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Dr. Pere Maiḿı Vert Dr. Pedro P. Camanho

Universitat de Girona, Spain Universidade do Porto, Portugal

A thesis submitted for the degree of Doctor of Philosophy by the

University of Girona



To whom it might concern,

Dr. Pere Maimı́ Vert, Associate Professor at the Universitat de Girona of the
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Personal Investigador, started in July of 2007 and finished in June of 2010.

Also, the present work has been partially funded by the Spanish Government

through the contracts MAT2006-14159-C02-01 and TRA2006-15718-C02-01/TAIR,

and by the Portuguese Foundation for Science and Technology under the project

PDCT/EMEPME/64984/2006.

Part of the work has been carried out during three stages at the University of

Porto, under the grants for mobility: VUDG-2007 (of the University of Girona),

and BE-2008 and BE-2009 (of the Comissionat per a Universitats i Recerca del

Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya).

Also, the analysis of some topics were performed during the research stage at NASA

- Langley Research Center in Hampton (Virginia, USA), that was supported by the

National Institute of Aerospace (NIA), in the summer of 2008.

Finally, I want to thank the award received in May of 2009 for the best thesis
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Resumen

La aplicación de materiales compuestos de matriz polimérica reforzados mediante

fibras largas (FRP, ”Fiber Reinforced Plastic”), está en gradual crecimiento debido

a las buenas propiedades espećıficas y a la flexibilidad en el diseño. Uno de los

mayores consumidores es la industria aeroespacial, dado que la aplicación de estos

materiales tiene claros beneficios económicos y medioambientales.

Cuando los materiales compuestos se aplican en componentes estructurales, se

inicia un programa de diseño donde se combinan ensayos reales y técnicas de análisis.

El desarrollo de herramientas de análisis fiables que permiten comprender el com-

portamiento mecánico de la estructura, aśı como reemplazar muchos, pero no todos,

los ensayos reales, es de claro interés.

Susceptibilidad al daño debido a cargas de impacto fuera del plano es uno de los

aspectos de más importancia que se tienen en cuenta durante el proceso de diseño

de estructuras de material compuesto. La falta de conocimiento de los efectos del

impacto en estas estructuras es un factor que limita el uso de estos materiales.

Por lo tanto, el desarrollo de modelos de ensayo virtual mecánico para analizar

la resistencia a impacto de una estructura es de gran interés, pero aún más, la

predicción de la resistencia residual después del impacto.

En este sentido, el presente trabajo abarca un amplio rango de análisis de eventos

de impacto a baja velocidad en placas laminadas de material compuesto, monoĺıticas,

planas, rectangulares, y con secuencias de apilamiento convencionales. Teniendo en

cuenta que el principal objetivo del presente trabajo es la predicción de la resistencia

residual a compresión, diferentes tareas se llevan a cabo para favorecer el adecuado

análisis del problema. Los temas que se desarrollan son: la descripción anaĺıtica

del impacto, el diseño y la realización de un plan de ensayos experimentales, la

formulación e implementación de modelos constitutivos para la descripción del com-

xi
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portamiento del material, y el desarrollo de ensayos virtuales basados en modelos

de elementos finitos en los que se usan los modelos constitutivos implementados.



Summary

The application of polymer-based composites reinforced by long fibers, called ad-

vanced Fiber Reinforced Plastic (FRP), is gradually increasing as a result of their

good specific mechanical properties and increased flexibility of design. One of the

largest consumers is the aerospace industry, since the application of these materials

has clear economic and environmental benefits.

When composites are to be used in structural components, a design develop-

ment program is initiated, where a combination of testing and analysis techniques

is typically performed. The development of reliable analysis tools that enable to

understand the structure mechanical behavior, as well as to replace most, but not

all, the real experimental tests, is of clear interest.

Susceptibility to damage from concentrated out-of-plane impact forces is one

of the major design concerns of structures made of advanced FRPs used in the

aerospace industry. Lack of knowledge of the impact effects on these structures is a

factor in limiting the use of composite materials.

Therefore, the development of virtual mechanical testing models to analyze the

impact damage resistance of a structure is of great interest, but even more, the

prediction of the post-impact residual strength.

In this sense, the present thesis covers a wide range of analysis of the low-

velocity and large mass impact events on monolithic, flat, rectangular, polymer-

based laminated composite plates with conventional stacking sequences. Keeping in

mind that the main goal of this work is the prediction of the residual compressive

strength of an impacted specimen coupon, a set of different tasks are performed in

order to provide suitable tools to analyze the problem. Accordingly, the topics which

are addressed in this thesis are: the analytical description of the impact, the design

and the realization of an experimental test plan, the formulation and implementation
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of constitutive models for the description of the composite material behavior, and

the assessment of the performance of virtual tests based on finite element models

where the constitutive models are used.
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ha Laminate thickness.

hc Thickness of the central cut laminate (TCT

tests).

he FE thickness.

(he)max Maximum finite element thickness.

hp Clustering thickness (ply thickness).

hpp Thickness of a single pre-preg ply.

H Lamina compliance tensor for intralaminar

damage model.

H0 Undamaged compliance tensor.

I1 Mass by in-plane surface unit.

I2 Mass by length unit.

I3 Rotatory inertia term.

kα Contact stiffness.
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Symbol Description

k∗α Linearized contact stiffness.

kΣ Lumped stiffness of the plate and of the

contact law.

kb Bending stiffness of the plate.

kbsm Lumped shearing, bending and membrane

stiffness of the plate.

ki, i = x, y Wave numbers.

km Membrane stiffness of the plate.

k∗m Linearized membrane stiffness of the plate.

ks Shearing stiffness of the plate.

ky Linearized contact stiffness with plasticity.

kH Hertz contact stiffness.

K Kinetic energy.

K Penalty stiffness of an interface.

K1 Penalty stiffness of an interface in pure

mode I.

K2 Penalty stiffness of an interface in pure

shear mode.

Kij Dimensionless shear correction factors.

lcz Length of the cohesive zone.

le In-plane element size.

`∗ Characteristic finite element length.

`∗max Maximum characteristic element length.

`min Minimum dimension of an element.

`x Finite element length at x direction.

`y Finite element length at y direction.

L Half specimen length (MMB or ENF tests).

L Lagrangian function.
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Symbol Description

L Length of a TCT specimen.

Mi Impactor mass.

Mj, j = 1, 2 Bending moments respect x (i = 1) and y

(i = 2) axis.

ML Mismatch bending stiffness parameter for

two-layer plates.

MM Mismatch bending stiffness parameter.

Mp,max Largest plate mass which can remain unaf-

fected by the boundaries.

Mp,wave Mass of the plate area affected by the first

wave.

Mp Lumped mass of the structure.

M∗
p Equivalent lumped mass of the structure.

Mx,My,Mxy In-plane laminate moments.

n Number of same thickness plate regions.

nj, j = 1, 2, 3 Unitary normal vector to a delamination

plane.

nd Number of interfaces for delamination.

n∗d Number of delaminations.

Ne Number of elements in a cohesive zone.

Nx, Ny, Nxy In-plane laminate forces.

N (uo, vo, wo) Non-linear terms of the plate governing

equations.

p(r) Normal contact pressure of the Hertz con-

tact theory.

p0 Maximum normal contact pressure.

P Normal contact pressure.

PB Percent of bending in CAI test.
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Symbol Description

Pc Critical load for crack propagation (MMB,

ENF and TCT tests).

q Power parameter of the contact law.

q(x, y, t) Concentrated impact force.

Qα Effective contact modulus.

Qx, Qy Through-the-thickness shear forces.

Qzi Effective contact modulus along the loading

axis z of the impactor.

Qzp Effective contact modulus along the loading

axis z of the plate.

rc Radial position of an arbitrary point in the

contact zone.

rn(θ) Position of the leading edge of the n-th wave

mode.

rN , N = 1+, 1−, 2+, 2− Elastic domain thresholds.

rp Plate radius.

R Impactor tip radius.

Rc Contact radius of the Hertz contact theory.

s Unloading rigidity.

SL Longitudinal shear strength of a ply.

SisL In-situ longitudinal shear strength of a ply.

ST Transverse shear strength (transverse com-

pressive fracture).

Su Fiber shear strength.

t Time.

ti Impact time.

t̄hs Normalized impact time at the maximum

impact force for half-space behavior.
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Symbol Description

t̄q Normalized impact time at the maximum

impact force for quasi-static behavior.

t̄w Normalized impact time at the maximum

impact force for finite plate behavior.

T Surface tractions per unit area.

ufc Compressive displacement at failure.

U Elastic energy or internal work.

vL Loading velocity.

V External work.

V (t) Impactor velocity.

V0 Initial impactor velocity.

Vind Impact velocity for permanent indentation.

V com
per Impact velocity for perforation due to lam-

inate compressive failure.

V sh
per Impact velocity for perforation due to lam-

inate shear failure.

wb Displacement of the back face of the plate

at the impact point.

wi Displacement of the impactor.

wo Displacement of the mid-plane of the plate

at the impact point.

W Total length of a TCT specimen.

W Total work.

WC Work done by contact penalties.

WE External work.

WI Internal work.

Wmn(t), Xmn(t) and Ymn(t) Coefficients of Fourier series (complete an-

alytical impact models).
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Symbol Description

WMS Work done in propelling mass added in

mass scaling.

XPO Pull-out strength.

XC Longitudinal (fiber) compression strength.

XT Longitudinal (fiber) tensile strength.

Y Thermodynamic force.

YC Transverse compressive strength of a ply.

YT Transverse tensile strength.

Y is
T In-situ transverse tensile strength.

α Indentation.

α0 Fracture angle.

α0 Permanent indentation.

αcr Critical indentation as from of it permanent

indentation starts.

αii, i = 1, 2 Coefficients of thermal expansion.

αmax Maximum indentation.

β Characteristic impact parameter.

β Mixed-mode ratio.

βii, i = 1, 2 Coefficients of hygroscopic expansion.

γij, i, j = x, y, z or i, j = 1, 2, 3 Shear strains.

δt Increment of time.

δtstable Stable time increment (FE explicit algo-

rithm).

δ Variational operator.

δ(·) Dirac delta function.

δij, i, j = 1, 2, 3 Kronecker delta operator.
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Symbol Description

δLP Displacement at LP point (MMB tests).

δM Displacement at M point (MMB and ENF

tests).

∆M Difference of moisture content respect to

the corresponding reference value.

∆T Difference of temperature respect to the

corresponding reference value.

∆f Propagation criterion for delamination.

∆o Onset criterion for delamination.

∆shear Euclidian norm of the relative displace-

ments in mode II and mode III.

∆f
shear Relative displacement for damage propaga-

tion in shear mode.

∆o
shear Relative displacement for damage onset in

shear mode.

∆f
3 Relative displacement for damage propaga-

tion in pure mode I.

∆o
3 Relative displacement for damage onset in

pure mode I.

∆i, i = 1, 2, 3 Relative displacements.

∆ Relative displacement vector.

εoi , i = q, r Transverse shear strains.

εoi , i = x, y, s In-plane stretching and shearing of the mid-

plane (membrane strains).

εi, i = x, y, z, q, r, s or i = 1, . . . , 6 Contracted notation of the strain.

εij, i, j = x, y, z or i, j = 1, 2, 3 Tensorial strain notation.

εSG1 Strain lecture from a gage located on the

top face of a plate (CAI test).
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Symbol Description

εSG3 Strain lecture from a gage located on the

bottom face of a plate (CAI test).

εc Through-the-thickness compressive failure

strain.

ζ, (or ζw = ζ/2) Relative plate mobility, inelastic parameter,

or loss factor.

η Least-square fitting parameter of interlam-

inar fracture toughnesses.

ηL Longitudinal friction coefficient.

ηT Coefficient of transverse influence (trans-

verse compressive fracture).

θ Off-axis loading axis or orientation of a ply.

θs Sliding angle (transverse compressive frac-

ture).

κi, i = x, y, s Curvatures.

λ Norm of the relative displacement compo-

nents.

λ Relative stiffness.

λi, i = x, y Wavelengths.

µ Effective mass ratio.

µ Friction coefficient.

ν Isotropic Poisson ratio.

νij, i, j = 1, 2, 3 or i, j = r, θ, z Poisson coefficients.

νm Interface Poisson ratio.

Ξ Computed energy dissipated by delamina-

tion.

Π Total potential energy.

ρ Density.
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Symbol Description

ρm Density of the interface material.

σfc Residual compressive strength in a CAI

test.

σi, i = x, y, z, q, r, s or i = 1, . . . , 6 Contracted notation of the stress.

σij, i, j = x, y, z or i, j = 1, 2, 3 Tensorial stress notation.

σyc Compressive elastic limit of the plate in the

through-the-thickness direction.

(σ1, σ2, σ6)p Stress components on the back outer ply of

the laminate.

(σx)max and (σy)max Maximum values of the in-plane tensile

stresses due to the flexural deformation.

σ̃(m) Components of the stress tensor defined in

a coordinate system (m) representing the

fiber misalignment.

σ̃ Effective stress tensor.

τ Mixed-mode interface stress.

τ o Mixed-mode interface strength.

τ o1 Shear pure mode interface strength.

τ o3 Pure mode I interface strength.

τij, i, j = x, y, z or i, j = 1, 2, 3 Shear stresses.

τmax Maximum allowable frictional shear stress.

τi, i = 1, 2, 3 Interface stresses.

τ̃Teff and τ̃Leff Effective stresses (transverse compressive

fracture).

φi, i = 1, 2 Rotations of a transverse normal about the

y (i = 1) and x (i = 2) axis.

φN , N = 1+, 1−, 2+, 2− Loading functions.

ϕC Fiber misalignment angle.
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Symbol Description

Ψ Helmholtz free energy.

Ψo (β) Elastic energy of the interlaminar constitu-

tive equation.

Ψo Function of the relative displacement space.

ωmn Natural frequencies of a plate.

(r, θ, z) Cylindrical coordinates of the plate.

(u, v, w) Displacements of the plate at (x, y, z).

(u1, u2, u3) Displacements of the plate at (x1, x2, x3).

(uo, vo, wo) Mid-plane displacements of the plate at

(x, y, z).

(x, y, z) Cartesian coordinates of the plate.

(x1, x2, x3) Cartesian coordinates of the ply.

[C]p Constitutive matrix of the back outer ply

in the ply coordinate system.

[S] Compliance matrix of the plate in the plate

coordinate system.

[T ]γ Rotation matrix of the engineering strains

from the plate coordinate system to the ply

coordinate system.
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List of Acronyms

Acronym Description

AFP Automated Fiber Placement.

AITM AIrbus Test Method.

ASTM American Society for Testing Materials.

BVID Barely Visible Impact Damage.

CAI Compression After Impact.

CFRP Carbon Fiber Reinforced Plastic.

CMC Ceramic Matrix Composite.

CPU Central Processing Unit.

DIC Digital Image Correlation.

ENF End-Notched Flexure test.

FE Finite Element.

GB Giga-Byte.

GFRP Glass Fiber Reinforced Plastic.

GLARE GLAss REinforced fiber metal laminate.

LaRC Langley Research Center (failure criteria).

LEFM Linear Elastic Fracture Mechanics.

LVDT Linear Variable Differential Transformer.

MMB Mixed-Mode Bending test.

MMC Metal Matrix Composite.

MPI Message Passing Interface mode.
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Acronym Description

NDI Non-Destructive Inspection methods.

PMC Polymeric Matrix Composite.

RAM Random-Access Memory.

SG Strain Gage.

TCT Transverse Crack Tension test.

UEL User ELement subroutine (Abaqus/Implicit code).

VCCT Virtual Crack Closure Technique.

VUEL User ELement subroutine (Abaqus/Explicit code).

VUINTER User INTERaction subroutine (Abaqus/Explicit code).

VUMAT User MATerial subroutine (Abaqus/Explicit code).



Chapter 1

Introduction and objectives

1.1 Introduction

A composite material is defined as the combination of two or more phases on the

macroscopic scale. The mechanical performance and properties of the composite are

superior to those of the individual constituent materials.

Typically, composite materials are classified in function of the reinforcement

geometry, or in function of the matrix material. Related to the geometry of the

reinforcement, it can be composed by long fibers, short fibers, or particles. The

fibers can be presented randomly distributed, following an established direction in

the composite, or even as a fabric. Related to the matrix material, the most typical

are Polymeric Matrix Composite (PMC), Metal Matrix Composite (MMC), and

Ceramic Matrix Composite (CMC).

When the PMC is reinforced by long fibers, it is called advanced Fiber Reinforced

Plastic (FRP), using for example glass (GFRP) or carbon (CFRP). Advanced FRPs

are often fabricated in the form of laminates. A laminate consists of one or more

thin layers (laminae or ply) stacked together, where each one has the reinforcement

oriented at one given direction, in the form of unidirectional plies. The orientation

of each ply is changed suitably in order to stand the mechanical design requests.

Nowadays, there are manufacturing systems completely automatized, Automated

Fiber Placement machine (AFP), that stack each ply according to the final geometry

of the structure and with the desired fiber orientation, or even with orientations that

change point to point (curved fibers).

1
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The application of advanced FRPs is gradually increasing as a result of their

good specific mechanical properties and increased flexibility of design. Compos-

ites are used in a wide spectrum of industrial components and customers, where

the aerospace industry, including military and commercial aircraft, is the largest

consumer [1].

At present, the advanced FRPs are included in the set of materials that improve

and advance the aviation industry. In this field, it is well known that the main

issues of concern are the greenhouse gas emissions and the fuel costs, which are the

largest operating expense for airlines. The development of technologies to address

these issues has clear economic and environmental benefits. As documented by King

et al. [2], the reduction of the amount of fuel burnt can be achieved by ”reducing

both aircraft weight and its parasitic drag (drag due to the non-lift component, i.e.

the fuselage)”. In this sense, the application of advanced FRPs in primary and

secondary structures is taking part in the improvement of the whole weight due to

the good combination of light weight, and high stiffness and strength.

When composites are to be used in structural components, a design development

program is generally initiated during which the performance of the structure is

assessed prior to its use. Typically, the process of design starts with the analysis of

a large set of simple small specimens and, when sufficient knowledge is acquired at

this level, it is changed over to a more complex structure but carrying out fewer tests.

This process is repeated until to reach the complete full scale product, at which one

or two very expensive tests are performed. This process is commonly known as

the Building Block approach [3]. At each step of this approach, a combination of

testing and analysis techniques is typically performed, because testing alone can be

prohibitively expensive due to the large number of specimens needed to verify every

geometry, loading, environment, and failure mode [4].

As reported Davies and Ankersen [5], design time is expensive and structural

testing is also expensive, of the order of $40 million for a new aircraft variant.

Therefore, the development of reliable analysis tools that enable to understand the

structure mechanical behavior, as well as to replace most, but not all, the real

experimental tests, is clear interest. Recent advances in simulation by means of

computers, known as Virtual Mechanical Testing, have given realistic models for

the prediction of the complicated physical processes involved in the behavior of
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composite materials. These models are of special interest in configurations that are

too complex to certify by purely empirical methods.

During all the stages of the certification process for aeronautic structures, two

key concepts are permanently addressed: damage resistance (or durability), and

damage tolerance. As reported by Bailie et al. [6], ”the damage resistance is the

ability of the structure to resist damage initiation and/or growth for a specified length

of time. How durable the structure should be designed to be is an economic issue. A

highly durable structure requires fewer inspections and repairs”. On the other hand,

”the damage tolerance is the ability of the structure to resist catastrophic failure

in the presence of cracks or other damage without being repaired, for a specified

number of operations (flights) or length of time in service. Damage tolerance is

usually demonstrated by residual strength tests conducted on a component that has

been previously damaged in a well defined manner. Residual strength must be greater

than a limit value, defined by the certifying authority, that depends on the ability to

detect the damage during an inspection”.

It is well known that laminated composite structures have excellent fatigue lives

compared to metallic structures. However, they are specially weak to environment

changes and impact loadings.

An impact is a dynamic event where the contact of the collided bodies generates

forces that act in a very short interval of time, and initiate stress waves which

travel away from the region of contact. Impacts by foreign objects can be expected

during all the stages of the life of the composite structure (manufacturing, service

and maintenance). The design of impact damage resistant and damage tolerant

composite components is a conceptually difficult task. Unlike metallic components,

which can yield and dissipate energy via plasticity, composites dissipate energy by a

variety of interacting damage modes. The damage created often cannot be detected

by simple visual inspection, can grow under load, and can cause severe reductions in

the stiffness and the strength. Lack of knowledge of the impact effects on composite

structures is a factor in limiting the use of composite materials [7].
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1.2 Motivation

Susceptibility to damage from concentrated out-of-plane impact forces is one of the

major design concerns of structures made of advanced FRPs used in the aeronauti-

cal industry. The development of virtual mechanical testing models to analyze the

impact damage resistance of a structure is of great interest for reducing certifica-

tion costs. But even more, the prediction of the residual strength of the impacted

structure is the most valuable data. However, it is a difficult task.

When an impact is given on a composite structure, the description of the problem

is quite complex. Laminated composites are heterogeneous materials due to presence

of local flaws, such as air micro-gaps, resin-rich zones, discontinuities of the fibers,

loss of fiber lineup, changes of fiber density, etc. Accordingly, composite structures

degrade in a large variety of failure mechanisms (matrix cracking, fiber-matrix inter-

face debonding, delamination, and fiber breakage) which interact in a complicated

way, especially when the structure is subjected to impact loading. Moreover, the

onset and the evolution of these failure mechanisms depend on a large set of impact

parameters, that are the physical parameters and properties of the projectile, the

structural configuration, and the environmental conditions. Due to all these facts,

the development of a reliable tool for the prediction of the impact damage resistance

and the corresponding damage tolerance is a challenging task, which at present, it

is not available.

Analytical impact models representing the physical system must be considerably

idealized to render them amenable for a possible theoretical treatment. Conse-

quently, the solutions obtained often are valid for a narrow range of impact config-

urations, or even they are not suitable because the predictions are too far from the

reality.

Using the major recent advances in computational methods and the conceptual

representation of the composite failure mechanisms, the virtual testing of the impact

event by means of numerical simulations of finite element (FE) codes seems to

be reachable. The proposal of modeling impact in a FE code is in part possible

due to the advances in Computer Sciences which allow enough detailed description

of the event with acceptable analysis runtime. This is succeed by means of the

parallelization of the FE model in multiple CPUs, i.e. using a cluster.
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In contrast to the analytical models, FE methods are capable of modeling large

number of impact configurations and several related phenomena, such as dynamic

modeling, contact analysis, and progressive degradation of the material. The ma-

terial behavior can be described by the implementation of constitutive models for-

mulated in the framework of Continuum Damage Mechanics. One of the main keys

for the realistic prediction of the virtual testing is the suitable formulation of the

constitutive models.

1.3 Objectives

The main goal of the present thesis is the development of a FE tool for the simulation

of two sequenced and standardized tests, drop-weight impact and Compression After

Impact (CAI), on specimen coupons manufactured with polymer-based composite

materials reinforced with continuum fibers. Drop-weight impact is categorized as

a low-velocity and large mass impact test. Under this loading, the delamination is

the major damage mechanism as it reduces considerably the compressive strength

of the structure. On that account, the CAI test is performed to assess the effect

of the impact damage on the compressive strength. Therefore, the purpose of the

simulations is the prediction of the residual compressive strength of the correspond-

ing impacted specimen; to achieve this goal, the previous simulation of the impact

should be accurately performed.

The reliability of the predictions depends mainly on the constitutive model for

the description of the composite material behavior. That is the description of the

onset and the growth of the different damage mechanisms. The strategy used here

is based on modeling the laminate failure, where a laminate consists of homoge-

neous plies, each with orthotropic properties that depend on the fiber orientation.

Accordingly, two separated constitutive models are formulated using a rigorous ther-

modynamic framework: one for the description of the debonding between the plies

of the laminate (i.e. delamination), and another for the description of the dam-

age mechanisms that can occur in each ply (i.e. intralaminar damage mechanisms:

matrix cracking, fiber-matrix interface debonding, and fiber breakage). The formu-

lation and implementation of both constitutive models are performed separately,

but the interaction of the damage mechanisms is ensured since both damage models
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are used in the same FE model. The proposed delamination model and intralaminar

model are respectively based on previous thesis and papers presented by Turon et

al. [8–13] and Maimı́ et al. [14–17].

Other aims of the present project, that are as relevant as the FE predictions, are

the analytical description of the impact event and the realization of an experimental

test plan. The FE simulations need an appropriate experimental program to assess

the validity of the numerical predictions.

Also, due to the simplicity of the structure considered (monolithic, flat and

rectangular laminated composite plates with conventional stacking sequences), the

analytical description of the impact event is feasible. This analytical description

comprises the prediction of the elastic response and the proposals of new thresh-

olds at which significant damage starts. The analytical description is suitable for

preliminary design analysis, as it enables the fast assessment of the role that each

parameter plays in the impact event. Accordingly, the analytical description is use-

ful for the definition of impact experimental plans. Although the analytical tools

studied herein are focused on laboratory coupons, the concepts acquired often can

be applied for more complex impact configurations.

Since the experimental drop-weight impact and CAI tests are performed with

the goal of having real data to validate the results obtained by means of the FE

simulations, the impact configurations considered should assure the damage occur-

rence. Because of that, the design of the experimental plan is carried out by means

of the analytical impact models.

1.4 Thesis lay-out

According to the objectives described previously, the thesis is structured as follows:

In Chapter 2 and in the related Appendix A, a detailed review of the analyti-

cal impact models available in the bibliography is given. This review includes the

models for the prediction of the elastic impact response, as well as the description of

available and new proposals for damage thresholds. By means of this analysis, the

experimental plan and set-ups of the drop-weight impact and CAI tests are defined

in Chapter 3.

In Chapter 4, the significant experimental results of the drop-weight impact
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tests, the non-destructive inspections, and the CAI tests are shown and discussed.

Additionally, comparisons with analytical predictions are also carried out.

Related to the development of FE simulations, an interlaminar damage model

for the simulation of the delamination onset and growth under variable mixed-mode

conditions is developed in Chapter 5. The formulation and implementation pre-

sented is a modified proposal of the model originally developed by Turon et al.

[8–13]. The model is validated by simulating quasi-static standard delamination

toughness tests and by comparing the results with experimental data.

In Chapter 6, the formulation of a continuum damage model for the prediction

of the onset and accumulation of intralaminar damage mechanisms in laminated

composites is described. The model presented is based on the work developed by

Maimı́ et al. [14–17]. In this chapter, simulations of different tests in order to

illustrate the limitations of using a constitutive damage model formulated in the

Continuum Damage Mechanics framework are presented.

Using the damage models developed, some of the impact and CAI tests which

are tested experimentally are also simulated. The considerations for the proper

simulation of the tests are detailed in Chapter 7, as well as the virtual results and

their comparison with the experimental data presented previously in Chapter 4.

Finally, the thesis is concluded in Chapter 8 with an overall assessment of its

achievements and a discussion of possible future research developments.
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Chapter 2

Analytical description of the

impact event

2.1 Introduction

The prediction of damage in laminated composite structures induced by the impact

of an external object is a complex task. Damage results from the interaction between

different failure mechanisms (matrix cracking, fiber-matrix interface debonding, de-

lamination, and fiber breakage), and it depends on the governing parameters of the

impact event. These parameters include the physical parameters and properties of

the projectile, the structural configuration, and the environmental conditions.

Experimental evidence shows that impact damage is directly related to the na-

ture of the impact behavior which, in turn, is controlled by the governing param-

eters. Therefore, it is useful to know the effects of each governing parameter on

the impact behavior, and thus to have a qualitative understanding of the possible

damage mechanisms that can occur. For example, under constant energy impact

conditions, a quasi-static type of impact behavior will result mostly in delamina-

tion damage whereas in a dilatational wave-controlled type of impact behavior will

result mostly in permanent indentation and fiber breakage at the impact site [18].

There are approaches in the literature, based on analytical models, which predict

the type of the impact response for a determined configuration, such as impact on

flat and rectangular laminated composite plates [19, 20]. The initial knowledge of

the impact behavior not only helps in assessing the possible type of damage induced,

9
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but it is also useful for the development of efficient numerical models, for planning

test programs, and for selecting a proper simplified analytical model to describe the

impact event.

The analytical models are a suitable and powerful tool to obtain fast predictive

results for a given impact configuration. Generally, these analytical models are lim-

ited to simple geometries of the structure and rely on stepwise solution of nonlinear

differential equations or integral equations which describe the transitory response

of the system until damage onset, i.e. in the elastic regime. The results given by

these analytical models are suitable to compare different impact cases with different

values of the governing parameters.

The framework and the ingredients used for the impact dynamics description on

rectangular, flat, and monolithic laminated composite plates are presented in this

chapter. Therefore, a literature survey of the analytical impact models available

is presented. On the other hand, an overview of the main approaches used to

identify quickly the nature of the impact behavior is done. Finally, a review of the

analytical damage thresholds available in the literature, as well as the development

of new proposals for some damage mechanisms are presented.

The issues analyzed in this chapter and in the related Appendix A are used to

define a suitable set of low-velocity impact tests in order to capture different damage

phenomena which can occur. The details of this task are described in Chapter 3.

2.2 Impact behavior

Experimental evidence shows that the nature of the impact behavior and the re-

sulting damage are related. Since the impact behavior is defined by the governing

parameters of the impact event, the damage created also depends on these pa-

rameters. For impacts on rectangular, flat, and monolithic laminated composite

plates, the governing parameters are typically grouped in three sets: plate param-

eters (thickness, in-plane size, lamina type, elastic and fracture properties, density,

stacking sequence, and boundary conditions), impactor parameters (shape, size,

elastic properties, mass, velocity, and incidence angle), and the environmental con-

ditions.

The impact behavior can be predicted easily in the elastic regime by means of
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approaches based on analytical models of the impact event. Thus, the information

obtained can be used to know the possible related damage which can occur. Damage

starts when a suitable parameter of the elastic response, typically the impact force,

is greater than the corresponding damage threshold (see Section 2.6).

Before to describe the models for the prediction of the impact response, it is useful

to review the different types of impact responses for plates (impact behaviors), as

the response type is crucial to have a qualitative insight of the resulting possible

damage, and for the selection of a simplified model for impact description. Detailed

descriptions of the impact behaviors are given by Olsson [20–25], by Christoforou

and Yigit [18, 19, 26, 27], by Abrate [7, 28], and by Lin and Fatt [29].

According to Olsson [22], an impact event initiates stress waves propagating

from the impact point, where the influence of the waves gradually fade away due

to material damping and wave scattering. For impact times ti close to the time

required for the waves to propagate through-the-thickness direction (i.e. ti ≤ h
cz

,

where h is the plate thickness, and cz the speed of sound in the through-the-thickness

direction), the response is dominated by three-dimensional wave propagation (see

Figure 2.1.a). For longer impact times, flexural and shear waves govern the response

(see Figure 2.1.b). For times much longer than the time needed by these waves to

reach the plate boundaries, the lowest vibration mode of the impactor-plate system

predominates (see Figure 2.1.c). Eventually, the deformation mode approaches a

purely static deformation.

The response dominated by through-the-thickness waves is typically associated

with ballistic impact, which in most cases, causes localized and easily detectable

damage. Related to the impacts that can have an aircraft, the response in Figure

2.1.b is typical for impacts by hail and runway debris, whereas the response in Figure

2.1.c is typical for dropping of heavy tools. The in-plane plate size and the boundary

conditions affect the response shown in Figure 2.1.c, but not the responses shown in

Figures 2.1.a and 2.1.b, because in these cases, the impact event is over before the

stress waves have reached the edges of the structure. The load and the deflection are

out of phase during a small mass impact while they are more or less in phase during

a large mass impact. Furthermore, due to the more localized deflection, small mass

impactors cause higher impact loads and earlier damage initiation than large mass

impactors with the same kinetic energy.
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(a) (b) (c)

Figure 2.1: Impact responses (after Olsson [22]): (a) dominated by dilatational

waves, (b) dominated by flexural and shear waves, and (c) quasi-static response.

Summarizing, the impact behaviors can be classified into three extreme cate-

gories that are referenced in the literature as: (a) three-dimensional wave-controlled,

through-the-thickness wave-controlled or ballistic impact ; (b) global behavior with no

size effects, flexural and shear wave-controlled, or impact on an infinite plate; (c)

fully-global or quasi-static impact behavior. If the global response of the plate can

be neglected (extreme case of (b)), this impact behavior is typically called half-space

impact.

Clear Visible Impact Damage is associated with the response shown in Figure

2.1.a. In addition, Barely Visible Impact Damage (BVID) is associated with the

response types shown in Figures 2.1.b and 2.1.c [6], where delamination is the main

damage mechanism. Delaminations are a major threat because they are hidden and

reduce significantly the compressive strength of the impacted structure.

Impacts are often categorized in the literature as low- or high-velocity, but there

is not a clear transition between categories and authors disagree on its definition

[30]. Some authors refer, improperly, to the response type under small mass of

the impactor as high-velocity impact and under large mass impact as low-velocity

impact. Olsson [20], and Christoforou and Yigit [19] demonstrate that the response

type under elastic conditions depends on the impactor mass, the mass of the surface

of the plate affected by the impact and the structural stiffness. Increasing the

velocity, the impact force increases and induces a large damage extension or even

a change in the main damage mechanism type, but the velocity does not affect the

impact behavior. The classification by means of the velocity may be motivated

from a practical point of view for damage creation, since large mass impactors
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usually cause damage at a lower velocity than small mass impactors with the same

kinetic energy. When an impact is categorized as low-velocity impact, the material

properties are assumed to be rate independent [31].

A physically based criterion to distinguish low- or high-velocity impact categories

was suggested in Davies and Godwin [32], which defined high-velocity impact as

cases where the ratio of the impactor velocity V0 versus the speed of sound in the

plate thickness direction cz, exceeds the through-the-thickness compressive failure

strain εc. That is:

εc =
V0

cz
(2.1)

The assumed failure mode implies a response governed by through-the-thickness

waves (i.e. ballistic impact). For typical composite materials, the corresponding

impactor velocity ranges from 10 to 20m/s [33]. However, the large strains associated

with contact stresses are highly localized and the resulting failure may often not

affect the general response of the plate. Thus, response governed by flexural and

shear waves has been experimentally demonstrated in carbon/epoxy laminates at

velocities of 45m/s. Thus, the use of velocity for classifying impact events is highly

debatable [20].

Finally it should be noted that the term hyper-velocity has come to be applied to

satellites and spacecraft which may be struck by micro-meteorites where the impact

duration is measured in nanoseconds, and both the meteorite and impacted structure

will vaporize [21].

2.3 Local deflection

Impact on monolithic plates involves local and global deflection. Therefore, impact

damage may be caused due to local contact stresses and/or stresses resulting from

the structural response. Figure 2.2 shows two extreme responses of a plate under

impact loading. Only local deflection is shown in Figure 2.2.a, which can result from

small-mass and high-velocity impact on thick laminate plates. However, only global

deflection is shown in Figure 2.2.b, which can occur from large-mass and low-velocity

impact on thin laminate plates.



14 CHAPTER 2. ANALYTICAL DESCRIPTION OF THE IMPACT EVENT

(a) (b)

Figure 2.2: Extreme plate responses under impact loading, (a) pure local deflection

and (b) pure global deflection.

The local deflection typically is described by means of a proper contact law,

which relates the concentrated contact load Fc and the indentation α as:

Fc = kαα
q (2.2)

where kα is the contact stiffness, q is a power parameter, and α is the indentation

defined as the difference between the displacement of the impactor wi and the dis-

placement of the back face wb [7], or mid-plane wo [22], of the plate at the impact

point. That is:

α = wi − wo (2.3)

As it will be shown in next sections, the contact law is a required ingredient

for the development of analytical models of the impact event. Alternative models,

such as spring-dashpot and the momentum balance methods, use the coefficient of

restitution to characterize the local energy loss due to impact [27]. The contact

law can be obtained experimentally or by analytical methods, and depends on the

material properties of the bodies, the stacking sequence, and the size and shape of

the impactor.

For composite materials it is accepted that local deflection can be modeled using

a statically determined contact law for moderate strain rates [34, 35], as happens in

low-velocity impact events. The static contact load between two linear elastic bodies

is described by the Hertz contact law, which is based on the following assumptions:

infinite plate thickness (i.e. impact on a half-space plate), the bodies in contact

are isotropic, frictionless contact between the impactor and the plate, and negligible
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curvature of the plate surface during contact (i.e. the wrapping effect is neglected).

The Hertz contact law has been applied in a wide range of cases even when if

all assumptions are not satisfied (e.g. indentation on laminated composite plates),

because usually it fits quite well the experimental data obtained from indentation

tests.

In the literature there are advanced developments for the contact description

which take into account the anisotropy of laminated composite materials. These

models are not often simple as the Hertz contact law, because the resulting laws

require the numerical solution of differential or integral equations. Some examples

for transversely isotropic materials are the work presented by Dahan and Zarka [36],

and Turner [37]. For orthotropic materials, the work of Wu and Yen [38], Chao and

Tu [39], and Swanson [40] should be mentioned.

A comprehensive justification of the Hertz contact law agreement for local de-

flection modeling of laminated composite plates in contact with a hemispherical

indentor, and a collection of some developments available in the literature to get

over some of the Hertz assumptions are given by Abrate [7], and Davies and Olsson

[21]. In [21], the descriptions are given in function of the static indentation tests

which can be performed:

• Measuring differences between front and back face deflections on

plates with an unsupported back face. This test is suitable for lo-

cal deflection analysis in flexible plates. Under low contact loads, the load-

indentation behavior is in agreement with the Hertz contact law [41, 42]. Under

high contact loads, the plate may result in a large flexural curvature, which

increases the contact area (i.e. the wrapping effect). Also, matrix cracking and

delamination reduces the flexural stiffness which contributes to a large flexural

curvature. Due to this increase of the contact area, the pressure distribution

changes from a bell-shaped (Hertzian-type distribution) to a saddle-shaped.

As a result of this redistribution, the indentation decreases as the force keeps

increasing [7]. However, this effect has a small influence on the response, which

is then dominated by global plate deflections.

• Placing the plate on a flat rigid support. This test is suitable for the

local deflection analysis in rigid plates. Under low contact loads, the load-
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indentation behavior is in agreement with the Hertz contact law. However,

under moderate loads the behavior results in a softening response caused by

the fiber damage and plasticity of the matrix. There are some simple models

which take into account this effect and they yield more realistic results, such

as the work of Cairns [43], Christoforou [44], and Yigit and Christoforou [45].

On the other hand, if the thickness of the plate is small enough there is a

stiffening effect on the load-indentation behavior which depends on the ratio

between the indentation depth and plate thickness [46]. This effect is included

in the contact models of Suemasu et al. [47] and Chen et al. [48].

2.3.1 Hertz contact law adapted for laminated composite

plates

Considering Equation (2.2) and the case of a hemispherical impactor indenting a

plate (see Figure 2.3), the Hertz contact law is defined by equaling the power q to

3/2, and the contact stiffness kα to kH which is given by:

kH =
4

3
Qα

√
R (2.4)

where:

Qα =

(
1

Qzi

+
1

Qzp

)−1

(2.5)

The parameters Qzi and Qzp are the effective contact modulus along the loading

axis z of the impactor and the plate, respectively. R is the impactor tip radius.

Cartesian coordinates: (x, y, z)

Cylindrical coordinates: (r, θ, z)

Figure 2.3: Coordinate systems.
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The normal contact pressure p(r) of the Hertz theory varies within the contact

radius Rc as:

p(r) = p0

√
1− r2

c

R2
c

, 0 ≤ rc ≤ Rc (2.6)

Rc =

(
3

4

FcR

Qα

) 1
3

=
√
Rα (2.7)

where rc is the radial position of an arbitrary point in the contact zone, and p0 is

the maximum pressure located at rc = 0 given by:

p0 =
3Fc

2πR2
c

(2.8)

For isotropic materials (e.g. a steel impactor), the effective contact modulus is

defined by:

Qz =
E

(1− ν2)
(2.9)

where E and ν are the Young modulus and the Poisson ratio, respectively. For the

case where the indentor is much stiffer than the plate, Equation (2.5) simplifies to

Qα ≈ Qzp.

The extension of Equation (2.9) for materials with transverse isotropy (along the

loading axis z) is [22]:

Qzp =
Ez

(1− νrzνzr)
(2.10)

where νrz and νzr are the through-the-thickness Poisson ratios. In most laminate

plates νrzνzr ≈ 0, and Equation (2.10) can be simplified to Qzp = Ez [41, 46]. The

through-the-thickness Young modulus of the laminate Ez is common to set equal to

the transversal Young modulus of a single ply (i.e. Ez = E2).

It is important to remark that Equation (2.10) is an approximation of the ef-

fective modulus of transversally isotropic plates which underestimates the contact

modulus of typical composite plates by 10-20% [23, 40].

More advanced expressions of Qzp for transversally isotropic materials are avail-

able in the literature: Turner [37, 40, 49], or that of Greszczuk [23, 50].
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The expression of Qzp proposed by Turner [37] is given as:

Qzp =
2

β1β3

(2.11)

where:

β1 =




Er
Ez
− ν2

rz

1− ν2
rr




1/2

, β2 =

1 +

(
Er

2Grz

− 1

)
− νrz (1 + νrr)

1− ν2
rr

β3 =

(
β1 + β2

2

)1/2(
1− νrr
Grr

)
(2.12)

The expression developed by Greszczuk [50] is given as:

Qzp =

2

√
Grz

Crr
(CrrCzz − C2

rz)

√(√
CrrCzz +Gzr

)2 − (Crz +Gzr)
2

(2.13)

where:

Crr =
Er (1− νrzνzr) Ω

(1 + νrr)
, Crz = ErνzrΩ

Czz = Ez (1− νrr) Ω, Ω =
1

(1− νrr − 2νrzνzr)

(2.14)

In an orthotropic plate, the effective contact modulus Qzp defined by Equation

(2.10) becomes directionally dependent. Then, the shape of the indentation, which

is circular in transverse isotropic plates along z axis, becomes elliptical in orthotropic

plates. The effective contact modulus can be estimated by integrating Er (θ) over

2π and taking the average [22]. However, since in most laminated plates νrzνzr ≈ 0,

the solution again simplifies to Qzp = Ez.

2.3.2 Unloading and reloading contact process

Typically, in an impact event the contact force increases to a maximum value and

then decreases back to zero. During the unloading phase, Yang and Sun [41] found
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that the Hertzian contact law was not adequate. The unloading phase is significantly

different from the loading phase due to permanent indentation. In order to account

this effect, Crook [51] proposed the following equation:

Fc = Fm

(
α− α0

αmax − α0

)5/2

(2.15)

where Fm is the contact force at the start of the unloading, αmax is the indenta-

tion corresponding to Fm (i.e. maximum indentation) and α0 is the permanent

indentation. Equation (2.15) can be rewritten as:

Fc = s (α− α0)5/2 (2.16)

where:

s =
Fm

(αmax − α0)5/2
(2.17)

is called unloading rigidity. Equaling the Hertz contact law for loading with Equation

(2.15), the permanent indentation α0 and the critical indentation αcr as from of it

permanent indentation starts, are given as:

α0 =





αmax

(
1−

(
αcr
αmax

)2/5
)

if αmax > αcr

0 if αmax ≤ αcr

(2.18)

αcr =
kH
s

(2.19)

The procedure in order to define αcr starts by the selection of a proper value of

α0 by means of the unloading contact law (Equation (2.15)), so that the areas under

the analytical unloading curves are equal to that calculated from the corresponding

experimental curves. If these values of α0 are substituted into Equation (2.17), a

range of values of s is obtained. Using the average of s values, the value of αcr is

finally obtained.

If a subsequent reloading phase is done, the contact law is also distinct from the

unloading curve but always returns to the point where unloading began [41]. The

reloading curve is modeled by:
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Fc = Fm

(
α− α0

αmax − α0

)3/2

(2.20)

In this case, there is no need to perform reloading experiments to find the pa-

rameters of the contact law.

2.3.3 Elastic-plastic contact models

Permanent deformations can be introduced in composite materials when the inden-

tation exceeds a critical value because the material behavior is mainly governed

by the properties of the matrix where a plastic behavior is expected. Under this

circumstance, the Hertz contact law overestimates the maximum contact force and

elastic-plastic contact laws can yield more realistic results. In these models, the crit-

ical indentation is taken into account during the loading process, unlike the previous

approach where the critical indentation is accounted for using the unloading phase.

Elastic-plastic models assume that initially the material behaves elastically until

a critical indentation is reached (see Figure 2.4). At this point, the contact area is

divided into a plastic zone and an elastic zone as the loading increases and a new

contact law is obtained [7]. Some elastic-plastic contact models are described below.

The elastic-plastic model developed by Christoforou [44] describes the contact

loading and unloading between a rigid sphere and a thin laminated composite plate

supported on a rigid substrate. Thus, the model is focused only on local deflec-

tions since the global response becomes negligible. The material is assumed to be

transversely isotropic and follows an elastic-perfectly plastic behavior of the through-

the-thickness normal stress-strain law. As yielding stress, a maximum shear failure

criterion governed only by the fiber shear strength Su is considered, although it

is approached to the shear strength of the laminate SL [19]. The development of

Cairns [43] results in the same contact law for loading by assuming that the contact

radius and the indentation are much smaller than the impactor radius.

Therefore, for the loading case, the contact law is defined by:

Fc =





πREz
(1− νrzνzr)h

α2 if 0 ≤ α ≤ αcr

2πRSu (2α− αcr) if αcr < α ≤ αmax

(2.21)
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and for the elastic unloading phase, the contact law is:

Fc =
πREz

(1− νrzνzr)h
(
α2 − α2

0

)
(2.22)

where h is the specimen thickness. The critical indentation αcr and the permanent

indentation α0 are given by:

αcr =
2Suh (1− νrzνzr)

Ez
(2.23)

α0 = αmax − αcr (2.24)

Another contact law is proposed by Yigit and Christoforou [45]. It is obtained

by combining the classical Hertz contact theory and the elastic-plastic indentation

theory given in Johnson [34]. In this case, the contact law for loading is given by:

Fc =

{
kHα

3/2 if 0 ≤ α ≤ αcr

kHα
3/2
cr + ky (α− αcr) if αcr < α ≤ αmax

(2.25)

and for the elastic unloading phase, the contact law is:

Fc = kH
(
α3/2 − α3/2

m + α3/2
cr

)
+ ky (αmax − αcr) (2.26)

where ky is the linear stiffness of the elastic-plastic loading phase which is equal to

the slope of the elastic indentation curve at α = αcr:

ky =
3

2
kH
√
αcr (2.27)

The critical indentation αcr can be obtained from the contact stress distribution

using a maximum shear failure criterion [34]. Knowing that YC is the transverse

compressive strength of the laminate, αcr is approached to [26]:

αcr =
0.68 (YC)2 π2R

Q2
α

(2.28)
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Figure 2.4: Detail of the contact law phases.

2.3.4 Linearized contact laws

In the analytical models of the impact event (see Section 2.4), the local deflections

are simply described using a proper contact law. When the contact law is replaced

in the governing equations of the plate and of the impactor, an exact solution of

these equations generally are not available and a numerical solution is required.

However, in some cases a closed-form solution can be obtained if the contact law is

linearized (e.g. Christoforou and Swanson [52]; Olsson [35]). The resulting closed-

form equations are more useful to gain a better understanding of the effects of the

governing parameters on the behavior of the impact event.

Yigit and Christoforou [53] proposed a linearization of the elastic-plastic contact

law of Christoforou [44]. Also, the loading contact law presented in [45] is linearized

by Christoforou and Yigit [27], and used in [19, 26, 54]. In addition, Choi and

Lim [55] developed a linearization of the Hertz contact law which allows to model

low-velocity impact problems in a general-purpose finite element method software.

2.4 Analytical impact models

The analytical impact models are a powerful tool to get fast predictive results for

a given impact configuration. These models are usually developed to predict the

response of the system in the elastic regime, which is sufficient to compare different

impact cases with different values of the governing parameters.

These models describe the motion of the impactor, the motion of the structure

(e.g. laminated composite plates) and the local deflections in the area surrounding

the impact point. To consider these local deflections, a contact law is commonly

used.
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Closed-form solutions can be obtained for some cases. Usually, these solutions

are developed by means of Duhamel integral (i.e. convolution integral), Laplace

and Fourier transforms. If a closed-form solution is not possible, then a numerical

method is required, such as Newmark step-by-step time integration method.

It is essential to identify the effects of the large number of governing parame-

ters on the impact behavior. In order to make the analysis more manageable, a

dimensionless framework for the formulation of analytical models is recommended

[56]. The goal is to reduce the number of governing parameters into a set of suit-

able governing dimensionless parameters that provide more insight into the impact

problem, minimize the amount of computations required, and produce the output in

particularly instructive forms [45]. The definition of these dimensionless parameters

are usually given by means of Buckingham Pi Theorem [57], such as in Yigit and

Christoforou [26].

The analytical models are often classified in function of how the plate is modeled

[7, 28]. Davies and Olsson [21] classify the models in two main groups: multi-

degree-of-freedom models and one- or two-degree-of-freedom models. The first group

yields the typically so-called complete analytical models, and are based on numerical

mode summation which rarely allows explicit expressions for the assessment of the

influence of the different parameters. The second group includes energy-balance

models and spring-mass models. These usually allow closed-form solutions which

explicitly show the influence of the governing parameters, but have limited flexibility

in handling complex geometries and different impact behaviors.

For the impact cases discussed in the present thesis, the inertia of the impactor

is usually treated by considering its rigid motion described by Newton law. The

inertia of the plate is more complicated, because during impact space deflections

and transverse rotations are experienced. Typically, the weight load of the impactor

is neglected, because it may be expected that the gravitational force is small relative

to the contact force during the impact. On the other hand, the static properties of a

material for low-velocity impacts are used without discussion of possible strain-rate

effects [58].
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2.4.1 Complete analytical models

The governing equations of a laminated composite plate (resulting from a selected

plate theory) added with the governing equation of the impactor, a suitable contact

law, and a proper approximation of the unknown variables yield to called complete

analytical models of the impact event [19, 28]. The complete models fully describe

the dynamic behavior of the plate and often are taken as a reference to validate

analytical simplified models (e.g. Yigit and Christoforou [19]). The complete an-

alytical models are valid in cases where dilatational waves are not important. In

addition, from the complete models, it is possible to deduce simplified models which

predicts the response for extreme behaviors (infinite plate and quasi-static impact

behaviors).

The boundary conditions considered for the drop-weight test referenced in ASTM

D7136 / D7136M [59] are approximated to simply supported boundary conditions

[60]. Under this consideration, the displacement solutions are assumed by means of

Navier method which gives, for some laminate configurations, the exact solution of

the governing equations for both plate theories presented in Appendix A: classical

laminated plate theory and first-order shear deformation plate theory. In practice,

exact solutions for the dynamic response of plates generally are not available due

to the boundary conditions or the laminate configuration. In these cases, classical

variational methods are used, such as Raleigh-Ritz method [58, 61].

Figure 2.5: Boundary conditions of a simply supported plate.

The boundary conditions for simply supported and first-order shear deformation

plate theory can be expressed as (see Figure 2.5):
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wo(x, 0, t) = 0, wo(x, bt, t) = 0, wo(0, y, t) = 0, wo(at, y, t) = 0

φ1(x, 0, t) = 0, φ1(x, bt, t) = 0, φ2(0, y, t) = 0, φ2(at, y, t) = 0

My(x, 0, t) = 0, My(x, bt, t) = 0, Mx(0, y, t) = 0, Mx(at, y, t) = 0

(2.29)

where t is the time, wo is the mid-plane displacement in the normal direction z, φ1

and φ2 are respectively the rotations of a transverse normal about the y and x axis,

and My and Mx are respectively the bending moments respect x and y axis (see

Appendix A). In addition, at and bt are the in-plane dimensions of the plate, and a

and b are the effective in-plane dimensions of the plate.

The governing equations are solved by expansion of unknown displacements and

rotations in Fourier series (i.e. mode summation) which satisfies the corresponding

boundary conditions of the plate. For the plate theory considered, they are:

wo(x, y, t) =
∞∑

m=1

∞∑

n=1

Wmn(t) sin
mπx

a
sin

nπy

b
(2.30)

φ1(x, y, t) =
∞∑

m=1

∞∑

n=1

Xmn(t) cos
mπx

a
sin

nπy

b
(2.31)

φ2(x, y, t) =
∞∑

m=1

∞∑

n=1

Ymn(t) sin
mπx

a
cos

nπy

b
(2.32)

where Wmn(t), Xmn(t) and Ymn(t) are the coefficients to be determined such that

corresponding governing equations are satisfied everywhere in the domain of the

plate.

All laminates considered in the thesis are symmetrical and balanced. Therefore,

the following simplifications for the governing equations may be used:

1. Symmetric plates: the bending-extensional coupling stiffness matrix [B] is

equal to zero. This simplification allows to decouple the equation which gives

the flexural displacement wo of the other two equations for displacements uo

and vo for classical laminated plate theory. And for first-order shear defor-

mation plate theory, the rotation equations are decoupled of the in-plane dis-

placements.
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2. Symmetric and balanced plates: the components A16 and A26 of the exten-

sional stiffness matrix [A] are qual to zero.

3. All lamina of the laminate is manufactured with the same material and the

center of masses is located in the laminate centerline: the inertia term I2 =∫ h/2
−h/2 zρ dz is equal to zero.

4. All lamina is modeled as a transverse isotropic material: if first-order shear de-

formation plate theory is considered, the transverse shear stiffness component

A45 is equal to zero.

In addition, geometric nonlinear effects are not considered in the development of

the governing equations. These geometric nonlinearities are typically called mem-

brane effects which are significant when the deflection of the plate reaches the order

of the plate thickness. On the other hand, the nonlinear terms N considered in the

development of the governing equations are omitted (see Appendix A).

Classical laminated plate theory

The resulting simplified governing equation obtained from the classical laminated

plate theory is:

∂2

∂x2

[
D11

(
−∂

2wo
∂x2

)
+D12

(
−∂

2wo
∂y2

)
+D16

(
−2

∂2wo
∂x∂y

)]

+2
∂2

∂x∂y

[
D16

(
−∂

2wo
∂x2

)
+D26

(
−∂

2wo
∂y2

)
+D66

(
−2

∂2wo
∂x∂y

)]

+
∂2

∂y2

[
D12

(
−∂

2wo
∂x2

)
+D22

(
−∂

2wo
∂y2

)
+D26

(
−2

∂2wo
∂x∂y

)]

+q = I1
∂2wo
∂t2

(2.33)

On the other hand, the load q(x, y, t) is set as a concentrated impact force located

at x = a/2 and y = b/2, and it is defined as [7]:

q(x, y, t) = Fc(t)δ(x−
a

2
)δ(y − b

2
) (2.34)
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where Fc(t) is the contact force described by a desired contact law (see Section 2.3).

The function δ(·) is the Dirac delta function, which has the following property:

∫ ∞

−∞
µ(ξ)δ(ξ − ξ0) dξ = µ(ξ0) (2.35)

Replacing the Navier solution (Equation (2.30)) and their respective space deriva-

tives into Equation (2.33), multiplying all equation terms by sin
(
mπx
a

)
sin
(
nπy
b

)
and

finally integrating the x − y space, the governing equation at impact point (i.e. at

x = a/2 and y = b/2) takes the form:

Ẅmn + ω2
mnWmn =

4

abχ
Fc(t) sin

mπ

2
sin

nπ

2
(2.36)

If m and n vary respectively from 1 to p and 1 to q, the motion of the plate is

then described by N = p · q equations. Note that due to the impact location, only

odd numbered terms m and n are contributing to the solution. For the other plate

material points, the right hand side of Equation (2.36) is equal to zero. The term χ

is defined by Equation (2.37) and ω2
mn is the natural frequency defined by Equation

(2.38).

χ = I1 + I3

[(mπ
a

)2

+
(nπ
b

)2
]

(2.37)

ω2
mn =

1

χ

[
D11

(mπ
a

)4

+ 2 (D12 + 2D66)
(mπ
a

)2 (nπ
b

)2

−4D16

(mπ
a

)3 (nπ
b

)
− 4D26

(mπ
a

)(nπ
b

)3

+D22

(nπ
b

)4
] (2.38)

The governing equation of the impactor is easily found by applying D’Alembert

Principle [62]. By neglecting the gravitational force of the impactor, the resulting

equation is:

Fc(t) +Miẅi = 0 (2.39)

If a closed-form solution is not possible, the dynamic response of the plate and

the impactor can be obtained by time integration of set N+1 second order ordinary

differential equations with appropriate initial conditions (see Equation (2.40)) by
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using a numerical solution procedure such as Newmark step-by-step time integration

method.

Wmn(0) = 0, Ẇmn(0) = 0, wi = 0, ẇi = V0 (2.40)

V0 is the initial impact velocity of the impactor and Mi the impactor mass.

First-order shear deformation plate theory case

For the first-order shear deformation plate theory, the resulting simplified governing

equations to predict the unknown variables wo, φ1 and φ2 are:

A55

(
∂2wo
∂x2

+
∂φ1

∂x

)
+ A44

(
∂2wo
∂y2

+
∂φ2

∂y

)
+ q = I1

∂2wo
∂t2

(2.41)

∂

∂x

[
D11

∂φ1

∂x
+D12

(
∂φ2

∂y

)
+D16

(
∂φ1

∂y
+
∂φ2

∂x

)]

+
∂

∂y

[
D16

∂φ1

∂x
+D26

∂φ2

∂y
+D66

(
∂φ1

∂y
+
∂φ2

∂x

)]

−A55

(
∂wo
∂x

+ φ1

)
= I3

∂2φ1

∂t2

(2.42)

∂

∂x

[
D16

∂φ1

∂x
+D26

(
∂φ2

∂y

)
+D66

(
∂φ1

∂y
+
∂φ2

∂x

)]

+
∂

∂y

[
D12

∂φ1

∂x
+D22

∂φ2

∂y
+D26

(
∂φ1

∂y
+
∂φ2

∂x

)]

−A44

(
∂wo
∂y

+ φ2

)
= I3

∂2φ2

∂t2

(2.43)

Following the same procedure as in classical laminated plate theory, the resulting

system of equations which describe the dynamic response of the plate is:



s11 s12 s13

s12 s22 s23

s13 s23 s33








Wmn

Xmn

Ymn





+



I1 0 0

0 I3 0

0 0 I3








Ẅmn

Ẍmn

Ÿmn





=





qmn

0

0





(2.44)

Defining αm = mπ
a

and βn = nπ
b

, the terms sij and qmn are obtained by:
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s11 = β2
nA44 + α2

mA55, s12 = αmA55, s13 = βnA44

s22 = α2
mD11 + β2

nD66 + A55 −
(

1

2ab

)
D16

s23 = αmβn (D12 +D66)−
( m

4na2

)
D16 −

( n

4mb2

)
D26

s33 = β2
nD22 + α2

mD66 + A44 −
(

1

2ab

)
D26

(2.45)

qmn =
4Fc(t)

ab
sin(αm

a

2
) sin(βn

b

2
) (2.46)

For each (m,n) combination, a system of three equations with three unknowns is

solved for the coefficients Wmn(t), Xmn(t) and Ymn(t). The motion for the impactor

is again governed by Equation (2.39). The initial conditions are defined by:

Wmn(0) = 0, Ẇmn(0) = 0, wi = 0, ẇi = V0

Xmn(0) = 0, Ẋmn(0) = 0, Ymn(0) = 0, Ẏmn(0) = 0
(2.47)

where V0 is the initial impact velocity of the impactor.

2.4.2 Infinite plate impact models

The response of a plate under impact is governed by flexural and shear waves when

the major wave emanating from the impact point has not time to reach the bound-

aries of the plate (see Figure 2.1.b). This situation is similar to an impact on an

infinite plate. Therefore, the in-plane plate size and the boundary conditions do not

affect the response. In the literature this behavior is referenced by the descriptors:

global behavior with no size effects, flexural and shear wave-controlled, or impact

on an infinite plate.

There are some analytical models in the literature for the description of this

response type. Olsson [35] developed a model for orthotropic plates without shear

deformation and assuming a Hertzian contact law. Closed-form solutions for this

problem with a linearized contact law are proposed in Yigit and Christoforou [26].

A solution for Hertzian contact law on quasi-isotropic plates with transverse shear

deformation is given in Mittal [63]. An extension of the model to both linear and
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Hertzian contact law on orthotropic plates was presented in Olsson [64]. A closed-

form prediction of the peak load for small mass impact based on three asymptotic

cases with purely deformation by indentation, bending or shear, is developed in

Olsson [25].

The model described here was proposed by Olsson [20, 35], which in turn was

based on the work of Zener [65]. This model is referenced in many publications

and used in the development of approaches for predicting the response type for a

determined impact configuration [19, 20, 25–28] (see Section 2.5). The solution was

proposed for the description of the impact until the waves are reflected back from

the boundaries in orthotropic plates impacted by an impactor with a hemispherical

tip.

In orthotropic plates, waves propagate at different speeds in different directions

and the flexural wavefront will have an almost elliptical shape centered at the impact

point. The analysis assumes that the area affected by the major wave emanating

form the impact point can be approximated by a rectangular simply supported plate

with side lengths a and b. Thus, the development of the model can be performed

by using the framework explained for the complete analytical models (see Section

2.4.1) assuming classical laminated plate theory for orthotropic plates, and equal

contact law for loading and unloading process. Therefore, no account was made for

transverse shear deformation waves. In applications, shear deformations are usually

of minor importance for monolithic laminates, while the influence on sandwich panels

may be substantial [20].

The governing equation for transverse displacement description in a simply sup-

ported orthotropic plate assuming classical laminated plate theory, neglecting the

I3 term (see Appendix A) and impacted in x = a/2 and y = b/2 (see Figure 2.5) is:

Ẅmn + ω2
mnWmn =

4

abI1

Fc(t) (2.48)

where the natural frequencies ωmn are described by:

ω2
mn =

1

I1

[
D11

(mπ
a

)4

+ 2 (D12 + 2D66)
(mπ
a

)2 (nπ
b

)2

+D22

(nπ
b

)4
]

(2.49)

The solution of the differential Equation (2.48) can be found by means of the

Duhamel integral:
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Wmn =
4

abI1ωmn

∫ t

0

Fc(τ) sin [ωmn(t− τ)] dτ (2.50)

By inserting Equation (2.50) into Equation (2.30), the transverse displacement

of the plate at the impact point, x = a/2 and y = b/2, is :

wo(a/2, b/2, t) =
4

abI1

∫ t

0

Fc(τ)
∞∑

n=1

∞∑

m=1

1

ωmn
sin [ωmn(t− τ)] dτ (2.51)

The double sum in Equation (2.51) can be approximated by a continuous inte-

gration over m and n. Since only odd values of m and n are used in the summations,

only half of the continuous integrals should be retained:

wo(a/2, b/2, t) =
1

abI1

∫ t

0

Fc(τ)

∫ ∞

0

∫ ∞

0

1

ωmn
sin [ωmn(t− τ)] dmdn dτ (2.52)

The fact that the waves are closed ellipses impliesm ≡ n, which allows to consider

the ratio a/b equal to the ratio of wavelengths λx/λy. The wavelengths are the

inverses of the wave numbers ki = ωmn/cbend,i (i = x, y), where cbend,i are the flexural

wave velocities. Knowing cbend,x =
√
ωmn(D11/I1)1/4 and cbend,y =

√
ωmn(D22/I1)1/4,

the following relation is obtained:

a

b
=
cbend,x
cbend,y

=

(
D11

D22

)1/4

(2.53)

Then, the natural frequencies can be expressed as:

ωmn =
2π2mn

ab

√
D∗

I1

(2.54)

where D∗ is called effective plate stiffness [35] and is defined by fairly complicated

expressions involving elliptic functions. A sufficient approximation is [20, 25]:

D∗ ≈
√(

A+ 1

2

)
D11D22, where A =

D12 + 2D66√
D11D22

(2.55)

Therefore, the plate displacement can be rewritten by:
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wo(a/2, b/2, t) =
1

8
√
I1D∗

∫ t

0

Fc(τ) dτ (2.56)

On the other hand, the governing equation of the impactor is described by Equa-

tion (2.39). After integrating twice, the displacement of the impactor can be ex-

pressed by:

wi(t) = V0t−
1

Mi

∫ t

0

∫ τ

0

Fc(τ
′) dτ ′ dτ (2.57)

The indentation of the plate was defined by Equation (2.3). Differentiating twice

with respect the time and using Equations (2.56) and (2.57), and the contact law

defined by Equation (2.2), the indentation is found to be governed by the nonlinear

differential equation:

α̈ +
1

8
√
I1D∗

qkαα
q−1α̇ +

kα
Mi

αq = 0 (2.58)

If a linear contact law is used, q = 1, Equation (2.58) yields to the well-known

differential equation of a damped harmonic oscillator which has closed-form solu-

tions. In Yigit and Christoforou [26] these closed-form solutions are developed. On

the other hand, the model defined by the governing Equation (2.58) can be rep-

resented by a simplified lumped-mass model shown in Figure 2.6.a [20], which is

equivalent to the single degree of freedom model shown in Figure 2.6.b.

(a) (b)

Figure 2.6: Lumped-mass models for infinite plate behavior.
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The governing Equation (2.58) can be expressed in a dimensionless form, which

is more effective in order to analyze the effects of the governing parameters on

the impact behavior. That is because the governing parameters are set on key

dimensionless parameters, yielding to less characterization parameters of the impact

response. This framework can be developed by defining all the basic magnitudes

of the problem (i.e. mass [M ], length [L], and time [T ]) by means of selected

parameters of the impact problem [26, 57]. The chosen definitions are [65]: mass

[M ] = Mi, length [L] = V0[T ], and time [T ] is extracted from the contact stiffness kα

which depends on the selected contact law. Therefore [T ] =
(
k−1
α [M ][L](1−q)

)1/2
=(

k−1
α MiV

(1−q)
0

)1/(1+q)

.

The explained definitions are equivalent to define the variable [L] equal to αmax

[19, 26, 54]. The αmax corresponds to the maximum indentation of the plate (i.e.

when the global response of the plate is neglected, which is called half-space impact).

The expression of αmax is simply found by equating all impact energy with the

indentation energy. Consequently, the impact force is normalized with respect to

the maximum impact force for a half-space behavior. Therefore, the equation of

αmax for a general contact law yields to:

αmax =

(
1 + q

2

MiV
2

0

kα

)1/(1+q)

(2.59)

The resulting dimensionless differential equation is:

¨̄α + ζqᾱq−1 ˙̄α + ᾱq = 0 (2.60)

where the over bar indicates dimensionless parameters and the initial conditions are

ᾱ(0) = 0 and ˙̄α(0) = 1. All parameters that describe the impact behavior are now

lumped in a single dimensionless parameter ζ. This parameter is defined by:

ζ =
1

8
√
I1D∗

(
kαM

q
i V

q−1
0

)1/(1+q)
(2.61)

In the bibliography, the ζ parameter is called relative plate mobility [20], inelas-

tic parameter [7, 28], or loss factor [19]. The highest contact force is obtained for

ζ = 0, in which case the plate is very rigid and the problem is reduced to that of an

impact on a half-space impact behavior where the impactor will rebound with the
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initial velocity V0 [22]. As the impact parameter ζ increases, the contact force his-

tory becomes asymmetrical and the contact duration increases because the flexural

deformation of the target becomes more significant (i.e. the behavior approaches to

a quasi-static response type). Under high values of ζ the model is not appropriate

since the model is affected by the boundary conditions and the global deformation

of the structure.

In Olsson [20] the parameter ζ is defined by introducing the concept of mobility,

C, which is defined as velocity per unit force applied to a component. The mobility

of the plate, Cp, is given by:

Cp =
ẇo
Fbend

=
1

8
√
I1D∗

(2.62)

The impactor mobility, Ci, may be defined from peak (initial) velocity, V0, per

peak load, Fmax for a complete immovable plate (i.e. Cp = 0 and the indentation is

maximum αmax):

Ci =
V0

Fmax
=

V0

kαα
q
max

=

(
k−1
α V 1−q

0

(
1 + q

2
Mi

)−q)1/(1+q)

(2.63)

By means of the mobility definitions, the ζ parameter can be redefined by the

following expression:

ζ =

(
2

1 + q

)q/(1+q)
Cp
Ci

(2.64)

The simplified model can be applied until the waves are reflected back from the

boundaries. Equation (2.65) was proposed by Olsson [20], and it gives the position

in polar coordinates r and θ for the leading edge of the n-th wave mode in an

orthotropic plate. Therefore, the simplified model is not suitable if the value given

by this equation is greater than the minimum distance from the impact point to the

boundaries of the plate.

rn(θ) =

(
2Dr(θ)D

∗

I1

√
D11D22

)1/4√
πnt (2.65)

where Dr(θ) is the radial plate bending stiffness in direction θ.
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2.4.3 Half-space impact models

When the impactor mass is very small, and the target is fairly stiff, impact does not

produce significant global structure response and can be approximated by impact on

a half-space (i.e. the response is fully local). Then, this behavior can be approached

by single mass-spring-damper model shown in Figure 2.7. The resulting governing

equation is:

Miẅi + Fc = 0 (2.66)

where the contact law is defined by Fc = kαα
q = kαw

q
i , and the initial conditions

are wi(0) = 0 and ẇi(0) = V0.

Figure 2.7: Spring-mass model for half-space impact behavior.

The dimensionless framework described in Yigit and Christoforou [45] defines the

problem magnitudes as [M ] = Mi, [L] = αcr, and [T ] =
(
k−1
α Miα

(1−q)
cr

)1/2

. The αcr

term is the yielding indentation for plastic indentation which is defined by Equation

(2.28) (see Section 2.3.3). Using these definitions, the dimensionless form of the

governing Equation (2.66) is:

¨̄wi + w̄i = 0 (2.67)

On the other hand, the resulting normalized impact velocity β groups all the

parameters for half-space behavior. Therefore, the β parameter fully characterizes

the half-space behavior and is termed characteristic impact parameter. That is:

β =
V0

ωαcr
(2.68)

where ω is the contact frequency given as:
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ω = [T ]−1 =
(
k−1
α Miα

(1−q)
cr

)−1/2
(2.69)

However, by using the dimensionless framework explained in Section 2.4.2, i.e.

mass [M ] = Mi, length [L] = αmax, and time [T ] =
(
k−1
α Miα

(1−q)
max

)1/2

, the β param-

eter remains constant. In particular, for linear contact law q = 1, β parameter is

equal to 1, and for Hertzian contact law q = 3/2, β parameter is equal to (5/4)−1/2.

This result implies that the predicted normalized response given for this behavior is

constant whatever the values of the governing parameters of this behavior. This in-

teresting consideration is used in the impact characterization diagram of Chritoforou

and Yigit [19, 26, 27] which is explained in Section 2.5.

On the other hand, the model defined for wave-controlled impact behavior can

be used in order to describe the half-space behavior. As it has been noted, the

half-space impact behavior will be obtained when the ζ parameter yields to zero.

2.4.4 Quasi-static impact models

For sufficiently large impact times, the response is more or less quasi-static, in the

sense that load and deflection give the same relation as during a static loading.

Based on extensive experimental and computational experience, researchers suggest

that the response is almost quasi-static if the effective mass ratio µ is greater than

a threshold value [66]. This effective mass ratio is given by:

µ =
Mi

M∗
p

(2.70)

whereMi is the impactor mass andM∗
p is the equivalent lumped mass of the structure

which depends on the type of structure and support conditions. For rectangular and

simply supported plates it is set equal to 1/4 of the total plate mass Mp, as can be

deduced from Equation (2.36).

The most complete simplified model for quasi-static behavior description is shown

in Figure 2.8.a [67], where the terms ks, kb and km are the shearing, bending and

membrane stiffness of the plate under static load. The expression of ks, kb and km

are function of the boundary conditions, the shape and the laminate configuration
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of the structure. The stiffness values can be obtained experimentally, by using nu-

merical methods, or analytically in cases with simple plate geometries [21]. A list of

stiffness expressions for transverse isotropic plates is done in Sierakowski et al. [68].

(a) (b)

Figure 2.8: (a) Complete and (b) simplified spring-mass models for quasi-static

impact behavior.

The governing equations for each mass by neglecting the gravitational forces are

[67] (Figure 2.8.a):

Miẅi + kα (wi − wo)q = 0 (2.71)

M∗
p ẅo + kswo + kbwo + kmw

3
o − kα (wi − wo)q = 0 (2.72)

where the initial conditions are wi = wo = 0, ẇo = 0 and ẇi = V0. In Olsson [24]

this model is used in conjunction with a delamination force threshold and a critical

energy for delamination growth in order to predict the impact damage initiation and

growth during quasi-static response caused by large mass impactors.

The equivalent plate mass M∗
p is negligible when the impactor mass is larger than

twice the total plate mass. By neglecting the plate mass and linearizing the stiffness

km and kα (i.e. linear stiffness k∗m and k∗α), the model yields to the model shown

in Figure 2.8.b [20]. In this case, all stiffness can be lumped to a single stiffness kΣ

which is defined by:
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kΣ =
k∗αkbsm
k∗α + kbsm

, where kbsm =

(
1

kb
+

1

ks

)−1

+ k∗m (2.73)

The governing equation for this case is:

Miẅi + kΣwi = 0 (2.74)

where the initial conditions are wi = 0 and ẇi = V0. More simplified versions are

proposed in the literature, such as models with neglected membrane effects and/or

shear effects [19]. Equation (2.74) can be written in a dimensionless form by using

the magnitude definitions shown in Section 2.4.2 specified for a linear contact law

(i.e. q = 1). That is:

¨̄wi +

(
kbsm

kbsm + k∗α

)
w̄i = 0 (2.75)

2.5 Approaches for impact behavior description

There are approaches in the literature which predict the impact behavior type of

rectangular, flat, and monolithic laminated composite plates. These approaches are

based on simplified analytical models of extreme impact behaviors and develop key

characterization parameters which inform of the behavior type. As it has been noted

in Section 2.2, the behaviors considered are those that yield to Barely Visible Impact

Damage (BVID) if the resulting peak load reaches a designed damage threshold.

Ballistic impact behavior is beyond the scope of the present thesis.

The approaches detailed in this section are the characterization diagram pro-

posed by Christoforou and Yigit [19, 26, 27], and the mass criterion proposed by

Olsson [20]. It should be noted that not all impact cases are adequately character-

ized by the approaches explained at following. This is due to the fact that these

approaches are based on simplified models based on certain hypothesis that may not

be true for certain impact configurations.

2.5.1 Christoforou and Yigit characterization diagram

The characterization impact diagram proposed by Christoforou and Yigit [18, 19,

26, 27] predicts the behavior type, as well as the maximum elastic impact force for
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a wide range of impact cases. The prediction of the maximum impact force is useful

since it can be compared with a damage threshold for damage onset (see Section

2.6).

The construction of the diagram is based on simplified analytical models of the

infinite plate and quasi-static impact behaviors, and uses the dimensionless frame-

work described in Section 2.4.2 (i.e. the normalization with respect to the maximum

indentation αmax). On the other hand, a linearized contact law of the elastic-plastic

contact model proposed in Yigit and Christoforou [45] is used, that results in closed-

form solutions for the impact models.

Infinite plate behavior

The closed-form solutions, Equation (2.76), are the expressions of the normalized

impact force as a function of the relative mobility parameter ζ with q = 1 (see

Equations (2.60) and (2.61)). It should be noted that ζ parameter is changed to

ζ = 2ζw which simplifies the resulting equations:

F̄w (t̄) = ᾱ (t̄) =





exp−ζw t̄√
1− ζ2

w

sin
(√

1− ζ2
w t̄
)

if ζw < 1

t̄ exp−t̄ if ζw = 1
1

2
√
ζ2
w − 1

(
exp

(
−ζw+
√
ζ2w−1

)
t̄− exp

(
−ζw−
√
ζ2w−1

)
t̄

)
if ζw > 1

(2.76)

The dimensionless time at which the maximum impact force occurs can be found

by setting the derivatives with respect to time equal to zero, in Equation (2.76),

yielding:

t̄w =





arccos

(
ζw√

1− ζ2
w

)
if ζw < 1

1 if ζw = 1

1

2
√
ζ2
w − 1

ln

(
ζw +

√
ζ2
w − 1

ζw −
√
ζ2
w − 1

)
if ζw > 1

(2.77)

Then, the maximum normalized impact force can be calculated by replacing

Equation (2.77) into Equation (2.76) as:
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F̄w,max (t̄w) = ᾱ (t̄w) (2.78)

From Equation (2.78), it is concluded that the infinite plate behavior is function

of only the parameter ζw, because t̄w only depends on it.

Half-space behavior

As noted in Section 2.4.3, the half-space behavior can be described by the spring-

mass model shown in Figure 2.7. Due to the dimensionless framework used, the

dependence on the characterizing half-space parameter β is avoided and the nor-

malized impact force can be obtained by normalizing Equation (2.66):

F̄hs (t̄) = ᾱ (t̄) = w̄i (t̄) = sin t̄ (2.79)

Thus, if an impact response is locally dominated, the maximum normalized im-

pact occurs at time t̄hs = π/2 and this force will be close to the unity F̄hs,max = 1.

This development also can be deduced by means of the governing Equation (2.60)

of the wave-controlled impact model and letting the ζw parameter equal to zero.

Quasi-static behavior

The quasi-static behavior is described by the model shown in Figure 2.8.b. Equaling

the linear contact stiffness k∗α to ky (Equation (2.27)), and defining λ = kbsm/ky (i.e.

relative stiffness), the solution of the dimensionless governing Equation (2.75) (see

Section 2.4.4) is:

w̄i (t̄) =

√
1 + λ

λ
sin

(√
λ

1 + λ
t̄

)
(2.80)

and the normalized impact force for quasi-static behavior is:

F̄q (t̄) =

√
λ

1 + λ
sin

(√
λ

1 + λ
t̄

)
(2.81)

From Equation (2.81), the maximum normalized impact force occurs at time:
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t̄q =
π

2

√
1 + λ

λ
(2.82)

and is defined as:

F̄q,max =

√
λ

1 + λ
(2.83)

As Equation (2.83) shows, the maximum normalized impact force for quasi-static

behavior only depends on λ parameter.

Impact characterization diagram

Using the analytical solutions of the extreme cases explained above, a characteriza-

tion diagram can be constructed as shown in Figure 2.9. This diagram represents the

variation of the maximum normalized impact force F̄max as a function of the relative

mobility parameter ζw. For the construction of the diagram, the curve representing

infinite plate behavior is obtained from Equation (2.78), and the horizontal lines

with different values of relative stiffness λ are obtained by using Equation (2.83).

Figure 2.9: Impact characterization diagram (after Christoforou and Yigit [18, 19,

26, 27]), dimensionless maximum force F̄max versus relative mobility ζw.

Four different regions can be identified in the diagram. Impact configurations

which define points in the right part of the diagram behave as quasi-static. For points

which fall close to the red curve behave as infinite plate. Between the quasi-static
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and the infinite plate behaviors there is a transition zone where the resulting response

is a combination of both behaviors. The curve which represents the boundary of

the quasi-static response is obtained by F̄b =
√

0.68
0.68+ζ2w

, as suggested in [26, 66].

Finally, the points that fall close to the maximum dimensionless force F̄ = 1 results

in the half-space behavior, and can be obtained by setting in the simplified models

(infinite plate and quasi-static): ζw = 0 or λ→∞.

In order to demonstrate the validity of the characterization diagram several im-

pact situations covering all behavior type regions were simulated [26]. The simu-

lations were carried out by numerical integration of the complete analytical model

which considers classical laminated plate theory and simply supported boundary

conditions (see Section 2.4.1). As can be seen, the simulations follow reasonably

well the trends of the characterization diagram. In the transition zone, a complete

analytical model is required in order to better describe the response.

Summarizing, the prediction of the behavior type as well as the maximum impact

force for a given impact case can be done by calculating only two key parameters:

λ (i.e. key parameter of quasi-static impact behavior) and ζw (i.e. key parameter of

wave-controlled impact behavior). However, the contribution of structural dynamics

should be included and it can be represented by the relative impactor mass µ given

by Equation (2.70). When different impact situations (respect to their boundary

conditions, materials, size, etc.) with similar key parameters are compared, the

resulting dynamics, behavior type and normalized response are similar [54].

2.5.2 Olsson mass criterion

Olsson [20] developed a criterion for the prediction of the elastic impact behavior of

orthotropic plates. The model is based on the models for infinite plate and quasi-

static extreme behaviors described in Sections 2.4.2 and 2.4.4, respectively. This

criterion demonstrates that the response type under elastic conditions (i.e. prior

to damage onset) depends basically on the impactor/plate mass ratio. In order to

develop the criterion, the dimensionless framework presented in Section 2.4.2 was

also used.
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Small-mass impactor

For small-mass impactor, it is demonstrated that the impact time ti has the following

approximate lower bound [20]:

ti ≥
1

4

Mi√
I1D∗

(2.84)

The mass of the plate area affected by the first wave, Mp,wave, is approached by:

Mp,wave = πI1r1(0◦)r1(90◦) = π2ti
√

2I1D∗ (2.85)

where r1(0◦) and r1(90◦) are respectively the distances at 0◦ and 90◦ directions from

the impact point site to the leading edge of the first wave mode. They are calculated

by means of Equation (2.65).

On the other hand, the largest plate mass which can remain unaffected by the

boundaries, Mp,max, is found by considering the plate area affected when the first

wave mode reaches a boundary. Therefore, it can be defined as:

Mp,max = πI1 min

{(
D22

D11

)1/4

r2
x,min,

(
D11

D22

)1/4

r2
y,min

}
(2.86)

where rx,min and ry,min are the distances from the impact to the closest boundary in

the x− (i.e. 0◦ direction) and y−direction (i.e. 90◦ direction). Therefore, an impact

located at middle of the panel implies rx,min = a/2 and ry,min = b/2.

By replacing Equation (2.84) into Equation (2.85) and making the ratios respect

the impactor mass, Mi, the condition for small-mass impact (i.e. infinite plate

impact) is approached by:

Mi

Mp,max

≤ Mi

Mp,wave

≤ 2
√

2

π2
(2.87)

For rectangular plates with leading edges a and b (see Figure 2.5), the term I1

is equal to Mp

ab
. Therefore, the condition for small-mass impact can be expressed as:

Mi

Mp

≤ 1√
2π

min

{
a

b

(
D22

D11

)1/4

,
b

a

(
D11

D22

)1/4
}

(2.88)
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Large-mass impactor

For large-mass impactor, the model considered is shown in Figure 2.8.b which ne-

glects the lumped plate mass M∗
p and considers linear conditions. For this case, the

natural frequency is:

ωi =

√
kΣ

Mi

(2.89)

If the lumped plate mass is not neglected, the natural frequency of the plate is

approached by:

ωp =

√
kbsm
M∗

p

(2.90)

By means of Equation (2.89) the impact time is obtained:

ti = π

√
Mi

kΣ

(2.91)

On the other hand, using Equation (2.90) the first vibration mode of the plate

results in:

tp,1 = π

√
M∗

p

kbsm
(2.92)

Quasi-static response occurs for impact times much longer than the fundamental

vibration period of the plate, which is described by:

ti/tp,1 >> 1 (2.93)

Replacing Equations (2.91) and (2.92) in Equation (2.93), and considering M∗
p =

(1/4)Mp, the criterion for quasi-static behavior yields to
Mi

Mp

>>
1

4
. A sufficient

condition is:

Mi

Mp

≥ 2 (2.94)
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Intermediate-mass impactor

Finally, a complex response occurs for intermediate-mass impactors, which can be

modeled by including the equivalent plate mass M∗
p as shown in Figure 2.8.a. There-

fore, the condition for intermediate mass behavior for rectangular plates is:

1√
2π

min

{
a

b

(
D22

D11

)1/4

,
b

a

(
D11

D22

)1/4
}
<
Mi

Mp

< 2 (2.95)

2.6 Impact damage and analytical thresholds

The phenomenon of impact damage in laminated composite structures is very com-

plex and difficult to model analytically due to the large variety of damage modes

(matrix cracking, fiber-matrix interface debonding, delamination and fiber breakage)

and to their complex interaction process. The identification of the initiation and

propagation of the damage modes is quite relevant because it will yield information

regarding the residual strength of the structure.

Similarly to the impact response, depending on the impact governing parame-

ters, the resulting damage can be local, global or both [18, 21]. Local impact damage

consists mainly of visible permanent indentation on the contact zone involving fiber

and matrix damage modes, whereas global impact damage consists mainly of invisi-

ble extensive delaminations. The extreme local damage is the complete penetration

of the plate. Associated with these types of damages, there are complicated patterns

of matrix cracks and fiber fractures.

To bridge the analytical prediction of the impact behavior and the onset of

damage, the impact force is typically used and compared with a damage threshold

allowable. Damage occurs if the predicted elastic impact force is greater than a

well-suited threshold for the corresponding dynamic response type [7, 18, 25, 69, 70].

Therefore, the impact force is a key parameter in determining the criticality of an

impact, i.e. the risk for initiating damage.

2.6.1 Matrix cracking

The impact damage process starts with localized matrix cracks and fiber-matrix

interfacial debondings which normally are not detectable neither by the impactor
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load cells used during impact tests nor using the typical Non-Destructive Inspection

methods (NDI), e.g. ultrasonic techniques. It has been shown by Sjöblom et al. [71]

that the presence of matrix cracks does not dramatically affect the overall laminate

stiffness during an impact event. However, matrix crack tips act as initiation points

for delaminations at interfaces between plies with different fiber orientations. These

delaminations change the local and/or global stiffness of the structure [31].

Two types of matrix cracks can be observed: vertical and oblique cracks (Figure

2.10). Vertical cracks are introduced by the flexural deformation of the plate due to

tensile stresses and consequently they are located at the bottom plies. Therefore,

vertical cracks are typical in impact events that behave as quasi-static. Oblique

cracks are formed by the high transverse shear stresses resulting from the contact

load and the flexural deformation of the plate. These cracks are typically located at

top and middle plies.

(a) (b)

Figure 2.10: Type of matrix cracks in a [0/90/0] laminated composite plate (after

Richardson and Wisheart [30]), (a) longitudinal view and (b) transverse view.

Typically, in thick laminates matrix cracking starts on the impacted face of the

specimen as a result of the high and localized contact stresses. Damage propagates

downward by a succession of intra-ply cracks and interface delaminations, resulting

in a pine tree pattern (Figure 2.11.a). For thin laminates, bending stresses on the

back of the laminate introduce tensile matrix cracks, and damage progresses from the

non-impacted face up toward the impactor yielding a reverse pine tree appearance

(Figure 2.11.b).
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(a) (b)

Figure 2.11: Projected damage patterns (after Abrate [7]), (a) pine tree and (b)

reversed pine tree.

Threshold load for vertical matrix crack

A new damage threshold for the prediction of matrix cracking at the outer ply

located at the back face of a rectangular laminated composite plate due to bending

is proposed herein.

The maximum values of the in-plane tensile stresses due to the flexural defor-

mation created by a uniformly distributed static load of radius R, q0 = F ten
mc / (πR2),

centered at (x, y, z) = (a/2, b/2,−h/2) in a simply supported, rectangular and or-

thotropic plate (see Figure 2.5), can be approximated by [61]:

(σx)max =
8b2

π5R2h2
fx
(
s, Cij, Dij/h

3
)
F ten
mc (2.96)

(σy)max =
8b2

π5R2h2
fy
(
s, Cij, Dij/h

3
)
F ten
mc (2.97)

where R is the impactor tip radius and h is the plate thickness. These maximum

in-plane tensile stresses are located at (x, y, z) = (a/2, b/2, h/2), i.e. at the impact

point and at the opposite point at the back face of the plate, and are obtained by

means of the classical laminated plate theory, using the Navier solution for simply

supported plates, and neglecting membrane strains and local deflections. The terms

fx (s, Cij, Dij/h
3) and fy (s, Cij, Dij/h

3) are defined respectively as:

fx
(
s, Cij, Dij/h

3
)

= h3

∞∑

m=1

∞∑

n=1

ξ

ϑ

(
s2m2C11 + n2C12

)
(2.98)

fy
(
s, Cij, Dij/h

3
)

= h3

∞∑

m=1

∞∑

n=1

ξ

ϑ

(
s2m2C12 + n2C22

)
(2.99)
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where s = b/a, ξ = 1
mn

sin
(
mπR
a

)
sin
(
nπR
b

)
, ϑ = D11m

4s4 + 2(D12 + 2D66)m2n2s2 +

D22n
4, and Cij and Dij are respectively the constitutive and bending stiffness com-

ponents of the laminated composite plate calculated by means of the homogenized

engineering constants [72]. Equations (2.98) and (2.99) are valid only for odd values

of m and n. By adding enough terms, the solution of Equations (2.96) and (2.97)

can converge, whereas convergence is not possible for a point load case [61].

The maximum stresses given by Equations (2.96) and (2.97) must be transformed

to the stress components on the back outer ply of the laminate (i.e. (σ1, σ2, σ6)p).

This is done by calculating the strain components of the plate; afterwards, the strain

components are rotated to the local coordinates of the ply (axis 1 is aligned with the

fibers, and axis 2 corresponds to the transverse direction to the fibers); finally, by

means of the constitutive matrix of the ply, the corresponding stresses are obtained.

All these operations are collected in the following equation:





σ1

σ2

σ6




p

= [C]p [T ]γ [S]





(σx)max

(σy)max
0





(2.100)

where [C]p is the constitutive matrix of the back outer ply in the ply coordinate sys-

tem, [T ]γ is the rotation matrix of the engineering strains from the plate coordinate

system to the ply coordinate system (see Appendix A), and [S] is the compliance

matrix of the plate in the plate coordinate system (i.e. [S] = [C]−1). Developing

Equation (2.100), the resulting ply stresses are:

(σ1)p =
(

(C11)p c
2 + (C12)p s

2
) (
S11 (σx)max + S12 (σy)max

)

+
(

(C11)p s
2 + (C12)p c

2
) (
S12 (σx)max + S22 (σy)max

) (2.101)

(σ2)p =
(

(C12)p c
2 + (C22)p s

2
) (
S11 (σx)max + S12 (σy)max

)

+
(

(C12)p s
2 + (C22)p c

2
) (
S12 (σx)max + S22 (σy)max

) (2.102)

(σ6)p = 2cs (C66)p
[
(S12 − S11) (σx)max + (S22 − S12) (σy)max

]
(2.103)
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where c = cos(θ), s = sin(θ), and θ is the fiber orientation of the ply respect to the

plate coordinate system.

In addition, the in-situ transverse tensile strength Y is
T and the in-situ in-plane

shear strength SisL for an outer ply, which is considered thin enough in comparison

with the whole laminate thickness, can be calculated as [73, 74] (see Chapter 6):

Thin outer ply





Y is
T = 1.122

√
E2

1− ν12ν21

GIc
πhp

SisL = 2

√
G12GIIc
πhp

(2.104)

where E2, G12 and ν21 are the elastic properties of the ply, hp is the ply thickness, and

GIc and GIIc are respectively the fracture toughness in mode I and mode II. Equa-

tion (2.104) is obtained by applying Linear Elastic Fracture Mechanics (LEFM) for

longitudinal crack growth and assuming a uniform stress state. On the other hand,

the tensile strength and the in-plane shear strength for thick plies are approached to

the values measured from tests on unidirectional laminates, Y is
T = YT and SisL = SL.

Under the presence of both in-plane shear and transverse tension, the critical

energy release rate Gc depends on the combined effect of all microscopic energy

absorbing mechanisms such as the creation of a new fracture surface. The LaRC

failure criterion [73–77] is used to predict matrix cracking under multi-axial loading:

(1− g)
(σ2)p
Y is
T

+ g

(
(σ2)p
Y is
T

)2

+

(
(σ6)p
SisL

)2

≤ 1 (2.105)

where g = GIc/GIIc.
Replacing the transverse and shear stresses ((σ2)p and (σ6)p) in Equation (2.105),

and the corresponding strengths for thin and thick outer plies, the threshold load

for tensile matrix cracking F ten
mc can be calculated by simply taking the maximum

value of the two extreme cases, thin and thick: F ten
mc = max {(F ten

mc )thin , (F
ten
mc )thick}.

Threshold load for oblique matrix crack

The stress state at the impact point (x, y, z) = (a/2, b/2,−h/2) is 3D due to the

flexural deformation and the contact load. The in-plane compressive and shear

stresses due to the flexural deformation can be approached in the same way as it
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is indicated in the previous section for determining a threshold load for vertical

matrix crack on the back outer ply of the laminate. Solutions for the stresses due

to concentrated loads in anisotropic plates are scarce and closed-form solutions are

limited to transversely isotropic plates loaded along their axis of symmetry, and

assuming a Hertzian pressure distribution as well as that the plate is semi-infinite,

i.e. half-space [36, 78]. To approximate in a simplified form the stress state at the

impact point, the superposition of the flexural stresses and the contact stresses of a

half-space plate can be applied as it was shown by Olsson [79].

On the other hand, the maximum through-the-thickness shear stresses due to

the flexural deformation created by a transverse static point load F sh
mc located at

the center of a simply supported, rectangular and orthotropic plate (see Figure

2.5), can be computed using the 3D stress equilibrium equations [61]. These maxi-

mum stresses are located at the edges and middle plane of the plate (i.e. (σr)max:

(x, y, z) = (0, b/2, 0), and (σq)max: (x, y, z) = (a/2, 0, 0)).

For determining the threshold load for matrix cracking at the impact point or

at the edges of plate, a 3D failure criterion is required. The appearance of matrix

cracks located at these points is not as critical as the matrix cracks located at other

points since the former do not act as crack tips for large delaminations. Therefore,

these matrix cracks do not imply a significant reduction of the residual strength of

the structure, and for this reason a threshold load for these matrix cracks is not

developed here.

Olsson et al. [23] proposed a simple threshold load for matrix cracking due

to the through-the-thickness shear stress created by a static concentrated contact

load. The threshold load is calculated by considering the Hertz distribution of the

contact pressure, and the corresponding maximum value of the shear stress in the

through-the-thickness direction and inside the contact radius. In the same way of

the simplified shear stress field indicated by Davies et al. [69], the distribution of

the through-the-thickness shear stress is assumed parabolical with the maximum

located in the middle plane. The threshold load is defined as:

F sh
mc =

8
√

3

9
(πSLh)3/2

√
R

Qα

(2.106)

where h is the plate thickness, R is the impactor tip radius, and Qα is the effective
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contact modulus (see Equation (2.5)).

2.6.2 Delamination

Delaminations are induced by interlaminar shear stresses which are promoted by

matrix cracks, by stiffness mismatch between the adjacent plies, by the thickness

of the ply (ply clustering), and by the laminate deflection. Increasing any of these

factors will result in an increased mismatch in the bending deformations of adjacent

ply groups with different orientations, yielding to large delaminations.

The study of the stiffness mismatch yields important information regarding the

location, orientation, and size of delaminations. Liu [80] proposed the following

dimensionless mismatch parameter ML for two-layer plates based on the difference

of their bending stiffness respect the global coordinate system of the plate:

ML =
Dij (θb)−Dij (θt)

Dij (0◦b)−Dij (90◦t )
(2.107)

where Dij are the components of the bending stiffness matrix. Each ply is considered

separately, so Dij (θb) is the stiffness of the bottom layer acting alone, and the

subscript t refers to the top layer. While a mismatch coefficient can be defined for

each bending coefficient Dij, usually only D11 is considered.

The mismatch parameter proposed in Equation (2.107) is inadequate for uni-

directional plates since ML is not equal to 0 despite the fact that these laminates

do not have interfaces with mismatched adjacent fiber angles. Moreover, for plates

with more than one interface with mismatched fiber orientations of the adjacent

plies, this parameter is not applicable. To solve these limitations, Morita et al. [81]

proposed a new parameter MM which is calculated as:

MM =
1

2π

∫ 2π

0

[∆C11(θ)zi]max
D11(θ)

dθ (2.108)

where ∆C11(θ) is the difference of the in-plane stiffness between the adjacent plies

in direction θ, zi is the through-the-thickness distance from the neutral surface to

the considered interface, and D11(θ) is the bending stiffness of the entire laminate

in the direction θ. The parameter MM is a measure of the maximum bending stress
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discontinuity given as an integrated quantity with respect to θ. It is considered

empirically that the larger the parameter MM , the larger the impact damage area.

Delaminations only occur at interfaces between plies of different orientation. The

shape of the delamination is generally that of an oblong peanut, where its major

axis follows the orientation of the lower ply at the interface [7, 21]. These shapes are

a result of the shear stress distribution around the surrounding area of the impactor,

of the low interlaminar shear strength along or close to the direction of the fibers,

and of the matrix cracks created by the flexural in-plane stresses [82]. Figure 2.12

shows a typical distribution of these delaminations.

Figure 2.12: Example of peanut shaped delaminations.

There are two different phases during the impact driven delamination process (see

Figure 2.13). Firstly, when the impact force reaches a threshold value Fd, there is

unstable crack propagation leading to instantaneous large delaminated areas. This

often causes the impact force to drop in the response, indicating sudden loss of

stiffness [83]. The threshold load Fd does not physically represent the initiation of

damage, as sub-critical matrix cracks and small delaminations may initiate at lower

forces. Rather, it represents the initial value at which damage can be detected using

the typical NDI methods, and a change in the stiffness properties of the laminate

is expected [31, 59]. Normally, the threshold value is greater for thick laminates

than for thin laminates, as shown in Figure 2.13. Secondly, after unstable crack

growth, the size of the delaminations increase linearly with the force indicating

stable delamination growths. Jackson and Poe [84] suggested the following semi-

empirical formula which relates the maximum delamination size ds and the impact

force F :
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ds =
1

πSLh
F (2.109)

where SL is the interlaminar shear strength and h is the plate thickness.

Figure 2.13: Maximum delamination size as a function of the impact force for plates

with different thickness (after Christoforou [18]).

Figure 2.14 shows a typical profile of the impact force versus time history for

a monolithic laminated composite plate, where the threshold load Fd and the peak

force Fmax are identified. Depending on the impact velocity, Fd can be equal to Fmax.

On the other hand, the identification of Fd is not always clear, due to the effects of

the governing parameters (see Chapter 4), or due to the harmonic resonances of the

impactor, of the load cell or of the plate during the impact event [59].

Figure 2.14: Representative impact force versus time history (after ASTM D7136 /

D7136M [59]).
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Threshold load for delamination

The criteria for matrix cracking given by Equations (2.105) and (2.106) can be used

as delamination threshold loads assuming that the matrix crack tips act as initiation

points for delaminations in impact events with quasi-static behavior.

A delamination growth criterion for static conditions was derived by Davies et al.

[69, 85]. The model was based on Linear Elastic Fracture Mechanics (LEFM) and as-

sumed that mode II fracture determines delamination growth in a simply supported

circular plate. To simplify the development of the model, static loading conditions

were considered, the laminate was treated as isotropic, only small deflections were

considered (membrane effects are neglected), and the through-thickness distributed

delaminations were collapsed into a single and perfectly circular mid-plane delami-

nation. In detail, the relationship between the out-of-plane displacement wo and an

external point load F stat
d1 is given by the theory for thin plates as:

wo =
3r2

p (1− ν2)

4πEh3
F stat
d1 (2.110)

where E, ν, h, and rp are respectively the elastic modulus, the Poisson ratio, the

thickness, and the radius of the plate. Assuming that the system is linear, it allows

to apply the principle of superposition for the development of the elastic energy of

a plate with a circular mid-plane delamination of radius ac:

U =
3r2

p (1− ν2)

8πEh3
(F stat

d1 )
2 − 3a2

c (1− ν2)

8πEh3
(F stat

d1 )
2

+2

(
3a2

c (1− ν2)

8πE
(
h
2

)3

(
F stat
d1

2

)2
) (2.111)

The first term of Equation (2.111) is the elastic energy of the plate without the

delamination. The second term is the energy of a circular plate of radius ac. The last

term is related to the elastic energy of two circular plates of radius ac and height

h/2. Knowing that ∂U
∂ac

= 2πacGIIc, the threshold load for a mid-plane circular

delamination is:

F stat
d1 =

π

3

√
8EGIIc
1− ν2

h3/2 (2.112)
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By letting E/(1 − ν2) = (12D)/h3, where D is the bending stiffness, Equation

(2.112) can be rewritten as:

F stat
d1 = π

√
32DGIIc

3
(2.113)

Equations (2.112) and (2.113) show that delamination grows under a constant

load independently of the delamination size. Therefore, an initial flaw is not re-

quired and thus the criterion can be used for the prediction of delamination onset.

In addition, experimental data and finite element simulations indicate that the de-

lamination threshold load is independent of the boundary conditions and of the

in-plane size of the plate [23, 24, 31]. Although the delamination criterion was

derived assuming static loading conditions it may, with a moderate correction fac-

tor, be used for impact responses with dynamic effects, such as in an infinite plate

behavior [23]. Probably, this result is due to fact that F stat
d1 does not depend on

the in-plane dimensions of the plate, in contrast with the threshold F ten
mc developed

in previously. In Davies et al. [86], this criterion was used in conjunction with a

quasi-static, energy-balanced model based on finite element solutions to predict the

threshold impact energy for delamination onset.

A more rigorous solution for an arbitrary number of delaminations located at

same intervals through-the-thickness of the plate was derived by Suemasu and Ma-

jima [87]. The threshold impact load is defined as:

F stat
dnd

= π

√
32DGIIc
n+ 1

(2.114)

where n is the number of same thickness plate regions separated by nd = n − 1

same size delaminations. In the work developed by Olsson [24], Equation (2.114) is

used for orthotropic plates by simply changing the isotropic plate stiffness D by the

effective plate stiffness D∗ for orthotropic plates (see Equation (2.55)).

The accumulation process of multiple delaminations was also described by Sue-

masu and Majima [87]. For equally sized multiple delaminations, the energy release

rate is distributed nearly parabolic and symmetric about the middle surface, which

corresponds to the location where the energy release rate reaches its maximum. For

this case, the energy release rates are independent of the delamination size, and the

more delaminations exist, the easier the delamination propagation is. Delaminations
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of unequal size, they tend to an equal size by the growth of the smaller delaminations

regardless of their location through-the-thickness of the laminate. These conclusions

were obtained from closed-form energy release rate expressions summarized in Table

2.1, and by verifications with finite element analysis.

Table 2.1: Energy release rates for unequal size delaminations [87], where S0 =

n3/
(
m3 + (n−m)3) − 1, S1 = n2 − S0 − 1, and m is the delamination number

(numbering starts with the deepest back face delamination).

Delamination case
Energy release rates

mth delamination n− 2 delaminations (average)

One delamination

larger than the others
ḠII =

F 2

32π2D
S0 G̃II =

F 2

32π2D

S1

n− 2

One delamination

smaller than the

others

ḠII =
F 2

32π2D

6n2

n+ 6
G̃II =

F 2

32π2D

n2 + 2n+ 3

n+ 6

Geometric nonlinear effects on the in-plane stresses becomes significant and must

be considered when the deflection of the plate reaches the order of the plate thickness

or that of the delaminated portions. A numerical Rayleigh-Ritz solution for large

deflections was derived in a later paper of Suemasu and Majima [88]. Membrane

effects increase the threshold load and cause an asymmetrical distribution of the

energy release rate so that the delaminations near the back surface grow faster than

those located elsewhere when the load is increased. Also, geometric non-linearity

implies large impact energies for delaminations to propagate farther. Therefore, the

result using the linear assumption that the more delaminations exist the easier is

their propagation may not be true. Considering the finite bending strength and the

critical perforation load, it can be said that a critical radius of the delaminations

from which delamination propagation is difficult may exist. This critical radius is

function of the interlaminar toughness and of an expected number of delaminations.

Olsson et al. [23] developed a fracture mechanics criterion for dynamic growth

of an arbitrary number nd of delaminations in a transverse isotropic plate. Again,

the delaminations are located at the same intervals through-the-thickness of the

laminate, small deflections are considered, and shear deformation is neglected. The
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theory is validated for a wide range of test cases by comparison with 3D finite

element simulations. The threshold impact load is:

F dyn
dnd

=
F stat
dnd√

1− 7π2

216

≈ 1.213F stat
dnd

(2.115)

where F stat
dnd

is the quasi-static threshold delamination load given by Equation (2.114).

The resulting delamination threshold load is about 21% higher than the correspond-

ing quasi-static threshold load.

2.6.3 Permanent indentation

An impact on a laminated composite plate, usually results with a visible permanent

indentation at the impact point as a result of the matrix plasticity, disorder of

the broken fibers, and friction between these fibers and the matrix. Just after the

impact, the permanent indentation has its highest value and gradually its depth is

reduced due to the material relaxation.

The prediction of the threshold load at which permanent indentation initiates

can be approached by the following simple equation:

Find = kyαcr (2.116)

where ky is a linearized stiffness of the elastic-plastic loading phase (Equation (2.27)),

and αcr is the critical indentation as from of it permanent indentation starts and is

defined by Equation (2.28).

The corresponding threshold velocity for permanent indentation can be calcu-

lated by means of a simple energy balance of the simplified quasi-static model de-

scribed in Section 2.4.4 and represented in Figure 2.8.b. Assuming that the impact

energy is used for local and global deformation of the plate, the threshold velocity

yields to:

Vind =
αcr

M
1/2
i

[
ky +

k2
y

kbsm

]1/2

(2.117)

where kbsm is the plate global stiffness.
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2.6.4 Fiber failure

Fiber failure generally occurs much later in the fracture process than matrix cracking

and delamination, and it is considered as a precursor of plate perforation. Fiber

failure occurs under the impactor due to locally compressive and shear stresses,

and on the non-impacted face due to tensile bending stresses. More extensive fiber

failure normally occurs in the central part of the delaminated region and appears

to be fairly uniformly through-the-thickness of the laminate. Fiber failure in thin

laminates generally affects more plies and is more extensive than in thick laminates,

indicating the importance of membrane stresses in formation of fiber fracture [21].

2.6.5 Perforation

There are numerous modes of failure in which energy can be dissipated in impacts

that result in complete penetration of the plates. Caprino and Lopresto [89] reported

that the perforation energy depends on the total fiber volume of the plate and on

the impactor tip shape, whereas the architecture of the fibers, the stacking sequence

of the laminate and the type of matrix have no effect. Research into perforation

impact is mainly concentrated on the ballistic range, although perforation can also

occur for other types of impact behavior (see Section 2.2).

Perforation occurs when the fibers reach their critical strain, enabling the im-

pactor to completely penetrate the material. Under this assumption, a conservative

estimate of the quasi-static threshold load for perforation F ten
per can be obtained by

simply replacing the in-plane longitudinal stress on the back outer ply (Equation

(2.101)) in the following fiber tensile failure criterion [76]:

(σ1)p
XT

≤ 1 (2.118)

where XT is the fiber tensile strength. Therefore, the threshold load for perforation

F ten
per yields:

F ten
per =

π5R2h2XT

8b2X (2.119)

where X is defined as:
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X =
[(

(C11)p c
2 + (C12)p s

2
)
S11 +

(
(C11)p s

2 + (C12)p c
2
)
S12

]

×fx (s, Cij, Dij/h
3)

+
[(

(C11)p c
2 + (C12)p s

2
)
S12 +

(
(C11)p s

2 + (C12)p c
2
)
S22

]

×fy (s, Cij, Dij/h
3)

(2.120)

On the other hand, by considering the Hertz contact law and a uniform distri-

bution of the through-the-thickness shear stress, a perforation threshold load due to

laminate shear failure can be obtained [7, 90]. The resulting threshold load is:

F sh
per =

√
6 (πSLh)3/2

√
R

Qα

(2.121)

where SL is the shear strength, h is the plate thickness, R is the impactor tip radius,

and Qα is the effective contact modulus (see Equation (2.5)). The corresponding

velocity at which perforation occurs can be formulated by means of a simple energy

balance similar to that used in the determination of the threshold velocity for per-

manent indentation. Assuming that impact energy is used for the perforation and

for the global deformation of the plate, the threshold velocity yields:

V sh
per = M

−1/2
i

[
4(2π)5/2

5
k
−3/2
H R5/4 (hSL)5/2 + 8π3k−1

H k−1
bsmR

3/2 (hSL)3

]1/2

(2.122)

where kbsm is the plate stiffness. If the global deformation of the plate is neglected

(i.e. half-space behavior), the second term of Equation (2.122) is removed.

In Wen [91, 92], velocity thresholds for impact perforation on rectangular, flat,

and monolithic laminated composite plates struck by impactors with different tip

shapes are proposed. The approach is based on the assumption that the deforma-

tion is localized and the mean pressure offered by the plate to resist the impactor

can be decomposed into two parts. One part is a cohesive quasi-static resistive

pressure due to the elastic-plastic deformation of the plate. The other is a dy-

namic resistive pressure arising from velocity effects. The corresponding threshold

for hemispherical-ended impactor is:
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V com
per =

3πR2h
√
ρσyc

32Mi

[
1 +

√
1 +

128Mi

9πρR2h

]
(2.123)

where R is the impactor tip radius, Mi is the impactor mass, h is the plate thickness,

ρ is the density of the composite material, and σyc is the elastic limit of the plate

in through-the-thickness compression which can be approached to the transverse

compressive strength YC . It should be noted that YC is a strain rate dependent

strength [93].



Chapter 3

Test configurations

3.1 Introduction

In the aeronautical industry, drop-weight impact tests are performed to assess the

damage resistance of a structure. These tests create delaminations which are typi-

cally categorized as Barely Visible Impact Damage (BVID). Delaminations reduce

significantly the compressive strength of the impacted structure. For this reason,

Compression After Impact tests (CAI) are performed in order to assess the damage

tolerance of the structure.

The sequential experimental tasks which are carried out in the present thesis

in order to analyze laboratory coupons are: definition of the impact configura-

tions (i.e. selection of the governing parameters), manufacturing of the specimens,

non-destructive inspections for the detection of manufacturing flaws (e.g. ultra-

sonic techniques), drop-weight impact tests, non-destructive inspections to detect

the BVID, and finally, CAI tests.

This chapter presents the definition of a set of low-velocity impact tests on lam-

inated composite plates which allow the study of the effects of some governing

parameters on the damage resistance. The goal is to obtain a range of different

experimental results that will be used to assess whether the predictions given by

the numerical simulations accurately account the complexity of the impact damage

(see Chapter 7). It should be noted that all studies are focused on the effects of the

governing parameters on the impact damage rather than on the results of the CAI

tests. Furthermore, the description of the CAI test set-up is also explained in detail.

61
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3.2 Impact tests

The procedure for the design of the experiments is of great importance since it must

ensure that one given analysis is focused on the effects of only one governing param-

eter. Moreover, the procedure must provide a qualitative understanding whether

damage will occur, as well as its type and extension.

The procedure used is mainly based on the impact characterization diagram

proposed by Christoforou and Yigit [18, 19, 26, 27] (see Section 2.5). Given an

impact configuration, the diagram predicts the behavior type and the maximum

impact force by calculating only two key parameters, λ (i.e. relative stiffness) and

ζw (i.e. relative mobility):

λ =
kbsm
ky

(3.1)

ζw =

√
Miky

16
√
I1D∗

(3.2)

It should be noted that the key parameters are obtained by considering a linear

contact law [19] (see Section 2.3.4), and a dimensionless framework based on the

maximum indentation where the magnitudes are defined as: mass [M ] = Mi, time

[T ] = M
1/2
i k

−1/2
y , and length [L] = M

1/2
i k

−1/2
y V0 (see Section 2.4.2). In particular,

the linear contact stiffness ky is calculated by means of Equation (2.27) and the

plate stiffness kbsm can be approached experimentally, by using numerical methods,

or analytically in cases with simple structure geometries. The expression used by

Yigit and Christoforou [26] to predict the stiffness kbsm, for a simply supported plate

without considering shear and membrane effects, is:

kbsm = kb =
D∗

0.0116b2
(3.3)

where b is the smallest width of the plate [24].

The prediction of the maximum elastic impact force is useful because it can be

compared with a damage threshold load (see Section 2.6). Using the dimensionless

framework, the maximum dimensional elastic force can be obtained as:

Fmax = F̄maxV0

√
Miky = F̄max

√
ky
√

2Ei (3.4)
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where F̄max is the dimensionless maximum elastic force extracted from the impact

characterization diagram by means of the key parameters λ and ζw. The variable

Ei is the impact energy.

3.2.1 Benchmark: ASTM drop-weight impact test

The ASTM test method for measuring the damage resistance of a fiber-reinforced

polymer matrix composite when subjected to a drop-weight impact event (i.e. ASTM

D7136 / D7136M [59]) is taken as a reference in order to fix some of the govern-

ing parameters. Other guidelines for a drop-weight impact test provided by the

aeronautical industry are available (e.g. Airbus AITM1-0010 [94]; Boeing 7260 [95];

NASA ST-1 [96]), however the set-ups are all essentially the same.

The standard is focused on rectangular, flat, and monolithic laminated com-

posite plates with 150mm×100mm in-plane dimensions. If the laminates are man-

ufactured using unidirectional plies, a balanced and symmetric stacking sequence

[(45/0/− 45/90)n]S is defined. The whole number n is selected in such a way that

the cured plate thickness is close to 5mm. The plate stacking sequence is defined

by taking the 0◦ fiber orientation aligned with the longer in-plane dimension of the

plate.

The specimens are placed over a flat support fixture base with a 125mm×75mm

rectangular cut-out which allows the impactor to contact through the specimen

without interferences (see Figure 3.1.a). Guiding pins are located such that the

specimen can be centrally positioned over the cut-out. The support fixture base has

four rubber-tipped clamps which restrain the specimen during impact and provide a

minimum holding capacity of 1100N. These rubber-tipped points clamp the specimen

at 12.5mm and 6mm from each edge of the open window of the fixture base (see

Figure 3.1.b) [94]. The boundary conditions provided by the clamping system can

be approximated to simply supported [60].

The impact tests are carried out with an impact tester, which includes a guide

mechanism, a rigid clamping system, a drop-weight instrumented impactor, a ve-

locity sensor, and a rebound catcher. The impacts are performed by releasing the

impactor with a selected mass from a desired preset height, and dropped freely

according to the gravitational force and following a guide mechanism. A normal

incidence angle impact occurs at the center of the plate caused by a 16mm diameter
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(a) (b)

Figure 3.1: (a) Impact support fixture; (b) detail of the support area and clamping

points of the specimen.

hemispherical-shaped impactor made of hardened steel. Just prior to impact on the

specimen, a steel flag connected to the impactor is passed through an optical sensor

which triggers the data acquisition system and calculates the initial impact velocity

V0. The velocity is calculated from the distance between two edges of the flag and

the time interval to pass through the sensor. Once impact begins, the contact force

is detected by the force transducer attached to the impactor. The force history is

stored in a computer. Finally, if perforation does not occur, a rebound catcher is

also triggered by the optical sensor so that a re-strike does not occur.

The velocity and displacement history of the impactor, V (t) and wi(t) respec-

tively, can be calculated by integrating once and twice the force history:

V (t) = V0 + gt−
∫ t

0

F (t)

Mi

dt (3.5)

wi(t) = w0 + V0t+
gt2

2
−
∫ t

0

(∫ t

0

F (t)

Mi

dt

)
dt (3.6)

where V0 is the initial impact velocity, g is the acceleration due to the gravity, t is

the time, and w0 is the impactor position from reference location at time t = 0.
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Additionally, the energy absorbed by the specimen, Ea(t), can be calculated as:

Ea(t) =
Mi (V

2
0 − V (t)2)

2
+Migwi(t) (3.7)

The standard suggests testing a sample of 5 specimens using a constant impactor

mass of 5.5kg and a constant impact energy calculated in function of the specimen

thickness:

Ei = CEh (3.8)

where h is the plate thickness and CE is a ratio of the impact energy to the specimen

thickness equal to 6.7J/mm. The reason for defining the impact energy by means

of Equation (3.8) is related to the effects of the support conditions on the impact

damage. When an impact is performed following the standard specifications, the

specimen will develop damage sizes less than half of the unsupported specimen width

(i.e. 38mm), thus avoiding significant interactions of the damage areas with the edge

support conditions.

Tables 3.1 and 3.2 summarize the specifications of the standard regarding the

specimen coupons and the impactor.

Table 3.1: ASTM D7136 / D7136M specifications for the specimen.

Specimen coupons

Shape Flat and rectangular

Thickness h ≈ 5mm

In-plane size at = 150mm × bt = 100mm

Lamina type Unidirectional or woven fabric

Stacking sequence [(45/0/− 45/90)n]S

(for unidirectional laminas)

Boundary conditions Four rubber-tipped clamps

Following the specifications proposed by the standard, using the properties sum-

marized in Table 7.1 for AS4/8552 carbon-epoxy composite material (see Chap-

ter 7), and assuming a ply thickness of hp = 0.184mm, the resulting laminate is
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Table 3.2: ASTM D7136 / D7136M specifications for the impactor.

Impactor

Shape Hemispherical

Radius R = 8mm

Material Steel (60 to 62 HRC)

Mass Mi = 5.5kg

Velocity V0 =

√
2 (CEh)

Mi

Incidence impact angle Normal to the plate

[(45/0/− 45/90)3]S with a total nominal thickness h = 4.42mm. This plate thick-

ness defines an impact energy of Ei = 29.6J (see Equation (3.8)) and an impact

velocity of V0 = 3.28ms−1.

The terms required to find the key parameters of the impact characterization

diagram can be respectively calculated as: kbsm by Equation (3.3), ky by Equation

(2.27), I1 by Equation (A.47), and D∗ by Equation (2.55). Using these definitions

and assuming that the effective in-plane dimensions of the plate are a = 125mm and

b = 75mm (see Figure 3.1.b), yield to: λ = 0.71 and ζw = 8.11. These parameters

predict a quasi-static behavior and a maximum dimensionless force of F̄max = 0.65.

Finally, using Equation (3.4), the maximum impact force is Fmax = 14.28kN.

The analytical damage thresholds can be calculated and compared with the

maximum impact force in order to predict qualitatively the damage occurrence. As

it is noted in the standard, matrix cracking and delamination damage are ensured if

all the specifications of the standard are followed. This is demonstrated in Table 3.3,

where the corresponding damage thresholds for matrix cracking and delamination

are below the maximum predicted force.

Furthermore, the maximum load is close to the perforation threshold which in-

dicates that perforation can occur. However, it is difficult to develop perforation

because other damage mechanisms are generated previously so they absorb energy

and avoid the subsequent perforation process.
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Table 3.3: Damage thresholds for AS4/8552 carbon-epoxy composite material.

Damage mechanism Equation Value [kN]

Matrix cracking (2.105) F ten
mc = 5.92

(2.106) F sh
mc = 1.82

Delamination (2.112), using D∗ F stat
d1 = 5.66

Permanent indentation (2.116) Find = 0.33

Perforation (2.119) F ten
per = 13.98

3.2.2 Selected studies: fixed and variable parameters

Taking as a reference the standard for drop-weight impact test [59], different ex-

perimental studies will be performed. All these studies will be focused mainly on

the damage onset which produces a significant reduction on the structure stiffness

and/or residual strength, i.e. Fd (see Figure 2.14).

The variables selected in order to study their effects are: the ply thickness hp

(ply clustering), the laminate thickness h, stacking sequence, the impactor mass Mi

and the impact velocity V0. The variation of these parameters yield to three main

studies: effect of ply thickness (clustering), effect of the mismatch angles of the

plies, and effect of the laminate thickness. As will be demonstrated in the following

sections, all these studies are under quasi-static impact behavior. Therefore, the

prediction of the maximum elastic impact force can also be obtained by means of

Equation (2.83).

For all laminates, the composite material used is AS4/8552 carbon-epoxy uni-

directional pre-preg. The properties of the material are summarized in Table 7.1

(see Chapter 7). It should be noted that for the calculation of the ply thickness,

the corresponding cured value of the laminate thickness will be used (known after

specimen manufacturing).

All the impact tests described below are performed using a commercially avail-

able CEAST Fractovis Plus instrumented impact drop-weight tower. The impact

tester is equipped with a load cell of 22kN attached to the impactor, an automatic

pneumatic rebound brake system, and a clamping system with a holding capacity

of 3000N at each of the four clamping points (see Figure 3.2).
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(a) (b)

Figure 3.2: Detail of the clamping system, (a) without specimen and (b) with spec-

imen.

Finally, the non-destructive inspections before and after impact will be performed

by the C-scan ultrasonic technique, which gives the projected damaged areas over the

structure thickness. Additionally, the measurements of the dent-depth are performed

by means of a Mitutoyo 3D coordinate measuring machine. It should be noted that

not all the impacted specimens are selected for the dent-depth measurements.

Effect of ply thickness (clustering)

Ply clustering was found to reduce the damage resistance of a laminate [60]. Stacking

plies with the same fiber orientation increases the interlaminar shear stresses at the

adjacent interfaces due to the increased difference in the bending stiffness of the ply

groups. This increase in stress, in turn, leads to larger delaminations.

Ply clustering also reduces the number of interfaces available for delamination,

because delamination typically occurs at interfaces with different fiber orientations.

Reducing the number of locations available for delamination will increase the de-

lamination size at the remaining interfaces [97, 98], since delamination acts as an

energy dissipating mechanism during the impact event.

The transverse tensile and shear strengths of a ply are function of the ply thick-

ness, of the ply position in the laminate, and of the fiber orientation of the adjacent

plies. This is called the in-situ effect. Since matrix cracks act as initiation points

for delaminations, the in-situ effect must be considered for a proper analysis of the

ply clustering effect.

The effect of ply clustering on the damage tolerance, assessed by means of the
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residual compressive load, is not yet fully clear. In fact, the compressive strength

decreases if the plate bending stiffness is reduced. In addition, the laminate bending

stiffness decreases if the size of the delaminations created by impact are large (i.e.

when clustering is increased) but also when the number of delamination planes is

increased (i.e. when clustering is reduced). Therefore, given these counteracting

effects, it is difficult to assess whether ply clustering reduces the damage tolerance

of a structure.

The stacking sequences proposed for this study are [(45/0/− 45/90)4]S,

[(452/02/− 452/902)2]S, and [454/04/− 454/904]S (in the following, these laminates

are respectively identified as L02, L03, and L04). All laminates have the same plate

thickness h because an equal number of plies is used (i.e. 32 plies; h = 5.8mm).

However, the clusterings hp are different (i.e. L02: hp = hpp, L03: hp = 2hpp, and

L04: hp = 4hpp, where hpp is the thickness of a single pre-preg ply), yielding to

different number of interfaces for delamination (i.e. L02: nd = 30, L03: nd = 14,

and L04: nd = 6).

Three different impact energies are considered: 38.6J, 28.6J and 19.3J. Given

that the impactor mass is kept constant at 5kg, the different energies also enable the

study of the effects of velocity. In detail, Table 3.4 shows the impact configurations

for all the laminates. Since the repeatability of the impact test is quite good (see

Chapter 4), a sample of less than three specimens is used for some cases.

Table 3.4: Impact configurations for laminates: L02, L03 and L04.

Specimen name Impact energy [J] Impactor mass [kg] Impact velocity [ms−1] Drop height [mm]

L0x -S01

38.6 5 3.93 787.5L0x -S02

L0x -S03

L0x -S04 28.6 5 3.38 582.5

L0x -S05
19.3 5 2.78 394.0

L0x -S06

Using the material properties summarized in Table 7.1, the resulting key pa-

rameters of the impact characterization diagram are: λ = 1.62 and ζw = 4.48 for

laminate L02, λ = 1.60 and ζw = 4.50 for laminate L03, and λ = 1.55 and ζw = 4.58
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for laminate L04. Since the key parameters are independent of the impact veloc-

ity, the resulting values are constant for each laminate at any impact energy (see

Equations (3.1) and (3.2)). Additionally, the key parameters are almost equal for all

laminates due to the fact that the stiffness of the laminates is similar. Therefore, the

dimensional elastic response of the laminates for each impact energy is also expected

to be similar.

Introducing the key parameters in the impact characterization diagram, a quasi-

static behavior and a maximum dimensionless force of F̄max = 0.78 are predicted for

all the laminates. The dimensionless force yields to the following maximum elastic

impact forces for each impact energy: Fmax = 19.8kN for Ei = 38.6J, Fmax = 17.1kN

for Ei = 28.6J, and Fmax = 14.0kN for Ei = 19.3J.

Finally, the damage thresholds explained in Section 2.6 are summarized in Table

3.5. Again, these thresholds are constant for each impact energy since no dependence

with velocity is considered in the formulations. Comparing the threshold loads with

the maximum elastic impact forces, the occurrence for damage can be analyzed

easily.

Table 3.5: Damage thresholds for laminates: L02, L03 and L04.

Damage mechanism Equation
Values [kN]

L02 L03 L04

Matrix cracking (2.105) F ten
mc : 10.34 (thin) 7.20 (thin) 4.92 (thin)

(2.106) F sh
mc: 2.74 2.74 2.74

Delamination (2.112), using D∗ F stat
d1 : 8.53 8.49 8.34

(2.114), using D∗ F stat
dnd

: 2.61 3.68 5.11

(2.115), using D∗ F dyn
d1 : 10.35 10.30 10.11

(2.115), using D∗ F dyn
dnd

: 3.17 4.46 6.19

Permanent indentation (2.116) Find: 0.33 0.33 0.33

Perforation (2.119) F ten
per : 24.23 23.88 23.16

The most significant damage threshold loads are the ones which indicate impor-

tant reductions on the plate stiffness and/or strength. Basically, these thresholds

are given by Equations (2.105) and (2.112) (i.e. F ten
mc and F stat

d1 , respectively). The

first gives a value for matrix cracking on the back outer ply which can create an
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elongated delamination at the first interface from the back face of the plate. The

second gives a threshold for a circular mid-plane delamination.

As shown in Table 3.5, for laminate type L02 the first delamination appears

in the mid-plane of the plate (Fd = F stat
d1 ), and for laminate types L03 and L04

the delamination is located on the back face (Fd = F ten
mc ). Figure 3.3 shows these

threshold loads as a function of the ply thickness on a logarithmic scale. Only F ten
mc

for thin plies depends on the ply thickness (see Equation (2.104)). The solid gray

line shows the trend of the analytical threshold load in function of the ply thickness

for the laminates considered.

10
−1

10
0

10
4

hp [mm]

F
d

[N
]

L02

L03

L04

F stat
d1 ∝

(
h1.5

)

Thin: F ten
mc ∝

(
h2

h
1
2
p

)

Thick: F ten
mc ∝

(
h2

)

− 1
2

Figure 3.3: Analytical threshold load trend in function of hp, for laminates L02, L03

and L04. The damage threshold F ten
mc for laminates with thin plies is computed from

the stresses of laminate type L03.

Furthermore, it is predicted that perforation will not occur for any impact energy

because all the maximum elastic forces are below the perforation threshold.

Finally, the values of the mismatch parameter proposed by Morita et al. [81]

(see Equation (2.108)) for each laminate are: MM = 0.270mm−2 for L02, MM =

0.235mm−2 for L03, and MM = 0.198mm−2 for L04. The mismatch parameter

provides information about the effects of the mismatch interface angles of the plies

on the resulting projected delamination area. It is considered that the larger the

parameter MM is, the larger the projected delamination area is. The results obtained
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indicate that the laminate with thin plies will have larger projected delamination

area than that of the laminate with thick plies. However, this deduction is not

valid because it is expected that laminate L04 will have larger delaminations due to

the reduced number of available interfaces for delamination. Therefore, the Morita

parameter is not suitable to compare different stacking sequences to predict the

largest resulting delamination area.

Effect of ply mismatch angle at interfaces

The mismatch angle of an interface is the difference in the fiber orientation of the

adjacent plies. Increasing the mismatch angle increases the stress concentration at

the interface due to an increased difference in the bending stiffness. Therefore, the

damage resistance can be reduced if the mismatch angle is increased because larger

delaminations are expected. For this reason, the damage tolerance is also expected

to be reduced.

For this study, the laminate type L02 presented in previous study is compared

with a new laminate [(0/90)9]S (in the following, it is identified as L06). As it can

be seen, laminate L06 has a stacking sequence with increased mismatch angles in

comparison with laminate L02. Laminates L02 and L06 have practically equal cured

ply thickness hp, but different laminate thickness h since more plies are used for L06

(i.e. L02: h = 5.8mm and L06: h = 6.8mm).

The impact configurations considered are the same as the described ones for

ply clustering study. Accordingly, three different impact energies are defined 38.6J,

28.6J and 19.3J, with a constant impactor mass of 5kg (see Table 3.4). Therefore,

the predictions for laminate type L02 given in previous study can be reused herein.

Using the material properties summarized in Table 7.1, the resulting key param-

eters of the impact characterization diagram for laminate type L06 are: λ = 2.52

and ζw = 3.31. Introducing the key parameters in the impact characterization dia-

gram, a quasi-static behavior and a maximum dimensionless force of F̄max = 0.85 are

expected for all the impact energies. The dimensionless force yields to the following

maximum elastic impact forces: Fmax = 21.4kN for Ei = 38.6J, Fmax = 18.4kN for

Ei = 28.6J, and Fmax = 15.1kN for Ei = 19.3J.

Table 3.6 summarizes the main damage threshold loads. The significant first

damage for laminate L06 is Fd = F stat
d1 which predicts a circular mid-plane delam-
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ination. In addition, it should be noted that the threshold load F ten
mc is close to

F stat
d1 . Therefore, the first drop in the impact load history may be triggered by a

combination of both delamination types.

Finally, it is predicted that perforation will not occur for any impact energy

because all the maximum elastic forces are below the perforation threshold.

Table 3.6: Damage thresholds for laminate L06.

Damage mechanism Equation Values [kN]

Matrix cracking (2.105) F ten
mc : 11.26 (thin)

(2.106) F sh
mc: 3.47

Delamination (2.112), using D∗ F stat
d1 : 10.65

(2.114), using D∗ F stat
dnd

: 3.07

(2.115), using D∗ F dyn
d1 : 12.92

(2.115), using D∗ F dyn
dnd

: 3.73

Permanent indentation (2.116) Find: 0.33

Perforation (2.119) F ten
per : 37.16

Effect of the laminate thickness

Another proposed study is to analyze the effects of the laminate thickness on the

damage resistance. Modifying the plate thickness and the impactor mass, the be-

havior of an impact can be local or global dominated. Because of that, the resulting

damage mechanisms as well as their extensions can vary. For instance, in thick lami-

nates, the delaminations initiate close to the loaded surface since contact stresses are

high. However, in thin laminates, the delaminations initiate close to the mid-plane

since contact stresses are negligible. In addition, thin laminates stand large global

bending deflections which often generate, at a certain point, geometric nonlinear ef-

fects, i.e. membrane effects. These effects stiff the impact response of the structure

because the stiffness evolves from bending to axial.

On the other hand, it is obvious that the damage tolerance is also improved if

the laminate thickness is increased. However, the resulting structures are heavier

and more expensive.
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For this study, the laminate type L02 presented in the previous studies is com-

pared with two new laminates: [(45/0/− 45/90)2]S and [(45/0/− 45/90)6]S (in the

following, they are identified as L01 and L05, respectively). As it can be verified,

the stacking sequences are equal but the number of repeated ply groups are differ-

ent, yielding to three different laminate thicknesses (i.e. L01: h = 3.0mm, L02:

h = 5.8mm, and L05: h = 8.8mm).

The impact configurations considered for laminates L01 and L05 are respectively

summarized in Tables 3.7 and 3.8 (see Table 3.4 for the configurations of the laminate

type L02). The comparable cases of impact energy which allow to analyze the effects

of laminate thickness are: 19.3J for laminates L01 and L02, and 38.6J for laminates

L01, L02 and L05. For both cases of energy, the impactor mass is kept constant and

equal to 5kg.

Table 3.7: Impact configurations for laminate type L01.

Specimen name Impact energy [J] Impactor mass [kg] Impact velocity [ms−1] Drop height [mm]

L01-S01 38.6 5 3.93 787.5

L01-S02
19.3 5 2.78 394.0

L01-S03

L01-S04
19.3 6 2.54 328.9

L01-S05

L01-S06 12.0 2 3.46 610.4

Table 3.8: Impact configurations for laminate type L05.

Specimen name Impact energy [J] Impactor mass [kg] Impact velocity [ms−1] Drop height [mm]

L05-S01
38.6 5 3.93 787.5

L05-S02

L05-S03
57.8 6 4.39 982.6

L05-S04

L05-S05
57.9 15 2.78 394.0

L05-S06

Besides the configurations considered for the study of the laminate thickness,

Tables 3.7 and 3.8 describe other impact configurations for laminates L01 and L05,
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respectively. These configurations allow to analyze the effects of changing the im-

pactor mass and the impact velocity but keeping constant the impact energy. In

detail, this study is performed by means of: specimens S02 and S03 (Mi = 5kg)

compared with S04 and S05 (Mi = 6kg) for laminate L01, and specimens S03 and

S04 (Mi = 6 kg) compared with S05 and S06 (Mi = 15kg) for laminate L05. In

addition, the impact configuration of specimen L01-S06 is used in order to analyze

if the resulting damage behavior is more localized than other configurations with

larger impactor mass.

Using the material properties summarized in Table 7.1, the resulting key pa-

rameters of the impact characterization diagram and the resulting maximum elastic

impact forces are summarized in Table 3.9 for laminate L01, and in Table 3.10 for

laminate L05.

Table 3.9: Maximum elastic impact force predictions for laminate type L01.

Specimen Mi [kg] λ ζw F̄max V0 [ms−1] Fmax [kN]

L01-S01 5 0.22 16.82 0.43 3.93 10.8

L01-S02
5 0.22 16.82 0.43 2.78 7.6

L01-S03

L01-S04
6 0.22 18.42 0.43 2.54 7.6

L01-S05

L01-S06 2 0.22 10.64 0.43 3.46 6.0

Table 3.10: Maximum elastic impact force predictions for laminate type L05.

Specimen Mi [kg] λ ζw F̄max V0 [ms−1] Fmax [kN]

L05-S01
5 5.67 1.94 0.92 3.93 23.32

L05-S02

L05-S03
6 5.67 2.13 0.92 4.39 28.5

L05-S04

L05-S05
15 5.67 3.36 0.92 2.78 28.5

L05-S06



76 CHAPTER 3. TEST CONFIGURATIONS

Table 3.11 summarizes the main damage threshold loads for laminates L01 and

L05. Perforation damage clearly will occur for specimen L01-S01 because the maxi-

mum elastic impact force is higher than the perforation threshold load. Additionally,

specimens from L01-S02 to L01-S05 (i.e. with an impact energy of 19.3J), the max-

imum load is close to the perforation threshold which indicates that perforation can

also occur. In reality, it is difficult to develop perforation in these specimens because

other damage mechanisms are generated previously so they absorb energy and avoid

the subsequent perforation process. Therefore, except for specimen L01-S01, it is

expected that all impact configurations of laminate L01 will develop a first drop in

the impact load history produced by a narrow and elongated delamination at the

first interface from the back face of the plate (Fd = F ten
mc ). On the other hand, perfo-

ration will not occur for any impact configuration of laminate type L05. Moreover,

the significant first damage for laminate L05 is Fd = F stat
d1 . Thus, it is expected

that the first drop in the impact load histories is produced by a circular mid-plane

delamination as it was also predicted for laminate type L02.

Table 3.11: Damage thresholds for laminates: L01 and L05.

Damage mechanism Equation
Values [kN]

L01 L05

Matrix cracking (2.105) F ten
mc : 2.68 (thin) 23.80 (thin)

(2.106) F sh
mc: 1.02 5.11

Delamination (2.112), using D∗ F stat
d1 : 3.16 15.97

(2.114), using D∗ F stat
dnd

: 1.37 3.99

(2.115), using D∗ F dyn
d1 : 3.83 19.37

(2.115), using D∗ F dyn
dnd

: 1.66 4.84

Permanent indentation (2.116) Find: 0.33 0.33

Perforation (2.119) F ten
per : 6.39 56.04

As a summary of the analytical threshold loads for all the laminates described in

the previously proposed studies, Figure 3.4 shows the trends of these loads in func-

tion of the ply thickness on a logarithmic scale. The predicted critical values have

been divided by h2 in order to keep constant the profiles for matrix cracking on the

back outer ply for each stacking sequence type (i.e. type TI: [(45x/0x/− 45x/90x)n]S;
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Figure 3.4: Analytical threshold trends for all laminates.

type CP: [(0x/90x)n]S). The ticked gray lines indicate the threshold trend for the

stacking sequence type TI, and the blue lines indicate the expected trend for the

stacking sequence type CP.

Summary of selected laminates

As a summary, the laminate types selected for the impact and compression impact

tests are collected in Table 3.12. As was noted previously, the sample for each

laminate are 6 specimens, most of them with different impact configurations.

The laminated composite plates proposed were manufactured using Hexply AS4-

8552 carbon-epoxy unidirectional pre-preg. The pre-preg was cut automatically and

the lamination was done manually. The laminated plates were cured in an autoclave

following the curing cycle specified by the supplier. The cured ply thickness varies

in function of the plate thickness.
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Table 3.12: Selected laminates.

Name Stacking sequence Number of plies
Number of interfaces Cured ply Cured plate

for delamination (nd) thickness (hpp) [mm] thickness (h) [mm]

L01 [(45/0/− 45/90)2]S 16 14 0.1875 3.0

L02 [(45/0/− 45/90)4]S 32 30 0.18125 5.8

L03 [(452/02/− 452/902)2]S 32 14 0.18125 5.8

L04 [454/04/− 454/904]S 32 6 0.18125 5.8

L05 [(45/0/− 45/90)6]S 48 46 0.1833 8.8

L06 [(0/90)9]S 36 34 0.1889 6.8

3.3 Compression after impact tests (CAI)

The Compression After Impact test (CAI) is performed to obtain the compressive

residual strength of drop-weight impacted laminates. This is often called the study of

damage tolerance since it refers to the experimental determination or the numerical

prediction of the residual mechanical properties of the damaged structure [7].

Compressive loading causes buckling of sub-laminates in the Barely Visible Im-

pact Damage (BVID) region which forces opening delaminations and then allowing

the damage to propagate from the initial state until the subsequent failure of the

structure. Figure 3.5 shows different buckling modes which can be done during the

CAI test.

Figure 3.5: Buckling modes of delaminated plates in compression (after Davies and

Olsson [21]).



3.3. COMPRESSION AFTER IMPACT TESTS (CAI) 79

3.3.1 Benchmark: ASTM compression after impact test

The ASTM test method for measuring the compressive residual strength of a dam-

aged fiber-reinforced polymer matrix composite plate (i.e. ASTM D7137 / D7137M

[99]) is taken as a reference in order to perform the CAI tests. This guideline is

linked to the standard ASTM D7136 / D7136M [59] for drop-weight impact test

(see Section 3.2.1).

The CAI test consists on install the damaged laminate in a multi-piece support

fixture (see Figure 3.6.a), that has been aligned to minimize loading eccentricities

and induced specimen bending. The specimen fixture assembly is placed between

flat plates and end-loaded under compressive force until specimen failure.

(a) (b)

Figure 3.6: (a) CAI support fixture and (b) the corresponding constraints.

The standard compressive test fixture uses adjustable retention plates to support

the specimen edges. In detail, the top and bottom supports extend the compressive

displacement to the specimen. These supports are ground flat and parallel, and

provide no clamp-up but some restraint to out-of-plane rotation due to the fixture

geometry. The unloaded edges of the specimen are constrained by side supports

which are knife-edge type supports and provide no rotational restraint. All these

constraints are represented in Figure 3.6.b.

The configuration of the support fixture system can have a significant effect on

the test results [99]. Results are affected by the geometry of the various slide plates.

Results are also affected by the presence of gaps between the slide plates and the

specimen, which can reduce the effective edge support and can result in concentrated
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load introduction conditions at the top and bottom specimen surfaces. Additionally,

results may be affected by variations in torque applied to the slide plate fasteners.

Loose fasteners may also reduce the effective edge support.

Errors can result if the test fixture is not centered with respect to the loading

axis of the test machine. For this reason, the standard proposes to glue four strain

gages at selected locations (see Figure 3.8) in order to detect evidence of specimen

bending before and during the test.

The test procedure starts with a compressive displacement which pre-loads the

specimen fixture assembly with 450N. This pre-load is applied in order to ensure

that all loading surfaces are in contact and to align the plates if necessary. After, the

load is reduced to 150N and the test machine is reset to zero. Next, a compressive

displacement is applied at the specified rate (i.e. maximum rate: u̇ = 1.25mm/min)

while recording data, until approximately 10% of the anticipated ultimate force

(normally, the ultimate force is unknown). Subsequently, the compressive force is

again reduced to 150N with an equivalent unloading rate. Finally, the recorded

strain gage data is reviewed to evidence any specimen bending. A difference in

the stress-strain or force-strain slope from opposite faces of the specimen indicates

bending in the specimen. Equation (3.9) determines a percent of bending PB at the

maximum applied force for each of the back-to-back gage locations:

PB =
εSG1 − εSG3

εSG1 + εSG3

× 100 (3.9)

where εSG1 and εSG3 are the strains from the gages on one face and on the opposite

face, respectively (see Figure 3.8). The sign of the calculated percent of bending

indicates the direction in which the bending is occurring. It should be noted that

bending is often introduced by the own asymmetry of the specimen created by the

impact damage.

After verifications of the strain gage lectures and re-alignments of the specimen

fixture assembly, the CAI test is performed by loading the specimen at the specified

rate while recording data. The specimen is loaded until the maximum force is

reached and the force has dropped off about 30% from the maximum.
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3.3.2 Resources used and specimen instrumentation

In the present thesis, all CAI tests are performed using an Instron-4208 electro-

mechanic universal testing machine with a load cell of 300kN. The fixture support

used follows the ASTM specifications (see Figure 3.7).

(a) (b) (c)

Figure 3.7: CAI test fixture: (a) base support, (b) top support adapted for the

crosshead test machine, and (c) whole fixture.

It should be noted that not all the specimens described in the impact studies

were tested for CAI. A suitable sample of the impacted specimens was selected.

The instrumentation of the specimens is composed by: two displacement trans-

ducers (LVDT) which are used to measure the out-of-plane displacement on two

points of the non-impacted face of the specimen, and four back-to-back strain gages

(SG). The LVDT’s allow to evidence the buckling mode at one face and are lo-

cated at the specimen points indicated in Figure 3.8. The strain gages are used

to detect evidence of specimen bending during the test and are located at 25mm

from each specimen edge (see Figure 3.8). Therefore, the results obtained are the

applied force, the crosshead displacement, the strain data from the gages and the

out-of-plane displacement given by the LVDT’s.

In addition, for some CAI tests the Digital Image Correlation (DIC) method is

used to analyze the impacted face of the specimen (GOM ARAMIS software and

measurement system (version 6.02)). This method provides the measurement of

the 3D displacement field of the surface of interest of an object, generated when

this is submitted to an external loading. The surface to be analyzed must have

a textured pattern in which the light intensity, reflected on the surface, will vary

continuously with a suitable contrast. Therefore, a speckle pattern is created by
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Figure 3.8: Instrumentation of CAI tests (SGx: strain gage; LVDTx: displacement

transducer).

applying a thin coating of white spray paint followed by a spread distribution of

spots of black spray paint. The optical system uses two cameras and a computer

to record the deformation pattern of the panel surface at regular intervals. The

computer calculates the motion of each location based on the two photographs from

different angles to the surface of the specimen. In-plane displacements and strains,

and out-of-plane displacements can accurately be determined based on these figures.



Chapter 4

Experimental results

4.1 Introduction

In this chapter, the experimental results of the configurations explained in Chapter 3

are shown and discussed in detail. Moreover, comparisons between the experimental

results and the analytical predictions are also analyzed.

The experimental results comprise the data from the impact tests, non-destructive

inspections (NDI) and compression after impact (CAI) tests. It should be noted that

for test configurations with a sample greater than one specimen, the mean values are

used. The C-scan inspections performed before impact are not shown here because

all specimens were not shown manufacturing flaws. Finally, not all the specimens

described in the impact studies were tested for CAI, a sample of the impacted spec-

imens was selected.

The content of this chapter is structured according to the three main proposed

studies, which are: effect of the ply thickness (clustering), effect of the mismatch

angles of the plies, and effect of the laminate thickness.

83
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4.2 Effect of ply thickness (clustering)

4.2.1 Impact tests

Impact force versus time

In order to illustrate the excellent repeatability of the impact tests, Figures 4.1

and 4.2 show the evolutions of the impactor reaction force for repeated impact

configurations of laminates L02 and L04, respectively. Therefore, for configurations

with more than one specimen, the mean value is used.
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Figure 4.1: Impact force histories of laminate L02 with (a) Ei = 38.6J and Mi = 5kg,

and (b) Ei = 19.3J and Mi = 5kg.

Figures 4.3, 4.4 and 4.5 show the histories of the impactor reaction force for each

impact energy of laminates L02, L03 and L04, respectively. An interesting piece of

evidence on these Figures is that the threshold load, Fd, at which significant loss

of stiffness occurs, remains constant for each laminate independently of the impact

energy. Therefore, Fd is independent of the impact velocity since the impactor mass

is the same for all the energies defined. Moreover, as expected, the peak loads

Fmax and the slopes of the elastic regime increase by increasing the velocity, for all

laminate types.

It is also observed that, increasing the velocity, the response is extended in

time because the plate develops more damage. In other words, the impact time

increases because the bending stiffness of the structure is reduced. This argument
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Figure 4.2: Impact force histories of laminate L04 with (a) Ei = 38.6J and Mi = 5kg,

and (b) Ei = 19.3J and Mi = 5kg.
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Figure 4.3: Impact force histories of laminate L02 for each impact energy (blue:

38.6J; black: 28.6J; red: 19.3J).

can be explained using the complete analytical models for the elastic prediction

of the impact response. For instance, Figure 4.6 shows the analytical predictions

of laminate type L02 for the impact configurations with 38.6J and 19.3J energies.

These predictions are obtained by using the complete analytical impact model fed

with the classical laminated plate theory and the bi-linear elastic-plastic contact

law proposed by Yigit and Christoforou [45]. The number of modes considered for
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Figure 4.4: Impact force histories of laminate L03 for each impact energy (blue:

38.6J; black: 28.6J; red: 19.3J).
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Figure 4.5: Impact force histories of laminate L04 for each impact energy (blue:

38.6J; black: 28.6J; red: 19.3J).

the Navier solution is 5 for each in-plane x and y directions, although the first

mode alone is enough since the behaviors are quasi-static. As can be observed,

the resulting elastic responses yield different slopes and peak loads, but the contact

times are the same. Therefore, the experimental force histories show that when the

velocity increases, larger damaged areas develop and so the impact contact duration
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increases.
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Figure 4.6: Experimental and analytical impact force histories of laminate L02 for

38.6J and 19.3J impact energies.

Focusing again on Figures 4.3, 4.4 and 4.5, the determination of the threshold

loads for laminates L02 and L03 can be easily identified whereas for the laminate

with the thickest plies, L04, this identification is more difficult. Moreover, the whole

profile of the force history of laminate L04 does not have the large oscillations which

occur for laminates L02 and L03. This fact indicates that changes in the stiffness

during the impact are expected to be more progressive and smooth for laminates

with thick plies than for laminates with thin plies. This behavior can be caused by

the large matrix cracks which can occur when the plies are thick.

Despite the fact that all the laminate types considered have practically the same

stiffness, the resulting impact force histories are clearly different from the point

where significant damage starts. This is due to the differences in the ply thicknesses

of the laminates, and further highlighted in Figures 4.7, 4.8 and 4.9, which compare

the results for the different laminates for each impact energy 38.6J, 28.6J and 19.3J.

The first part of the results is the elastic regime of the impact process which is

common for all laminates at each impact energy. However, the points where signif-

icant damage starts are clearly different, and from these points, the force histories

separate and follow different paths. Table 4.1 shows the differences in the threshold
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loads as well as in the peak loads for each impact energy.
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Figure 4.7: Impact force histories for 38.6J of laminates L02 (blue), L03 (black),

and L04 (red).

0 1 2 3 4 5 6
0

2000

4000

6000

8000

10000

12000

14000

Equal elastic response

Time [ms]

F
or

ce
 [N

]

 

 

L02−S04
L03−S04
L04−S04

Figure 4.8: Impact force histories for 28.6J of laminates L02 (blue), L03 (black),

and L04 (red).

Furthermore, Figures 4.7, 4.8 and 4.9 show that the impact response is elongated

by increasing the ply clustering of the laminate. Since delaminations cause a reduc-

tion of the stiffness, it is clear that larger delaminations should develop for laminate
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Figure 4.9: Impact force histories for 19.3J of laminates L02 (blue), L03 (black),

and L04 (red).

Table 4.1: Experimental threshold loads Fd and peak loads Fmax.

Laminate
Threshold loads Fd [kN] Peak loads Fmax [kN]

Energy [J]: 38.6 (mean) 28.6 19.3 (mean) Mean Energy [J]: 38.6 (mean) 28.6 19.3 (mean)

L02 9.89 9.92 9.99 9.94 13.57 12.42 10.41

L03 7.75 7.58 7.47 7.60 11.37 10.50 9.34

L04 5.47 5.50 5.52 5.50 8.83 8.00 7.78

L04 because less interfaces are available for delamination in comparison with the

other laminates.

Focusing on the values of the experimental damage thresholds Fd (see Table 4.1),

these can be represented as a function of the ply thickness on a natural logarithmic

scale, as shown in Figure 4.10. The black points and lines describe the analytical

predictions, whereas the points colored in gray correspond to the experimental values

for each laminate type. As can be observed, the analytical threshold load for matrix

cracking in thin outer plies located on the back face of the laminate is in agreement

with all the experimental points. Additionally, if the line which fits the experimental

results is calculated, the corresponding slope is equal to -0.427. This value is close to

the slope of the analytical threshold F ten
mc (i.e. slope: -0.5, since F ten

mc ∝ h2h−0.5
p ). The

small difference in the slopes can be due to scattering of the material properties or
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to the assumptions considered in the formulation of the damage threshold functions,

such as strain rate effects.

Therefore, according to the analytical predictions, the first significant damage

for all laminate types can be an elongated delamination at the first interface from

the back face of the plate. This result disagrees with the initial prediction for

laminate L02, where the first damage was linked to a mid-plane delamination Fd =

F stat
d1 . However, it can be considered that this delamination may occur subsequently

because the predicted load is slightly smaller than the experimental value.
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Figure 4.10: Experimental points (in gray) and analytical predictions (in black)

of the impact force as a function of the ply thickness for the creation of the first

significant damage.

Impactor displacement, impactor velocity, and absorbed energy

Using Equations (3.6) and (3.5), the displacement and velocity histories of the im-

pactor can be calculated, respectively. As an example, Figure 4.11 shows the dis-

placement and the velocity histories of all the laminates for an impact energy of

28.6J. As detected in the impact force histories, the displacement of L04 is the

largest because a higher bending occurs. Accordingly, the velocity history of L04 is

the slowest due to the same reason.

Using Equation (3.7), the histories of the absorbed energy by the specimens,
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Figure 4.11: Impactor (a) displacements and (b) velocities of all the laminates for

28.6J energy.

Ea(t), can be obtained. Figures 4.12.a, 4.13.a and 4.14.a show these histories of

each laminate type for each impact energy 38.6J, 28.6J and 19.3J, respectively.

From these evolutions, it is possible to know the dissipated energy by the specimen

as it is indicated for laminate type L04 in Figure 4.12.a. In addition, the impact force

can be plotted as a function of the impactor displacement. These plots are shown

in Figures 4.12.b, 4.13.b and 4.14.b. It results that the area enclosed in these charts

corresponds to the dissipated energy identified in the evolutions of the absorbed

energy. For instance, Figure 4.12.b indicates, in gray color, the corresponding energy

dissipated by the laminate L04.

As can be observed in Table 4.2, the dissipated energies for laminate L04 are

slightly greater than the values of the other laminate types. However, it is reasonable

to conclude that the energy dissipated is fairly independent of the laminate type.

Moreover, as expected, the dissipated energies increase by increasing the velocity,

for all laminate types.

4.2.2 NDI: C-scan after impact

The ultrasonic C-scan inspections of the impacted laminates identify the projection

of the delamination areas over the structure thickness. Therefore, the delaminations
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Figure 4.12: Evolution of the (a) absorbed energy and the (b) impact force versus

impactor displacement of each laminate for 38.6J.
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Figure 4.13: Evolution of the (a) absorbed energy and the (b) impact force versus

impactor displacement of each laminate for 28.6J.

which are close to the impact face hide the existence of deeper delaminations. How-

ever, the delaminations are often larger as the interface is deeper in the laminate,

and they can usually be seen.

Normally, each delamination has the so-called peanut shape and the superpo-

sition of all these delaminations yields to a circular projected area. The proper
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Figure 4.14: Evolution of the (a) absorbed energy and the (b) impact force versus

impactor displacement of each laminate for 19.3J.

Table 4.2: Absorbed energies of all laminates for each impact energy (in [J]).

Laminate Ei = 38.6J Ei = 28.6J Ei = 19.3J

L02 28.3 14.9 10.1

L03 27.2 18.9 10.2

L04 28.8 19.2 12.0

interpretation of the through-the-thickness location of the delamination depends on

the quality of the inspections performed. Figure 4.15 shows a sample of the C-scan

inspections of each laminate type for each impact energy.

It is observed that by increasing the impact velocity the projected area increases

for all the laminates. This result correlates with the plots of the impact force histories

shown previously (see Figures 4.3, 4.4 and 4.5), where the responses are extended

in time when the velocity is increased due to the reduction of the bending stiffness

as a consequence of the damage developed.

In addition, by reducing the number of interfaces available for delamination, the

resulting projected delamination area is increased. This result is also related to the

impact force histories (see Figures 4.7, 4.8 and 4.9), where the impact times for

laminate type L04 are larger since the bending stiffness values are reduced due to
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Ei = 38.6J Ei = 28.6J Ei = 19.3J

Figure 4.15: Sample of C-scan inspections of laminates L02, L03 and L04.

the large delaminations created.

The shapes of the projected delamination areas are clearly different for each

laminate type. The shape of laminates L02 follow a quite similar circular pattern

at each impact energy. Likewise, the shapes of laminate type L03 are also fairly

circular, although in contrast with laminate L02, a narrow and elongated delamina-

tion appears at the deepest interface which is more evident for the highest impact

energy. Finally, the delamination shapes of laminate type L04 significantly differ

from the other laminates. The areas are very large, and their shapes and locations

through-the-thickness of the laminate can be easily recognized.

Although the C-scan inspections provide the resulting damaged areas after the

impact tests, they can be used to check approximately if the analytical predictions for

the first significant damage threshold load Fd are in agreement with the experimental

results. Initially, it was predicted that the first significant damage for laminate type

L02 would be a circular mid-plane delamination. However, the experimental point

plotted in Figure 4.10 has evidenced that the first damage is rather a delamination
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at the first interface from the back face of the plate. The shape of the C-scan

inspections for laminate L02 are almost circular for all the impact energies, and

then it is difficult to determine what is the associated delamination for the first

drop in the impact load. For laminate type L03, the prediction was a delamination

at the first interface from the back face of the plate. Observing the inspections,

it is reasonable to consider that a delamination has appeared at that interface,

although its existence is difficult to prove due to the fact that it is hidden by the

delaminations close to the impact front face. The prediction for laminate type L04

was also a delamination at the first interface from the back face of the plate. The

prediction can be considered correct since the delamination areas at the deepest

interface are peanut shaped, which are typical when a large matrix crack appears

on the back outer ply of the plate. However, further testing is required to verify

these arguments, especially with critical impact energies which generate maximum

impact forces similar to the damage threshold loads.

It is important to point out that the growth of delaminations can be affected

by the finite in-plane dimensions of the plates, the stacking sequences, the impactor

mass and velocity, and the edge supports. All the impact configurations and stacking

sequences tested are in agreement with the recommendations suggested by ASTM

D7136 / D7136M [59]. The standard remarks that if all the recommendations are

followed, the maximum delamination diameter will be less than half of the unsup-

ported specimen width (38mm). However, most of the delamination areas obtained

are greater than this value.

Laminate type L04 has fewer interfaces for delamination than laminates L02

and L03. As such, the energy is dissipated by means of large damage areas which

could be stopped by the membrane effects and/or the edge supports. The larger

delaminations generated by ply clustering result in larger deflections and associated

stronger membrane effects, which are known to suppress delamination growth [24].

This is suggested by the relation between the projected delamination areas and the

impact energy, as shown in Fig. 4.16, where the fitting line of laminate type L04

has the lowest slope. Furthermore, since the delaminations cannot grow, the energy

must be dissipated by other means, such as large indentation and fiber breakage.
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Table 4.3: Projected delamination areas given by C-scan inspections.

Impact energy: Ei = 38.6J Impact energy: Ei = 28.6J Impact energy: Ei = 19.3J

Specimen Area [mm2] Specimen Area [mm2] Specimen Area [mm2]

L02-S01 3045 L02-S04 1990 L02-S05 1295

L02-S02 2710 L02-S06 1340

L02-S03 3310 Mean: 1318

Mean: 3022

L03-S01 4430 L03-S04 3300 L03-S05 2185

L03-S02 4115 L03-S06 1800

L03-S03 3320 Mean: 1993

Mean: 3955

L04-S01 6270 L04-S04 5686 L04-S05 4000

L04-S02 5930 L04-S06 6750

L04-S03 6275 Mean: 5375

Mean: 6158
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Figure 4.16: Projected delamination areas in function of the impact energy.

4.2.3 Dent-depth measurements

In Figure 4.17 are summarized the contour plots of the dent-depth measurements

of the whole selected specimen sample. All these measurements were performed by
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means of a 3D coordinate measuring machine.

Related to the arguments commented in previous sections, it is reasonable that

by reducing the number of interfaces for delamination the indentation is increased.

The impact energy can be dissipated in different ways, mainly by matrix cracking,

delaminations and fiber failure. When delaminations can not growth because they

have reached their maximum size (due to the fact that the clamping system stops

the delamination growth and/or because high loads are needed in order to increase

their size due to the membrane effect [20]), the indentation could be increased, such

as it is evidenced for laminates L04 in comparison with laminates L03 and L02, or

laminates L03 in comparison with laminates L02.

Furthermore, it is obvious that increasing the impact velocity, the resulting in-

dentation is increased.

4.2.4 CAI tests

It should be noted that not all the specimens impacted are tested for CAI. Moreover,

no a single CAI test performed experienced unacceptable damage modes, such as

those related to load introduction by the support fixture.

Residual compressive load

Table 4.4 summarizes the residual compressive loads Ffc obtained. It is observed

that increasing the impact energy (or the impact velocity), the residual compressive

loads are reduced for all the laminates tested.

In addition, the damage tolerance estimated by means of the residual compres-

sive load does not seem to be reduced by increasing the ply thickness, because all

laminate types show similar values of the residual compressive loads at each impact

energy (except for specimen L04-S05). As it was noted in Section 3.2.2, this result

is due to the fact that the compressive load depends on a combination of variables

such the number of delamination planes, the size of the delaminations, and their

locations through-the-thickness of the laminate. However, more tests are needed in

order to further support these conclusions since the repeatability of the CAI tests

is not as good as in the impact tests.
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Figure 4.17: Dent-depth inspections of laminates L02, L03 and L04.

Lectures of the displacement transducers (LVDT)

Table 4.5 summarizes the maximum values of the readings of the two displacement

transducers used during the CAI tests (see Figure 3.8 in Chapter 3). As it can be

observed, the displacements of laminate type L04 are often higher than in the other

laminate types. However, this evidence does not imply that the damage tolerance

is worse than in the other laminates because the failure loads read have been quite

similar.

By means of the profile of the two out-of-plane displacement histories, it is pos-

sible to describe the buckling mode which is experienced at the instrumented back

face of the corresponding impacted specimens. For instance, Figure 4.18 shows the
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Table 4.4: Failure compressive loads Ffc of laminates L02, L03 and L04.

Impact energy: Ei = 38.6J Impact energy: Ei = 28.6J Impact energy: Ei = 19.3J

Specimen Ffc [kN] Specimen Ffc [kN] Specimen Ffc [kN]

L02-S01 93 L02-S04 103 L02-S05 133

L02-S02 99

Mean: 96

L03-S01 89 L03-S04 100 L03-S05 134

L03-S02 91

Mean: 90

L04-S01 98 L04-S04 103 L04-S05 105

L04-S02 97

Mean: 98

Table 4.5: Maximum lectures of the displacement transducers of laminates L02, L03

and L04.

Impact energy: Ei = 38.6J Impact energy: Ei = 28.6J Impact energy: Ei = 19.3J

Specimen LVDT1 [mm] LVDT2 [mm] Specimen LVDT1 [mm] LVDT2 [mm] Specimen LVDT1 [mm] LVDT2 [mm]

L02-S01 1.67 0.09 L02-S04 1.73 0.16 L02-S05 1.11 0.41

L02-S02 2.06 0.33

L03-S01 2.18 0.14 L03-S04 1.93 0.08 L03-S05 Not read Not read

L03-S02 1.94 0.15

L04-S01 2.85 0.18 L04-S04 2.88 0.30 L04-S05 2.91 0.19

L04-S02 Not read Not read

lectures for each laminate type of the specimens impacted with 29.6J. It can be

concluded that the buckling mode of each laminate type is practically the same and

is presented as a local bubble concentrated in the middle of the specimens, which

propagates suddenly to a bubble that takes up the whole in-plane dimensions of the

specimens when the failure load is reached.
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Figure 4.18: Displacement transducer lectures of the specimens impacted with 29.6J:

(a) L02, (b) L03, and (c) L04.

Lectures of the strain gages (SG) and Digital Image Correlation (DIC)

During the preparatory of the CAI test set-up, four strain gages are used in order

to avoid loading eccentricities and induced specimen bending (see Figure 3.8 in

Chapter 3). In addition, the lectures of these gages can be stored in a computer

during the test in order to check if some bending has appeared. For instance, Figure

4.19 contains the four strain lectures of each laminate type for the impact energy of

29.6J. As it can be verified, there are differences between the lectures of the gages

located at the same face (SG1 with SG2; SG3 with SG4), and also between the

lectures of the back-to-back gages (SG1 with SG3; SG2 with SG4). The first offset

indicates that the load applied is not completely uniform, due to the support fixture,

by the frame of the test machine, or by the asymmetry induced to the laminate in

the impact test. The second offset indicates that the back-to-back sub-laminates are

standing different deformations due to the fact that the laminate is also subjected

to a little bending. Despite the attempts previous to the CAI test to avoid possible

eccentricities, bending finally appears due to the asymmetry induced by the damage

created in the impact test.

These effects also can be evidenced by means of the Digital Image Correlation

(DIC) lectures. For instance, Figure 4.20 shows the displacement field lectures for

the specimen L04-S04 at different points of the compression test. The first column of

images corresponds to the horizontal displacement field, the second corresponds to

the vertical displacement field, and finally the third corresponds to the out-of-plane
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Figure 4.19: Strain gage lectures of the specimens impacted with 29.6J: (a) L02, (b)

L03, and (c) L04.

displacement field. Also, the horizontal, vertical and in-plane shear strain fields can

be obtained. As it was detected by the strain gages (SG1 and SG2), the vertical

displacement field is not uniform during the first loads of the CAI test. Also, the

horizontal displacement field is not completely symmetric.

The direct comparison between the lectures of the DIC device and the strain

gages located at the same laminate face (SG1 and SG2) is not possible since the

locations of the gages are far from the range of the lecture field of the DIC device.
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Crosshead lectures: displacement=-0.29mm; load=40kN
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Crosshead lectures: displacement=-1.10mm; load=80kN
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Crosshead lectures: displacement=-1.42mm; load=103kN (failure)
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Figure 4.20: DIC lectures of the specimen L04-S04 impacted at 29.6J: (a) horizontal

displacement field, (b) vertical displacement field, and (c) out-of-plane displacement

field (positive values indicate displacements in the out-of-plane direction).
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4.3 Effect of ply mismatch angle at interfaces

4.3.1 Impact tests

Impact force versus time

Figure 4.21 shows the histories of the impactor reaction force for each impact energy

of the cross-ply laminate L06. As verified in previous study, the threshold load Fd

remains constant at any impact energy, and the peak loads Fmax and the slopes of

the elastic regime increase by increasing the velocity. It can be verified that for the

minimum impact energy 19.3J, the damage threshold load Fd coincides with the

peak load.
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Figure 4.21: Impact force histories of laminate L06 for each impact energy (blue:

38.6J; black: 28.6J; red: 19.3J).

In addition, increasing the velocity, the response is extended in time because

the plate develops more damage. Figure 4.22 shows the analytical predictions of

laminate L06 for the impact configurations with 38.6J and 19.3J energies, along

with the corresponding experimental profiles. The resulting elastic responses for

each energy yield different slopes and peak loads, but the contact times are equal.

Therefore, again it is evidenced that increasing the velocity, larger damaged areas

are developed and so the impact contact duration is enlarged.

Figures 4.23, 4.24 and 4.25 compare the profiles of laminates L02 and L06 for



104 CHAPTER 4. EXPERIMENTAL RESULTS

0 1 2 3 4
0

0.5

1

1.5

2

2.5
x 10

4

Time [ms]

Fo
rc

e 
[N

]

 

 

Experimental, Ei = 38.6 J
Experimental, Ei = 19.3 J
Analytical, Ei = 38.6 J
Analytical, Ei = 19.3 J

Figure 4.22: Experimental and analytical impact force histories of laminate L06 for

38.6J and 19.3J impact energies.

each impact energy 38.6J, 28.6J and 19.3J, respectively. The elastic responses of

laminate type L06 are stiffer than for L02 due to the fact that the laminate L06 is

thicker. Accordingly, the contact durations for laminate L02 are larger, because L02

yields to a more quasi-static behavior in comparison with L06. Table 4.6 summarizes

the threshold loads and peak loads of each laminate for each impact energy.
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Figure 4.23: Impact force histories for 38.6J of laminates L02 (blue) and L06 (black).
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Figure 4.24: Impact force histories for 28.6J of laminates L02 (blue) and L06 (black).
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Figure 4.25: Impact force histories for 19.3J of laminates L02 (blue) and L06 (black).

Figure 4.26 shows the corresponding analytical trends (in black) and the exper-

imental value (in cyan) for the first significant damage Fd of laminate L06. The

analytical prediction of Fd for L06 was a mid-plane delamination, i.e. F stat
d1 . How-

ever, the experimental point is more close to the trend for a back face delamination,

as happened for laminate L02. It can be considered that a combination of both

delamination types can occur simultaneously since that both thresholds are fairly

close.
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Table 4.6: Experimental threshold loads Fd and peak loads Fmax of laminates L02

and L06.

Laminate
Threshold loads Fd [kN] Peak loads Fmax [kN]

Energy [J]: 38.6 (mean) 28.6 19.3 (mean) Mean Energy [J]: 38.6 (mean) 28.6 19.3 (mean)

L02 9.89 9.92 9.99 9.94 13.57 12.42 10.41

L06 12.32 12.31 12.00 12.21 13.92 12.86 12.00
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Figure 4.26: Experimental and analytical trends of the impact force as a function

of the ply thickness for the creation of the first significant damage.

Impactor displacement, impactor velocity, and absorbed energy

As an example, Figure 4.27 shows the displacement and the velocity histories of

laminates L02 and L06 for the impact energy 28.6J. The sudden changes observed

in the impact force histories at Fd are also reflected in the velocity profiles.

Furthermore, the fact that laminate type L02 is thinner than laminate L06 is

reflected in the displacement and velocity responses. Since the impactor mass is the

same for both impact tests on L02 and L06, the impactor displacement is larger

for L02 because more deflection of the plate was experimented. In other words, the

quasi-static behavior is emphasized for L02 as was noted in Chapter 3, since the

ζw parameter of L02 was greater than the one of L06. Accordingly, the velocity

histories of L02 are slower than for L06.
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Figure 4.27: Impactor (a) displacements and (b) velocities of laminates L02 and L06

for 28.6J energy.

Figures 4.28.a, 4.29.a and 4.30.a show the histories of the absorbed energy Ea(t)

of laminates L02 and L06 for each impact energy 38.6J, 28.6J and 19.3J, respectively.

In addition, Figures 4.28.b, 4.29.b and 4.30.b show the impact force as a function

of the impactor displacement. As noted in the study of the ply thickness, the

area enclosed in these charts corresponds to the dissipated energy identified in the

evolutions of the absorbed energy. Table 4.7 summarizes these levels of energy and

evidences that practically both laminates dissipate the same energy for each impact

configuration.

Table 4.7: Absorbed energies of laminates L02 and L06 for each impact energy (in

[J]).

Laminate Ei = 38.6J Ei = 28.6J Ei = 19.3J

L02 28.3 14.9 10.1

L06 26.3 15.8 11.8
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Figure 4.28: Evolution of the (a) absorbed energy and the (b) impact force versus

impactor displacement of laminates L02 and L06 for 38.6J.
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Figure 4.29: Evolution of the (a) absorbed energy and the (b) impact force versus

impactor displacement of laminates L02 and L06 for 28.6J.

4.3.2 NDI: C-scan after impact

Figure 4.31 shows a sample of C-scan inspections of laminates L02 and L06 for each

impact energy. The projected delamination areas of L06 are among square and

circular shaped. Although the C-scan inspections give the resulting damaged areas

after impact tests, these results can be associated with the analytical predictions
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Figure 4.30: Evolution of the (a) absorbed energy and the (b) impact force versus

impactor displacement of laminates L02 and L06 for 19.3J.

for the first significant damage Fd. As was noted in the discussion of the impact

force histories, Fd can be triggered by a circular mid-plane delamination. In an

approximate point of view, this argument suits with the resulted inspections.

According to the results of the ply thickness study, increasing the impact velocity

increases the projected delamination area for all laminates.

Ei = 38.6J Ei = 28.6J Ei = 19.3J

Figure 4.31: Sample of C-scan inspections of laminates L02 and L06.

Looking the results presented, the mismatch angle of the interfaces has not a
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clear effect on the damage resistance of the plate, despite the fact that laminate

L06 was selected because its stacking sequence has increased mismatch angles in

comparison with laminate L02. This lack of contrast may be generated by the

differences in the plate thicknesses of L02 and L06 which make difficult to extract

a possible concluding result, or simply because really the mismatch angle does not

affect the damage resistance significantly.

4.3.3 Dent-depth measurements

In Figure 4.32 are collected the contour plots of the dent-depth measurements of

the whole selected specimen sample of laminates L02 and L06. The shape of the

contour plots for L06 are circular in the center and changes into a square shape as

more far from the impact point the lecture is. As can be observed, increasing the

impact velocity, the resulting indentation obviously is increased. On the other hand,

an effect of the mismatch angle is not detected.
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Figure 4.32: Dent-depth inspections of laminates L02 and L06.
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4.3.4 CAI tests

Residual compressive load

Table 4.8 summarizes the residual compressive loads Ffc obtained. As it can be

evidenced, increasing the impact energy (or the impact velocity), the residual com-

pressive loads are reduced for any laminate.

Table 4.8: Failure compressive loads Ffc of laminates L02 and L06.

Ei = 38.6J Ei = 28.6J Ei = 19.3J

Specimen Ffc [kN] Specimen Ffc [kN] Specimen Ffc [kN]

L02-S01 93 L02-S04 103 L02-S05 133

L02-S02 99

Mean: 96

L06-S01 113 L06-S04 130 L06-S06 145

L06-S02 114

Mean: 114

In addition, the compressive loads of L06 are larger than for L02. This result can

not be attributed to the effect of the ply mismatch angle, and even more when it is

expected that the mismatch angle should give a reduced damage tolerance as noted

in Chapter 3. Really, the residual loads of L06 are larger because laminate L06 has

more plies than L02. Therefore, if these loads are normalized by the corresponding

section subjected in compression (i.e. b × h), the compressive residual strengths

obtained for both laminates are practically equal at each impact energy (see Table

4.9).

Table 4.9: Residual compressive strengths σfc of laminates L02 and L06.

Laminate
Ei = 38.6J Ei = 28.6J Ei = 19.3J

Ffc [kN] σfc [MPa] Ffc [kN] σfc [MPa] Ffc [kN] σfc [MPa]

L02 96 16.6 103 17.8 133 22.9

L06 114 16.8 130 19.1 145 21.3
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Lectures of the displacement transducers (LVDT) and the strain gages

(SG)

Table 4.10 summarizes the maximum values of the lectures of the two displacement

transducers used during the CAI tests. As it can be observed, the values obtained are

quite similar for both laminate types. In addition, Figure 4.33 shows the lectures

for laminates L02 and L06 of the specimens impacted with 29.6J. As in the ply

clustering study, the buckling mode of each laminate type is practically the same.

Table 4.10: Maximum lectures of the displacement transducers of laminates L02 and

L06.

Impact energy: Ei = 38.6J Impact energy: Ei = 28.6J Impact energy: Ei = 19.3J

Specimen LVDT1 [mm] LVDT2 [mm] Specimen LVDT1 [mm] LVDT2 [mm] Specimen LVDT1 [mm] LVDT2 [mm]

L02-S01 1.67 0.09 L02-S04 1.73 0.16 L02-S05 1.11 0.41

L02-S02 2.06 0.33

L06-S01 2.08 0.30 L06-S04 1.55 0.37 L06-S06 1.50 0.22

L06-S02 2.22 0.26
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Figure 4.33: Displacement transducer lectures of the specimens impacted with 29.6J:

(a) L02 and (b) L06.

Finally, Figure 4.34 shows the lectures of the four strain gages of each laminate

type for the impact energy of 29.6J. Again, differences between the lectures of the
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gages located at the same face (SG1 with SG2; SG3 with SG4), and between the

lectures of the back-to-back gages (SG1 with SG3; SG2 with SG4) are evidenced. As

mentioned in Section 4.2, these differences are caused by a non-uniform application

of the load and also by the asymmetry of the impacted plate which produces a little

bending during the test.
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Figure 4.34: Strain gage lectures of the specimens impacted with 29.6J: (a) L02 and

(b) L06.

4.4 Effect of the laminate thickness

4.4.1 Impact tests

Impact force versus time

Figures 4.35 and 4.36 show the histories of the impactor reaction force for each

impact configuration of laminates L01 and L05, respectively (see Chapter 3). A clear

first drop in the force histories of laminate L05 is evidenced and it is constant for all

impact configurations. However, the profiles of L01 are smooth and do not have a

clear first drop of the impact force. This result could mean that there is not a sudden

loss of stiffness after damage onset and can be related to the fact that laminate L01

stands large global deflections which generate membrane effects. These effects mean
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that the stiffness of the plate increases as the plate deflection is increased. As the

contact time advances, more fibers are subjected to tensile stresses and they stand

the majority of the impact load. The matrix and delamination damage that can

occur do not change the impact response. However, the impact response is affected

by progressive fiber breakage. This behavior seems to be common for any of the

impact configurations of laminate L01, even with the configuration with the smaller

impact energy, i.e. specimen L01-S06.
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Figure 4.35: Impact force histories of laminate L01 for each impact configuration

(blue: Ei = 38.6J, Mi = 5kg; black: Ei = 19.3J, Mi = 5kg; red: Ei = 19.3J,

Mi = 6kg; green: Ei = 12.0J, Mi = 2kg).

Tables 4.11 and 4.12 summarize the threshold loads Fd and the peak loads Fmax

for each impact configuration of laminates L01 and L05, respectively.

Table 4.11: Experimental threshold loads Fd and peak loads Fmax for laminate L01.

Load [kN]
Energy [J]: 38.6 19.3 19.3 12.0

Mean
Mass [kg]: 5.0 5.0 6.0 2.0

Threshold loads Fd 4.00 3.90 3.72 4.03 3.9

Peak loads Fmax 4.79 4.65 4.35 4.62 -

In detail, Figure 4.37.a shows the force responses of the impact configurations

of laminate L01 with a constant impact energy, but different impactor masses and
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Figure 4.36: Impact force histories of laminate L05 for each impact configuration

(blue: Ei = 38.6J, Mi = 5kg; black: Ei = 57.8J, Mi = 6kg; red: 57.9J, Mi = 15kg).

Table 4.12: Experimental threshold loads Fd and peak loads Fmax for laminate L05.

Load [kN]
Energy [J]: 38.6 57.8 57.9

Mean
Mass [kg]: 5.0 6.0 15.0

Threshold loads Fd 18.84 19.59 19.56 19.33

Peak loads Fmax 18.84 19.77 19.95 -

velocities. As can be observed, increasing the impactor mass the response is more

quasi-static, which means that the response is slowed down. In addition, Figure

4.37.b also shows the same analysis for laminate L05, but in this case the difference

in the impactor mass is increased, yielding to more differentiable responses.

The effect of the impactor mass Mi was shown in the impact characterization

diagram by means of the relative mobility parameter ζw (see Chapter 2). Increasing

Mi, ζw is increased and then the behavior is changed to a more quasi-static behavior.

This effect can also be observed by means of the complete analytical models of the

impact event. Accordingly, Figure 4.38 show the experimental and the analytical

responses of laminate L01 for the impact energy 19.3J. In detail, the analytical

predictions plotted in Figure 4.38.a are given by a complete model fed with the bi-



116 CHAPTER 4. EXPERIMENTAL RESULTS

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

Time [ms]

F
or

ce
 [N

]

 

 

L01−S02/S03 (mean)
L01−S04/S05 (mean)

0 1 2 3 4 5 6
0

0.5

1

1.5

2

x 10
4

Time [ms]
F

or
ce

 [N
]

 

 

L05−S03/S04 (mean)
L05−S05/S06 (mean)

(a) (b)

Figure 4.37: (a) Impact force histories of laminate L01 for 19.3J (black: Mi = 5kg;

red: Mi = 6kg), and (b) impact force histories of laminate L05 for 58J (black:

Mi = 6kg; red: Mi = 15kg).

linear elastic-plastic contact law proposed by Yigit and Christoforou [45]. However,

for the model used for the predictions plotted in Figure 4.38.b, the Hertz contact law

is considered. For all the simulations, the number of modes applied for the Navier

solution is 5 for each in-plane x and y directions. The analytical models show

clearly the effect of changing the mass and the velocity under equal impact energy.

As expected, the contact time of the elastic responses is enlarged when the impactor

mass is increased. Finally, related to the contact laws used for the analytical models,

both cases suit the experimental profile and then no significant dependence with the

contact law is detected. This result is explained with the fact that laminate L01 has

small peak loads and an emphasized global behavior. Therefore, the role that plays

the contact law in these impact configurations is small.

Additionally, Figure 4.39 illustrates also the effect of changing the impactor

mass for laminate L05. In contrast with the predictions given for laminate L01, the

role that plays the contact law is significant because a more localized behavior is

experimented. As can be observed, the model which uses the Hertz contact law (in

Figure 4.39.b), suits better the experimental results than the model fed with the bi-

linear elastic-plastic contact law (in Figure 4.39.a). Therefore, given the predictions

of the complete models, it could be interesting to carry out quasi-static indentation



4.4. EFFECT OF THE LAMINATE THICKNESS 117

tests or finite element simulations in order to know what is the proper contact law.

Finally, the effects of changing the impactor mass and the velocity but keeping

constant the impact energy on the damage creation, can be simply analyzed, in a

qualitative point of view, by observing the peak loads of the analytical profiles or

by calculating the maximum elastic impact force as: Fmax = F̄max
√
ky
√

2Ei (see

Section 3.2). Since the impact energy Ei is kept constant, it yields to a constant

maximum elastic impact force. Therefore, the resulting extension and type of dam-

age is expected to be the same.
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Figure 4.38: Experimental and analytical impact force histories of laminate L01

for a constant impact energy 19.3J: Mi = 5kg (black), and Mi = 6kg (red). Two

different contact laws are used: (a) bi-linear elastic-plastic contact law [45], and (b)

the Hertz contact law.

In Figure 4.40.a, the impact force histories corresponding to laminates L01 and

L02 for an impact energy of 19.3J and an impactor mass of 5kg are compared.

The effect of the plate thickness is clearly evidenced. Increasing the thickness, the

response is faster, the peak load increases, and a clear first drop of the force appears.

In addition, in Figure 4.40.b the impact force histories corresponding to laminates

L01, L02 and L05 for an impact energy of 38.6J and an impactor mass of 5kg are

compared. Again, the effects of the plate thickness under equal impact conditions

can be observed. As shown, laminate L01 was perforated under an impact with a

quasi-static behavior, as predicted in Chapter 3.

Recovering the experimental damage thresholds Fd of all laminates with equal
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Figure 4.39: Experimental and analytical impact force histories of laminate L05 for

a constant impact energy 57.8J: Mi = 6kg (black), and Mi = 15kg (red). Two

different contact laws are used: (a) bi-linear elastic-plastic contact law [45], and (b)

the Hertz contact law.
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Figure 4.40: (a) Impact force histories of laminates L01 (black) and L02 (blue) for

19.3J; (b) impact force histories of laminates L01 (black), L02 (blue) and L05 (red),

for 38.6J.

ply thickness (L01, L02, L05 and L06), these can be plotted as a function of the

plate thickness h in a natural logarithmic scale, as shown in Figure 4.41. If a fit
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of the experimental points is performed (in gray), a slope of 1.47 is obtained. This

value is quite close to the slope of the analytical threshold for a circular mid-plane

delamination (in black), i.e. 1.5, since F stat
d1 ∝ h1.5. Despite the constant offset that

exists between the experimental and the analytical values, the significant conclusion

is that the analytical trend seems to be in agreement with the experimental results.

This result suggests that these laminates have a threshold load that corresponds

approximately to a circular mid-plane delamination. The offset can be due to scat-

tering of the material properties or to the assumptions considered in the formulation

of the damage threshold, e.g. strain rate effects are neglected. Additionally, this

result agrees with the analytical prediction for the first significant damage explained

in Section 3.2.2, in exception of laminate L01. The damage threshold for L01 was

related to a back face delamination (Fd = F ten
mc ). This inaccurate prediction can be

attributed to the fact that the identification of Fd in the impact force history is not

clear, or simply a sudden delamination does not occur.
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F stat
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(
h1.5

)

Figure 4.41: Experimental and analytical threshold loads as a function of the plate

thickness.

Impactor displacement, impactor velocity, and absorbed energy

Accordingly to the impact force histories, the effect of changing the impactor mass

and the velocity, but keeping constant the impact energy, can also be observed in
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the histories of the impactor displacement and velocity plotted in Figure 4.42 for

laminate L01, and in Figure 4.43 for laminate L05. Increasing the impactor mass,

the displacements are enlarged and so the velocity responses are slower.
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Figure 4.42: Impactor (a) displacement and (b) velocity of laminate L01 for 19.3J

(black: Mi = 5kg; red: Mi = 6kg).
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Figure 4.43: Impactor (a) displacement and (b) velocity of laminate L05 for 58J

(black: Mi = 6kg; red: Mi = 15kg).

Moreover, Figure 4.44.a shows the histories of the absorbed energy of laminates

L01, and Figure 4.44.b shows the evolutions of the impact force as a function of the
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impactor displacement. It can be seen that the absorbed energies are practically

equal for both impact configurations, but the whole dissipation occurs at differ-

ent instants. In addition, Figure 4.45 also shows these charts for laminates L05,

where the effect of the impactor mass is more clear because the differences between

configurations are greater than for L01.
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Figure 4.44: Evolution of the (a) absorbed energy and the (b) impact force versus

impactor displacement of laminate L01 for 19.3J (black: Mi = 5kg; red: Mi = 6kg).
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Figure 4.45: Evolution of the (a) absorbed energy and the (b) impact force versus

impactor displacement of laminate L05 for 58J (black: Mi = 6kg; red: Mi = 15kg).
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The result detected in Figures 4.44 and 4.45 agrees with the procedure of the

guidelines for a drop-weight impact test provided by the aeronautical industry, which

often do not specify the impactor mass or the velocity, rather they establish the

impact energy (e.g. Airbus AITM1-0010 [94]). The reason for defining the set-up in

this way is related to the fact that independently of the impactor mass and velocity

selected, at the end of the test the energy dissipated will be the same. In other

words, the damage developed in the specimens is the same if the impact energy is

kept constant.

On the other hand, Figure 4.46 shows the displacement and the velocity histories

of laminates L01 and L02 for the impact energy 19.3J. In addition, Figure 4.47

shows the corresponding histories of laminates L01, L02 and L05 for the impact

energy 38.6J. Again, the effect of the laminate thickness is evidenced. Increasing

the thickness, the response is more localized. This result means that the impactor

displacement is smaller because less global deflection of the plate is experienced, and

accordingly the response is much faster.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

Time [ms]

D
is

pl
ac

em
en

t [
m

m
]

 

 

L01−S02/S03 (mean)
L02−S05/S06 (mean)

0 2 4 6 8 10
−2

−1

0

1

2

3

Time [ms]

V
el

oc
ity

 [m
/s

]

 

 

L01−S02/S03 (mean)
L02−S05/S06 (mean)

(a) (b)

Figure 4.46: Impactor (a) displacement and (b) velocity of laminates L01 and L02

for 19.3J.

The absorbed energy is not the same for each laminate thickness under equal

impact conditions. The trend is if the laminate thickness is increased, the absorbed

energy is reduced. This effect can be observed in Figure 4.48, which shows the

histories of the absorbed energy and the evolutions of the impact force as a function
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Figure 4.47: Impactor (a) displacement and (b) velocity of laminates L01, L02 and

L05 for 38.6J.

of the impactor displacement of laminates L01 and L02 for the impact energy 19.3J.

The dissipated energies at the end of the tests are 13.1J for L01 and 10.1J for L02.

Additionally, Figure 4.49 shows these evolutions corresponding to laminates L01,

L02 and L05 for the impact energy 38.6J. In this case, the dissipated energies at

the end of the tests are 34.3J for L01, 28.3J for L02, and 23.6J for L05. Finally, a

recovering of the elastic energy in the evolution of Ea of the perforated specimen

L01-S06 is not observed.

4.4.2 NDI: C-scan after impact

The observations commented before about the effects of changing the impactor mass

and the velocity, but keeping constant the impact energy, also can be associated

with the ultrasonic C-scan inspections. Figures 4.50 and 4.51 show a sample of

the projected delamination areas corresponding to laminate L01 and laminate L05,

respectively. It is observed that the projected area is practically the same when the

impact energy is kept constant. This result suits with the fact that the dissipated

energy is also the same for two impact cases which have the same impact energy.

On the other hand, between specimens with the same impact configuration but

different laminate thicknesses, the resulting values of the projected area are quite

similar, such as it is shown in Figures 4.52 and 4.53. However, it could be interesting
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Figure 4.48: Evolution of the (a) absorbed energy and the (b) impact force versus

impactor displacement of laminates L01 and L02 for 19.3J.
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Figure 4.49: Evolution of the (a) absorbed energy and the (b) impact force versus

impactor displacement of laminates L01, L02 and L05 for 38.6J.

to have at one’s disposal the total values of the sum of each delaminated area of

the interfaces, and then to compare these values between laminates with different

thicknesses. Therefore, it could be expected that the largest area would be from

laminate L01 as it was detected in the profiles of the dissipated energy. If this

does not occur, then other damage mechanisms should have absorbed the energy in
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Ei = 19.3J; Mi = 5.0kg Ei = 19.3J; Mi = 6.0kg

Figure 4.50: Sample of C-scan inspections of laminate L01 with equal impact ener-

gies, but different impactor masses.

Ei = 57.8J; Mi = 6.0kg Ei = 57.9J; Mi = 15.0kg

Figure 4.51: Sample of C-scan inspections of laminate L05 with equal impact ener-

gies, but different impactor masses.

laminate L01, such as fiber breakage.

L01 L02

Figure 4.52: Sample of C-scan inspections of laminates L01 and L02 for 19.3J (lam-

inate thickness).

The shapes of the projected delamination areas can be related to the analytical

predictions of Fd. For laminate type L01 was predicted a delamination at the first

interface from the back face of the plate (i.e. F ten
mc for thin ply thickness). How-

ever, the experimental value obtained fits with the global linear trend for a circular
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L01 L02 L05

Figure 4.53: Sample of C-scan inspections of laminates L02 and L05 for 38.6J (lam-

inate thickness).

mid-plane delamination F stat
d1 , as it was seen in Figure 4.41. Figure 4.54 shows the

ultrasonic inspection for the laminate L01 with the lowest impact energy. As can

be observed, the shape is equal in comparison with the shapes resulted from higher

impact energies, just that with a smaller size. Therefore, for laminate L01 it is dif-

ficult to know what is the damage type associated to Fd. As was noted previously,

these difficulties can be due to different factors. On the other hand, the prediction

of Fd for both laminate types L02 and L05 was a mid-plane circular delamination.

The shapes obtained are quite circular, but it should be noted that these circu-

lar shapes are rather a result of the superposition of peanut shaped delaminations.

Furthermore, the deeper the delamination is, the larger the delamination is. These

distribution of delaminations yield to the so-called pine pattern delamination dis-

tribution. In conclusion, for laminates L02 and L05 the prediction of Fd can be

considered well suited although the considerations commented.

Figure 4.54: C-scan inspection of specimen L01-S06 (Ei = 12.0J, Mi = 2.0kg).
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4.4.3 Dent-depth measurements

Figures 4.55 and 4.56 show the contour plots of the dent depth measurements of

the impacted specimens L01 and L05, respectively. Consistent with previous obser-

vations, the resulting lectures of the dent depths are quite similar for impact cases

with different impactor mass and velocity, but with equal impact energy.
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Figure 4.55: Dent-depth inspections of laminate L01 with equal impact energies,

but different impactor masses.

Ei = 57.8J; Mi = 6.0kg Ei = 57.9J; Mi = 15.0kg
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Figure 4.56: Dent-depth inspections of laminate L05 with equal impact energies,

but different impactor masses.

Figures 4.57 and 4.58 show a sample of dent-depth measurements of laminates

with different thicknesses. As it was observed in the histories of the impact force, in-

creasing the laminate thickness, the response results more localized because less lam-

inate deflection is experimented. Conversely, the dent-depth measurements demon-

strate that also the indentation values are higher for thin plates. Nevertheless, it
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should be noted that for thin plates the indentation measurements are affected by the

residual global deflection of the plate which increases the measurements obtained.
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Figure 4.57: Dent-depth inspections of laminates L01 and L02 for 19.3J.
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Figure 4.58: Dent-depth inspections of laminates L02 and L05 for 38.6J.

4.4.4 CAI tests

Residual compressive load

The results available from the CAI test to check the effects of changing the impactor

mass but keeping constant the impact energy are those from laminate L05. The

residual compressive loads Ffc are: 164.5kN for Ei = 57.8J and Mi = 6.0kg, and

156.9kN for Ei = 57.9J and Mi = 15.0kg. It can be concluded that the values

obtained are quite similar as can be expected after the discussion of the results

presented before.

Increasing the laminate thickness under equal impact conditions, the residual

compressive load increases. However, in order to compare properly these data, the

normalized loads σfc must be computed. The resulting values are summarized in
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Table 4.13. It can be expected that the values should be similar for each impact

energy, however it is not completely true because the size and the number of interface

delaminations created in the impact tests are different in function of the laminate

thickness. Therefore, given the available data, a valid argument can not be deduced.

Table 4.13: Residual compressive strengths σfc of laminates L01, L02 and L06.

Ei = 19.3J Ei = 38.6J

L01 L02 L02 L05

σfc [MPa] 19.7 22.9 16.5 20.6

Lectures of the displacement transducers (LVDT) and the strain gages

(SG)

As an example of the displacement transducer and strain gage lectures, Figure 4.59

shows the results obtained for laminate L05. Despite the differences in the impactor

mass and velocity, the responses are quite similar.

Finally, in order to illustrate the differences obtained in the responses of the

transducer displacement and strain gages due to the differences in the laminate

thickness, Figures 4.60 and 4.61 show the results obtained. It is observed that

laminate types L01 and L02 suffer a clear global buckling on the instrumented plate

face. This behavior is not observed in Figure 4.61, where both laminates L02 and

L05 suffer a more localized buckling in the middle point of the specimen lengths.
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Ei = 57.8J; Mi = 6.0kg Ei = 57.9J; Mi = 15.0kg
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Figure 4.59: (a) Displacement transducer and (b) strain gage lectures of laminate

L05.
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Figure 4.60: (a) Displacement transducer and (b) strain gage lectures of laminates

L01 and L02 for 19.3J.
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Figure 4.61: (a) Displacement transducer and (b) strain gage lectures of laminates

L02 and L05 for 38.6J.
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4.5 Summary of conclusions

The main conclusions from the previous discussions of the experimental results and

the analytical predictions are presented herein. These conclusions are valid for drop-

weight impact events (i.e. low-velocity impacts), and most of them reaffirm some of

the arguments explained in the design of the experiments of Chapter 3.

Effect of the impact velocity

• The threshold load, Fd, remains constant in front of changes of the impact

velocity.

• Increasing the impact velocity, the slope of the elastic regime is increased, as

predicted by means of the analytical impact models. Accordingly, the pre-

dicted maximum elastic impact force increases, indicating that more damage

is created.

• Increasing the impact velocity, the response is extended in time because the

plate develops more damage. Accordingly, the post-impact residual compres-

sive strength is reduced.

Effect of changing the impactor mass and the velocity

• The threshold load, Fd, remains constant in front of changes of the impactor

mass and velocity, but keeping constant the impact energy.

• Increasing the impactor mass, the response is more quasi-static, which means

that the response is slowed down. This behavior was also predicted by means

of the impact characterization diagram and the complete analytical impact

models.

• Given a stacking sequence, the dissipated energy or the damage developed is

the same between impacts with equal impact energy. In addition, the residual

compressive strength remains constant under the same impact energy level.

This result agrees with some of the guidelines provided by the aeronautical

industry for a drop-weight impact test, where the energy is specified, and the

impactor mass and the velocity can be selected freely by the engineer.
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Effect of ply thickness (clustering)

• If the ply clustering is increased, under equal impact conditions the values of

Fd and Fmax are reduced.

• Increasing the ply clustering, the changes in the stiffness during the impact are

more progressive and smooth when compared with laminates with thin plies.

This result implies difficulties in the detection of Fd for laminates with thick

plies.

• The response is elongated by increasing the ply clustering of the laminate. This

result indicates that more damage develops for laminates with thick plies. Ac-

cordingly, by reducing the number of interfaces available for delamination, the

resulting projected delamination area is increased. Therefore, ply clustering

results in a lower damage resistance of a composite structure.

• Increasing the ply clustering, the indentation is increased.

• The free growth of the delaminations can be affected by the finite in-plane

dimensions of the plates. In other words, the growth of the delaminations could

be braked by the clamping system. This effect occurs basically in laminates

with thick plies.

• The trend of the proposed analytical thresholds for delamination are in agree-

ment with the experimental points for all laminate types. However, the ana-

lytical values under-predict the real values. This offset can be due to scattering

of the material properties or to the assumptions considered in the formulation

of the damage threshold, e.g. strain rate effects are neglected. Further testing

is required to verify these arguments, especially with critical impact energies

which generate maximum impact forces similar to the damage threshold loads.

• The damage tolerance, quantified using the residual compressive load, is not

affected by increasing the ply thickness, because all presented laminate types

have shown similar values of compressive loads at each impact energy.
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Effect of ply mismatch angle at interfaces

• The analytical prediction of Fd for the selected cross-ply laminate has been in

agreement with the experimental result, although an offset also has appeared.

• The mismatch angle of the interfaces for delamination has not presented a clear

effect on the damage resistance and on the damage tolerance. This result can

be due to the fact that the plate thicknesses of the selected laminates for this

study are slightly different.

Effect of the laminate thickness

• Increasing the laminate thickness, the response is faster and the drop in the

impact force from point Fd increases. For the thinner laminate tested, the

profiles of the impact force are smooth and do not present a clear first drop

on the impact force. This result could mean that a sudden loss of stiffness

from the point Fd does not occur, or the matrix and delamination damage

that appear do not change the response of the impact, rather it is affected by

progressive fiber breakage. This last argument can be related to the membrane

effects.

• The predictions of the threshold load Fd for the different laminates considered

have been in agreement except for the thinner laminate, i.e. L01. This result

can be attributed to different causes: the membrane effects, the possibility

that really the delaminations can not be detected in the force histories, or the

fact that simply a sudden large delamination does not occur and rather the

delaminations grow progressively.

• Increasing the laminate thickness, the damage resistance is improved since

the energy dissipated is lower than for thin laminates. Likewise, the damage

tolerance is improved. However, the resulting structures are heavier and more

expensive.

Usefulness of the analytical impact models and analytical thresholds

• With the studies presented, it has been demonstrated that the analytical im-

pact models for the prediction of the elastic response are a powerful tool: to
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define a suitable test matrix of specimens, to obtain a qualitative understand-

ing of the effects of the governing parameters on the impact response, and to

interpret the experimental results obtained.

• The analytical impact models are completed with the analytical thresholds for

the prediction of the damage mechanisms that can occur in a laminated com-

posite plate under low-velocity impact loading. For low-velocity impacts, the

most critical damage is the delamination. In general, it has been shown that

the damage thresholds for delamination follow the trends of the experimen-

tal results. Table 4.14 summarizes the analytical and experimental thresholds

obtained.

Table 4.14: Summary of analytical and experimental thresholds.

Laminate
Analytical Fd [kN]

Experimental Fd [kN] C-scan shape
F stat
d1 F ten

mc

L01 3.16 2.68 3.90

L02 8.53 10.34 9.94

L03 8.49 7.20 7.60

L04 8.34 4.92 5.50

L05 15.97 23.80 19.33

L06 10.65 11.26 12.21



Chapter 5

Interlaminar damage model

5.1 Introduction

Delamination is one of the most common failure mechanisms in laminated composite

materials and can appear at any life time of the structure (manufacturing, trans-

portation, assembly, and service). Delamination reduces seriously the integrity of a

structural element and can produce its collapse. Therefore, accurate analysis tools

for the simulation of delamination are required.

Delamination has been largely studied and modeled in the literature. When

material nonlinearities can be neglected and an initial crack is present, methods

based on Linear Elastic Fracture Mechanics (LEFM) have been proven to be effective

in predicting delamination growth, such as the Virtual Crack Closure Technique

(Irwin [100]; Rybicki and Kanninen [101]; Raju [102]; Zou et al. [103]; Krueger

[104]), the J-integral method (Rice [105]), the virtual crack extension (Hellen [106]),

and the stiffness derivative (Parks [107]). These techniques are used to calculate

the components of the energy release rate. Delamination growth is predicted when

a combination of the components of the energy release rate is equal to, or greater

than, a critical value (Griffith [108]).

When no initial macroscopic defects are present, a local approach has been fre-

quently used to detect delamination onset, in which the key parameters are critical

values of tractions (e.g. Pagano and Pipes [109], and Hashin [110]).

Another approach for delamination modeling can be developed within the frame-

work of Damage Mechanics. Models formulated using Damage Mechanics considers

137
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an interface as a third independent material defined by its own constitutive law.

This interface links the two structural components and is based on the concept of

the cohesive crack model introduced by Barenblatt [111], Dugdale [112], Hillerborg

et al. [113] and others: a cohesive damage zone or softening plasticity is developed

near the crack front. Cohesive damage zone models relate tractions to displacement

jumps at an interface where a crack may occur. Damage initiation is related to the

interfacial strength (i.e. the maximum traction on the traction-displacement jump

relation). When the area under the traction-displacement jump relation is equal

to the fracture toughness, the traction is reduced to zero and new crack surfaces

are formed. The use of cohesive models is extremely powerful for the simulation of

general fracture processes due to its simplicity and the unification of crack initiation

and growth within one model.

The implementation of cohesive constitutive models normally is carried out by

means of user-written subroutines in finite element codes. Generally, the examples

presented in the literature implement cohesive elements (e.g. Schellekens and De

Borst [114], Allix et al. [115], Mi et al. [116], Alfano and Crisfield [117], Camanho

et al. [118], and De Borst [119]) or a user material definition (e.g. Pinho et al. [120],

Iannucci [121], and Aymerich et al. [122]), although surface-based cohesive behaviors

which eliminate the need to define cohesive elements have been also implemented

(e.g. Zhang et al. [123], and Abaqus 6.8 [124]).

In cases where crack path is known in advance, either from experimental evi-

dence, or because of the material configuration, discrete interface elements equipped

with a cohesive constitutive relation are inserted a priori in the finite element mesh

(e.g. Corigliano and Allix [125]). To allow for a more arbitrary direction of crack

propagation, interface elements can be inserted between all continuum elements (Xu

and Needleman [126]). However, this approach is limited to a number of predefined

orientation crack angles since the interface elements are aligned with the element

boundaries. Some authors (e.g. Martha et al. [127], and De Borst [119]) use mesh-

ing tools to redefine the position of cohesive elements in function of the stress state

evolution. When the position for the appearance and progression of a crack is de-

tected, the structure is again meshed and an interface element is located in a proper

position. Alternatively, another research line in fracture modeling is to improve the

kinematic description of finite elements by enriching the shape functions by means
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of adding degrees of freedom. Initially, these models consider a law which relates

the stresses and the strains until damage localization is detected in one plane. At

this point, the law is rewritten and relates stresses and crack opening. Some of these

approaches are: elements with embedded discontinuities (e.g. Oliver [128]) based on

the enhanced assumed strain (Simo and Rifai [129]), and extended finite elements

(e.g. Belytschko et al. [130]) based on partition of unity method (Babuska and

Melenk [131]).

In the formulation of cohesive models, the energy dissipated during the crack

opening has to be controlled, i.e. it is necessary to assure that the model satisfies the

Clausius-Duhem inequality. Some models are well suited to simulate delamination

under constant mixed-mode conditions, such as Mi et al. [116], Alfano and Crisfield

[117]. However, these models do not satisfy the Clausius-Duhem inequality when

the crack grows in variable mixed-mode conditions, because generally they define

the damage threshold parameter as the maximum displacement and the damage

variable as a function of material parameters that depend on the mixed-mode ratio.

Examples of cohesive models which develop in a thermodynamically consistent way

are Ortiz and Pandolfi [132], and Jansson and Larsson [133].

Turon et al. [9] proposed a thermodynamically consistent damage model for the

simulation of progressive delamination in composite materials under variable mixed-

mode ratio. The constitutive law follows a bilinear relationship between relative

displacements and tractions at the interface, and it is defined by using a delamination

onset and propagation criteria. The delamination onset criterion is based on energy

terms and is proposed so the model formulation accounts for loading mode changes

in a consistent thermodynamically way. The formulation also accounts for crack

closure effects to avoid interfacial penetration of two adjacent layers. This model

was implemented by using a user element subroutine called UEL. The zero-thickness

cohesive element was focused for implicit analysis in Abaqus finite element software

[124].

Some structural problems cannot be solved by using an implicit finite element

code due to convergence difficulties related to material softening. To avoid these dif-

ficulties an explicit code should be used. An implicit analysis requires the assembly

of the global stiffness matrix and its subsequent inversion to solve the equilibrium

equations system for each iteration, whereas with an explicit analysis these opera-
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tions are not necessary. Explicit integration schemes do not require the solution of

a global set of equilibrium equations as the accelerations, velocities and displace-

ments are calculated explicitly at each node recurring to a simple central differences

rule applied over a time increment. Consequently, the explicit formulation is often

proper in cases where severe changes in stiffness matrix occur, such as analysis with

failure or degradation of the material. Other applications where explicit code is

recommended and implicit analysis may lead to severe convergence difficulties are

problems with complex contacts, post-buckling, and high-speed dynamic events such

as impact. Explicit codes can also be used to solve problems that are essentially

static by controlling some simulation variables, such as the kinetic energy that must

be less than 5% of the internal energy of the system [124].

In this chapter, a modified formulation and implementation in an explicit fi-

nite element code of the cohesive model originally developed by Turon et al. [9]

are presented. The model is implemented by using a user-written material sub-

routine, called VUMAT [124]. The user material developed is defined on sets of

elements that represent the possible location for delamination. The elements can be

selected to have zero-thickness (surface elements) or non-zero-thickness (continuum

elements). The possibility of using continuum-based cohesive elements enables the

simulation of an interface with non negligible thickness. Therefore, the macroscopic

properties of the interface material, such as stiffness and strength, can be measured

experimentally and used directly in the cohesive model.

In the literature, there are also available cohesive models implemented in a user-

written material subroutine for explicit finite element analysis. Generally, these

models are checked by simulating quasi-static standard delamination toughness

tests, and a simulation of delamination in a monolithic laminated composite plate

subjected to low-velocity impact is presented as the most challenging application.

Under impact loading, delamination growth develops under variable mixed-mode

conditions, and this phenomenon must be accounted properly in the cohesive model.

However, the formulations available in the literature often do not control the crack

growth in a consistent thermodynamically way.

The goal of the work detailed in this chapter is to apply the proposed model for

the explicit simulation of low-velocity impact events on laminated composite plates.

Loading rate effects as well as frictional effects that occur when complete separation
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of the interface takes place, are not considered in the formulation.

The content of this chapter is structured as follows: first, the updated formulation

of the cohesive model given by Turon et al. [9] is presented. Next, the adaptations of

the formulation to be implemented in a continuum interface are described. After, the

implementation of the model in a user-written material is also explained in detail.

Finally, the numerical predictions of interlaminar fracture tests of polymer-based

composite materials are compared with experimental data in order to validate the

model.

5.2 Damage model formulation

The main aspects of the delamination model proposed by Turon et al. [9] are

presented in this section with some modifications of the original formulation.

The constitutive law used is shown in Figure 5.1. This law is a bilinear rela-

tionship between relative displacements and tractions. The first line represents an

elastic relationship, prior to damage onset. Damage onset is related to the interface

strength τ o. When the area under the traction-displacement relation is equal to the

fracture toughness, Gc, the interface tractions revert to zero and a new crack surface

is created.

Figure 5.1: Bilinear constitutive law.

The different relative displacements between the nodes of a surface element are

shown in Figure 5.2, where each displacement is directly associated with the cor-

responding propagation mode by assuming that the crack front is located at the

indicated line. At finite element scale level, it is not possible to distinguish the
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shear modes II and III because the crack front is in fact unknown. For this rea-

son, shear modes are generally grouped together in the formulation of the cohesive

models (see Section 5.2.1).

Figure 5.2: Propagation modes.

The damage model follows the general formulation of continuum damage models

proposed by Mazars [134], and Simo and Ju [135]. The Helmholtz free energy by

surface unit of the interface under isothermal conditions is defined as:

Ψ (∆i, d) = (1− d) Ψo (∆i) ; i = 1, 2, 3 (5.1)

where d is the scalar isotropic damage variable and Ψo (∆i) is a function of the

relative displacement space defined as:

Ψo (∆i) =
1

2
∆iD

o
ij∆j; i, j = 1, 2, 3 (5.2)

Equation (5.1) indicates that the relative displacement components, ∆i, are the

free variables of the system (i.e. displacement driven formulation), and d is the

internal variable that ensures the irreversibility of the model.

Negative values of ∆3 (mode I) have no physical sense because the cracks are

closed and no damage is produced. Therefore, the damage model has a unilateral

behavior for this propagation mode, which means that the damage variable can be

activated or deactivated as a function of the loading state. Therefore, Equation

(5.1) is modified as:

Ψ (∆i, d) = (1− d) Ψo (∆i)− dΨo (δ3i 〈−∆3〉) ; i = 1, 2, 3 (5.3)
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where 〈x〉 is the Macaulay brackets defined as 〈x〉 := 1
2

(x+ |x|), and δij is the

Kronecker delta.

Applying Coleman method [135], the constitutive equation reads:

τi =
∂Ψ

∂∆i

= (1− d)Do
ij∆j − dDo

ijδ3j 〈−∆3〉 ; i, j = 1, 2, 3 (5.4)

Do
ij is the undamaged stiffness tensor, defined as:

Do
ij = δijK; i, j = 1, 2, 3 (5.5)

where K is a scalar parameter corresponding to the slope of the first line in the

constitutive law, typically called penalty stiffness. As Equation (5.5) shows, the

penalty stiffness is the same for any propagation mode.

To ensure the thermodynamic consistency of the model, the dissipated energy by

surface unit during the damage propagation process, Ξ, has to be equal or greater

than zero:

Ξ = Y ḋ ≥ 0 (5.6)

where the thermodynamic force Y associated with the internal variable d is defined

as:

Y = −∂Ψ

∂d
(5.7)

The value of the damage variable has to be evaluated at each time increment

during the loading process. Therefore, it is necessary to define a suitable norm of the

relative displacement vector, the surface for damage activation, a law for damage

evolution, and criteria for damage onset and damage propagation.

5.2.1 Norm of the relative displacement vector

The selected norm of the relative displacement components is defined as:

λ =

√
〈∆3〉2 + ∆2

shear (5.8)
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where ∆3 is the relative displacement in mode I, and ∆shear is the Euclidian norm

of the relative displacements in mode II and mode III:

∆shear =
√

∆2
1 + ∆2

2 (5.9)

Normally, the shear modes II and III are represented together because their

individual evaluation depends on the relative displacement between homologous

nodes with respect to the crack front orientation. Since at finite element scale

level the crack orientation is generally unknown, it is not possible to distinguish

between modes II and III.

5.2.2 Surface of damage activation and law for damage evo-

lution

The surface of damage activation from Turon et al. [9] is modified by the expression:

F (∆t, dt) = G (∆t)− dt ≤ 0 ∀t ≥ 0 (5.10)

where G (∆t) is a monotonic loading function which depends on the relative dis-

placement vector ∆ = {∆1,∆2,∆3}T at time t, and dt is the damage variable at

time t which is used as the threshold function.

The evolution of the damage variable is defined by means of the Kuhn-Tucker

constraints which provide the formulation of the loading-unloading-reloading condi-

tions as [136]:

ḋ ≥ 0; F (∆t, dt) ≤ 0; ḋF (∆t, dt) = 0 ∀t ≥ 0 (5.11)

On the other hand, to ensure that the surface of damage activation will grow

as much as the internal variable grows, the persistence (or consistency) condition is

required. This is:

F (∆t, dt) = 0⇒ Ḟ (∆t, dt) = 0 ∀t ≥ 0 (5.12)

Therefore, the damage variable dt is explicitly defined by:
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dt = max
{

0,max
s

(G (∆t))
}

0 ≤ s ≤ t ∀t ≥ 0 (5.13)

which fully describes the evolution of the internal variable for any loading-unloading-

reloading situation. On the other hand, by using the constitutive equation (see

Figure 5.3) for any mixed-mode ratio β (see Equation (5.21)), the function G (∆t)

is defined as:

G (∆t) = min





∆f
t (λt −∆o

t )

λt

(
∆f
t −∆o

t

) , 1



 ∀t ≥ 0 (5.14)

Equation (5.14) defines the loading function by means of the bilinear constitutive

equation, where ∆o
t and ∆f

t are the onset and propagation damage parameters at

time t, respectively. The values of ∆o and ∆f are obtained by means of the onset

and propagation damage criteria, respectively. These values will be constant unless

the mixed-mode ratio changes. The variables used in Equation (5.14) are identified

in Figure 5.3.

Figure 5.3: Parameters of the bilinear constitutive equation.

5.2.3 Criterion for damage propagation

The propagation criterion for delamination growth under mixed-mode loading con-

ditions is established in terms of energy release rates and fracture toughnesses. The

criterion is based on the work of Benzeggagh and Kenane [137], and was originally

defined for mixed-mode I and II:
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Gc = GIc + (GIIc − GIc)
( GII
GI + GII

)η
(5.15)

where GIc and GIIc are the fracture toughnesses in mode I and II, respectively; GI
and GII are the energy release rates in mode I and II, respectively. The η parameter

is found by least-square fit of experimental data points of the fracture toughnesses

under different mixed-mode ratios.

The propagation criterion can be rewritten as follows:

Gc = GIc + (Gshearc − GIc)
( Gshear
GI + Gshear

)η
(5.16)

where Gshear and Gshearc are the shear energy release rate and the pure mode II

fracture toughness, respectively. The expressions of Gshear and Gshearc are defined

by Equations (5.17) and (5.18), respectively [118].

Gshear = GII + GIII (5.17)

Gshearc = GIIc (= GIIIc) (5.18)

Equation (5.17) is valid whenever the constitutive equations of modes II and III

are equal. This hypothesis is very common because the fracture toughness of mode

III is difficult to obtain and typically it is considered equal to GIIc.
On the other hand, Equation (5.18) ensures that the propagation criterion is

consistent for pure mode loading cases II or III. As in the case of Equation (5.17),

Equation (5.18) means that the constitutive equations for mode II and III are equal.

The ratio of the second term of Equation (5.16) defines the parameter B:

B =
Gshear

GI + Gshear
(5.19)

The mixed-mode ratio β defined by Turon et al. [9] is given by:

β =
∆shear

〈∆3〉+ ∆shear

(5.20)
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However, the definition of β is changed by Equation (5.21), which allows the B

parameter to be equal to β by developing Equation (5.19) and considering the same

penalty stiffness for all propagation modes.

β =
∆2
shear

〈∆3〉2 + ∆2
shear

=
∆2
shear

λ2
(5.21)

Finally, the propagation criterion defined in relative displacement terms can be

obtained by means of Equation (5.16) and by knowing that the crack propagates

when the fracture energy release rate is equal to the critical value. In other words, by

using Equation (5.22) (deduced by means of Equation (5.16) and Equation (5.23)),

the propagation criterion yields to Equation (5.24).

Gc (β) =
1

2
K∆o

3∆f
3 +

(
1

2
K∆o

shear∆
f
shear −

1

2
K∆o

3∆f
3

)
βη (5.22)

Gc (β) =
1

2
K∆o∆f (5.23)

∆f =
∆o

3∆f
3 +

(
∆o
shear∆

f
shear −∆o

3∆f
3

)
βη

∆o
(5.24)

∆o
3 and ∆o

shear are the relative displacements for damage onset in pure mode I

and shear mode respectively, and ∆f
3 and ∆f

shear are the relative displacements for

damage propagation in pure mode I and shear mode respectively. The parameter

∆o is the displacement for damage onset, and it is determined by means of the dam-

age initiation criterion. Normally, the damage propagation criterion is formulated

independently of the initiation criterion. However, Equation (5.24) shows that both

criteria are linked in this model.

5.2.4 Criterion for damage onset

In this model, the criterion for damage onset is assumed the same as the applied

criterion for damage propagation. This means that the onset damage criterion is

also based on energy terms, which is a different characteristic of the usual cohesive

damage formulations where a stress-based criterion is used. The models that account

for the interaction of the stress components are usually based on Ye criterion [138].
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However, experimental data of material strengths for the initiation of delamination

under mixed-mode loading are not really available, and consequently, these failure

criteria do not have been fully validated.

Therefore, by replacing in Equation (5.16) only the elastic energy terms of the

constitutive equation, Equation (5.25) is obtained which is finally equalled to Equa-

tion (5.26) in order to find the criterion for damage onset defined in terms of relative

displacements (Equation (5.27)).

Go (β) =
1

2
K (∆o

3)2 +

(
1

2
K (∆o

shear)
2 − 1

2
K (∆o

3)2

)
βη (5.25)

Ψo (β) =
1

2
K (∆o)2 (5.26)

∆o =
(
(∆o

3)2 +
(
(∆o

shear)
2 − (∆o

3)2) βη
) 1

2 (5.27)

5.3 Formulation adaptations

Having formulated a cohesive model for zero-thickness elements, the required mod-

ifications to enable also the use of non-zero-thickness elements (i.e. continuum ele-

ments) are described in this section.

5.3.1 Relation between relative displacements and strains

If a continuum element is used, the input data are not the relative displacements, but

the strain tensor. Therefore, to model a cohesive continuum model with softening,

the relative displacement ∆i and the corresponding strain component εij can be

related by means of the expression:

∆i = heεijnj (2− δ3i) ; i, j = 1, 2, 3 (5.28)

where he is the element thickness, and nj is the corresponding component of the

unitary normal vector to the crack plane, n = {0, 0, 1}T (see Figure 5.2).

As explained in the model formulation, the area under the constitutive equation

ge defined by stresses and relative displacements is directly the fracture toughness
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of the material Gc. However, if the constitutive model is defined in terms of stresses

and strains, the law has to be adjusted in function of the element thickness he. Then,

the resultant area ge is the dissipated energy by unit of volume at the corresponding

integration point of the finite element. This energy is equal to the fracture toughness

of the material divided by the finite element thickness (see Equation (5.29)). This

approach follows the called Crack Band Model suggested by Bažant and Oh [139],

which is the procedure normally used to ensure the correct energy dissipation and

mesh independency in continuum damage models.

GcAcrack = ge (Acrackhe) ⇒ ge =
Gc
he

(5.29)

The dissipated energies for each case are illustrated in Figure 5.4.

Surface element Continuum element

Traction = f(Displacement) Traction = f(Strain)

(a) (b)

Figure 5.4: Constitutive charts defined by: (a) stresses and relative displacements,

or by (b) stresses and strains.

5.3.2 Penalty stiffness

If cohesive volumetric elements are used, the penalty stiffness is here varied in func-

tion of the mixed-mode ratio. Its definition can be done in function of the element

thickness and the elastic properties of the modeled interface material [115]. In par-

ticular, Equation (5.30) defines the penalty stiffness for pure mode I, and Equation

(5.31) defines the penalty stiffness for pure modes II or III (shear):
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K1 =
Em
he

(5.30)

K2 =
Gm

he
(5.31)

where Em is the Young modulus and Gm is the shear elastic modulus of the interface

material. Normally, the elastic properties of the interface material are considered as

the neat material, although it is generally not true [125].

For surface cohesive elements, the penalty stiffness is selected with a fixed value

for all mixed-mode ratios. Ideally, the value of the penalty stiffness is infinite because

these elements do not have thickness, and then they do not affect the compliance

of the whole structure [140]. However, too high value of the interface stiffness can

generate numerical problems such as the generation of spurious oscillations in the

tractions of the element [114]. Therefore, a suitable value of the penalty stiffness

should be selected in order to provide a reasonable stiffness without generating

numerical problems. Based in mechanical considerations, Turon et al. [12] proposed

Equation (5.32) in order to estimate the interface stiffness K for mode I crack

propagation.

K =
αE3

ha
(5.32)

where E3 is the elastic modulus through-the-thickness of the composite material,

α is an increasing parameter (normally it is taken about α ≈ 50), and ha is the

laminate thickness adjoining to the cohesive element. Equation (5.32) also can be

developed for shear modes, by replacing E3 by the shear elastic modulus. However,

since the model formulation for surface elements assumes the same penalty stiffness

for each mixed-mode ratio, Equation (5.32) is used for all cases because it gives the

biggest value.

5.3.3 Redefined onset and propagation damage criteria

Since the penalty stiffness for the volumetric elements is a function of the mixed-

mode ratio, the onset and propagation damage criteria written in terms of relative

displacements must be redefined. However, the procedure used in Sections 5.2.3
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and 5.2.4 to find these expressions can not be exactly applied here because the

function which describes the variation of the penalty stiffness under a determined

mixed-mode ratio is unknown.

In order to find the onset criterion, Equation (5.33) is used. This equation is the

damage criterion with the corresponding elastic energy terms replaced (i.e. Equation

(5.25) with different penalty stiffness for pure mode I and pure shear mode). On

the other hand, Equation (5.34) represents the elastic energy of the constitutive

equation defined in terms of relative displacements of pure mode I, ∆o
3 (β), and pure

shear mode, ∆o
shear (β), for damage onset in a determined mixed-mode ratio.

Go (β) =
1

2
K1 (∆o

3)2 +

(
1

2
K2 (∆o

shear)
2 − 1

2
K1 (∆o

3)2

)
Bη (5.33)

Ψo (β) =
1

2
K1 〈∆o

3 (β)〉2 +
1

2
K2 (∆o

shear (β))2 (5.34)

Using Equation (5.33) and (5.34), and the selected definition of the mixed-mode

ratio (Equation (5.21)), the terms ∆o
3 (β) and ∆o

shear (β) can be found:

〈∆o
3 (β)〉 =


 2Go (β)

K1 +
(

β
1−β

)
K2




1
2

(5.35)

∆o
shear (β) =

(
β

1− β

) 1
2

〈∆o
3 (β)〉 (5.36)

Finally, the onset damage criterion is obtained by taking the Euclidian norm

of the relative displacements described by Equations (5.35) and (5.36) (see Section

5.2.1):

∆o =
(
〈∆o

3 (β)〉2 + (∆o
shear (β))2) 1

2 (5.37)

In the same sense, the propagation damage criterion can be deduced. In this

case, Equation (5.38) represents the damage criterion with the corresponding pure

fracture toughness terms replaced (i.e. Equation (5.22) with different penalty stiff-

ness for pure mode I and pure shear mode). On the other hand, Equation (5.39)

is the fracture toughness for a given mixed-mode ratio defined in terms of relative
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displacements for damage onset in pure modes I and shear, ∆o
3 (β) and ∆o

shear (β),

and for damage propagation, ∆f
3 (β) and ∆f

shear (β).

Gc (β) =
1

2
K1∆o

3∆f
3 +

(
1

2
K2∆o

shear∆
f
shear −

1

2
K1∆o

3∆f
3

)
Bη (5.38)

Gc (β) =
1

2
K1 〈∆o

3 (β)〉
〈

∆f
3 (β)

〉
+

1

2
K2 (∆o

shear (β))
(

∆f
shear (β)

)
(5.39)

where ∆o
3 (β) and ∆o

shear (β) are previously found by means of Equations (5.35) and

(5.36).

Equalling Equations (5.38) and (5.39), and using again the definition of the

mixed-mode ratio (Equation (5.21)), the terms ∆f
3 (β) and ∆f

shear (β) can be found:

〈
∆f

3 (β)
〉

=
K1 (1−Bη) ∆o

3∆f
3 +K2B

η∆o
shear∆

f
shear

〈∆o
3 (β)〉

(
K1 +

(
β

1−β

)
K2

) (5.40)

∆f
shear (β) =

(
β

1− β

) 1
2 〈

∆f
3 (β)

〉
(5.41)

Finally, the propagation damage criterion is obtained by making the Euclidian

norm of the relative displacements described by Equations (5.40) and (5.41) (see

Section 5.2.1):

∆f =

(〈
∆f

3 (β)
〉2

+
(

∆f
shear (β)

)2
) 1

2

(5.42)

It should be noted that the B parameter must be redefined by Equation (5.43),

since the penalty stiffnesses in pure mode I and shear modes are different and then

they can not be simplified.

B =
K2β

K2β +K1 (1− β)
(5.43)

If Equations (5.30) and (5.31) are replaced in Equation (5.43), the B parameter

can be also defined in function of the elastic properties considered for the interface

material. That is:

B =
Gmβ

Gmβ + Em (1− β)
(5.44)
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5.4 Model implementation

5.4.1 Strategy of implementation

The delamination model presented by Turon et al. [9] was implemented in a user-

written element subroutine called UEL [124]. This implementation was used to

simulate problems in an implicit finite element code. However, the model formulated

in Sections 5.2 and 5.3 is here implemented in a user-written material subroutine,

called VUMAT, assigned for explicit finite element analysis.

The user material implemented has to be defined on sets of elements which

represent the delamination layers. These elements can be zero-thickness (i.e. sur-

face elements) or non-zero-thickness (i.e. continuum elements) types. In particular,

when a zero-thickness interface is used, in-plane cohesive elements with four inte-

gration points of the Abaqus element library must be used [122]. This element is

called COH3D8. However, when non-zero-thickness interface is desired, any tri-

dimensional solid element can be applied.

Figure 5.5: Transformations from strains to relative displacements for each propa-

gation mode.

When surface elements are used, the input data given by the finite element

software to the user material subroutine is directly the increment of the relative

displacement vector, whereas the input data for continuum elements is the incre-

ment of the strain tensor. In order to use the same subroutine for both element
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types, Equation (5.28) is applied to transform easily the corresponding strain tensor

components to relative displacements (see Figure 5.5). On the other hand, if surface

elements are used, a constitutive thickness equal to the unity has to be introduced in

the user material subroutine which ensures that the strains are equal to the relative

displacements.

5.4.2 Input variables to define the model

The parameters required to define completely the model in a user material subroutine

are described below:

• Elastic properties (isotropic) and density of the interface material: Em, νm

and ρm.

By means of Em and νm the value of Gm can be calculated by using Equation

(5.45). If surface elements are used, normally the value of Em is taken between

105 and 5×106Nmm−3 for a sub-laminate thickness between 0.125mm and

5mm [12], and the Poisson coefficient νm must be equal to -0.5 in order to

obtain the same penalty stiffness for all mixed-mode ratios.

Gm =
Em

2 (1 + νm)
(5.45)

• Thickness of the interface cohesive element: he.

If surface elements are used, the value of the constitutive thickness introduced

in the subroutine must be equal to the unity (although the geometrical thick-

ness defined in the model is equal to zero).

• Interface strengths for pure mode I and pure shear modes (II and III): τ o3 and

τ o1 .

By means of the interface strengths, the relative displacements which give the

damage onset for pure mode loading cases are obtained. The corresponding

equations are:

∆o
3 =

τ o3
K1

(5.46)
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∆o
shear =

τ o1
K2

(5.47)

• Interface fracture toughness for pure mode I and shear modes (II and III): GIc
and GIIc.
The relative displacements which give the damage propagation for pure mode

loading cases are obtained by means of pure mode fracture toughnesses. The

corresponding equations are:

∆f
3 =

2GIc
K1∆o

3

=
2GIc
τ o3

(5.48)

∆f
shear =

2GIIc
K2∆o

shear

=
2GIIc
τ o1

(5.49)

• Parameter of the least-square fit: η.

The experimental data used to calculate η can be obtained from MMB tests

(Mixed-Mode Bending) at different mode ratios.

In a recent paper of Turon et al. [13], it was detected that changes in the

local mode ratio during the evolution of damage under mixed-mode loading can

cause errors in the determination of the energy dissipation and result in inaccurate

predictions of the global load-displacement response. This fact occurs even under

conditions where, according to Linear Elastic Fracture Mechanics, the global mode

ratio is constant (e.g. Mixed-Mode Bending Test (MMB)). This is a common dif-

ficulty in current formulations of the cohesive models. To solve this problem, an

engineering solution which relates the interlaminar strengths was proposed. It was

demonstrated that this relation yields to accurate predictions which ensures correct

energy dissipations when delamination propagates. This relation is defined as:

τ o1 = τ o3

√
GIIc
GIc

(5.50)

Therefore, seven input parameters are necessary in order to fed on the present

cohesive model: Em, νm, ρm, he, τ
o
3 , GIc and GIIc.
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5.4.3 Algorithm

After to read the input parameters and to calculate the model constants (see previous

Sections 5.3.2 and 5.4.2), the steps of the algorithm which are repeated for each

stable time increment δt are numbered below:

1. Calculate the strain components at time t+ δt.

εi
t+δt

= εit + δεit+δt

{
i = 1, ..., 3 surface element

i = 1, ..., 6 volumetric element
(5.51)

2. Calculate the relative displacements at time t+ δt for each propagation mode

(see Figure 5.5).

Mode I: ∆3t+δt =

{
heε1t+δt surface element

heε3t+δt volumetric element
(5.52)

Mode II: ∆1t+δt =

{
heε2t+δt surface element

heγ13t+δt volumetric element
(5.53)

Mode III: ∆2t+δt =

{
heε3t+δt surface element

heγ23t+δt volumetric element
(5.54)

3. Application of the damage model, where the following terms are calculated:

∆sheart+δt =

√(
∆1

t+δt

)2

+
(

∆2
t+δt

)2

(5.55)

λt+δt =

√〈
∆3

t+δt

〉2

+
(
∆sheart+δt

)2
(5.56)

βt+δt =
∆2
sheart+δt〈

∆3
t+δt

〉2

+ ∆2
sheart+δt

(5.57)

Bt+δt =
K2βt+δt

K2βt+δt +K1 (1− βt+δt)
(5.58)
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〈∆o
3 (β)〉t+δt =


K1

(
1−Bη

t+δt

)
(∆o

3)2 +K2B
η
t+δt (∆o

shear)
2

K1 +
(

βt+δt
1−βt+δt

)
K2




1
2

(5.59)

〈
∆f

3 (β)
〉
t+δt

=
K1

(
1−Bη

t+δt

)
∆o

3∆f
3 +K2B

η
t+δt∆

o
shear∆

f
shear

〈∆o
3 (β)〉t+δt

(
K1 +

(
βt+δt

1−βt+δt

)
K2

) (5.60)

(∆o
shear (β))t+δt =

(
βt+δt

1− βt+δt

) 1
2

〈∆o
3 (β)〉t+δt (5.61)

(
∆f
shear (β)

)
t+δt

=

(
βt+δt

1− βt+δt

) 1
2 〈

∆f
3 (β)

〉
t+δt

(5.62)

∆o
t+δt =

(
〈∆o

3 (β)〉2t+δt + (∆o
shear (β))2

t+δt

) 1
2 (5.63)

∆f
t+δt =

(〈
∆f

3 (β)
〉2

t+δt
+
(

∆f
shear (β)

)2

t+δt

) 1
2

(5.64)

G (∆t+δt) = min





∆f
t+δt

(
λt+δt −∆o

t+δt

)

λt+δt

(
∆f
t+δt −∆o

t+δt

) , 1



 (5.65)

• If G (∆t+δt) ≤ dt ⇒ dt+δt = dt: elastic reloading, unloading or

neutral loading.

• If G (∆t+δt) > dt ⇒ dt+δt = G (∆t+δt): loading.

4. Calculate the stress vector at time t+ δt:

τt+δt = Ct+δtεt+δt (5.66)

where:
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• For surface elements:

Ct+δt =




(
1− d∗t+δt

)
Em 0 0

0 (1− dt+δt)Gm 0

0 0 (1− dt+δt)Gm


 (5.67)

where:

d∗t+δt = dt+δt

〈
ε1t+δt

〉
∣∣ε1t+δt

∣∣ (5.68)

• For volumetric elements:

Ct+δt =




Em(1−(1−d∗t+δt)ν2
m)

Υ
−νmEm(−1−(1−d∗t+δt)νm)

Υ

−νmEm(−1−(1−d∗t+δt)νm)
Υ

Em(1−(1−d∗t+δt)ν2
m)

Υ
νmEm(1−d∗t+δt)

Φ

νmEm(1−d∗t+δt)
Φ

0 0

0 0

0 0

νmEm(1−d∗t+δt)
Φ

0 0 0
νmEm(1−d∗t+δt)

Φ
0 0 0

−Em(1−d∗t+δt)(1−νm)

Φ
0 0 0

0 Gm 0 0

0 0 (1− dt+δt)Gm 0

0 0 0 (1− dt+δt)Gm




(5.69)

where:

Φ = 1− 2ν2
m

(
1− d∗t+δt

)
− νm (5.70)

Υ = 1− 2ν3
m

(
1− d∗t+δt

)
− ν2

m

(
3− 2d∗t+δt

)
(5.71)
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d∗t+δt = dt+δt

〈
ε3t+δt

〉
∣∣ε3t+δt

∣∣ (5.72)

5. Calculate the energy dissipated at time t+ δt:

Ξt+δt = Ξt + Ξδt (5.73)

where Ξt and Ξδt are the accumulated and the increment of the dissipated

energy, respectively. The determination of Ξδt is given by Equation (5.74):

Ξδt =
1

2

(
dt+δt − dt

δt

)(
K1

(
∆2

3t+δt
+ ∆3t+δt

〈
−∆3t+δt

〉)

+K2

(
∆2

1t+δt
+ ∆2

2t+δt

)) (5.74)

6. Calculate the free energy at time t+ δt:

Ψt+δt =
1

2

(
(1− dt+δt)

(
K2

(
∆2

1t+δt
+ ∆2

2t+δt

)
+K1

(
∆2

3t+δt

))

−1

2
dt+δtK1

(
∆3t+δt

〈
−∆3t+δt

〉)) (5.75)

7. Calculate the internal energy at time t+ δt:

EIt+δt = Ψt+δt + Ξt+δt (5.76)

5.5 Size of cohesive elements

5.5.1 Maximum thickness of volumetric cohesive elements

For each mixed-mode ratio there is a maximum thickness of the cohesive elements

in the direction perpendicular to the crack propagation plane. This is due to the

fact that the propagation criterion defined in terms of relative displacements remains

constant and the onset criterion changes whether the element thickness changes. The
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reason of the onset criterion changes is due to the introduction of penalty stiffness

dependency with element thickness (see Equations (5.30) and (5.31)). Since the

onset criterion should be reached before the propagation criterion, equalizing both

criteria for a given mixed-mode ratio β, the maximum cohesive thickness (he)max

is obtained. The resulting equation which defines the maximum thickness of the

cohesive element is:

(he)max =
2 (GIc + (GIIc − GIc)Bη)

(τo3 )
2

Em
+

(
(τo1 )

2

Gm
− (τo3 )

2

Em

)
Bη

(5.77)

By means of Equation (5.77) it is possible to plot the variation of the maximum

cohesive element thickness as a function of the mixed-mode ratio, which is included

in parameter B by Equation (5.44). Taken into account the material properties

shown in Tables 5.2 and 5.3, the evolution of the maximum thickness is plotted in

Figure 5.6.

Equation (5.77) can also be obtained by using the onset and propagation criteria

defined in terms of strains. In this case, the onset criterion remains constant versus

the variations of the thickness, whereas the propagation criterion changes in order

to assess the correct energy dissipation independently of the mesh size.
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Figure 5.6: Evolution of the maximum element thickness in function of the mixed-

mode ratio.



5.5. SIZE OF COHESIVE ELEMENTS 161

Normally, the cohesive element thickness is defined with a small value (e.g. be-

tween 0.001 and 0.1mm) and certainly the value used will be smaller than the max-

imum value given by Equation (5.77).

Using again the material properties shown in Tables 5.2 and 5.3, the variation of

the onset criterion of the constitutive equation defined in terms of relative displace-

ments and the variation of the propagation criterion of the constitutive equation

chart defined in terms of strains are shown in Figure 5.7. These charts correspond

to the simulations in one element with constant in-plane dimensions under pure

mode I loading.
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Figure 5.7: Constitutive equation charts defined by (a) relative displacements and

by (b) strains in function of the element thickness.

5.5.2 In-plane dimensions of the cohesive elements

The in-plane dimensions of the cohesive elements are selected following the consid-

erations and equations proposed by Turon et al. [12]. In particular, the in-plane

dimensions are defined by means of the cohesive zone length lcz, which is a material

and structural property [141]. It is defined as the distance from the crack front until

the point with the maximum interface strength τ o. To obtain suitable results by

using cohesive zone models, the tractions in the cohesive zone have to be represented

correctly by a proper number of elements.
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The model that will be used in this work in order to predict the length of the

cohesive zone was proposed by Rice [142], and reads:

lcz =
9π

32
Em

Gc (β)

(τ o (β))2 (5.78)

where Em is the Young modulus, and Gc (β) and τ o (β) are the fracture toughness and

the maximum strength of the interface for a given mixed-mode ratio, respectively.

The length of the cohesive elements le is easily calculated by means of:

le =
lcz
Ne

(5.79)

where Ne is the number of elements in the cohesive zone. Normally, the smallest

value of the cohesive zone length resulted from the different values of mixed-mode

ratio is used, and it is recommended to apply at least three or four elements in order

to describe the cohesive zone accurately.

5.6 Simulations

This section presents the application of cohesive elements in the simulation of inter-

laminar fracture tests of composite specimens under quasi-static loading conditions.

These tests allow the validation of the damage model presented without consider

the interaction with other damage mechanisms which can appear inside the plies,

because the damage is normally concentrated in interfaces where only delamination

occurs.

Mixed-Mode Bending (MMB) and End-Notched Flexure (ENF) tests of unidi-

rectional zero degree lay-up specimens with an initial pre-crack are considered (see

Section 5.6.2). The MMB allows to test any mixed-mode case except pure mode II,

which is obtained by the ENF test. The cases simulated are B = 0.0 (pure mode

I), B = 0.2, B = 0.5, B = 0.8 and B = 1.0 (pure mode II). It should be noted that

only non-zero-thickness elements have been used in all the simulations considered,

which represent a resin-rich interface layer.

Different mixed-mode analysis at one finite element were simulated previously

in order to check that the predicted dissipated energy at each integration point is
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equal to the corresponding fracture toughness adjusted by the least square fit of

experimental data points of the selected material (see Table 5.3).

Simulations of quasi-static Transverse Crack Tension tests (TCT) of unidirec-

tional zero degree lay-up specimens are also shown (see Section 5.6.3). The TCT

test is an alternative to the ENF test, which determines pure mode II interlaminar

fracture toughness [143].

Finally, the numerical considerations in order to carry out quasi-static simula-

tions by using an explicit finite element code are explained in detail.

5.6.1 Considerations for quasi-static explicit simulations

The proposed simulations are solved by means of an explicit finite element code.

As it has been explained in the introduction, the explicit integration schemes deter-

mine a solution to the dynamic equilibrium of the global set equations by explicitly

advancing the kinematic state from the previous time increment, without solving

simultaneously equations and without iterating for each time increment. For this

reason, the formulation of the tangent stiffness tensor is not derived here since no

iterations are carried out.

Static problems have a large time solution, which often it is unworkable to analyze

the simulation in its real scale of time using an explicit code because requires an

excessive number of stable small increments of time. To obtain a faster solution, the

event should be accelerated in some way, but ensuring that the inertial forces remain

insignificant. There are some actions to alter one or more of the factors influencing

the time increment. The action here considered for increasing the efficiency of the

proposed simulations is to scale the mass density of these critical elements (i.e. mass

scaling). In order to control the proposed simulations, the kinetic energy and the

internal energy are monitored in order to keep the kinetic energy less than 5% of

the internal energy of the system.

On the other hand, the loading velocity should be such that the solution obtained

is close to the real static solution and the dynamic effects remain insignificant. In

an approximate way, the maximum loading velocity vL can be estimated by means

of:
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vL < 0.01

√
Em
ρm

(5.80)

The loading velocity defined in all the simulations is 0.5mm/s, which is much

lower than the maximum value given by Equation (5.80) (see interface properties in

Tables 5.3 and 5.6).

Quasi-static analysis in explicit algorithms require the application of loading as

smooth as possible. Sudden movements cause stress waves, which can introduce

noisy or inaccurate results. Applying the load in the smoothest possible manner

requires that the acceleration changes only a small amount from one time increment

to the next. Then, if the acceleration is smooth, it follows that the changes in

velocity and displacement are also smooth. This option can be defined easily in

Abaqus software by selecting a smooth amplitude table of loading in all the proposed

simulations. By defining it, Abaqus software connects automatically each of the user

data pairs of loading with curves, whose first and second derivatives are smooth, and

whose values are zero at each of user loading data points.

It has to be noted that the selected mass scaling factor for critical elements is

considerably high (i.e. approximately 10.03). However, since the boundary displace-

ments are applied in a smooth manner and in a large time scale, the kinetic energy

and the inertial forces of the model remain small.

Finally, the cohesive elements which reach the maximum damage value at their

integration points are deleted from the mesh. These deleted elements have no ability

to carry stresses and, therefore, have no contribution to the stiffness of the model.

This action avoids large distortions of the damaged elements, and possible spuri-

ous stress transfer to the bodies around them. However, if damaged elements are

deleted, penetration between the joined laminates can occur, mainly in tests with

high percentage of mode II. To avoid it, a contact pair surfaces without friction

have been defined between the two laminate surfaces that were initially linked by

the cohesive elements.

5.6.2 MMB and ENF fracture toughness tests

The simulations of quasi-static MMB and ENF tests of unidirectional zero degree

lay-up specimens are analyzed in this section.



5.6. SIMULATIONS 165

Test configurations

The loading conditions in the MMB simulations are defined by means of the linear

Equation (5.81) which relates the displacements in three different points of the

specimen [118]:

δLP =
( c
L

)
δI +

(
c+ L

L

)
δM (5.81)

where L is the half specimen length and c is the length from the loading point LP to

the middle point M of the specimen. The different mixed-mode cases are generated

by modifying the length c, which reads:

c =
L
(

1
2

√
3
(

1−B
B

)
+ 1
)

3− 1
2

√
3
(

1−B
B

) (5.82)

In Figure 5.8.a are marked the points LP , M , and I where the displacements

are prescribed.

(a) (b)

Figure 5.8: Sketches of the (a) MMB test and the (b) ENF test configurations.

The loading conditions of the ENF test are also defined by displacements. Just

as indicates Figure 5.8.b, it is applied a displacement in the middle point M of the

specimen.

The numerical results are compared with experimental data performed by Reeder

and Crews [144–146] to validate the model. These results are presented in a force-

displacement chart. For the MMB test, the results are read at point LP , and in

point M for the ENF test.
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Sizes and types of the elements

An 8-node solid element with reduced integration (one integration point) is used

to model the laminates and volumetric cohesive elements. This element is called

C3D8R. For all simulations, each laminate thickness is modeled by four elements,

which is enough to capture accurately the laminate rotations during the simulations.

The thickness defined for the interface elements is 0.01mm, which is much smaller

than the value obtained by means of Equation (5.77) (see Figure 5.6).

On the other hand, the in-plane length of the cohesive element is determined

by Equations (5.78) and (5.79). If three elements are desired to be along the cohe-

sive length, the maximum in-plane length at the crack propagation direction is of

0.45mm. The length finally used is 0.3mm for all the simulations. It is not neces-

sary to define a small length element at width specimen direction because the crack

propagates on the opposite direction. Therefore, the specimen width is modeled by

using only two elements.

Materials and specimen dimensions

The material used is a thermoplastic matrix-based reinforced by unidirectional car-

bon fibers (AS4/PEEK). The properties are set in Table 5.1:

Table 5.1: AS4/PEEK properties.

E1 [MPa] E2 = E3 [MPa] G12 = G13 [MPa] G23 [MPa] ν12 = ν13 ν23 ρ [tmm−3]

122700 10100 5500 3700 0.25 0.45 1600e-12

The material properties defined to the interface elements are summarized in

Table 5.2, and are selected by considering that these elements represent a resin-rich

layer. The pure mode fracture toughnesses of the interface are written in Table 5.3.

The shear strength τ o1 is defined by means Equation (5.50), which yields to 106MPa.

The parameter η is taken 2.284, which is obtained by means of a least-square fit

of the experimental data shown in Table 5.3.

The specimen dimensions are: 102mm long, 25.4mm wide, and each laminate

arm is 1.56mm thick.
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Table 5.2: Interface properties.

Em [MPa] νm ρm [tmm−3] τ o3 [MPa]

10100 0.3 1600e-12 80

Table 5.3: Fracture toughnesses of the interface for different mixed-mode ratios

[145, 146].
GII
GT

0% 20% 50% 80% 100% (ENF)

Gc [N/mm] 0.969 1.103 1.131 1.376 1.719

ac0 [mm] 32.9 33.7 34.1 31.4 39.2

Results

The force-displacement relations obtained in the experiments and in the finite el-

ement simulations of the MMB test for each proposed mixed-mode case: B = 0.0

(pure mode I), B = 0.2, B = 0.5, and B = 0.8 are respectively shown in Figures

5.9, 5.10, 5.11, and 5.12. The results of the ENF test (B = 1.0, pure mode II) are

shown in Figure 5.13.

The corresponding analytical expressions for MMB test with B = 0.0 (pure mode

I) and ENF test which give the relationship of the critical load and the displacement

during propagation are also plotted in the corresponding figures. These equations

are set in Table 5.4, and are deduced by using Linear Elastic Fracture Mechanics and

Simple Beam Theory [147, 148]. In these equations, E1 is the longitudinal elastic

modulus of the specimen, ac is the crack length, and b, ha and L are the width, the

arm height and the half length of the specimen, respectively.

Table 5.4: Analytical equations of MMB test with B = 0.0, and ENF test (B = 1.0).

Test Critical load Compliance

MMB (B = 0.0) Pc =
√

E1b2h3
aGIc

12a2
c

C = 8a3
c

E1bh3
a

ENF (B = 1.0) Pc =
√

16E1b2h3
aGIIc

9a2
c

C = 3a3
c+2L3

8E1bh3
a
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Figure 5.9: Experimental and numerical force-displacement relation of the MMB

test B = 0.0 (pure mode I).
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Figure 5.10: Experimental and numerical force-displacement relation of the MMB

test B = 0.2.

Discussion

The charts obtained by numerical simulations of the proposed tests are in a good

agreement with the experimental data. The predicted case of B = 0.0 (pure mode I)

is the most far of the corresponding experimental chart. This difference is not due to

limitations of the numerical simulations, but rather to the fact that the experimental
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Figure 5.11: Experimental and numerical force-displacement relation of the MMB

test B = 0.5.
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Figure 5.12: Experimental and numerical force-displacement relation of the MMB

test B = 0.8.

fracture toughness used corresponds to the onset delamination and not to the prop-

agation, which is normally larger than the onset fracture toughness. The analytical

model which gives the relationship of the critical load and the displacement during

propagation is plotted. The fracture toughness specified is Gc = 0.969N/mm (see

Table 5.3), and the numerical curve shows an excellent correlation with the descend-
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Figure 5.13: Experimental and numerical force-displacement relation of the ENF

test (pure mode II).

ing part of the analytical load-displacement curve. On the other hand, the analytical

model corresponding to the ENF test with a fracture toughness of Gc = 1.719N/mm

(see Table 5.3) is plotted in Figure 5.13, which also shows a good agreement between

the analytical load-displacement curve and the numerical prediction.

Once the delamination is initiated, oscillations are observed in all predictions.

However, the amplitude of these oscillations has been reduced by increasing the

mesh refinement and by reducing the loading velocity. Other possibility allowed for

propagation tests which was not shown here is to reduce the interface strength. In

part, the oscillations which appear in a quasi-static explicit simulation may be a

consequence of the constitutive equation shape. For implicit simulations, the shape

of the constitutive equation does not affect to the results, whenever the fracture

toughness is correctly accounted and the initial stiffness and maximum traction are

reasonably consistent with the stiffness and strength of the material being modeled.

However, in quasi-static explicit simulations, the shape has an important role for

the stability simulation. The equation used has two discontinuities, one at initiation

damage onset and other in the damage propagation. In some cases, stress waves

appear at these points whose generate high frequency vibrations that break the

cohesive element at the neighborhood. Therefore, an attractive solution is to use

constitutive equation shapes without discontinuities [120].
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5.6.3 TCT tests

The simulations of quasi-static Transverse Crack Tension tests (TCT) of unidirec-

tional zero degree lay-up specimens are analyzed in this section.

Configuration of the TCT tests

The TCT specimens are manufactured by continuous fiber laminates with unidirec-

tional stacking order whose central plies are cut prior to curing, as shown in Figure

5.14. When these specimens are loaded by tension, delaminations develop under

pure mode II. Such laminates are referred by [0m, ∅n]S, where the slash indicates the

cut plies.

Figure 5.14: TCT specimen.

The TCT specimens can be tested with or without pre-cracks previously induced.

The specimens with pre-cracks are those undergoing a determined number of fatigue

cycles at near-threshold loading for delamination growth. For no pre-cracked spec-

imens, the gap between cut plies is a resin rich region which delaminates under

pure mode I. Next, at certain load level, delamination starts at the corner point be-

tween cut and continuous plies along the fiber direction and quickly develops under

pure mode II to certain length or full-scale. For pre-cracked specimens, this pre-

delamination phase is not experimented since small initial interface cracks are previ-

ously created [149]. Consequently, the resulting critical load and fracture toughness

are more representative in these specimens than for no pre-cracked specimens.
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The TCT test is then an alternative to the ENF test [150]. It is assumed that in

the TCT test there is less sliding friction between the delaminated plies than in the

ENF test. A second advantage concerns compliance calibration for data reduction.

The compliance of the TCT specimen is less sensitive to the error in crack length

measurement, because the compliance is related linearly to the crack length ac (see

Equation (5.83)), whereas for the ENF specimen the compliance is related to a3
c (see

Table 5.4).

C =
L (h− hc) + 2achc
bh (h− hc)E1

(5.83)

E1 is the longitudinal elastic modulus of the specimen, and hc is the whole thickness

of cut central plies. The geometrical variables L, b and h are the length, width, and

total thickness of the specimen, respectively.

From the evaluation of the compliance C and the delamination length ac, the

fracture toughness GIIc can be derived for a constant specimen width b as:

GIIc =
1

4

hcP
2
c

b2E1h (h− hc)
(5.84)

The factor 1/4 is introduced because there are four crack tips. Equation (5.84)

shows that GIIc can be obtained by determining solely the critical load Pc.

Only non pre-cracked specimens are simulated. The laminates considered are:

[02, ∅4]S, [04, ∅4]S and [04, ∅8]S. The numerical results obtained are basically the

critical load Pc for delamination propagation, and are compared with experimental

values performed by Ye et al. [149].

Sizes and types of the elements

Two delamination planes are modeled in the TCT specimens, as shown in Figure

5.15. One corresponds to the interface of the cut central plies which delaminates

under pure mode I, and is modeled by using zero-thickness type elements with four

integration points of the Abaqus element library (i.e. COH3D8). The other delam-

ination plane corresponds to the interface between cut and continuous plies along

the fiber direction which delaminates under pure mode II. In this case, the interface

is modeled by using non-zero-thickness type elements with reduced integration (i.e.
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C3D8R). The thickness defined for this interface is 0.01mm, which is much smaller

than the value obtained by means of Equation (5.77). The in-plane length of these

elements at the crack propagation direction is determined by means of Equations

(5.78) and (5.79). If three elements are desired to be along the cohesive length, the

maximum in-plane length is of 0.37mm. The length finally used is 0.33mm.

The specimen width is meshed with five elements, and each ply thickness with

two elements. The composite material is modeled by using also C3D8R elements.

Only half thickness of the specimen is modeled by defining symmetric boundary

conditions.

Figure 5.15: Detail of the location of the cohesive elements.

Materials and specimen dimensions

The composite material used is an epoxy matrix-based reinforced by unidirectional

carbon fibers (T300/914C). The properties are extracted from Ye et al. [149] and

set in Table 5.5.

The material properties defined to the interface elements located between cut

and continue plies are shown in Table 5.6, and are selected by considering that

these elements represent a resin-rich layer. The fracture toughness GIIc is obtained

by testing pre-cracked TCT specimens. For zero-thickness cohesive elements the

properties are equal than those set in Table 5.6 except the elastic modulus (i.e.

penalty stiffness) which is set 106, and in order to obtain the same penalty stiffness

for all propagation modes the Poisson modulus is set equal to -0.5. The shear

strength τ o1 is defined by means Equation (5.50), which yields to 83MPa.

The parameter η is approached to 1.47, which is obtained by means of least-

square fit of mixed-mode fracture toughnesses obtained in MMB tests [150]. The
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Table 5.5: T300/914C properties.

E1 [MPa] E2 = E3 [MPa] G12 = G13 [MPa] G23 [MPa] ν12 = ν13 ν23 ρ [tmm−3]

129000 9256 5000 3306 0.28 0.4 1600e-12

Table 5.6: Interface properties.

Em [MPa] νm ρm [tmm−3] τ o3 [MPa] GIc [N/mm] GIIc [N/mm]

9256 0.3 1600e-12 50 0.17 0.467

dimensions of the specimens are: 140mm long (L), 20mm wide (b), and the ply

thickness is approximately 0.125mm. The total length of the specimens is 380mm

(W ).

Results and discussion

The load-displacement relations obtained in the finite element simulations of each

TCT specimen are plotted in Figure 5.16. These plots show a peak load which

corresponds to the point where the interface of the cut central plies is completely

damaged. Next, stationary load values appear after the drop of the peak loads (i.e.

after the pre-delamination phase).

These stationary loads are the critical loads for pure mode II delamination of

the interface between cut and continue plies. By means of Equation (5.84) and the

numerical critical loads obtained, the fracture toughness GIIc can be predicted. The

results are set in Table 5.7 and show a good agreement with the value defined in

the model: GIIc = 0.467N/mm. In addition, a comparison of the results shown

in Table 5.7 indicates good correlation between the predicted peak loads and the

corresponding experimental values.

5.7 Conclusions

The formulation and implementation of a thermodynamically consistent damage

model for the simulation of progressive delamination in composite materials under
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Table 5.7: Experimental and numerical results.

Laminate
Experimental Numerical

Fpeak [N] Fpeak [N] Pc [N] GIIc [N/mm]

[02, ∅4]S 8500 8963 8600 0.478

[04, ∅4]S 15219 14380 14200 0.488

[04, ∅8]S 14321 13080 12100 0.473
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Figure 5.16: Numerical load-displacement relations for the TCT specimens.

variable mixed-mode ratio by using an explicit finite element code was presented.

The model was formulated in the context of Damage Mechanics, and implemented

by means of a user-written material subroutine. The user material can be defined

on sets of elements that represent the possible location for delamination. The ele-

ments can be selected to have zero-thickness (surface elements) or non-zero-thickness

(continuum elements).

The model was used to simulate the initiation and propagation of delamination

in fracture toughness tests (MMB, ENF and TCT) under quasi-static loading con-

ditions. The examples analyzed are in good agreement with the test results, and

they indicate that the proposed formulation can predict the delamination process

of composite structures that exhibit progressive delamination. It should be noted

that some numerical predictions have shown some stability problems or oscillations
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which have been reduced significantly by increasing the mesh refinement and by

reducing the loading velocity during the crack propagation process. However, these

oscillations may be reduced even more by modifying the shape of the constitutive

equation to one without discontinuity points.

To make use of the damage model implemented and of the explicit finite ele-

ment code, the next step is to simulate low-velocity impacts of foreign objects on

monolithic laminated composite plates, where the delamination generally propagates

under variable mixed-mode conditions (see Chapter 7). In these analysis, the study

of the shape and extension of the delamination at interfaces between mismatch ori-

entation plies is of great interest since the delamination reduces dramatically the

damage tolerance of the structure. In order to carry out an accurately prediction, an

intralaminar damage model must be added in these analysis (see Chapter 6), since

impact loading conditions creates intralaminar damage mechanisms which interact

with the delamination failure mode.



Chapter 6

Intralaminar damage model

6.1 Introduction

Strength-based failure criteria can be used to predict the onset of the damage mech-

anisms which contribute to final failure of a composite structure. However, these

criteria are inaccurate in predicting the ultimate structural failure of composite

structures that can accumulate damage before final collapse. Continuum Damage

Mechanics is a more accurate methodology to predict the quasi-brittle failure of

composites, from the onset up to final collapse. The prediction of the damage accu-

mulation is a key information since it defines the damage tolerance and the eventual

collapse of a structure.

The intralaminar damage model developed by Maimı́ et al. [14–17] is summarized

in the present chapter. This model accounts the matrix cracking and the fiber

breakage damage mechanisms for 3D plies, and will be used, together with the

delamination damage model presented in Chapter 5, for the simulation of the impact

and the CAI tests in Abaqus/Explicit finite element code [124].

The model is developed in the context of the mechanics of continuum mediums,

using a rigorous thermodynamic framework where the irreversibility of the damage

processes are ensured. The main features of the model are listed below:

• The majority of the material properties required for the definition of the dam-

age model can be measured using standard ply-based test methods.

• The damage activation functions, which predict the different failure mech-

177
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anisms occurring at the ply level, are based mainly on the LaRC04 failure

criteria [76, 77]. This criteria accounts for the in-situ effect of the thickness of

a ply on its transverse tensile and shear strengths.

• The model accounts for crack-closure effects under load reversal conditions.

The consideration of these effects are significant in structures that are sub-

jected to multi-axial loading, such as in the impact and the CAI tests.

• The objectivity of the finite element model is ensured using the crack band

model proposed by Bažant and Oh [139], by regularizing the computed dis-

sipated energy of each failure mechanism using a characteristic dimension of

the finite element and the corresponding fracture toughness.

Finally, simple FE simulations which illustrate the well-known limitations of

using a continuum damage model for capturing matrix macro-crack paths in absence

of fiber breakage are shown.

6.2 Continuum damage model

6.2.1 Constitutive model

The constitutive equation is obtained by the definition of a thermodynamic poten-

tial. In this case, the complementary free energy density is used, and it is defined

as:

G =
σ2

11

2 (1− d1)E1

+
σ2

22

2 (1− d2)E2

+
σ2

33

2 (1− d3)E2

− ν12

E1

σ11(σ22 + σ33)−

−ν23

E2

σ22σ33 +
σ2

23

2 (1− d4)G23

+
σ2

13

2 (1− d5)G12

+

+ (α11σ11 + α22(σ22 + σ33)) ∆T + (β11σ11 + β22(σ22 + σ33)) ∆M

(6.1)

where E1, E2, ν12 and G12 are the in-plane elastic properties of a unidirectional lam-

ina. The damage variable d1 is associated with longitudinal (fiber) failure, whereas

d2 and d3 are the damage variables associated with transverse (matrix cracking)

failure controlled by in-plane and out-of-plane loads, respectively. The damage vari-

ables d4, d5, and d6 are influenced by longitudinal and transverse cracks. α11 and α22
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are the coefficients of thermal expansion in the longitudinal and transverse direc-

tions, respectively. β11 and β22 are the coefficients of hygroscopic expansion in the

longitudinal and transverse directions, respectively. ∆T and ∆M are the differences

of temperature and moisture content with respect to the corresponding reference

values.

By ensuring the thermodynamical irreversibility of the damage process, the

constitutive relationship of strains, ε = {ε11, ε22, ε33, ε12, ε13, ε23}T , and stresses,

σ = {σ11, σ22, σ33, σ12, σ13, σ23}T , can be found:

ε =
∂G

∂σ
= H : σ + α∆T + β∆M (6.2)

where the lamina compliance tensor H = ∂2G
∂σ
⊗
∂σ

is defined as:

H =




1
(1−d1)E1

−ν12
E1

−ν12
E1

0 0 0

−ν12
E1

1
(1−d2)E2

−ν23
E2

0 0 0

−ν12
E1

−ν23
E2

1
(1−d3)E2

0 0 0

0 0 0 1
(1−d6)G12

0 0

0 0 0 0 1
(1−d5)G12

0

0 0 0 0 0 1
(1−d4)G23




(6.3)

The closure of transverse cracks under load reversal, is taken into account mak-

ing:

d1 = d1+
〈σ11〉
|σ11|

+ d1−
〈−σ11〉
|σ11|

d2 = d2+
〈σ22〉
|σ22|

+ d2−
〈−σ22〉
|σ22|

(6.4)

where 〈x〉 is the Macaulay operator defined as 〈x〉 := 1
2

(x+ |x|). The model tracks

damage caused by tension loads (d+) separately from damage caused by compression

loads (d−). The model assumes that the shear damage variables are not affected by

the closure effect.
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6.2.2 Damage activation functions

The elastic domain is enclosed by four surfaces, each of them accounts one failure

mechanism: longitudinal and transverse fracture under tension and compression.

Those surfaces are formulated by the damage activation functions based on the

LaRC04 failure criteria, neglecting the out-of-plane stresses. These damage activa-

tion functions FN , associated with damage in the longitudinal (N = 1+, 1−) and

transverse (N = 2+, 2−) directions represented in Figure 6.1, are defined as:

F1+ = φ1+ − r1+ ≤ 0 ; F1− = φ1− − r1− ≤ 0

F2+ = φ2+ − r2+ ≤ 0 ; F2− = φ2− − r2− ≤ 0

(6.5)

where the loading functions φN (N = 1+, 1−, 2+, 2−) depend on the strain ten-

sor and material constants (elastic and strength properties). The elastic domain

thresholds rN (N = 1+, 1−, 2+, 2−) take an initial value of 1 when the material

is undamaged, and they increase with damage. The elastic domain thresholds are

internal variables of the constitutive model, and are related to the damage variables

dM (M = 1+, 1−, 2+, 2−, 6) by the damage evolution laws.

(a) Longitudinal tensile fracture. (b) Longitudinal compressive fracture.

(c) Transverse fracture (α0 = 0◦). (d) Transverse fracture (α0 = 53◦).

Figure 6.1: Fracture surfaces and corresponding internal variables for four different

modes.

The elastic domain thresholds rN define the level of elastic strains that can be at-

tained before the accumulation of additional damage. The elastic domain thresholds
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are obtained applying the Kuhn-Tucker and consistency conditions. Considering the

effect of the cracks when load reversal occurs, the elastic domain thresholds are:

rN+ = max

{
1,max

s=0,t

{
φsN+

}
,max
s=0,t

{
φsN−

}}
; N = 1, 2

rN− = max

{
1,max

s=0,t

{
φsN−

}}
; N = 1, 2

(6.6)

Longitudinal tensile fracture

The LaRC04 criterion for fiber tension failure is a maximum allowable strain criterion

defined as:

φ1+ =
E1

XT

ε11 =
σ̃11 − ν12σ̃22

XT

(6.7)

whereXT is the tensile strength of the fiber. The effective stress tensor σ̃ is computed

as σ̃ = H0
−1 : ε. H0 is the undamaged compliance tensor obtained from Equation

(6.3) using dN = 0 (N = 1, 2, . . . , 6).

Longitudinal compressive fracture

The damage activation function used to predict damage under longitudinal com-

pression (σ̃11 < 0) and in-plane shear (fiber kinking) is established as a function of

the components of the stress tensor σ̃(m) in a coordinate system (m) representing

the fiber misalignment:

φ1− =

〈
|σ̃m12|+ ηLσ̃m22

〉

SL
(6.8)

where the longitudinal friction coefficient ηL can be approximated as [76]:

ηL ≈ −SL cos (2α0)

YC cos2 α0

(6.9)

with α0 = 53◦. The components of the effective stress tensor in the coordinate

system associated with the rotation of the fibers are calculated as [76]:

σ̃m22 = σ̃11 sin2 ϕC + σ̃22 cos2 ϕC − 2 |σ̃12| sinϕC cosϕC

σ̃m12 = (σ̃22 − σ̃11) sinϕC cosϕC + |σ̃12|
(
cos2 ϕC − sin2 ϕC

) (6.10)
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The misalignment angle ϕC is determined using standard shear and longitudinal

compression strengths, SL and XC , respectively [76]:

ϕC = arctan




1−
√

1− 4
(
SL
XC

+ ηL
)

SL
XC

2
(
SL
XC

+ ηL
)


 (6.11)

Transverse fracture perpendicular to the mid-plane of the ply

Transverse matrix cracks perpendicular to the mid-plane of the ply, i.e. with α0 =

0◦, are created by a combination of in-plane shear stresses and transverse tensile

stresses, or in-plane shear stresses and small transverse compressive stresses. These

conditions are represented by the following failure criteria:

φ2+ =





√
(1− g)

σ̃22

YT
+ g

(
σ̃22

YT

)2

+

(
σ̃12

SL

)2

if σ̃22 ≥ 0

1

SL

〈
|σ̃12|+ ηLσ̃22

〉
if σ̃22 < 0

(6.12)

where YT is the transverse tensile strength, and g is the fracture toughness ratio

defined as g = G2+/G6. G2+ is the transverse tensile fracture toughness, and G6 is

the shear fracture toughness.

Transverse compressive fracture

The matrix failure criterion for transverse compressive stresses consists of a quadratic

interaction between the effective shear stresses acting on the fracture plane:

φ2− =

√(
τ̃Teff

ST

)2

+

(
τ̃Leff

SL

)2

if σ̃22 < 0 (6.13)

where the effective stresses τ̃Teff and τ̃Leff are computed as [76]:

τ̃Teff =
〈
−σ̃22 cos (α0)

(
sin (α0)− ηT cos (α0) cos (θs)

)〉

τ̃Leff =
〈
cos (α0)

(
|σ̃12|+ ηLσ̃22 cos (α0) sin (θs)

)〉 (6.14)



6.2. CONTINUUM DAMAGE MODEL 183

with θs = arctan
(
−|σ̃12|

σ̃22 sin(α0)

)
(sliding angle), ηT = −1

tan(2α0)
(coefficient of transverse

influence), and ST = YC cos (α0)
[
sin (α0) + cos(α0)

tan(2α0)

]
(transverse shear strength).

6.2.3 Damage evolution laws

The internal variables rN define the threshold of the elastic domains, and are related

to the damage variables by means of the damage evolution laws. These laws are

expressed in the following general form:

dM = 1− 1

fN (rN)
exp {AM [1− fN (rN)]} ; M = 1+, 1−, 2+, 2−, 6 (6.15)

where the function fN (rN) (N = 1+, 1−, 2+, 2−) is selected to force the softening

of the constitutive relation.

The parameters AM (M = 1+, 1−, 2+, 2−, 6) are calculated to ensure that the

computed density of the dissipated energy gM is independent of the finite element

size, hence it is selected to accomplish the following condition for all failure modes:

gM =

∫ ∞

1

∂G

∂dM

∂dM
∂rM

drN =
GM
`∗

; M = 1+, 1−, 2+, 2−, 6 (6.16)

where `∗ is the characteristic finite element length.

In detail, the damage evolution laws and the corresponding related parameters

are listed below:

• Longitudinal tension. The longitudinal tension damage evolution law fol-

lows a linear-exponential law to consider the process of fiber-matrix failure

followed by fiber bridging and fiber pull-out. The softening is linear until the

stress reaches the pull-out stress XPO, and the corresponding energy dissipa-

tion per unit area is GL1+. As the strains continue to increase, the softening

response follows an exponential law and the energy dissipated per unit area is

GE1+. The corresponding damage evolution law is defined as:

d1+ = 1−
(
1− dL1+

) (
1− dE1+

)
(6.17)

where:
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dL1+ = 1 +
K1

E1

−
(
K1

E1

+ 1

)
1

rL1+

; dE1+ = 1− 1

rE1+

exp
[
A1+

(
1− rE1+

)]

rL1+ = max
[
1,min

(
r1+, r

F
1+

)]
; rE1+ = max

[
1,
(
1− dF1+

) XT

XPO

r1+

]

K1 =
`∗XTE1 (XT −XPO)

2GL1+E1 − `∗XT (XT −XPO)
; rF1+ = 1 +

E1

K1

(
1− XPO

XT

)

dF1+ = 1 +
K1

E1

−
(
K1

E1

+ 1

)
1

rF1+

; A1+ =
2`∗X2

PO

2
(
1− dF1+

)
E1GE1+ − `∗X2

PO

(6.18)

• Longitudinal compression. The longitudinal compression damage evolu-

tion law can be expressed as a combination of the failure mechanisms caused

by tension loads, d1+ (r1+), and the failure mechanisms generated under com-

pression, d1− (r1−):

d1− = 1−
[
1− d∗1− (r1−)

] [
1− A±1 d1+ (r1+)

]
(6.19)

where d∗1− = 1 − 1
r1−

exp [A1− (1− r1−)]. The parameter A±1 takes into ac-

count the effect of the stiffness recovery of the broken fibers by means of the

parameter b that varies between 0 and 1: A±1 ≈ bE1−E2

E1
.

• Transverse tensile. It is defined as:

d2+ = 1− 1

f2+ (r2+)
exp [A2+ (1− f2+ (r2+))] (6.20)

where f2+ (r2+) = 1
2g

[
g − 1 +

√
(1− g)2 + 4gr2

2+

]
.

• Transverse compression. It is defined as:

d2− = 1− 1

r2−
exp [A2− (1− r2−)] (6.21)
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• In-plane shear. The shear stress stiffness is reduced as a result of longitudinal

and transverse cracks:

d6 = 1− [1− d∗6 (r2+)] (1− d1+) (6.22)

where:

d∗6 (r2+) = 1− 1

r2+

exp [A6 (1− r2+)]

A6 =
2`∗S2

L

2G12G6 − `∗S2
L

(6.23)

The parameters A1−, A2+ and A2− are calculated numerically using the algo-

rithms proposed in [15]. Finally, the out-of-plane damage variables are defined as:

d3 (r1−, r2−) = 1− [1− d1−(r1−)] [1− d2−(r2−)]

d4 (r2+) = d6 (r2+)

d5 (r1+) = d1 (r1+)

(6.24)

6.2.4 Maximum in-plane finite element size

The slope of the softening law for each damage mode is determined to dissipate the

correct energy according to the element size, i.e. the area under the stress-strain

chart is the corresponding fracture toughness divided by the finite element char-

acteristic length GM/`∗ (M = 1+, 1−, 2+, 2−, 6), see Equation (6.16). In order to

avoid snap-back of the softening branch for each failure mode, a maximum char-

acteristic element length `∗max can be found by equaling the elastic energy of the

element, 1
2
XMεM(`∗)2hel = 1

2
XM
EM

2
(`∗)2hel, with the energy dissipated in the fracture

process, GM`∗hel:

`∗max =
2EMGM
X2
M

; M = 1+, 1−, 2+, 2−, 6 (6.25)

where hel is the element thickness. EM , GM , and XM , are, respectively, the Young

modulus, fracture toughness and ply strengths corresponding to each failure mode

(it is assumed that E6 = G12 and X6 = SL).
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For elements larger than the maximum element size `∗max, it is not possible to

guarantee the correct energy dissipation without avoiding snap-back in the consti-

tutive response. For these elements, a reduction of the corresponding damage mode

strength can be computed as:

XM =

√
2EMGM
`∗max

; M = 1+, 1−, 2+, 2−, 6 (6.26)

6.2.5 Material properties

Standard test methods are available to measure the majority of the independent ply

material properties needed for the definition of the damage model described. The

model requires the following inputs:

• Ply elastic properties (E1; E2; G12; G23; ν12; ν23) and ply strengths (XT ; XC ;

YT ; YC ; SL). These properties can be measured using test standards defined

by the American Society for Testing Materials (ASTM) [151–153], or others

defined by the product manufacturer.

• Four components of the fracture toughness, associated with longitudinal failure

in tension and compression (G1+ and G1−, respectively) and with transverse

failure in tension and shear (G2+ and G6, respectively). G2+ can be mea-

sured using a standard test procedure devised by the ASTM [154]. G6 can be

measured using the four-point bending end-notched flexure test proposed by

Martin et al. [155]. G1+ and G1− are measured using compact tension and

compact compression tests developed by Pinho et al. [156] (there is no stan-

dard test method to measure the fracture toughness associated with fracture

in the longitudinal direction).

The fracture toughness G2− is dependent on G6 and on the fracture angle α0 in

the form G2− = G6/ cos(α0) [14, 15]. Additionally, the model requires the input of

the in situ strengths Y is
T and SisL , which are functions of the independent material

properties.
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6.2.6 In-situ strengths

The damage activation functions are based on the LaRC04 failure criteria, which

take into account the in-situ effect. The in-situ effect is the capacity of the plies to

increase their strengths when they are in a laminate, compared with the strength of

the same ply in a unidirectional laminate. The transverse and the shear strengths

are affected by the in-situ effect, and they are function of the ply thickness hp, of

the ply position in the laminate, and of the fiber orientation of the adjacent plies.

The equations which define the corresponding in-situ strengths in function of the

position and thickness of the ply are listed below [74]:

In-situ transverse tensile strength

• For a thick embedded ply: Y is
T = 1.12

√
2YT

• For a thin embedded ply: Y is
T = 2

√
E2

1− ν12ν21

G2+

πhp

• For an outer ply: Y is
T = 1.122

√
E2

1− ν12ν21

G2+

πhp

In-situ shear strength

SisL =

√
(1 + ςχG2

12)
1/2 − 1

3ςG12

(6.27)

where ς defines the non-linearity of the shear stress-shear strain relation, which is

zero for a linear behavior. The parameter χ is defined according to the configuration

of a given ply:

• For a thick embedded ply: χ =
12S2

L

G12

+
72

4
ςS4

L

• For a thin embedded ply: χ =
48G6

πhp

• For an outer ply: χ =
24G6

πhp
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6.3 Limitations of continuum damage models

It is important to capture properly the location and the shape of the damage, spe-

cially in laminated composite materials subjected to impact events, where matrix

cracking can trigger delaminations with peculiar patterns at certain locations. This

information is interesting for any loading condition and structure, because it indi-

cates the weakest regions where the structure could fail.

The simulation of progressive failure of laminated composite structures using

continuum damage models formulated at the meso-scale level, and implemented

in a finite element code, has some limitations. The predicted results may exhibit

dependence on the shape and the orientation of the finite elements, due to the

fact that a crack simply tends to grow following the shortest way, and also due to

the so-called stress locking effect. As documented Jirásek [157], stress locking means

spurious stress transfer across a widely open crack and arises after strain localization

due to softening. Basically, it is caused by the poor kinematic representation of

the discontinuous displacement field around a macroscopic crack. Triangular and

quadrilateral element shapes are analyzed by Jirásek [157] in order to demonstrate

the apparition of spurious shear strains which yields to the transfer of stresses across

the crack.

The stress locking produces mainly two limitations. On the one part, a spurious

stress transfer occurs across a widely opened crack allowing the structure to stand

more loading. Therefore, the appearance of spurious damage in other regions of

the structure can be done. On the other part, the simulated crack bands exhibit

strong directional bias and propagate aligned with the element sides of the mesh.

The dependence of the crack path on the mesh pattern is specially true for problems

with strain localization, such as failure on laminated composite structures due to

fiber pull-out and matrix cracking, without fiber breakage.

There are fast solutions to decrease the effect of these limitations. Concerning to

the spurious stress transfer, a solution is to delete the damaged elements from the

mesh. Deleted elements have no ability to carry stresses and, therefore, have no con-

tribution to the stiffness of the model [124]. However, this solution has a drawback.

Certainly, for directional damage models is not suitable to consider an element com-

pletely damaged when one of the damage variables reaches the maximum value, and
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even more when the loading conditions can change during the simulation. Typically,

in laminated composite plates, it is considered that an element is complete damaged

when the fiber breaks. However, this criterion is unsuitable for cases where the

structure fails without fiber breakage. In addition, when an explicit finite element

code is used, spurious new crack bands can be triggered after the creation of the

first band and the corresponding deletion of elements. This fact is caused when the

simulation is too much accelerated artificially.

Concerning to the caption of crack paths, the solution is to generate meshes that

are oriented in the corresponding fiber direction, as used by Laš and Zemč́ık [158].

This solution can be applied easily for the composite structures considered herein,

because each ply has straight fibers.

In order to check if the intralaminar damage model shown in previous section

captures properly the matrix cracking path, different simulations are carried out on

an off-axis single ply subjected to tensile loading. For off-axis angles of 45◦ and more,

the stiffness in fiber direction remains almost completely unaffected, and during the

analysis the specimen should fail with a matrix crack running in the fiber direction.

The 3D specimen virtually tested is depicted in Figure 6.2. In detail, the di-

mensions are: 5mm in width, 28mm in length, and 0.125mm in thickness. Elastic

elements are defined at the left and right parts, and comprise the 40% of the total

length. The nodes located at the left edge are constrained in the y direction, in

exception of one of these nodes that has all displacements constrained. The tensile

displacement is applied on the column of nodes located at the right edge. The mate-

rial properties for unidirectional plies used to fed on the intralaminar damage model

are summarized in Table 7.1. In order to trigger localization, the strengths of the

central element are reduced a 20%. Five orientations are tested: θ = 0◦, 10◦, 45◦, 60◦,

and 90◦. The in-plane element size is defined as 0.25mm at each direction, and the

elements are not oriented according to the fiber orientations (in exception of θ = 0◦

and θ = 90◦). Finally, the elements that are damaged in the local transverse direc-

tion, i.e. matrix damage, are deleted from the mesh in order to avoid spurious stress

transfer when the first macro-crack is created.

Figure 6.3 shows the predicted matrix crack bands for each off-axis angle, using a

mesh which is not oriented according to the fiber orientation (in exception of θ = 0◦

and θ = 90◦). The field output plotted corresponds to the damage variable at the
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Figure 6.2: Details of the off-axis ply subjected to tensile loading.

local transverse direction. As can be observed, for angles θ = 45◦ and θ = 60◦ the

crack path is not well predicted, clarifying the dependence of the crack path on the

mesh pattern.

SDV_d2

0.00
0.16
0.33
0.49
0.65
0.81
0.98

(a) 0◦ (b) 10◦ (c) 45◦ (d) 60◦ (e) 90◦

Figure 6.3: Predictions of the matrix cracks in an off-axis ply subjected to tensile

loading (using non-structured mesh).

Accordingly, Figure 6.4 shows the same simulations but using a structured mesh

which follows the corresponding fiber orientation. As expected, the damage patterns

are captured properly. For the fiber angle θ = 10◦, additional cracks have appeared
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with different orientations. However, this result can be attributed to the loading

conditions that do not yield to an homogeneous stress state which promotes edge

effects [159].

SDV_d2

0.00
0.16
0.33
0.49
0.65
0.82
0.98

(a) 10◦ (b) 45◦ (c) 60◦

Figure 6.4: Predictions of the matrix cracks in an off-axis ply subjected to tensile

loading (using a structured mesh).

Although the crack pattern is not well predicted when the mesh is not oriented

according to the fiber angle, the resulting ultimate strengths for both types of meshes

are equal, as can be seen in Figure 6.5.

Using the definitions considered in previous test, at following is presented another

interesting simulation of a [45/ − 45]S laminate subjected to tensile loading. The

mesh is oriented according to the corresponding fiber orientation. Non-zero thickness

cohesive elements are modeled at each of the two interfaces with different orientation

of the adjacent plies (he = 0.01mm). The central plies are modeled together, with an

element thickness of 0.25mm. The outer plies are modeled with an element thickness

of 0.125mm. The properties used to fed on the cohesive elements are summarized

in Table 7.2. The strategy to generate the model is as suggested in Figure 7.2.a of

next Chapter 7. It is expected that the specimen should fail in tension by pull-out

without any fiber failure, as it is depicted in Figure 6.6.
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Figure 6.5: Ultimate tensile strengths versus off-axis angle.

Figure 6.6: Schematic of pull-out failure of [45/−45]S laminate with no fiber fracture

(after Wisnom [160]).

As can be seen in Figure 6.7, the expected crack bands are not well predicted.

All plies have broken following the orientation of the middle ply fibers. Therefore, it

is concluded that although structured meshes improve the description of the damage

crack bands, more research is required in order to predict better these phenomena.
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Zoom
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Figure 6.7: Prediction of the matrix crack bands of laminate [45/ − 45]S subjected

to tensile loading.
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Chapter 7

Virtual testing

7.1 Introduction

The simulation of the drop-weight impact and CAI tests, which were defined in

Chapter 3, is presented herein. Accordingly, a description of the key FE pre-

processing definitions for the proper working of the virtual tests is done. All these

definitions are capabilities offered by the commercial FE code Abaqus/Explicit [124],

in exception of the constitutive models for the description of the material behavior

(the delamination and the intralaminar damage mechanisms). These constitutive

models, presented in Chapters 5 and 6, are included in the FE simulations by the

implementation of user-written subroutines of Abaqus/Explicit. It should be noted

that due to the formulations considered, the simulations presented are limited to

quasi-static loading and low strain rates situations where drop-weight impact can

be considered well fitted.

The results of the virtual tests and the corresponding comparison with the ex-

perimental data are also shown and discussed in detail.

7.2 Description of the FE models

7.2.1 Explicit FE code

There are several factors that contribute to decide to use an explicit FE code for the

simulation of the impact event. The drop-weight impact on laminated composite

195
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plates is a fast dynamic problem with severe material nonlinearities and disconti-

nuities, such as contact. In addition, large number of elements should be used in

order to describe suitably the damage type and extension in the material. All these

factors make difficult or impossible the convergence of the model when an implicit

FE code is applied.

The explicit dynamic integration method is also known as the forward Euler or

the central difference algorithm. At each time increment, the explicit dynamics pro-

cedure solves a wave propagation problem: out-of-balance forces are propagated as

stress waves between neighboring elements. It uses the central difference time inte-

gration scheme for integrating the resultant set of nonlinear dynamic equations. The

method assumes a linear interpolation for velocities between two subsequent time

steps and no stiffness matrix inversions are required during the analysis. The draw-

back of the explicit method is that it is conditionally stable for nonlinear dynamic

problems.

The increment of time used for each calculation, δt, is based on a critical stable

value, δtstable. A bounded solution is obtained only when the time increment is less

than the stable increment. For linear and nonlinear problems alike, explicit methods

require a small time increment which is independent of the type and duration of

loading, and depends solely on the highest natural frequency ωmax and on the critical

damping ξ in the mode with the highest frequency. That is:

δtstable ≤
2

ωmax

(
ξ
√

1 + ξ2
)

(7.1)

Alternately, instead of looking at the global model, a simple estimate which

is efficient and conservative can be used. It is based on the highest frequency of

each individual finite element of the model, which is always associated with the

dilatational mode. It can be shown that the highest element frequency is always

higher than the highest frequency in the assembled finite element model. Then, this

method is more conservative, because it will give a smaller stable time increment

than the true stability limit based on the maximum frequency of the entire model.

Based on these observations, the stability limit is defined as the smallest time for

a dilatational wave to cross any element in the mesh. It can be approached by

means of the called Courant condition which considers the minimum dimension of

the element `min and the wave speed of the material cm as:
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δtstable ≤
`min
cm

(7.2)

where the wave speed is a material property defined as cm =
√

E
ρ

. E and ρ represent

the bulk stiffness and the density, respectively, of the considered finite element [124,

161].

7.2.2 Plate modeling

Alternatives for plate modeling

The constitutive models for the description of the delamination and the intralaminar

damage mechanisms have been formulated with the aim of simulating the composite

structure at the meso-scale level. Although the initiation and the propagation of

failure inside of each ply occur on the micro-scale, the meso-scale approach is adopted

because the modeling of the entire microstructure is computationally unaffordable.

At this scale level, the interaction of both constitutive models is ensured since they

are used in the same FE model.

In this way, the level of FE discretization considered for a laminated composite

plate is illustrated in Figure 7.1. In the through-the-thickness direction, each ply is

represented by a single layer of 3D solid elements, at which the intralaminar damage

model is assigned. In the case of delamination, the crack planes are known a-priori.

Under impact loading, delamination only occurs between plies with different fiber

orientation. Therefore, cohesive connections described by means of the delamination

model are introduced only in these locations. This simplification goes in favor of

reducing the computational time of the analysis, since in ply clusterings with equal

fiber orientation no cohesive connections are defined.

According to the capabilities offered by the Abaqus/Explicit software, different

alternatives for plate modeling can be considered, as shown in Figure 7.2. Basically,

these alternatives are differentiated as how the cohesive connections are modeled.

For all cases shown in Figure 7.2, the intralaminar damage model is assigned to

the corresponding finite elements by means of the implementation of a user-written

material subroutine, called VUMAT [124].
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Figure 7.1: Superposition of the finite element discretization with an image of a

laminated composite material (image of the composite material from Olsson [162]).

The case depicted in Figure 7.2.a is the most common way to model the com-

posite plate. It consists of modeling the cohesive connections using solid (non-zero

thickness, he 6= 0) or surface finite elements (zero thickness, he = 0), and the in-plane

size of the mesh of all layers is defined equal, including composite plies and cohesive

type layers. Therefore, the nodes of each layer are shared with the neighboring lay-

ers. In this case, the delamination model can be implemented using a user-written

material subroutine VUMAT (as shown in Chapter 5), or a user-written finite el-

ement subroutine, called VUEL. A drawback of using cohesive elements is that it

makes worse the runtime analysis, because their thickness is small, yielding to small

stable time increments.

(a) (b) (c)

Figure 7.2: Strategies for modeling a laminated composite plate: (a) using cohesive

elements and a regular mesh, (b) using cohesive elements and tie constraints, or

(c) using surface-based cohesive interactions. The variables shown are: h, the plate

thickness; he, the thickness of the cohesive connection; and hp, the thickness of the

ply clustering.
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If non-coincident meshes are used because the mesh of each ply is structured

according to the corresponding fiber orientation (as suggested in Section 6.3 in or-

der to describe properly matrix cracks and thus to reduce the mesh dependency),

or simply because it is desired to use different in-plane mesh sizes for each layer,

the use of Tie Constraints is needed (see Figure 7.2.b). A tie constraint is a ca-

pability of Abaqus/Explicit that provides a simple way to bond surfaces together

permanently, making the translational and rotational motion equal for the pair of

surfaces. However, the use of tie constraints requires additional computational re-

sources and runtime for the pre-processing and analysis phases of the FE model,

often making the acquisition of the virtual solution unaffordable.

Alternately to the case depicted in Figure 7.2.b, it is possible to use a surface-

based cohesive interaction by the implementation of a user-written subroutine type

VUINTER [124] (see Figure 7.2.c). This approach is a quick and easy way to model

cohesive connections, avoiding the need of defining cohesive elements and tie con-

straints, which oppose in improving the runtime of the analysis. However, surface-

based cohesive interactions also can yield to large runtime analysis because contact

algorithms are computationally heavy, especially when the connected meshes are

highly refined. In addition, this type of interaction requires to define one of the con-

nected surfaces (the slave surface), smaller than the other surface which acts as a

reference (master surface), in order to know at any increment of time the surface lo-

cations for the corresponding nodal calculations. Therefore, it supposes that a small

part of the surfaces can not be linked, and if the cohesive connection is subjected

to large relative in-plane sliding, the cohesive connection can yield to inaccurate

results. Finally, another limitation of using a surface-based cohesive interaction is

that the visualization of user state variables of the implemented subroutine for the

post-processing FE phase is not available. Therefore, to plot the virtual extensions

and shapes of the delaminated areas is not possible.

Despite the fact that using in-plane structured meshes oriented with the fiber di-

rection has clear advantages, the solution finally adopted for the plate discretization

is the case depicted in Figure 7.2.a, by using two user-written material subroutines

VUMAT coded with FORTRAN programming language. After several tests using

the different alternatives, the case adopted yields to a well-balanced compromise of

required and available computer resources, capabilities for pre- and post-processing
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FE phases, as well as the acquisition of suitable results in an acceptable runtime

analysis, which is the fact with more weight.

Type of finite element and dimensions

All layers of the laminated composite plate, including composite plies and cohesive

layers, are modeled by means of 3D hexahedral continuum solid elements with eight

nodes and reduced integration (one integration point), called C3D8R [124].

As noted previously, in the through-the-thickness direction each ply clustering

or cohesive layer is represented by a single layer of solid elements. The thickness

of all cohesive layers is subtracted from the corresponding real plate thickness. In

detail, the thickness of each cohesive layer, he, is defined with 0.01mm. Using

the properties summarized in Table 7.2, the cohesive thickness selected is much

smaller than the maximum value obtained by means of Equation (5.77) in order to

guarantee the correct interlaminar energy dissipation without causing snap-back in

the constitutive response.

With the aim of reducing the CPU analysis time, the in-plane mesh size is vari-

able. A central zone of 60mm×60mm with a refined regular mesh of 0.3mm×0.3mm

is defined (`x× `y), and as from of it and until the plate free edges a biased mesh is

modeled (see Figure 7.3). The elements of the plies located in the central zone

are driven by the intralaminar damage model, whereas the behavior of the re-

maining elements is described by a transversally isotropic elastic material from the

Abaqus/Explicit material library. However, different in-plane regions with different

materials are not considered for the cohesive layers, which are described exclusively

by the delamination damage model.

The reason of using elements with small in-plane sizes in comparison with the

plate dimensions is due to requirements of the damage models for the accurate

prediction of the structure response.

On the one hand, for intralaminar damage elements with a characteristic length

(defined as `∗ =
√
`x`y) higher than the maximum size `∗max given by Equation

(6.25), the strength of the corresponding damage mode is reduced in order to avoid

snap-back in the constitutive response. These reductions are not adequate in cases

where the results depend strongly on the strengths for damage onset, such as the

prediction of the critical impact load Fd for the sudden loss of the structure stiffness.
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The in-plane dimensions of the intralaminar damage elements are defined small

enough to avoid these strength reductions as can be deduced using the properties

summarized in Table 7.1.

On the other hand, the in-plane size of the cohesive elements should be selected

so the cohesive zone length is suitably split with enough elements (at least with three

or four elements). Accordingly, the in-plane element size selected in the central zone

of the plate is suitable for a proper discretization of the cohesive zone length, as can

be deduced using the properties of Table 7.2 and by means of Equations (5.78) and

(5.79). However, the cohesive description in regions close to the edges of the plate is

deteriorated, but it is not of significance since the delaminations occur mainly into

or near to the central region.

Figure 7.3: In-plane mesh size of the plate.

Definitions to control finite element instabilities

The use of first-order and reduced-integration finite elements can result in a mesh

instability problem, commonly referred to as hourglassing. The hourglassing problem

means that the elements can distort in such a way that the strains calculated at

the integration point are all zero, which, in turn, leads to uncontrolled distortion

of the mesh with no stresses resisting the deformation. Abaqus/Explicit includes

control methods for suppressing hourglassing, where the Enhanced Hourglass Control

approach is the method selected for all simulations.

Moreover, a Distortion Control is used in order to prevent elements from invert-

ing (negative element volumes) or other excessive distorting which are not caused by
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hourglassing instabilities, rather by the loading conditions and by the level of ma-

terial degradation. This control applies penalty loads when the element is inverted

a predefined proportion of the corresponding original element size.

Additionally, a damping associated with the volumetric straining of the elements,

called Bulk Viscosity, is introduced with the purpose of improving mainly the dy-

namic simulation of the impact tests. A bulk viscosity pressure that varies linearly

with the volumetric strain is defined in order to damp ringing in the highest ele-

ment frequency. Moreover, a pressure that varies quadratically with the volumetric

strain is also introduced with the aim of preventing elements from collapsing un-

der extremely high velocity gradients. The damping coefficients used are the ones

suggested by the FE software, 0.06 and 1.2 for linear and quadratic damping, re-

spectively.

Once the stiffness of a finite element is fully degraded, this element has no con-

tribution to the stiffness of the model, but can reduce the stable time increment

during the simulation. Abaqus/Explicit offers the choice to remove these elements

from the mesh. It is selected that a cohesive element is removed when its scalar

damage variable d reaches the value of 0.99. However, the criterion for deleting

ply elements is more complex since a directional damage model describes their con-

stitutive behavior. In the simulations proposed here, these elements are removed

when the longitudinal damage variable d1 reaches 0.999, i.e. fiber breakage. As can

be seen, the elements are removed before the damage variables reach the unity in

order to avoid possible sudden element distortions because of the absence of residual

stiffness. Accordingly, the transverse and shear damage variables d2, d3, d4, d5 and

d6 are also limited to a maximum value of 0.99.

Mainly, the cohesive elements will determine the stable time increment of the

whole model due to their small thickness, as it can be deduced from Equation (7.2).

The computational efficiency of the simulations is improved by scaling the mass of

these elements by means of the Variable Mass Scaling capability of Abaqus/Explicit.

In detail, it is selected to scale the masses of only the cohesive elements whose stable

time increment is less than a predefined value. Such definitions are selected taking

care of never increase significantly the overall mass of the plate.

In order to verify if excessive use of the solutions mentioned for decreasing nu-

merical difficulties (hourglass control, the distortion control, the viscosity damping,
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and mass scaling) occurs during the simulations, an engineering judgment based on

the lecture of the corresponding energy variables should be performed. Typically,

the energy generated by each one of these solutions must be less than 1% of the

internal energy of the system.

Material properties

The material properties of the AS4/8552 carbon-epoxy unidirectional pre-preg are

summarized in Table 7.1. These properties are inputs to fed on the intralaminar

damage model. Some of the properties were obtained by testing specimens man-

ufactured with the same pre-preg roll of the specimens used for the experimental

impact and CAI tests. The properties which were not obtained experimentally, are

extracted from the literature.

Table 7.1: Hexply AS4/8552 properties. The properties pointed out with (∗) are

extracted from [97].

Density [kg/mm3] 1590× 10−9

Elastic properties E1 = 128.00GPa; E2 = 7.63GPa;

E6 = G12 = 4.36GPa;

ν12 = 0.35; ν23 = 0.45

Strength [MPa] X1+ = XT = 2300.0; X1− = XC = 1531.0∗;

X2+ = YT = 26.0; X2− = YC = 199.8∗;

X6 = SL = 78.4

Fracture toughness [N/mm] G1+ = 81.5∗; G1− = 106.3∗; G2+ = 0.28∗; G6 = 0.79∗

Other definitions required by the intralaminar damage model are: XPO = 0.1XT

(pull-out strength), GL1+ = 0.2G1+ (energy dissipated at linear softening), GE1+ =

G1+ − GL1+ (energy dissipated at exponential softening), G2− = G6/ cos(α0), and

α0 = 53◦. Since the differences of temperature and moisture are not considered

in the simulations, the definition of the thermal coefficients and of the hygroscopic

expansion are not required. In addition, the transverse tensile strength YT and

the in-plane shear strength SL are adjusted in order to consider the in-situ effect
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according to the equations shown in Chapter 6. For the calculation of the in-situ

in-plane shear strength, it is taken ς = 2.98× 10−8.

On the other hand, the properties used for the interlaminar damage model are

summarized in Table 7.2.

Table 7.2: Interface properties.

Density [kg/mm3] 1590× 10−9

Elastic properties E = 7.63GPa; ν = 0.45

Mode I strength [MPa] τ o3 = YT = 26.0

Fracture toughness [N/mm] GIc = G2+ = 0.28; GIIc = G6 = 0.79

Other definitions required to fed on the interlaminar damage model are: mode

II interlaminar shear strength, τ o1 = τ o3

√
GIIc
GIc

[13]; and the parameter of the least-

square fit of the mixed-mode fracture toughness values, η = 1.45 [97].

7.2.3 Virtual test set-up

Drop-weight impact tests

According to the impact test set-up used for the real tests shown in Figure 3.1, the

virtual models should reproduce the same conditions but in the most simplified way

in order to avoid unnecessary computer time consuming.

In Figure 7.4 is shown the assembly of the different components considered for

the simulation of the impact test. The fixture base support and the hemispherical

impactor are defined as a rigid bodies since they are stiff steel parts whose stresses

and strains are not of interest. In detail, the impactor is modeled by a lumped mass

element and the fixture base by 3D rigid elements with four nodes, called R3D4. If

domain parallelization is used for the analysis calculation, the fixture base should

be meshed with enough elements in order to split it in enough element sets, just

as much as the number of domains. The maximum element length selected for the

fixture base mesh is of 5mm.

The motion of a rigid body is governed by the motion of a single reference

point at which the boundary conditions, initial conditions and physical parameters

are defined. Certainly, the fixture base is defined with all the degree of freedom
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constrained. The impactor is also defined with all the degree of freedom fixed, in

exception of the out-of-plane displacement. In order to capture the effect of the im-

pactor drop, the impactor is modeled just before of the impact position by specifying

an initial impact velocity consistent with the height of free fall. In addition, a con-

centrated load is defined on the impactor to describe the weight load, although its

effect is practically insignificant since the impact forces reaches much higher values.

Figure 7.4: Set-up of the virtual impact tests.

The four rubber-tipped clamps which restrain the specimen over the fixture base

are modeled by means of the Distributed Coupling Constraint capability. These

constraints couple the motion of a group of nodes to the motion of a master node.

Therefore, at each master node is defined an instantaneous out-of-plane load of

3000N, which is uniform distributed to the corresponding affected set of nodes lo-

cated on the top plate surface. The influence radius to select the corresponding set

of coupled nodes is of 7mm.

On the other hand, contact constraints are required in order to describe the

contact between the impactor and the top face surface of the plate, and also the

back face surface of the plate with the fixture base. The contact approach used is
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the General Contact algorithm of Abaqus/Explicit, which defines a linear pressure-

overclosure relationship between the contacting surfaces, where the contact stiffness

is chosen automatically by the software, and there is not limit to the magnitude

of the contact pressure that can be transmitted. In addition, the Coulomb friction

model which relates the maximum allowable frictional shear stress across an interface

τmax to the normal contact pressure between the contacting bodies P , τmax = µP , is

defined. In detail, the friction coefficient for contacts between a steel material and

a composite material is considered as µ = 0.3.

As it has been noted in previous section, once the finite elements of the plate

are completely degraded, they are removed from the mesh in order to improve the

computation efficiency. Due to this fact, new internal element faces can be subjected

to contact with the impactor, or even with the neighboring elements. Therefore,

contact constraints should be defined for these possible interactions.

Since in the proposed impact simulations the perforation does not occur, it is

enough to consider that the impactor can take contact with the first three top

surfaces of the element sets which describe the first three composite plies.

In addition, the internal faces of the elements located in the regular zone depicted

in Figure 7.3 are modeled in such a way that could take contact themselves during the

simulation. The friction coefficient in delaminated interfaces varies from 0.2 for 0◦/0◦

interfaces (with sliding in the longitudinal direction), to 0.8 for 90◦/90◦ interfaces

(with sliding in the transversal direction) [163]. An average friction coefficient of 0.5

is applied between element faces, as suggested in [97].

It should be noted that any contact definition increases the required computer

memory, as well as it makes worse the runtime analysis of the model, since the

relative displacement between contact surfaces is checked periodically during the

simulation. Therefore, the fewer contact definitions, faster the simulation will reach

the solution.

CAI tests

Once the simulation of the impact test is finished, the CAI test is subsequently

carried out. Therefore, the post-impact structure state should be imported and the

new boundary conditions which reproduce the CAI test should be defined. In detail,

the damaged plate is imported by means of the Restart and Import capabilities of
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Abaqus/Explicit, and the boundary conditions are illustrated in Figure 7.5. These

boundary conditions are simply modeled by constraining the corresponding degree

of freedom of the nodes located at the sites pointed out.

Although the CAI test is essentially quasi-static, it will be simulated by means

of the dynamic FE code Abaqus/Explicit. The reason is due to the fact that high

material and geometrical non-linearities occur, yielding to severe convergence diffi-

culties if an implicit FE code is used. Accordingly, a displacement loading is applied

with sufficiently slowness at one of the short edges of the plate (see Figure 7.5), so

the kinetic energy is kept despicable against the internal energy of the system.

Figure 7.5: Boundary conditions of the CAI test.

7.2.4 Energy balance

The evolution of the energy variables is a valuable data to know the events that can

occur during the numerical impact simulation, and then to assess if the simulation

is yielding to an appropriate response. Mainly, these events are the onset and the

progression of each damage mechanism that the composite material can suffer, and

also, the use of the solutions considered for the proper working of the numerical

models, such as the generation of artificial energy for hourglassing prevention.

For the virtual tests considered herein, the energy balance equation can be writ-

ten as:

ET = EK + EI + EF + EV −WE −WC −WMS (7.3)



208 CHAPTER 7. VIRTUAL TESTING

where ET is the total energy of the system, EK is the kinetic energy, EI is the

internal energy, EF is the frictional dissipation energy, EV is the energy dissipated

by bulk viscosity damping, WE is the work of the external forces, WC is the work

done by contact penalties, and WMS is the work done in propelling mass added in

mass scaling. The internal energy can be split in the following terms:

EI = EE + EH + EDC + EDm + EDf + EDd (7.4)

where EE is the recoverable strain energy (elastic energy), EH is the energy gen-

erated to prevent hourglassing, and EDC is energy dissipated by distortion control.

The terms EDm, EDf , and EDd are the energy dissipated by matrix damage, by fiber

damage, and by delamination, respectively.

Most of the energy terms can be requested for the entire model or for specific

element sets of the model.

7.3 Results of the virtual tests and comparison

with experimental data

At following, the results of the impact test and CAI test simulations are presented

and compared with the experimental data shown in Chapter 4.

The simulations have been performed using multiple processors on separate ma-

chines, i.e. cluster. Abaqus/Explicit automatically breaks up the FE model into

domains and assigns each domain to a processor, so the analysis is carried out in-

dependently in each domain. Since the domains share common boundaries, the

information is passed between the domains at each increment via the MPI interface

mode (Message Passing Interface) [124]. At the end of the analysis, the individual

files are merged automatically.

In detail, the FE models are parallelized in a cluster composed by a group of six

linked computers, each one with 8GB RAM and four processors (24 CPUs). The

whole runtime analysis of the impact and CAI tests has ranged between twelve and

fifteen days, depending on the plate stacking sequence. The simulations are heavy

due to the large number of composite plies and cohesive interfaces (each layer is

modeled with an element), the small in-plane sizes of the elements, and the large
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number of contact definitions. These factors yield to small time increments (of the

order of 1e-9s), where each one requires fairly long time of analysis. In addition, the

impact events considered are long in time (of the order of 5e-3s), so large amount

of increments are required to complete the simulation.

It should be noted that not all the impact configurations tested are performed

virtually, because of limitations in computer memory resources for the pre-process

and analysis FE phases. Only, some cases of the ply clustering study are considered.

The unresolved impact configurations are proposed as future works.

Laminate L04

Figures 7.6, 7.7 and 7.8 show the comparisons between the experimental and the

numerical evolutions of the impact force of the laminate L04 for 38.6J, 28.6J and

19.3J, respectively. As can be observed, the whole profiles and the contact times are

quite well predicted, whereas the damage thresholds Fd are clearly over-predicted.

Moreover, in contrast with the experimental results, it is detected that the numerical

values of Fd are not kept constant by changing the impact velocity.
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Figure 7.6: Experimental and numerical impact force histories of the laminate L04

for 38.6J.

Several differentiable simulations have been carried out in order to explain the

fact that generates the over-prediction of Fd. Firstly, the mesh of the outer ply at
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Figure 7.7: Experimental and numerical impact force histories of the laminate L04

for 29.6J.
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Figure 7.8: Experimental and numerical impact force histories of the laminate L04

for 19.3J.

the back face of the laminate has been refined in the through-the-thickness direc-

tion to capture better the stresses due to the flexural deformation (four elements).

Secondly, the mesh of this ply has been also oriented according to the corresponding

fiber orientation, so tie constraints have been used to link this ply with the whole

laminate. Despite to model these modifications, no improvements have been ob-

tained. However, it is suspected that this behavior can be attributed to an excessive
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stiffness of the contact constrains defined between the surfaces of the composite plies.

The pressure produced by the impactor can make that these surfaces keep contact

without degrading the delamination elements, yielding to a stiffer response. Future

simulations should be performed in order to improve the prediction of Fd, by using

surface-based cohesive interactions which avoid to define these contact constraints.

As an illustrative example, Figure 7.9.a shows the experimental and the numer-

ical evolution of the absorbed energy, Ea, of the laminate L04 for 19.3J. As can

be observed, the numerical prediction fits well the experimental profile. The FE

simulations have been modeled so the whole energy of the system can be split into

the different energy components (see Equations (7.3) and (7.4)), allowing to know

the role that plays each one at any moment of the impact event. Accordingly, the

evolutions of the energy dissipated due to delamination (EDd) and the intralaminar

damage mechanisms (EDm: matrix; EDf : fiber), are plotted separately in Figure

7.9.a. It can be observed that the main dissipative mechanism is the delamination.
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Figure 7.9: (a) Experimental and numerical evolutions of the absorbed energy (EDd:

delamination; EDm: matrix; EDf : fiber), and (b) numerical evolutions of the impact

force and dissipated energy due to delamination (case: laminate L04 for 19.3J).

Moreover, Figure 7.9.b shows the evolutions of the impact force and the energy

dissipated due to delamination. It can be observed that the drop in the impact

force at the critical point Fd coincides, in time, with a quick increase of the energy

dissipated by delamination. This sudden increase of the energy is the highest along
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the chart. This result corroborates with the comments written in previous chapters,

where it is assumed that the first drop in the impact force is mainly due to a large

growth of delaminations when the structure is loaded under a low-velocity impact.

Figure 7.10 shows the predicted delamination area at two different contact times:

(a) ti = 0.4ms (just before to reach Fd), and (b) ti = 0.8ms (just after the first

drop of the impact force). The field variable plotted corresponds to the scalar

damage variable of all the interface elements, so a translucency is applied in order

to visualize all the interfaces. These projections are such as the images that can be

obtained by C-scan inspections. It can be observed a large and quick increase of the

delaminations between these two instants of time, as deduced previously in Figure

7.9.b.

(a) (b)

Figure 7.10: Projected delaminated area for impact times, (a) ti = 0.4ms and (b)

ti = 0.8ms.

According to the numerical predictions, a certain number of delaminations prop-

agate simultaneously at the critical point Fd. Therefore, the development of ana-

lytical damage thresholds based on the assumption that a single delamination can

generate a drop in the impact force history, is not fully clear.

In a similar way as the procedure used by Davies et al. [69, 85] to formulate

an analytical threshold Fd based on the propagation of a single circular mid-plane

delamination (F stat
d1 , see Equations (2.112) and (2.113)), a new criterion can be de-

veloped assuming that n∗d delaminations can grow. These delaminations are counted

from the back face of the plate, and generate n∗d sub-laminates with a thickness equal

to the clustering thickness hp (see Figure 7.11). This approach is interesting for cases
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which suffer the largest delaminations at the deeper interfaces of the laminate (i.e.

close to the back face of the laminate), often yielding to a wide pine tree damage

pattern (see Figure 2.11.a). The resulting equation deduced by means of LEFM is

defined as:

F stat
dbf = π

√
8EGIIc

3 (1− ν2)

(
− 1

h3
+

1

(h− n∗dhp)3 + n∗dh
3
p

)− 1
2

(7.5)

where GIIc is the fracture toughness in pure mode II, E and ν are respectively the

homogenized in-plane elastic modulus and Poisson ratio of the plate, h is the plate

thickness, hp is the clustering thickness, and n∗d is the number of delaminations

considered.

Figure 7.11: Example of back face delaminations.

The threshold F stat
dbf does not depend on the initial crack length of the n∗d de-

laminations, so it can be interpreted as a criterion for delamination onset. As can

be checked, increasing the value of n∗d, the load required to grow the delaminations

decreases since the flexural stiffness of the plate is reduced. Table 7.3 summarizes

the values of F stat
dbf for laminates L02, L03, and L04, for different number of sub-

laminates. The values of F stat
dbf written in bold are the ones which are closer to the

experimental values.

Figure 7.12 shows the comparisons between the numerical and the C-scan pro-

jected delamination areas at the end of the impact event of the laminate L04 for

each impact energy. In a general point of view, the predictions agree with the ex-

perimental data. It should be noted that the predicted results are influenced by the

in-plane mesh refinement. When a delamination reaches the rough mesh (see Figure

7.3), the growth of the delamination can be restrained because the FE discretization

of the cohesive zone length is not enough.
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Table 7.3: Values of F stat
dbf to generate n∗d sub-laminates counted from the back face

of the plate (laminates L02, L03 and L04).

Laminate
Ply thickness Number of Experimental threshold Analytical threshold

hp [mm] interfaces nd load Fd,e [kN] load F stat
dbf [kN]

L02 0.181 30 9.94

n∗d = 10 10.43

n∗d = 11 9.44

n∗d = 12 8.54

L03 0.363 14 7.60

n∗d = 6 8.57

n∗d = 7 7.02

n∗d = 8 5.73

L04 0.725 6 5.50

n∗d = 3 8.67

n∗d = 4 5.80

n∗d = 5 3.88

Ei = 38.6J Ei = 28.6J Ei = 19.3J

Figure 7.12: Projected delamination areas of the laminate L04 for each impact

energy (experimental: black line; numerical: dashed gray line).

Figure 7.13 shows an example of through-the-thickness cut views of the plate at

the impact site (case: laminate L04 for 19.3J). The variable plotted corresponds to

the transverse damage variable d2 (matrix cracking) at contact time ti = 2.0ms.

Related to the CAI tests, Table 7.4 summarizes the predictions of the post-impact

residual compressive load Ffc and the compressive displacement at failure of the

laminate L04 for each impact energy. As can be observed, the values of the residual

compressive strengths are well predicted, whereas the compressive displacements at

the failure point are fairly under-predicted.

Taking as an example the CAI test simulation of the laminate L04 impacted with
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(a) x = 70mm:

(b) x = 75mm:

(c) x = 80mm:

Figure 7.13: Through-the-thickness views (cut plane: y − z), of matrix cracking

distribution at the impact site (x, y) = (75, 50)mm of the laminate L04, impacted

with 19.3J and at contact time ti = 2.0ms.

Table 7.4: Predictions of the post-impact residual compressive load and the com-

pressive displacement of the laminate L04.

Impact energy [J]
Strength Ffc [kN] Displacement ufc [mm]

Experimental Numerical Experimental Numerical

38.6 98 89 1.42 0.5

28.6 103 92 1.37 0.5

19.3 105 107 1.45 0.8

19.3J, in Figure 7.14 are plotted the evolutions of the dissipated energies and the

compression load as a function of the compression displacement. The initial values

of these energies correspond to the energies dissipated at the end of the impact test.

It can be observed that practically the trend of the energies is constant until the

maximum strength is reached. At this point, the energies dissipated due to the

delamination and the intralaminar damage mechanisms increase. The collapse of

the plate is triggered by fiber failure which, in turn, triggers matrix cracking and

delamination.
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Figure 7.14: Numerical prediction of the absorbed energies (EDd: delamination;

EDm: matrix; EDf : fiber) and the compressive load as a function of the compression

displacement, of the laminate L04 for 19.3J.

Additionally, in Figure 7.15 are shown the displacement fields at the loading axis

(on top (a) and back (b) faces of the plate), and at the out-of-plane axis (also on top

(c) and back (d) faces) in the instant with the maximum compressive strength. The

predicted buckling mode is quite similar to the experimental results, where often a

local bubble concentrated in the middle of the specimens was evidenced. According

to the experimental set-up of the CAI tests, the prediction of the displacements on

the top face can be compared with the lectures given by the Digital Image Correla-

tion (DIC). Moreover, the predictions of the out-of-plane displacements at the back

face can be compared with the lectures given by the LVDT transducers at the cor-

responding points (see Figure 3.8). For example, the maximum displacement read

by the LVDT1 is 2.91mm (see Table 4.5), whereas the predicted value is 2.55mm.



7.3. VIRTUAL RESULTS AND COMPARISON WITH EXPERIMENTS 217

(a) (b)

(c) (d)

Figure 7.15: (a) Top face and (b) back face predicted displacement field at the

loading axis direction; (c) top face and (d) back face out-of-plane displacement field

(case: laminate L04 for 19.3J).

Laminate L03

Figures 7.16 and 7.17 show the comparisons between the experimental and the nu-

merical evolutions of the impact force of the laminate L03 for 28.6J and 19.3J, re-

spectively. In contrast with the simulations of the laminate L04, the whole profiles

are not well predicted, whereas the contact times are still more or less in agreement

with the experimental results. The damage thresholds Fd are again over-predicted,

even with more offset than in the simulations of the laminate L04. This result can

be related with the fact that more contact constraints are defined for laminate L03,

because it has more interfaces.

On the other hand, Figure 7.18.a shows the experimental and the numerical

evolutions of the absorbed energy, and the components of the dissipated energy
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Figure 7.16: Experimental and numerical impact force histories of the laminate L03

for 29.6J.
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Figure 7.17: Experimental and numerical impact force histories of the laminate L03

for 19.3J.

(delamination and intralaminar damages), of the laminate L03 for 19.3J. As can be

observed, the numerical result over-predicts significantly the experimental profile.

In addition, Figure 7.18.b shows the evolutions of the impact force and the energy

dissipated due to delamination. According to the simulations, the main dissipative

mechanism in first drop of the impact force is again the delamination.

Figure 7.19 shows the comparisons between the numerical and the C-scan pro-
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Figure 7.18: (a) Experimental and numerical evolutions of the absorbed energy

(EDd: delamination; EDm: matrix; EDf : fiber), and (b) numerical evolutions of

the impact force and dissipated energy due to delamination (case: laminate L03 for

19.3J).

jected delamination areas at the end of the impact event of the laminate L03 for

the impact energies 28.6J and 19.3J. Clearly, the sizes are over-predicted, which

corroborates the result plotted previously in Figure 7.18.a.

Ei = 28.6J Ei = 19.3J

Figure 7.19: Projected delamination areas of the laminate L03 for each impact

energy (experimental: black line; numerical: dashed gray line).

Obviously, since the amount of impact damage is over-predicted, the post-impact

residual strength is under-predicted. The compression strengths and compression

displacements obtained are summarized in Table 7.5.

Taking as an example the CAI test simulation of the laminate L03 impacted with

19.3J, in Figure 7.20 are plotted the evolutions of the dissipated energies and the
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Table 7.5: Predictions of the post-impact residual compressive load and the com-

pressive displacement of the laminate L03.

Impact energy [J]
Strength Ffc [kN] Displacement ufc [mm]

Experimental Numerical Experimental Numerical

28.6 100 120 1.32 0.6

19.3 134 124 1.6 0.6

compression load as a function of the compression displacement. As occurred with

laminate L04, the energies dissipated due to the delamination and the intralaminar

are constant until the maximum strength is reached. On the other hand, in Figure

7.21 are shown the displacement fields at the loading axis (on top (a) and back (b)

faces of the plate), and at the out-of-plane axis (also on top (c) and back (d) faces) in

the instant with the maximum compressive strength. Again, a local bubble appears

on the back-face of the plate.
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Figure 7.20: Numerical prediction of the absorbed energies (EDd: delamination;

EDm: matrix; EDf : fiber) and the compressive load as a function of the compression

displacement, of the laminate L03 for 19.3J.
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(a) (b)

(c) (d)

Figure 7.21: (a) Top face and (b) back face predicted displacement field at the

loading axis direction; (c) top face and (d) back face out-of-plane displacement field

(case: laminate L03 for 19.3J).
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Chapter 8

Conclusions and future work

8.1 Conclusions

The present thesis covers a wide range of analysis of the low-velocity and large mass

impact events on monolithic, flat, rectangular, polymer-based laminated composite

plates with conventional stacking sequences. Keeping in mind that the main goal

of this work is the prediction of the residual compressive strength of an impacted

specimen coupon, a set of different tasks are performed in order to provide suitable

tools to analyze the problem. In this sense, the topics which are addressed in this

thesis are: the analytical description of the impact, the design and the realization

of an experimental test plan, the formulation and implementation of constitutive

models for the description of the composite material behavior, and the assessment

of the performance of FE virtual tests where the constitutive models are used. In the

following points, the main contributions and conclusions of this thesis are described.

8.1.1 Analytical impact description

Due to the simplicity of the geometry of the structure considered, the development

of analytical models for the description of the impact event can be developed with

sufficient accuracy. In this way, a detailed literature review of the analytical de-

scription is carried out in Chapter 2 and in the related Appendix A. The analytical

models offer preliminary information for a given impact configuration, allowing the

understanding of the effects of each parameter that influence the impact response.

223
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Thus, the tools reviewed are used to acquire an initial knowledge of the problem,

and also for planning the experimental test campaign.

The literature survey is focused on the models which describe the elastic response

of the impact event. Different types of models are analyzed, covering the complete

analytical models which fully describe the dynamic behavior of the problem, and

the simplified models which describe a particular extreme impact behavior. Accord-

ingly, the basis of any impact model, which are the contact laws and the governing

equations of the plate and the impactor, are analyzed in detail. Additionally, the

dimensionless frameworks which reduce suitably the number of influencing impact

parameters in a more manageable dimensionless key parameters are also described.

Although the analytical description performed is focused on laboratory coupons,

most of the concepts reviewed can be used for other structures with more complex

shapes.

The variable used to bridge the elastic stress/strain analysis and the onset of

damage is the maximum impact load, which is compared with a damage threshold

allowable. Damage occurs if the predicted maximum load is greater than a well-

defined threshold for the corresponding dynamic response type.

Taking into account that under low-velocity impact loading the main and the

most dangerous damage mechanism is the delamination, which reduces severely the

residual compressive strength of the structure, the analytical damage analysis is

particularized on the delamination onset. This failure mode can be detected as

a first drop in the lecture of the impact force history. A new damage threshold

which predicts delamination at the deepest interface of the plate is developed. It

is assumed that this delamination is triggered by a vertical matrix crack located at

the outer ply of the back face of the plate.

8.1.2 Experimental test plan

The sequential experimental tasks which are carried out in order to analyze labo-

ratory coupons are: definition of the impact tests, manufacturing of the specimens,

C-scan inspections for the detection of manufacturing flaws, instrumented drop-

weight impact tests, dent-depth measurements, C-scan inspections to detect the

BVID, and finally, instrumented CAI tests.

The selection of the impact tests is done using some of the analytical tools
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previously described and taking as a reference the American Standard Test Method

for drop-weight impact on laminated composite plates [59]. Modifying some of the

standard parameters, three main studies are proposed: effect of the ply thickness

(clustering), effect of the mismatch angles of the plies, and effect of the laminate

thickness. In addition, the effect of the impact velocity, and the effect of changing

the impact velocity and the impactor mass but keeping constant the impact energy,

are also analyzed inside of the main proposed studies. Among the proposed studies,

the most innovative is the analysis of the ply thickness effect on the impact response.

For each impact study, the appearance of the first large damage is analyzed in detail.

The goal of these studies is not to obtain an improved damage resistant or damage

tolerant structure, rather to obtain a wide range of different experimental data that

can be subsequently used to validate the numerical simulations of the impact and

the CAI tests.

The main conclusions of the experimental results and their comparison with

analytical models are listed below:

Effect of the impact velocity

• The threshold load, Fd, remains constant in front of changes of the impact

velocity.

• Increasing the impact velocity, the slope of the elastic regime is increased, as

predicted by means of the analytical impact models. Accordingly, the pre-

dicted maximum elastic impact force increases, indicating that more damage

is created.

• Increasing the impact velocity, the response is extended in time because the

plate develops more damage. Accordingly, the post-impact residual compres-

sive strength is reduced.

Effect of changing the impactor mass and the velocity

• The threshold load, Fd, remains constant in front of changes of the impactor

mass and velocity, but keeping constant the impact energy.

• Increasing the impactor mass, the response is more quasi-static, which means
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that the response is slowed down. This behavior can also be predicted by

means of the impact characterization diagram and the complete analytical

impact models.

• Given a stacking sequence, the dissipated energy or the damage developed is

the same between impacts with equal impact energy. In addition, the residual

compressive strength remains constant under the same impact energy level.

This result agrees with some of the guidelines provided by the aeronautical

industry for a drop-weight impact test, where the energy is specified, and the

impactor mass and the velocity can be selected freely by the engineer.

Effect of ply thickness (clustering)

• If the ply clustering is increased, under equal impact conditions the values of

Fd and Fmax are reduced.

• Increasing the ply clustering, the changes in the stiffness during the impact are

more progressive and smooth when compared with laminates with thin plies.

This result implies difficulties in the detection of Fd for laminates with thick

plies.

• The response is elongated by increasing the ply clustering of the laminate. This

result indicates that more damage develops for laminates with thick plies. Ac-

cordingly, by reducing the number of interfaces available for delamination, the

resulting projected delamination area is increased. Therefore, ply clustering

results in a lower damage resistance of a composite structure.

• Increasing the ply clustering, the indentation is increased.

• The free growth of the delaminations can be affected by the finite in-plane

dimensions of the plates. In other words, the growth of the delaminations could

be braked by the clamping system. This effect occurs basically in laminates

with thick plies.

• The trend of the proposed analytical thresholds for delamination are in agree-

ment with the experimental points for all laminate types. However, the ana-

lytical values under-predict the real values. This offset can be due to scattering
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of the material properties or to the assumptions considered in the formulation

of the damage threshold, e.g. strain rate effects are neglected. Further testing

is required to verify these arguments, especially with critical impact energies

which generate maximum impact forces similar to the damage threshold loads.

• The damage tolerance, quantified using the residual compressive load, is not

affected by increasing the ply thickness, because all presented laminate types

have shown similar values of compressive loads at each impact energy.

Effect of ply mismatch angle at interfaces

• The analytical prediction of Fd for the selected cross-ply laminate has been in

agreement with the experimental result, although an offset also has appeared.

• The mismatch angle of the interfaces for delamination has not presented a clear

effect on the damage resistance and on the damage tolerance. This result can

be due to the fact that the plate thicknesses of the selected laminates for this

study are slightly different.

Effect of the laminate thickness

• Increasing the laminate thickness, the response is faster and the drop in the

impact force from point Fd increases. For the thinner laminate tested, the

profiles of the impact force are smooth and do not present a clear first drop

on the impact force. This result could mean that a sudden loss of stiffness

from the point Fd does not occur, or the matrix and delamination damage

that appear do not change the response of the impact, rather it is affected by

progressive fiber breakage. This last argument can be related to the membrane

effects.

• The predictions of the threshold load Fd for the different laminates considered

have been in agreement except for the thinner laminate, i.e. L01. This result

can be attributed to different causes: the membrane effects, the possibility

that really the delaminations can not be detected in the force histories, or the

fact that simply a sudden large delamination does not occur and rather the

delaminations grow progressively.
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• Increasing the laminate thickness, the damage resistance is improved since

the energy dissipated is lower than for thin laminates. Likewise, the damage

tolerance is improved. However, the resulting structures are heavier and more

expensive.

Usefulness of the analytical impact models and analytical thresholds

• With the studies presented, it has been demonstrated that the analytical im-

pact models for the prediction of the elastic response are a powerful tool: to

define a suitable test matrix of specimens, to obtain a qualitative understand-

ing of the effects of the governing parameters on the impact response, and to

interpret the experimental results obtained.

• The analytical impact models are completed with the analytical thresholds for

the prediction of the damage mechanisms that can occur in a laminated com-

posite plate under low-velocity impact loading. For low-velocity impacts, the

most critical damage is the delamination. In general, it has been shown that

the damage thresholds for delamination follow the trends of the experimental

results.

8.1.3 Constitutive models for FE simulations

A modified formulation and implementation of a cohesive model originally developed

by Turon et al. [8–13] is presented in Chapter 5. The cohesive model accounts the

onset and the propagation of the delamination in advanced composite materials, and

it is formulated using a rigorous thermodynamic framework which takes into account

the changes of mixed-mode loading conditions. The modifications of the original

formulation are the adaptation from a cohesive surface model (stress-displacement

relationship) to a continuum damage model (stress-strain relationship), and the

incorporation of different penalty stiffness for either crack propagation modes I and

II. The model was originally implemented in a user-written element subroutine of

the implicit finite element code Abaqus/Standard [124]. In the present work, the

implementation is performed using a user-written material subroutine of the explicit

finite element code Abaqus/Explicit [124], allowing to use zero-thickness or non-zero-

thickness cohesive elements. The model is validated by comparing the finite element
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predictions with experimental data obtained in standard interlaminar fracture tests

under quasi-static loading conditions.

Simple FE simulations which illustrate the well-known limitations of using a

continuum damage model for capturing intra-ply matrix macro-crack paths in ab-

sence of fiber breakage are shown. Simple solutions which reduce the effect of these

limitations (based on using structured meshes oriented with the corresponding ply

fiber direction, and element deletion when the corresponding stiffness is degraded),

are analyzed in order to know whether it can be interesting to apply them for the

simulation of the drop-weight impact and the CAI tests.

8.1.4 Virtual tests: drop-weight impact and CAI

The FE models developed in Abaqus/Explicit for the simulation of the drop-weight

impact and the CAI tests are described, as well as the numerical predictions obtained

and their comparison with the experimental data. Due to computer and time con-

straints, not all the impact configurations tested experimentally are simulated. Only

some cases of the ply clustering study are considered.

Prior to the FE analysis, different verifications are performed using distinct al-

ternatives for plate modeling in order to find the most adequate in accordance with

the capabilities for the FE post-processing task, the available computer equipment,

and to analyze the models with an acceptable runtime. In addition, distinct FE

software capabilities are checked with the aim of reaching realistic predictions and

avoiding numerical problems.

In a general point of view, the comparisons with the experimental data have

shown that the impact simulations reproduce better the experimental results when

fewer composite plies and interfaces are modeled. However, when the number of

layers increases, besides significantly increasing the computational effort, the pre-

dictions show a worse correlation with the experimental data. It is argued that this

result is related with the number of contact constraints. When the number of plies

is increased, the number of contact constraints increases, degrading the numerical

predictions. In addition, if the numerical simulations of the impact are not pre-

dicted accurately, the results of the CAI tests will be affected by the previous errors.

It is expected that using cohesive surfaces instead of defining interface elements

will improve the results obtained since the definition of these contact constraints is
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avoided.

The simulations presented have demonstrated the capacity of describing the phe-

nomena that occur at any moment of the impact and the CAI tests, offering signi-

ficative information which often is not possible to obtain by real tests and by the

non-destructive inspections. For instance, the splitting of the whole energy of the

system enables to know the role that plays each dissipative mechanism for a given

configuration. Moreover, the description of the damage shape and the extension of

any interface or ply, as well as the post-impact residual compressive strength of the

whole structure, are also obtained. Therefore, the simulations presented confirm

that the FE models, controlled by suitable constitutive models and other FE capa-

bilities, are a powerful tool for the design of damage resistant and damage tolerant

structures manufactured with composite materials and subjected to impact loading.

However, more work should be performed in order to overcome the limitations and

to improve the low accuracy of some of the results obtained.

For the acquisition of accurate FE results, the constitutive models require of re-

fined meshes in order to properly account for the onset and the growth of the damage

mechanisms. In the simulations presented, the finite element sizes are ranged among

20 and 500 times smaller than the whole sizes of the specimen coupons tested, so,

depending on the laminate type, the models results from one to four million of el-

ements. Therefore, large number of elements with nonlinear material behavior and

other heavy computer FE definitions are needed. The whole analysis of the impact

and the CAI tests of the specimen coupons have required between twelve and fif-

teen days, and some plate configurations have not been able to be simulated due

to limitations in computer resources. Consequently, the simulation of larger struc-

tures modeled at this scale level and mesh refinement can be unaffordable or can

lose interest using the common computer equipments and the current parallelization

methods of the FE models. However, according to the certifying process for aero-

nautical structures, to model large structures at this scale level may really not be

critical, since part of the response prediction have been acquired previously using a

smaller but representative structure. In this sense, in a task prior to the simulation,

the designer should choose a well-balanced compromise of the desired information

to obtain, the scale for structure modeling, and the selection of structure parts for a

more detailed modeling, but always keeping an eye on simulating in an acceptable



8.2. FUTURE WORKS 231

runtime analysis.

8.2 Future works

The following improvements are suggested for future lines of work.

8.2.1 Analytical impact description

In relation to the predictions given by the complete analytical models, a strong

dependence on the contact law applied was identified. Depending on the laminate

type (stacking sequence and thickness) and the contact law used, the quality of the

predictions changes considerably. Indentation tests can be performed in order to

know the real contact behavior for each laminate type. As a result, the range of

applicability of the available contact laws can be identified. The FE simulations of

these indentation tests can be performed in order to obtain additional supporting

data for this type of analysis.

In addition, the stresses due to the membrane effects, which are significant when

large deflections occur, should be accounted in the governing equations. In this sense,

the stresses used to develop the damage threshold for matrix cracking at the back

face of the plate (used as a threshold for delamination), should consider these effects.

Moreover, the total stresses should be calculated using a distributed load with a

contact radius smaller than the impactor tip radius, as it can be deduced by means

of the Hertz contact law. These modifications must be analyzed in detail, since they

can change considerably the assumptions and the corresponding predictions shown

in the present work.

By means of the numerical simulations of the impact, it was demonstrated

that more than one delamination propagate simultaneously at the critical point Fd.

Therefore, the development of analytical damage thresholds based on the assump-

tion that a single delamination can generate a drop in the impact force history, is

not fully clear. It is necessary to study the interaction between the intra-ply matrix

cracks and the delaminations which occur at different through-the-thickness planes.

For example, an analysis based on simplified FE models, at which the Virtual Crack

Closure Technique (VCCT) [104] is applied in order to know the energy release
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rates of the considered intra-ply and delamination pre-cracks, can be performed to

understand better the process.

Additionally, the perforation criterion proposed should also be calculated taking

into account the membrane effects. Fiber breakage occurs preferably due to the high

membrane stresses which often are superimposed on the flexural stresses when the

impact behavior is quasi-statically dominated.

The review and the development of analytical tools for the elastic prediction of

the impact response and for the prediction of the damage onset can be of interest for

other plate configurations, such as plates with non-conventional stacking sequences

(including plates with straight or curvilinear fiber orientations of the plies), or hybrid

composite laminated plates with embedded metallic plies (e.g. glass fiber reinforced

plastic with aluminium plies: GLARE).

8.2.2 Experimental tests

The repeatability of the CAI tests is not as good as in the impact tests. Therefore,

a larger sample of CAI tests should be performed in order to support more solidly

the conclusions of the damage tolerance behavior of the plates described in Chapter

4.

On the other hand, an interesting analysis would be to perform impact tests with

impact energies which generate maximum impact loads similar to the experimen-

tal threshold values shown in the present work. The goal is to understand clearly

the damage mechanisms that generate the first load drop, if it occurs, in the evo-

lution of the impact force. In this sense, it is interesting to use a non-destructive

inspection technique which can offer 3D views of the post-impact damage, such as

X-ray computerized tomography. Accordingly, the suitability of the analytical dam-

age thresholds can be analyzed in more detail, so new improved proposals can be

developed.

8.2.3 Constitutive models for FE simulations

In the simulations carried out in the present thesis where delamination elements are

applied, an engineering solution which ensures an accurate propagation under mixed-

mode loading conditions is used. This solution was developed by Turon et al. [13],
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and it is based on defining one of the pure mode interlaminar strengths by means

of the pure mode fracture toughnesses and the remaining interlaminar strength.

Alternatively, another proposed solution consists of considering a mode-dependent

penalty stiffness, which can be more suitable for materials where the modification

of the measured interlaminar strengths can influence the global response of the

corresponding simulation. Therefore, in a similar way as it is done in Chapter 5

(for the adaptation from a cohesive surface model to a continuum damage model),

different penalty stiffness for pure mode I and for pure shear mode can be used, and

by defining a relationship between these stiffnesses the proper energy dissipation can

be ensured [13]. However, this solution requires the re-formulation of the constitutive

model, which is proposed as a future task.

Additionally, an interesting future consideration in the re-formulation of the

delamination model is to couple the damage and the friction process in the shear

constitutive response, such as the model proposed by Chaboche et al. [164, 165].

That is, to account the interlaminar pressure on the interlaminar shear strength, and

to formulate the area under the shear constitutive law equal to the energy dissipated

by the material degradation (corresponding to the shear propagation mode), and by

the friction process if it occurs. This consideration will improve the results of the

impact simulations, where delamination often occurs under shear and normal contact

pressure conditions.

The implementation of the re-formulated delamination model should be per-

formed by means of a user-written subroutine for the definition of a surface-based

interaction (i.e. VUINTER [124]), because the material degradation and the fric-

tion process between the contacting surfaces are defined in the same formulation.

As noted in Chapter 7, this type of implementation avoids to model delamination

using additional finite elements and additional constraints which are required when

non-matched meshes of the adjoining composite plies of an interface are used. There-

fore, this type of implementation makes the FE pre-processing task more simple, and

probably, the runtime of the analysis shorter.

Concerning the intralaminar model summarized in Chapter 6, some improve-

ments are also suggested. The damage activation functions which define the surfaces

where the elastic domain is enclosed, basically are formulated using the LaRC04 fail-

ure criteria [76, 77], by neglecting the out-of-plane stresses. These stresses should
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be accounted in the corresponding functions since their effects can be significant in

problems such as in out-of-plane impact loadings.

Additionally, when an unidirectional laminate is loaded in shear, a non-linear

response is observed before the laminate fails by through-the-thickness transverse

matrix cracking. The non-linearity results in an elastic degradation and in plastic

strains when the material is unloaded. Therefore, the constitutive law for the shear

components which are parallel to the fiber direction, should be formulated using a

coupled plasticity and damage model, as proposed in a recent paper of Maimı́ et al.

[166] for in-plane loading conditions. The formulation should be developed such that

a 3D stress state is accounted in the corresponding activation functions for plasticity

and for damage. In part, these considerations will enable to capture the permanent

dent-depth which occurs in impacts on polymer-based composite structures.

On the other hand, the consideration of strain rate effects can be of interest

in order to obtain an intralaminar constitutive model which deals with any impact

behavior, covering from a quasi-statically dominated response to a dilatational wave

controlled response. Mainly, strain rate effects should be considered in the consti-

tutive law of the in-plane shear and transversal compression. As documented in a

recent paper of Koerber et al. [167], these effects should be reflected on the corre-

sponding elastic modulus, and on the yielding and the failure strengths. All these

proposals require additional material characterization.

8.2.4 Virtual tests

It is understood that the development of reliable numerical tools for the simulation

of the impact and the CAI tests depends on the suitability of the formulated con-

stitutive models, on the implemented FE software capabilities, and on the advances

in Computational Mechanics.

Implementing the proposed re-formulations of the constitutive models, it is ex-

pected that the observed deficiencies in the FE predictions will be solved, such as

the prediction of the first drop in the impact force or the prediction of the impact

and the CAI responses for plates with large number of plies. Moreover, the simu-

lation of other impact configurations which are far of the quasi-static behavior can

be accounted using these updated constitutive models. However, improvements of

the constitutive models should be go side by side with improvements in computing
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power.

The recent emerging and more accessible super-computing centers which are

equipped with thousands of CPUs and so, with a high velocity of calculation in

comparison with common computer equipments, open the possibility to achieve de-

tailed and reliable simulations of large structures with an acceptable time of analy-

sis. Obviously, the use of these type of computer equipment, should be accompanied

with optimized parallelization algorithms and FE softwares. This is the expected

way to perform future numerical predictions, such as the simulations of the impact

configurations which were tested experimentally in the present thesis, but they are

outstanding to be analyzed numerically.

Finally, other types of impact tests can be proposed for future lines of work since

they are of interest for the aeronautical industry. As examples, there are the bird

impacts on a leading edge of a composite wing, or the simulation of impacts on

hybrid composite configurations. Accordingly, the virtual tests should be performed

using new material models, such as the model which describes the behavior of the

bird, or the model that describes the delamination in an interface of a metallic ply

and a composite ply.

8.3 Publications

Finally, the papers published and submitted during the development of the present

thesis are listed below:

• González, E.V., Maimı́, P., Turon, A., Camanho, P.P., Renart, J.. Simulation

of delamination by means of cohesive elements using an explicit finite element

code. Computers Materials and Continua - CMC 2009;9(1):51-92.

• Lopes, C.S., Camanho, P.P., Gürdal, Z., Maimı́, P., González, E.V.. Low-

velocity impact damage on dispersed stacking sequence laminates, Part II:

Numerical simulations. Composites Science and Technology 2009;69(7- 8):937-

947.

• González, E.V., Maimı́, P., Camanho, P.P., Lopes, C.S., Blanco, N.. Effects of

ply clustering in laminated composite plates under low-velocity impact loading.

Composites Science and Technology 2010 (submitted).
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• Turon, A., González, E.V., Maimı́, P., Camanho, P.P., Costa, J.. Reformu-

lation of a cohesive damage model to accurately simulate delamination under

mixed-mode loading in composites. Mechanics of Materials 2010 (submitted).
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[115] Allix, O., Ladevéze, P., Corigliano, A.. Damage analysis of interlaminar

fracture specimens. Composite Structures 1995;31(1):61–74.

[116] Mi, Y., Crisfield, M.A., Davies, G.A.O., Hellweg, H.B.. Progres-

sive delamination using interface elements. Journal of Composite Materials

1998;32(14):1246–1272.

[117] Alfano, G., Crisfield, M.A.. Finite element interface models for the delamina-

tion analysis of laminated composites: Mechanical and computational issues.

International Journal for Numerical Methods in Engineering 2001;50(7):1701–

1736.

[118] Camanho, P.P., Dávila, C.G., de Moura, M.F.. Numerical simulation of

mixed-mode progressive delamination in composite materials. Journal of Com-

posite Materials 2003;37(16):1415–1438.

[119] de Borst, R.. Numerical aspects of cohesive-zone models. Engineering Fracture

Mechanics 2003;70(14):1743–1757.

[120] Pinho, S.T., Iannucci, L., Robinson, P.. Formulation and implementation

of decohesion elements in an explicit finite element code. Composites Part A:

Applied Science and Manufacturing 2006;37(5):778–789.

[121] Iannucci, L.. Dynamic delamination modelling using interface elements. Com-

puters and Structures 2006;84(15-16):1029–1048.

[122] Aymerich, F., Dore, F., Priolo, P.. Prediction of impact-induced delam-

ination in cross-ply composite laminates using cohesive interface elements.

Composites Science and Technology 2008;68(12):2383–2390.

[123] Zhang, Y., Zhu, P., Lai, X.. Finite element analysis of low-velocity impact

damage in composite laminated plates. Materials and Design 2006;27(6):513–

519.

[124] ABAQUS 6.8-3 User’s Manual. Dassault Systemes Simulia Corp. Providence,

RI, U.S.A. 2008.



BIBLIOGRAPHY 249

[125] Corigliano, A., Allix, O.. Some aspects of interlaminar degradation

in composites. Computer Methods in Applied Mechanics and Engineering

2000;185(2-4):203–224.

[126] Xu, X.P., Needleman, A.. Numerical simulations of fast crack growth in

brittle solids. Journal of the Mechanics and Physics of Solids 1994;42(9):1397–

1434.

[127] Martha, L.F., Wawrzynek, P.A., Ingraffea, A.R.. Arbitrary crack represen-

tation using solid modeling. Engineering with Computers 1993;9(2):63–82.

[128] Oliver, J.. On the discrete constitutive models induced by strong discontinuity

kinematics and continuum constitutive equations. International Journal of

Solids and Structures 2000;37(48):7207–7229.

[129] Simo, J.C., Rifai, M.S.. Class of mixed assumed strain methods and the

method of incompatible modes. International Journal for Numerical Methods

in Engineering 1990;29(8):1595–1638.
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Appendix A

Governing equations of the plate

In the present Appendix, the development of the governing equations of rectangular,

flat and monolithic laminated composite plates under general loading is described.

This development is widely studied in the bibliography and basically requires a

knowledge of anisotropic elasticity, to select an appropriate plate theory that ac-

counts for desired kinematics, and a method to formulate the equations. All the

developments detailed in this Appendix are extracted from references Reddy [61],

Ochoa and Reddy [168], Kollár and Springer [169], and Abrate [7].

As shown in Chapter 2, the governing equations of the plate for concentrated

impact loading joined with the governing equation of the impactor, a suitable contact

law, and a proper approximation of the unknown variables yield to typically called

complete analytical models of the impact event [19, 28]. In these models, the most

usually plate theories used in order to develop the governing equations are the

classical laminated plate theory and the first-order shear deformation plate theory.

These plate theories and the corresponding governing equations are explained in

detail in the present Appendix.

Therefore, equations for calculating displacements, stresses, and strains are pre-

sented. Due to the configuration of the structure considered (see Figure A.1), two

Cartesian coordinate systems are used in order to describe these equations: a global

coordinate system (x, y, z) attached to a fixed reference point, and a local coordinate

system (x1, x2, x3) aligned, at a point, with the fibers of one lamina. The stress and

strain notation conventions for each coordinate system are collected in Tables A.1

and A.2, respectively.
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Figure A.1: Laminated composite plate and coordinate systems.

In the (x, y, z) coordinate system, the components of the displacement vector at

one point are denoted by (u, v, w), and in (x1, x2, x3) the displacement components

are (u1, u2, u3). The displacements of a point in the mid-plane of the plate are

denoted by the subscript o.

Table A.1: Stress notations.

Normal stresses Shear stresses

(x, y, z) coordinate system

Tensorial stress σxx σyy σzz σyz σxz σxy

Engineering stress σx σy σz τyz τxz τxy

Contracted notation σx σy σz σq σr σs

(x1, x2, x3) coordinate system

Tensorial stress σ11 σ22 σ33 σ23 σ13 σ12

Engineering stress σ1 σ2 σ3 τ23 τ13 τ12

Contracted notation σ1 σ2 σ3 σ4 σ5 σ6

A.1 Ingredients for the development of the equa-

tions

Before describing the classical laminated plate theory and the first-order shear defor-

mation plate theory, the ingredients required for the development of these theories

are presented in the following points.
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Table A.2: Strain notations. The engineering and contracted notation shear strains

are twice the tensorial shear strain.

Normal strains Shear strains

(x, y, z) coordinate system

Tensorial strain εxx εyy εzz εyz εxz εxy

Engineering strain εx εy εz γyz γxz γxy

Contracted notation εx εy εz εq εr εs

(x1, x2, x3) coordinate system

Tensorial strain ε11 ε22 ε33 ε23 ε13 ε12

Engineering strain ε1 ε2 ε3 γ23 γ13 γ12

Contracted notation ε1 ε2 ε3 ε4 ε5 ε6

A.1.1 Strain-displacement relations

For full geometric nonlinear analysis, the components of the Green-Lagrange strain

tensor referenced to a (x1, x2, x3) Cartesian coordinate system are (sum on repeated

subscript is implied):

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂um
∂xi

∂um
∂xj

)
; i, j,m = 1, 2, 3 (A.1)

If the gradients of the displacements are so small that products of partial deriva-

tives of ui are negligible compared with linear derivative terms (i.e. first-order), the

infinitesimal strain components are given by:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
; i, j = 1, 2, 3 (A.2)

The plate problem that is considered here may involve moderate rotations, such

as 10◦-15◦ [168]. Hence, the following terms associated with rotations of transverse

normals are small but not negligible:

(
∂u3

∂x1

)2

,

(
∂u3

∂x2

)2

,
∂u3

∂x1

∂u3

∂x2

(A.3)

Using Equations (A.1) and the restriction (A.3), the called von Kármán strain

components are obtained:



258 APPENDIX A. GOVERNING EQUATIONS OF THE PLATE

ε11 =
∂u1

∂x1

+
1

2

(
∂u3

∂x1

)2

ε22 =
∂u2

∂x2

+
1

2

(
∂u3

∂x2

)2

ε33 =
∂u3

∂x3

ε12 =
1

2

(
∂u1

∂x2

+
∂u2

∂x1

+
∂u3

∂x1

∂u3

∂x2

)

ε13 =
1

2

(
∂u1

∂x3

+
∂u3

∂x1

)

ε23 =
1

2

(
∂u2

∂x3

+
∂u3

∂x2

)

(A.4)

A.1.2 Lamina constitutive equation

The linear relation between the stress and strain components is known as the general-

ized Hooke law. Taking as the reference the Cartesian coordinate system (x1, x2, x3),

the Hooke law is expressed by:

σij = cijklεkl; i, j, k, l = 1, 2, 3 (A.5)

where cijkl is the fourth-order stiffness tensor with 81 components. The fact that

the stress and strain tensors are symmetric, it allows to write:

cijkl = cjikl = cijlk = cjilk (A.6)

which effectively reduces the number of independent components from 81 to 36. The

36 independent components can be written as a second-order stiffness tensor which

allows to rewrite Equation (A.5) in contracted notation (see Tables A.1 and A.2):

σi = Cijεj; i, j = 1, 2, ..., 6 (A.7)

On the other hand, by postulating the existence of a function called strain energy

density it is possible to demonstrate that the stiffness tensor is symmetric Cij = Cji.

Because of this symmetry, there are only 21 independent stiffness components for

anisotropic materials.
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As shown in Figure A.1, the structure configuration considered in the present

thesis corresponds to laminated composite plates manufactured by stacking unidi-

rectional fiber reinforced laminae with randomly distributed fibers in their cross

section. The cross section of each lamina presents isotropy which allows to model

each one as a transversely isotropic material (see Figure A.2). Therefore, the con-

stitutive equation of a lamina is defined by:





σ1

σ2

σ3

σ4

σ5

σ6





=




C11 C12 C12 0 0 0

C22 C23 0 0 0

C22 0 0 0

Ĉ 0 0

sym. C66 0

C66








ε1

ε2

ε3

ε4

ε5

ε6





(A.8)

where Ĉ = (C22 − C23) /2, and the stiffness coefficients are written as:

C11 =
(1− ν2

23)E1

(1 + ν23) (1− ν23 − 2ν12ν21)
, C12 =

ν12 (1 + ν23)E1

(1 + ν23) (1− ν23 − 2ν12ν21)

C22 =
(1− ν12ν21)E2

(1 + ν23) (1− ν23 − 2ν12ν21)
, C23 =

ν23 + (ν12ν21)E2

(1 + ν23) (1− ν23 − 2ν12ν21)

C66 = G12

(A.9)

Only five elastic properties are required in order to define the constitutive relation

of transversely isotropic materials. These properties are the longitudinal Young

modulus (i.e. along the fiber direction) E1, the transverse Young modulus E2, the

in-plane shear modulus G12, the major in-plane Poisson coefficient ν12 (or minor ν21)

and the transverse Poisson coefficient ν23.

The stiffness matrix Cij depends on the coordinate system used. For the uni-

directional lamina shown in Figure A.3, the fiber orientation is rotated θ degrees

respect to the global coordinate system (x, y, z). The corresponding relationship

between the stresses and strains at local and global coordinate system are defined

by:
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Figure A.2: Transverse isotropic lamina.





σ1

σ2

σ3

σ4

σ5

σ6





= [T ]





σx

σy

σz

σq

σr

σs





;





ε1

ε2

ε3

ε4

ε5

ε6





= [T ]γ





εx

εy

εz

εq

εr

εs





(A.10)

Letting c = cos(θ) and s = sin(θ), the rotation matrixes [T ] and [T ]γ are defined

as:

[T ] =




c2 s2 0 0 0 2cs

s2 c2 0 0 0 −2cs

0 0 1 0 0 0

0 0 0 c −s 0

0 0 0 s c 0

−cs cs 0 0 0 c2 − s2




(A.11)

[T ]γ =
(
[T ]−1

)T
(A.12)

The constitutive equation for an off-axis lamina defined in the global coordinate

system (x, y, z) is:
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



σx

σy

σz

σq

σr

σs





= [T ]−1[C][T ]γ︸ ︷︷ ︸
[C]





εx

εy

εz

εq

εr

εs





(A.13)

where [C] is the second-order stiffness tensor written in matrix form referenced to

the local coordinate system (x1, x2, x3), and [C] is the stiffness tensor referenced to

the global coordinate system (x, y, z).

Figure A.3: Lamina coordinate systems.

A.1.3 Laminate resultants

Assuming unitary width in x and y axes, the resulting in-plane forces Nx, Ny, Nxy

and through-the-thickness shear forces Qx, Qy, and in-plane moments Mx,My,Mxy

of lamina p (see Figure A.4) can be calculated from equilibrium conditions as:





Nx

Ny

Nxy




p

=

∫ zp

zp−1





σx

σy

σxy




p

dz (A.14)

{
Qx

Qy

}

p

=

∫ zp

zp−1

{
σxz

σyz

}

p

dz (A.15)
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



Mx

My

Mxy




p

=

∫ zp

zp−1





σx

σy

σxy




p

z dz (A.16)

Figure A.4: Force and moment resultants on a lamina (or laminate).

where zp−1 and zp are the thickness coordinates of the bottom and top of lamina

p (see Figure A.5). The superposition of different laminae, with different fiber

orientations or not, configures the laminate. For a laminate with N laminae, the

resulting forces and moments are:





Nx

Ny

Nxy





=

∫ h/2

−h/2





σx

σy

σxy




dz =

N∑

p=1

∫ zp

zp−1





σx

σy

σxy




p

dz (A.17)

{
Qx

Qy

}
=

∫ h/2

−h/2

{
σxz

σyz

}
dz =

N∑

p=1

∫ zp

zp−1

{
σxz

σyz

}

p

dz (A.18)





Mx

My

Mxy





=

∫ h/2

−h/2





σx

σy

σxy




z dz =

N∑

p=1

∫ zp

zp−1





σx

σy

σxy




p

z dz (A.19)
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Figure A.5: Lamina location in a laminate.

A.1.4 Frameworks to develop the governing equations

The equations of motion (i.e. governing equations defined by displacement variables)

of a solid body can be derived using either vector mechanics or energy principles.

In vector mechanics, a representative volume element of the body is isolated with

all its applied and reactive forces. Then, the vector sum of all static and dynamic

forces and moments acting on the element is set to zero to obtain the equations. In

methods based on energy principles, the total work done or energy stored in a body

due to actual forces in moving through virtual displacements that are consistent

with the essential (i.e. geometric) constrains of the body is set to zero to obtain

the equations of motion. The energy approach also yield to the natural (i.e. force)

boundary conditions as well as the form of the variables involved in the specification

of geometric boundary conditions.

Principle of virtual displacements

The principle of virtual displacements states: if a body is in static or dynamic equi-

librium, the total virtual work done by all externally applied and internally generated

forces in moving through their respective virtual displacements must be zero. That

is:

δW ≡ δWI + δWE = 0 (A.20)

where δW is the total virtual work of the body, δWI and δWE are the internal

and external virtual works, respectively. The delta symbol δ is used in conjunction

with virtual displacements and forces, and it is interpreted as an operator called the

variational operator. It is used to denote a variation (or change) in a given quantity.
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The external work done due to virtual displacements δu in a solid body Ω sub-

jected to body forces f per unit of mass and surface tractions T per unit area of the

boundary Γσ is given by:

δWE = −
∫

Ω

ρf · δu dv −
∫

Γσ

T · δu ds (A.21)

where ρ is the density, ds denotes a surface element, dv denotes a volume element

and Γσ denotes the portion of the boundary in which the stresses are specified. The

negative sign of Equation (A.21) indicates that the work is performed on the body.

The external virtual work can also be done due to virtual body forces and surface

tractions, which yield to called complementary virtual work.

The forces applied on a deformable body cause it to deform and the body ex-

periences internal stresses. The relative movement of the material particles in the

body can be measured in terms of strains. Therefore, the work done on the body

by external forces is responsible for the internal work. The internal virtual work is

also called virtual strain energy and is expressed by:

δWI = δU =

∫

Ω

σ : δε dv (A.22)

where σ is the stress tensor and δε is the virtual strain tensor due to the virtual

displacement δu.

Replacing Equations (A.21) and (A.22), the principle of virtual work written in

terms of Cartesian rectangular components yields to (sum on repeated subscripts is

implied):

∫

Ω

(σijδεij − ρfiδui) dv −
∫

Γσ

Tiδui ds = 0; i, j = 1, 2, 3 (A.23)

By means of the fundamental lemma of variational calculus [61], the principle of

virtual works can be expressed by differential equations called Euler-Lagrange equa-

tions. These equations are the usually form used to write the governing equations.

Hamilton principle

The Hamilton principle states that of all possible paths that a material particle could

travel from its position at time t1 to its position at time t2, its actual path will be
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one for which the following integral is an extremum:

∫ t2

t1

(K −W ) dt (A.24)

The difference between the kinetic and potential energies is called the Lagrangian

function:

L = K −W = K −WI −WE (A.25)

Thus, Hamilton principle can be expressed as:

∫ t2

t1

(δK − δWI − δWE) dt = 0 (A.26)

The kinetic energy of a continuous body Ω is given by:

K =
1

2

∫

Ω

ρ
∂u

∂t
· ∂u

∂t
dv (A.27)

where
∂u

∂t
denotes the velocity of the material particle.

Principle of minimum total potential energy

A special case of the principle of virtual displacements is the principle of minimum

total potential energy. The difference between the principle of virtual displacements

and the principle of minimum total potential energy is that, in the latter a consti-

tutive law is invoked. Thus, the principle of virtual displacements is more general

and it is applied to all material bodies independent of their constitutive behavior.

The sum U + V = Π is called the total potential energy of the elastic body,

where V is a potential equal to WE and U is the strain energy which is equal to

WI . The principle of minimum total potential energy states that: of all admissible

displacements, those that satisfy the equilibrium equations make the total potential

energy a minimum. Thus, the principle of virtual work takes the form:

∂U + ∂V ≡ ∂Π = 0 (A.28)

The Euler-Lagrange equations resulting from the principle of virtual displace-

ments are always in terms of the stresses or stress resultants, whereas those from
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the principle of minimum total potential energy are in terms of the strains or dis-

placements.

Variational methods

In general, exact solutions for the dynamic response of rectangular and flat plates

with a certain boundary conditions are not available. Under these circumstances,

methods known as classical variational methods can be applied (e.g. Ritz method ;

Galerkin method).

In variational methods it is seek an approximate solution to the problem in

terms of adjustable parameters that are determined by substituting the assumed

solution into the energy principle (∂W = 0 or ∂Π = 0) that is equivalent to the

governing equations of the problem. Such solution methods are called direct methods

because the approximate solutions are obtained directly by applying the same energy

principle that was used to derive the governing equations. The assumed solutions in

the energy methods are in the form of a finite linear combination of undetermined

parameters and appropriately chosen functions. Since the solution of a continuum

problem, in general, cannot be represented by a infinite set of functions, error is

introduced into the solution.

In the Ritz method, a dependent unknown displacement u is approximated by a

finite linear combination UN of the form:

u ≈ UN =
N∑

j=1

cjϕj + ϕ0 (A.29)

where ϕ0 represents the particular solution, while
∑
cjϕj is the homogeneous part

of the solution. cj denote undetermined parameters and ϕj are called the approx-

imation functions which are appropriately selected functions of position. In order

to ensure that the algebraic equations resulting from the Ritz approximation have

a solution which converges to the true solution of the problem as the number of

parameters N is increased, the approximation functions have to satisfy some re-

quirements:

1. ϕj(j = 1, 2, . . . , N) should satisfy the following three conditions:
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(a) Each ϕj is continuous, as required in the variational statement (i.e. ∂W =

0 or ∂Π = 0).

(b) Each ϕj satisfies the homogeneous form of the specified essential bound-

ary conditions.

(c) The set {ϕj} is linearly independent and complete.

2. ϕ0 has to satisfy only the specified essential boundary conditions associated

with the variational formulation since the natural boundary conditions are

included in the functional Π or the statement δW ; ϕ0 plays the role of the

particular solution. It is necessarily equal to zero when the specified essential

boundary conditions are homogeneous.

Once the approximation functions ϕ0 and ϕj are selected, the parameters cj in

Equation (A.29) are determined by requiring UN to minimize the total potential

energy functional Π or satisfy the principle of virtual displacements of the problem.

For the principle of minimum total potential energy, upon substitution of the

approximation u ≈ UN , Π(UN) becomes a function of c1, c1, . . . , cN . Hence, min-

imization of the functional Π(c1, c1, . . . , cN) is reduced to the minimization of a

function of several variables:

0 = δΠ(UN) =
N∑

j=1

δΠ

δcj
cj or

δΠ

δcj
= 0 (A.30)

The same procedure applies to the principle of virtual displacements. That is:

0 = δW (UN) =
N∑

j=1

δW

δcj
cj or

δW

δcj
= 0 (A.31)

Equation (A.30) or (A.31) gives N algebraic equations in the N coefficients

(c1, c2, . . . , cN),

0 =
δΠ

δcj
=

N∑

j=1

Rijcj − Fi or Rc = F (A.32)

where Rij and Fi are known coefficients that depend on the problem parameters

(e.g. geometry, material coefficients and loads) and the approximation functions.
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Equation (A.32) is then solved for ci and substituted back into Equation (A.29) to

obtain the Ritz solution with N parameters.

A.2 Plate theories and governing equations

A plate is a structural element with planform dimensions that are large compared to

its thickness and is subjected to loads that cause bending deformation in addition to

stretching. Because of the smallness of thickness dimension, it is often not necessary

to model them using 3D elasticity equations. Simple 2D plate theories can be

developed by making assumptions concerning the variation of the displacement field.

Therefore, the compatibility conditions which provide single-valued solution of the

displacements by means of the strain-displacement relations (i.e. Equations (A.1))

are not necessary since the displacements are directly assumed.

In this section only are shown the resulting governing equations for the classical

laminated plate theory and for the first-order shear plate theory. These plate theories

are the most easier and used in the literature in order to develop complete analytical

impact models of laminated composite plates. Other more accurate plate theories

can be used but are often dismissed since the development of the governing equations

becomes algebraic complicated and their integration imply high computational effort

without improving significantly the accuracy of the results.

A.2.1 Classical laminated plate theory

Displacement field and kinematics

The displacement field of the classical laminated plate theory is based on the Kirchhoff-

Love hypothesis, which involve the following assumptions:

1. Straight lines perpendicular to the mid-plane (i.e. transverse normals) before

deformations remain straight after deformation.

2. The transverse normals do not experience elongation (i.e. they are inextensi-

ble).

3. The transverse normals rotate such that they remain perpendicular to the

mid-plane after deformation.
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The first two assumptions of the hypothesis require that in-plane displacements

u and v vary linearly through-the-thickness of the laminate, and the transverse

displacement w is constant through-the-thickness of the laminate (see Figure A.6).

That is:

u(x, y, z) = uo(x, y) + zφ1(x, y)

v(x, y, z) = vo(x, y) + zφ2(x, y)

w(x, y, z) = wo(x, y)

(A.33)

where uo, vo, wo are the displacement components of a point on the mid-plane of

the laminate, φ1 is the rotation of a transverse normal about the y axis, and φ2 is

the rotation of a transverse normal about the x axis. The third assumption of the

Kirchhoff-Love hypothesis implies that the rotations φ1 and φ2 are equal to:

φ1 = −∂wo
∂x

; φ2 = −∂wo
∂y

(A.34)

Figure A.6: Behavior of transverse section in classical plate theory.

Using the von Kármán strain-displacement relations (Equations (A.4)) refer-

enced to the coordinate system (x, y, z) and the assumed displacement field (Equa-

tions (A.33) and (A.34)) the strain components yield to the following expressions:
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εx ≡ εxx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

=
∂uo
∂x

+
1

2

(
∂wo
∂x

)2

− z∂
2wo
∂x2

εy ≡ εyy =
∂v

∂y
+

1

2

(
∂w

∂y

)2

=
∂vo
∂y

+
1

2

(
∂wo
∂y

)2

− z∂
2wo
∂y2

εz ≡ εzz =
∂w

∂z
=
∂wo
∂z

= 0

εq ≡ 2εyz =
∂v

∂z
+
∂w

∂y
= −∂wo

∂y
+
∂wo
∂y

= 0

εr ≡ 2εxz =
∂u

∂z
+
∂w

∂x
= −∂wo

∂x
+
∂wo
∂x

= 0

εs ≡ 2εxy =
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y
=
∂uo
∂y

+
∂vo
∂x

+
∂wo
∂x

∂wo
∂y
− 2z

∂2wo
∂x∂y

(A.35)

The three assumptions considered lead to the neglect of the transverse strains εxz,

εyz and εz. Neglecting these strains leads to the omission of σxz, σyz and σz. Thus

the classical laminated plate theory does not account for out-of-plane deformations

and stresses. This implies that plates are infinitely rigid in the transverse direction,

whereas in reality laminated composite plates are weaker in this direction.

Equations (A.35) can be expressed in a general form by:

εi = εoi + zκi; i = x, y, s (A.36)

The strains εoi =
(
εox, ε

o
y, ε

o
s

)
are associated with the in-plane stretching and

shearing of the mid-plane, and are called the membrane strains. The quantities

κi = (κx, κy, κs) are the curvatures which multiplied by z gives the bending strains.

Equations (A.35) shows that membrane strains and curvatures for the classic lami-

nate plate theory have the following explicit form:

εox =
∂uo
∂x

+
1

2

(
∂wo
∂x

)2

, κx = −∂
2wo
∂x2

εoy =
∂vo
∂y

+
1

2

(
∂wo
∂y

)2

, κy = −∂
2wo
∂y2

εos =
∂uo
∂y

+
∂vo
∂x

+
∂wo
∂x

∂wo
∂y

, κs = −2
∂2wo
∂x∂y

(A.37)

where the underlined terms are the von Kármán nonlinear strains.
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Laminate resultants

The in-plane laminate forces (A.17) and moment resultants (A.19) can be expressed

in function of the membrane strains and curvatures resulted in the classical lami-

nated plate theory (Equation (A.36)) by replacing the constitutive equation of each

lamina (Equation (A.13)) of the laminate (see Figure A.5), referenced to the coor-

dinate system (x, y, z). The in-plane resultants of the laminated plate yield to:





Nx

Ny

Nxy





=



A11 A12 A16

A12 A22 A26

A16 A26 A66








εox

εoy

εos





+



B11 B12 B16

B12 B22 B26

B16 B26 B66








κx

κy

κs





(A.38)





Mx

My

Mxy





=



B11 B12 B16

B12 B22 B26

B16 B26 B66








εox

εoy

εos





+



D11 D12 D16

D12 D22 D26

D16 D26 D66








κx

κy

κs





(A.39)

where Aij denote the extensional stiffness, Bij the bending-extensional coupling

stiffness, and Dij the bending stiffness of a laminate. They are defined by:

Aij =
N∑

p=1

Cij,p (zp − zp−1) ; i, j = 1, 2, 6 (A.40)

Bij =
1

2

N∑

p=1

Cij,p

(
z2
p − z2

p−1

)
; i, j = 1, 2, 6 (A.41)

Dij =
1

3

N∑

p=1

Cij,p

(
z3
p − z3

p−1

)
; i, j = 1, 2, 6 (A.42)

Governing equations

The boundary conditions considered for the test ASTM - D7136 / D7136M [59] are

approximated to simply supported boundary conditions. In this case, the appli-

cation of a variational method is not necessary since the assumed solutions of the

displacements provided by the Navier solutions yield, for some laminate configu-

rations, to the exact solution of the governing equations. Therefore, the governing

equations are obtained by applying the Hamilton principle.
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The virtual strain energy for classical plate theory in a solid element of the plate

is done by:

δU =

∫

Ω

(σxδεx + σyδεy + σsδεs) dv (A.43)

By replacing the assumed kinematics (Equation (A.36)) and the stress resultants

of the laminate (Equations (A.17) and (A.19)), the virtual strain energy results:

δU =

∫

Ω

(
Nxδε

o
x +Mxδκx +Nyδε

o
y +Myδκy +Nxyδε

o
s +Mxyδκs

)
dxdy (A.44)

The virtual kinetic energy is defined by:

δK =

∫

Ω

∫ h/2

−h/2
ρ (u̇δu̇+ v̇δv̇ + ẇδẇ) dz dxdy (A.45)

where the superposed dot indicates first derivative respect time. By replacing the

assumed displacement field (Equations (A.33)) and integrating over the plate thick-

ness, the virtual kinetic energy yields to:

δK =

∫

Ω

[
−I1 (u̇oδu̇o + v̇oδv̇o + ẇoδẇo) + I2

(
∂δẇo
∂x

u̇o

+
∂ẇo
∂x

δu̇o +
∂δẇo
∂y

v̇o +
∂ẇo
∂y

δv̇o

)
− I3

(
∂ẇo
∂x

∂δẇo
∂x

+
∂ẇo
∂y

∂δẇo
∂y

)]
dxdy

(A.46)

For laminates composed by plies with the same material and by considering that

the center of masses is located in the laminate centerline, the inertia terms (I1, I2, I3)

are defined by:





I1

I2

I3





=

∫ h/2

−h/2





1

z

z2




ρ dz = ρ





h

0

h3

12





(A.47)

The external applied forces consist of a distributed transverse load q over the

surface located at (x, y,
h

2
), and forces and moments due to in-plane normal stress



A.2. PLATE THEORIES AND GOVERNING EQUATIONS 273

Figure A.7: Stress resultants on an arbitrary edge of a laminate.

σ̂nn, in-plane tangential stress σ̂ns, and transverse shear stress σ̂nz, all acting on and

edge with normal n̂ (see Figure A.7).

Then, the virtual work done by the external forces is:

δV = −
∫

Ω

q(x, y)δwo(x, y,
h

2
) dxdy

−
∫

Γσ

∫ h/2

−h/2
[σ̂nnδun + σ̂nsδus + σ̂nzδw] dzds

(A.48)

The stresses σ̂nn, σ̂ns, and stress σ̂nz can be expressed in force and moment

resultants by:

{
N̂nn

N̂ns

}
=

∫ h/2

−h/2

{
σ̂nn

σ̂ns

}
dz,

{
M̂nn

M̂ns

}
=

∫ h/2

−h/2

{
σ̂nn

σ̂ns

}
z dz

Q̂n =

∫ h/2

−h/2
σ̂nz dz

(A.49)

Applying Hamilton principle, the following Equation (A.50) defined in terms of

the force and moment resultants is obtained:
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0 =

∫ T

0

∫

Ω

[
−
(
∂Nx

∂x
+
∂Nxy

∂y
− I1üo

)
δuo

−
(
∂Nxy

∂x
+
∂Ny

∂y
− I1v̈o

)
δvo

−
(
∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
+N (uo, vo, wo)

+q − I1ẅo + I3
∂2ẅo
∂x2

+ I3
∂2ẅo
∂y2

)
δwo

]
dxdy dt

+

∫ T

0

∫

Γσ

[(
Nnn − N̂nn

)
δuon +

(
Nns − N̂ns

)
δuos

+
(
Vn − V̂n

)
δwo −

(
Mnn − M̂nn

) ∂δwo
∂n

]
ds dt

(A.50)

where N (uo, vo, wo), Vn and V̂n are defined by:

N (uo, vo, wo) =
∂

∂x

(
Nx

∂wo
∂x

+Nxy
∂wo
∂y

)
+

∂

∂y

(
Nxy

∂wo
∂x

+Ny
∂wo
∂y

)
(A.51)

Vn ≡
∂Mx

∂x
nx +

∂Mxy

∂y
nx +

∂My

∂y
ny +

∂Mxy

∂x
ny +

∂Mns

∂s
nx

+P(uo, vo, wo) + I3
∂ẅo
∂x

nx + I3
∂ẅo
∂y

ny

(A.52)

V̂n = Q̂n +
∂M̂ns

∂s
(A.53)

where P(uo, vo, wo) is defined by:

P(uo, vo, wo) =

(
Nx

∂wo
∂x

+Nxy
∂wo
∂y

)
nx +

(
Nxy

∂wo
∂x

+Ny
∂wo
∂y

)
ny (A.54)

From Equation (A.50) the Euler-Lagrange governing equations are obtained:

∂Nx

∂x
+
∂Nxy

∂y
= I1üo − I2

∂ẅo
∂x

(A.55)

∂Nxy

∂x
+
∂Ny

∂y
= I1v̈o − I2

∂ẅo
∂y

(A.56)
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∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
+N (uo, vo, wo) + q

= I1ẅo + I2

(
∂üo
∂x

+
∂v̈o
∂y

)
− I3

(
∂2ẅo
∂x2

+
∂2ẅo
∂y2

) (A.57)

where the terms involving I3 are called rotary (or rotatory) inertia terms, and are

often omitted because it is small in comparison to the I1ü and I1v̈.

And the natural boundary conditions [61] are:

Nnn − N̂nn = 0, Nns − N̂ns = 0

Mnn − M̂nn = 0, Vn − V̂n = 0
(A.58)

When transient response of a plate is of interest, it is necessary to know the

initial displacement field and velocity field throughout the domain of the plate. In

classical laminated plate theory, the initial conditions at time t = 0 for all points in

Ω are:

un = u0
n, us = u0

s, wo = w0
o

u̇n = u̇0
n, u̇s = u̇0

s, ẇo = ẇ0
o

(A.59)

The governing Equations (A.55-A.57) can be expressed in terms of displacements

uo, vo, wo by substituting Equations (A.38) and (A.39), and the resulting expressions

of the strains (Equations (A.37)). Neglecting the third order derivative terms in the

space, the resulting motion equations are:

∂
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= I1
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− I2

∂ẅo
∂x

(A.60)
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(
∂2ẅo
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A.2.2 First-order shear plate theory

The classical laminated plate theory is not recommended for composites that are

likely to fail in transverse shear or delamination, because the transverse shears and

normal stresses are not accounted for. A refinement to the classical plate theory is

provided by the first-order shear deformation plate theory (also known as Mindlin

plate theory). There are numerous plate theories documented in the literature (not

shown here) that also include transverse shear deformations. In all these theories,

the displacements are expanded as linear combinations of the thickness coordinate

and undetermined functions of position in the reference surface.
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Displacement field and kinematics

The assumptions of the first-order shear deformation theory are the same as in

the classical laminated plate theory, with the exception of the transverse normals

sections can rotate such that they can not remain perpendicular to the mid-plane

after deformation. Therefore, the displacement field described for classical laminated

plate theory by Equations (A.33) also can be used for first-order shear plate theory,

but the rotations φ1 and φ2 of a transverse normals are now independent of ∂wo/∂x

and ∂wo/∂y (see Figure A.8).

Using the von Kármán strain-displacement relations (Equations (A.4)) refer-

enced to the coordinate system (x, y, z) and the assumed displacement field (Equa-

tions (A.33)), the strain components yield to the following expressions:

εx ≡ εxx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

=
∂uo
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+
1

2

(
∂wo
∂x

)2

+ z
∂φ1

∂x

εy ≡ εyy =
∂v

∂y
+

1

2

(
∂w

∂y

)2

=
∂vo
∂y

+
1

2

(
∂wo
∂y

)2

+ z
∂φ2

∂y

εz ≡ εzz =
∂w

∂z
=
∂wo
∂z

= 0

εq ≡ 2εyz =
∂v

∂z
+
∂w

∂y
= φ2 +

∂wo
∂y

εr ≡ 2εxz =
∂u

∂z
+
∂w

∂x
= φ1 +

∂wo
∂x

εs ≡ 2εxy =

=
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y
=
∂uo
∂y

+
∂vo
∂x

+
∂wo
∂x

∂wo
∂y

+ z

(
∂φ1

∂y
+
∂φ2

∂x

)

(A.63)

As in classical laminated plate theory, Equations (A.63) can be expressed in a

general form by:

εi = εoi + zκi; i = x, y, q, r, s (A.64)

where the strains εoi =
(
εox, ε

o
y, ε

o
s

)
are the membrane strains, the quantities κi =

(κx, κy, κs) are the curvatures, and εoq and εor are the transverse shear strains. Equa-

tions (A.63) show that membrane strains, shear strains and curvatures for the first-

order shear deformation plate theory have the following explicit form:
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Figure A.8: Behavior of transverse section in first-order shear plate theory.
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(
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+
1

2

(
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)2

, κy =
∂φ2

∂y

εoz = 0, κz = 0

εoq = φ2 +
∂wo
∂y

, κq = 0

εor = φ1 +
∂wo
∂x

, κr = 0

εos =
∂uo
∂y

+
∂vo
∂x

+
∂wo
∂x

∂wo
∂y

, κs =
∂φ1

∂y
+
∂φ2

∂x

(A.65)

where the underlined terms are the von Kármán nonlinear strains.

Laminate resultants

The in-plane laminate forces (A.17) and moment resultants (A.19) expressed in

function of the membrane strains and curvatures resulted in the first-order shear

deformation plate theory (Equation (A.64)) yield to the same expressions obtained

for classical laminated plate theory (Equations (A.38) and (A.39)). However, the

transverse shear resultants have also to be defined. Replacing the strains of Equation

(A.64) in the transverse shear forces (A.18) by using the constitutive equation of

each lamina of the laminate referenced to the coordinate system (x, y, z) (Equation

(A.13)), the shear forces result:
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{
Qy

Qx

}
=

[
A44 A45

A45 A55

]{
εoq

εor

}
(A.66)

The transverse shear stiffness Aij are defined by:

Aij = Kij

N∑

p=1

Cij,p (zp − zp−1) ; i, j = 4, 5 (A.67)

where Kij are the dimensionless shear correction factors. Modeling transverse shear

strains and stresses to be constant through the thickness results in the transverse

shear energy being too large when compared to that coming from a more realis-

tic parabolic distribution. In addition, equilibrium is not satisfied at the surfaces.

Therefore, the shear correction factors are used so that the constant distribution

of transverse shear strains and stresses has the same strain energy as the parabolic

distribution. Normally, Kij are taken as an isotropic material (i.e. 5/6).

Governing equations

The virtual strain energy for first-order shear deformation plate theory in a solid

element of the plate is done by:

δU =

∫

Ω

(σxδεx + σyδεy + σsδεs + σqδεq + σrδεr) dv (A.68)

By replacing the assumed kinematics (Equation (A.64)) and the stress resultants

of the laminate (Equations (A.17), (A.18) and (A.19)), the virtual strain energy

results:

δU =

∫

Ω

(
Nxδε

o
x +Mxδκx +Nyδε

o
y +Myδκy +Nxyδε

o
s

+Mxyδκs +Qxδε
o
r +Qyδε

o
q

)
dxdy

(A.69)

The virtual kinetic energy was previously defined by Equation (A.45). By re-

placing in the assumed displacement field which coincides with that of classical

laminated plate theory (Equations (A.33)) and integrating over the plate thickness,

the virtual kinetic energy yields to:



280 APPENDIX A. GOVERNING EQUATIONS OF THE PLATE

δK =

∫

Ω

[
−I1 (u̇oδu̇o + v̇oδv̇o + ẇoδẇo)− I2

(
φ̇1δu̇o

+φ̇2δv̇o + δφ̇1u̇o + δφ̇2v̇o

)
− I3

(
φ̇1δφ̇1 + φ̇2δφ̇2

)]
dxdy

(A.70)

where the inertia terms (I1, I2, I3) were defined by Equation (A.47).

The virtual work done by the external forces was previously defined by Equation

(A.48).

Applying Hamilton principle, the principle yields to the following equation de-

fined in terms of the force and moment resultants:

0 =

∫ T

0

∫

Ω

[
−
(
∂Nx

∂x
+
∂Nxy

∂y
− I1üo − I2φ̈1

)
δuo

−
(
∂Nxy

∂x
+
∂Ny

∂y
− I1v̈o − I2φ̈2

)
δvo

−
(
∂Mx

∂x
+
∂Mxy

∂y
−Qx − I3φ̈1 − I2üo

)
δφ1

−
(
∂Mxy

∂x
+
∂My

∂y
−Qy − I3φ̈2 − I2v̈o

)
δφ2

−
(
∂Qx

∂x
+
∂Qy

∂y
+N (uo, vo, wo) + q − I1ẅo

)
δwo

]
dxdy

+

∫ T

0

∫

Γσ

[(
Nnn − N̂nn

)
δuon +

(
Nns − N̂ns

)
δuos

+
(
Qn − Q̂n

)
δwo +

(
Mnn − M̂nn

)
δφn +

(
Mns − M̂ns

)
δφs

]
ds dt

(A.71)

where N (uo, vo, wo) was previously defined by Equation (A.51). The boundary ex-

pressions were arrived by expressing φ1 and φ2 in terms of the normal and tangential

rotations (φn, φs):

φ1 = nxφn − nyφs, φ2 = nyφn + nxφs (A.72)

From Equation (A.71) the Euler-Lagrange governing equations are obtained:

∂Nx

∂x
+
∂Nxy

∂y
= I1

∂2uo
∂t2

+ I2
∂2φ1

∂t2
(A.73)
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∂Nxy

∂x
+
∂Ny

∂y
= I1

∂2vo
∂t2

+ I2
∂2φ2

∂t2
(A.74)

∂Qx

∂x
+
∂Qy

∂y
+N (uo, vo, wo) + q = I1

∂2wo
∂t2

(A.75)

∂Mx

∂x
+
∂Mxy

∂y
−Qx = I3

∂2φ1

∂t2
+ I2

∂2uo
∂t2

(A.76)

∂Mxy

∂x
+
∂My

∂y
−Qy = I3

∂2φ2

∂t2
+ I2

∂2vo
∂t2

(A.77)

And the natural boundary conditions [61] are:

Nnn − N̂nn = 0, Nns − N̂ns = 0, Qn − Q̂n = 0

Mnn − M̂nn = 0, Mns − M̂ns = 0
(A.78)

where Qn ≡ Qxnx + Qyny + P(uo, vo, wo). The term P(uo, vo, wo) was previously

defined in Equation (A.54).

The initial conditions of the theory involve specifying the values of the displace-

ments and their first derivatives with respect to time at t = 0 for all points in

Ω:

un = u0
n, us = u0

s, wo = w0
o, φn = φ0

n, φs = φ0
s

u̇n = u̇0
n, u̇s = u̇0

s, ẇo = ẇ0
o, φ̇n = φ̇0

n, φ̇s = φ̇0
s

(A.79)

The governing Equations (A.73-A.77) can be expressed in terms of displace-

ments (uo, vo, wo) and rotations (φ1, φ2) by substituting Equations (A.38), (A.39)

and (A.66), and the resulting expressions of the strains (A.65). Neglecting the third

order derivative terms in the space, the resulting motion equations are:
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(A.80)
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