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Summary of the thesis 

The study of the photophysics of thymine is the main objective of this 
thesis. This work has been divided in 4 parts; the first two parts are devoted to 
find a proper level of theory for the study of thymine, whereas in the third and 
fourth parts the photohpysics of thymine are studied.  

Moran et al.140 found that correlated methods such as the Configuration 
Interaction with Single and Double excitations (CISD) and Møller-Plesset up to 
second order (MP2) when used with some of Pople’s basis sets, can not describe 
the planar structure of benzene. In addition, if a planar stationary point is 
optimized, the frequency analysis shows one or more imaginary frequencies. 
Given that thymine is a planar aromatic molecule as benzene, a benchmark 
study has been performed to determine if thymine can also suffer from such 
pitfalls. For completeness, the study is extended to the rest of the nucleobases, 
namely uracil, cytosine, adenine, and guanine. Our results show that, when 
Pople’s basis sets are used in conjunction with the MP2 method, minima 
structures of nucleobases with planar rings present imaginary frequencies. 
However, the same basis sets studied by Moran et al. have been analyzed at the 
Complete Active Space Self Consistent Field (CASSCF) level for thymine, and 
no imaginary frequencies have been found in any case. Thus according to our 
results, it can be concluded that the pitfalls reported for benzene seem to be 
common to correlated methods describing planar aromatic rings with Pople’s 
basis sets. In contrast, we have shown that the 6-31G* and 6-311G* basis sets, 
which are of general use in computational studies, can properly describe the 
minima structures of nucleobases. In addition, we have determined that the 
CASSCF/6-31G* and CASSCF/6-311G* levels of theory will be used for the 
study of the photophysics of thymine. 

In the first part of the thesis, we have also analyzed the origin of the 
pitfalls described above. We have shown that they can be explained in terms of 
intra-molecular Basis Set Superposition Error (BSSE), and that they can be 
fixed by using a typical BSSE correction technique such as the Counterpoise 
method (CP), which is implemented in general electronic structure modeling 
softwares. This method divides the molecule into fragments and this can be a 
problem as the multiplicity has to be assigned to each fragment. We have 
shown that independently of the fragments’ definition and fragment’s 
multiplicity assignment, the Counterpoise method fixes the imaginary 
frequencies where present and has no meaningful effects on the descriptions that 
were already correct. Nevertheless, we stress that one has to take into account 
that the isolated fragment and the associated ghost orbital calculations must 
correspond to the same state with the same orientation of singly-occupied 
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degenerate orbitals, otherwise artifacts might arise during the BSSE removal 
which can result in a bad description of the molecule. 

By using our own code, which allows for a flexible definition of the 
Counterpoise function, we have been able to fix pitfalls in complicated systems 
such as the cyclopentadienyl and indenyl anions and naphthalene, in which a 
negative charge has to be considered and up to five imaginary frequencies were 
found, respectively. In addition, we have observed that the BSSE has a 
delocalized nature given that although the imaginary frequencies can be 
removed by just correcting BSSE for a single fragment, all fragments need to be 
included in the CP function to recover the frequency values of the correct 
descriptions. 

Experimental studies23,24,85-88 show that the relaxation of thymine after 
photon absorption can be described with a biexponential decay. That is, there 
exist two decay mechanisms, one in the subpicosecond and another one on the 
picosecond time scale, that lead photoexcited thymine to its initial structure. 
The existence of a longer component of hundreds of ns has also been 
reported.24,85 In the second part of this thesis, the photophysics of thymine have 
been studied.  First, the PES of thymine has been optimized with a high level of 
theory to determine the decay paths of thymine. This has been carried out with 
the MS-CASPT2(12,9)//CASSCF(12,9)/6-311G* approach, in which Multi 
State Complete Active Space Møller-Plesset (MS-CASPT2) single point 
calculations, which include dynamic correlation, are carried out along minimum 
energy paths optimized at the Complete Active Space Self Consistent Field 
(CASSCF) level. Our results show that there exist two paths that after photon 
absorption can lead to the regeneration of the initial structure (for a better 
description of the PES we refer to Figure 28 and Figure 31). The first path, 
Path 1 in Figure 28, leads directly from the Franck-Condon (FC) point to a 
conical intersection (CI) with the ground state (GS), namely (Eth)X. Due to its 
barrierless character, this path has been assigned to the subpicosecond decay 
component determined experimentally. The second path, Path 2 in Figure 28, is 
indirect and is separated from (Eth)X by a minimum, (π,π*)Min, a barrier, 
(π,π*)TS, and a CI between the π,π* and n,π* states, (π,π*/n,π*)X. Two paths 
connect this CI with the GS. The first path leads directly to (Eth)X with no 
further barriers, and the second one leads to a minimum of the n,π* state and 
further to a CI with the GS, namely (n,π*/GS)X. Given that the barrier that 
separates (Eth)X from the FC structure is only of 0.05 eV, we assign the 
deactivation through this path to the subpicosecond decay. On the other hand, 
since the n,π* state can be accessed via (π,π*/n,π*)X, and the CI that leads the 
population of this state to the GS is not accessible (it lies 0.2 eV above the FC 
point), we assign the deactivation from this state to the picosecond decay 
component determined experimentally. 
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We have carried out quasi-classical dynamics, i.e. classical dynamics 
simulations with a surface hopping algorithm which allows the propagation of 
nuclei on different surfaces, on the indirect path of thymine. The trajectories 
have been run at the CASSCF(8,6)/6-31G* level of theory because of their high 
computational cost. Unfortunately, at this level of theory the FC region is not 
well described and the barrier is overestimated by 0.2 eV. Thus, the direct path 
cannot be described because of the lack of dynamical correlation. A previous 
study138 showed that trajectories starting on the FC point got trapped at 
(π,π*)Min for more than 500fs, a time range that exceeds our simulations. Thus, 
we have run quasi-classical dynamics on the indirect path of thymine starting at 
(π,π*)TS, from which the behavior at the S2/S1 CI and further regeneration of 
the GS have been sampled. The results confirm the role proposed for this path 
at the MS-CASPT2 level. That is, part of the population of the indirect path is 
responsible for the picosecond component since it is funneled to the n,π* state 
at (n,π*/π,π*)X, whereas the rest of the population decays in the subpicosecond 
range. 

Because of the importance of (n,π*/π,π*)X in the photophysics of thymine, 
a topological analysis of this seam has been carried out. For consistency with 
the level of theory used in the dynamics simulations, such analysis has also been 
carried out at the CASSCF(8,6)/6-31G* level of theory. A structure of Cs 
symmetry has been optimized on the seam of intersection from which a 
constrained IRC has been performed. This shows that this CI seam presents a 
sloped-to-peaked topology and that all its parts are energetically accessible from 
the FC point. This slope-to-peaked topology has also been described in other 
works,284-286 where it is observed that the different parts of the seam can 
determine the photophysics of the molecule. In order to study this possibility, 
we have carried out quantum dynamics simulations on the indirect path of 
thymine with a novel method, namely the Direct Dynamics vibrational Multi 
Configurational Gaussian (DD-vMCG). This method uses diabatic states to 
propagate a wavepacket which is approximated by a set of Gaussian functions, 
whose centers move classically. This approximation implies that only local 
evaluations of the PES calculated on-the-fly are needed to propagate the 
wavepacket, rather than a precalculated grid of points which represents the 
PES. As in the semi-classical case, the simulations were started at (π,π*)TS. The 
different parts of the seam were analyzed by adding momentum on given 
coordinates which lead the wavepacket toward the regions of interest. Our 
results show that the segment of the seam that is reached during the decay has 
a large influence on the photophysics. In general it is observed that the peaked 
region of the seam favors the regeneration of the ground state, whereas the 
sloped one delays the deactivation as that region is responsible for trappings at 
(π.π*)Min and the n,π* state. 
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The DD-vMCG method has been applied to the present study of thymine, 
and all degrees of freedom of the molecule (39) have been taken into account. 
Such a large amount of degrees of freedom has been taken into account for the 
very first time with the DD-vMCG method. Problems associated with the use of 
a small active space, which limits the number of Gaussian centered 
wavefunctions that form the wavepacket, and the appearance of intruder states 
that invalidate the diabatic transformation at some points, have been 
encountered. However, we consider the performance of the method is 
encouraging as in its initial version it can be used to get a qualitative, 
mechanistic insight into the photophysics of thymine.  

 



 ix 

Resum de la tesi 

L’estudi de la fotofísica de la timina és el principal objectiu d’aquesta tesi 
doctoral. Aquest treball ha estat dividit en 4 parts. En les dues primeres, s’ha 
realitzat un estudi de metodologies per tal de trobar la més adient per dur a 
terme l’objectiu principal de la tesi. En les altres dues parts de la tesi s’ha 
estudiat la fotofísica de la timina en detall.  

Moran i col·laboradors140 van publicar un treball en el qual es descrivia que 
alguns mètodes correlacionats com són el Configuració d’Interaccions amb 
excitacions Simples i Dobles (CISD) i Møller-Plesset de segon ordre (MP2), al 
utilitzar-los conjuntament amb bases de Pople per optimitzar l’estructura de 
mínima energia del benzè, s’obtenien geometries no planes. A més a més, si la 
optimització es duia a terme forçant la simetria Cs, els anàlisis posteriors de 
freqüències mostraven una o més freqüències imaginàries, tot indicant que no es 
tractava d’estructures de mínima energia. Degut al fet que la timina, igual que 
el benzè, és una molècula plana, formada per un anell de sis membres i 
aromàtica, vam decidir dur a terme una calibratge de mètodes per tal de 
comprovar si els errors descrits pel benzè es reproduïen en la timina. Per dur a 
terme un treball més complert, aquest estudi es va ampliar a la resta de bases 
de l’ADN: uracil, citosina, adenina i guanina.  

El nostre estudi mostra que, quan les bases de Pople es fan servir amb el 
mètode MP2, les estructures de mínima energia de les nucleobases, optimitzades 
forçant la planaritat de l’anell, presenten freqüències imaginàries. No obstant, si 
el mateix estudi fet per Moran i col·laboradors es fa amb el mètode d’Espai 
Actiu Complert de Camp Auto-Consistent (CASSCF) per al cas de la timina, en 
cap cas apareixen freqüències negatives.  

Per tant, en base als nostres resultats, podem concloure que els problemes 
que presenten els mètodes correlacionats amb les bases de Pople descrits per 
Moran i col·laboradors pel benzè, semblen ser comuns a les molècules 
aromàtiques amb anells plans. Sorprenentment, hem observat que les bases 6-
31G* i 6-311G*, que són d’ús generalitzat en estudis computacionals, poden 
descriure perfectament l’aplanament de les estructures de mínima energia de les 
nucleobases. A més a més, aquest estudi ens ha ajudat a determinar que els 
nivells de càlcul CASSCF/6-31G* i CASSCF/6-311G* seran els que farem servir 
per estudiar la fotofísica de la timina. 

En la primera part de la tesi, també hem analitzat l’origen d’aquest 
problemes descrits anteriorment. Hem observat que es poden explicar en termes 
d’Error de Superposició de Base (BSSE) intra-molecular que, com a tals, es 
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poden arreglar fent servir tècniques de correcció del BSSE típiques; com per 
exemple el mètode Counterpoise. Una de les avantatges d’aquest mètode és que 
està implementat en la majoria de paquets de programari i, per tant, és de fàcil 
accés. Aquest mètode es basa en la separació de la molècula en fragments, fet 
que pot suposar un problema ja que, amb la versió actual, s’ha d’especificar la 
multiplicitat de cada un. La complicació pot ser major en el cas que es treballi 
amb una sola molècula. En aquesta tesi es demostra que, independentment de la 
definició dels fragments i de la seva multiplicitat, el mètode Counterpoise 
arregla les freqüències negatives en els casos  on apareixen i que no té efectes 
apreciables en els que no se n’observen. Cal tenir en compte però, que per tal  
que el mètode arregli correctament els errors, els càlcul dels fragments aïllats i 
els dels càlcul corresponent que inclou totes les funcions de base del sistema 
(ghost orbital), s’han de dur a terme en el mateix estat i amb els orbitals 
degenerats mono-ocupats igualment orientats.  

La utilització d’un programari propi que permet la lliure definició de la 
funció de Counterpoise, ens ha permès arreglar els errors de sistemes complicats 
com els anions de ciclopentadiè i indenil i el naftalè. En el cas dels anions, la 
complicació ve donada pel fet d’haver de tractar amb una càrrega negativa, 
mentre que pel benzè ve donada pel fet d’haver de corregir 5 freqüències 
imaginaries. A part d’això, amb l’ajuda d’aquest codi hem observat que el BSSE 
té un caràcter deslocalitzat, ja que tot i que les freqüències negatives es poden 
eliminar corregint el BSSE d’un sol fragment, els valors “correctes” no es poden 
obtenir si no s’inclouen tots els fragments en la funció de Counterpoise. 

Un cop trobada la metodologia que es farà servir per estudiar la timina, 
ens centrarem en el seu estudi. Els estudis experimentals23,24.85-88 de la timina 
mostren que el relaxament posterior a l’absorbància d’un electró es pot descriure 
amb una funció biexponencial. És a dir, que existeixen dos mecanismes de 
desactivació, un en l’escala de fs i l’altre en la de ps. També s’ha detectat24,85 la 
presència d’un altre mecanisme que ajuda a la desactivació de la timina però 
més lentament (centenars de ns). Per tal de dur a terme l’estudi, primer hem 
optimitzat la Superfície d’Energia Potencial (PES) de la timina amb un alt 
nivell de càlcul. Concretament, hem fet servir l’aproximació MS-
CASPT2(12,9)//CASSCF(12,9)/6-311G* en la qual càlculs puntuals a nivell de 
Teoria de Pertorbacions de segon ordre amb una referència d’Espai Actiu 
Complert (CASPT2) es duen a terme al llarg dels perfils optimitzats a nivell 
CASSCF. Els nostres resultats mostren que existeixen dos camins de reacció que 
porten la molècula fotoexcitada cap a la seva estructura inicial (per una millor 
comprensió del perfil d’aquest camins, es recomana seguir les imatges 26 i 29). 
El primer camí, Path 1 en la imatge 26, porta directament des del punt 
d’excitació (FC) a una intersecció cònica amb l’estant fonamental (GS), que 
l’anomenarem (Eth)X. Degut a la manca de barreres al llarg d’aquest camí, 
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l’hem assignat a la component de relaxament ultraràpid (fs) determinat 
experimentalment. El segon camí, Path 2 de la imatge 26, també porta a 
(Eth)X, però és indirecte. Al llarg del camí hi ha un mínim, (π,π*)Min, una 
barrera, (π,π*)TS, i una intersecció cònica entre els estats π,π* i n,π*, 
(π,π*/n,π*)X. Dos camins connecten aquesta intersecció amb l’estat fonamental. 
El primer camí no té barreres i porta directament al GS a través de (Eth)X. Per 
altra banda, el segon camí transcorre sobre l’estat n,π* i porta primer al mínim 
d’aquest estat, (n,π*)Min, i posteriorment a una intersecció amb l’estat 
fonamental, (n,π*/GS)X. Com que la barrera que separa (Eth)X del punt FC és 
de només 0.05 eV, hem assignat el relaxament a través d’aquest camí indirecte i 
(Eth)X, a la mateixa component ultraràpida d’abans: la de fs. Per altra banda, 
com que es pot accedir a l’estat n,π* a través de (π,π*/n,π*)X, i la intersecció 
que permet la desactivació d’aquest estat no és accessible ja que està 0.2 eV per 
sobre de l’energia del punt FC, hem assignat el relaxament des d’aquest estat a 
la component de ps.  

Un cop explicat l’estudi estàtic de la PES de la timina, procedirem a 
descriure l’estudi dinàmic. Hem fet simulacions de dinàmiques semi-clàssiques 
del camí indirecte de relaxament de la timina. És a dir, hem fet servir 
dinàmiques clàssiques amb un algoritme de salt de superfícies que permet 
propagar els nuclis en diferents superfícies. Les trajectòries s’han dut a terme al 
nivell de càlcul CASSCF(8,6)/6-31G* ja que tenen un alt cost computacional. 
Desgraciadament, a aquest nivell de càlcul, la zona FC no està ben descrita, el 
que impossibilita la optimització del camí indirecte. A més, la barrera del camí 
indirecte se sobreestima en 0.2 eV. Un estudi previ semblant al que es vol 
realitzar, en el qual les trajectòries es van iniciar al punt FC, mostra que totes 
queden atrapades al (n,π*)Min durant més de 500fs, un temps superior al de les 
nostres simulacions. Degut a això, i que la zona FC no es pot descriure 
correctament, hem decidit començar les trajectòries al (π,π*)TS, des del qual es 
pot estudiar el comportament de la CI S2/S1 i el posterior relaxament cap al GS. 
Els nostres resultats mostren que la població del camí indirecte és la responsable 
del component de ps ja que part de la població es pot transferir a l’estat n,π*, la 
desactivació del qual es dur a terme en ps. Degut a la importància d’aquesta CI 
en la fotofísica de la timina, se li ha realitzat un estudi topològic. Per 
consistència amb metodologia de les dinàmiques, aquest estudi s’ha dut a terme 
al mateix nivell de càlcul.  

Hem optimitzat una estructura amb simetria Cs en l’espai d’intersecció de 
la CI des de la qual s’ha optimitzat un camí de mínima energia restringit a 
aquest espai. Aquest camí porta directament al punt de mínima energia de la CI 
i l’estudi dels gradients dels estats al llarg d’aquest camí ens mostra que l’espai 
d’intersecció té una topologia “sloped-to-peaked”. Aquest tipus d’espai 
d’intersecció ha estat descrit en algun altre treball,284-286 en els quals s’ha 
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observat que les diferents parts de l’espai d’intersecció poden determinar la 
fotofísica de la molècula. Per tal d’estudiar aquesta possibilitat, hem dut a 
terme simulacions dinàmiques quàntiques al llarg del camí indirecte amb un nou 
mètode, DD-vMCG. Aquest mètode propaga paquets d’ona sobre, formats per 
una sèrie de funcions Gaussianes, en estats diabàtics. Això implica que la PES 
només s’ha d’avaluar localment en el centre de les Gaussianes en comptes 
d’haver de generar una xarxa de punts que descriguin tota la PES. El punt 
inicial d’aquestes simulacions és el mateix que per les dinàmiques clàssiques, 
(π,π*)TS. Les diferents part de l’espai d’intersecció s’han analitzat dirigint el 
paquet d’ones cap aquell direcció en concret. Això es pot fer afegint un moment 
d’inèrcia en la coordenada o coordenades que porten cap a la zona d’interès. Els 
nostres resultats mostren que la topologia de l’espai d’interacció té una gran 
influència en el mecanisme de relaxament. En general, s’observa que la regió 
“peaked” de l’espai d’interacció afavoreix el camí de relaxament que porta 
directament a l’estat fonamental, mentre que la regió “sloped” retarda la 
desactivació ja que afavoreix la confinament tant en (π,π*)Min com en l’estat 
n,π*.  

Tal com s’ha dit abans, hem utilitzat el mètode DD-vMCG per dur a 
terme les dinàmiques quàntiques. Per primer cop amb aquest mètode s’han fet 
servir 39 graus de llibertat (tots els de la timina). Hem observat problemes 
associats a l’ús d’un espai actiu reduït, el qual ha limitat el nombre de 
Gaussianes que formaven el paquet d’ona i també l’aparició d’estats intrusos 
que invalidaven la transformació diabàtica. No obstant, considerem que el 
comportament del mètode és satisfactori ja que en la seva primera versió hem 
obtingut uns resultats qualitatius d’alguns aspectes mecanístics del relaxament 
de la timina. Tot i això, cal tenir en compte que un mètode com aquest ha de 
poder oferir dades quantitatives. 
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Agraiments 

No ha sigut fàcil arribar a poder escriure aquestes línies i ara que ho estic 
fent m’adono que m’entristeix una mica perquè significa que s’acaba l’etapa més 
meravallosa de la meva vida. Espero ser capaç d’incloure a tothom qui l’ha fet 
possible en aquest parell de fulls que venen a continuació. En aquest text no hi 
ha un ordre establert i hi ha faltes d’ortografia, això és degut a què és la part 
més personal de la tesi i he volgut que sigui així, imperfecte, com jo. 

La major part d’aquesta tesi no és mèrit meu, és mèrit de les persones que 
sempre han estat al meu costat donant-me suport fins i tot quan el rebutjava 
perquè pensava que no el necessitava. És mèrit de les persones que han patit 
amb i per mi des de sempre, de les dues persones que fan que em senti afortunat 
cada cop que les veig. Gràcies i us estimo no són suficients per expressar els 
meus sentiments, però no se m’acut cap altra manera de fe-rho en un paper. 
Gràcies papa i mami.  

Algú va dir que del que realment ens hem de penedir és de no haver fet 
alguna cosa, i no pas d’haver-la fet. Si d’algo em penedeixo d’aquest darrers 
anys, és de no haver passat tant temps com m’hagués agradat amb els meus 
avis. Tot i que potser no entenen ben bé què he fet durant tot aquest temps, 
segurament seran ells qui més s’alegrin quan sigui doctor. Només per aquest fet 
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1 INTRODUCTION  
Probably there is not a more fascinating molecule than the 

Deoxyribonucleic acid, commonly known as DNA. Maybe its charm lies in its 
contradictory and uncertain nature, or perhaps, in the fact it might be unique 
and special. It has been “out there”, almost untouched, for thousands of years 
and amazingly, it was not until 1871 when we first heard1 of it. Many resources 
and money have been spent on its study since then. Unfortunately, although 
many advances have been performed, we still know very little about it. We do 
not even know for sure who discovered the famous double helix structure of 
DNA,2 as its discovery was first credited to James Watson and Francis Crick 
but it has lately been suggested3-5 that Maurice Wilkins and Rosalind Franklin 
should also be recognized for their essential contribution to the discovery.  

DNA is an anti-parallel double sequence of nucleobases, namely Adenine, 
Thymine, Cytosine, and Guanine, as shown in Figure 1. They are coded in 
genes that contain all the necessary information for the development and 
functioning of every living being.  

 

Figure 1. Scheme6 of the double strand of DNA. Adapted from Access 
Excellence @ the National Health Museum.  

Any variation in the sequence of the bases would translate into gene 
mutation which would have an unpredictable repercussion in the cell 
functionality. Taking into account that the importance of the information coded 
in the DNA, it is not strange that Mother Nature has provided a set of 
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protection mechanisms to preserve it from external agents. Some of the 
protection tactics featured by DNA are outlined next. 

Among the various protection mechanisms present in nature, one of the 
most efficient and widespread is isolation. The isolation of nucleobases starts by 
being kept in the cell’s nucleus, which is the most inaccessible part of the cell as 
two membranes protect it from external agents. In addition, a highly packed 
conformation of the DNA strand inside the nucleus makes nucleobases even 
more unreachable. Again, contradiction is present in DNA, since it must be 
protected to avoid mutations, while at the same time it needs to be easily 
accessible to perform vital processes for the cell such as replication, 
transcription, and translation.  

Physical barriers can keep (physical) agents away from the coded 
information, but they cannot protect them from radiation. Nucleobases are the 
chromophores of DNA, i.e. the parts of the DNA that absorb light. If they are 
exposed to UV light, photons are absorbed bringing the molecule to an excited 
electronic state where it is prone to react because it has extra energy. Thus, UV 
light is a potential DNA damaging agent as it can promote photoreactions 
which, within the DNA strand, can cause gene mutation.  

It is obvious that nucleic acid bases must feature several protection tactics 
against UV radiation, because otherwise the evolution could not have taken 
place as individuals can not survive to major changes in their DNA. One of the 
protection tactics of DNA against radiation is external, and corresponds to the 
ozone layer. Nucleobases have the lowest energy transitions located at the same 
spectral region as ozone, thus, the most dangerous UV radiation cannot reach 
the Earth’s surface, as it is absorbed by the ozone layer. A more particular 
shield of DNA is the complex packed conformation it adopts inside the nucleus. 
It reduces its exposure to light, which hinders photon absorption. However, in 
spite of these protection tactics, nucleobases are still reached by the UV 
radiation. Fortunately, DNA also has some tools to minimize the effect of the 
photoreactions. For instance, the excited states of nucleobases are characterized 
by an ultra-short lifetime. They get rid of the UV induced extra energy in the 
sub-picosecond or picosecond time scale, which reduces the probability of 
photoreaction. In addition, the energy gained in photon absorptions can be 
redistributed along the DNA structure, which also helps in minimizing the 
probability of photoreactions.  

As seen above, DNA has a large number of protection mechanisms, 
however, they do not provide 100% of security. In the cases where mutations 
take place, there are enzymes that can repair7 DNA mutagenic8-11 photoproducts 



INTRODUCTION    

 

3 

such as cyclobutane pyrimidine dimers12,13 and 6-4 pyrimidine adducts14,15 (see 
Figure 2).  

 

Figure 2. Thymine UV induced photoproducts (adapted from Medical Ecology 
online resources16). 

It is obvious that the response of DNA to light is a complex and 
multivariable process and that its study cannot be faced globally. Here, we will 
study the photophysics of thymine as a first step towards the full understanding 
of the DNA protection mechanisms. A broad overview of the most important 
experimental and theoretical works on this field is presented in section 1.2. 
However, before reviewing the results present on the literature and explaining 
the results of this thesis, a brief overview of some useful photochemical concepts 
will be given. 
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1.1 Photochemical concepts  
Light can interact with molecules changing their properties such as color, 

structure, stability, reactivity, etc. In this thesis we will study the way 
nucleobases interact with UV light. As mentioned above, nucleobases are the 
parts of DNA that absorb and/or emit light. In general, the light a molecule or 
an object absorbs is indicated by its color. That is, if an object is irradiated 
with “white” light (light compound of different wavelengths, as that of the sun) 
depending on what “part” of the light is absorbed, it will adopt one color or 
another. Actually, the colors of objects do not correspond to the light that they 
absorb but the one that is reflected. This is because only the light that is 
reflected reaches our eyes, and therefore, is the one that defines the colors of 
objects. For instance, it is known that plant leaves absorb “yellow” light 
because most of the sunlight that reaches the earth is made of “yellow” light 
and they use it for the photosynthesis. However, most plant leaves are green. 
This is explained because we only see the light that has been reflected by the 
plant (the green one), not the absorbed one (the yellow one). 
Spectrophotometers can determine the wavelength (color) of the light that is 
absorbed/emitted by a given molecule. The importance of absorption and 
emission spectra is explained next together with the functioning of 
spectrophotometers. 

1.1.1 Absorption and emission spectra 

A spectrophotometer is an apparatus that irradiates samples with white 
light and records the light that has been absorbed and/or emitted by them, 
thus, it records absorption and/or emission spectra. An absorption spectrum 
(see Figure 3) consists of a continuous spectrum (Inset a of Figure 3) with some 
“lines” which denote the energy of the light that has been absorbed by the 
sample. These lines, called bands in molecules, appear because the light of that 
part of the spectrum was used to promote an electron of the sample from a 
given molecular orbital to another orbital of higher energy. Thus, all irradiated 
light reaches the detector except that which has been absorbed by the sample 
(Inset b of Figure 3). On the other hand, the emission spectrum of a given 
molecule (Inset c of Figure 3) is the light emitted by a molecule which has been 
previously irradiated. In principle, an emission spectrum should be 
complementary to the absorption one, nevertheless, usually part of the absorbed 
energy is transformed, and then the remaining energy is emitted as light, which 
composes the emission spectrum. 
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Figure 3. Absorption and emission spectra (adapted from Whitman College’s 
webpage17). 

Kasha’s rule18 states that photon emissions occur only from the lowest-
energy excited state of a molecule. That is, if an electron is promoted to an 
excited state (blue arrow of Figure 4) and has extra energy to populate higher 
vibronic levels (ν’ > 0 in Figure 4), it will relax to the lowest vibronic level (ν’ 
= 0) from which it will deactivate emitting light (green arrow of Figure 4). 
Kasha’s rule is complementary to the Franck-Condon principle19,20, which states 
that an electronic transition is most likely to occur without changes in the 
positions of the nuclei in the molecular entity and its environment. The 
resulting state is called a Franck–Condon state and the transition involved a 
vertical transition. The quantum mechanical formulation of this principle is that 
the intensity of a vibronic transition is proportional to the square of the overlap 
integral between the vibrational wavefunctions of the two states that are 
involved in the transition (see Figure 4).  
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Figure 4. Franck-Condon principle energy diagram. The blue arrow corresponds 
to the vertical excitation from the ground state (E0) to the vibrational level of 
the first excited state (E1) with highest overlap with the initial state. Similarly, 
the green arrow denotes the vertical deexcitation (adapted from IUPAC 
Compendium of Chemical Terminology, 2nd Edition, 1997). 

Electronic absorptions and emissions are transitions within different 
electronic states of a molecule. However, electrons cannot be promoted to 
whatever orbital since selection rules apply. In short, only transitions between 
states of the same multiplicity can take place. The fact that two states have the 
same multiplicity does not necessarily imply that such a transition will appear 
in the spectrum as it might correspond to a low intensity transition. The 
intensity of transitions is governed by the oscillator strength ( ijf ), which is a 

dimensionless quantity that ranges from 0 to 1 and indicates the intensity of 
transitions, and reads as  

 2
ij ij ij

2
 (TDM )

3
λ= ⋅ ⋅f  (1.1) 

where λij corresponds to the energy of the transition between the states i and j, 
and TDM stands for Transition Dipole Moment. The electronic structure of a 
molecule gets modified when a photon is absorbed. Due to the extra energy 
gained in the absorption, the occupation of the molecular orbitals varies 
inducing a polarization of the molecule which generates a transition dipole 
moment. It can be calculated from an integral taken over the product of the 
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wavefunctions of the initial (i) and final (j) states of a spectral transition and 
the appropriate dipole moment operator (D ) of the electromagnetic radiation: 

 TDM D  i jαψ ψ= ∑           , ,x y zα =  (1.2) 

The summation is over the coordinates of all charged particles (electrons 
and nuclei), and its square determines the strength of the transition (IUPAC 
Compendium of Chemical Terminology, 2nd Edition, 1997). An example of low 
intensity transitions (allowed transitions with very low probability that do not 
appear in the spectrum) are those which take place from a lone pair orbital in 
the molecular plane to an unoccupied orbital of an unsaturated system 
(n *π→ ). These transitions are considered forbidden due to their low 
probability.  

There are various notations to refer to the electronic states of a molecule 
and the transitions between them. The most widely used nomenclatures are the 
enumerative and the Kasha’s ones. The enumerative nomenclature is based on 
the energetic order of the states and its multiplicity. The electronic state with 
the lowest energy defines the ground state, and the adiabatic energies of the 
other states determine the corresponding labels. Thus, in this notation the 
singlet ground state is denoted by S0, whereas the excited states are expressed 
by the successive numbers S1, S2, S3, … Sn. A similar formula is used for the 
triplet states, which are denoted by T1, T2 … Tn. The excitations are expressed 
by 

10
SS → , where the arrow indicates the direction of excitation. It is worth to 

mention that given that the nature of the states can change along the PES, the 
the enumerative states can present singularities in their energetic profiles. On 
the other hand, Kasha’s nomenclature only specifies the nature of the state 
involved in the transition. π, σ, and n characters are used to denote 
unsaturated, sigma and non-bonding occupied orbitals, respectively. The same 
characters with an added “ * ” (π*, σ*) are used to refer to the corresponding 
virtual orbitals. As in the former case, the excitations are expressed as *π π→ . 
With this nomenclature the states present smooth energetic profiles along the 
PES. We will use both nomenclatures indistinctively throughout this thesis. For 
the sake of shortness, excitations will either be denoted as π,π* or π−π*. 

1.1.2 Relaxation mechanisms 

Nucleic acids have strong π−π* transitions which are responsible for the 
bands seen in their UV absorption spectra. This means that if a DNA base is 
exposed to UV light, the photons with enough energy to promote electrons from 
a π orbital will induce the excitation of these electrons to an unoccupied orbital 
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of higher energy. Thus, the light with energy (λ) equal to the energy needed to 
promote a π−π* transition, is absorbed. The way the excited molecule returns 
to its initial state, the ground state (GS), is called the relaxation mechanism.  

There are mainly two types of relaxation mechanisms: radiative and non-
radiative ones. In the former, the excess of energy is eliminated as light, giving 
rise to fluorescent and phosphorescent molecules (see Figure 5) depending on 
the emissive state. Fluorescence involves emissions from the lowest vibrational 
level of a state of the same multiplicity than the one that has been populated in 
the excitation to vibrational levels of the ground state. On the other hand, 
phosphorescence is similar to fluorescence but it is subject to previous 
intersystem crossings to states of different multiplicity. Due to its forbidden 
character, except for molecules with large spin-orbit couplings, these transitions 
are kinetically unfavoured but still occur at longer time scales (ns or longer). If 
the intersystem crossings are reversible, molecules can exhibit delayed 
fluorescence. Usually, radiative mechanisms occur in the ns range and are rather 
slow compared to those which involve CIs and take place in fs. It is known that 
the longer the excited state lifetime, the higher the photoreaction probability. 
This implies that molecules with short excited states lifetimes are less prone to 
suffer photoreactions. It is worth to mention though, that non-radiative 
mechanisms can also lead to photoproducts in an ultrafast way, although most 
of the photostable molecules are characterized by returning to their GS in less 
than 1 ps.  

 

Figure 5. Jablonsky energy diagrams of (a) fluorescence (b) phosphorescence 
and (c) delayed fluorescence deactivation mechanisms (adapted from Molecular 
Expressions website21). 

Geometry distortions favor couplings between the electronic states of the 
molecules. In regions of the PES where two states are electronically 
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degenerated, the population can be suddenly transferred to the other states. If 
the touching states are of the same multiplicity, this decay mechanism is known 
as internal conversion (IC). However, if the states do not have the same 
multiplicity, it is called intersystem crossing (ISC). A series of population 
transfers may lead a photoexcited molecule to its ground state or to a given 
photoproduct.  

In the early literature, DNA bases were commonly described as “non-
fluorescent”. However, recent advances in experimental techniques have allowed 
the detection of very low22 fluorescent quantum yields and enabled the accurate 
measure of the excited state lifetimes of nucleobases, which are of hundreds of 
femtoseconds.23 This indicates that deactivations in nucleobases are non-
radiative, although some radiative transitions also occur. In a non-radiative 
mechanism, the molecule may eventually get trapped in a dark state. A dark 
state is a state which cannot be accessed by photon absorption. Thus, it does 
not appear in the spectrum. In photochemistry, dark states are usually used to 
denote states whose transitions from the GS appear dark in the absorption 
spectrum due to its forbidden character. Nevertheless, dark states can be 
accessed via deactivations from higher states, and radiative deactivations can 
take place but with low intensity and very slow.  

It is thought that dark states in DNA are due to the lone electron pairs of 
heteroatoms and correspond to n−π* excitations. As these transitions are 
forbidden by the selection rules, it is thought that dark states are responsible for 
the longer decay timescales seen in DNA.24 The optimization of PES is one of 
the procedures used to describe the excited state lifetimes of molecules and their 
relaxation mechanisms. 

1.1.3 Potential Energy Surface(s) 

In the Born-Oppenheimer approximation, which will be explained in the 
next chapter, the Potential Energy Surface (PES) of a molecule can be defined 
as the surface described by the potential energy function of the molecule with 
respect to the molecular geometry. The surface dimension depends on the 
number of atoms of the molecule (2 for diatomic and 3N-6+1 for polyatomic 
molecules, with N being the number of atoms, and the potential energy the 
extra dimension). Due to the large number of dimensions of these polyatomic 
surfaces, they are commonly known as hyper-surfaces. The hyper-surfaces are 
described by the Schrödinger equation, whose solution gives the molecular 
energy as a function of the nuclear coordinates. However, the Schrödinger 
equation has an infinite number of solutions, which correspond to the different 
electronic states of the molecule, and each state has its own hyper-surface. The 
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topology of the hyper-surface drives all the processes of the molecule in that 
particular electronic state. The PES topology of the excited states is different 
from that of the ground state, and therefore, the regions (geometries) that the 
molecule can access are different too. Consequently, there are processes that can 
only take place in excited states. 

To study the reactions or processes a molecule may undergo, one has to 
the study the topology of the PES(s) that can be involved in such processes. In 
these studies, the stable conformations of molecules are represented by valleys 
in the 2 or 3 dimensional sketches of PES, and the height of the “mountains” 
between the valleys indicate the difficulty of the reaction. This so-called static 
description of the reactivity of molecules can be improved by carrying out 
dynamics studies, which are based on the solution of time-dependent nuclear 
Schrödinger equation. The latter, provides the position of the nuclei (potential 
energy) and the kinetic energy of the molecule at a given time in a given state. 
The importance of dynamics calculations for this thesis relies on the fact that 
they can describe non-stationary processes. Those processes are especially 
relevant in photophysics because photon absorptions provide an extra energy to 
molecules which starts a sequence of non-stationary events that are commonly 
known as deactivation process. The most important parameters of the 
deactivations are the excited state lifetimes and branching ratios. With the 
potential and kinetic energies, one can determine both the “trajectory” a 
molecule will follow, i.e. the reaction that may take place, and the time needed 
to do so, i.e. the reaction lifetime. If different products are formed, a set of 
trajectories can determine the probability with which each product can be 
formed (branching ratio), which includes the probability of regenerating the 
initial structure. The average of all trajectories time in which the excited state 
species is consumed, corresponds to the excited state lifetime of the species. In 
principle, describing all the possible trajectories and regions of the PES that a 
molecule can access, one gets an accurate description of the reactivity and 
behavior of the molecule upon photon absorption. Thus, one gets enough data 
to describe the experimental results. 

Dynamics simulations are an indispensable tool for the description of 
reactions in photophysics, however they are computationally challenging due to 
its high cost. As it will be shown, in this thesis we have tried to reach a 
compromise between computational feasibility and results accuracy. This can be 
done by rationalizing the dynamics simulations, carried out at a 
computationally feasible level, with a high level PES.  
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1.1.3.1 PES characterization 

Static studies are based on the localization of critical points on the PESs 
of interest to define all the possible paths that molecules can follow. The 
characterization of the PESs in photophysics is carried out by locating the 
critical points of each PES, namely minima, transition states, and conical 
intersections; and interconnecting them. The determination of the PES provides 
a set of paths that the molecule may follow in a given chemical process, in other 
words, it provides the thermodynamic profile of the system. Unfortunately, in 
general using this procedure, it is not possible to determine the probabilities of 
accessing the different paths of the PES, since only dynamic studies, which can 
describe non-stationary events, can provide such information. Nevertheless, the 
rationalization and study of the different profiles serves to propose (reaction) 
mechanisms for the case study. 

Minima and transition states are common structures to all chemical 
processes. The former are usually optimized using algorithms that follow the 
gradient of the PES as it leads to the points of lower energy (minima). Other 
gradient-based algorithms also permit the optimization of TSs, i.e. points in the 
surface where the energy is minimal for all directions but one. The 
characterization of these structures is sufficient to study chemical processes 
where only one PES is considered and where the Born-Oppenheimer 
approximation is preserved (adiabatic processes). Most of thermo-reactions take 
place on a single state, usually the ground state. Thus, in those processes the 
characterization of minima and TSs is sufficient to determine the reaction 
profile.  

In contrast, many photochemical processes do not keep the Born-
Oppenheimer approximation since they involve multiple PESs. For instance, in 
photophysics the Born-Oppenheimer approximation breaks down in 
radiationless deactivations that lead molecules from one state to another. These 
processes are called non-adiabatic, and may change the electronic character of 
the molecule, thus they break the Born-Oppenheimer approximation. This 
phenomenon occurs in regions of the PES where two or more surfaces touch or 
nearly touch each other. 

1.1.3.2 Touching surfaces regions 

The regions of touching or near touching surfaces are commonly known as 
conical intersections or funnels.25 When a photon is absorbed (see Figure 6) an 
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excited species, R*, is generated. This excited species has an extra energy which 
starts a non-stationary process commonly known as relaxation. Two possibilities 
are considered, the formation of species P* and subsequent radiative 
deactivation to the photoproduct P’, and the relaxation through the funnel 
(non-adiabatic process). Funnels allow non-adiabatic transitions between states, 
and their shape defines the probability of accessing one or other part of the 
state.  

 

Figure 6. Possible photoprocesses for a molecule: a) Emissive deactivation to the 
ground state (adiabatic). b) Emissive photoreaction (adiabatic). c) Radiationless 
deactivation to the initial position (non-adiabatic). d) Internal conversion to a 
photoproduct (non-adiabatic) (Adapted from Encyclopedia of Computational 
Chemistry (1998)). 

Classical photochemistry26 assumes that non-adiabatic decays take place 
via avoided crossings. That is, regions of the space where two or more states 
nearly touch each other. In this model, if the states are more separated than a 
few Kcal, the excited species thermalyse and the decay probability is determined 
by the Fermi’s Golden Rule.27,28 Such a process is supposed to occur in the same 
time scale than fluorescence. On the other hand, modern photochemistry has 
shown that non-adiabatic transitions take place in the subpicosecond range via 
CIs (points of energy degeneracy between surfaces). The latter transitions are 
much faster than fluorescence, although they might fall in longer time ranges if 
there exist barriers that hinder the progressive motion towards the CI.  

In general, the proximity of the states defines the type and probability of 
surface crossing. This probability can be approximated by the Landau and 
Zener relation,29,30 

S1 
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P exp
E

S
π⎛ ⎞Δ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⋅ Δ⎝ ⎠h ν

 (1.3) 

where P represents the hop probability between two surfaces that are separated 
by EΔ  energy units, ν  is the velocity of the nuclear motion along the reaction 
coordinate, and SΔ  is the difference of surface slopes. It can be readily seen, the 
hop probability increases for high velocities and differences in surface slopes, 
and also with the decrease of the energy difference. The limiting case with 100% 
of hop probability is a CI.  

Conical intersections are very important in photochemistry as they allow 
ultrafast radiationless deactivation processes, which usually lower the 
photoproducts yield as in DNA.  

1.1.3.2.a Conical Intersections 

Crossings of surfaces are known since the early years of photochemistry 
back in the 1920’s. Their existence was first announced by Hund31 with a very 
simple argument: If two curves cross, the electronic states must be degenerated 
at the point of crossing. We have seen that this point of crossing is nowadays 
known as conical intersection.32 Technological advances in lasers and detectors 
have allowed the measurement of photoprocesses that take place in tenths of fs. 
Such fast phenomena are the experimental evidence for the presence of CIs. 
Nevertheless, the characterization and mechanistic study of CIs has been carried 
out on the theoretical side. Von Neumann and Wigner provided33 the 
mathematical condition for the existence of CIs. The authors showed that only 
two parameters need to be adjusted to find a point of crossing between two 
surfaces of a polyatomic molecule, 3 if heavy atoms are present and magnetic 
forces cannot be neglected. These two parameters were assigned to nuclear 
coordinates and their corresponding vectors, namely the gradient difference and 
interstate coupling vectors, by Teller in 1937.32 These two vectors form the so-
called branching space, and the rest of coordinates compose the intersection 
space. If the energy of the states is plotted against the branching space 
coordinates, a double cone, or diabolo, shape after which conical intersections 
were named is obtained.  

If we write the energy matrix of a two state (A and B) problem, M, as a 
function of two coordinates that belong to the branching space, 

1xQ  and 
2xQ , 

and an extra coordinate which belongs to the intersection space, 
3xQ , one 

obtains 
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with I being the identity matrix. The matrix M has the form of a Taylor 
expansion of the energy along the 3 coordinates, whose eigenvalues read as:  

 
1 1 2 3 1 2x x x x x xQ aQ bQ cQ Q Q2 2 2 2 2

A,B

1
E ( ) ( ) ( ) 4( )

2
Q 1λ α β= + + + ± +  (1.5) 

 The important part of these equations is the second summand of eq. (1.4)
, as it is the one that defines the energy degeneracy. The point of degeneracy 
corresponds to that in which the diagonal terms of the matrix M are equal and 
the off-diagonal terms are 0. That is, α α= −

1 1x xQ Q  and β = 0
2xQ . 

 

Figure 7. Plot of the potential energy surface as a function of the branching 
space (x1,x2) (IUPAC Compendium of Chemical Terminology, 2nd Edition, 
1997) 

 However, this degeneracy point is not unique, as according to eq. (1.5) 
any displacement along x3 has no effect on the energy degeneracy. Thus, CIs are 
not single points of degeneracy, but hyperlines of 3N-6-2 dimensions of energy 
degeneracy. This degeneracy is only lifted along the Gradient Difference and 
Interstate Coupling vectors, x1 and x2 respectively. Along the former the 
difference in energy of the two coinciding surfaces is maximum, whereas along 
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the direction of the latter vector the mixing between the wavefunctions of the 
upper state, ψ

2
, and the lower state, ψ

1
, is maximum. If we consider a CI of 

two states of different symmetries, x2 is the coordinate along which the 
symmetry is lowered in order to allow them to mix. The gradient difference and 
interstate coupling vectors respectively read as: 

 
( )∂ −

=
∂1
1 2

E E
x

q
       ψ ψ=

∂2 1 2

1x
q

 (1.6) 

As mentioned above, these vectors are in fact coordinates which indicate 
the direction of energy degeneracy lifting. Their length is indicated by the 
parameters α  and β  (see eq. (1.5)), which correspond to the length of the 
branching space vectors at the point of energy degeneracy:  

 α
=

=
1

0x

x             β
=

=
2

0x

x  (1.7) 

The shape of the cone plays an important role in the decay as it influences 
the transition to the lower state and can favor certain directions. Two types of 
conical intersections, namely sloped and peaked CI, were defined by 
Ruedenberg34 depending on the shape of the cone. These two shapes are shown 
in Figure 8. In sloped CIs (cartoon a), the two surfaces have similar gradients 
(slopes) near the point of intersection, that is why they are called sloped. In 
contrast, peaked CIs (cartoon b) are characterized by having gradients with 
opposite sign at the point of crossing.  

 

Figure 8. Sloped and peaked crossings as defined by Ruedenberg. 

The mathematical conditions for peaked and sloped topologies depend on 
the relative magnitudes of λ and α, with the former being: 
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According to eq. (1.8), values of 
2
α

λ >  denote sloped CIs, whereas peaked 

CIs correspond to 
2
α

λ < . 

A relaxation path with a sloped crossing usually leads to the initial GS 
geometry if the crossing is close to the FC structure. On the other hand, if the 
crossing lies far away from the initial structure the relaxation can easily yield a 
structure on the GS different from the initial geometry. If the reaction path 
involves a peaked crossing, both the initial geometry and a product P can be 
reached. The probability with which they are reached depends on the branching 
ratio. Cases where the path that regenerates the initial structure is preferred are 
called aborted conical intersections, because the population that can follow the 
path to product P, to which the CI gives access, is diverted to reactant R. 
Population transfers are usually faster in peaked CIs, provided that enough 
kinetic energy is acquired, because its shape favors non-adiabatic transitions. On 
the other hand, the shape of sloped CIs reduces the kinetic energy and favors 
oscillations on the seam, which decrease the momentum favoring adiabatic 
population transfers. As it will be shown in the results, the topology of the CI 
seam is very important for the description of the processes given that its 
character can change. If the seam has different topologies, each part of the seam 
can favor the generation of a different species, and this can be used to control 
the decay by driving the molecule towards a certain part of the seam. 

We have just seen that the shape of the CI plays a major role in the decay 
to the lower state. In addition, a CI seam can have different topologies along it. 
The CI seam has been defined as rectilinear displacement along the intersection 
space. This picture is only approximate because it does not take into account 
second order effects. In the next section, the importance of the second order 
effects and the shape of the CI seam are explained.  

1.1.3.3 Second order effects at CIs 

In contrast to the development of the previous section, it is known that 
linear displacements along the intersection space coordinates, 

3xQ  in eq. (1.4), 

can lift the degeneracy of the states. This is exemplified in Figure 9a, where the 
displacement along the intersection space vector, x3, lifts the degeneracy of S1 
and S0. This effect is caused by the difference of the second derivatives 
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(Hessians) of the two states along the intersection space. This implies that the 
CI seam has a curved shape (see Figure 9b). Thus, the interstate and branching 
spaces become curved, i.e. they mix continuosly along the seam of intersection. 

 

Figure 9. Second order conical intersection picture. a) 3-coordinate model 
potential energy surface along x3. b) 3-coordinate model along x1 and x3. 
Adapted from Ref. 35.  

In order to take this effect into account,36-38 second order terms along the 
intersection space coordinates must be added to eqs. (1.4) and (1.5). Thus, the 
potential energy matrix reads as:  

 ( )
( )

1 1 2 3

1 3 2

2 1 3

x x x x

x x x

x x x

Q aQ bQ cQ

Q Q Q
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Q 1λ
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⎡ ⎤
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M I

 (1.9) 

where the term δγ  corresponds to the difference between the second derivatives 
of the two intersecting states along 

3xQ . Similar terms appear for the branching 

space coordinates but they have been neglected for simplicity. It follows that 
now the energy of the two states (eigenvalues of eq. (1.9)) reads as:  

 
1 1 2 3

1 3 2

x x x x

x x x

Q aQ bQ cQ

             Q Q Q

2 2 2
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2 2 2

E ( ) ( )
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α δγ β
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 (1.10) 

It can be readily seen that the energy degeneracy is preserved along 
combined displacements of 

1xQ  and 
3xQ , and that the condition for energy 
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degeneracy becomes ( )α δγ α δγ+ = − + =2 2 0
1 3 1 3x x x xQ Q Q Q , and β = 0

2xQ . This 

constrain describes the curvature of the seam since it allows the definition of 

energy degeneracy by the explicit equation 
δγ
α

= − 2

1 3x xQ Q , which is a parabola. 

Only one degree of freedom, f3, is needed to characterize this parabola. For 
simplicity, it is convenient to define this parameter such that it corresponds to 

3xQ . This way the seam is defined as: 

 
δγ
α

= − 2( )
1x 3 3Q f f  (1.11) 

Substituting f3 into eq. (1.10) and keeping the energy degeneracy condition 
(β = 0

2xQ ), the energy of the seam becomes:  

 
δγ
α

⎛ ⎞⎟⎜ ⎟= = − +⎜ ⎟⎜ ⎟⎜⎝ ⎠

2

4 2
A,B seam

E ( ) E ( )3 3 3 3f f a f cf  (1.12) 

The curvature of the branching and intersection spaces is illustrated in 
Figure 10. In this figure, t(f3) and n(f3) are vectors tangent and perpendicular to 
the seam, respectively, which in the origin correspond to the interstate and 
gradient difference coordinates. It is clear that t(f3) and n(f3) change gradually 
along the seam, and that away from the origin they correspond to a linear 
combination of the original x1 and x3 vectors.  

 

Figure 10. Projection of a seam of intersection on the x1,x3 plane including 
second order effects. Adapted from Ref. 39. 

The second-order picture has two important consequences for the present 
thesis. First, the topology can change along the seam because of its curvature. It 
will be shown (see section 4.4) that this is the case for the S2/S1 seam of 

3xQ

1xQ

t(f3) 

n(f3) 
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intersection of thymine, which changes from sloped to peaked. Second, the 
analysis of the local branching space along the seam is a useful tool to 
characterize the CI seam. 

It has just been shown that two CI with different branching space 
coordinates can belong to the same seam of intersection. Thus, the CI seam can 
be considered as an analogue of a Born-Oppenheimer surface, where minima, 
reaction paths, and transition states can be optimized. The CI seam can be 
mapped by running an IRC with an additional constrain that assures the energy 
degeneracy along the path.40 This is used in the present thesis to determine the 
energy profile of the seam of intersection of thymine. In addition, minima and 
transition states can also be located on the seam, but they need to be 
characterized by evaluating the Hessian. This requires the calculation of a 
“special” Hessian which can provide the second derivatives in the subspace of 
the intersection space.  

1.1.3.3.a Intersection space Hessian 

In this section the so-called intersection space Hessian will be briefly 
overviewed. We will first consider the generalization of eq. (1.10) to the 
complete number of coordinates of a given system. In this case, the energy 
around the intersection in intersection-adapted coordinates39 reads as:  
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 (1.13) 

where n is the number of coordinates, λi  are the projections of the average 
gradient (see eq. (1.8)) of the two states (A and B) along the branching space (i 
= 1,2), and intersection space coordinates (i = 3, …, n), ωij  and δγij  are the 

elements of the average and difference Hessians, and ηAB
ij  are the second-order 

coupling elements. At an optimized point of the intersection the terms 

( )i  i 3λ ≥  are zero. Consequently, the Neumann-Wigner conditions of energy 

degeneracy become:  
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Following the previous development, we define the curvilinear coordinates 
that fulfill the energy degeneracy conditions. For simplicity, the second-order 
terms that involve the branching space modes, δγij  and ηAB

ij  for i,j < 3, will be 

neglected. It follows that we are considering n-2 curvilinear coordinates which 
belong to the intersection space, namely fi. According to eq. (1.14), these 
coordinates fulfill the following conditions:  
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Substituting these coordinates into eq. (1.13) and truncating to second 
order, the energy of the seam reads as: 

 
ωλ λ

δγ δη
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This expression gives the energy of the seam along the intersection space. 
The characterization of the critical points, namely minima and TS, is given by 
the matrix of second derivatives of eq. (1.16) with respect to the curvilinear 
coordinates ( ≥ 3if  i ), i.e. the intersection-space Hessian ( ISH ): 

 ij ij ij ij
i j

H
f f

2
IS ABseam 1 2

0

E 1
2 4

λ λ
ω δγ δη

α β

⎛ ⎞ ⎛ ⎞∂ ⎟⎜ ⎟⎜⎟ ⎟⎜ ⎜= = − −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎟⎜∂ ∂ ⎟⎜ ⎝ ⎠⎝ ⎠
 (1.17) 

The eigenvectors of the intersection-space Hessian are the curvilinear 
normal modes, which are a set of vectors parallel to the curvilinear coordinates 
at the expansion point. The eigenvalues of the Hessian are the second 
derivatives of the energy along the curvilinear coordinates. From these 
eigenvalues one can obtain the intersection-space frequencies. Similarly to the 
frequencies of a Born-Oppenheimer PES, the imaginary eigenvalues of the 
intersection-space Hessian denote points of the seam connected to other points, 
in this case CIs, of lower energy along that coordinate. This analysis has been 
used in the present thesis to characterize the CI seam of thymine (see section 
4.4.2.1). 
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More information on second order effects and intersection-space Hessians, 
as well as the full mathematical development of the equations presented above 
can be found in Refs. 38 and 35.  

It is essential to describe CIs in detail to study the photoprocesses of 
molecules, since the CIs shapes play an important role in ultrafast relaxations as 
it will be seen in the Results of this thesis. However, the first thing that must 
be considered when analyzing a CI is its energetic accessibility, given that 
population transfers will only occur if it is energetically accessible. A way to 
determine if a CI is accessible is defining its minimum energy point. That is, 
optimizing the point in the intersection seam with the lowest energy. A way to 
optimize CIs is overviewed next. Note second order effects are not taken into 
account in the following section, see Ref. 40 for CI optimization with second 
order effects.  

1.1.3.4 Optimizing conical intersections 

CIs are hyperlines of n-2 dimensions (being n the number of geometric 
variables) where two PES are degenerate. In order to locate the CI minimum, 
the lowest-energy point on the n–2-dimensional hyperline has to be optimized. 
There are various algorithms for CI optimization41-44 and the one41 implemented 
in the commercial package Gaussian 0345 is explained in this section because it 
has been used in this thesis.  

It has been shown that CIs are hyperlines of energy degeneracy of n-2 
dimensions (n-1 dimensions if they have different multiplicity). The 
optimization of the minimum of this hyperline can be carried out with one42,44 or 
two constraints.43 The former option is explained next. Given that at the CI 
seam x1 and x2 lift the degeneracy, the minimum of the CI has to be optimized 
on the remaining coordinates, i.e. the intersection space. At the minimum 
energy point of the CI seam, the gradient is 0. Thus, the algorithm consists on 
an energy minimization in the 3N-6-2 dimensional space orthogonal to the x1,x2 
plane with the energy degeneracy constrain, Eα =Eβ.  

The gradient of the optimization has two components (g and f), and reads 
as: 

 g g f= +  (1.18) 

The condition of minimizing the energy difference between the crossing 
states (Eα-Eβ minimization) is accounted for gradient f and is defined as:  
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being x1 the gradient difference vector. The length of x1 has no significance, only 
its direction is important. However, since x1 is large if the CI is peaked and 
small if it is sloped, and this will affect f, the vector is normalized so as the 
gradient f only depends on the energy difference. Thus, the gradient f has the 
form: 

 ( ) 1

1

2 0
x

f E E
xβ α= − =  (1.20) 

It can be readily seen that f will go to zero when the difference in energy is 
small, independently of the magnitude of x1. 

On the other hand, gradient g denotes the constrained optimization on the 
plane orthogonal to x1,x2.  
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q
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∂
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∂
 (1.21) 

where P is the projector of the gradient of Eβ into the (n-2)-dimensional space 
orthogonal to the x1,x2 plane, T TP x x x x= − −1 1 2 2I . This gradient has to be 
slightly modified in the case that the two surfaces are of different multiplicity. 
Then, x2 is zero and the projection is carried out on the (n-1)-dimensional 
orthogonal complement space. 

The gradient to be used for the optimization of the CI minimum is, 
therefore, 

 ( ) 1

1

2
E x

g P E E
q x

β
β α

α

∂
= + −

∂
 (1.22) 

One of the advantages of the method is that once f goes to 0, the 
minimum optimization is assured by the normal Hessian updating/evaluation 
procedure. This efficiency relies on the fact that g and f are orthogonal, which 
implies that the CI minimum can not be optimized if both g and f are not 0.  
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State crossing optimizations can sometimes be problematic, especially if 
the gradients of the crossing sates are nearly parallel and of similar length. That 
is because the gradient difference (x1) becomes very small, and this causes 
inaccuracies in the projection onto the constrained (n-2)-dimensional space. If 
that shall happen, a step size decrease could solve the problem. Eventually, one 
would have to settle for less strict convergence criteria. 

The optimization of crossing points between surfaces has been explained, 
however there might be different paths which lead from an excited state to the 
GS. That is, not only the characterization of minima and TS is essential to 
study the decay mechanism but the paths that interconnect these structures are 
crucial too. A way to interconnect stationary points is explained next.  

1.1.3.5 Interconnecting stationary points 

The critical points of a PES represent the reactants, products and 
intermediates of a reaction, whereas the pathways that interconnect them 
describe the mechanisms of the reaction. An infinite number of paths can 
connect two points in a surface, however, in static studies only the one that 
requires the least increase in energy to get from reactants to products is 
considered as it depicts the easiest way to go from one point to another. Such a 
path is commonly known as Minimum Energy (Reaction) Path (MEP) and it 
usually follows the steepest descent path. Unfortunately, the steepest descent 
path of a surface can vary upon the coordinate system. There is a coordinate 
system that has special significance from a dynamic point of view. The steepest 
descent step in mass-weighted Cartesian coordinates corresponds to the one 
followed by a molecule with no kinetic energy. The steepest descent path in 
mass-weighted Cartesian coordinates is also known as Intrinsic Reaction 
Coordinate (IRC).46 Note an IRC does not account for a classical trajectory 
since in a classical trajectory, the kinetic energy deviates the molecule from the 
ideal MEP giving access to other parts of the PES. For this reason, IRCs cannot 
substitute dynamics simulations, although they are essential to rationalize the 
dynamics results as they depict bottom line paths that serve as reference.  

There are different algorithms to calculate MEPs. They are defined as 
first-order, second-order and higher-order methods. We next explain the 
González-Schlegel second-order method47,48, which is implemented in Gaussian 
03, and has been used in this thesis.  
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1.1.3.5.a González-Schlegel IRC algorithm 

The IRC procedure is summarized in Figure 11. It is based on the use of 3 
points to generate an arc that depicts the MEP. From a starting point qk, with 
gradient gk, a new point qk+1 is optimized so that the path between the two 
points is an arc of a circle, and so that the gradients of the two points (gk and 
gk+1) are tangent to this arc. In practice, the algorithm starts at qk and first 
generates a pivot point, 

1k +
*q , at (1/2)s distance along the gradient gk. This 

pivot point is, therefore, defined as: 

 * ( / 2) k
k

k

s+ = −
g

q q
gk 1  (1.23) 

Then, the pivot point is taken as the center of a hypersurface of radius s/2 
from which a constrained optimization is performed so as to obtain the new 
point qk+1. This point assures that the energy gradient along the arc defined by 
gk and gk+1 is maximum. Because of the constrain, the gradient of the new point, 
gk+1, is parallel to 

1k1k ++
− *qq . Hence, qk and qk+1 lie on an arc of a circle of 

tangents gk and gk+1.  

 

Figure 11. González-Schlegel IRC algorithm  

IRC algorithms yield a set of discrete points on a PES that altogether 
depict a MEP. Depending on the length of s, the position and the energy profile 
along the path may vary. In extreme cases, different values of s can lead to 
completely different products of a reaction.  

In general, IRCs need a starting direction to optimize the MEP. This 
initial direction is perfectly defined at TSs, where the imaginary frequency 
vector indicates the direction towards which the energy decreases. Thus, IRCs 
starting at TSs use the imaginary frequency as initial direction (forward or 
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reverse). Nevertheless, IRCs can also be started in regions where the steepest 
descent line is not predefined as is the case of CIs or FC structures. In these 
structures, there is not an imaginary frequency that indicates the minimal 
energy direction. Thus, an initial relaxation direction (IRD) must be provided 
to the IRC algorithm. A simple technique to obtain IRDs is explained next. 

1.1.3.5.b IRD 

The major problem of the IRC algorithm is that the placement of the 
pivot point is crucial, and if it is not placed on the steepest descent path, it 
might lead to a MEP which is not the true MEP (such an effect is illustrated in 
Figure 12). Thus, one of the major utilities of the IRD procedure is to define the 
proper direction towards which the pivot point is to be set. The general 
procedure to calculate the initial reaction direction is based on the analysis of 
the vicinity of the starting point and is shown for the particular case of the FC 
structure in Figure 12. It is based on the optimization of the energy of a 
hyperspherical cross-section of the hypersurface centered (red line in Figure 12) 
at the starting point. That is, the point of minimum energy is optimized on a 
hypersphere of radius d, centered at the FC. The energy profile of the 
optimization can show different minimum energy points which correspond to 
different paths. The vectors that join the starting point with these minimum 
energy points define the different IRDs.  

 

Figure 12. IRDs calculated from a circular cross-section and corresponding 
MEPs from the FC structure. 
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The radius of the hypersphere is usually chosen to be small (0.25 a.u.) so 
as to define the steepest descent direction on the vicinity of the starting point. 
Various MEPs can be obtained by following the IRDs. This is also illustrated in 
Figure 12. In this figure, the MEP follows IRD3, however, there are also 2 other 
IRDs that define competitive paths which lead to products 1 and 2 respectively. 
Thus, the IRD procedure can be used to explore different parts of the PES 
which might be important for the photophysics of the molecule as they may 
lead to crossings with other states, generation of various photoproducts, or 
could explain competing deactivation paths.  

The IRD procedure can also be used to map the shape of the PES in the 
vicinity of the starting point. Given that the IRD algorithm optimizes the 
energy of the hypersphere, a sort of contour plot map can be generated by 
successive IRD calculations. Keeping the starting point, the accuracy of the plot 
is determined by the increase of the radius of the hypersphere. Such a procedure 
is depicted in Figure 13. 

 

Figure 13. Characterization of a PES with successive IRD calculations of 
increasing radius (d). 

Similar to the IRC, this type of IRD calculations give the profile of the 
PES. It is observed that the MEP leads from the FC structure to the point Q, 
where two deactivation paths emerge. In this example, the MEP corresponds to 
the full red line. However the use of the IRD shows that there exists a 
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competing deactivation path (dashed red line). A similar scenario is observed 
when the starting point is a CI (see Figure 14). In this case different IRDs serve 
to map the vicinity of the CI and show that different products can be reached 
from the cone tip. 

 

Figure 14. Deactivation paths from a CI and energy profile along a circular 
cross-section centered on the CI point of radius d. Note: the general IRD 
procedure extends the energy minima search to an (n-1)-dimensional spherical 
cross-section (hypersphere) rather than a mono-dimensional cross-section as 
depicted above. Adapted from Ref. 49. 

It has been shown that the IRD procedure allows the extensive study of 
PESs. Static calculations50-56 are very useful to determine all the competing 
relaxation paths of a molecule.57-59 However, as mentioned before, experimental 
lifetimes and branching ratios can only be determined with the help of dynamics 
simulations. A brief introduction to dynamics simulations is explained next. 

1.1.4 Dynamics simulations 

Static calculations serve to describe the PES of a molecule, which can be 
used to rationalize the mechanisms of reaction. In simple thermal reactions, the 
preferred reaction mechanism is usually determined by comparison of energy 
barriers. The path which has the lowest barrier determines the preferred 
reaction mechanism. In photochemistry, however, not only the height of barriers 
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is important but the excited state lifetimes and branching ratios are also 
important to describe photoinduced reactions. These properties cannot be 
determined by static models. Nevertheless, molecular dynamics can reproduce 
the time scales of the relaxation paths of a molecule and non-adiabatic 
properties such as branching ratios. In addition to that, dynamics simulations 
can be very helpful in photophysics studies since they represent the theoretical 
approach to ultrafast pumb-probe experiments.  

There are different types of molecular dynamics simulations, and they can 
be classified depending on the way the nuclear motion is treated. Two main 
groups, namely classical and quantum dynamics methods, define the boundaries 
of the molecular dynamics framework. These two methodologies present some 
limitations especially when dealing with non-adiabatic processes of large 
systems. A large variety of methods, which allow the study of such systems, 
have been developed. Next, the full classical and quantum dynamics methods 
are explained first together with some of their limitations. Later, different 
methods with a mix classical-quantum character, which approach quantum 
dynamics are explained. 

Pure or full quantum dynamics methods are based on the quantum 
solution of the nuclear and electronic parts of the Schrödinger equation. 
However, they can only be applied to small molecules of no more than 4 atoms, 
because the so-called many-body problem arises for larger molecules. The 
movement of many (>4) interacting systems can not be analytically solved. 
Thus, the use of approximations to solve the nuclear problem is necessary for 
most of the systems. One of the most extended approaches is based on the use 
of a wavepacket to describe the nuclear motion. In spite of this approximation, 
such molecular dynamics are still considered “full” quantum dynamics, although 
strictly speaking they are not. In these full quantum dynamics of nuclear motion 
methods, both the electronic and nuclear parts are solved by means of quantum 
mechanics. One of the strong points of these methods is that the gradient and 
Hessian are calculated analytically. This requires an analytical expression for 
the PES. Unfortunately, because of its complexity, in most cases it is impossible 
to directly obtain an analytic expression for the PES. The solution to this 
problem represents a main problem of the method, since the analytical 
expression is usually obtained from mathematical fitting to a previously 
calculated grid of points on the region of interest. The main problem is that 
analytical fittings can only be carried out for a reduced number of degrees of 
freedom. Thus, one must reduce the number of degrees of freedom before 
generating the grid. This is usually accomplished by freezing those coordinates 
which are less relevant for the dynamics. Such an approximation is usually a 
good solution for ultrafast processes as only a few coordinates are activated 
during the reaction. However, if complicated systems or larger timescales are 
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considered, the reduced analytical expression of the PES may not describe the 
system properly. 

On the one hand, the molecular dynamics approach is based on the use of 
classical mechanics to determine the movement of molecules, which are 
described by particles. In contrast to quantum dynamics, this allows to treat a 
large (thousands) number of atoms. Most of the classical dynamics methods do 
not use an analytical expression for the PES from which the Hessian and 
gradients are obtained. In one hand, this represents a disadvantage with respect 
to full quantum dynamics, because instead the energy and Hessian need to be 
calculated (locally) at each step of the trajectory (on-the-fly) and it might be 
rather expensive, especially if ab initio methods are used. However, there exist 
Hessian updating techniques which allow for a fast estimation of the Hessian 
and can be used in those cases where the second derivatives calculation is too 
expensive. On the other hand, at the same time the on-the-fly calculation 
procedure represents an advantage vs. the full quantum dynamics since it avoids 
the bottleneck that represents the calculation of the grid of points (previous to 
any full quantum dynamics simulation) that is used to obtain the analytic 
expression for the PES. In addition it allows to take into account a larger 
number of degrees of freedom. One of the problems of this methodology is that 
a large number of trajectories must be run in order to get a random Gaussian 
distribution of trajectories, which emulates the nuclear wavepacket – only a 
broad sampling assures all the geometries relevant for the dynamics are explored 
–. However, the biggest inconvenient of classical dynamics is that it cannot be 
used to treat non-adiabatic processes such as bond breaking, ultrafast excited 
states relaxations or charge transfer problems, as they require a quantum 
electronic structure description that goes beyond the Born-Oppenheimer 
approximation.  

The inclusion of quantum dynamics effects into classical methods defines 
the quasi-classical methods. Classical dynamics with trajectory surface hopping 
is one of the most extended quasi-classical approaches. This allows the 
treatment of non-adiabatic processes by means of classical dynamics. In most of 
these methods the electronic wavefunctions are computed on-the-fly as solution 
of the Schrödinger equation, and the nuclei are propagated classically with the 
surface and velocity of the electronic part. Multiconfigurational methods such as 
CASSCF, assure the proper description of the different states, and the surface 
hopping algorithm determines at which state the Hessian has to be calculated, 
i.e. allows the description of non-adiabatic processes such as relaxations that go 
through CIs. This is the reason why a semi-classical dynamics method with a 
surface hopping algorithm has been used in this thesis. There are other 
approaches, namely mixed-quantum-classical dynamics, which have a dual 
quantum and classical character. In these methods, some degrees of freedom are 
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treated classically and others quantum mechanically. Another approach to full 
quantum dynamics of nuclear motion is provided by some “quantum” methods 
which use Gaussian functions to approximate the nuclear wavepacket. One of 
these methods is the Direct Dynamics variation Multi-Configurational Gaussian 
(DD-vMCG) and has been used in the present thesis to study the S2/S1 CI of 
thymine (see section 2.2). One of the main advantages of this method is that, 
unlike the full quantum dynamics methods, the PES and Hessian are evaluated 
locally and on-the-fly, which allows the treatment of larger numbers of degrees 
of freedom. The number of Gaussian functions that expand the wavepacket 
determine the degree of approximation to full quantum dynamics. In the limit of 
expansion (infinite Gausians), the DD-vMCG method turns to be a full 
quantum dynamics method of nuclear motion. Another approach to quantum 
dynamics is the so-called Multi-Configurational Time-Dependent Hartree 
method, from which the DD-vMCG is derived. This method is considerd a full 
quantum dynamics method of nuclear motion, since as defined before it uses a 
wavepacket to approach the nuclear motion and a reduced analytical expression 
of the PES.  

We have just seen how the improvement on the description of the nuclear 
motion serves to converge to full quantum dynamics. However, the description 
of non-stationary processes is not only dependent on the nuclear part, but also 
on the electronic one. In this sense, mainly three different approaches are used, 
namely semi-empirical, DFT, ab initio, and QM/MM methods if solvent is 
taken into account. Since the aim of this thesis is not to give a review on 
molecular dynamics methods, the reader is referrered to literature60-64 if more 
information on dynamics methods is desired.  

The most relevant advances and the most important works on the 
photophysics of DNA are briefly explained next. More detailed information on 
thymine is given in sections 1.2.1 and 1.2.2. 
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1.2 Experimental and 
Computational Background 

The response of DNA to light has been object of study since the early 
1960s. However, due to the femtosecond character of DNA relaxation 
mechanisms, only recent technological advances in femtosecond pumb-probe 
experiments have allowed the direct study of such ultrafast phenomena. In this 
section, we will review the most important advances concerning the excited 
states of DNA. 

The study of DNA deactivation mechanisms has been one of the major 
applications of the time-resolved absorption experiments. The precision and 
accuracy of these studies, however, has been limited by the laser and detector 
technologies. Nowadays, femtosecond time-resolved absorption experiments 
carried out on nucleobases try to determine the deactivation mechanisms by 
direct determination of the lifetimes of the different species formed upon 
excitation. Such a precision was unreachable in early experiments, which were 
limited to fluorescence analysis studies. However, in spite of the resolution of 
actual experiments, decay mechanisms cannot be directly identified, but only a 
general picture can be drawn from the experimental data. The decay 
mechanisms are assigned following some general hints. For instance, ultrashort 
(hundreds of fs) excited state lifetimes indicate reactions are unlikely to take 
place during the decay path and that relaxation proceeds via internal 
conversions. On the other hand, long decay timescales (ps-ns) do not necessarily 
imply photoreactions occur in the excited states, but they can indicate 
quenchings of other states or the presence of barriers or trappings. Nevertheless, 
it is generally accepted that long excited state lifetimes favor photolesions 
because more intermediates and states are involved in the decay, and therefore, 
there are more possibilities of obtaining different structures. 

Absorption experiments are usually carried out in solvent due to its 
simplicity and also because the solvent mimics the environment the DNA has in 
the cell nucleus. However, it is difficult to know if the aqueous solution used in 
the experiments can emulate that of the nucleus or if, on the contrary, the 
differences with the real environment can affect the decay processes. Some 
experiments65-68 reveal that the DNA hydrophobic interactions exclude water 
from inside the DNA, which reduces its interaction with the environment. It has 
also been argued that the solvent might wash away the properties of the 
nucleobases as it can cause geometric disorders, change in the conformations or 
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tautomerism. Such an uncertainty makes both experiments in the gas phase and 
in solvent necessary, given that the effects that the solvent can have in the 
decay process can only be determined by comparison of solvent and gas phase 
experiments. 

On the theoretical side, most of the studies are carried out in the gas 
phase, as is the case in this thesis, because of the high computational cost of the 
calculations which take into account the effects of the solvent. Thus, we will 
generally focus on gas phase experiments, although the most important works 
under solvent conditions will also be explained. 

The first time-resolved experiments for the study of the excited states of 
nucleobases were carried out by Nikogosyan69 in the early 80’s. Those and other 
studies70,71, reported excited state lifetimes for the nucleobases of the order of ~4 
ps. Lasers with femtosecond excitation pulses were introduced72,73 later in the 
1990s, and should have substantially improved the excited state lifetimes 
resolution. However, too high pump intensities led to multiphoton absorptions 
and multiple overlapping signals which reduced the precision of the technique. 
Only Häupl74 et al. provided shorter excited state lifetimes measures of the order 
of 1ps with an excitation pulse resolution of 200fs, although these lifetimes were 
of the same order ore even shorter than the instrumental response function 
which was estimated to be of ~4ps, and a further study showed75 that such a 
time resolution was not sufficient to capture the subpicosecond excited decays. 
The most important finding of the decade was probably the announcement of a 
bi-exponential decay character for guanine, which was reported by Fujiwara et 
al.76 in an experiment carried out at different pH values. That bi-exponential 
decay character was the first indication of the existence of different excited state 
deactivation channels for nucleobases, what would lately become a focus of 
discussion.  

Later on, Pecourt et al. reported the excited states lifetimes of a number of 
nucleosides,75,77 which lied on the subpicosecond range, which supposed a 
breakthrough in the photochemistry of DNA. Gustavsson et al. reported a bi-
exponential character deactivation for thymine78,79 and adenine,25 which was also 
reported80 for the rest of DNA nucleobases in another study. In those studies, 
the shortest deactivation channel was assigned to the direct radiationless 
deactivation from the lowest π,π* state. Whereas, the origin of the long one 
remained rather uncertain until recently Hare et al.81 found it corresponds to a 
dark state (n,π*), which also acts as a gateway to populate a triplet state 
(3π,π*). In the same work, the authors described that not only the bases were 
involved in the deactivation process but the phosphate group too as they 
observed pyrimidine nucleotides exhibited longer decay lifetimes than the 
corresponding nucleosides. Such an effect was not observed in purines.  
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Turning to the gas phase (see section 1.2.1 for a more detailed explanation 
of the gas phase experiments on thymine), the first experiments on nucleobases 
were carried out in supersonic jet expansions,82,83 although jet-cooled with 
resonance-enhanced multiphoton ionization (REMPI) or laser-induced 
fluorescence (LFI) studies proved, later, to be much more efficient in providing 
information on deactivation processes. The first pump-probe transient ionization 
experiments23,84 on jet-cooled bases carried out by Kang et al. represented a 
breakthrough on the field. The authors observed monoexponential ultrafast 
decay timescales (0.8-6.4 ps) from the first singlet excited states of nucleobases, 
with the exception of thymine, which also showed a longer deactivation channel, 
firstly assigned to a triplet state and subsequently reassigned by He et al.24,85 to 
a dark state (n,π*). A three step relaxation mechanism was also proposed by 
Ullrich et al. in 2004.86,87 In contrast, Canuel et al.88 using a high resolution 
femtosecond laser (80fs), proposed a two step deactivation mechanism for all 
DNA and RNA nucleobases which included ultrafast conversions to n,π* states. 
These latest works proved that the early experiments69,73,89 used too low 
resolutions to detect the ultrafast relaxation decay lifetimes of DNA. 
Nevertheless, the study of the photophysics of DNA is not a resolved issue as 
technological advances give rise to new and more accurate studies which 
complement the proposed picture and can provide different or competing decay 
mechanisms. This is the case of adenine, whose relaxation was generally 
accepted to proceed via a two step mechanism that involved the π,π* and n,π* 
states before regenerating the GS, and a recent work90 has proved that a π,σ* 
dissociative channel plays a major role in the electronic relaxation.  

In general, regarding the relaxation of DNA nucleobases, studies in the gas 
phase and aqueous solution reach similar conclusions. In spite of some 
discrepancies in the ordering of the lifetimes of the nucleobases, both agree two 
deactivation channels exist for nucleobases. An ultrafast internal conversion 
(hundreds of fs) leading to the ground state has been assigned to a barrierless 
path. The excited state with a lifetime of tens to hundreds of ps has been 
assigned to a relaxation from an n,π* state that acts as intermediate in the 
relaxation from the π,π* state.  



34 Experimental and Computational Background 

 

 

Figure 15. Representative structures of base multimers from Ref. 91: (a) 
Watson and Crick base pair, A-T (top) and G-C (bottom); (b) base-stacked 
form of the dinucleoside monophosphate ApA; (c) B-form double-stranded 
DNA, views down the helical axis (left) and from the side (right); (d) A-form 
double-stranded DNA, views down the helical axis (left) and from the side 
(right).  

Excited state dynamics of multiple monomers (multimers) in the form of 
dimers, base pairs, polymers and double strand chains (see Figure 15) are much 
more complicated than those of single bases. The proximity of the bases in such 
structures leads to new states that are not present in the isolated bases.  

Nucleobases interact in 3 different ways: 1) a phosphate group (sugar) 
covalently links one nucleobase to each other. 2) Van der Waals interactions 
between the π orbitals of the atoms in the ring dispose the bases in vertical 
stacks (π stacking). 3) H-bonds between adjacent bases. The result of these 
interactions is the well known α-double helix structure of DNA. Such structure 
plays an important role in the deactivation process, since the extra energy 
gained in photon absorption is distributed among the bases. When absorptions 
take place in a multimer, different species can form. An excimer92-94 is an 
emissive excited state formed by an excited molecule somehow coupled to 
another identical base which remains in the GS (i.e. the excitation is localized in 
a single nucleobase). When the excitation is delocalized between different bases, 
an exciplex is formed. That is, upon photon absorption one base approaches 

a) b) 

c) d) 
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another one, which remains in the GS, and couple forming the exciplex. Once 
the relaxation has taken place, the exciplex is no longer stable and it 
decomposes into its initial components. A more general term is denoted by 
exciton,95,96 which is used to name delocalized excitations in the multimer. 
Because the aim of the present work is not the study of excimers’ photophysics, 
only some general features about these excited state species will be explained. 
Nevertheless, an extensive discussion about formation of excimers and other 
related species can be found in an excellent review by Crespo-Hernández et al.91 

The excited state dynamics of DNA dimers or base pairs are rather similar 
to those of the single monomers. They both have been described97-99 to proceed 
via ultrafast relaxation channels involving n,π* states as intermediates, and 
quenchings to π,σ* states in adenine.98 Long-lived species such as excimers100 
and H transfer reactions have also been suggested to take place in dimers after 
photon absorption.99,101-103 In spite of the great chemical interest of such 
structures, recent investigations have pointed out that dimers seem not to be 
appropriate simplified models of DNA, as their excited state dynamics differ 
from those of the multimers.104-109 Thus, the study of larger models of DNA, such 
as oligomers, is starting to focus the attention of the research community. 

As explained above, the multimers have different emissive species from 
monomers and dimers. Oligomers are characterized by having long-lived excited 
states with red-shifted fluorescence compared with that of the simpler models.110 
These longer fluorescent decay times do not lead to more fluorescent species, 
but they are thought111-113 to act as DNA photolesion precursors. The formation 
of these species and some photoproducts were found to depend on the 
conformation114 adopted by the multimer at the instant of absorption115 and on 
the base sequence of the multimer.109 One of the first time-resolved studies on 
oligomers was carried out by Plessow et al.108 The authors reported 
biexponential decay lifetimes with a short component of hundreds of ps and a 
long one of the order of ns that was assigned to excimer fluorescence. They also 
got evidence that adenine-adenine and adenine-thymine stacks were responsible 
for most of the long-lived emissions and that adenine had a greater tendency to 
form excimers. Markovitsi et al.106 performed the first femtosecond fluorescence 
study on oligomers and they observed that the majority of the fluorescence 
decayed in a few ps. Surprisingly, no long-lived channels on the ps-ns range 
were observed, but the authors agreed that longer-lived channels, which 
exceeded the detection limit, could not be excluded. 

Crespo-Hernández et al. shed some light on the deactivation channels of 
some oligomers,100,105 not without controversy,104,107,116 when they claimed that 
every excitation that takes place in a base stack decays to an excimer which 
may subsequently regenerate the GS or trigger a photoproduct. As it was first 
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reported by Plessow et al., this mechanism was mostly observed in adenine 
oligomers, whereas no excimers were detected in thymine ones. Thymine 
oligomers showed similar excited state lifetimes to those of the monomers, 
clearly indicating that excitations and subsequent deactivations take place in 
single nucleobases. However, the fact that thymine photodimers were also 
detected, may suggest that excimers formed in the thymine oligomer might lead 
to T-T photodimerization. A similar conclusion was drawn for adenine-thymine 
duplexes, as both phenomena were observed. However, it has been stated in a 
recent study by Takaya et al.117 that the long-lived excited states seen in long 
DNA model systems100,114,116,118,119 are formed in stacks of two bases and 
correspond to exciplex states created by interbase charge transfer. The authors 
also point out that these exciplex states are not formed initially but are 
populated after Frenkel excitons120 (excitations that travel from one atom to 
another, i.e. traveling excited states). Frenkel excitons can be described as. 
Although exciplexes seem to be responsible, or at least contribute to the decay 
mechanisms, there are still many questions to be answered, and thus more 
studies are needed to get a definitive mechanism for the DNA deactivation. 
traveling  

Despite the great amount of studies performed on DNA models, there is 
very few available data72,121,122 on native DNAs. Since it seems that the base 
sequence plays a major role in the relaxation transient and that it varies along 
the DNA double helix, it is quite difficult to assign decay time scales or 
relaxation mechanisms within a DNA double strand as many shall take place at 
the same time. Therefore, only deep technological advances can shed light on 
such an issue as up to now only the study of simplified models can be afforded.  

In the next section the most relevant works on thymine, mainly on the gas 
phase, are reviewed. 

1.2.1 Thymine experimental studies 

There is not a general agreement on the relaxation of thymine when decay 
mechanisms involving two and three steps are described23,24,87,88 depending on the 
type of experiment and precision of the method. 

Three intrinsic lifetimes ranges have been reported: A short component of 
hundreds of femtoseconds, a larger one of tenths of picoseconds and a long-
living dark state of hundreds of nanoseconds. Chronologically, Kang et al.23, for 
the very first time in the gas phase, reported a double exponential decay for 
thymine in a 267 nm pump-probe ionization experiment.84 In this experiment, 
the molecule is pumped to its excited state by a third harmonic pulse of a 
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Ti:sapphire and then, after a certain time delay, the population of the excited 
state is probed by multiphoton ionization using fundamental light. The short 
component was consumed in 6.4ps and a larger one, which was assigned to a 
triplet state, in 100ps. Later on, a resonantly enhanced pump-probe 
multiphoton ionization experiment24,85 (REMPI) showed the presence of a long 
living dark state for different methyl substituted uracil, and thymine 
nucleobases with excited state lifetimes of 23 to 209 ns depending on the 
excitation energy and the substituents. The authors suggested that the dark 
state should correspond to a low lying n,π* state, which might be coupled to a 
π,π* state by out-of-plane vibrational modes via conical intersections. It was 
observed that when the excitation energy increased the dark state lifetime 
decreased, giving evidence for the existence of an energy barrier which hinders 
the effective deactivation from that state through a CI with the ground state. In 
the same work, He et al. claim that the large deactivation component, which 
was assigned to deactivation from the triplet state by Kang et al., could also 
correspond to a trapping in a dark state.  

Three channels of <50fs, 490fs and 6.4ps23 were reported in the 
deactivation of thymine in a Time-Resolved Photoelectron Spectroscopy 
(TRPES)123 experiment at 250 nm.87 In this experiment, a high temperature 
glass nozzle is used to introduce the sample into a magnetic bottle photoelectron 
spectrometer where the molecular beam is pump-probed. The authors pointed 
out that they could not obtain reliable global fits due to the poor signal-to-noise 
ratio of the long time range TRPES spectra. Nevertheless, they could reproduce 
other literature values within 0.5 ps. of accuracy. 

More recently, an experiment88 with a mass-selected resonant ionization 
technique124– two laser pulses are generated in a Ti:sapphire. One pulse pumps 
the molecule to its excited state and the other pulse goes to the delay line and 
probes the population of the excited molecule in the extraction region of a linear 
time-of-flight mass spectrometer – with a resolution of 80fs at 267nm suggested 
a two component decay for the nucleobases with components of 105fs and 
5.12ps for thymine. Although only adenine was studied in detail in this work, a 
common decay behavior was described for all nucleobases. The short 
components were assigned to the π,π*/n,π* transition, whereas the longer ones 
to the deactivation from the n,π* state. 

Summing up, experimental studies of thymine photophysics report a multi-
exponential dynamics pathway with one or two short components of <500fs 
followed by a longer one of tenths of picoseconds (5.12 – 6.4ps). There is also 
evidence for the presence of a long living (hundreds of ns) dark state of n,π* 
character lying between the π,π* state and the GS. That dark state is probably 
connected to the GS through a CI which is hardly reachable due to the presence 
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of an energy barrier on the same state. The presence of a triplet state in the 
same energy range was also reported.  

Taking into account that technology has not yet evolved enough to study 
photophysical processes in great detail and that different experiments reach 
different conclusions, it arises that computational chemistry turns out to be 
essential to shed some light on the photophysics of nucleobases. Theoretical 
calculations are meant to reproduce experimental results giving further 
explanations to unresolved experimental data. The advantage of the 
computational studies relies on the fact that they can easily identify the 
character of the states and can provide valuable information on the decay 
mechanisms. On the other hand, large and complicated systems can only be 
studied using simpler models, what can make the experimental assignment 
difficult.  

1.2.2 Computational studies 

Due to the fact that the photophysics of nucleobases is one of the hot 
topics of this decade, some of the results explained in this section have appeared 
during the realization of the present thesis and have overlapped our owns. In 
these cases, only the results of the literature are presented. 

Initial computational studies125-127 on DNA predicted planar ground state 
minima structures for the nucleobases, with the exception of those with a NH2 
group, which was optimized slightly out of the ring plane. 

Non-planar minima for the two lowest excited states of thymine, uracil 
and cytosine were firstly reported by Shukla et al. in a CIS study.128 The 
presence of these minima indicated that the relaxation of the photo excited 
pyrimidines would probably take place in the ps-ns range. Nevertheless, a 
computational study129 within the MRCI framework provided the first evidence 
for a barrierless path on uracil. It revealed the presence of a gradient-minimized 
direct pathway from the Franck-Condon (FC) region to an ethylenic S1/S0 
conical intersection, characterized by a C-H bond lying almost perpendicular to 
the ring plane. In the same work, a decay to a dark state after a S2/S1 internal 
conversion and a CI between the n,π* and ground states were also described. 
Subsequent studies have located the ethylenic S1/S0 intersection at the complete 
active space self consistent field (CASSCF) and complete active space second 
order perturbation (CASPT2) levels of theory both for thymine and uracil,130,131 
and evidence has been also found at the completely renormalized equation of 
motion coupled cluster (CR-EOM-CCSD(T)) level.132 The intersection is an 
analogue of the twisted ethylene conical intersection.133-136 
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A similar barrierless decay mechanism for thymine was suggested by 
Perun et al. in a later work130 which gave notice of a series of CIs and non-
planar minima for the two lowest excited states of thymine at the CASSCF and 
CC2 levels of theory. In the same work, the fs and ps channels reported in Ref. 
88 were assigned to the barrierless relaxation and the deactivation from low 
vibronic levels of the n,π* state, respectively. It was also argued that the 
relaxation lifetime of the n,π* state depends on the relative energy of the 
minimum with respect to a barrier that separates it from a CI with the ground 
state. The authors suggested that the deactivation from that state could also 
account for the ns component reported in Ref. 85. 

The barrierless decay from the FC region was also studied at the CASPT2 
level of theory and generalized to all pyrimidine nucleobases by Merchan et al. 
In that work,131 the n,π* state was found to lie above the π,π* one all along the 
relaxation channel. In such a case, the population of the n,π* state is unlikely, 
and the fs channel was assigned to the barrierless passage from the FC to the 
CI(S1/S0), whereas the ps component was proposed to arise from the 
deactivation of a high-lying planar minimum optimized on the same π,π* state. 
In a subsequent work,137 the same group found two CIs along the barrierless 
path which lead to the triplet manifold. The CI with higher energy was located 
in the FC vicinity and could lead to either the singlet or triplet states (1,3n,π*) 
as they overlap in that region. On the other hand, a crossing with the 3π,π* 
state was found at the same region of the S1/S0 CI, which can be reached 
without a barrier. On the basis of these findings, the ps channel was reassigned 
to the deactivation of the triplet manifold, and the consumption of the high-
lying planar minimum was estimated to take place in ~9 ns. 

Another explanation for the decay lifetimes of thymine was proposed by 
Hudock et. al.138 on the basis of a mixed ab initio molecular dynamics and time-
resolved photoelectron spectroscopy (TRPES) study. The dynamics calculations 
were carried out at the CASSCF level and the PES was optimized using the 
CASPT2//CASSCF approach. The fs passage was assigned to the vibrational 
relaxation from the FC point to a non-planar minimum optimized on the π,π* 
state. This minimum lies on S2 above the optically dark n,π* state. The same 
authors attributed the picosecond component to further deactivation from that 
minimum. Note, these authors performed a full-dimension direct quantum 
dynamics study, but their result was rather surprising as most of the 
trajectories were started in the FC region and got trapped in a minimum of the 
π,π* state. Due to the fact that the trajectories were stopped at 500 fs, no GS 
regeneration was observed, and the study could not provide a full picture of the 
radiationless mechanisms nor decay timescales that lead to GS regeneration.  
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Very recently, a semiempirical OM2//MRCI dynamics with a trajectory 
surface hopping algorithm provided a different explanation for the decay 
lifetimes of thymine. In this work,139 two relaxation mechanisms were observed 
in the sub-picosecond range. The fastest mechanism corresponds to direct decay 
from the FC structure to the GS via the ethylenic CI, whereas the second 
mechanism corresponds to decay from the π,π* state to the n,π* state and 
further to the ground state via a CI. The two paths lie in the subpicosecond 
range and explain the decay components of <50 fs (single step mechanism) and 
490 fs (two step mechanism) reported by Ullrich et al.87  

To summarize, all computational studies in the literature agree that 
thymine ultrafast relaxation proceeds through an ethylene-like133-136 conical 
intersection between the first excited state, S1, and the ground state, S0. 
However, there is no consensus (see Figure 16) in the paths that may lead 
excited thymine to GS regeneration. The reason for such a disagreement is that 
PESs are highly dependent on the methodology and the level of calculation. All 
these results show that there is need of a high level PES which provides a better 
description of the global picture and helps to understand the deactivation 
mechanism. 

 

Figure 16. Summary of thymine’s relaxation models found in the literature. a) 3 
components corresponding to deactivations from the π,π* state, (π,π*)Min, and 
3π,π* state were reported131,137 to lie in the fs, ps and ns time ranges, 
respectively. b) 2 components corresponding to relaxation from FC to (π,π*)Min, 
and further deactivation from that minimum were assigned138 to the fs and ps 
components, respectively. c) 2 fs components, fs’ (<50 fs) and fs’’ (490 fs), were 
reported139 for two different two-step mechanisms corresponding to π,π*-GS, 
and π,π*-n,π*-GS, respectively. 
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1.3 Computational methodology 
When facing the computational study of a system, one must first consider 

the cost and accuracy of the calculations that have to be performed. Accurate 
calculations can be computationally very expensive or even unfeasible. The use 
of simplified models can help in such a situation, although sometimes these 
models cannot describe all the properties of the system and therefore, cannot be 
used. Thus, the first stage of a computational study should be the analysis of 
the system to be studied and the choice of the methodology and level(s) of 
theory that will be used throughout. There are mainly two types of 
methodologies: the specific and general ones. Specific methods can only be 
applied to a limited number of systems for which they usually provide excellent 
results. On the other hand, general methodologies can be applied to a vast 
number of cases, but their results are not so accurate as in the former. It is a 
general procedure to perform an initial calibration before using a specific 
method in order to check if the methodology is valid for the system that has to 
be studied. However, when general methods are used, we tend to assume they 
will be applicable to the case study and forget that they may fail unexpectedly. 
Some failures of such general-use methods in describing GS minima of ordinary 
molecules are presented next.  

1.3.1 Failures of general computational 
methods in ring planarity description 

An accurate structure optimization is essential for the study of the 
photophysics of a molecule. For instance the GS minimum is the structure that 
determines the energy of the excited states from which the relaxation process 
starts. Thus, it is important to make sure that the methods that will be used to 
perform the study of a system, can optimize structures properly. This is 
exemplified for benzene, which is one of the most studied molecules because of 
its singularity and “simplicity”. It is a planar, aromatic, six-memebered ring 
with no substituents. Its high symmetry, which translates into relatively low 
cost computations, makes benzene the perfect target of many studies. Moreover, 
it is the perfect model for a lot of organic molecules composed of rings, and in 
many cases it is used as a reference. In spite of the knowledge accumulated over 
the years on benzene and the different techniques applied for its study, recently, 
Moran et al.140 reported a broad number of ab initio calculations on benzene and 
other planar arenes at different correlated levels of theory. Surprisingly, some of 
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the frequently used Pople’s basis sets yielded non-planar minima rather than 
planar geometries. The planar optimized structures turned out to be transition 
states exhibiting one (or more) large imaginary frequency. More intriguing is the 
fact that usual high level (correlated) calculations, namely Møller-Plesset141 
(MP2) and Coupled Cluster56,142,143 with single, double and triple excitations 
(CCSD(T)), predicted wrong structures for benzene and other planar arenes, 
whereas single-determinant based methods like Hartree-Fock144 (HF) and 
Density Functional Theory methods (DFT) such as BLYP145,146 and B3LYP146,147, 
which are computationally cheaper, led to the expected planar minima and 
hence no imaginary frequencies.  

Other authors had already reported failures of electronic structure methods 
for the correct description of low-lying out-of-plane vibrational frequencies of 
benzene,148,149 several planar arenes,150-154 and other non-rigid molecules.155 Similar 
pitfalls were found more recently by Shabahzian156 for the challenging (B6C)2- 
anion, particularly at the MP2 level of theory.  

Rather than to any deficiency of the post-HF electronic structure methods 
including electron correlation, the origin of the problem has been suggested to 
be rooted on (atom-centered) basis set deficiencies. Simandiras et al.155 found 
that the use of f-type basis functions was necessary to obtain accurate bending 
frequencies. Martin et al.149 dealt in detail with the benzene case and concluded 
that out-of-plane bending modes are pathologically basis set dependent, 
suggesting that a basis set superposition could be at the origin of the problem, 
based on the work of Sellers and Almlöf.157 In fact, Jensen158 found that 
imaginary frequencies can also appear at the single-determinant level for a 
double-zeta quality basis set including d-type diffuse functions (aug-pc-1) for a 
rather narrow range of diffuse function’s exponent values. 

Perhaps, the most important error introduced by the use of truncated 
atom-centered basis sets is the so-called basis set superposition error (BSSE).159 
It has been recognized for years160 that BSSE introduces some spurious extra 
binding in the ab initio calculations and that its correction is essential to 
properly describe intermolecular interactions. In the last decade it has been also 
shown that BSSE does not affect merely the interaction energy, but also the 
topology of the PES of these systems, which translates into geometrical and 
vibrational effects (see section 2.1.3.2).  

1.3.1.1 Intramolecular BSSE 

Much less attention has been paid to BSSE effects in single molecules, 
what is referred to as intramolecular BSSE.157,161-164 Noteworthy exceptions are 
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recent studies on aromatic-backbone intramolecular interactions165-168 on peptide 
models, that have put forward that the accurate determination of relative 
stabilities of conformers is heavily affected by BSSE. In fact, the first CP 
calculation by Jansen and Ros159 was carried out on a single cation (HCO+). In 
single molecules there is not a problem a priori with the fact that one atom or 
fragment can use the basis functions centered on other atoms or parts of the 
molecule. Actually, this helps to naturally describe polarization or charge 
transfer effects. The problem arises when the use of external basis functions is 
merely due to a lack of flexibility of the fragment’s basis set; i.e. when the basis 
set incompleteness error (BSIE) is strongly geometry dependent, as spurious 
geometry changes can be induced by intramolecular BSSE effects. Unbalanced 
descriptions of PES can also emerge. This translates directly into poor 
vibrational frequencies and likely changes in the topology of the stationary 
points, as found by Moran et. al.140 In that revealing report, the authors showed 
that in those cases where a non-planar optimized structure was found for 
benzene, the two-electron BSIE tends to dramatically increase for geometries 
away from planarity. In fact, even for the levels of theory where no imaginary 
frequencies are observed, BSIE still shows moderate dependence on the 
geometry. Thus, the two-electron BSIE diagnostic seems indeed a valuable tool 
to detect possible spurious geometries induced by BSSE effects but it cannot fix 
the problem. A recent study169 based on the use of chemical hardness profiles is 
also able to detect such spurious structures, but again, it does not offer a 
solution to the problem. 

There are a few examples in the literature where BSSE accounts for large 
geometric effects, namely the hydrogen fluoride dimer170,171 or weak C-H···O172 
interactions. We propose BSSE correction (see section 2.1.3.2 for more details) 
as a way to fix the anomalous behavior of normal-use electronic methods such 
as those reported by Moran et al. Such an issue takes special relevance in the 
present work as we want to get a high quality PES for thymine which, as will 
be seen later on, can also suffer from such pitfalls. Therefore, we will investigate 
the performance of the Counterpoise method in fixing the failures reported for 
benzene, to later extend it to other systems. In addition, more complicated cases 
for which the fragments’ definition is not clear, such as the cyclopentadienyl and 
indenyl anions or naphthalene, will be considered.  

1.3.2 Pitfalls on DNA and RNA nucleobases 

Failures on geometry optimizations is an issue that must be always kept in 
mind, but especially in photophysics studies as the GS minimum corresponds to 
the FC point, which is the starting point of all relaxation pathways and the 
geometry at which the vertical spectrum is calculated. In order to get an 
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accurate FC point, many studies130,138,173 optimize the ground state minimum 
using methods which include dynamic correlation. Therefore, the use of MP2 is 
rather general for this purpose125,170,174-176 due to its simplicity and relatively low 
computational cost. It has been seen that great attention must be paid when 
using correlated methods with Pople basis sets, as one may come across 
unexpected failures in minima optimizations. Failures in geometry optimization 
can affect the vertical spectrum of molecules. This can translate into a bad 
description of the ordering of the states, which is essential to describe the 
deactivation paths. This is illustrated in Figure 17, where a small geometrical 
change in the position of the minimum translates into a rather different 
deactivation scenario.  

The full line depicts a FC point from which a wavepacket can hardly 
deactivate. Thus, the deactivation of this species would be much slower than 
that described by the dashed blue line, in which the wavepacket that describes 
the excited species has enough energy to surmount the TS, and therefore, to 
regenerate the GS with less difficulties than in the former case. The difference 
between the two descriptions is a small variation of the position of the 
minimum of the PES. Thus, this shows that the optimization of the minimum is 
very important in photophysics. 

 

Figure 17. Effects of geometrical optimization anomalies in the description of 
deactivation paths.  
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According to the aim of this thesis, a MP2 and CASSCF benchmark study 
has been carried out for thymine in order to choose the best methodology to 
optimize the FC point and perform the photophysics study. It has also been 
studied if thymine can suffer similar pitfalls to those reported for benzene. The 
study is extended to the other nucleobases at the MP2 level for four selected 
basis sets of general-use, namely 6-31G*, 6-31+G*, 6-311G* and 6-311+G*, and 
the strategy followed in the case of benzene is applied here too.  

Another point of interest is to determine to which extent such basis set 
deficiencies are localized in a region of the molecule and whether it would be 
sufficient to correct for intramolecular BSSE only locally, that is, using a 
specific Counterpoise function that would take into account only a subset of 
atoms of the system. This would likely be the case for intermolecular hydrogen 
bond formation or for the interaction between the two ends of a long chain-like 
molecule. In such cases a local treatment may be of use not just because BSSE 
correction would be irrelevant in most parts of the molecule, but also to avoid 
spurious effects of the CP-correction itself. In this respect, the definition of 
fragments with a strong overlap (i.e. when breaking a chemical bond) can lead 
to different electronic states for the fragment and ghost-orbital calculations, 
causing spurious CP corrections. This possibility is studied, and a solution based 
on the multiplicity assignment is applied. 
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2 THEORETICAL METHODS 
Various methodologies and levels of theory of electronic structure methods 

have been used in this thesis. Given that these methodologies have only been 
used at user level and that we are more interested in the chemistry of the 
results rather than in the theory behind them, the methodologies will not be 
explained in great detail but will be plainly overviewed. A further insight will be 
given into those parts which are more relevant for the understanding of the 
results or have implications for the choice of methodology. 

The present chapter is divided in four parts. General considerations about 
electronic structure methods are explained in the first part. The theoretical 
background concerning the nature of basis sets and one of the simplest methods 
to solve the Schrödinger equation are explained in the second part. The general 
theory of the ab initio methods that have been used in this thesis will be 
explained in the third part. Finally, the molecular dynamics methods used in 
this thesis are overviewed in the fourth section. Some problems that arise from 
the use of some of these methodologies as well as a simple procedure to correct 
these anomalies are also overviewed on the second section.  

The ab initio methods will be explained following the development of the 
subjects in the books by Szabo,177 Helgaker,178 Roos and Widmark,179 Hehre et 
al.,180 Klessinger and Michl,59 Kutateladze,49 Yarkony,181 and Domcke et al.64 

2.1 Ab initio methods  

Ab initio methods can, in principle, obtain the exact structure and energy 
of molecules without carrying out any experiment or taking into account any 
experimental parameter. This fact is indicated by the term “ab initio”, which 
literally means start from scratch. This term is used to identify the methods 
that are based on the solution of the non-relativistic time-independent 
Schrödinger182 equation to predict the properties and energy of stationary states 
of molecules. The Schrödinger equation can only be explicitly solved for the H 
atom, but fortunately some approximations to the explicit solution of the 
Schrödinger equation have been developed. Some of these approximations are 
explained next.  
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2.1.1 Schrödinger equation 

The non-relativistic time-independent Schrödinger equation reads as:  

 ˆ Ψ ΨH = E  (2.1) 

where Ĥ  is the Hamiltonian operator that provides the total energy (E) of the 
system represented by the wavefunction Ψ , which depends on the coordinates 
of all particles and also on their spin coordinates.  

In atomic units, the Hamiltonian operator for a system of N electrons and 
M nuclei is:  

 
2

2

1 1 1 1 1

1 1 1ˆ
2 2 r r R

α βα α

α α α βα α αβ= = = = = >

∇
= − ∇ − − + +∑ ∑ ∑∑ ∑∑ ∑

N M M N N N M

i
i i i j>ii ij

Z ZZ
H

M
 (2.2) 

where the first two terms correspond to the electronic and nuclear kinetic 
energy operators, respectively. The third term corresponds to the electron-nuclei 
potential energy, the fourth one to the electron-electron repulsion energy, and 
the last one to the nuclei-nuclei potential energy. r variables are used for the 
electronic coordinates and R for the nuclear ones. N and M correspond to the 
number of electrons and nuclei, respectively. The following notations are also 

used: r r Rα α= −i i , r r r= −ij i j  and R R Rαβ α β= − .  

The Hamiltonian can be expressed in a shorter notation as: 

 ( ) ( ) ( ) ( ) ( ) ( )+ + + +ˆ ˆ ˆ ˆˆ ˆ, ,r R r R r R r Re N N -e e-e N -NH = T T V V V  (2.3) 

where the operators are written in the same order as in eq. (2.2) as a 
function of the electronic (r) and/or nuclear coordinates (R).  

As stated before, such equations can only be explicitly solved for the H 
atom, since only two interacting particles are present. For larger systems, the 
solution to the Schrödinger equation can only be approximated. One of the most 
widely used approximations is the so-called Born-Oppenheimer approximation.  



The Born-Oppenheimer approximation   

 

49 

2.1.2 The Born-Oppenheimer approximation 

The Born-Oppenheimer approximation183 is central to quantum chemistry. 
It relies on the fact that nuclei are more than one thousand times heavier than 
electrons. It is assumed that nuclei move much slower than electrons, and that 
when a nuclei moves the electrons immediately reorder themselves around it, i.e. 
the electrons move in a field of fixed nuclei. Thus, the second term of eq. (2.2) is 
zero, and the last term, the repulsion between the nuclei, is constant. This 
approximation uncouples the electronic and nuclear motions and allows for a 
separation of the Hamiltonian into two parts, the electronic and nuclear ones. 
The electronic Hamiltonian reads as: 

 2

1 1 1 1

1 1ˆ
2 r r

α

α α= = = =

= − ∇ − +∑ ∑∑ ∑∑
N M N N N

e i
i i i j>ii ij

Z
H  (2.4) 

The eigenfunctions of the electronic Hamiltonian correspond to the 
electronic states of the molecule, and the eigenvalues to the electronic energy of 
the system. This energy depends parametrically on the position of the nuclei, 
thus the electronic Schrödinger equation is:  

 ˆ ( , ) ( ; ) ( ) ( ; )r R r R R r RΨ = Ψe e e eH E  (2.5) 

The fact that the electronic energy depends parametrically on R, implies 
that solving the electronic Schrödinger equation for all the nuclear coordinates 
one will obtain a set of energies. If the repulsion energy between the nuclei is 
added to this set of electronic energies (Ee), the adiabatic potential energy 
surface of the system (Etot) is obtained: 

 ( )tot eE E R
R>

= + ∑
M Z Zα β

α β αβ

 (2.6) 

This potential energy surface are the eigenvalues of the function 
e

Ψ , which 
is an eigenfunction of the electronic Hamiltonian. However, the Hamiltonian has 
infinite eigenfunctions, each one corresponding to an electronic state. The 
eigenfunction which  provides the lowest energy is called the ground state, and 
the rest are commonly known as excited states. The determination of the lowest 
potential energy surfaces of thymine is one of the centrals part of this thesis (see 
Results). Thus, the electronic wavefunction is actually a linear combination of 
electronic functions, one for each electronic state: 
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 Ψ = Ψ∑ k k
k

c  (2.7) 

Each eigenfunction, or electronic state, depends parametrically on R, thus 
each state has its corresponding adiabatic potential energy surface.  

Once the electronic part is solved, one can proceed to solve the total 
Schrödinger equation by taking the same assumptions as before. If the electrons 
move much faster than nuclei, it is reasonable to change the electronic 
coordinates of eq. (2.2) by their average values, i.e. we are assuming that the 
nuclei move in a field of electrons. This averaged field of electrons is actually 
the adiabatic potential energy obtained solving the electronic Schrödinger 
equation, and thus the nuclear Hamiltonian is expressed as: 
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1ˆ ( )
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α α=

∇
= − +∑
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N eH E
M

 (2.8) 

Accordingly, the nuclear Schrödinger equation reads as:  

 ( )ˆ ( ) ( )R R+ Ψ = ΨN e N NT E E  (2.9) 

where E includes the electronic, translational, vibrational and rotational 
energies of the system and is the Born-Oppenheimer approximation to the total 
energy (E of eq. (2.1)). It is worth to mention that the Born-Oppenheimer 
approximation is only applicable if the electronic states are well separated, that 
is when infinitessimal nuclear displacements do not change the nature of the 
electronic state.  

2.1.2.1 Born-Oppenheimer approximation 

breakdown 

It has been seen that the Hamiltonian can be splitted into nuclear and 
electronic parts, and that their corresponding Schrödinger equations yield a set 
of nuclear and electronic eigenfunctions. Thus, the total wavefunction can be 
expressed as:  

 ( , ) ( ; ) ( )r R r R RΨ = Ψ Ψ∑
K

k k
e N

k

 (2.10) 
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where k is the number of states. If we want to solve the total electronic 
Schrödinger equation and the electronic part is already solved, the solution 
turns into a set of coupled eigenvalue equations depending on the nuclear 
coordinates:  

 ( )( ) ( )T R H R+ Ψ = ΨN e N NE  (2.11) 

where E is the Born-Oppenheimer approximation to the total energy, and 

( )H Re
 and ( )T RN

 correspond to the electronic Hamiltonian and nuclear kinetic 

energy matrices, respectively. By definition, the electronic Hamiltonian matrix is 

diagonal, since 
e e

δΨ Ψ =k' k
k'k  with k indicating the electronic state. On the 

other hand, the elements of the nuclear kinetic energy matrix correspond to the 

expected value of the nuclear kinetic energy operator: 

 
1 ˆ ˆˆ ˆ( ( ))T R δ= + Ψ Ψ + Ψ Ψ∑ k' k k' k

N k'k k'k N e A e A e N e
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 (2.12) 

where ˆ
AP  is the nuclear momentum operator, which is Hermitian and purely 

imaginary. Its diagonal elements are zero and the off-diagonal ones satisfy: 
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 If the Born-Oppenheimer approximation is preserved, that is when the 
electronic states k and k’ are well separated, the second and third terms of eq. 
(2.12) are neglected. However, if the Born-Oppenheimer approximation breaks 
down, that is the electronic states are close, the off-diagonal elements cannot be 
neglected. This represents that the electronic states are coupled to each other, 
which difficults the solution of the Schrödinger equation. In order to avoid the 
solution of the coupled equations, a diabatic transformation184,185 can be 
performed. It consists on a rotation of the adiabatic states to generate diabatic 
ones, whose off-diagonal terms are zero. Thus, the transformation consists on a 
diagonalization of the nuclear kinetic energy matrix, which “reduces” the 
problem to the finding of the so-called mixing angle, provided only 2 states are 
coupled. In the diabatic representation, the coupling of the states is due to the 
electronic energy and is a scalar quantity which is much more easy to estimate 
numerically. One of the problems of this approximation is that in general the 
diabatic angle does not exist, therefore the exact transformation from adiabatic 



52 Molecular orbital theory 

 

to diabatic states can only be performed approximately (see section 2.2 for 
further details).  

The solution of the nuclear Schrödinger equation is essential to describe 
processes such as tunneling, scattering, and non-adiabatic transitions. In 
contrast, the solution of the electronic part is sufficient to describe most of the 
thermal processes. Thus, the nuclear part is usually neglected unless a more 
accurate description of the system is needed. From this point on the subscripts 
that have been used to differentiate between the nuclear and electronic parts 
will be omitted and only the latter will be considered.  

2.1.3 Molecular orbital theory 

The Born-Oppenheimer approximation allows the separation of the 
electronic and nuclear parts of the Hamiltonian, which allows for an 
approximated solution of the Schrödinger equation. One of the possible solving 
procedures is based on the use of the solution of the electronic part to resolve 
the nuclear one, which provides the total energy of the system. The electronic 
Hamiltonian only depends on the electronic coordinates. Thus, its eigenfunctions 
(wavefunction) consists on a function of the spatial coordinates of electrons, 
ψ(x,y,z). This functions are called orbitals, and its square moduli corresponds to 
the probability of finding the electron around a small volume around the central 
position of the atom, i.e. the atomic orbitals. In order to completely describe the 
electrons of a system, an infinite set of spatial functions is needed. Since this is 
obviously unaffordable, the infinite set of spatial functions is approximated by a 
reduced set of functions that is usually expressed as a linear combination of 
atomic orbitals (see next section for further details). The spatial function is not 
sufficient to describe electrons, but an extra function is needed, the so-called 
spin function. The total spin function is expanded by two functions, α(ξ) and 
β(ξ), which depend on a spin coordinate, ξ, that is unknown. The expected 
values of the spin angular momentum operator along the axis z of these 
functions are +1/2 and -1/2, i.e. spin up and spin down, for α and 
β  respectively. These two functions form a complete set and are orthonormal to 
each other: 

 1    ,   0α α β β α β β α= = = =  (2.14) 

Thus, the wavefunction of an electron consists on a product of two 
functions, the spatial and spin functions, which results in a spinorbital function, 
χ(x,y,z, ξ). It is worth to mention that for a set of K spatial functions or 
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orbitals, a 2K set of spinorbitals can be obtained since two spin functions, α(ξ) 
and β(ξ), can be combined with each spatial function to form a spinorbital.  

The spatial and spin coordinates are usually expressed collectively as x. 
Accordingly, a wavefunction for a N-electron system is written as 

( )1 2
, ,...,x x xΨ N .  

If one takes an approximated electronic Hamiltonian that does not take 
into account the interaction between electrons or that includes it in an averaged 
way, i.e. neglects the last term of eq. (2.4) or makes it constant, the electronic 
Hamiltonian can be expressed as a sum of monoelectronic operators:  

 
1

ˆ (̂ )
=

= ∑
N

i

H h i  (2.15) 

The eigenfunctions of this monoelectronic operators are the spinorbitals of 
the system, and the corresponding total wavefunction is, therefore, a product of 
these spinorbitals: 

 ( ) ( ) ( ) ( )1 2 1 2
, ,..., ...x x x x x xχ χ χΨ =N i j k N  (2.16) 

This approximated wavefunction has the form of a Hartree product.144 
However, this is not a proper wavefunction since it does not fulfill the Pauli 
exclusion principle,186 which states that a proper wavefunction of a 
polyelectronic system must be antisymmetric with respect to the interchange of 
coordinates (x) of any two electrons. A way to fulfill the antisymmetry principle 
is expressing the wavefunction of the N-electron system as a Slater 
determinant187,188 of spinorbitals: 
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 (2.17) 

where χj  denotes the different spinorbitals and 
i

( )x  the electronic coordinates 

of the system. N is the total number of electrons, which is used to normalize the 
wavefunction. 
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2.1.3.1 Basis Sets 

The construction of a wavefunction as a Slater determinant of spinorbitals 
has been explained so far. We have seen that each spinorbital is formed by a 
spatial function, atomic orbital, and a spin function. When two atomic orbitals 
approach each other, they combine forming a molecular orbital. Molecular 
orbitals are expressed as linear combinations of atomic orbitals (LCAO). The 
combination of n atomic orbitals results in n molecular orbitals, which are 
usually orthonormalized.  

As mentioned before, only an infinite expansion of the spatial part of the 
atomic orbitals can provide an exact wavefunction. Since this is not possible, 
atomic orbitals, and therefore the wavefunction, can only be approximated. In 
practice, the atomic orbitals are usually expressed as a linear combination of 
basis functions  

 
1

μ μ
μ

ψ φ
=

= ∑
N

i ic  (2.18) 

where μφ  are the basis functions, μic  the expansion coefficients, and N the 

number of basis functions used to approximate the atomic orbital ψi . In 
principle any function can be used to expand the atomic orbitals, however for a 
better approximation is convenient to use basis functions which have the 
symmetry properties of the exact atomic orbitals. Two of the most used types of 
basis functions that follow these premises are the Slater Type Orbitals and 
Gaussian-type atomic functions. The former have the form: 

 ( )1( , , ) ,rr r ζυ ϕ υ ϕ− −= n m
lS N e Y  (2.19) 

where N is a normalization factor, n is the principal quantum number of the 
orbital, ζ  is a constant related to the effective charge of the nucleous, and 

( ),υ ϕm
lY  defines the angular momentum part with the corresponding orbital (l) 

and magnetic (m) quantum numbers. The general form of the Gaussian-type 
atomic functions in Cartesian coordinates (x,y,z) is: 

 ( ) ( ) ( ) ( )2,
1 1 1

( )
r RR r αα α − −= − − −

i j k

ijk ijkG N x R y R z R e  (2.20) 

where α
ijkN  is a normalization factor, and R and α are called the center 

and exponent of the Gaussian function, respectively. = + +L i j k , and defines 
the type of Gaussian function, s-type (L=0), p-type (L=1), d-type (L=2), …, 
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and so on. The main difference between the Slater and Gaussian types of 
functions is that in the latter, the exponential of r is squared. This leads to a 
Gaussian function which present a maximum at the center of the atom, rather 
than a cusp with finite gradient as in the Slater-type case. In principle, this 
makes the Gaussian function less suitable for molecular representation. In 
contrast, they allow for the calculation of integrals analytically, which makes 
the calculations much faster. Fortunately, an accurate representation of the 
atom and analytical integrals can be obtained at the same time by using a basis 
set of contracted Gaussian functions. It consists on the construction of each 
basis function as linear combination (contraction) of Gaussian functions 
(primitives). As a result, one can obtain functions which are much similar to the 
Slater type ones, but with the advantages of the Gaussian type functions. 
However, this represents an extra step as one needs to choose the exponents of 
the primitives and the contraction coefficients in order to obtain the desired 
basis function(s). The accuracy and performance of a calculation depend on the 
quality of the basis set. Therefore, the basis set choice is a key point of the 
study of a system, although some authors189 claim it is more art than science.  

The main contributions to the definition and optimization of basis 
functions were provided by the groups of Huzinaga,190-193 Pople194-200 and 
Dunning.201-204 

2.1.3.1.a Minimal Basis Set 

The so-called minimal basis set is the basis set that has the least number 
of basis functions per atom required to describe the occupied orbitals of that 
atom. In many cases, the energy and other properties cannot be properly 
determined with such a small basis set, therefore in practice they are not used.  

One of the smallest basis sets that can be used is the STO-LG family.199 In 
this family each basis function is obtained as a linear combination of L primitive 
Gaussian functions. The contraction coefficients and exponents are chosen so 
that the final basis function approximates a Slater function. The STO-LG 
family is expanded up to 6 primitives although it has been observed that the use 
of 3 primitive functions is enough to reproduce a Slater function. Thus, the 
STO-3G has become the practical minimal basis set.  

2.1.3.1.b Double Zeta Basis Sets 

Minimal basis sets have a low variational flexibility among other 
limitations. A way to improve the minimal basis set is to double the number of 
core and valence functions that are used in the minimal basis set, i.e. to use a 
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double-ζ  (zeta) basis set. The objective is to have a function whose best orbital 
exponents are slightly higher than the optimal exponents of the minimal basis 
set, and another function with somewhat lower exponents. This allows the 
system to perform an expansion or contraction of the basis functions by just 
varying some linear parameters. Thus, in the wavefunction optimization 
procedure, the method will optimize the energy of the system by varying these 
coefficients. This variational flexibility translates into a better basis set and 
better description of the system. Hence, if we have a basis set which has twice 
as many basis functions as a minimal basis set, this basis set is called double-ζ  
(zeta), DZ. In principle a DZ basis set for the H atom has two functions, and 10 
for a C atom. However, there are some basis sets such as the 3-21G, 4-31G, and 
6-31G, which are commonly known as double-ζ  but which, strictly speaking, 
are not. Actually they are double-ζ  in the valence part, not in the core. These 
basis sets are called “split-valence” basis sets. The notation used for this basis 
sets means that, for instance in the 3-21G case, the core orbitals are described 
by a contraction of 3 primitive Gaussian functions (3-21G), while the valence 
part is described by 2 functions (3-21G), one made of 2 primitives (3-21G) and 
the other one made of a single function (3-21G). 

2.1.3.1.c Polarization functions 

The next step in improving a basis set could be to go to triple or 
quadruple-ζ . This can lead to unbalanced basis sets such as the 6-311G, which 
might trigger spurious descriptions of electronic structure parameters such as 
the vibrational frequencies (see Results). An alternative to this, is to add 
polarization functions to the basis set, i.e. adding functions of immediately 
higher angular momentum. If we take as reference a DZ basis set, this implies 
adding p-type functions to H and He, d-type functions to the first row atoms, 
and so forth.  

The reason why these functions are called polarization functions is simple 
and very illustrative. Consider the H atom in its GS, which has only the 1s 
orbital occupied and is of spherical symmetry. If this H atom is affected by an 
electric field, such as that induced by a neighboring atom, the electronic cloud is 
deformed, i.e. the density cloud is no longer symmetric but polarized. In terms 
of basis sets, such a distribution can not be described by spherical (1s) 
molecular orbitals, one needs p-type functions to do so. Hence, the final solution 
can be considered a hybridized orbital. A similar effect is observed for the atoms 
of the first row, but d-type functions are added instead of p ones.  

The most famous split-valence double-ζ  plus polarization basis set is 
Pople’s 6-31G*. Following the notation introduced above, the core orbital is 
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described by a single function formed of 6 primitives while the valence part is 
described by two functions constructed from 3 and 1 primitives respectively. 
The “*” denotes the addition of polarization functions to non-H atoms. The 6-
31G** basis set, is the same as 6-31G* but including polarization functions on 
the H atoms, too.  

Another type of valence-polarized double-ζ  basis sets are the so called 
“correlated consistent” basis sets, cc-pVXZ. These basis sets were introduced by 
Dunning, and are optimized for correlated wavefunctions (see Multi-
configurational methods section). X determines the number of basis functions 
that are used in each basis set with respect to a minimal basis, X=D, T, Q, 5, 6, 
… The functions of the different basis sets are added in shells. Thus, cc-pVDZ 
for the C atom would include 3s2p1d, cc-pVTZ 4s3p2d1f, cc-pVQZ 5s4p3d2f1g, 
etc. This systematic basis set enlargement can be used to extrapolate the basis 
set limit.  

2.1.3.1.d Diffuse functions 

The addition of polarization functions might not be sufficient to describe 
systems like anions or certain non-bonding interactions. Anions tend to have 
their orbitals expanded compared to neutral atoms, therefore the usual basis 
sets  may not describe them properly. In order to describe these special cases, 
one must add diffuse functions, which in Pople’s basis sets are functions with 
small exponents (large radial extension). These extra functions are denoted by a 
“+” sign, i.e. 6-31+G*. This is the same basis set as 6-31G* but with an extra 
set of s- and p-type functions for the atoms of the first row. As in the 
polarization case, a second “+”, 6-31++G*, is used to express that diffuse 
functions are added to H atoms too. 

The inclusion of diffuse functions in Dunning’s basis sets is indicated by 
the prefix aug. Thus, Dunnig’s double-ζ  plus valence-polarization and diffuse 
functions basis set is indicated by aug-cc-pVDZ.  

2.1.3.1.e ANO-type basis sets 

The Atomic Natural Orbital205 type of basis sets are especially indicated 
for highly correlated calculations. This family of basis sets provides some 
improvements over the ones mentioned above by addressing some of their 
shortcomings. Some of the problems of Gaussian basis sets arise from the fact of 
using segmented functions. This means that a primitive Gaussian can contribute 
to only one contracted function. This can cause large BSSE effects, incorrect 
nodal structure, and need of polarization functions to describe complicated 
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systems as anions. The ANO basis sets are made of the natural orbitals with 
highest occupations from SCF and Configuration Interaction atomic calculations 
with uncontracted basis. The natural orbitals of these calculations are truncated 
by their occupation numbers to form a contracted set, and the expansion 
coefficients of these natural orbitals, in terms of the primitive basis functions, 
form the coefficient matrix for the general contraction for each atom.  

One of the advantages of these basis sets is that they lower the BSSE and 
have the correct nodal structure. In addition, the basis sets can be easily 
expanded by lowering the occupation number cutoff that defines the 
contraction, with the advantage that the new and larger basis set contains the 
smaller one as a subset.  

The construction of such basis sets can be problematic since the 
description of the atom is crucial. The main problem is that it is not clear 
whether the optimized basis for a particular state, usually the GS, can describe 
other states, specially if they have different configurations. Another problem is 
that the ANO basis sets may need larger number of basis functions for those 
cases which focus on the description of diffuse regions.  

2.1.3.2 Basis Set Superposition Error 

The easiest way to define the BSSE is considering a system (AB) formed 
by two interacting fragments, A and B. The stabilization energy of the system 
can be easily calculated by subtracting the energy of the fragments from the 
energy of the total system:  

 (AB) (AB) (A) (B)α β α β∪Δ = − −AB A AE E E E  (2.21) 

where the subindices indicate the fragment to which the energy corresponds, the 
parenthesis the geometry at which the energy is computed, and the superindices 
the basis functions that are used for each calculation. This procedure is known 
as the supermolecular approximation, and although there are other ways206,207 to 
get the interaction energy directly, this is the most widely used due to its 
simplicity. Unfortunately, there is an error associated to such an approximation. 
Taking into account that we cannot get the exact energy of any of the parts 
(except for the H atom), and that we are forced to use basis sets with finite 
number of basis functions, i.e. incomplete basis sets, only approximate energies 
are obtained for each of the fragments. In addition to that, in the calculation of 
the total energy of the system, EAB, the molecular orbitals of the system expand 
on the subspace formed by the AB basis functions, whereas, in the calculation of 
the energy of the fragments, EA and EB, the molecular orbitals of the fragment 
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A can only expand on the A basis functions and the same for fragment B. Thus, 
the calculation of EAB is more accurate than EA or EB as, it has been obtained 
using a different basis set. As a consequence, EA and EB are underestimated 
compared to EAB, and the interaction energy becomes overestimated. It is 
precisely this mismatch between EAB and EA and EB what is known as Basis Set 
Superposition Error. It was first described by Jansen and Ros,159 although the 
name was coined by Liu and McLean.208 

There are different ways to deal with BSSE. One option is to increase the 
basis set quality, since in the complete basis set limit the BSSE should vanish. 
Whereas this could be accomplished at the HF or DFT levels of theory, for 
post-HF methods the BSSE has been shown to converge to zero very slowly 
with basis set improvement.209,210 On the other hand, there are several 
strategies211-214 to correct for the BSSE, with the Counterpoise method211 (CP) 
being the simplest and most widely used one.  

2.1.3.2.a Counterpoise method 

The Counterpoise method is an a posteriori procedure to correct for BSSE. 
It consists on the improved calculation of the fragments by using all the basis 
functions of the complex to obtain the energy of each fragment, so as to 
calculate fragments and complex at the same level of theory. The derivation of 
the Counterpoise equations is presented next.  

It is convenient to express the stabilization energy as sum of interaction 
(Eint) and relaxation energies (Erel),  

 (AB) (AB) (A,B)Δ = Δ + Δint relE E E  (2.22) 

The interaction energy is the difference between the energy of the complex 
and the energy of each fragment at the geometry it adopts in the complex. That 
is: 

 (AB) (AB) (A) (B)α β α β∪Δ = − −int AB AB ABE E E E  (2.23) 

Thus, the interaction energy only depends on the geometric parameters of 
the system. The relaxation energy corresponds to the difference between the 
energy of the isolated fragments at their optimum geometries ( (A)α

AE  and 
(B)β

AE ) and the energy of the fragments in the geometry of the complex 
( (A)α

ABE  and (B)β
ABE ), i.e. it measures the geometrical relaxation that the 

fragments undergo in the complex: 
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 (A,B) (A) - (A) (B) - (B)α α β βΔ = +rel AB A AB BE E E E E  (2.24) 

It is worth to mention that the relaxation energy is naturally positive and 
that it depends on the geometric parameters of both the complex and the 
isolated fragments. According to the Counterpoise philosophy, only the 
interaction energy will contribute to BSSE, since in the relaxation energy the 
energies of each fragment are calculated with the same basis set. The BSSE can 
be minimized if all the terms of the interaction energy are calculated with the 
same basis set. Thus, the Counterpoise corrected interaction energy reads as: 

 
( )

( )
(AB) (AB) (A) (B)

                       + (A) - (A) (B) - (B)

α β α β β β

α α β β

∪ ∪ ∪Δ = − − +

+

CP
AB AB AB

AB A AB B

E E E E

E E E E
 (2.25) 

This corrected interaction energy can be expressed with a correction term 
(δBSSE

AB ) by grouping the terms corresponding to individual fragments as:  

 BSSE
AB

(A) (B) (A) (B)α β α β α β δ∪ ∪+ − − =AB AB AB ABE E E E  (2.26) 

Then, the Counterpoise corrected interaction energy reads as: 

 BSSE
AB

(AB) (AB)α β δ∪Δ = Δ +CP
ABE E  (2.27) 

It is worth to mention that this correction term tends to zero with the 
basis set improvement, is always a positive correction for variational methods, 
and is dependent on the geometry of the complex. This last property implies 
that the correction term is not constant along the PES, thus the shape of a 
corrected PES does not necessarily coincide with that of an uncorrected one as 
illustrated in Figure 18.  
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Figure 18. BSSE corrected and uncorrected PES for a given system. 

This implies that to determine the interaction energy of a system, a BSSE 
corrected PES must be used. In this sense, an equivalent description of the 
BSSE correction is obtained if the CP correction term is directly assigned to the 
energy of the PES rather than to the variation of energies:  

 BSSE
AB

(AB) (AB)α β δ∪= +CP
ABE E  (2.28) 

It has been argued that BSSE is only present in the interaction energy 
calculations, but it is also present when not dealing with interaction energies. 
For instance, the total and interaction energies only differ in one term, which 
does not depend on BSSE, but only on the geometry and fragment’s definition.  

By adding the CP correction to the total energy of the system,215 it is 
possible to obtain BSSE-corrected energies and any molecular property that 
may be stated as a derivative of the energy, which includes optimized 
geometries or vibrational frequencies. Experience gathered on the BSSE 
correction of intermolecular interactions over the last years shows that the 
results obtained with BSSE-corrected calculations using moderate basis sets are 
generally close to those that one can obtain with much larger basis sets with or 
without correction, provided that a) the basis set is flexible enough to describe 
the true physical interactions in the system, and b) BSSE effects on the 
geometry are also taken into account by optimization on the BSSE-corrected 
PES. 

Corrected 
Uncorrected 

E 

r 
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2.1.4 The Hartree-Fock method  

Since the exact solution of the Schrödinger equation is not possible for 
large molecules, finding and describing approximate solutions to the electronic 
Schrödinger equation has been the major preoccupation for quantum chemists 
since the birth of quantum mechanics. In this sense, the Hartree-Fock (HF) 
method,144,216,217 is essential to quantum chemistry, either as a calculation tool or 
as a starting point toward more accurate approximations. 

2.1.4.1 Hartree-Fock equations 

It has been shown in section 2.1.2 that the Hamiltonian operator can be 
split into electronic and nuclear parts, which allows for an approximate solution 
of the Schrödinger equation. We are interested in the solution of the 
Schrödinger equation which better approaches the exact solution. According to 
the variational principle, this “best” solution is provided by the spinorbitals, 
which give the lowest energy. Thus, since the energy of the system depends on 
the wavefunction, and the wavefunction can be approximated as a Slater 
determinant of spinorbitals, one can obtain the “best” spinorbitals by 
minimizing the energy of a closed-shell system, which is given by:  

 
0 0 a a a b a b a b b a

a a,b

ˆ ˆ2 2χ χ χ χ χ χ χ χ χ χ= Ψ Ψ = + −∑ ∑0E H h  (2.29) 

where the wavefunction, 
0

Ψ , is expressed in bracket notation and corresponds 

to a Slater determinant. Ĥ  is the electronic Hamiltonian, and the subindex “0” 
indicates it corresponds to the ground state. The expression of the energy has 
been separated into monoelectronic and bielectronic terms. The elements of the 
first term are: 

 2
a a 1 a 1 1 a 1

1 1

1ˆ ( ) ( )
2

r r r
r=

⎛ ⎞⎟⎜ ⎟⎜= − ∇ − ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑∫
M Z

h d α

α α

χ χ ψ ψ  (2.30) 

where the different spinorbitals are denoted by the subindex a. Since the spin 
part of the spinorbital is not affected by the operator it has been omitted, and 
only the spatial part, 

a
ψ , is considered. The elements of this term correspond to 

the average kinetic and nuclear attraction energy of electrons. The second term 
of eq. (2.29) is the so-called Coulomb integral: 
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2 2

a b a b 1 2 a 1 b 1
12

1
( ) ( )r r r rχ χ χ χ ψ ψ= ∫ d d

r
 (2.31) 

This integreal corresponds to the repulsion between the charge clouds 
2

a 1
( )rψ  and 

2

b 1
( )rψ , which in general is expressed as =abJ ab ab . The other 

bielectronic term is the so-called exchange integral and does not have any 
physical meaning: 

 * *
a b b a 1 2 a 1 b 1 b 2 a 2

12

1
( ) ( ) ( ) ( )r r r r r rχ χ χ χ ψ ψ ψ ψ= ∫ d d

r
 (2.32) 

This integral is usually expressed as =abK ab ba . Thus, the Hartree-

Fock energy can be written in general form as: 

 
0

2 2= + +∑ ∑aa ab ab
a a,b

E h J K  (2.33) 

As mentioned above, the minimization of this energy with respect to the 
spinorbitals will provide the best approximation to the exact energy in the 
Hartree-Fock framework. Since the wavefunction is a Slater determinant, a 
constrain which assures the orthogonality of the spinorbitals throughout the 
optimization must be added. This condition is:  

  χ χ δ=a b ab  (2.34) 

The minimization of E0 with respect to the spinorbitals and including the 
orthogonality constrain, is obtained by minimizing the Lagrangian functional of 
the spinorbitals defined as:  

 ( )ˆ χ χ ε χ χ δ⎡ ⎤ ⎡ ⎤ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ∑a 0 a ba a b ab
ab

L = E  (2.35) 

with εba  being the undetermined Lagrange multipliers, E0 the expected value of 

0
Ψ  (see eq. (2.29)), and the remaining term the spinorbital orthogonality 

constrain.  

Setting the first variation to zero, ˆ 0δ χ⎡ ⎤ =⎢ ⎥⎣ ⎦aL , and working through some 

algebra, the so-called canonical Hartree-Fock equations are obtained:  
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1 1 1 1 1

ˆ ˆ ˆ( ) + ( ) ( ) ( ) ( )x x x x xχ ε χ
⎡ ⎤
⎢ ⎥− =⎢ ⎥
⎣ ⎦

∑
N

b b a a a
b=1

h J K  (2.36) 

where, εa  are the energy eigenvalues associated to the spinorbitals χa , and the 
Coulomg and Exchange operators are defined as:  

 

*
1 a 1 2 b 2 b 2 a 1

12

*
1 a 1 2 b 2 a 2 b 1

12

1ˆ ( ) ( ) ( ) ( ) ( )

1ˆ ( ) ( ) ( ) ( ) ( )

x x x x x x

x x x x x x

χ χ χ χ

χ χ χ χ

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

∫

∫

b

b

J d
r

K d
r

 (2.37) 

The so-called Fock operator, ( )f̂ a , corresponds to sum of operators in 

square brackets of eq. (2.36), and its eigenfunctions and eigenvalues are the 
spinorbitals and spinorbital energies, respectively.  

If the spinorbitals are expressed as linear combinations of basis functions 
(see eq. (2.18)), the minimization of the energy with respect to the spinorbitals 
turns into a minimization with respect to the orbitals coefficients (Cμ), which in 
matrix form is written as: 

 Fc Sc= ε  (2.38) 

These are the so-called Roothan-Hall218 equations, where c are the 
expansion coefficients, ε  is the Lagrangian multiplier, S is the overlap matrix., 
and the elements of F are: 

 ˆψ ψ=ab a bF f  (2.39) 

The fact that the operator that is used to minimize the energy depends 
intrinsically on the same spinorbitals, makes an iterative method necessary to 
obtain the spinorbitals which correspond to the “best” energy. For this reason, 
the HF method is also known as the Self Consistent Field (SCF) method. This 
iterative procedure needs a set of trial spinorbitals to build the initial operator. 
This trial spinorbitals are successively modified until convergence is achieved. 

2.1.4.1.a HF limitations 

All the problems of the Hartree-Fock method arise from the fact of 
choosing a single Slater determinant as a wavefunction. Such a wavefunction 
cannot take into account all electronic correlation, therefore it leads to a total 
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electronic energy which is different from the exact solution of the non-
relativistic Schrödinger equation within the Born-Oppenheimer approximation. 
Due to the HF is a variational method, the lowest energy that can be obtain 
with this method is always above the exact energy. The energy difference 
between the exact solution (within the B.O. approximation) and the HF one is 
commonly known as correlation energy, a term coined by Löwdin. 

 corr exact HFE = E - E  (2.40) 

A certain amount of electronic correlation is already considered within the 
HF approximation. It is found in the exchange term of eq. (2.29), which 
describes the correlation between electrons with parallel spin. This basic 
correlation prevents two parallel-spin electrons from being found at the same 
point of the space and is often called the Fermi correlation.  

The paradigm of the shortcomings of HF is the H2 molecule dissociation. 
Within the restricted HF methodology (alpha and beta electrons are restricted 
to have the same spatial function), the H2 wavefunction is 50% ionic and 50% 
covalent for all bond lengths, which yields a bad description of the two neutral 
atoms at the dissociation limit. This problem can be solved by using the 
unrestricted HF methodology; however, with such a methodology (each 
spinorbital has its own spatial function) spin contamination can appear. If spin 
contamination is present, the wavefunction is no longer an eigenfunction of the 
total spin operator. This implies that the wavefunction is somewhat 
contaminated by other states, what can artificially raise the energy of the 
system. The HF methodology has also other limitations which are outlined next: 

 Stretched bond energies are too large, what affects transition state 
structures by overestimating their activation energies. 

 Equilibrium bond lengths are too short at the RHF level (i.e. the 
potential well is too steep). The HF method ‘overbinds’ the 
molecule. This an also affect the vibrational frequencies. 

 The wavefunction overestimates the ‘ionic’ character leading to too 
large dipole moments (and also atomic charges). 

In summary, the HF method is a good method to compute closed shell 
systems in equilibrium structures, but it has some limitations when optimizing 
TSs and treating open shell systems. 
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2.1.5 Multi-Configurational Methods 

The HF method is a very simple method that allows the solution of the 
Schrödinger equation. It uses a monodeterminantal wavefunction, which is 
optimized to obtain the best description of the GS. Such a description can be 
improved by using methods that account for more electron correlation such as 
Møller-Plesset or Coupled Cluster, or in a different way, Density Functional 
Theory. Nevertheless, post-HF methods present difficulties in describing 
complex electronic-structure problems such as bond breakings or excited states. 
In these systems, the wavefunction is often dominated by more than one 
electronic configuration, therefore, a multiple-determinant approach such as the 
Configuration Interaction (CI)219-221 or Multi-Configuration methods is needed.  

The main difference between HF and the multi-configurational methods is 
that the latter use linear combinations of Slater determinants as wavefunctions, 
while the HF method only uses a single Slater determinant. That is: 

 
MC 0 HF i i

i 1

a a
=

Ψ = Ψ + Ψ∑  (2.41) 

Since the HF wavefunction corresponds to the GS, the other Slater 
determinants forming the multi-configurational wavefunctions correspond to 
excited states. The HF method can be understood as a particular case of a 
multi-configurational method (MC) where ai = 0 and a0 = 1. In many cases the 
HF method gives a good description of the wavefunction, and this is reflected on 
the composition of the wavefunction, where the HF configuration accounts for 
more than 90% of the Multiconfigurational Self Consistent Field (MCSCF) 
wavefunction (a0 ≈  0.9).  

The most complex and accurate MCSCF description is provided by the 
Full Configuration Interaction method (FCI). A FCI wavefunction is a linear 
combination of all possible excitations, which extended to an infinite basis set 
yields the exact solution of the Schrödinger equation. Unfortunately, a FCI 
calculation even for a finite basis is computationally extremely expensive and 
only possible for small systems. Nevertheless, some approaches to the FCI 
method with a reasonable computational cost, such as the FCI truncated at 
single and doubles excitations (CISD) or the Complete Active Space Self 
Consistent Field (CASSCF) approach, have been developed.  

These methods will be overviewed in the next section, while other methods 
including the so-called dynamic correlation will be explained in the next chapter 
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2.1.5.1 The Configuration-Interaction method 

The CI method is not multi-configurational but will serve as a reference 
for the CASSCF method that will be explained in the next section. The CI 
wavefunction consists of a linear combination of Slater determinants, the 
expansion coefficients of which are variationally determined. This method is 
flexible and can give highly accurate wavefunctions for small systems.  

The first step in a CI calculation is the generation of MOs by the SCF 
procedure. Different configuration states are generated taking as reference the 
HF configuration, and are linearly combined to form the CI wavefunction. This 
procedure leads to a wavefunction whose configuration states have the same 
symmetry as the reference state. The CI configuration states are classified as 
monoexcitations, double-excitations, triple-excitations, …, depending on the 
number of electrons that are promoted with respect to the reference state. The 
number of configuration functions with appropriate symmetry increases rapidly 
with the number of electrons and basis functions. For a full CI calculation the 
number of Slater determinants generated by a system with n orbitals and 2k 

electrons is given by 

2⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
det

n
N =

k
. Since this number becomes easily untreatable, 

truncated CI methods can only be used. For instance, the CISD method only 
takes into account configuration states made of single (CIS) and/or double 
(CISD) excitations. CIS calculations are usually not carried out because, 
according to Brillouin’s theorem,222,223 they do not improve the HF description. 
This point is shown next. The HF approximation to the exact wavefunction of 
the ground state is a single determinant, 

0
Ψ , made of the N spinorbitals with 

the lowest orbital energies. The CIS method, uses more than one determinant to 
describe the GS, but these “extra” determinants can only include single 

excitations, r
a

Ψ , that is changing an occupied spinorbital (
a

χ ) for a virtual 

one (
r

χ ). Thus, the resulting CIS wavefunction reads as: 

 CIS r r
0 0 0 a a

ra

Ψ = Ψ + Ψ∑c c  (2.42) 

The fact that 
0

Ψ  and r
a

Ψ  only differ in one spinorbital, implies that 

the two determinants only differ in one row or column. If a determinant only 
differs in one row or column from the ground state one, any linear combination 
of the two can be expressed as one determinant. Thus, any combination of 

0
Ψ  

and r
a

Ψ  can be expressed as a single determinant.  
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One drawback of these truncated CI methods is the lack of size-
extensivity.224 A size-extensive method is such that the energy calculated 
thereby scales linearly with the number of particles. An important advantage of 
a size-extensive method is that it allows straightforward comparisons between 
calculations involving variable numbers of electrons, e.g. ionization processes or 
calculations using different numbers of active electrons. Lack of size-extensivity, 
however, implies that errors from the exact energy increase as more electrons 
enter the calculation. 

Another problem of the truncated CI methods is that the orbitals which 
form the reference configuration state are generated self-consistently in the field 
of a single electronic configuration, which does not assure their relevance for a 
multi-configurational system. An obvious solution to this problem is to carry 
out a CI calculation where the orbitals are variationally optimized for each state 
simultaneously with the coefficients of the electronic configurations. This way, 
the orbitals of the optimized wavefunction can describe any of the states of the 
case study and do not introduce a bias towards a particular configuration. This 
approach is known as Multi-configurational Self-Consistent Field (MCSCF). 
The Complete Active Space Self-Consistent Field method (CASSCF), which 
belongs to the MCSCF family is explained next.  

2.1.5.2 CASSCF 

In the CASSCF approach, the total orbital space (all the orbitals that 
form the wavefunction) is partitioned in 3 subsets, namely occupied, active, and 
virtual. The occupied orbitals usually correspond to core orbitals and are 
defined as doubly occupied or inactive. In contrast, the virtual orbitals 
correspond to unoccupied orbitals. The active orbitals form the so-called active 
space. The active space usually includes all the orbitals which are relevant to 
describe the processes of interest of the case study. For instance, if we want to 
study a bond breaking process, the active space must include the orbitals that 
are involved in bond, usually sigma or pi orbitals. In photophysics studies, 
usually π orbitals are considered as most of the electronic transitions take place 
between π orbitals. Nowadays, because of computational cost, the CAS 
calculations are limited to fourteen active electrons distributed among the same 
number of active orbitals.  

The CASSCF method can only account for the electronic correlation of the 
orbitals of the active space as only excitations within the active space are 
considered in the CASSCF wavefunction. The energy difference between the 
exact energy (FCI calculation with complete basis set) and the HF energy is 
usually considered as the total electron correlation, although, strictly speaking 
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this is not the “true” electron correlation because some correlation energy is 
already included in the HF energy. On the other hand, the correlation energy is 
usually partitioned into dynamic and static correlation energies. The former is 
related to the movement of the electrons and can be accounted by perturbation 
methods such as MP2. Unfortunately, these perturbation methods are not 
variational. They provide correlated energies but no new wavefunctions, which 
can be iteratively optimized to yield exact energies, can be obtained. In contrast 
to this, the static correlation is important in cases where the GS has to be 
described with more than one configuration, such as non-adiabatic reactions. It 
is usually defined as the energy difference between MCSCF methods and the HF 
method.  

As MCSCF, and consequently CASSCF, theory is highly complex and the 
aim of this work is not to achieve a complete MCSCF theoretical development, 
only a general overview of the MCSCF energy and wavefunction optimization 
will be done. If further details are desired, see the books by Helgaker,178 
Yarkony, 170 and Roos and Widmark.179,181 However, it is worth to mention that 
several strategies are used within the CASSCF methodology to increase the 
computational efficiency and to allow a multi-reference state optimization. 
These features are essential in MCSCF calculations and make the MCSCF 
methods a powerful tool to study excited states systems.  

The CASSCF wavefunction is formed of a linear combination of the 
ground state wavefunction and the determinants that correspond to excitations 
within the active space. The size of the total orbital space, and especially the 
size of the active space determine the number of determinants that form the 
wavefunction and, therefore, the cost of the calculations. In MCSCF methods, 
both electronic configurations and MO coefficients are variationally optimized. 
An iterative method is used to get the optimal wavefunction, but this represents 
a difficult nonlinear task which restricts the length of the MCSCF expansion.  

2.1.5.2.a CASSCF wavefunction optimization 

As stated above, MCSCF wavefunctions are expressed as linear 
combinations of configuration state functions or determinants ( i ): 

 ˆ(- )
i

i

, e ic a = ∑a c  (2.43) 

where c are the configuration state functions coefficients, a correspond to the 
orbital coefficients, and the operator e ˆ(- )a  carries out unitary transformations 
among the spinorbitals as in the HF case. The MCSCF wavefunction expression 
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is identical to the CI model except for the presence of the orbital-rotation 
operator, which is the operator that performs the MO optimization for each 
state. 

The ground state MCSCF wavefunction is obtained by minimizing the 
energy with respect to the parameters of the orbital-rotation operator (a) and 
the CI coefficients, c, simultaniously:  

 
,

ˆ, ,
min

, ,c a

c a c a

c a c a
=

H
E  (2.44) 

At convergence, the wavefunction is expanded into an orbital basis where 
â  is zero, adopting the form of a standard CI wavefunction, but with optimal 
orbitals. Due to the multi-configurational character of the wavefunction, the 
optimization can be performed for any chosen reference state, whose energy will 
be minimized. 

The wavefunction optimization procedure follows the same strategy as the 
HF case. A Lagrangian equation is defined to minimize the energy. In this case, 
since the minimization is performed with respect two parameters, this equation 
has the form of a Taylor expansion of the energy truncated to second order: 

 ( ) (0) (1) (2)1
2

T TE Eλ = + +Q E λ λ λ  (2.45) 

where 
a
c

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
λ  is a vector that represents the general MCSCF energy of the 

reference state, Q(λ) corresponds to the second-order MCSCF energy and E(0) is 
the zeroth order MCSCF energy: (0) ˆ0 0=E H .  

E(1) and E(2) are the electronic gradient and electronic Hessian respectively, 
which can also be written in block form as: 

 ( )
( )

( )

1
1

1

c

a

E
E

E

⎛ ⎞⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
         ( )

( )

( )

( )

( )

2 2
2

2 2

cc ca

ac cc

E E
E

E E

⎛ ⎞⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (2.46) 

where the left superscripts denote the differentiation with respect to 
configuration (c) or orbital (a) coefficients respectively: 
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( ) ( )

( ) ( ) ( )

1 1

i i
i pq0 0

2 2 2
2 2 2

pq,rs i, j pq,i
pq rs i j pq i0 0 0

c a

aa cc ac

= =

= = =

⎛ ⎞⎛ ⎞∂ ∂ ⎟⎜⎟⎜ ⎟⎟ ⎜⎜= = ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎟⎜∂ ∂ ⎟⎜⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜= = =⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜∂ ∂ ∂ ∂ ∂ ∂⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠

E E
E E

c a

E E E
E E E

a a c c a c

λ λ

λ λ λ

 (2.47) 

In order to determine the different components of the Hessian, it is 
convenient to define the energy of the system, eq. (2.44), as: 

 
( , )

( , )
( , )
c ac a
c a

=
W

E
S

 (2.48) 

where the numerator holds the configuration weights:  

 ( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ, 0 e  e 0c a c c= + +a aW P  H P  (2.49) 

with P̂ being the projector operator, which projects out the ground state 

component of the reference state ( )0  from ( )c , and where the denominator 

contains the overlap between these states: 

 ( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ, 0 e e 0 0 0c a c c c c= + + = +a aS P P P  (2.50) 

  Considering that the overlap does not depend on the orbital coefficients, 
we can rewrite the MCSCF energy expression as: 

 ( ) ( , ) ( , )c c a c a=S E W  (2.51) 

And differentiating this expression with the assumption of real orbitals and the 
fact that S(0)=1, yields to: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T

1 1 0 1

2 2 1 1 1 1 0 2

E W S

E W E S S E E S

= −

= − − −

E
 (2.52) 

Now, by direct differentiation of the last expressions and applying some 
simplifications, one can deduce the compact equations of the gradient and 
Hessian respectively: 
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( ) ( ) ( )

( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 0 0

i i 0 i 0 i

1

pq 0 pq 0

2 0 0 0 1 0 1

i,j i j i j i j j i

2 0 1

pq,i i pq 0 i pq 0 i pq

2

pq,rs pq,rs 0 pq rs

ˆ ˆ ˆ2 2 2

ˆ,

ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ2 , 2 , 2

1 ˆ1 ,
2

aa

= Ψ Ψ = Ψ Ψ −

⎡ ⎤= Ψ Ψ⎢ ⎥⎣ ⎦

= Ψ Ψ = Ψ Ψ −

⎡ ⎤ ⎡ ⎤= Ψ Ψ = Ψ Ψ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤= + Ψ ⎢ ⎢ ⎥⎣ ⎦⎣ ⎦

c

o -

cc

ac - -

- -

E PH H c E

E E H

E P H - E P H - E - c E c E

E P E H E H c E

E P E E H
0

Ψ⎥

 (2.53) 

where -
pq

E  corresponds to the antisymmetric combinations of excitation 

operators: 

 
pq qp

-
pqE = E - E , (2.54) 

and Ppq,rs the permutation of the pair indices pq and rs. 

From the differentiation of the Lagrangian expression with respect to the 
reference CI vector ζ, the standard CI eigenvalue problem is obtained: 

 ˆ =H Eζ ζ  (2.55) 

A Fock operator which is separated into inactive, virtual and active sub-
Fock operators is obtained from these equations, too. For further details see 
Ref. 178. 

The energy minimization procedure involves two iterative procedures 
(orbitals and coefficients) that are performed simultaneously. This optimizations 
must be performed carefully as they can carry convergence problems. One of the 
problems of the wavefunction optimization are the redundant orbital rotations. 
This rotations can yield Hessian singularities or optimization failures. Thus, 
such rotations must be found and avoided. Convergence problems or bad 
descriptions might also arise when two states are almost degenerate. In such a 
situations it is a general procedure to optimize two or more states 
simultaneously, i.e. use a reference state which is a linear combination of states. 
In such an optimization, the orbitals are not optimized separately for each state, 
but are iteratively transformed to minimize the average energy of all states, i.e. 
the so-called state-average optimization. This is accomplished by introducing an 
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energy function which is composed of a weighted linear combination of states. 
That is, the energy to be optimized is:  

 
I I

I

= ∑E w E  (2.56) 

where the weights for each state are denoted by the fixed parameters, wI. The 
weights are usually identical for each state, but in some occasions can be chosen 
different. This is the case of some dynamic calculations where at the starting 
point the states are well separated and no state-average is necessary, therefore 
one state is given a weight of one. If along the simulation the states get 
successively closer up to degeneracy, the weight of the starting states is 
gradually decreased along the simulation until the two states are equally state-
averaged at degeneracy. 

One of the problems of such optimizations is that the orbitals are not 
optimal for each separate state, and that the description of each state is not so 
accurate. On the other hand, the state-averaged procedure provides a set of 
orthonormal, non-interacting electronic states, which simplifies subsequent CI or 
response-theory calculations.  

2.1.5.2.b CASSCF limitations 

The major drawback of the CASSCF method is the lack of dynamic 
correlation, as this can result in a bad description of the energy of the system. 
The lack of dynamic correlation is caused by the use of a limited active space, 
currently up to 14 electrons distributed along 14 orbitals, (14,14). The active 
space determines the number of configurations that will compose the 
wavefunction. Some tricks can be applied to ignore states of different 
multiplicity or symmetry in the calculations and reduce the size of the active 
space. This reduction of the active space may allow the study of a system which 
needs larger active spaces to be described. In contrast, the fact that the active 
space can be defined as desired for each calculation implies that the CASSCF 
method is not a black box method. This free choice can bias the descriptions of 
the systems and makes the method prone to suffer from artifacts.  

Although it will not be explained here, it is worth to mention that there 
exists another MCSCF scheme, namely the Restricted Active Space Self-
Consistent Field (RASSCF),225,226 which allows more electrons and orbitals to be 
included in the active space and accounts for some dynamic correlation. 
However, this larger active space does not provide full dynamic correlation 
either. Both static and dynamic correlations can be recovered if MCSCF 
methods are used in conjunction with perturbation theory methods. One of 
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these methods, is the so-called CASPT2 approach, which uses a CASSCF 
reference wavefunction to perform a second order Møller-Plesset correction, 
which gives correlated energies and allows using larger active spaces. This, and 
other methods that account for dynamic correlation are explained next. 

2.1.6 Including Dynamic correlation 

The HF method, which is the simplest way to solve the Schrödinger 
equation, has been seen in the previous section. Because of its simplicity, it can 
not be used to study excited states where more than one state is needed. In 
order to study excited states, one can use a multideterminantal method such as 
CI, CASSCF, … However, it might occur that the description provided by these 
methods is not accurate enough because of the lack of dynamic correlation. 
There are many methodologies which include dynamic correlation, namely 
Møller-Plesset perturbation theory, Density Functional Theory, Coupled 
Cluster, Multi-Reference CI, etc.. Since most of the calculations in the present 
thesis have been carried out at the CASSCF level, only the second order Møller-
Plesset perturbation theory141 applied to HF and CASSCF methodologies, 
respectively, will be overviewed. In addition, this is the most reliable 
methodology to describe processes in the excited states, specially non-adiabatic 
transitions with the GS. Such transitions take place at rather distorted 
geometries where the GS is multi-referential.  

2.1.6.1 Møller-Plesset perturbation theory 

The use of Møller-Plesset perturbation theory must be understood from 
the point of view that it represents an easy and relatively fast way to improve 
HF results by inclusion of dynamic correlation. The key point is that MP can 
systematically approach the exact solution to the Schrödinger equation order by 
order of expansion of the energy, where the zeroth order expansion is the HF 
solution. Thus, the MP2 approach is a second order correction to the HF 
solution, MP3 is a third order, ..., and so forth. Unfortunately MPn (where n is 
the order of the expansion) approaches have some limitations. The lack of 
convergence of some expansions is probably the most important drawback of 
MP. Another important problem is the fast increasing computational cost of the 
calculations along with the orders of expansion. This reduces the applicability of 
high MP orders of correction, which become as expensive as other methodologies 
that can approach better the exact solution to the Schrödinger equation. For 
instance, the MP4 level of theory is as computationally expensive as CCSD. In 
addition, experience has shown that MP3 level usually does not improve MP2 
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(in general, odd corrections do not perform better than even ones). All this 
translates into an unfrequent use of high order MPn (n>2) expansions.  

2.1.6.1.a MP2 

Perturbational methods are based on the partition of the Hamiltonian 
operator in two parts: an unperturbed part (zeroth-order Hamiltonian), ˆ

0H , 
and the perturbation V̂  operator, as: 

 ˆ ˆ ˆλ0H = H + V  (2.57) 

where λ  represents the perturbation variation. In the solving procedure, the 
perturbation is gradually added to the unperturbed Hamiltonian until the exact 
solution is achieved ( = 1λ ). 

Within the Rayleigh-Schrödinger perturbation theory, which is a particular 
case of MP perturbation theory, the initial Hamiltonian is expressed as an 
infinite sum of terms and the exact wavefunction as an infinite sum of functions:  

 ( ) ( )
i i

0

λ
∞

=

Ψ = Ψ∑ k k

k

 (2.58) 

Consequently, the energy of this wavefunction is also expressed as an 
infinite sum of terms:  

 ( ) ( )
i i

0

λ
∞

=

= ∑ k k

k

E E  (2.59) 

In principle, any unperturbed Hamiltonian can be used. However, 
convergence is faster if the Hamiltonian contains the main features of the exact 
Hamiltonian and provided that the perturbation is smaller than the 
unperturbed Hamiltonian. In the original Møller-Plesset theory the zeroth-order 
wavefunction is an exact wavefunction of the Fock operator ( f̂ ), which is used 
in the unperturbed Hamiltonian, and the perturbation operator is the 
correlation potential: 

 
0 0

ˆ ˆ ˆ ˆ ˆΨ ΨV = H - f - H - f  (2.60) 

A shifted Fock operator is used as unperturbed Hamiltonian so as to make 
the HF energy be the expected value of the zeroth-order expansion. Thus,  
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0 0 0

ˆ ˆ ˆ= + Ψ ΨH f H - f  (2.61) 

Provided that 
0 0 0 0

ˆ ˆ 0Ψ − Ψ Ψ Ψ =f f , it is readily seen that the 

expected value of the unperturbed Hamiltonian reduces to  

 
0 0 0 0 0

ˆ Ψ = Ψ Ψ ΨH H  (2.62) 

which is the HF energy. According to Brillouin’s theorem (section 2.1.5.1) the 
first order correction, 

0 0
ˆΨ ΨV , is zero. Thus, the first improvement on the 

HF energy takes place at the second order correction because the single excited 
determinants cannot improve the GS description.  

In contrast to the original MP formulation, a different partitioning of the 
Hamiltonian is usually used in computational chemistry. An unshifted Fock 
operator is used as zeroth order Hamiltonian and the perturbation operator 
corresponds to the electronic correlation. Therefore, the expected value of the 
zeroth order Hamiltonian is no longer the HF energy but the sum of occupied 
orbital energies. The HF energy is then obtained at the first order correction of 
the energy. This alternative partitioning has no other implications. In both 
formulations, the first improvement of the HF energy takes place at the second-
order correction term, and the subsequent orders of correction are the same. 

The MP2 approach is the most widely used one in the framework of MP 
theory because it offers a good compromise between computational cost and 
quality of the results. It is expressed as a correction term to the HF energy 
which reads as: 

 

2
0 0
0(2) 0 1

0 0 0 (0) (0)
0 0

ˆ
ˆ

≠

Ψ Ψ
= Ψ Ψ =

−
∑ k

k k

V
E V

E E
 (2.63) 

where the superscripts indicate the correction order and the subscripts the 
electronic state. It can be proved that only those terms which involve double 
excitations between occupied and virtual molecular orbitals contribute to the 
second order correction term, which then reduces to 

 

2

2-1
0

<(2)
0

< <
< <

+ - - + - -

i
rΨ Ψ

= =
∑

∑ ∑
j

rs
ab

i j

a b a ba b r s a b r s
r s r s

ab rs
E

E E E E E E E E
 (2.64) 
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where in the bielectronic integrals a,b and r,s denote the occupied and virtual 
orbitals respectively. The energies of the denominator correspond to the orbital 
energies. 

As mentioned above, experience shows that in most cases third-order 
correction does not improve MP2, as it only uses double excitations too. Thus, 
the MP4 approach must be used to improve MP2. However, the use of such a 
level of theory is not advisable since it is computationally very expensive. 
Hence, if more accurate results are needed, one should use the CCSD level of 
theory since it has a somewhat lower computational cost than MP4, and 
analytical gradients and frequencies are available for most of softwares.  

2.1.6.2 CASPT2 

We have just seen the use of MP2 to recover dynamic correlation from a 
HF reference function. In the present section a similar approach is described, 
namely CASPT2, but in this case the reference wavefunction is a CASSCF 
function. This method50,51 has turned out to be one of the most accurate ab 
initio approaches, which has been successfully applied to the study of a broad 
number of systems, especially those related to electronic spectroscopy and 
photophysics. This is the main reason why this method has been used in the 
present thesis. 

The zeroth-order Hamiltonian can be expressed as:  

 
0 0 0 X X

ˆ ˆ ˆ ˆ ˆ ˆ ˆH = P FP + P FP  (2.65) 

where 
0 0 0
ˆ = Ψ ΨP  is a projection operator onto the reference function, 

X
P̂  is 

the corresponding projection operator for the rest of the configurations, and F̂  
is the Fock operator.  

Within the CASPT2 method, the reference wavefunction is a CAS 
function and the configuration space in which it is expanded is assumed to be 
diagonal. It is partitioned into 4 subspaces: V0, VK, VSD, and VX. V0 is the one 
dimensional space spanned by the reference function for the state under 
consideration, VK is the space spanned by the orthogonal complement to the 
reference wavefunction used to build the CAS wavefunction (i.e. the rest of the 
CAS CI space), VSD is the space spanned by all singly and doubly excited states 
(with respect to the CAS reference), and VX is the rest of the CI space. Note 
that only the VSD space will interact with the reference wavefunction via the 
total Hamiltonian. Consequently, the zeroth-order Hamiltonian is formulated in 
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such a way that only the subspace SD contributes to the expansion of the first 
order wavefunction and reads as: 

 
0 0 0 K K SD SD X X

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ+ + +H = P FP P FP P FP P FP  (2.66) 

In the MP2 case, the Fock operator was chosen so that its eigenvalues 
corresponded to the sum of occupied orbital energies, that is in diagonal form. 
Here this is no longer possible. In the MCSCF matrix the F operator is defined 
in a form such that, for inactive and virtual orbitals, its diagonal elements 
correspond to the orbital energies. Thus, it shall be written as the one-electron 
operator: 

 ˆ ˆ∑ pq pq
p,q

F = f E  (2.67) 

where , 

 ( ) ( )1
+

2

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑pq pq rs
r,s

f = h D pq rs - pr qs  (2.68) 

0 0
ˆ= Ψ Ψrs rsD E , and ˆ

rsE is the excitation operator.  

Considering that the reference wavefunction is a CASSCF wavefunction, 
one can apply the generalized Brillouin’s theorem which states that fpq is zero 
when one of the indices corresponds to an inactive orbital and the other to an 
external orbital. Then, the operator F can be simplified by defining a new set of 
orbitals by diagonalization of each of the three diagonal blocks of the matrix f.227 
Such a transformation is only possible for a CASSCF reference function since 
the CAS CI space is invariant with respect to this rotation and rotations among 
each subset of orbitals. That is, only rotations between orbitals of different 
subsets can change the wavefunction(s). This is used to simplify the f matrix 
and make it diagonal in each of the three subsets. In order to do so, the orbitals 
are dived into inactive, active, and external; andF̂ is written as:  

 

ˆ ˆ ˆ ˆ+ +

ˆ ˆ ˆ ˆ ˆ ˆ

ε ε ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∑ ∑ ∑
∑ ∑ ∑

i ii t tt a aa
i t a

ti it ti ai ia ai at ta at
i,t i,a t,a

F = E E E

f E E f E E f E E
 (2.69) 

where the labels i, t, and a correspond to inactive, active and external orbitals 
respectively.  
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As mentioned above (eq. (2.66)), only those configurations which interact 
directly with the CAS reference wavefunction have to be included in the first 
order wavefunction. All these configurations belong to the SD space, and 
consequently the first order wavefunction can be written as:  

 
1

∉

Ψ = ∑ pqrs
p,q,r,s active

C pqrs  (2.70) 

where 
0

ˆ ˆ= Ψpq rspqrs E E . Moreover, the indices p, q, r, and s cannot 

correspond to active electrons since the resulting wavefunction would belong to 
the CAS CI space (K subspace in eq. (2.66)). 

This way, each term of the first order expansion consists of linear 
combinations of functions with coefficients from the CAS reference function, 

0
Ψ , which in matrix form reads as:  

 ( )0
-F S C V− =E  (2.71) 

where, F is the Fock matrix in the SD subspace, S is the overlap matrix, C is 
the coefficient vector of eq. (2.70) and V is the vector that represents the 
interaction between the SD subset and the reference function, that is 

0
ˆΨpqrsV = H pqrs . However, the resulting states are not orthogonal to each 

other neither linearly independent, thus eq. (2.71) cannot be solved directly. 
Instead, first the S matrix is diagonalized and transformed into a somewhat 
smaller matrix which has no longer linear dependencies. Then, in a second step 
the resulting equation is diagonalized by some iterative method, usually the 
robust Davidson approach.228 The main problem is the non-diagonality of F, 
whose elements have the general form:  

 
, 0 0

,

ˆ ˆ ˆ ˆ ˆ ˆfα β αβ
α β

= Ψ Ψ∑ sr qp p'q' r's'pqrs F p'q'r's' E E E E E  (2.72) 

As a consequence, the first, second, third and fourth order density matrices 
of the CAS reference function are needed to compute the matrix elements. The 
fifth order density matrix is not needed because at least one of the four indices 
p, q, r or s needs to be either inactive or external and therefore can be 
contracted out. The calculation of these matrices is very expensive and this step 
is the most time consuming part of the CASPT2 approach. 
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2.1.6.2.a Intruder states and Level Shift  

In this sub-chapter, the common problem of the intruder states in 
CASPT2 will be overviewed, and a solution229 to the problem is presented. The 
intruder states are states of the VSD space which have a zeroth-order energy that 
is close to the reference energy (E0), which causes the denominator to be near 
zero. Although it can also occur in the ground state, intruder states usually 
appear in excited states calculations. This is usually related to weakly occupied 
orbitals which have energies close to those of external orbitals, or strongly 
occupied orbitals with energies close to those of internal orbitals. With small 
energy denominators, the corresponding first order coefficient terms become 
large, and the second order perturbation theory, which assumes that 
perturbations must be small, does not hold anymore. This can be observed in 
the form of the normalized CASPT2 wavefunction,  

 
0

1 1ω ωΨ = Ψ + -  (2.73) 

where 
1

1
ω =

+ S
 is the weight of the CAS reference function, S is the overlap 

and 1  is the normalized first order wavefunction. The presence of an intruder 

state is detected when the value of ω  in a specific calculation is much smaller 
than a given value of approximately 0.45. If there is a strong intruder state, the 
only solution that can be taken is to increase the active space in order to 
include the intruder state in the CAS CI space. If the active space can not be 
increased because it is already on the limit of applicability and there is a 
“strong” intruder state, then the second order perturbation theory is not valid 
to treat that system and another level of theory must be used.  

Since the presence of intruder states depends on the geometry, it can cause 
singularities in the potential energy function and lead to divergence of the 
perturbation series. Nevertheless, if the intruder state is weakly interacting with 
the reference states, there is the possibility to use a level shift technique which 
can be used throughout, does not introduce any bias and does not imply an 
active space enlargement.  

The level shift technique consists in the addition of a small constant, 
hereafter ε, to the zeroth order Hamiltonian, which yields the following first 
order equation:  

 ( ) ( )0 0 1 1 1 0
ˆ ˆε− + Ψ = − ΨH E E H  (2.74) 
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The tilde on Ψ1, the first order perturbation to the wavefunction, indicates 
that it is affected by the level shift. The first order perturbation is expanded by 
Φ ,  

 
M

1 i i
i

Ψ = Φ∑C  (2.75) 

which is an eigenfunction of the zeroth-order Hamiltonian, 
0 i i i

ˆ εΦ = ΦH . The 

space spanned by { }M

i i 1=
Φ  is identical to the first order interacting space, 

0
ˆ ˆ ˆ Ψpq rsQE E , where Q̂  is a projector onto the complement of the CAS 

wavefunction space and { }M

i i 1=
Φ  is obtained diagonalizing the zeroth order 

Hamiltonian after orthonormalization and removal of the linear dependencies of 
the functions obtained by the excitation operators.  

The coefficients of the expansion read as: 

 i 1 0 i
i

i 0 i

ˆ

ε ε ε

Φ Ψ
= − = −

− + Δ +

H V
C

E
 (2.76) 

and, therefore the second order energy depends on ε: 

 

2 2
M M

i 1 0 i

2
i=1 i=1i 0 i

ˆ

ε ε ε

Φ Ψ
= − = −

− + Δ +∑ ∑
H V

E
E

 (2.77) 

This expression corrects the effect of intruder states. It corrects the energy 
at regions close to singularities, where the denominator is very small and can 
lead to large perturbations. However, when the denominator is not small the 
level shift could have a non-negligible effect on the energy. In order to avoid a 
large effect of the level shift to the energy, Roos et al.229 pondered its 
contribution to the energy with the weight of the CASSCF reference 
wavefunction, ϖ :  

 
2 2

1
1ε

ϖ

⎛ ⎞⎟⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜⎝ ⎠
E E  (2.78) 

Such an approach leads to a second order energy which is much less 
sensitive to the level shift parameter, and allows for more robust calculations. 
Another approach, namely an imaginary level shift,230,231 which is similar to this 
one but is more robust is starting to be used instead of the (real) level shift 
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technique. However, for consistency, only the real level shift approach has been 
used in this thesis.  

2.1.6.3 MS-CASPT2 

Despite the good performance of the CASPT2 method in describing most 
of the systems, there are some cases in which its use can result inadequate. 
Some problems related to the use of CASPT2 as well as a method which can 
prevent them are explained in the present section.  

CASPT2 inaccuracies may arise in situations where the CASSCF function 
is not a good reference function such as avoided crossings or regions with strong 
mixing of valence and Rydberg states. A typical CASPT2 failure is the 
description of the ionic and neutral LiF dissociation.232 In such a reaction 
(Figure 19), the CASPT2 method describes a double crossing region rather than 
an avoided crossing. 

  

Figure 19. Potential energy surface for the two lowest 1Σ+ states of LiF. 
Dashed lines represent CASPT2 energies. Solid lines correspond to MS-CASPT2 
calculations and the dots correspond to FCI values (Adapted from Ref. 232).  

Dashed lines correspond to the CASPT2 energies of the two lowest excited 
states of LiF and clearly describe two regions of CI at 9 and 10.5 a.u. before 
dissociation. It can be observed that the CASPT2 curves differ substantially 
from the FCI profile (dotted line), specially in the CI region. Such a bad 
behavior can also affect the vertical spectrum of molecules, as it was shown233 
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for ethane, where the 1B1u state is predicted to lie 0.4 eV above its “correct” 
value. Luckily, there exists a simple method, namely multi-state CASPT2 (MS-
CASPT2), which is capable of fixing these pitfalls. In Figure 19, the solid lines 
correspond to MS-CASPT2 energy profiles and describe the correct PES for the 
dissociation of LiF.  

The problems described for CASPT2 are related to the quality of the 
reference (CASSCF) function. The main difference between the CASPT2 and 
MS-CASPT2 methods is therefore the construction of the reference state. In the 
former method the reference space (P) corresponds to a single state CASSCF 
function,  

 α αP =  (2.79) 

which an eigenfunction of the zeroth-order Hamiltonian,  

 
0
αα α=0H E  (2.80) 

On the other hand, the reference state of the MS-CASPT2 approach is 
spanned by two or more state-averaged CASSCF states,  

 
1α

α α
=

∑
d

P =  (2.81) 

where d is the dimension of the reference space and the reference states are 
eigenfunctions of their zeroth-order Hamiltonian: 

 ( )0 0
 1,  2,  ...,  α αα α α= =H E d  (2.82) 

In the MS-CASPT2 approach an effective Hamiltonian, Heff, is computed 
perturbatively and diagonalized within the reference space, which allows for a 
mixing of the states contained in the state-average function. At the second order 
perturbation, the diagonal elements of eff

2ndH  are the corresponding CASPT2 
energies and the off-diagonal elements account for the mixing of the different 
states.  

The MS-CASPT2 method is, in fact, a generalization of the CASPT2 one. 
In most cases the two methods provide similar results, although the CASPT2 
method presents difficulties when dealing with wavefunctions which are 
dominated by more than one configuration. In such cases, given that the MS-
CASPT2 method accounts for the mixing of the states, it represents a solution 
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to the problem. However, it must be used carefully because if the active space is 
not good enough the MS-CASPT2 can overcouple the states and change the 
energy profile of the system. 
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2.2 Molecular Dynamics 
Some approaches capable of describing the electronic structure of 

molecules with increasing accuracy have been explained so far. Starting with 
HF, which is one of the simplest methods and can only describe one electronic 
state at a time, up to the MS-CASPT2 approach, which can treat multiple 
states and accounts for dynamic correlation. Despite the complexity of some of 
these methods, they can only provide a static picture. These methods do not 
take into account the time variable involved into the motion of nuclei, i.e. the 
evolution of the molecular geometry as the reaction proceeds in time. Static 
computations might not be sufficient to get reliable data on properties such as 
quantum yields or excited-state lifetimes, or to describe some non-adiabatic 
processes where time is essential and specific quantum effects affect the motion 
of the nuclei. 

Two types of molecular dynamics that have been applied in this thesis to 
the study of the photophysics of thymine are explained next. In the first section 
(2.2.1), a quasi-classical dynamics method that allows the description of non-
adiabatic events, that is classical dynamics with surface hopping algorithm234, is 
overviewed. In the second part (section 2.2.3), a highly efficient approach to 
quantum dynamics, which allows to use a large number of degrees of freedom in 
the propagation by using a set of Gaussian functions to approach the 
wavepacket, namely the Direct Dynamics variation Multi-Configurational 
Gaussian (DD-vMCG) is explained. 

2.2.1 Quasi-classical dynamics 

When an electron of a molecule is promoted, the molecule changes the 
quantum state. The evolution of this non-stationary state is described by the 
time-dependent Schrödinger equation. As mentioned in section 2.1.2, the Born-
Oppenheimer approximation allows for a separation of the electronic and 
nuclear parts of the Hamiltonian. Actually, it separates the electronic and 
nuclear motions, allowing the system evolution to be described by a function of 
the nuclei. This function is commonly known as wavepacket and moves on the 
PES created by the adiabatic motion of electrons. Quasi-classical dynamics 
methods are characterized by treating the electronic part of the Hamiltonian 
with quantum mechanics and the propagation of the system with Newton’s 
equations of motion. The classical description of the nuclear motion implies that 
a rather large number of trajectories, namely a swarm of trajectories, are needed 
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to simulate the evolution of the wavepacket. In practice, the wavepacket is 
approximated by a vector whose elements correspond to the populations of the 
trajectories in the initial ensemble. 

In our case, the problem of simulating the wavepacket is “reduced” to the 
solution of Newton’s equations of motion (and the corresponding PES and 
derivatives of the electronic part at each step) for a number of different initial 
conditions. These initial conditions are usually generated with a random 
sampling procedure, namely microcanonical sampling. In photochemistry, the 
initial conditions are usually generated on the GS and translated to the excited 
state. The reason for that is that photon absorption by molecules at 0 K can be 
modeled by a so-called Franck-Condon wavepacket that results from the 
promotion of the molecule from the vibrational ground state in the electronic 
ground state, to a superposition of vibrational states in the excited electronic 
state by a laser pulse of no duration in time, which is white light (all 
frequencies). 

Heisenberg’s uncertainty principle states that the position and velocity of 
molecules cannot be determined exactly at the same time. This principle holds 
even at zero Kelvin, a temperature at which molecules are not supposed to 
move. Thus, if there is no momentum at 0 K, the determination of the position 
implies that both, position and velocity, are known at the same time because 
velocity is 0. This would break Heisenberg’s uncertainty principle. In fact, 
momentum at 0 K is not null and the geometry does not correspond to the 
equilibrium position either. These are only the expectation values of two 
Gaussian distributions, which correspond thus to a residual energy, namely the 
zero-point energy (ZPE), according to the uncertainty principle. The ZPE is 
used in the microcanonical sampling to generate a Gaussian distribution of 
initial geometries within the boundaries defined by the turning points that 
correspond to the ZPE. The typical procedure uses a given reference geometry 
(q0), usually the GS minimum or a given point of interest on the surface, whose 
ZPE is distributed into potential (V) and kinetic energies (T), see Figure 20. 
The reference geometry is randomly distorted leading to a certain position on 
the PES, 

0 0
q q+ Δ , with its corresponding V. In a second step the remaining 

energy (ZPE - V) is randomly assigned to the different atoms, leading to a 
random distribution of velocities for the different atoms.  
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Figure 20. Typical microcanonical sampling procedure. Adapted from Ref. 49. 

The sampling procedure also takes into account the possibility of 
distributing or adding kinetic energy in a pre-determined way. This scheme is 
widely used in mechanistic studies as one can either decide within which modes 
T will be distributed or to which mode(s) a certain amount of T will be added. 
This is very useful in cases where dynamics are started at TSs because this 
allows us to define which direction will be explored. In addition, there is no 
possible sampling along the transition mode (negative curvature, hence no 
contribution to the ZPE), so that the energy added along this mode must be 
given explicitly. Otherwise, most of the computational effort might be lost in 
trajectories evolving towards undesired directions. As we will see in this thesis, 
such a scheme can also be used to study the shape of a CI by exciting those 
modes which lead to a determined part of the CI, which in other cases can be 
used to carry out relaxation direction control. Obviously, in these cases the time 
constants lose significance but one gets valuable mechanistic data. 

Once the initial conditions are defined, the molecular dynamics procedure 
reduces to the propagation of the system for each of the initial conditions until 
it gets trapped around a stationary point or the region of interest is no longer 
accessible.  

2.2.2 Quasi-classical dynamics propagation 

In the classical limit of the Schrödinger equation, the evolution of the 
nuclear wavepacket can be written as an ensemble of pseudo-particles evolving 
classically,  

E 

q 

E = T + V 

0 0
q q+ Δ

0
q

V 

T 

ZPE 

Randomly 
positioned 
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 RM V= −∇  (2.83) 

where M is a diagonal matrix containing the masses of the nuclei and R  is the 
second derivatives vector (acceleration). The components of this vector are 
defined by Rα. ∇  is the derivative vector operator with respect to the nuclear 
coordinates,  

 
Rα

α

∂
∇ =

∂
 (2.84) 

and V is the potential which depends on the position of the nuclei, R. 

The evolution of the pseudo-particles is driven by the force each pseudo-
particle “feels” at time t. Thus, the electronic part of the Schrödinger equation 
needs to be solved at each step in order to provide the gradient (force),  

 ( ) ( )( ) ( ) = ; ;elR R r R r RF V Hα α α ψ ψ= −∇ −∇ , (2.85) 

that is used to propagate the nuclei a step forward.  

The idea of the propagator is simple but computationally expensive 
because the electronic part requires the use of the SCF procedure. Thus, given 
that the electronic part represents the bottleneck of the method, most efforts in 
providing cheaper molecular dynamics have focused on reducing the number of 
times the electronic part is solved. A way to reduce the number of quantum 
calculations is to enlarge the size of the propagation steps. Early molecular 
dynamics methods used cheap integration schemes235,236 that allow for small 
time-steps but only require the evaluation of the first derivatives of the PES 
and the forces. However, most of the “modern” methods use the Helgaker-Chen 
algorithm.237,238 This algorithm is based on the approximation of the nearby PES 
at each point by a harmonic model. Its trivial integration provides the trust 
radius which is used by the equations of motion to take a step forward from R0 
to '

tR . In a second step the “true” information on '
tR  is used to fit a fifth-order 

polynomial that is used to improve the surface and carry out a corrector step 
that leads to Rt. Despite the necessity of calculating second derivatives, the 
overall algorithm is cheaper than the first-order one because larger steps are 
allowed.  

Another improvement on the efficiency of molecular dynamics is the Hessian 

updating algorithm,239 which performs an updating of the Hessian matrix rather 
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than Hessian evaluation at each step. This method allows for much faster 

dynamics and critical points optimization algorithms. Thus, the Hessian 

updating algorithm allows the study of larger molecules and the use of more 

accurate quantum mechanics methodologies in dynamics calculations. More 

information on these models can be found in Refs. 239-241.  

2.2.2.1 Surface hopping 

The way molecular classical dynamics simulates the propagation of a 
wavepacket on a single PES has been overviewed. Quasi-classical dynamics are 
based on the same algorithm, but allow the wavepacket to be propagated on 
several coupled PES through an approximate treatment of the non-adiabatic 
couplings. Given that many quantum methods can be used to solve the 
electronic part of the Schrödinger equation, the study of multiple surfaces with 
quasi-classical dynamics can be carried out at different levels of theory, namely 
CC, TD-DFT, or CASSCF. None of this methods is capable of treating non-
adiabatic events, thus they are approached by a surface hopping algorithm. 

Trajectory surface hopping algorithms, first introduced by Bjerre and 
Nikitin242 and Tully and Preston,234 determine what adiabatic state is to be used 
to compute the energy and gradient at touching surface regions. One of the first 
surface hopping algorithm was introduced by Tully,234,243 however, an 
algorithm244 which uses the occupancy or population of the adiabatic states to 
determine the hop probability has been used in this thesis and is explained next. 
The occupation is given by projection of the time-dependent wavefunction for 
the electronic motion (time-dependent configuration interaction vector),  

 

1

k

C ( )

a( )
C ( )

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

t

t
t

, (2.86) 

on the adiabatic states, a( ) Ψkt , with Ck being the complex coefficient which 

gives the contribution of the different k states. This vector can be propagated in 
time by solving 

 ( ) exp( iH ) ( )a aτ τ+ = −t t , (2.87) 
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where H is the electronic Hamiltonian in the state function basis, and where  
has been set to 1. The squares of the vector elements give the occupation of the 
electronic states as a function of time. The occupation of each state is monitored 
along the trajectory, and when the occupation of the starting adiabatic state is 
found to be below a user-defined threshold (for example 0.2), a surface hop 
takes place. That is, beyond that point the other surface is used to compute the 
energy and gradients of the trajectory. In order to reproduce the non-adiabatic 
processes better, in a hop the energy is conserved by correcting245 the 

momentum in the direction of the derivative coupling vector, F ψ ψ= ∇ij i j . 

To reduce the computational cost, the surface hopping algorithm is not used at 
each step, but just when the energy difference between the states is lower than 
a pre-defined threshold. In addition to this, to avoid multiple switches near a 
CI, no further hops are allowed in the first 5 fs after a given hop.  

More information on surface hopping algorithms can be found in Ref. 244, 
including those which use the Landau-Zener model to evaluate the surface 
hopping probability.  

2.2.3 Quantum dynamics 

Quantum molecular dynamics can be carried out in the time-independent 
picture by diagonalization of the Hamiltonian, or in the time-dependent picture 
by propagation of a wavepacket. The two options are equivalent but we will 
focus on the latter as it is seems to be the most natural way of describing the 
motion of particles and it offers some advantages especially if approximations 
are used. In the early days of quantum molecular dynamics the time-dependent 
picture mentioned above was largely ignored. This, started to change with the 
appearance of the first paper on Gaussian wavepacket propagation by Heller246 
in 1975. New numerical techniques, which allow the numerically exact solution 
of the time-dependent Schrödinger equation, and powerful integrators such as 
the split-operator,247-249 Lanczos250 or Chebyshev,251 have been developed since 
then.  

The standard approach for solving the time-dependent Schrödinger 
equation is the numerically exact propagation of a wavepacket represented in 
time-independent basis set. The corresponding wavefunction has the form: 

 ( ) ( )
1

1

1

( )
1 ...

11 1

( )
κ

κ
κ

κ

χ
== =

Ψ = ∑ ∑ ∏
f

f
f

N N f

f j j j
j j

Q ,...,Q ,t C t Q  (2.88) 
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where Q1, …,Qf  are the nuclear coordinates, f denotes the number of degrees of 
freedom, 

1... fj jC are the time-dependent expansion coefficients, ( )

κ

κχj  are the time-

independent basis functions for degree of freedom κ, and Nκ correspond to the 
number of basis functions.  

The equations of motion for the expansion coefficients can be derived from 
the Dirac-Frenkel variational principle252,253 

 0δΨ − ∂ Ψ =tH i  (2.89) 

where ∂t  denotes the partial derivative with respect to time and yields a system 
of coupled linear first-order ordinary differential equations, which can be solved 
by integrators like those mentioned above. However, the computational cost of 
such calculations becomes prohibitive with the increasing number of degrees of 
freedom and limits its use to systems of six degrees of freedom.  

Fortunately, there are different methods that approximate the solution of 
the time-dependent Schrödinger equation. Most of these methods are based on 
approximating the wavefunction as is the case of the Time Dependent Hartree 
(TDH) method.252,254 This method is the basis of the one that has been used in 
the present thesis and is explained next. 

2.2.3.1 TDH 

The TDH method tries to overcome the limitations that represent the 
numerically exact solution of the Schrödinger equation by approximating the 
wavefunction as a Hartree product of one-dimensional functions, the so-called 
single-particle functions or orbitals. Thus, the wavefunction is written as:  

 
1 2

( ) ( ) ( ) ( )ϕ ϕΨ =x, y,t a t x,t y,t  (2.90) 

where a is a time-dependent complex number and 
1

ϕ  and 
2

ϕ  are the single-
particle functions. This wavefunction of is not uniquely defined because phase 
and normalization factors might be shifted from one term to another. 
Constraints that fix the phases are defined in differential form as: 

 
1 1 2 2

0ϕ ϕ ϕ ϕ= =  (2.91) 

These constraints also guarantee that the norms of the functions will not 
change throughout the propagation if they are normalized initially.  
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The equations of motion that drive the evolution of the wavepacket are derived 
applying the Dirac-Frenkel variational principle (see eq. (2.89)). Thus, 
substituting by the wavefunction described in eq. (2.90), the variation with 
respect to a yields: 

 
1 2 1 2 1 2 1 2 1 2

0ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ+ + − =ia ia ia Ha  (2.92) 

which taking into account the constraints imposed in eq. (2.91), reduces to: 

 =ia H a  (2.93) 

with, H  being 
1 2 1 2

ϕ ϕ ϕ ϕ=H H . The corresponding variations of the 

single-particle functions are: 

 ( ) ( )(1) (2)
1 1 2 2

    and    ϕ ϕ ϕ ϕ= − = −i H H i H H  (2.94) 

with the mean-field operators being (1)
2 2

ϕ ϕ=H H  and (2)
1 1

ϕ ϕ=H H  

respectively.  

Writing the three parts together, the TDH wavefunction can be considered 
as being propagated by an effective Hamiltonian, 

 Ψ = Ψeffi H  (2.95) 

composed of (1) (2)= + +effH H H H .  

The advantage of the TDH method is that the equations of motion of the 
wavepacket correspond to a set of coupled one-dimensional functions that 
compared to the numerically exact propagation case, represent a substantial 
reduction of the computational effort needed to solve the equations. This allows 
a larger number of degrees of freedom to be considered. However, with such an 
approximation the correlation between the degrees of freedom is no longer 
treated correctly. In addition, similarly to the HF approach in ab initio 
calculations, due to the TDH method only takes into account a single 
configuration. This implies that this method is not appropriate to study non-
adiabatic processes such as the photophysics of thymine. A generalization of this 
method, namely the Multi-Configurational Time Dependent Hartree 
(MCTDH),255 which takes multiple configurations into account and can treat 
non-adiabatic processes, is explained next.  
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2.2.3.2 MCTDH 

The MCTDH method is a generalization of the TDH one. In the limiting 
case where only one configuration is used, the equations are identical to those of 
the TDH. The increase of configurations converges the wavepacket propagation 
to the numerically exact one (eq. (2.88)). Another particularity of the method is 
that it can be used to treat multiple configurations. In such a case the 
wavefunction is expresses as a sum of wavefunctions each one corresponding to 
a given electronic state. A brief overview of the working equations of method for 
a single electronic state is given next. The generalization to more states is 
straightforward and is given afterwards. The full derivation of the following 
equations has been explained elsewhere.255 If more technical details are desired, 
see Ref. 256.  

The wavefunction that will be used to obtain the equations to propagate 
the wavepacket of a system with f degrees of freedom, is written as a linear 
combination of Hartree products: 

 ( )
1 f

1 f

1 f

( )
1

11 1

( ) ( ) ,κ
κ κ

κ

ϕ
== =
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n n f

f j j j
j j

Q ,...Q ,t A t Q t  (2.96) 

with 
1 fQ ,...,Q  being the nuclear coordinates, 

1 fj jA  the MCTDH expansion 

coefficients, and ( )κ
κϕ j  the κn  one-dimensional expansion functions (single-particle 

functions) for each degree of freedom (κ ). Note eq. (2.90) is obtained if κn  is set 
to 1. It is worth to mention that in this equation not only the expansion 
coefficients are time-dependent, but also the basis functions. This is one of the 
reasons of the efficiency of the method, because as the basis evolve with the 
wavepacket only a few single-particle functions (which are optimized at each 
time step) are needed. It is also important to note that a different number, nκ, 
of single-particle functions can be used for each degree of freedom.   

For simplicity, the expansion coefficients will now be expressed by the 
composite index J, and the Hartree products of single-particle functions as the 
function ΦJ . Thus, the coefficients and Hartree products will be 

1 f
=J j jA A  

and ( )

1

κ
κ

κ

ϕ
=

Φ = ∏
f

J j , respectively. This way the expression of the wavefunction 

reduces to: 

 ( ) φΨ = ∑J J J
J

Q ,t A  (2.97) 
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As in the TDH case, the MCTDH wavefunction (eq. (2.96)) is not 
uniquely defined in this form and constraints must be introduced to get rid of 
the redundancies and guarantee that the single-particle functions remain 
orthonormal for each degree of freedom (κ) along the propagation. These 
constraints are: 

 ( ) ( )( ) ( )0 0κ κϕ ϕ δ=j l jl  (2.98) 

and 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )0 0κ κ κ κ κϕ ϕ ϕ ϕ= −j l j lt i t g  (2.99) 

where ( )κϕl  is the derivative with respect to time of the l single particle function 

of the κth degree of freedom, and ( )κg  is an Hermitian constraint operator. The 
choice of this operator is arbitrary and does not affect the quality of the 
wavefunction. One of the advantages of this freedom, is that it can be used to 
simplify the integration of the equations of motion and increase the performance 
of the method. It is convenient to choose this operator so that it only acts on 
the κ-th degrees of freedom, since this allows the Hamiltonian operator to be 
split up into this hermitian operator, hκ, and the “rest” of the Hamiltonian, say 
HR,  which includes the correlation between the degrees of freedom: 

 
1

ˆ
κ

κ=

+∑
f

RH = h H  (2.100) 

More information on constraint operators can be found in Ref. 39. 

In order to derive the MCTDH equations of motion, the single-hole 
functions are introduced. These functions, ( )κΨ l , correspond to a linear 
combination of Hartree products of all the single-particle functions except that 
of the coordinate κQ . These single-hole functions allow the definition of the 
mean field operators and density matrices as: 

 
( ) ( ) ( ) ( ) ( ) ( ) *    and    

j j
κ κ

κ κ κ κ κ κ κρ= Ψ Ψ = Ψ Ψ = ∑R j R l jl j l J Jjl
J

H H A A  (2.101) 

Note that diagonalizing the density matrix the natural populations and 
natural orbitals are obtained. This populations can be used to check the quality 
of the wavefunction.256  
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Using these definitions and the expressions mentioned above, one can 
express ,  , and the variation δΨ Ψ Ψ as: 
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 (2.102) 

Applying the variational principle (eq. (2.89)) and the constraints stated 
above, the variation of the coefficients yields: 

 = Φ Φ∑J J R L L
L

iA H A  (2.103) 

where ( ) ( ) ( ) ( )κ κ κ κϕ ϕ=jl j lh h  and 
1···

=
fJ j jA A  

The corresponding variation with respect to the single-particle functions 
after some algebra leads to the final equations of motion that follow: 
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 (2.104) 

The single-particle functions have been expressed as a vector, 

( )( ) ( ) ( )
1

,...,
κ

κ κ κϕ ϕ=
T

nϕ , the density matrix as ( )κρ , the mean field operator matrix 

as 
( )

H
κ

R , and the unit matrix as 
κ

1n . The projector on the space spanned by 

the single-particle functions has the form ( ) ( ) ( )

1

κ
κ κ κϕ ϕ

=

= ∑
n

j j
j

P . One of the 

advantages of these equations is that the matrix elements of 
( )

H
κ

R  and the 

mean-fields Φ ΦJ R LH  are evaluated using only the residual part of the 

Hamiltonian (see eq. (2.100)). 

The equations of motion explained so far consider that the nuclei move on 
a single PES. This picture is valid for many systems but not for the study of 
photophysics, in which the nuclei can move on two or more PES. Two 
possibilities can be used to treat non-adiabatic systems with the MCTDH 
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method. The first is the so-called single-set formulation, in which all the 
electronic states use the same set of single-particle functions. In such a 
formulation, an extra degree of freedom is added to the equations to represent 
the electronic state. One advantage of this formulation is that the equations of 
motion derived before remain unchanged, and that only an extra degree of 
freedom (κe) which runs up to the number of states (σ), i.e. 1,  2, ..., κ σ=

e
Q , is 

needed. accordingly, the number of single particle functions for such an 
electronic mode is set to the number of states, κ σ=n . In contrast, in the 
second formulation, namely multi-set formulation, each state uses a different set 
of single-particle functions as the wavefunction and the Hamiltonian are 
expanded in the set of electronic states, α , as follows: 
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α β
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where each state function has the form of eq. (2.96). 

With this formulation the equations of motion need to include an extra 
label which denotes the state under consideration. Thus, in the multi-set 
formulation, if the simplest constraint operator is chosen so that ( , ) 0α κ =g , the 
equations of motion read as:  
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 (2.106) 

More detailed information on the derivation of these expressions can be 
found in Ref. 257. 

The MCTDH is a method for propagating wavepackets on a PES in which 
the PES must be known globally. A big effort is needed to generate such a grid 
which describes the entire PES of a system. Thus, the difficulty of representing 
the PES is a major problem of this method. However, there are approximations 
which allow the use of quantum dynamics methods for the study of large 
systems. One of this approximations was first introduced by Heller246 and is 
based on the use of a set of Gaussian functions to describe the wavepacket. The 
use of Gaussian functions implies that not all the PES must be known in order 



Quantum dynamics   

 

97 

to propagate the wavepacket, but just the regions where the functions move. 
Since Gaussian functions stay localized around their centres, it is thus sufficient 
to calculate a the PES and Hessian locally on-the-fly around the centre of each 
function at each time step to propagate the functions. Such a scheme is given 
by the direct dynamics variation multiconfiguration Gaussian wavepacket 
method (DD-vMCG),258,259 which is explained next. 

2.2.3.2.a DD-vMCG 

This method uses a superposition of Gaussian functions to approximate 
the wavepacket. The use of a Gaussian wavepacket is advantageous in many 
senses. Besides of allowing the use of on-the-fly techniques to locally calculate 
the PES (direct dynamics), it simplifies the solution of the equations of motion 
and gives a classical flavor to the method since, according to Ehrenfest’s 
theorem, the center of a single Gaussian wavepacket moves classically. This 
classical picture can help in interpreting the results. It is worth to mention that 
Gaussian functions do not move classically but are coupled to each other, unless 
a single multidimensional Gaussian is used. This non classic behavior allows the 
description of quantum effects such as tunneling.260 

The DD-vMCG is faster than MCTDH and needs less Gaussian functions 
than similar approaches such as the multiple spawning method135 to converge to 
the “full” quantum dynamic picture of nuclear motion. The main features of 
this method are presented next.  

The vMCG wavefunction reads as:  

 (s) (s)
s
( ) ( ) ( )Ψ = ∑ j j

j

x,t A t g x,t  (2.107) 

As it can be readily seen, the single-particle functions of all degrees of 
freedom (see MCTDH) have been replaced by 1D Gaussian functions. Thus, 
with this method the wavepacket is represented as a superposition of normalized 
Gaussian functions ( ( )jg x,t ), which are defined by two real parameters, namely 

the mean position ( )jx t  and mean momentum ( )jp t  of the centre of the 

function.  

 ( , ) exp ( ) ( ) ( )
s

q ξ η
⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎜ ⎟⎝ ⎠∑ ∑l l r l rs s lr r l

r r

g t q a t q t q t  (2.108) 

where a, ξ , and η  are time-dependent complex parameters, which are 
contained in the matrix Λ . Combining the degrees of freedom in Gaussian 
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functions reduces the effort required to propagate the wavefunction because the 
number of configurations scales exponentially with the number of degrees of 
freedom, and Gaussian functions scale much better. This implies that the 
variational evolution of each Gaussian is not carried out in terms of an 
expansion of a set of stationary basis functions but is performed by optimization 
of a rather small number of time-dependent parameters.  

The equations of motion of the vMCG method are derived in the same 
way as those of the MCTDH one, but in this case only variations with respect 
to the expansion coefficients (Aj) and the Gaussian function parameters are 
considered. The derivation of these expressions258,259 will not be explained here as 
it is out of the scope of the present thesis. However, the final form of the 
equations of the DD-vMCG method, which correspond to a set of coupled 
dynamical equations, is shown next since they have been used in the present 
thesis. They are presented in matrix nomenclature259 and read as: 

 
1

1

A S H A
C Y

−

−

⎡ ⎤= −⎢ ⎥⎣ ⎦
=

i i

i

τ
Λ

 (2.109) 

where H is the Hamiltonian matrix in the Gaussian wavepacket basis set, and 
C, Y and τ  are the matrices and vectors involving overlap matrices and higher 
moments of the Hamiltonian. 

As mentioned above, the equations of motion require the evaluation of the 
potential energy surface. In this case, the Local Harmonic Approximation 
(LHA) has been used locally, where the potential (V) is expanded to second 
order around the center (x0) of each Gaussian function (i) as it moves: 

 
0

( ) ( ) +x x q V' q V''q= + T T
i i i iV V  (2.110) 

The first (V’) and second derivatives (V’’), that are needed for the 
expansion, are calculated on-the-fly by an interfaced quantum chemistry 
program, which in our case is Gaussian 03. 

The procedure of the vMCG method in a two state system is explained 
next. A wavepacket is generated in each state. The initial wavepacket on the 
upper state is the GS vibrational function. That is, a Gaussian function 
centered at the starting position, usually FC, the width of which is determined 
by the fundamental frequency of vibration. A number of Gaussian functions of 
equal width are then generated around this initial function. They are positioned 
so as to keep the overlap between them below 0.5. A similar wavepacket is 
generated on the lower state. At time 0, the wavefunction is only composed of 



Non-adiabatic events with quantum dynamics   

 

99 

the initial function, i.e. the Franck-Condon wavepacket, because the expansion 
coefficients of the rest of the Gaussians functions are set to 0, but the initial one 
which is set to 1. The positions and occupancies of the functions are self-
adjusted by means of the equations of motion as the propagation goes on. The 
wavepackets describe quantum mechanical trajectories except when only one 
function is used to approximate the wavepacket, since then, according to 
Ehrenfest’s theorem, the center of the function describes a classical trajectory. 
As mentioned above, the functions move on PES which are approximated by 
the LHA at each step. However, the vMCG software includes a database which 
stores the position, energy, and first and second derivatives of each function at 
each step. This database is used in successive calculations. The algorithm, 
before performing the Hessian calculation, which is the time consuming part of 
the method, first checks the database for previous information on that point. If 
that part of the PES is present in the database, it is not calculated and the 
information is taken from the database. This feature reduces the computational 
effort of the method and makes the simulation faster. 

2.2.4 Non-adiabatic events with quantum 
dynamics 

The time dependent Schrödinger equation within the Born-Oppenheimer 
approximation reads as:  

 
N N N

( ) ( , ) i ( , )E R R R∂⎡ ⎤+ Ψ = Ψ⎢ ⎥⎣ ⎦ ∂eT t t
t

 (2.111) 

where ( )E Re  is the matrix of eigenvalues of the electronic Hamiltonian, i.e. the 
adiabatic PES (the corresponding eigenvectors being the adiabatic states), and 

N
T  the kinetic energy operator. In this representation, the non-adiabatic terms 
of the kinetic energy operator are neglected because it is assumed that the 
different states are not coupled with the variation of the nuclear coordinates. 
However, in regions of degeneracy, these terms cannot be neglected, and the 
Schrödinger equation that has to be used is:  

 
N N N

( ) ( , ) i ( , )E R R R∂⎡ ⎤+ + Ψ = Ψ⎢ ⎥⎣ ⎦ ∂eT t t
t

Λ  (2.112) 

where Λ  corresponds to the non-adiabatic coupling operator. In this case the 
Hamiltonian is: 
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e

ˆ( ) ( )+ ( )H R R E R= I -NT Λ  (2.113) 

where I is the unit matrix. Λ  is related to the non-adiabatic coupling vector, F, 
whose components are given by:  

 e
ij i j

j i

ˆ1ˆ
R

ψ ψ
∂

=
− ∂

H
F

V V
 (2.114) 

where 
i

ψ  and 
j

ψ  are the electronic functions of states i and j, respectively, and 

Vi and Vj the adiabatic energies of these states. It is readily seen that in regions 
of degeneracy, the terms of this vector will tend to infinity, leading to 
singularities on the PES such as CI. To avoid this problem, an alternative 
scheme, which is capable of dealing with degenerate surfaces, namely the 
diabatic representation, is usually used in quantum dynamics to treat non-
adiabatic events. This representation has been used in this thesis and is 
explained next. 

2.2.4.1 Diabatic representation 

As it stands, the diabatic representation uses diabatic PES to propagate 
the wavepackets. These surfaces are smooth since the singularities that arise in 
the adiabatic picture, when two surfaces approach each other, are not present. 
This is accomplished by choosing wavefunctions so that the non-adiabatic 
coupling operator matrix (Λ ) of eq. (2.113) almost vanishes. Nevertheless, the 
couplings that determine the population transfers are still present, but now are 
represented by the off-diagonal terms of a potential (W) in the electronic 
Hamiltonian. Thus, in the diabatic representation, the nuclear Hamiltonian is 
written in matrix form as: 

 ˆ( ) ( )H R W R= +INT  (2.115) 

The eigenfunctions of W(R) correspond to the adiabatic states, and as 
mentioned above, the coupling between these states is provided by the off-
diagonal elements of this matrix.  

The diabatic and adiabatic (eq. (2.113)) representations are equivalent and 
are related by unitary transformations (S(Q)) such that:  

 
e
( ) ( ) ( ) ( )E Q S Q W Q S Q= †    and   ( ) ( ) ( )R S R Rφ ψ=  (2.116) 
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where 
cos ( ) sin ( )

( )
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R R
S R R R

α α
α α

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟−⎜ ⎟⎜⎝ ⎠
, and the rotation (mixing) angle is:  
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2
Rα =

−
 (2.117) 

where the terms Wij correspond to the elements of the 2x2 potential energy 
matrix. In the ideal case, the mixing angle should fulfill the equation: 

 
1 2

( ) ( ) ( )R R Rα ψ ψ∇ = ∇  (2.118) 

to make the derivative couplings strictly zero in the diabatic basis, however it 
hardly happens and only states which approximate this relation are considered.  

In the vMCG method, the diabatic representation is combined with on-
the-fly dynamics, thus the potential is calculated at every step ab initio, as an 
adiabatic potential. This implies that the transformation (2.112) must be 
carried out at every step of the trajectory, before the propagation. In our case, 
the transformation is based on a simple form of the regularized diabatic states 
method of Köppel.  

2.2.4.1.a Regularized diabatic states 

Köppel et al. showed261-263 that only the linear derivative coupling terms of 
the Taylor expansion of the energy around a conical intersection are responsible 
for the singularities of the adiabatic basis. In views of this, the authors proposed 
a transformation from the adiabatic basis to the quasi-diabatic one by only 
removing the leading terms of the Taylor expansion, i.e. the construction of 
regularized diabatic states. In such a transformation only the linear coupling 
terms are removed and the rest are neglected because they are small. Following 
this scheme, the mixing angle is defined up to first order and the diabatic to 
adiabatic transformation reads as: 

 
V

V

(1)
(1) (1) (1)

(1)

0

0
S W S

⎛ ⎞Δ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ −Δ ⎟⎜⎝ ⎠
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(1) 2 2 2 2λΔ = +  (the dependences on the nuclear positions have been 
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neglected for simplicity). 
1xQ  and 

2xQ  are rectilinear displacements from a given 

point of degeneracy along the so-called tuning and coupling modes. In general, 
these modes are chosen to be the gradient difference and interstate coupling 
vectors, respectively.  

If this (first order) transformation is applied to a general adiabatic 
potential energy matrix, one gets the working equation for the potential energy 
matrix in the basis of regularized diabatic states. Thus, only the kinetic energy 
operator, which is diagonal, needs to be added to get the electronic Hamiltonian 
in the regularized diabatic basis:  

 ( )reg reg
N NT T (1)

(1)
ˆ ˆH W WΔ

= + = + ∑ +
Δ

I I  (2.120) 

where ( )V V
1 2

/ 2Δ = −  is the half-difference of the adiabatic potential 

energy surfaces, and V (1)Δ  is the same term of eq. (2.119). It is worth to 
mention that with this scheme all the quantities needed to define the 
transformation are obtained from the adiabatic states, i.e. the ab initio 
calculations.  

In practice, we proceed the following way: the coordinates of a given 
conical intersection geometry, which defines the transformation, are contained in 
the vector R0. x1 and x2 contain the components of the half-gradient difference 
and derivative coupling vectors, which are calculated at the reference point. 
These vectors are used to calculate the elements of W (1) as: 

 
( )
( )

0 1

0 2

R R x
R R xλ

= − ⋅

= − ⋅
1

2

x

x

kQ

Q
  (2.121) 

where R are the coordinates of a given point ((π,π*)TS in our case, see section 
4.4). Finally, to make the adiabatic and quasi-diabatic states coincide, the 
tuning and coupling modes are rotated to generate new, 

1
'x  and 

2
'x , modes 

such that 
2xQ  is zero at the starting point R, ( ) '

0 2
0R R x− ⋅ = .  

The main problem of the transformation is the assumption that the basis 
of diabatic states at the starting point is sufficient to describe the wavefunction 
along the whole propagation. Thus, the dimension of the matrices of the 
adiabatic and diabatic potential energies is finite (2x2 in our case), and it is 
assumed that the diabatic and adiabatic spaces can be truncated to this size. 
The correspondence between diabatic and adiabatic states is exact at the 
dynamics starting point. However, the appearance of further states in the 
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wavefunction during the propagation (i.e. a change in the character of the 
wavefunction) can cause the transformation to fail. The validity of this 
assumption for thymine will be discussed in the results section. 
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3 OBJECTIVES  
The main objective of the present thesis is to gain further insight into the 

photophysics of thymine and provide a mechanistic description of the processes 
involved in the excited state relaxation observed at the picosecond range and 
below. Such an objective is not straightforward and requires a careful choice of 
the methodology. Thus, the study has been divided into two parts. The first 
part is devoted to find a methodology which is capable of describing the ring 
planarity properly. In addition, a method based on BSSE correction techniques 
that fixes the pitfalls encountered by Moran et al., is presented and analyzed. 
Thus, the objectives of this part is: 

 Find a proper basis set to describe the photophysics of thymine. 

 Determine if nucleobases suffer from pitfalls on the ring planarity 
description. 

 Analyze if BSSE is at the origin of the pitfalls and its local 
character. 

 Fix the pitfalls on the ring planarity description by means of the 
Counterpoise method. 

 Determine the effect of fragments’ definition and fragments’ 
multiplicity assignment on the correction of BSSE. 

The second part focuses on the study of the photophysics of thymine and 
the simulation of the excited state decay, where the following objectives are 
considered: 

 Optimize a high level ab initio PES to explain the decay 
components found experimentally. 

 Simulate the decay of the excited state of thymine with quasi-
classical and quantum dynamics. 

 Characterize the region of the surface responsible for the population 
of the n,π* state observed experimentally.  

 Check the performance of a novel quantum dynamics code, namely 
direct dynamics vMCG. 



RESULTS  107 

 

 

4 RESULTS  
This chapter is divided into 4 parts. In the first part, the CP method is 

applied to fix the anomalies in the description of the planarity of benzene and 
other planar arenes. In the second part, a benchmark of the methods and basis 
sets that will be used for the subsequent study of the photophysics of thymine is 
performed. In addition, the study carried out in the first part is extended to 
DNA and RNA nucleobases. The last two sections focus on the photophysics of 
thymine. In the third one, the PES of thymine is calculated at a high level of 
theory, and in a second step, the deactivation of thymine is investigated by 
means of quasi-classical dynamics simulations. Finally, the influence of the 
shape of the seam of CI in the relaxation mechanism has been analyzed with 
quantum dynamics. 
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4.1 BSSE effects on the planarity 
of benzene and other planar 
arenes: A solution to the 
problem 

We show that the pitfalls reported by Moran et al.140 can be interpreted in 
terms of intramolecular BSSE effects and, as such, the calculations can be 
corrected using the BSSE correction techniques typically applied to 
intermolecular interactions, particularly the Counterpoise method. For this 
purpose, CP-corrected optimizations and subsequent CP-corrected frequency 
calculations for a number of arenes (see Figure 21) at the HF, B3LYP, MP2 and 
CISD levels of theory with several basis sets are carried out. It will be shown 
that, with no exception, correcting for intramolecular BSSE fixes the anomalous 
behavior of the correlated methods, whereas no significant differences are 
observed in the single-determinant case. 

 

Figure 21. Arenes considered in this study. 
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4.1.1 Computational details 

As detailed in Appendix I, we have used both Gaussian 03 and our own 
code that allows us to exploit the symmetry of the molecules by minimizing the 
number of fragment calculations in both the CP-corrected optimization and 
frequency calculations. This is particularly important for the case of CISD, as in 
any ghost-orbital calculation, symmetry must be turned off. The case of the 
cyclopentadienyl anion is a special one because, even though the 6 π electrons 
are fully delocalized in the ring, in principle, the extra electron must be assigned 
to one of the five C-H fragments, thus breaking the symmetry of the CP-
corrected calculation. Since our program allows us for a flexible definition of the 
CP correction term, we have determined it using both neutral and negatively 
charged C-H moieties. The final CP correction term we have used has been 
simply,    

 
( )( )

1 4
( ) ( ) ( )

5 5
R R Rδ δ δ−= +BSSE BSSE BSSE

CHCH
 (4.1) 

thus, preserving the symmetry of the calculation. The case of indenyl anion is 
also problematic. Note that up to five imaginary frequencies are obtained at the 
MP2/6-311G level of theory, the largest one exceeding 1000i cm-1. For this 
system, a Counterpoise function that keeps the C2v symmetry of the molecule 
and equally shares the electron charge among the three C-H moieties of the five-
member ring has been used.  

4.1.2 Fragments’ definition 

A key point when estimating intramolecular BSSE effects is the proper 
definition of the fragments forming each molecule in order to apply eq. (2.28). A 
natural and unambiguous way to proceed could be to take atomic fragments. 
The problem with this approach is that the number of necessary extra 
calculations to obtain the CP correction would be 2N, being N the number of 
atoms. It would be desirable to be able to define larger fragments while 
maintaining the molecular symmetry of the system. In this sense, it is essential 
to note that in all reported cases the problems are associated with out-of-plane 
bending low-lying modes. This tells us that in these cases the intramolecular 
BSSE does not seem to affect appreciably bonds or bond angles (otherwise 
stretching and other bending modes would have been affected). Taking all this 
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into account, we can infer that proper moieties that can be used as fragments 
are the C-H units constituting the arenes. 

In order to assess the effect of different fragment definitions, we have first 
determined the single-point CP-corrected energy profile along the b2g vibrational 
mode of benzene at the MP2/6-311G level of theory, for which an imaginary 
frequency of 722i cm-1 is obtained. The uncorrected and CP-corrected results 
using twelve atomic fragments, six C-H fragments, as well as three (C-H)2 
fragments are displayed in Figure 22.  

 

Figure 22. CP-corrected energies along the b2g vibrational mode in benzene. 

It can be readily seen that even though the results obviously depend upon 
the fragments’ definition, all CP-corrected energy profiles properly describe the 
distortion as a vibration, in contrast to the uncorrected profile.  

4.1.3 Vibrational frequencies 

The lowest vibrational frequencies for benzene, along with the symmetry of 
the vibrational mode, both uncorrected and CP-corrected, are gathered in Table 
1. We have used three basis sets ranging from qualitatively good behavior (6-
31+G*) to dramatic BSSE effects (6-311++G), and applied the same levels of 
theory as in Ref. 140 for comparison. 
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 MP2 
MP2  

CP-corrected 
CISD 

CISD 
CP-corrected 

b2g 182 e2u 384 e2u 418 e2u 425 

e2u 379 b2g 473 b2g 591 e2g 639 6-31+G* 
e2g 618 e2g 613 e2g 643 a2u 713 

b2g 722i e2u 382 b2g 189i e2u 382 

e2u 333 b2g 442 e2u 397 b2g 442 6-311G 
a2u 620 e2g 625 e2g 652 e2g 625 

b2g 1852i e2u 409 b2g 1384i e2u 455 

e2u 468i e2g 631 e2u 281 e2g 653 6-311++G 
e2g 470 a2u 703 e2g 650 a2u 760 

Table 1. Lowest uncorrected and CP-corrected vibrational frequencies (cm-1) of 
benzene for different levels of theory and basis sets (spurious frequency values in 
italics). 

Noticeably, the CP correction fixes the anomalous behavior of the 
correlated methods in all cases. Consequently, benzene is found to be planar for 
all levels of theory. No significant differences are observed for higher frequencies 
or for the already qualitatively correct single-determinant calculations like 
Hartree-Fock or B3LYP. Also, the CP-corrected optimized frequencies do not 
differ appreciably from the uncorrected ones (Tables with all CP-corrected 
frequencies for all levels of theory are given in Appendix I). The CP-corrected 
frequencies are also in better agreement with both experimental264 and best 
theoretical estimates149 than the uncorrected ones, even ignoring the lowest five 
vibrational modes (see Table 2). 

 

 CP-HF HF CP-B3LYP B3LYP 
6-31+G* 7.9 (7.4) 8.6 (7.9) 1.0 (1.0) 1.1 (1.1) 

6-311G 9.0 (8.1) 9.6 (8.4) 2.0 (1.9) 2.4 (1.9) 

6-311++G 8.2 (7.6) 9.8 (8.6) 2.4 (2.3) 2.4 (1.9) 

 CP-MP2 MP2 CP-CISD CISD 
6-31+G* 4.5 (3.0) 7.2 (3.9) 4.4 (4.4) 5.4 (4.7) 

6-311G 5.1 (3.2) 16.1 (5.2) 5.1 (3.2) 10.6 (4.9) 

6-311++G 3.7 (3.9) 31.1 (13.2) 9.7 (7.4) 18.7 (20.7) 

Table 2. Average error (in %) for the computed harmonic frequencies of benzene 
with respect to experiment.264 In parenthesis the error computed without the 
lowest five frequencies. 
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A similar behavior is observed in the case of naphthalene, as shown in 
Table 3. At the modest MP2/6-31G level of theory the out-of-plane b2g 
vibrational mode is poorly described, exhibiting an imaginary frequency of 402i 
cm-1. The correction of the intramolecular BSSE leads to a value of 570 cm-1, 
whereas no meaningful differences are observed for the rest of low frequencies.  

 

MP2 
(6-31G) 

CP-
correct. 

b3u 159 159 

au 177 181 

b1u 369 362 

b1g 359 368 

b3u 419 446 

b2g 426 450 

b2g 402i 570 

Table 3. Lowest MP2 uncorrected and CP-corrected vibrational frequencies of 
naphthalene (cm-1) for different basis sets (spurious frequency values in italics). 

Finally, the results for the charged species are gathered in Table 4. It is 
remarkable that the CP-correction fixes even the pathological case of the 
indenyl anion at the MP2/6-311G level. The intramolecular BSSE effects are so 
large in this system that the matching between uncorrected and corrected out-
of-plane normal modes is dubious. In the case of the cyclopentadienyl anion, the 
imaginary frequency associated with a degenerate e2’’ normal mode also 
disappears upon CP-correction, whereas large effects on other low-frequency 
normal modes are also observed. Hence, the involvement of the Counterpoise 
functions in these systems has proven to be sufficient to handle the extra 
electron and to keep overall molecular symmetry to cope with the extra electron 
and keep overall molecular symmetry, have proved to be successful. 

For testing purposes, we have also applied to these systems a simpler 
Counterpoise function ignoring the extra charge (i.e., neutral C-H and C-C 
moieties). The frequencies obtained (not reported) are again real in all cases, 
while the differences with the frequencies reported on Table 4 do not exceed 
25%. Hence, the charge (and electronic state) of the fragments do not seem to 
be critical to correct for BSSE for these systems. This had also been observed 
before in the case of charged intermolecular complexes164 and it is at the heart of 
the general success of the Counterpoise method. The BSSE effects are noticeable 
when the BSIE is strongly geometry-dependent. The latter, affects the 
description of the occupied molecular orbitals and also the virtual, being the 



Vibrational frequencies   

 

113 

reason why post-Hartree-Fock methods are more prone to suffering from strong 
BSSE effects. Therefore, the BSSE is not directly related to the number of 
electrons of the system. This also explains the fact that hardness profiles, which 
have been successfully applied to the present problem,169 are much more robust 
to level of theory and basis set effects than energy profiles (the chemical 
hardness is computed as the difference between the vertical ionization potential 
and electron affinity). Indeed, invoking the Counterpoise philosophy, an energy 
difference-based measure will perform better than a single energy value. 

 

Indenyl anion Cyclopentadienyl anion 
MP2/6-311G CP-correct. MP2/6-311G CP-correct. 
a2 1072i 331 e2'' 401i 614 

b1 555i 1058 e1'' 284 640 

a2 458i 604 a2'' 523 680 

b1 200i 823 e2'' 632 848 

a2 125i 848 e2' 860 854 

b1 199 197    

a2 305 221    

b2 391 390    

Table 4. Lowest MP2 uncorrected and CP-corrected vibrational frequencies (cm-

1) of indenyl and cyclopentadienyl anions (spurious frequency values in italics). 
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4.2 Global and local BSSE 
effects on nucleobases  

Frequencies on planar minimum geometries of the GS of thymine are 
calculated for a series of Pople’s basis sets at the MP2 and CASSCF levels. In 
those cases in which imaginary frequencies are observed, the Counterpoise 
procedure described before is applied. We show that the pitfalls reported for 
benzene and other planar arenes are common to other planar aromatic rings 
such as DNA and RNA nucleobases. Similarly to benzene, nucleobases present 
spurious imaginary frequencies associated with out-of-plane bending modes for 
planar stationary points obtained at the MP2 level. In this case, however, the 
study has been limited to four selected Pople’s basis sets of general use. We also 
determine to which extent such basis set deficiencies are localized in a region of 
the molecule and whether it would be sufficient to correct for intramolecular 
BSSE only locally, that is, using a specific Counterpoise function that would 
take into account only a subset of atoms of the system. It is also shown that 
when the overlap between fragments is strong (i.e. when breaking a strong 
chemical bond) the electronic state of the fragment and that of the ghost-orbital 
calculation might differ, causing spurious CP corrections. A solution to this 
problem is presented too. 

4.2.1 Computational details 

All ab initio calculations have been carried out with the Gaussian 03265 
program. Standard CP-corrected geometry optimizations and vibrational 
frequency calculations have been performed using the automatic procedure as 
implemented in Gaussian 03 at the MP2 level of theory (frozen core). For 
special Counterpoise function definitions we have also used our own code, which 
allows us to exploit symmetry if any, and permits the use of different specific 
Gaussian keywords for each fragment calculation (with the Counterpoise 
keyword the process is automatized in Gaussian 03 but all fragment calculations 
share the same options). 



Thymine benchmark   

 

115 

 

Figure 23. Orbitals used in the CASSCF calculations for thymine. 

Thymine and uracil nucleobases were optimized within Cs symmetry. No 
symmetry constraint other than planar ring was used for cytosine, guanine and 
adenine. An active space including all π orbitals (10 electrons in 8 orbitals) was 
used for the CASSCF calculations of thymine (see Figure 23). 

4.2.2 Thymine benchmark 

We have performed geometry optimizations and frequency calculations at 
the MP2 and CASSCF levels of theory for the same group of basis sets used by 
Moran et al. in the benzene case (over 24 basis sets featuring Pople’s 3-21G, 6-
31G and 6-311G families and Dunning’s cc-pVXZ basis). At the MP2 level we 
have obtained imaginary frequencies for the planar optimized structures for 12 
of the basis sets used (see Table 5). For particularly unbalanced basis sets such 
as 6-311++G and 6-311+G, up to three imaginary frequencies have been found. 
The results are slightly worse than in the case of benzene, as for thymine also 
the MP2/6-31+G* and MP2/6-31+G** lead to spurious results. Again, these 
spurious imaginary frequencies were found in correspondence to out of plane 
bending low-lying modes. 

π 

π* 
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3-21G 3-21+G 3-21++G 

CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 
121 113 111 131 117 106 137 117 106 

148 131 145 180 155 150 207 170 146 

189 164 160 210 177 154 216 173 151 

6-31G 6-31G* 6-31G** 
CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 

120 110 111 107 108 106 107 107 106 

156 145 150 149 138 139 144 136 138 

185 151 158 162 148 153 173 145 151 

6-31+G 6-31+G* 6-31+G** 
CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 

119 140i 100 112 79i 71 104 106i 69 

171 93 126 155 100 109 146 97 109 

185 124 145 183 140 154 165 138 156 

6-31++G 6-31++G* 6-31++G** 
CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 

118 180i 99 108 100i 64 103 127i 62 

161 90 124 160 99 107 145 95 108 

187 124 144 179 136 151 165 135 158 

6-311G 6-311G* 6-311G** 
CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 

121 97 106 106 103 104 103 100 102 

167 128 147 143 139 140 144 134 137 

181 137 151 173 146 147 160 151 152 

6-311+G 6-311+G* 6-311+G** 
CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 

112 581i 73 97 159i 75 93 162i 56 

159 217i 99 138 84 108 130 81 105 

172 133i 144 167 138 152 165 147 156 

 - 172 154  - 157 -   - 153 162 

Table 5. Lowest harmonic vibrational frequencies of thymine (cm-1) at the 
CASSCF, MP2 and Counterpoise-corrected MP2 levels of theory. Basis sets in 
black indicate benzene is not planar at the corresponding MP2 level. Imaginary 
frequencies are displayed in italics. 
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Table 5 Cont.  
6-311++G 6-311++G* 6-311++G** 

CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 
112 628i 64 108 185i 69 102 180i 46 

163 243i 96 160 73 106 143 71 103 

171 185i 145 179 137 150 160 146 149 

cc-pVDZ cc-pVTZ aug-cc-pVDZ 
CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 CASSCF MP2 CP-MP2 

 - 110 101  - 111 -   - 106 104 

 - 147 134  - 150 -   - 139 141 

Table 5. Lowest harmonic vibrational frequencies of thymine (cm-1) at the 
CASSCF, MP2 and Counterpoise-corrected MP2 levels of theory. Basis sets in 
black indicate benzene is not planar at the corresponding MP2 level. Imaginary 
frequencies are displayed in italics. 

It is remarkable that at the CASSCF level, no imaginary frequencies have 
been found in any case. This shows that the CASSCF methodology is perfectly 
valid to study this system, and also that the planarity problems could be 
associated to two-electron excitations to high energy virtual orbitals with large 
diffuse character. Dunning basis sets have not been calculated at the CASSCF 
level because of the high computational cost that represent the optimization and 
frequency calculations. In addition, we do not expect that those results can 
provide any relevant data which has not been observed for the other basis, since 
the MP2 values are already correct for these basis sets. We have also performed 
single-point calculations at higher levels of theory with the 6-31+G* and 6-
311+G* basis sets along the (uncorrected) vibrational mode associated to the 
imaginary frequency at the MP2 level of theory (see Figure 24). MP3, 
MP4(DQ) and CCSD produce the correct profile in both cases. The inclusion of 
the triples in the MP4 energy expression leads to a wrong profile and the 
inclusion of singles leads to wrong description only for the large basis set.  
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Figure 24. CCSD and MPn energies along the vibrational mode associated to 
the imaginary frequency for thymine at the MP2 level with the 6-31+G* (left) 
and 6-311+G* (right) basis sets. 

From this data it is difficult to infer that the problem at the MP2 level 
might be due to a convergence problem of the MPn series. To answer this 
question a much more systematic study would be required, which is beyond the 
scope of the present work. 

4.2.3 BSSE removal on nucleobases 

Motivated by these similarities with the benzene case, we have attempted 
an analogous approach for the BSSE removal based upon (mainly) diatomic 
fragments. Due to the heteroatomic character of the nucleobases (see Figure 25) 
we encounter, aside of C-H moieties, other units such as C=O, N-H or C-CH3 
fragments. Lewis structures suggested the use of doublet and singlet 
multiplicities for C-H and C=O fragments, and numerical evidence 
recommended to use triplet and quadruplet for N-H and C-CH3 fragments, 
respectively. The reasons behind this choice will be made clear later on.  
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Figure 25. Nucleobases considered in this study 

The structures were reoptimized according to the total CP-corrected 
energy and CP-corrected frequency calculations were performed on the CP-
optimized planar stationary structures. In Table 6 we present the three lowest 
vibrational frequencies for thymine, uracil and guanine obtained for four 
selected basis set cases. With the abovementioned fragment definition the CP 
procedure provided excellent results in all cases. The imaginary frequencies were 
removed in the problematic cases and no significant effect was observed for 
those which showed proper behavior. 

Nucleobases present less symmetry constraints than benzene and other 
arenes considered in the previous work. Thus, in the present case, one has more 
freedom to choose proper fragments. In fact, if the basis set deficiencies would 
be rather localized, one could use a Counterpoise function including only those 
fragments that would be needed to correct for such deficiencies. Accordingly, we 
have explored several fragment definitions and Counterpoise functions for this 
system. Some of our findings are described next. 
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 Thymine Uracil Cytosine 

 MP2 CP-correct. MP2 CP-correct. MP2 CP-correct. 

107 106 134 135 128 128 

138 139 159 156 203 202 6-31G* 
148 153 371 369 357 358 

80i 71 20i 86 96 105 

100 109 132 138 190 193 6-31+G* 
140 153 315 335 337 349 

103 104 137 136 123 124 

139 141 151 152 203 201 6-311G* 
147 151 370 370 360 359 

160i 75 113i 93 67 108 

84 108 103 137 189 193 6-311+G* 
140 151 280 342 309 359 

Table 6. CP-corrected and uncorrected frequencies in cm-1 of optimized planar 
structures of pyrimidine nucleobases. Imaginary frequencies are displayed in 
italics.  

First of all, the use of different multiplicity on the N-H fragments has a 
dramatic effect on the low lying out-of-plane mode. The reason is that, in the 
singlet case, conventional ghost orbital calculations lead to a qualitatively 
different state than that of the isolated fragment calculation. The explanation is 
simple in terms of molecular orbital occupations. In the singlet case the HOMO 
corresponds to one of the px,py degenerate orbitals in the isolated fragment 
calculation. However, in the ghost-orbital calculation, this degeneracy is broken 
and the in-plane p orbital is stabilized by the presence of ghost-orbitals (mainly 
of s symmetry) of the neighboring atoms. Energetically speaking there is no 
apparent problem in the energy difference between the isolated and ghost-
orbital calculations. However, if the HOMO in the isolated fragment calculation 
does not happen to have the same orientation as in the ghost-orbital calculation 
artificial effects appear beyond energy correction, namely first and second-order 
derivatives. This can be visualized by comparing the difference between the two 
densities obtained with and without ghost orbitals at the Hartree-Fock level, as 
shown in Figure 26. The position of the ghost-atoms is represented by 
semitransparent blue spheres. The isosurface value in the triplet case is set to 
0.0005. Thus, the differences are very small and partially localized in the closest 
carbon ghost-atoms. Because of BSSE-like basis set extensions, the density is 
redistributed in the ghost-orbital calculation, increasing in the vicinity of the 
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closest atoms from which the basis functions are used and slightly decreasing in 
the region close to the nuclei. However, in the case of the singlet calculation, the 
density difference between the ghost-orbital calculation and the isolated 
fragment is much larger (isosurface value is set to 0.005 for clarity) and 
localized in the N-H unit. The typical polarized picture suggests that the two 
densities correspond to two rotated electron distributions. The inclusion of such 
energy (and specially energy derivative) differences in eq. (2.28) leads to an 
essentially wrong CP-correction, which has no correcting effect on the out-of-
plane molecular distortions and introduces spurious effects on the stretching 
modes associated to the N-H moieties. A similar effect has been observed for the 
rather unchemical C-CH3 fragment arising from the methyl substituent in the 
heterocycle. The fragment in the doublet state exhibits a double bond between 
the carbon atoms whose orientation is again strongly affected by the presence of 
ghost-orbitals. Such a fragment definition leads to meaningless CP-corrected 
frequencies. Of course, these problems could be solved simply by proper rotation 
of the orbitals of isolated fragment calculation, but this might not be easily 
achieved in automatized procedures such as implied by the use of Counterpoise 
keyword in Gaussian 03, for instance. This just shows that one must be very 
careful in these cases when carrying out routine ghost-orbital calculations to 
quantify basis set extension effects. 

 

Figure 26. Density difference plot between ghost-orbital and isolated 
calculations for an N-H fragment in thymine for a) triplet and b) singlet 
electronic states. The position of the ghost-atoms is shown with semitransparent 
blue spheres.  

We also explored the effect of using multiplicity specification for the C-H 
and C=O fragments and no noticeable differences were observed. In the case of 
the C-H fragment one might foresee similar problems associated with the partial 
occupation of degenerate p orbitals in the low spin case. It seems rather 

a) b) 

iso=0.005 iso=0.0005 

b) 
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fortunate that the conventional ghost-orbital calculation lead to a similar 
orientation of the SOMO orbital.  

4.2.3.1 Local BSSE 

Another point of interest is to determine to which extent the 
intramolecular BSSE exhibited by this system is a local effect or not. For this 
purpose we have considered separately each fragment contribution to the 
Counterpoise correction and obtained the corresponding CP-corrected 
frequencies. These results are summarized in Table 7. It is worth to mention 
that the CP-optimization does not lead to meaningful geometry changes with 
respect to the conventional MP2 calculation. For instance, the largest deviation 
on the internal coordinates of thymine at the MP2/6-31+G* level induced upon 
CP-optimization were just 0.009 Å and 0.3° in bond distance and angles, 
respectively. That means that one can reasonably obtain frequency corrections 
with partial Counterpoise functions on the same CP-optimized geometry 
obtained with the full Counterpoise correction, which largely simplifies the 
following analysis.  

 

CP-func. Freq. CP-func. Freq CP-func. Freq. CP-func. Freq. 

Unc. 79i 1,3 24i 1,2,3 38 1,2,3,4 54 

1 65i 2,3 39 1,3,4 38 1,2,3,5 51 

2 51i 2,4 31 1,4,5 25 1,2,4,5 41 

3 40i 3,4 37 2,3,4 51 1,3,4,5 50 

4 53i 4,5 28 2,3,5 48 2,3,4,5 60 

5 57i   3,4,5 47 1,2,3,4,5 63 

Table 7. Lowest vibrational frequency value in cm-1 (Freq.) of various partial 
CP-corrected calculations. The numbers of the fragments included in the CP-
function are defined in Figure 27. The first value corresponds to the uncorrected 
calculation. Imaginary frequencies are displayed in italics.  

At the MP2/6-31+G* level, the lowest lying out-of-plane vibration for 
planar thymine shows an imaginary frequency of 79i. The use of a CP-correction 
including contributions from just one of the six fragments depicted in Figure 27 
does not lead in any case to a change in the topology of the stationary point. 
The value of the imaginary frequency decreases in all cases, reaching a highest 
value of 40i in the best case, for the N-H fragment in ortho position with respect 
to the C-H group (number 4 in Figure 27). Already when considering two 
adjacent fragment’s contributions at a time one can observe a change in the 
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topology. Using fragments 4-5 and 3-4 in the Counterpoise function the lowest 
frequency assumes values of 39 and 37 cm-1, respectively. Nevertheless, a similar 
value (35 cm-1) is obtained including distant fragments in para position like 1 
and 4. Other combinations involving the C-H fragment also provide corrections 
in the proper direction. With the progressive inclusion of more fragment 
contributions to the CP-correction the value of the lowest frequency increases 
monotonically up to the reported value of 71 cm-1 when using all six fragments. 
For instance, using the three adjacent fragments 3,4,5 the value is 51 cm-1 and 
including all contributions except that of the C-CH3 fragment, an almost 
converged value of 63 cm-1 is obtained. With this analysis we can conclude that 
the intramolecular BSSE effects were to some extent localized around the N-H 
moiety in ortho position with respect to the C-H group. However, its removal is 
not enough to produce a change of topology and contributions from adjacent C-
H and C=O groups must also be taken into account. We have also seen that 
contributions from distant fragments with little chemical significance such as 
the C-CH3 could be safely ignored from the CP function if necessary. It arises 
from our results that BSSE effects seem to be quite delocalized on the 
heterocycle and accordingly in order to get a proper BSSE removal all fragment 
contributions should be taken into account. Nevertheless, we don’t expect this 
to be a general trend for intramolecular BSSE problems. Further studies on the 
determination of the local character of BSSE effects in intramolecular hydrogen 
bonding situations are currently under work. 

 

Figure 27. Intramolecular fragments used for the CP-correction in thymine. 
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After analyzing the thymine case in deep detail, in the following we will 
describe the results obtained for the rest of nucleobases that we have 
considered.  

4.2.4 BSSE effects on nucleobases 

The three lowest vibrational frequencies obtained for all DNA and RNA 
nucleobases at the MP2 level with four representative basis sets are given in 
Table 6 and Table 8. The CP-corrected values obtained after proper 
intramolecular BSSE removal are also provided. Thymine and uracil structures 
were optimized with Cs symmetry, whereas guanine, adenine and cytosine 
present a planar ring with a NH2 group slightly out of plane due to 
pyramidalization, which breaks the symmetry. CP-corrected results obtained 
suggest that geometrical reoptimizations might not be necessary as only very 
minor changes are observed between the uncorrected and CP-corrected 
geometries. Nevertheless, all CP-corrected frequency calculations were carried 
out upon CP-optimized geometries. 

Fortunately, all optimized structures using the 6-31G* and 6-311G* basis 
sets, which are among the most used basis sets in the literature, were 
characterized as true minima. The CP-correction (see below) did not change 
this situation and in fact, the values of the three lowest frequencies were 
obtained within a deviation of 3% with respect to the corresponding 
conventional calculation.  

When using diffuse functions the intramolecular BSSE effects can be very 
important. Concerning the CP-correction, pyrimidine derivatives present no 
special difficulties for a proper fragment definition. They are characterized by a 
six member ring and six substituents, (except for cytosine, which has one 
unsubstituted position in the ring). Uracil is very similar to thymine as they 
only differ by a methyl group, which in the case of uracil is a C-H unit. 
Accordingly, the results obtained for uracil follow the same tendency as those 
observed for thymine. Imaginary frequencies associated to the low lying out-of-
plane mode are found for the 6-31+G* and 6-311+G* basis sets. When no 
diffuse functions are included in the basis set, the planar structures correspond 
to true minima. Again, the CP-correction using the analogous fragment 
definitions as in the case of thymine is able to account for this pitfall in both 
cases, with very little effect on the already correct descriptions.  

Interestingly, no imaginary frequencies have been found in the case of 
cytosine, despite his similarity with thymine and especially with uracil (see 
Figure 25). Yet, again for the 6-31+G* and 6-311+G* basis sets the values of 



BSSE effects on nucleobases   

 

125 

the lowest vibrational frequencies are somewhat too small compared with the 
results obtained with more balanced basis sets. Hence, there are some 
intramolecular BSSE effects but not to the extent of changing the topology of 
the planar stationary points. In fact, cytosine shares with the other two 
nucleobases the same three substituents that were observed to contribute more 
to the BSSE effects in thymine. This shows again that for such heterocyclic 
systems the BSSE effects are rather subtle and delocalized. For completeness we 
have performed also CP-corrected optimizations and frequency calculations for 
this system. The absence of substituent in ortho position with respect to the 
C=O group leads to the difficulty of dealing with a single-atom fragment; highly 
symmetric in its isolated state but not in the presence of ghost-orbitals. In order 
to avoid the problems described before we have considered the N atom as a 
fragment in high spin state. As alternative, we have explored also the use of a 
larger fragment involving two adjacent positions of the ring, namely NC-NH2. 
Both fragment definitions lead to very similar results (maximum deviation of 8 
cm-1 in the third frequency at the MP2/6-31+G* level), but only the results 
from the first option are reported in Table 8. Even though no imaginary 
frequencies were observed, the CP-corrected frequencies are more similar among 
the four basis sets used than the uncorrected ones. For instance, the somewhat 
too low values of 67 and 310 cm-1 obtained with the 6-311+G* basis set are 
blue-shifted by 40 and 50 cm-1 to a value in much better agreement with the one 
obtained with the 6-311G* basis set.  

Finally, the results obtained for adenine and guanine basis sets are 
collected in Table 8. Adenine seems to be the less prone to intramolecular BSSE 
effects. No imaginary frequencies have been observed for the planar optimized 
structures and only a slight drop of about 20-25 cm-1 in the value of the lowest 
vibrational frequency when including diffuse functions has been observed. The 
situation in the case of guanine is different as again difficulties are observed 
specially with the 6-31+G* basis set, for which an imaginary frequency of 55i is 
obtained. The value of 8 cm-1 obtained with the 6-311+G* basis set can also be 
considered as spurious. 

Purine bases are characterized by having a heterocyclic six-membered ring 
fused to an imidazole ring. Therefore, the definition of fragments to account for 
intramolecular BSSE must be somewhat different to that of the pyrimidine 
bases discussed above. The Lewis structures for each molecule show the 
presence of a double bond involving a C-C pair in the edge of the two fused 
rings which probably should not be broken. Following this premise we ended up 
with C=O, N-H, C=C diatomic fragments and larger N=C-NH2 and N=CH 
fragments involving the unsaturated N atoms, which were considered in high 
spin state. Once again, the results obtained are very satisfactory. For guanine, 
the two wrong vibrational frequencies obtained with the 6-31+G* and 6-
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311+G* basis are efficiently removed with the CP-correction. Even in the case 
of adenine, where the BSSE effects were less pronounced, the CP-correction 
induced a slight blue-shift in the lowest vibrational frequencies to final values 
much closer to those obtained with more balanced basis sets. Several other 
fragment definitions were also tested, for instance involving a central NC=CN 
fragment. The CP-corrected results were proved to be very similar, provided 
situations like those described in detail in the case of thymine were not present. 

 

 Adenine Guanine 

 MP2 CP-correct. MP2 CP-correct. 

159 158 129 127 

207 205 151 152 6-31G* 
272 272 192 194 

126 151 55i 116 

185 192 128 133 6-31+G* 
275 262 165 178 

160 161 131 133 

213 208 156 155 6-311G* 
273 274 195 194 

139 150 8 113 

192 195 127 131 6-311+G* 
274 276 164 175 

Table 8. CP-corrected and uncorrected frequencies of optimized planar 
structures of purine nucleobases. Imaginary frequencies are displayed in italics.  
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4.3 Photophysics of the π,π* 
and n,π* states of thymine  

Based on the results of the previous section which shows that the CASSCF 
methodology and 6-31G* and 6-311G* basis sets do not suffer from spurious 
minima optimizations, they will be used in this section to study the 
photophysics of thymine. First, the relaxation pathways present on the 
literature are recalled to make the starting scenario clear (see section 1.2.2 for 
further details) . 

4.3.1 Starting scenario 

In general, computational studies agree that the relaxation of thymine 
proceeds via a CI129-132,138,139,266,267 between the ground state and the lowest π,π* 
state (see section 1.2.2). This CI has an ethylene-like structure and was first 
described for uracil. It is characterized by a short C4-O8 and a methyl group 
lying perpendicular to the molecular plane because of the pyramidalization of 
C5. The geometry of this structure is shown in Figure 29 and is labeled, 
hereafter, (Eth)X. Two paths to access the intersection have been described with 
CASSCF and CASPT2 calculations. The corresponding one-dimensional energy 
profiles are shown as insets in Figure 28, together with a two-dimensional sketch 
of the potential energy surface in the vicinity of the Franck-Condon region 
which shows the two paths (see also Fig. 8 of Ref. 138). Path 1 is a barrierless, 
direct path from the Franck-Condon structure to (Eth)X on the lowest-lying, 
spectroscopically active π,π* state.131 Path 2 is indirect and goes through a non-
planar minimum of the π,π* state, namely (π,π*)Min. This minimum is separated 
from (Eth)X by a barrier and a crossing with the n,π* state. 
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Figure 28. Two-dimensional sketch of the two lowest excited state potential 
energy surfaces (S1 and S2) of thymine in the vicinity of the Franck-Condon 
region. Insets: FC structure with atom numbering and energy profiles for the 
paths contained in the two-dimensional sketch. 

We have recalculated the direct and indirect paths in a uniform manner, 
using the MS-CASPT2//CASSCF approach, which is one of the approaches of 
reference for accurate excited-state calculations. Moreover, we have carried out 
semi-classical, on-the-fly, dynamics calculations along the indirect path. In the 
dynamics calculations, the nuclei are propagated classically on a CASSCF 
potential energy surface, and the passage through the conical intersections is 
treated with a trajectory surface hopping algorithm (see section 2.2.1). This 
methodology has been applied before to several photochemical and 
photophysical problems,268-271 and a similar implementation at the multireference 
configuration interaction (MRCI) level has been applied to study the decay of 
adenine.272 The starting scenario for our dynamics is the two-dimensional surface 
of Figure 28. Similar models have been previously proposed in Refs. 138 and 
131. For simplicity, the surface is sketched along the C4-O8 and C5-C6 stretching 
coordinates (see Figure 28 for the numbering), although the actual paths are 
more complicated and involve other coordinates that correspond to out-of-plane 
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modes, such as C6 pyramidalization and C5-C6 bond torsion. The two paths 
coexist on the surface and merge as they approach (Eth)X. The CASSCF 
trajectories started at the FC structure in Ref. 138 follow the indirect path and 
get trapped in (π,π*)Min for a time that exceeds the time range of our studies, 
which is of a few hundreds of femtoseconds. Therefore we have studied the 
second step of this path (full line in Figure 28) starting our trajectories from the 
transition state (π,π*)TS that separates this minimum from (Eth)X. Because of 
the limitations of the CASSCF level of theory used for the dynamics, the 
information that we can obtain from the trajectories is mainly mechanistic. For 
this reason, and due to the computational cost of the trajectories, we have run a 
reduced number of trajectories, where we have sampled the main paths 
encountered after (π,π*)TS with 14 trajectories. This combined static and 
dynamical approach shows that both paths provide a rapid deactivation route 
to the ground state through the ethylenic intersection, (Eth)X, while the indirect 
path is also a route to populate the n,π* state, where the system can get 
trapped for a longer time.  

4.3.2 Computational Details 

MS-CASPT2//CASSCF potential energy surface: The static calculations 
were carried out at the MS-CASPT2//CASSCF level of theory, using the 6-
311G* basis set. Optimizations and minimum energy path calculations have 
been performed at the CASSCF level using Gaussian 03,265 with no symmetry 
restrictions. The minimum energy paths were obtained with the intrinsic 
reaction coordinate47 and initial relaxation decay techniques273 in mass weighted 
Cartesian coordinates. The displacements are given in bohr times square root of 
atomic mass unit (atomic units, a. u.). 

A (12,9) active space consisting of the 8 π orbitals and the O8 lone pair 
was used for the optimization of structures (π,π*)Min, (n,π*)Min, (n,π*/GS)X, and 
(n,π*/π,π*)X, and the intrinsic reaction coordinate calculations involving these 
structures. Equal state average over the two higher states has been used in the 
optimizations whenever possible. In the cases with 3 states where convergence 
could not be achieved, the three states were averaged with equal weights. In the 
state-averaged optimizations using 9 active orbitals, solution of the state-
averaged coupled perturbed multi-configurational SCF (SA-CPMCSCF) 
equations is not feasible, and the orbital rotation contributions to the gradients 
were neglected.274 Structure (Eth)X and the minimum energy path from the FC 
point to that structure were optimized with a smaller (10,8) active space, where 
the oxygen lone pair was removed because its occupation was close to 2.0. 
Structure (π,π*)TS was also optimized with a (10,8) active space to solve the 
SA-CPMCSCF equations and calculate the orbital rotation contributions to the 
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gradient, thus allowing for an analytical frequency calculation. In this case, the 
π orbital with highest occupation was removed from the active space. The 
minimum energy path calculations from this transition structure were also 
carried out with the (10,8) active space. 

MS-CASPT2 single point calculations have been carried out with 
Molcas5.4.275 All energies in eV discussed here are relative to the MS-CASPT2 
ground state energy (CASSCF(10,8)/6-311G* optimized geometry). The MS-
CASPT2 calculations were carried out with a CASSCF(12,9)/6-311G* reference 
wavefunction over the six lowest roots, because close-lying higher states in some 
regions of the potential energy surface make the inclusion of six roots necessary 
to obtain smooth profiles for the lowest π,π* and n,π* states. In all cases state-
averaging over all states with equal weights and a real level shift276 parameter of 
0.3 were used.  
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Figure 29. LIIC CASSCF(8,6)/6-31G* of the indirect path (FC-(π,π*)Min-
(π,π*)TS-(n,π*/π,π*)X-(Eth)X) 

For a better comparison between the MS-CASPT2 static calculations and 
the CASSCF dynamics, the critical points were reoptimized at the 
CASSCF(8,6)/6-31G* level (see below for the active space orbitals). In this 
case, the connection between the critical points at the CASSCF level was 
confirmed by linear interpolations in internal coordinates between the structures 
and the resulting PES is shown in Figure 29 (see Figure 31 for the MS-
CASPT2(12,9)/6-311G* and CASSCF(8,6)/6-31G* single-point energies). 
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CASSCF Semiclassical dynamics: We have carried out semiclassical direct 
dynamics trajectories237,238,277 where the nuclear gradient and Hessian are 
calculated “on-the-fly” in the full space of 3N-6 coordinates (where N is the 
number of atoms) and the nuclei are propagated classically. The calculations 
have been carried out with a development version of Gaussian 03278 at the 
CASSCF(8,6)/6-31G* level. The trajectories where started on S2, and when they 
approached a region of S2/S1 degeneracy (threshold of 8 mhartrees), the 
CASSCF surface hopping algorithm was activated. In this algorithm, the time-
dependent electronic wavefunction is calculated and the surface hopping 
probabilities are obtained by projecting the time-dependent wavefunction on the 
CASSCF states. Hops occur when the probabilities for the running state go 
below a threshold of 0.20 (see the Supporting Information of Ref. 279 for more 
details). The current implementation of this algorithm only allows for state-
averaging between the two highest excited states. For this reason, after the hops 
from S2 to S1, the trajectories were stopped once the S2-S1 energy gap went over 
a threshold of 10 mhartree, and they were restarted on S1 using the final 
geometry and velocity of the first run. 

The length of the trajectories (approximately 500fs, with approximately 2 
steps per fs) and the need to calculate accurate gradients by solving the SA-
CPMCSCF equations, forced us to reduce the active space to 8 electrons in 6 
orbitals. In the trajectories started on S2 and those running on the n,π* state 
(S1), the active space consisted of the 5 π orbitals approximately localized on 
the N1-C6-C5-C4-O8 fragment and the in-plane O8 oxygen lone pair. This active 
space remained stable during those trajectories, and no discontinuities were 
observed. In the S1 trajectories on the π,π* state, the occupation of the oxygen 
lone pair active orbital was 2.0. This orbital was replaced by the N3 π orbital at 
the beginning of these trajectories, and the corresponding active space also 
remained stable.  

The initial conditions of the dynamics calculations were obtained by 
sampling the transition state zero-point energy, which generated a random set 
of 3N-7 coordinates with the corresponding kinetic energy distribution.271,280 To 
model the approach to a conical intersection and drive the trajectories in that 
direction, 1 kcal/mol of extra kinetic energy was added to the mode with the 
imaginary frequency. The trajectories were run with the analytical Hessian for 
the first few steps, after which a Hessian updating algorithm239 was used. The 
updating algorithm failed to conserve the total energy in 11 out of 25 
trajectories, which had to be discarded. The remaining 14 trajectories are the 
ones discussed here. Energy plots for these trajectories are provided in Appendix 
II. 
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4.3.3 High level potential energy surface  

The paths sketched in Figure 28 have been characterized with CASSCF/6-
311G* minimum energy path calculations from the FC structure on the π.π* 
state (see Figure 30, which includes the structures of the critical points).  

 

Figure 30. MS-CASPT2(12,9) energy profiles along the CASSCF/6-311G* 
minimum energy paths from the FC structure: a) Direct path (path 1 on Figure 
28); b) Indirect path (path 2 on Figure 28). 

Similar to what is described in Ref. 131, the resulting path depends on the 
CASSCF active space used in the calculation. The calculation with a (10,8) 
active space leads directly to (Eth)X.

131 Along the first steps of this path, the 
molecule stays planar and the C5-C6 and C4-O8 bonds are expanded to 1.5 Å and 
1.25 Å, approximately. Later on, the molecule loses its planarity and the C4-O8 
bond is contracted again to its initial value. Thus, structure (Eth)X has a short 
C4-O8 and a long C5-C6 bond (1.19 Å and 1.45 Å, respectively), and the methyl 
group is twisted out of the plane of the ring. In contrast to this, the calculation 
with the (12,9) active space leads to a quasi-planar minimum on the π,π* state, 
(π,π*)Min. The main difference with the first path is that the C4-O8 bond is 
expanded to approximately 1.36 Å, and the methyl group stays in the plane of 
the molecule. From (π,π*)Min we have characterized an indirect path similar to 
the one reported in Ref. 138. This path continues along a transition structure, 
(π,π*)TS, and a conical intersection with the n,π* state, (π,π*/n,π*)X, and ends 
at (Eth)X. To compare the energies of the two paths, the energy profiles have 
been recalculated at the MS-CASPT2 level, using a (12,9) active space that 
includes all π orbitals and the oxygen lone pair involved in the n,π* excitation. 
The MS-CASPT2(12,9) energy profiles along the direct and indirect paths are 
shown in Figure 30a and Figure 30b, respectively. The MS-CASPT2 barriers 
along the two paths are small (<0.1 eV), and the discontinuities around 10 a.u. 
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in both profiles are due to degeneracies of the CASSCF reference wavefunction. 
The two MS-CASPT2 profiles are similar in energy, and from the static 
calculations it is not clear which of the two paths is preferred. 

The possibility of populating the n,π* state along the indirect path and 
the fate of this state, have been studied by calculating the decay path from 
(π,π*/n,π*)X on the n,π* state, which leads to a minimum, (n,π*)Min. This 
minimum is characterized by a long C4-O8 bond (1.37 Å) and C6 
pyramidalization. From this minimum, we have optimized a decay path through 
a conical intersection with the ground state, (n,π*/GS)X. This intersection is 
similar to structure MXS4 from Ref. 267, with the C4-O8 bond stretched to 1.44 
Å and a distorted ring. The MS-CASPT2 energy is 5.3 eV, which is higher than 
the vertical excitation of 5.1 eV. In addition to that, the (n,π*)Min population 
can also decay through (Eth)X via a switch back to the π,π* state. This path 
will involve an avoided crossing near (π,π*/n,π*)X, and its estimated barrier is 
the difference between (n,π*)Min and (π,π*/n,π*)X, 0.4 eV. 
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Figure 31. Energies of relevant critical points on the excited state surface of 
thymine at the MS-CASPT2(12,9)/6-311G* level of theory (CASSCF(8,6)/6-
31G* optimized energies in brackets).  

The MS-CASPT2 static picture is summarized in Figure 31, and the 
CASSCF(8,6) energies of the critical points (see Computational Details) are 
shown in brackets for comparison. There are several differences between the 
MS-CASPT2 and CASSCF energy profiles. The largest dynamic correlation 
effect is found along the initial part of the indirect path. The vertical π,π* and 
n,π* excitation energies are approximately 5.1 eV at the MS-CASPT2 level. 
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However, the π,π* excitation energy is increased by more than 2 eV at the 
CASSCF level, and the CASSCF barrier between (π,π*)Min and (Eth)X is 
overestimated by 0.2 eV with respect to the MS-CASPT2 value. Another 
relevant difference regards the energy of (n,π*/GS)X relative to the vertical 
excitation. At the CASSCF level, the intersection lies below the vertical 
excitation and is accessible (see below), but at the MS-CASPT2 level it lies 
higher in energy than the FC structure. 

4.3.4 Dynamics simulations 

The CASSCF trajectories started at the FC structure in Ref. 138 follow 
the indirect path and get trapped at (π,π*)Min for at least 500 fs. For this 
reason, the dynamics were started at (π,π*)TS on S2, following the transition 
vector direction toward (n,π*/π,π*)X and (Eth)X. (π,π*)TS is characterized by a 
weak boat-like puckering of the ring (Figure 32) and a slightly pyramidalized 
methyl group (C9-C5-C4-N3 dihedral angle: -153.9 º).  

 

Figure 32. Transition vector at (π,π*)TS and branching space vectors (interstate 
coupling, IC, and gradient difference, GD) at (n,π/π,π*)X, calculated at the 
CASSCF(8,6)/6-31G* level. 

Norm: 0.171 

IC GD 

TS mode 

1.30 
1.36 

1.50 
1.34 1.20 

1.25 
1.38 

1.53 
1.34 1.20 

Norm: 0.041 



Dynamics simulations   

 

135 

The most relevant bond distances of (π,π*)TS have a mixed single-double 
bond character (C4-O8: 1.29 Å, C4-C5: 1.36 Å, C5-C6: 1.49 Å). The transition 
vector is mainly compound of C4-O8 shortening, C5-C6 lengthening and 
pyramidalization of N1 and C6. 

Figure 33 shows the evolution of the three lowest excited states of thymine 
together with the C4-O8 distance along time for a representative trajectory. The 
state followed by the trajectory is shown with a bold red line. We center on the 
approach to the CI seam along the reaction coordinate. Thus, the gradient 
difference vector at the seam (Figure 32) is similar to the transition vector 
(large C4-O8 stretch component), and the seam lies approximately perpendicular 
to the coordinate (see Figure 28). For this reason the seam is reached from the 
TS in a few fs. The trajectory oscillates back and forth around the seam, and 
the oscillations are approximately in phase with the C4-O8 stretching mode (see 
the evolution of the C4-O8 distance in Figure 33). 

 

Figure 33. Time evolution of the CASSCF(8,6) energy of the S0-S2 states of 
thymine and the C4-O8 distance for a representative trajectory on S2 from 
(π,π*)TS. The labels of the states refer to the order at the beginning of the 
trajectory. 

Each oscillation on S2 is associated with an ‘adiabatic switch’ between the 
π,π* and n,π* states, until the trajectory hops to S1. In the example shown in 
Figure 33, the hop to S1 takes place at the third approach to the seam, and the 
trajectory continues on the π,π* state. Once the trajectories decay to the π,π* 

-451.45

-451.40

-451.35

-451.30

-451.25

-451.20

-451.15

0 5 10 15 20 25 30 35

Time (fs)

E
ne

rg
y 

(a
.u

.) 
   

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

   C
4-O

8 distance (Å
)

S0

S1

S2

rCO



136 Dynamics simulations 

 

state, the C4-O8 bond is shortened, while this bond is stretched for those 
trajectories that decay to the n,π* state. After the hop to S1, all trajectories 
have been continued to monitor their subsequent relaxation on the π,π* or n,π* 
state, reducing the number of roots to two (see section 4.3.2). Out of 14 valid 
trajectories (see section 4.3.2), 9 stay on the π,π* state after the S2/S1 crossing 
and 5 populate the n,π* state. A representative trajectory for the decay of the 
π,π* state on S1 is shown in 

Figure 34. In this case, the C4-O8 bond remains short and oscillates around 
1.2 Å, while the C5-C6 bond is stretched up to 2 Å. At the same time, the 
methyl starts to bend out of plane. The C5-C6 bending and methyl out of plane 
coordinates are contained in the branching space vectors at (Eth)X (see Figure 
35) and take the trajectory to the S1/S0 seam of intersection centered around 
this structure. The decay to the ground state takes place 15 fs - 200 fs after the 
hop from S2 to S1 at geometries where the out-of-plane bending angle of the 
methyl group ranges from 50º to 100º and the C2-C3 bond length ranges from 
1.2 Å to 2.0 Å. After the hop to S0, the ‘hot’ molecule keeps vibrating on the 
ground state. In the condensed phase (solution or DNA environment) the 
vibrational excess energy will be dissipated to the environment. 

 

Figure 34. a) Time evolution of the CASSCF(8,6) energy of the S0-S1 states of 
thymine for a representative trajectory on S1 (π,π* state); (b) the same for the 
C4-O8 and C5-C6 distance and the C5 pyramidalization (C9-C5-C4-N3 dihedral 
angle). The label of the states in (a) refers to the order at the beginning of the 
trajectory. 
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Figure 35. Branching space vectors (interstate coupling, IC, and gradient 
difference, GD) at (Eth)X, calculated at the CASSCF(8,6)/6-31G* level. 

In contrast to the π,π* trajectories, the trajectories on the n,π* state are 
mainly driven by the C4-O8 stretch coordinate. This coordinate takes the 
molecule to a seam of intersection with the ground state which is reached in 
about 10 fs (see Figure 36 for a representative trajectory). At the seam region, 
the C4-O8 distance is larger than 1.5 Å. The trajectories oscillate around the 
seam, and three out of five trajectories decay to the ground state after 100 fs or 
less. The remaining two trajectories reached the computational time limit 
without decaying to S0, but it can be assumed that they would decay shortly 
after that. However the analysis of the intersection and the comparison with the 
MS-CASPT2 energies show that the propensity for this decay is overestimated 
in the dynamics (see Figure 31). At the CASSCF level, the energy of the 
starting point, (π,π*)TS, is approximately 0.8 eV higher than (n,π*/GS)X, and 
the intersection is energetically accessible, but at the MS-CASPT2 level the 
minimum of the (n,π*/GS)X seam lies slightly higher in energy than the FC 
point. The decay through this intersection is therefore less favored at the higher 
level of theory.  

IC GD 
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Figure 36. Time evolution of the CASSCF(8,6) energy of the S0-S1 states of 
thymine and the C4-O8 distance for a representative trajectory on S1 (n,π* 
state). The label of the states refers to the order at the beginning of the 
trajectory. 

4.3.5 Discussion 

The indirect excited-state decay path of thymine shown in Figure 28 has 
been studied with semiclassical dynamics started at the transition state that 
separates the minimum from the conical intersection with the ground state, 
(Eth)X. Qualitatively, our results are similar to those found in a semiempirical 
OM2/MRCI dynamics study after excitation to the FC region.266 Thus, the 
trajectories are funneled along the decay path towards an S2/S1 conical 
intersection seam between the π,π* and n,π* states which is perpendicular to 
the decay coordinate (C4-O8 bond stretch, see Figure 28). The quenching to the 
S1 state is highly efficient and takes place in 5 - 60 fs, and a branching of the 
trajectories between the π,π* and n,π* states is observed. The trajectories that 
stay on the π,π* state continue to the S1/S0 seam associated to (Eth)X and 
decay to the ground state in 200 fs or less. The trajectories that decay on the 
n,π* state also reach a seam of conical intersection where they decay to the 
ground state on a similar time scale, but comparison with MS-CASPT2 
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calculations shows that the CASSCF trajectories overestimate the probability of 
this decay.  

Experimentally, the short-time excited-state photodynamics of thymine are 
described with one or two components in the femtosecond range and one 
component in the picosecond range. From the present CASSCF dynamics and 
the previous study of the decay from the FC structure, this multiexponential 
decay could be associated to the indirect path shown on Figure 28, as already 
proposed.138 In this case, the first step of the decay would correspond to the 
decay to (π,π*)Min in the fs scale, and the second step to the access of (Eth)X 
through (π,π∗)TS, in the ps scale. However, comparison of the CASSCF decay 
paths with the MS-CASPT2 ones shows that this conclusion is not as 
straightforward as it may seem. At the higher level of theory there is a direct 
path (see Figure 28) that could also account for the fs decay component. This 
path could not be optimized at the CASSCF(8,6)/6-31G* level and is not 
observed in the short-time dynamics. However, the MS-CASPT2 results show 
that the direct and indirect paths are very similar from the energetic point of 
view. It is therefore likely that the CASSCF semiclassical dynamics only explain 
one side of the story (the indirect decay), while in reality the wavepackets 
created by the excitation may be distributed along the two paths shown in 
Figure 28. The MS-CASPT2 energy profile along the indirect path also suggests 
that the lifetime of (π,π*)Min is overestimated by the CASSCF trajectories, as 
the barrier that separates it from (Eth)X is substantially lowered at the 
dynamically correlated level. Thus, the estimated MS-CASPT2 value is 
approximately 0.1 eV (800 cm-1). In this case, the lifetime of (π,π*)Min will 
mainly depend on intrastate vibrational redistribution from the in-plane modes 
activated in the first part of the decay to the TS mode, and this process can be 
expected to be quite efficient, as the TS mode also has a large in-plane 
component (see Figure 32). Therefore it is likely that the lifetime of (π,π*)Min 
lies in the sub-picosecond range. This suggests that the experimental sub-
picosecond decay component(s) reflects the quenching to the ground state along 
both direct and indirect paths. 

Comparison between the CASSCF and MS-CASPT2 energies is also 
necessary to discuss the lifetime of the n,π* state in the dynamics. The 
CASSCF trajectories on the n,π* state decay to the ground state quickly 
because the energy of the (n,π*/GS)X intersection seam is below the energy of 
(π,π∗)TS, the dynamics starting point. This is similar to the OM2/MRCI 
dynamics study, where the lifetime of the n,π* state is less than 1 ps because 
the minimum energy intersection between the n,π* and the ground state lies 1 
eV below the FC point.266 However our relative MS-CASPT2 energies show that 
the short n,π* lifetime may be an artifact of the CASSCF and OM2 methods. 
Thus, the relative MS-CASPT2 energy of the (n,π*/GS)X intersection minimum, 
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which marks the threshold for decay of the n,π* state along this route, is 5.3 
eV. This value is above the calculated vertical excitation of approximately 5.1 
eV (see Figure 31). Other intersection minima of (n,π*/GS) character, such as 
the intersection labeled MXS3 in Ref. 267, lie higher in energy at the MS-
CASPT2 level. This suggests that the decay of the n,π* state along this route 
will only take place at excitation wave lengths of 230 - 240 nm or less. At lower 
excitation energies there are other decay paths available for (n,π*)Min. The first 
one is the decay through (Eth)X. This path goes through an avoided crossing 
between the π,π* and n,π* states associated to a MS-CASPT2 barrier of 
approximately 0.4 eV (see Figure 31) and is not observed in the dynamics 
because the trajectories are biased towards the (n,π*/GS)X intersection. The 
second path is intersystem crossing to the triplet state. This process is possible 
due to the large spin-orbit coupling137 of approximately 60 cm-1, but it has been 
not observed in our dynamics because only singlet states are considered. 
However, the presence of these two paths suggests that the decay component of 
approximately 5 ps determined experimentally may correspond to the lifetime of 
the n,π* state. 
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4.4 Thymine S2/S1 CI seam 
analysis and quantum 
dynamics 

In section 4.3 we have seen that the S2/S1 seam of intersection represents a 
bottleneck for the decay of thymine along the indirect path. Thus, trajectories 
started on S2 have to pass the seam to access S1. Moreover, at the seam there is 
a branching of the trajectories between the degenerate states, and depending on 
the branching the trajectories remain in the dark (n,π*) state or decay further 
to S0 on the (π,π*) state. Therefore, the outcome of the trajectories is 
determined by the passage through the S2/S1 seam. 

 

Figure 37. Sketch of a sloped-to-peaked CI intersection seam. 
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In this section we explore the S2/S1 seam in more detail by combining a 
topological analysis with quantum dynamics trajectories directed to different 
segments of the seam. The topological analysis shows that the determining 
feature of the energetically accessible region of the seam is the presence of 
segments with a peaked and sloped topology. This is shown schematically in 
Figure 37, together with the expected consequences for the reactivity. The 
central part of the seam has a sloped topology, where the decay to S1 should 
lead to population of the n,π* state and compete with return to (π,π*)Min. In 
contrast to this, at the peaked segments, the decay to S1 should be more 
efficient and should be characterized by a branching between the two states. To 
explore the different segments of the seam and prove this picture, quantum 
dynamics propagations have been started at the transition state (π,π*)TS, 
adding momenta along different coordinates to drive the wavepackets towards 
the regions of interest. The quantum dynamics study has been carried out using 
the DD-vMCG method described in section 2.2. In principle, this method should 
allow for a better treatment of the non-adiabatic events compared to the 
trajectory surface hopping method. Previous applications of these method have 
considered up to 15 degrees of freedom (a reduced dimensionality study of 
benzene), and the present dynamics calculations provide a test of the 
performance of the method with a medium-sized system where 39 degrees of 
freedom are taken into account in the propagation. 

4.4.1 Computational details 

The calculations have been carried out at the CASSCF(8,6)/6-31G* level 
of theory, which is the level used in the previous trajectory surface hopping 
study. For consistency with the dynamics, the static study of the seam topology 
has been carried out at the same level of theory. A development version of the 
Gaussian 03278 package which allows to run constrained IRC calculations and 
evaluate second derivatives at the CI has been used for the characterization of 
the CI seam. 

The quantum dynamics simulations have been carried out with the direct 
dynamics variational Multi-Configurational Gaussian wavepacket method (DD-
vMCG)258,259 implemented in a development version of the Heidelberg MCTDH 
package.281 With the actual implementation, this method, which is explained in 
section 2.2.3.2.a, propagates a wavepacket formed of a number of Gaussian 
functions on a maximum of two PES. The adiabatic PES are calculated on-the-
fly at each step and are transformed to the diabatic representation,261 which is 
more convenient to describe non-adiabatic events (see section 2.2.4). The 
corresponding PES are obtained with a development version of the Gaussian 
package278 which is interfaced with the vMCG code. The DD-vMCG method 
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requires the calculation of the energy and first and second derivatives at each 
step, however it benefits from the use of a database in which these parameters 
are stored at every step. The database is also used by the dynamics code to 
avoid calculating the same point twice. Moreover, the CASSCF energies and 
gradients are obtained using state-averaged orbitals averaging over S2 and S1 
with equal weights, as described for the semiclassical dynamics. Therefore, when 
the Gaussian functions approaches a region of S1/S0 degeneracy, it is not 
possible to converge the CASSCF calculation, and the trajectories are 
interrupted. 

As in the semi-classical dynamics case, the dynamics calculations were 
started on (π,π*)TS. The normal modes at this structure provide the frequency-
mass weighted coordinates for the propagation, and the diabatic states were 
chosen so that they coincide with the adiabatic ones at the starting point. They 
correspond to the π,π* and (n,π*) states (S2 and S1, respectively). The nuclear 
motion is described by a wavepacket composed of up to 8 pairs of Gaussian 
functions, with one function per state for each pair. The wavepacket is 
propagated along all degrees of freedom. An initial momentum of 0.1 eV was 
added to the wavepacket on the imaginary vibrational normal mode to drive it 
towards the CI in all calculations. Extra momenta of 0.2 eV were added to 
other normal modes to analyze the different parts of the CI. 

4.4.2 Topological analysis of the S2/S1 CI 
seam 

4.4.2.1 Intersection space characterization 

To start the topological analysis of the seam, a conical intersection of Cs 
symmetry has been optimized on the seam and has been characterized with the 
intersection space Hessian analysis (Figure 39). This structure lies 1.07 eV 
above the minimum energy conical intersection (π,π*/n,π*)X, and 0.3 eV below 
(π,π*)TS. The structure is characterized by a short C4O8 bond (1.18 Å) and a 
stretched C5-C6 (1.60 Å) bond, and the gradient difference vector is dominated 
by the C4-O8 stretch. The structure has three imaginary intersection space 
frequencies of a’’ symmetry, of 391i cm-1, 218i cm-1 and 62i cm-1. The first two 
modes are shown in Figure 39 and correspond to pyramidalization of C5 and C6. 
According to the second-order model for the analysis of conical intersection 
seams,38 a seam of intersection lies along curved coordinates composed of 
displacements along any of the intersection space modes, combined with the 
branching space vectors. The imaginary character of the frequencies indicates 
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that the energy of the seam must decrease along the corresponding 
displacements. This suggests that the Cs conical intersection is a saddle point in 
the space of conical intersection. It connects two symmetric (π,π*/n,π*)X 
structures, along a continuous seam.  

 

Figure 38. The two lowest vibrational modes and branching space vectors of the 
Cs structure of the S2/S1 CI.  

The conical intersection seam has been characterized with a constrained 
IRC calculation in the intersection space started from the Cs conical 
intersection, in the direction of the pyramidalization. The results are shown in 
Figure 39.  
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Figure 39. a) Energy profile of the three lowest states along the interstate 
vector. b) C5 pyramidalization angle vs C4-O8 distance along the intersection 
space of the S2/S1 seam. 

The IRC in the seam space ends at (π,π*/n,π*)X, which is the global 
minimum of the seam. The intersection structures are found along a 

A’’ = 391i A’’ = 218i GD IC 
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combination of the C4-O8 stretch and methyl pyramidalization coordinates, as 
predicted by the second-order analysis at the Cs structure. Along the whole 
mapped segment of the seam, the energy lies below that of (π,π*)TS. This 
suggests that also the planar segments of the seam are dynamically accessible. 

To complete this analysis, the topology of the seam has been examined at 
the structures that compose the IRC by comparing the signs of the gradients of 
the two states along the gradient difference coordinate. To carry out this 
comparison, it is necessary to ensure that the gradients are consistently defined 
along the seam, i.e. to avoid rotations of the configuration interaction 
eigenvectors of the degenerate CASSCF states. For this purpose, the gradients 
have been transformed as proposed by Yarkony282 before examining the sign. 
The lengths of the gradients along the seam, including the sign, are shown in 
Figure 40. The CI seam has a sloped-to-peaked character. Thus, the length of 
the gradients decreases along the seam, and one of the gradients changes its 
sign. In the segment of the seam close to the planar intersection (left side of 
Figure 40), the gradients have the same sign, i.e. the two states are parallel and 
the CI is sloped. On the other hand, near the minimum energy CI structure 
(right side of Figure 40), the gradients have opposite sign and the topology is 
peaked. The peaked and sloped regions of the seam are separated by a segment 
with intermediate topology, where one of the gradients is close to zero. 
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Figure 40. Norm of the two state gradient vectors along the constrained IRC on 
the seam. 
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4.4.2.2 Analysis of the normal modes at the 

dynamics starting point (π,π*)TS 

In the present DD-vMCG application, the frequency-mass-weighted 
coordinate system is based on the normal modes at (π,π*)TS. This structure is 
the origin of the coordinate system, and the coordinates of every structure 
correspond to the distance to (π,π*)TS along the different modes. These 
coordinates can be used to drive the dynamics toward a given structure, by 
adding extra momentum to the coordinate with the highest value for the desired 
structure. 

 

Figure 41. Vibrations of the 3 lowest normal modes at the dynamics starting 
point. Frequencies expressed in cm-1 (imaginary values in italics). 

Out of the 39 frequency-mass-weighted coordinates, the three coordinates 
which change more significantly among the structures correspond to 
displacements along the imaginary frequency, which is dominated by C4-O8 
bond stretching, and the two lowest-frequency modes at (π,π*)TS, which are 
different combinations of C5 and C6 pyramidalization. They are referred to as 
modes 1 - 3 (see Figure 41). The values of these coordinates for the relevant 
structures are shown in Table 9, together with the total distance of every 
structure to the origin. 

 

A’’=1109i A’’=132 A’’=175 
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Mode  (π,π*)Min (n,π*/π,π*)X (n,π*/π,π*)XCs (n,π*)Min (Eth)X 
1 (TS) -4.400   3.067  -1.341  -5.246   4.488  

2  3.230  -0.408   5.290   5.059  -6.955  

3  3.481  -3.873   3.101   2.851  -6.028  

Total dist.  7.636   6.125   24.515*   17.745*   20.075  

Table 9. Critical points position with respect to (π,π*)TS in Fmw coordinates. * 
The total distances of these points with respect to the (π,π*)TS in Fmw 
coordinates are overestimated because of a rotation of the methyl group. 

It is clear from Table 9 that the dynamics start close to the peaked 
segment of the seam, since (π,π*/n,π*)X lies closer to the origin than the other 
structures. Moreover, (π,π*,n,π*)X and the S1/S0 intersection (Eth)X are found 
approximately in the same direction from (π,π*)TS, while (π,π*)Min, (n,π*)Min and 
the Cs intersection lie along the opposite direction. Overall, the coordinate 
analysis suggests that modes 2 and 3 can be used to guide the propagation to 
the different parts of the seam. Thus, momentum in the positive direction along 
modes 2 and 3 should drive the wavepacket to the region of (π,π*)Min and the 
Cs intersection, whereas momentum in the negative direction of mode 3 should 
drive it toward (π,π*/n,π*)X.  

4.4.3 Quantum dynamics at the S2/S1 CI 
seam 

The role of the different segments of the S2/S1 seam in the decay has been 
studied with quantum dynamics calculations, by driving the propagation along 
the vibrational normal modes shown in Figure 41. Thus, three sets of 
propagations with a different number of Gaussian functions to simulate the 
wavepacket have been carried out, where momentum has been added along 
some of the three modes. All the simulations described in this section are 
gathered on Table 10 with their corresponding features. The energy that has 
been added to each mode for each run is displayed in columns 2 and 3, whereas 
the pairs of Gaussian functions that have been used for the wavepacket are 
described in column 4. To facilitate the description of the results, the figures 
that describe each run are gathered on the last column of Table 10. 
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Run Mode 
Momentum 

(eV) 
Pairs of 

Gaussians  
Figure(s) 

1a 1 -0.1 1 42a-c 

1b 1 0.1 1 43a-c, 44a, AIII-1 

1c 1 0.1 2 44b,AIII-2 

1d 1 0.1 4 44c, AIII-3 

1e 1 0.1 8 44d, AIII-4 

1 0.1 
2a 

2 -0.2 
2 AIII-5-10 

1 0.1 
2b 

2 0.2 
2 45, AIII-11-15 

1 0.1 
3a 

3 -0.2 
4 46a-b, AIII-16-24 

1 0.1 
3b 

3 0.2 
4 47a-b, AIII-25-33 

Table 10. Simulations described in this chapter with their corresponding 
characteristics (modes to which momentum has been added, momentum (eV), 
functions per state, and figures that describe each run). 

4.4.3.1 Propagation with additional momentum on 

mode 1 

Mode 1 is associated to the imaginary frequency at (π,π*)TS. It can be 
expected that addition of momentum along that coordinate will drive the 
propagation to the seam or to (π,π*)Min, depending on the direction of the 
momentum. The details of the DD-vMCG method are illustrated for two simple 
cases, where a single pair of Gaussian centered functions is used to simulate the 
wavepacket and a momentum of 0.1 eV is added in either direction of mode 1 
(runs 1a and 1b). There is one function running on each diabatic state, π,π* 
and n,π*, which correspond to the adiabatic S2 and S1 states at the beginning of 
the propagation, respectively. Initially, the population of the π,π* function is 
1.0, and that of the n,π* function 0.0. The results for the backward propagation 
(run 1a) are shown in Figure 42a - Figure 42c.  
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Figure 42a. Position of the center of the Gaussian functions of run 1a with 
respect to mode 1 and mode 3 (position relative to (π,π*)TS).  

Figure 42a shows the evolution of the position of the two Gaussian 
functions along modes 1 and 3. The seam of intersection is represented by the 
black dots, which correspond to the data base structures (see section 4.4.1) 
where the energy gap is below a threshold of 0.35 eV. In the backward 
propagation, the function of the π,π* state (red squares) evolves toward 
(π,π*)Min, and that of the n,π* state (blue diamonds) toward (n,π*)Min.  
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Figure 42b. Diabatic and adiabatic energies of the Gaussian functions of the 
π,π* (F1a) and n,π* states (F1b) of run 1a. 
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Figure 42b shows the energetics of the propagation. In the vMCG method, 
every Gaussian function is associated to four energetic parameters: the adiabatic 
S2 and S1 energies, and the diabatic energies obtained after the transformation 
described in section 2.2.4. Thus Figure 42b contains eight energy profiles, four 
for each function. However, the diabatic and adiabatic energies for each state 
are undistinguishable in the present propagation because the wavepacket is 
driven away from the seam and the S2/S1 energy gap is large. Moreover, only 
the energy of the diabatic state associated with each Gaussian function (π,π* or 
n,π*) is relevant for the propagation. The corresponding profiles are drawn with 
a bold line in Figure 42b. Finally, Figure 42c presents the diabatic populations 
of the two Gaussians. At the beginning of the propagation, there is a small 
population transfer to the n,π* function because of the proximity of (π,π*)TS to 
the seam, but the majority of the population stays on the π,π* function as the 
wavepacket evolves toward (π,π*)Min.  
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Figure 42c. Diabatic populations of the π,π* and n,π* states of run 1a. 

The results for the propagation of one pair of Gaussian functions adding 
momentum to the forward direction of mode 1 are shown in Figure 43a-c (run 
1b). In this case, the π,π* function evolves towards (π,π*/n,π*)X, while the n,π* 
function oscillates along mode 1. The behavior of the wavepacket at the seam 
can be monitored with the energy profiles for the π,π* function, which are 
shown in Figure 43a.  
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Figure 43a. Diabatic and adiabatic energies of the Gaussian function of the π,π* 
state (F1a) of run 1b. 

The energy profiles for the n,π* function are shown in Appendix III. The 
π,π* function approaches the seam three times, and the passages through the 
seam are in phase with the oscillation shown for that function along mode 1 in 
Figure 43b. After the third passage, the function, which runs on the diabatic 
π,π* state, leaves the seam region as S1. The population analysis (Figure 43c) 
shows that most of the population stays on the π,π* state, except for a small 
amount of population transferred to the n,π* function at the beginning of the 
trajectory. Thus, the propagation is similar to the semiclassical trajectories 
described above where the trajectories pass through the seam, stay on the π,π* 
state and approach the S1/S0 intersection. However, in the present case, the 
propagation was interrupted when the function approached the S1/S0 degeneracy 
because it was not possible to converge the CASSCF calculation. 
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Figure 43b. Position of the center of the Gaussian functions of run 1b (position 
relative to (π,π*)TS). 

Overall, the quantum dynamics with a single pair of Gaussian functions 
are in agreement with the expectation that the initial momentum in the 
backward direction leads the wavepacket to (π,π*)Min, while in the forward 
direction the wavepacket is driven towards the S2/S1 seam and continues toward 
the S1/S0 intersection. 
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Figure 43c. Diabatic populations of the π,π* and n,π* states of run 1b. 
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The propagations with 0.1 eV extra momentum in the forward direction of 
mode 1 were also carried out with 2, 4, and 8 pairs of Gaussian wavefunctions 
(runs 1c - 1e, respectively). The Gaussian functions are situated at (π,π*)TS at 
the beginning of the propagation, from where they can evolve along different 
directions. Ideally, the increase in the number of Gaussians should lead to 
convergence of the propagations. In runs 1c - 1e, all propagated functions follow 
the fate of the functions shown in Figure 42a and Figure 43a (see Appendix III). 
However, the difference between the propagations with different number of 
functions lies in the evolution of the diabatic populations (Figure 44a-d). For 
instance, with four pairs of functions more than 50% of population is transferred 
to the n,π* state. However, the series of propagations with an increasing 
number of functions is not converged, as seen by comparison of the populations 
with four and eight pairs. Increasing the number of Gaussian function pairs 
beyond 8 was not possible, because in the propagations it is necessary to carry 
out one CASSCF calculation per Gaussian function center at every step, using 
the same active space for each point. With an increasing number of Gaussian 
functions, the regions of space sampled during the propagation increase, and it 
becomes impossible to converge the CASSCF calculations for all Gaussian 
functions with the same active space. However, although the propagations are 
not converged with regard to the amount of population transferred to the n,π* 
state, the mechanistic picture provided for the passage through the peaked 
region of the seam is clear from the propagations. 
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Figure 44. Diabatic populations of propagations with 0.1 eV of extra momentum 
on mode 1 with 1, 2, 4, and 8 functions per state, respectively (runs 1a, 1c, 1d, 
and 1e). 

4.4.3.2 Propagation with additional momentum on 

mode 2 

The effect of adding momentum along mode 2 is studied in the second set 
of propagations (runs 2a and 2b). This mode corresponds to an out-of-phase 
combination of the pyramidalizations at C5 and C6, and Table 9 suggests that 
addition of momentum along this coordinate in the positive direction may drive 
the wavepacket toward the planar region of the seam. To test this hypothesis, 
two propagation runs were carried out using two pairs of Gaussian functions, 
adding a momentum of 0.2 eV in the positive and negative directions of mode 2 
(runs 2a and 2b, respectively). A momentum of 0.1 eV was also added in the 
positive direction of mode 1. The position of the two pairs of functions during 
run 2b are shown in Figure 45 (for energetics and populations see Appendix III).  
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Figure 45. Position of the center of the Gaussian functions with respect to mode 
1 and mode 3 along run 2b (position relative to (π,π*)TS). 

Here most of the population stays on the two π,π* functions. One of these 
functions crosses the seam near (π,π*/n,π*)X and continues on S1 toward 
(Eth)X, while the other function evolves towards (π,π*)Min. This behavior is 
similar to the one described for runs 1b-e, and to the one observed in run 2a 
(see Appendix III). This shows that mode 2 is not suitable to regulate the access 
of the wavepacket to the seam. 

4.4.3.3 Propagation with additional momentum on 

mode 3 

The third set of propagations is run with additional momentum along 
mode 3 (in-phase pyramidalization of C5 and C6). Additional momentum in the 
positive direction should lead the wavepacket toward the planar conical 
intersection, whereas momentum in the negative direction should lead it toward 
(π,π*/n,π*)X (see Table 9). Therefore, two propagations were run with 0.2 eV 
extra momentum in the negative and positive directions of this mode, together 
with 0.1 eV momentum in the forward direction of mode 1 (runs 3a and 3b). 
Four pairs of Gaussian functions were used for these runs. Figure 46a and 
Figure 46b show the results for run 3a (negative momentum along mode 3).  
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Figure 46a. Position of the center of the Gaussian functions of the π,π* state of 
run 3a (position relative to (π,π*)TS). 

Out of the four π,π* Gaussian functions, two pass the seam near 
(π,π*/n,π*)X (F2a and F3a on Figure 46a). The diabatic populations (see Figure 
46b) show that approximately 90% of the wavepacket stays on the π,π* state, 
and the diabatic energies for F2a and F3a (see figures AIII-17-18 and AIII-22-23 
of Appendix III ) show that the π,π* state is S1 at the end of the propagation. 
Therefore, the two functions reproduce the part of the wavepacket that crosses 
the seam and continues to evolve on the π,π* state in the direction of (Eth)X. In 
contrast to this, the other two functions (F1a and F4a) go to a flat region of the 
surface (see the energy profiles of figures AIII-16, AIII-19, AIII-21, and AIII-24 
in Appendix III) which is only accessed under these initial conditions and has 
not been identified further. The overall amount of population transferred to the 
(n,π*) state in this run is small. 
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Figure 46b. Diabatic populations of the π,π* and n,π* states of run 3a. 

Run 3b, where the momentum is added in the positive direction, shows a 
different behavior (see Figure 47a,b). Out of the four π,π* Gaussian functions, 
function F1a evolves directly toward (π,π*)Min, whereas the remaining three 
functions are directed toward the seam (see Appendix III). Compared with the 
previous run, the functions reach the seam closer to the Cs geometry. Function 
F2a oscillates there and then evolves further to (π,π*)Min, while function F4a 
keeps oscillating around the seam until the end of the trajectory.  
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Figure 47a. Position of the center of the Gaussian functions of the π,π* state of 
run 3b (position relative to (π,π*)TS). 
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Turning to F3a, the propagation of this Gaussian function is affected by a 
failure of the diabatic transformation. Thus, the function leaves the seam with 
the diabatic π,π* state being S1, but this occurs at a region where the π,π* state 
is the adiabatic S2 state. This failure of the transformation is presumably caused 
by intruder states in the electronic wavefunction, i.e. states with different 
configurations from the ones of the initial π,π* and n,π* states. Inclusion of 
more states in the propagation would be necessary to correct this behavior.  
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Figure 47b. Diabatic populations of the π,π* and n,π* states of run 3b. 

Turning to the n,π* state, overall there is a population transfer of 20% to 
that state (see Figure 47), and all the corresponding functions evolve towards 
(n,π*)Min (see Appendix III). In summary, under the conditions of this run, the 
evolution of a part of the wavepacket toward (Eth)X described for run 3a is not 
observed. Instead, the wavepacket touches the seam and evolves towards 
(π,π*)Min, staying on S2, or crosses to S1 to populate the n,π* state. This 
behavior corresponds, approximately, to the one schematized for the sloped 
region of the seam in Figure 37. Clearly, this conclusion has to be considered 
with care because of the problems described for function F3a. However, other 
simulations run with the same initial momentum and less Gaussian functions 
show a similar behavior to the one described for the remaining functions of run 
3b, and it can be assumed that the results for the present run are qualitatively 
correct. 
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4.4.4 Discussion 

The present quantum dynamics study, where 39 degrees of freedom are 
considered and the propagation is carried out on-the-fly, is a challenge for the 
DD-vMCG method. This is reflected in some of the problems found in our 
study. Thus, the number of Gaussian centered functions cannot be increased, as 
it would be necessary to converge the propagation, because it leads to 
convergence problems for the electronic structure. Similar problems have been 
found in runs with a higher amount of extra momentum. Moreover, because of 
the proximity of other excited states, intruder states appear that lead to a 
failure of the two-state diabatic transformation required for the propagation. 
However, in spite of these limitations, the propagations, combined with the 
topological analysis of the seam, have provided valuable insight into the 
behavior of the wavepacket at the S2/S1 seam of thymine. The resulting picture 
can be completed with the results of the previous study (section 4.3) and is 
illustrated best with the help of Figure 48. 

 

Figure 48. Representation of the S2/S1 CI seam and MEP from the dynamics 
starting point. Inset represents the typical behavior of a wavepacket accessing 
the peaked region of the seam. 

Figure 48 represents the topology of the surface along the C2-C3 stretch 
and C5 pyramidalization coordinates. It contains the indirect path from the 
Franck-Condon structure to (π,π*/n,π*)X and the S2/S1 seam. The red squares 
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represent the minimum energy path from (π,π*)TS to the S2/S1 seam. In the 
seam, the peaked segment is displayed by green triangles, and the sloped 
segment by blue diamonds. The minimum energy path from (π,π*)TS encounters 
the seam in the peaked region, near (π,π*/n,π*)X. The semiclassical dynamics 
and the quantum dynamics runs 1a-1e are carried out with only 0.1 eV extra 
momentum along the imaginary frequency mode at (π,π*)TS and therefore follow 
the minimum energy path quite closely. This explains why the trajectories 
encounter the peaked region of the seam. The typical behavior of a Gaussian 
function in the quantum dynamics propagations is shown in the inset of Figure 
48. Thus, the function oscillates along the seam in the direction of mode 1, 
which is orthogonal to the seam, until it reaches the part of the surface with 
sufficient gradient along mode 3 to escape the seam. Overall, a substantial part 
of the wavepacket that reaches this region of the seam continues on the S1 π,π* 
state, reaches (Eth)X and decays to the ground state. This behavior is not 
changed by adding energy along mode 2, but addition of energy along mode 3 in 
the direction that induces the planarization of the ring (positive direction in 
Table 9) leads to a different behavior. Thus, when the seam is encountered at 
planar structures, the route that leads ultimately to (Eth)X is not populated, at 
least in first instance, and the trajectories are bounced back to (π,π*)Min or 
populate the n,π* state. The different behavior found for the two seam segments 
in the quantum dynamics runs may explain the difference between the results of 
our trajectory surface hopping and quantum dynamics studies with a similar 
trajectory surface hopping dynamics study by Szymczak et al.283 In that study, 
the trajectories are started at the FC structure and are propagated for more 
than 2 ps, until they escape (π,π*)Min and reach the S2/S1 seam. In contrast to 
our results, all trajectories in that study populate the n,π* state and do not 
proceed along the route that leads to the ground state through (Eth)X. This 
may be due to the different initial conditions of that study, which may have led 
the trajectories to different regions of the S2/S1 seam, resulting in a different 
outcome. Therefore, the implication of the present results for the interpretation 
of the dynamics is that, depending on the initial conditions, one may sample 
different regions of the same seam, and this can have a substantial effect on the 
results. 

The characterization of the S2/S1 seam of thymine with static and 
dynamics calculations is also interesting from a general point of view. The seam 
is characterized by the sloped-to-peaked topology. This type of topology arises 
when one of the intersecting states has a relatively large gradient, while the 
other state is more or less flat and has a negative curvature along a given 
coordinate. In the case of thymine, the n,π* has a large gradient and the π,π* 
state is flat in the region of the seam, as can be seen from the energy profiles of 
our propagations. The important point is that thymine is one in a series of 
molecules where a seam with sloped-to-peaked topology has been characterized. 
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Other examples are fulvene,284 benzene,285 and 5-bromo uracil.286 In these 
examples, the intersection is associated with a photochemical reaction in the 
peaked region, namely double bond isomerization in fulvene, intramolecular 
cyclization in benzene, and carbon bromine bond cleavage in 5-bromo uracil, 
while the sloped region leads to recovery of the reactant. Similar to the recent 
benzene study, the present results for thymine illustrate the different behavior 
in the two segments at the dynamics level and suggest a way to control the 
reactivity in coherent control simulations, by controlling the access of the 
wavepacket to the seam. 
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5 CONCLUSIONS 
In the first part of the thesis, we have shown that the CASSCF method 

and 6-311G* and 6-31G* basis sets can properly describe the planar structure of 
thymine. Thus, we have found the level of theory that will be used for the 
description of the photophysics of thymine. We have also found that some 
Pople’s basis sets used with the MP2 method present problems in describing the 
planarity of nucleobases. This suggests such problems are common to correlated 
methods describing planar aromatic rings with Pople’s basis sets. We have 
investigated further the origin of this phenomenon, and concluded that the loss 
of planarity can be explained in terms of intramolecular BSSE. We have shown 
that the application of conventional BSSE-correction techniques, such as the 
Counterpoise method, provide proper assessment and correction whenever 
spurious results occur and do not produce meaningful effects in those cases 
already correctly described. We have used a code287 that allows for flexible 
definitions of the Counterpoise function. With this code we have been able to 
address charged systems and determine that BSSE has a delocalized nature. 
The correction of BSSE for a single fragment can fix the imaginary frequencies, 
however, only if all fragments are included in the Counterpoise function the 
frequency values of the correct descriptions are recovered. The fragments’ 
definition and fragments’ multiplicity assignment does not affect the 
performance of the method as long as isolated fragment and associated ghost 
orbital calculations correspond to the same state with the same orientation of 
singly-occupied degenerate orbitals. 

The photophysics of thymine have been studied with MS-CASPT2 static 
calculations and CASSCF on-the-fly dynamics. The MS-CASPT2 calculations 
show there exist two paths that lead from the FC structure to (Eth)X, a conical 
intersection with the ground state. The indirect path goes through a shallow 
minimum of the π,π* state, (π,π*)Min, which is separated by a barrier from a 
S2/S1 CI, (n,π*/π,π*)X. Decay through this CI can lead to either the n,π* state 
or (Eth)X, which further leads to the ground state. The direct path is a 
barrierless path from the FC to (Eth)X. We propose that both paths are 
populated during the decay since they have similar slopes at FC region. 
Therefore we propose that the experimental subpicosecond decay component(s) 
come from the two groups of trajectories (direct decay and indirect decay 
staying on the π,π* state). In addition to that, we assign the picosecond 
component to the n,π* state which is populated via (n,π*/π,π*)X. 

We have simulated the decay along the indirect path with semiclassical 
dynamics. The results confirm the role proposed for this path at the MS-
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CASPT2 level. That is, part of the population of the indirect path is responsible 
for the picosecond since it is funneled to the n,π* state at (n,π*/π,π*)X, whereas 
the rest of the population decays in the subpicosecond range. 

Due to (n,π*/π,π*)X is a key point in the photophysics of thymine, a 
topological analysis of this seam has been carried out. This study shows it forms 
a sloped-to-peaked topology and that all parts are accessible. The quantum 
dynamics simulations carried out with the DD-vMCG method show that the 
segment of the seam that is reached during the decay has a large influence on 
the photophysics. In general it is observed that the peaked region of the seam 
favors the regeneration of the ground state, whereas the sloped one delays the 
deactivation as this region is responsible for trappings at (π.π*)Min and the n,π* 
state. 

The DD-vMCG method has been applied to the present study of thymine 
and all 39 degrees of freedom have been taken into account. Problems associated 
with the use of a small active space, which limits the number of Gaussian 
centered wavefunctions that form the wavepacket, and the appearance of 
intruder states that invalidate the diabatic transformation at some points, have 
been encountered. However, the method still can be used to get a qualitative, 
mechanistic insight into the photophysics of thymine. 
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Appendix I 

CP-opt driver: The CP-opt program automatically calls a slightly modified 
version (for higher accuracy of print out reasons) of Gaussian98 in order to 
perform either energy, gradient optimizations or frequencies corrected for Basis 
Set Superposition Error using Counterpoise-type methods. Moreover, the user 
can define which fragment calculations are necesary in each case in terms of the 
fragment symmetry of the supermolecule and build any Counterpoise-type 
function. The package includes several UNIX scripts (drive files) and 
FORTRAN 77 programs. From a conventional GAUSSIAN input file, 2N+1 
input files for each calculation are generated and computed sequentially. Then 
CP-corrected, energy, gradient or hessian, depending on the calculation 
requested, is determined by the corresponding linear combination, either 
authomaticaly or as defined by the user. In case of geometry optimisations, the 
new point in the CP-corrected PES is calculated externally using a generalized 
DIIS combined with a variable metric optimizer and the next set of 2N+1 
calculations are carried out again and untill the desired convergence. 

P. Salvador implemented automatic Counterpoise correction to energy, 
gradients, second and third derivatives for up to 10 fragments into Gaussian, 
being readily available since versions Gaussian 98 rev A11. However, no 
handling of the fragment’s symmetry was implemented and generally the 
NOSYMM keyword is necessary. 

References to program packages used in this study: 

Gaussian 98, Revision A.7: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. 
Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, 
Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, 
K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. 
Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. 
Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. 
Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. 
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. 
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. 
Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, 
C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., 
Pittsburgh PA, 1998.  

Gaussian 03 Revision B.02:  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. 
Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. 
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N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. 
Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. 
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, 
Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. 
B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, 
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, 
K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. 
Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, 
K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. 
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. 
Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. 
Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. 
Wong, C. Gonzalez, and J. A. Pople; Gaussian, Inc., Wallingford CT, 2004. 

Full frequencies of the calculations described in this study:  

Table AI-1. Uncorrected and Counterpoise-corrected harmonic vibrational 
frequencies (cm–1) for benzene (D6h) at the Hartree-Fock level of theory. The 
average difference between uncorrected and CP-corrected frequencies is 1.6% 
and 1.3% for Hartree-Fock and B3LYP, respectively. All data in the table were 
computed with Gaussian 03.  

Hartree-Fock 

6-31+G(d) 
CP-corrected 

Unc. % diff 
6-311G 

CP-corrected 
Unc. % diff 

6-311++G 
CP-corrected 

Unc. % diff 

E2U 448 451 0.7 E2U 459 463 0.9 E2U 449 462 3.1 
E2G 663 663 0.0 E2G 688 683 0.7 E2G 680 682 1.3 
A2U 745 760 2.0 A2U 747 771 3.2 A2U 723 772 1.0 
B2G 765 775 1.3 B2G 784 794 1.3 B2G 788 803 9.9 
E1G 940 960 2.1 E1G 949 978 3.1 E1G 939 983 2.0 
A1G 1073 1076 0.3 A1G 1067 1070 0.3 A1G 1091 1140 5.2 
E2U 1073 1108 3.3 E2U 1081 1126 4.2 E1U 1064 1185 19.4 
B2G 1092 1141 4.5 B2G 1097 1152 5.0 B1U 1129 1067 0.2 
B1U 1101 1097 0.4 E1U 1135 1134 0.1 E2U 1130 1123 2.3 
E1U 1133 1137 0.4 B1U 1147 1124 2.0 B2U 1122 1132 0.3 
B2U 1195 1201 0.5 B2U 1237 1242 0.4 E2G 1230 1243 0.2 
E2G 1288 1291 0.2 E2G 1312 1304 0.6 B2U 1285 1302 1.3 
B2U 1349 1353 0.3 B2U 1372 1362 0.7 B2G 1337 1361 1.4 
A2G 1505 1506 0.1 A2G 1551 1524 1.7 A2G 1506 1521 2.2 
E1U 1642 1644 0.1 E1U 1662 1644 1.1 E1U 1627 1640 1.6 
E2G 1782 1786 0.2 E2G 1775 1772 0.2 E2G 1755 1766 0.3 
B1U 3365 3351 0.4 B1U 3314 3323 0.3 B1U 3341 3313 1.1 
E2G 3376 3362 0.4 E2G 3324 3334 0.3 E2G 3351 3326 1.0 
E1U 3393 3380 0.4 E1U 3343 3355 0.4 E1U 3396 3347 0.8 
A1G 3403 3391 0.4 A1G 3358 3371 0.4 A1G 3383 3361 0.7 
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Table AI-1 Cont. 
B3LYP 

6-31+G(d) 
CP-corrected 

Unc. % diff 
6-311G 

CP-corrected 
Unc. % diff 

6-311++G 
CP-corrected 

Unc. % diff 

E2U 408 412 1.0 E2U 419 421 0.5 E2U 409 418 2.2 
E2G 619 621 0.3 E2G 644 640 0.5 E2G 642 639 0.5 
A2U 678 689 1.6 A2U 683 704 3.1 A2U 671 703 4.8 
B2G 708 712 0.6 B2G 727 736 1.2 B2G 687 740 7.7 
E1G 851 863 1.4 E1G 860 884 2.9 E1G 843 887 5.2 
E2U 964 981 1.8 E2U 971 1006 3.7 E2U 932 1006 7.9 
B2G 994 1014 2.0 B2G 1001 1009 0.8 B2G 940 1046 11.3 
A1G 1014 1014 0.0 A1G 1006 1044 3.8 A1G 1004 1006 0.2 
B1U 1022 1019 0.3 B1U 1061 1048 1.2 B1U 1058 1054 0.4 
E1U 1062 1064 0.2 E1U 1064 1064 0.0 E1U 1062 1062 0.0 
B2U 1177 1184 0.6 B2U 1204 1207 0.2 B2U 1208 1206 0.2 
E2G 1199 1205 0.5 E2G 1219 1221 0.2 E2G 1220 1219 0.1 
B2U 1354 1355 0.1 B2U 1337 1338 0.1 B2U 1337 1337 0.0 
A2G 1385 1386 0.1 A2G 1432 1418 1.0 A2G 1428 1415 0.9 
E1U 1520 1523 0.2 E1U 1538 1530 0.5 E1U 1534 1526 0.5 
E2G 1644 1646 0.1 E2G 1636 1634 0.1 E2G 1631 1630 0.1 
B1U 3179 3174 0.2 B1U 3116 3155 1.3 B1U 3148 3149 0.0 
E2G 3188 3183 0.2 E2G 3134 3166 1.0 E2G 3159 3161 0.1 
E1U 3203 3199 0.1 E1U 3153 3185 1.0 E1U 3177 3180 0.1 
A1G 3213 3209 0.1 A1G 3168 3200 1.0 A1G 3190 3194 0.1 

Table AI-2. Uncorrected and Counterpoise-corrected harmonic vibrational 
frequencies (cm–1) for benzene (D6h) at the MP2 and CISD levels of theory. The 
average difference between uncorrected and CP-corrected frequencies is 17.8% 
and 9.8% for MP2 and CISD, respectively. Excluding the problematic out-of-
plane vibrational modes the differences are 4.4% and 4.2%, respectively. All 
data in the table were computed with Gaussian 03 and Gaussian98. 

 
MP2 

6-31+G(d) 
CP-corrected 

Unc. % diff 
6-311G 

CP-corrected 
Unc. % diff 

6-311++G 
CP-corrected 

Unc. % diff 

E2U 384 379 1.3 E2U 382 333 12.8 E2U 409 470 53.4 
B2G 473 182 61.5 B2G 442 722i 263.3 E2G 631 627 0.7 
E2G 613 618 0.8 E2G 625 630 0.8 A2U 703 573 18.4 
A2U 659 672 2.0 A2U 650 620 4.6 B2G 730 721 1.3 
E1G 824 829 0.6 E1G 812 736 9.4 E1G 890 620 30.4 
E2U 894 877 1.9 E2U 861 648 24.7 A1G 961 984 2.3 
B2G 896 859 4.1 B2G 877 779 11.2 E2U 1015 468i 146.1 
A1G 1004 1020 1.6 A1G 966 988 2.3 E1U 1031 1050 1.9 
B1U 1026 1018 0.8 E1U 1034 1055 2.0 B2U 1054 1208 14.6 
E1U 1061 1077 1.5 B1U 1050 1029 2.0 B2G 1093 1852i 269.4 
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Table AI-2 Cont. 
B2U 1181 1206 2.1 B2U 1183 1210 2.3 B1U 1192 1021 14.3 
E2G 1204 1225 1.7 E2G 1203 1225 1.8 E2G 1209 1223 1.1 
A2G 1388 1389 0.1 B2U 1330 1362 2.4 B2U 1342 1364 1.6 
B2U 1439 1464 1.7 A2G 1423 1410 0.9 A2G 1426 1402 1.7 
E1U 1516 1530 0.9 E1U 1515 1516 0.1 E1U 1521 1511 0.7 
E2G 1640 1660 1.2 E2G 1593 1615 1.4 E2G 1594 1609 0.9 
B1U 3226 3208 0.6 B1U 3129 3134 0.2 B1U 3144 3110 1.1 
E2G 3235 3217 0.6 E2G 3139 3145 0.2 E2G 3154 3127 0.9 
E1U 3249 3232 0.5 E1U 3156 3165 0.3 E1U 3171 3150 0.6 
A1G 3257 3242 0.5 A1G 3170 3180 0.3 A1G 3183 3166 0.5 

CISD 

6-31+G(d) 
CP-corrected 

Unc. % diff 
6-311G 

CP-corrected 
Unc. % diff 

6-311++G 
CP-corrected 

Unc. % diff 

E2U 426 418 1.9 E2U 382 397 3.9 E2U 455 281 38.2 
E2G 639 643 0.6 B2G 442 189i 142.8 E2G 653 650 0.5 
A2U 713 720 1.0 E2G 625 652 4.3 A2U 761 652 14.3 
B2G 716 591 17.5 A2U 650 678 4.3 B2G 875 801 8.5 
E1G 904 899 0.6 E1G 812 830 2.2 E2U 991 666 32.8 
E2U 1028 999 2.8 E2U 861 839 2.6 A1G 1011 1031 2.0 
A1G 1047 1061 1.3 B2G 877 847 3.4 B1U 1060 1057 0.3 
B2G 1049 971 7.4 A1G 966 1034 7.0 E1G 1089 768 29.5 
B1U 1063 1055 0.8 E1U 1034 1093 5.7 B2U 1176 1215 3.3 
E1U 1099 1115 1.5 B1U 1050 1063 1.2 E1U 1216 1090 10.4 
B2U 1190 1218 2.4 B2U 1183 1215 2.7 E2G 1250 1255 0.4 
E2G 1241 1261 1.6 E2G 1203 1257 4.5 B2U 1320 1321 0.1 
B2U 1335 1358 1.7 B2U 1330 1320 0.8 A2G 1465 1448 1.2 
A2G 1446 1445 0.1 A2G 1423 1454 2.2 E1U 1583 1570 0.8 
E1U 1582 1594 0.8 E1U 1515 1574 3.9 B2G 1591 1384i 187.0 
E2G 1724 1743 1.1 E2G 1593 1697 6.5 E2G 1678 1691 0.8 
B1U 3302 3288 0.4 B1U 3129 3205 2.4 B1U 3206 3187 0.6 
E2G 3311 3299 0.4 E2G 3139 3216 2.5 E2G 3224 3202 0.7 
E1U 3327 3316 0.3 E1U 3156 3237 2.6 E1U 3252 3225 0.8 
A1G 3337 3327 0.3 A1G 3170 3254 2.6 A1G 3270 3243 0.8 
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Table AI-3. Uncorrected and Counterpoise-corrected harmonic vibrational 
frequencies (cm–1) for naphtalene (D2h) with the 6-31G basis set. All data in the 
table were computed with Gaussian 03. 

 
HF 

CP-corrected 
HF % diff 

B3LYP 
CP-corrected 

B3LYP % diff 
MP2 

CP-corrected 
MP2 % diff 

B3U 188 193 2.9 B3U 176 180 2.2 B3U 159 159 0.0 
AU 209 209 0.1 AU 192 192 0.2 AU 181 177 2.3 
B1U 397 400 0.7 B1U 373 373 0.1 B1U 363 369 1.6 
B1G 436 441 1.0 B1G 401 403 0.7 B1G 368 359 2.7 
B2G 533 538 1.0 B2G 490 490 0.0 B3U 446 419 5.9 
B3U 542 551 1.5 B3U 495 500 0.9 B2G 450 426 5.3 
AG 564 566 0.2 AG 531 531 0.0 AG 516 523 1.3 
B3G 572 573 0.1 B3G 530 531 0.2 B3G 522 523 0.2 
B2U 700 700 0.0 AU 647 649 0.4 AU 565 450 20.4 
AU 701 709 1.1 B2U 654 654 0.1 B2G 570 402i 170.5 
B1G 795 831 4.5 B1G 734 748 1.9 B2U 638 642 0.6 
AG 837 839 0.2 AG 782 782 0.0 B1G 691 680 1.7 
B3U 873 915 4.8 B2G 793 800 0.9 B3U 744 716 3.8 
B2G 879 891 1.4 B3U 806 821 2.0 AG 764 769 0.7 
B1U 888 885 0.4 B1U 828 826 0.2 AU 804 776 3.5 
AU 927 976 5.2 AU 852 873 2.5 B1U 814 819 0.5 
B2G 970 1039 7.2 B2G 892 922 3.4 B2G 816 783 4.0 
B1G 1055 1122 6.4 B3G 977 973 0.4 B1G 883 838 5.1 
B3G 1062 1054 0.7 B1G 950 977 2.8 B3U 886 839 5.3 
B3U 1071 1148 7.1 B3U 966 997 3.2 AU 897 821 8.5 
AU 1081 1172 8.4 AU 990 1021 3.1 B2G 916 855 6.6 
B2G 1086 1183 8.9 B2G 1002 1030 2.8 B3G 967 958 0.9 
B2U 1091 1099 0.7 B2U 1046 1052 0.5 B2U 1011 1034 2.3 
AG 1122 1127 0.4 AG 1058 1062 0.4 AG 1028 1048 1.9 
B2U 1236 1242 0.5 B1U 1172 1175 0.2 B1U 1154 1168 1.2 
B1U 1266 1265 0.1 B3G 1194 1200 0.5 B3G 1172 1195 2.0 
B3G 1290 1292 0.1 B2U 1206 1216 0.9 B2U 1187 1220 2.7 
AG 1313 1313 0.0 AG 1211 1218 0.6 AG 1197 1224 2.3 
B2U 1330 1333 0.2 B2U 1255 1260 0.4 B2U 1227 1257 2.4 
B3G 1409 1403 0.5 B3G 1306 1303 0.2 B3G 1285 1292 0.5 
B1U 1414 1415 0.0 B1U 1316 1320 0.3 B1U 1295 1315 1.5 
B2U 1501 1497 0.3 B2U 1421 1419 0.2 B2U 1409 1429 1.4 
AG 1513 1519 0.4 AG 1430 1431 0.0 AG 1415 1425 0.7 
B1U 1582 1565 1.1 B1U 1464 1453 0.8 B1U 1447 1441 0.4 
B3G 1645 1636 0.5 B3G 1525 1520 0.3 B3G 1495 1501 0.3 
AG 1652 1638 0.9 AG 1527 1521 0.5 AG 1502 1505 0.2 
B2U 1694 1689 0.3 B2U 1574 1572 0.2 B2U 1537 1550 0.8 
AG 1781 1781 0.0 AG 1632 1631 0.0 AG 1593 1603 0.6 
B1U 1806 1804 0.1 B1U 1661 1660 0.1 B1U 1608 1625 1.0 
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Table AI-3 Cont.  
B3G 1845 1846 0.1 B3G 1690 1690 0.0 B3G 1644 1669 1.5 
B3G 3349 3347 0.1 B3G 3154 3185 1.0 B3G 3164 3158 0.2 
B1U 3351 3349 0.1 B1U 3156 3186 1.0 B1U 3167 3159 0.2 
B2U 3353 3352 0.0 B2U 3158 3189 1.0 B2U 3167 3160 0.2 
AG 3358 3357 0.1 AG 3161 3192 1.0 AG 3170 3163 0.2 
B3G 3368 3370 0.1 B3G 3172 3205 1.0 B3G 3184 3184 0.0 
B1U 3370 3372 0.1 B1U 3174 3206 1.0 B1U 3184 3185 0.0 
B2U 3380 3386 0.2 B2U 3186 3221 1.1 B2U 3196 3202 0.2 
AG 3382 3388 0.2 AG 3188 3222 1.1 AG 3198 3203 0.2 

Table AI-4. Uncorrected and Counterpoise-corrected harmonic vibrational 
frequencies (cm–1) for indenyl anion (C2v) at the MP2/6-311G level of theory. 
All data in the table were computed with the CP-opt driver and Gaussian 98.  

 
 

MP2 
CP-corrected 

MP2 % diff 

B1 197 199 1.0 
A2 221 305 38.2 
A2 331 1072i 424.3 
B1 363 444 22.3 
B2 390 391 0.3 
A1 550 544 1.2 
B2 604 594 1.6 
A2 604 458i 175.8 
B1 620 609 1.7 
B1 660 570 13.6 
A2 705 523 25.9 
A1 733 730 0.4 
B1 781 504 35.5 
B1 823 200i 124.3 
A2 848 125i 114.7 
A2 869 677 22.1 
A1 874 874 0.0 
B2 891 875 1.8 
A1 986 979 0.8 
A1 1034 1029 0.4 
B2 1046 1049 0.3 
B1 1058 555i 152.4 
B2 1111 1104 0.6 
A1 1167 1169 0.1 
B2 1208 1195 1.1 
B2 1250 1228 1.7 
A1 1259 1242 1.3 
A1 1349 1337 0.9 
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         Table AI-4 Cont. 
B2 1383 1350 2.4 
B2 1424 1405 1.3 
A1 1451 1422 2.0 
B2 1484 1463 1.4 
A1 1493 1468 1.7 
A1 1543 1518 1.6 
B2 1590 1561 1.9 
B2 3064 3061 0.1 
A1 3072 3069 0.1 
A1 3072 3076 0.1 
B2 3089 3088 0.0 
B2 3108 3110 0.1 
A1 3109 3110 0.0 
A1 3123 3124 0.0 

 

Table AI-5. Uncorrected and Counterpoise-corrected harmonic vibrational 
frequencies (cm–1) for cyclopentadienyl anion (D5h) at the MP2/6-311G level of 
theory. All data in the table were computed with the CP-opt driver and 
Gaussian 98.  

 
 

MP2 
CP-corrected 

MP2 % diff 

E2" 614 401i 165.3 
E1" 640 284 55.7 
A2" 680 523 23.0 
E2" 848 632 25.4 
E2' 854 860 0.6 
E1' 995 1020 2.5 
E2' 1065 1089 2.3 
A1' 1089 1115 2.4 
A2' 1311 1298 1.0 
E2' 1383 1402 1.4 
E1' 1449 1454 0.4 
E2' 3060 3081 0.7 
E1' 3087 3111 0.8 
A1' 3119 3145 0.8 
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Gonzalez, C.; Pople, J. A.; Gaussian 03, Developement version (Revision B.07) 
ed.; Gaussian, Inc.: Pittsburgh, PA, 2003. 
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Figure AII-1. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent trajectory 
on S1 (nr=2) 
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Figure AII-2. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent trajectory 
on S1 (nr=2) 
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Figure AII-3. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent trajectory 
on S1 (nr=2) 
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Figure AII-4. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent trajectory 
on S1 (nr=2) 
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Figure AII-5. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent trajectory 
on S1 (nr=2) 
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Figure AII-6. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent trajectory 
on S1 (nr=2) 
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Figure AII-7. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent trajectory 
on S1 (nr=2) 
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Figure AII-8. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent trajectory 
on S1 (nr=2) 
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Figure AII-9. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent trajectory 
on S1 (nr=2) 
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Figure AII-10. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent 
trajectory on S1 (nr=2) 
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Figure AII-11. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent 
trajectory on S1 (nr=2) 
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Figure AII-12. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent 
trajectory on S1 (nr=2) 
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Figure AII-13. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent 
trajectory on S1 (nr=2) 
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Figure AII-14. Trajectory 1. CASSCF(8,6,nr=3)/6-31G* + subsequent 
trajectory on S1 (nr=2) 
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Appendix III 
Run 1b 
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Figure AIII-1. Diabatic and adiabatic energies of the F1b function of run 1b. 
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Figure AIII-2. Position of the center of the Gaussian functions of run 1c 
(position relative to (π,π*)TS). 
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Run 1d 

 

Figure AIII-3. a) Position of the center of the Gaussian functions of the π,π* 
state of run 1d. b) Position of the center of the Gaussian functions of the n,π* 
state of run 1d (positions relative to (π,π*)TS). 
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Run 1e 

 

Figure AIII-4. a) Position of the center of the F1a-F4a Gaussian functions of 
run 1e. b) Position of the center of the F5a-F8a Gaussian functions of run 1e. c) 
Position of the center of the F1b-F4b Gaussian functions of run 1e. d) Position 
of the center of the F5b-F8b Gaussian functions of run 1e (positions relative to 
(π,π*)TS). 
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Run 2a 
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Figure AIII-5. Position of the center of the Gaussian functions of run 2a 
(position relative to (π,π*)TS). 
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Figure AIII-6. Diabatic and adiabatic energies at the center of function F1a of 
run 2a. 
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Figure AIII-7. Diabatic and adiabatic energies at the center of function F2a of 
run 2a. 
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Figure AIII-8. Diabatic and adiabatic energies at the center of function F1b of 
run 2a. 
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Figure AIII-9. Diabatic and adiabatic energies at the center of function F2b of 
run 2a. 
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Figure AIII-10. Population of the π,π* and n,π* state of run 2a. 



196 Appendix III 

 

Run 2b 
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Figure AIII-11. Diabatic and adiabatic energies at the center of function F1a of 
run 2b. 
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Figure AIII-12. Diabatic and adiabatic energies at the center of function F2a of 
run 2b. 
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Figure AIII-13. Diabatic and adiabatic energies at the center of function F1b of 
run 2b. 
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Figure AIII-14. Diabatic and adiabatic energies at the center of function F2b of 
run 2b. 
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Figure AIII-15. Population of the π,π* and n,π* state of run 2b.  
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Run 3a 
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Figure AIII-16. Diabatic and adiabatic energies at the center of function F1a of 
run 3a. 
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Figure AIII-17. Diabatic and adiabatic energies at the center of function F2a of 
run 3a. 
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Figure AIII-18. Diabatic and adiabatic energies at the center of function F3a of 
run 3a. 
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Figure AIII-19. Diabatic and adiabatic energies at the center of function F4a of 
run 3a. 



Appendix III   

 

201 

-8

-6

-4

-2

0

2

4

-6 -4 -2 0 2 4 6

Mode 1 (Fmw)

M
od

e 
3 

(F
m

w
)

(π,π*)Min

(n,π*)Min

(π,π*/n,π*)X

(Eth)X

(π,π*/n,π*)XCs

π,π*F1b

π,π*F2b

π,π*F1b

π,π*F4b

π,π*F3b

π,π*F2b

π,π*F3b

π,π*F4b

 

Figure AIII-20. Position of the center of the Gaussian functions of the n,π* 
state of run 3a (position relative to (π,π*)TS). 
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Figure AIII-21. Diabatic and adiabatic energies at the center of function F1b of 
run 3a. 
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Figure AIII-22. Diabatic and adiabatic energies at the center of function F2b of 
run 3a. 
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Figure AIII-23. Diabatic and adiabatic energies at the center of function F3b of 
run 3a. 
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Figure AIII-24. Diabatic and adiabatic energies at the center of function F4b of 
run 3a. 
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Run 3b 
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Figure AIII-25. Diabatic and adiabatic energies at the center of function F1a of 
run 3b. 
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Figure AIII-26. Diabatic and adiabatic energies at the center of function F2a of 
run 3b. 
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Figure AIII-27. Diabatic and adiabatic energies at the center of function F3a of 
run 3b. 
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Figure AIII-28. Diabatic and adiabatic energies at the center of function F4a of 
run 3b. 
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Figure AIII-29. Position of the center of the Gaussian functions of the n,π* 
state of run 3b (position relative to (π,π*)TS). 
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Figure AIII-30. Diabatic and adiabatic energies at the center of function F1b of 
run 3b. 
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Figure AIII-31. Diabatic and adiabatic energies at the center of function F2b of 
run 3b. 
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Figure AIII-32. Diabatic and adiabatic energies at the center of function F3b of 
run 3b. 
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Figure AIII-33. Diabatic and adiabatic energies at the center of function F4b of 
run 3b. 
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