
MP2 y = −1.161· 105e−5.635x − 1.967 0.866

Figure 4.7
DHB B3LYP y = −3.899· 10−3x+ 7.512· 10−3 0.955

HB B3LYP
DHB MP2 y = −3.769· 10−3x+ 6.284· 10−3 0.955

HB MP2
Figure 4.8

B3LYP y = 1.485e−0.002x − 1.481 0.882
MP2

B3LYP y = −0.212e−0.013x + 0.210 0.954
MP2



Appendix C

Extra information on the BH3NH3

solid state analysis

In this appendix there is further computational details on how the boraneamine
molecule is calculated under the CRYSTAL03 code. All models, molecules,
slabs and crystals are computed using the same parameters, except where
otherwise stated. All the parameters adopted here are chosen among the values
which suited best after making test runs with them.

The unit cell has 16 atoms defined in it with 36 electrons. The basic
reciprocal llattice cells of the BH3NH3 for crystals and slabs are sampled using
a shrinking factor (Monkhorst-Pack and Gilat) of 4, giving a total of 27 k
points. The integration grid of points used for the exchange and correlation
methods is larger and more adequate than the CRYSTAL03 default grid, using
the LGRID command. This grid was made up of 75 radial points, integrated
with the Gauss-Legendre algorithm and 5 subintervals for 50, 146, 194, 434 and
184 angular points using Lebedev algorithm, giving 45899 point per unit cell.
The tolerance on the desnity matrix is 10−8 electrons for geometry calculations
and 10−11 for frequency calculations.

Tolerances in accuracy controlling Coulomb and HF exchange series are
set to 10−7 for the overlap and penetration for Coulomb integrals, as well as
for the overlap and pseudo-overlap for HF eschange integrals. For the second
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pseudo charge, the threshold is to 10−14. The energy threshold parameter
for the self consistent field method is set at 10−12 a.u. The optimization of
the internal coordinate is done using the Berny algorithm. The convergence is
tested on the root-mean-square (RMS) and on the absolute value of the largest
components of both the gradient and the estimated nuclear displacement. The
threshold for the forces has been set to 0.00045 for the maximum and 0.00030
for the RMS, while for the atomic displacement is 0.0018 for the maximum
and 0.0012 for the RMS. The evaluation of the gradients are numerical. The
mixing of the Fock and Kohn-Sham matrices for the SCF to converge faster
was set to 30%.

The BSSE was calculated using the MOLEBSSE key with a maximum
number of neighbour atoms of 54 and a maximum explored distance of 100 Å.
These parameters were chosen after a series of tests run with different values
and chosing the optimal ones for the borazane molecule.

In some anharmonic frequency quirky calculations, a modified Broyden [48]
scheme has been used. This scheme follows the method proposed by John-
son [142] and mixes the Fock and KS matrices.
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ab initio method, 63

AIM, see Atoms in molecules theory
Amplitude function, see Wave function
Antisymmetry principle, 69
Atomic model

Bohr, 9, 48
Rutherford, 48
Thomson, 47

Atoms in molecules theory, 90, 118, 160
Attractor, 91
Average value, see Expectation value

Basis function, 74
Basis set, 82
Basis set superposition error, 74, 82–84,

104, 171
BCP, see Bond critical point
Bielectronic density, 65
Black body, 46
Bloch

function, 98
theorem, 97

Bohr postulates, 48
Bohr’s correspondence principle, 49
Boltzman’s constant, 47
Bond

Covalent, 12
Dipole-dipole, 14
Hydrogen, 14
Ionic, 12
London dispersion forces, 14
Metallic, 13
Order, 13

Bond critical point, 91, 118
Bond length, 10
Born-Oppenheimer approximation, 57
Born-von Karman boundary condition, 99
bra, see Dirac notation
Brillouin zone, 97
BSSE, see Basis set superposition error,

see Basis set superposition er-
ror

Bulk, 161

Cage critical point, 91
CCP, see Cage critical point
CDF, see Constrained dimer function
CHA, see Chemical Hamiltonian approach
Characteristic function, see Wave func-

tion
Charge density, see Electronic density
Chemical bond, 10
Chemical Hamiltonian approach, 85
Chemical shift, 18
Cluster model, 97
Commutator, 56
Complementarity principle, 49
Complex Conjugate, 55
Condensed matter, 97
Constrained dimer function, 85
Correlation energy, 78
Coulomb

integral, 72, 75
operator, 72
potential DFT, 95

Counterpoise correction, 85, 104, 172
CP, see Counterpoise correction
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Critical circle, 92
Critical point, 91
Critical sphere, 92
Crystal momentum, 101
Cyclotrigallazane, 35, 39

Delocalisation, 13
Electron, 93

Density
First order, 63
Second order, 65

Density functional theory, 63, 104
Density matrix

First order, 64
Second order, 65

DFT, see Density functional theory
Diffuse function, 83
DiHydrogenBonds, 24
Dipole moment, see Electric dipole mo-

ment
Dirac

Notation, 211

Eigenfunction, 54
Eigenvalue, 54
Electric dipole moment, 11
Electron localization function, 118
Electronic correlation, 63
Electronic density, 63, 90
ELF, see Electron localization function
Ellipticity, 92
Exchange

integral, 72, 75
operator, 73

Exchange-correlation, 70
electronic energy, 95
energy, 81, 95
functionals, 80
potential DFT, 96

Expectation value, 212

Finite model, see Cluster model
First order density, 63, 90

matrix, 64
Floating functions, 82
Fock matrix, 75
Fock operator, 73
Force, 7
Fragment preparation, 86
Fragment relaxation, 86

Gaussian-type orbital, 82
Geiger-Marsden experiment, 47
Generalized gradient approximation, 81
GGA, see Generalized gradient approxi-

mation
Gold foil experiment, 47
GTO, see Gaussian-type orbital

Hamiltonian, 52
Hartree product, 69
Hartree-Fock, 26, 104
Hartree-Fock approximation, 71
Heisenberg uncertainty principle, 56
Hessian, 91
Hohenberg-Kohn

functional, 66
theorems, 65

Hybrid functional, 82

Improper hydrogen bond, 18
Interaction

Electromagnetism, 9
Gravitation, 9
Strong, 9
Weak, 9

Intrinsic reaction coordinate, 105
Ion, 12

Anion, 12
Cation, 12

IRC, see Intrinsic reaction coordinate
Iteration, 73

ket, see Dirac notation
Kohn-Sham

equations, 94, 141
orbitals, 96, 142

Kronecker delta, 211

Laplacian, 52
LCAO method, see Linear combination

of atomic orbitals method
LDA, see Local density approximation
Linear combination of atomic orbitals method,

13
Local correlation methods, 85
Local density approximation, 81
Local spin density approximation, 81
Localisation

Electron, 93
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LSDA, see Local spin density approxima-
tion

Møller-Plesset perturbation theory, 78
Møller–Plesset perturbation theory, 104
Mean value, see Expectation value
Metric matrix, see Overlap matrix
MPPT, see Møller-Plesset perturbation

theory

Newton’s Laws of Motion, 8
Normalisation, 55

Operator
Hamilton, 52
Laplace, 52

Orbitals
Atomic, 13
Molecular, 13, 141

Orthogonality, 55
Orthonormality, 59
Overlap matrix, 75

Pair density, 65
Pauli exclusion principle, 70
Perturbation theory, 60
PES, see Potential energy surface
Photon, 47
Planck’s constant, 47
Plane waves, 84, 161
Plum pudding atomic model, see Atomic

model, Thomson
Polarisation, 11
Polarisation function, 83
Pople-Nesbet equations, 78
Potential energy surface, 87
Probability amplitude function, see Wave

function
Probability distribution function, 51, 54,

63
Proper function, see Wave function

Quanta, 47
Quantum numbers, 51
Quantum theory

New, 50
Old, 46

Rayleigh-Jeans law, 47

Rayleigh-Schrödinger perturbation theory,
see Perturbation theory

RCP, see Ring critical point
Restricted Hartree-Fock method, 74
Restricted open-shell Hartree Fock method,

76
RHF, see Restricted Hartree-Fock method
Ring critical point, 91
ROHF, see Restricted open-shell Hartree

Fock method
Roothan equations, 74, 75
Rutherford experiment, 47

SCF, see Self-consistent field
Schrödinger wave function, see Wave func-

tion
Second order density, 65
Second order density matrix, 65
Self-consistent field method, 73
Shift

Blue, 18
Red, 18

Slab, 161
Slater determinant, 70
Slater-type orbital, 82, 141
Spatial orbital, 68
Spin orbital, 68
Stationary state, 55
STO, see Slater-type orbital

UHF, see Unrestricted Hartree-Fock method
Ultraviolet catastrophe, 47
Unrestricted Hartree-Fock method, 76

Variation function, see Wave function, Vari-
ation

Variation method, 59, 67
Voronoi deformation density, 143

Wave function, 51, 54
Electronic, 58
Nuclear, 58
Variation, 59
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