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Chapter 1

Introduction and objectives

1.1 Composite materials: a brief historical perspective

Composite materials are new materials obtained from the mixture of different materials
during the manufacturing process. That is, the material is created at the same time that
the mechanical or structural component is manufactured. This availability of designing
and creating a new material opens a wide range of possibilities for the mechanical engineer
and, since the material design implies the choice of a set of desired material properties,
changes somehow the entire design process.

The key material properties for usual engineering mechanics applications are: stiffness,
which could be defined as the capacity of the material to offer resistance to be stretched
or compressed; strength or the capacity of the material to avoid being broken; and the
density or weight per unit volume. When designing a mechanical component, the engineer
considers which loads or forces (wind, reactions from other components, weights,...) will
act on it and, considering the geometry restrictions, looks for a material stiff enough to
avoid deformations or strains which would make the component not useable and strong
enough to avoid breakage, under the considered loads. The weight of the component is very
important in the case of dynamic applications (components of engines, energy generators,
blades,...) and, depending on the used material, even in static applications (edification
components, for instance).

Historically, metals (specially in machines and tools) minerals and ceramics (specially
in edification) have been used as engineering materials. The designer chose what he
thought was the most convenient material for each application and could improve slightly
its properties with some treatments (usually thermal treatments based on heating and
cooling at definite temperatures and times). The in-depth study of this treatments, which
are usually closely-related to the atomic arrangements of the material, is one of the classic
fields of the Materials Science.

But, by the first half of the 20th century a new methodology appears with the steel
reinforced concrete1, which may be seen as the first wide-used artificial composite mate-

1Concrete itself can be seen as a composite, since it is a mixture of stones, called aggregate, and cement,
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rial. The combination of steel and concrete allowed engineers to take advantage of the
more useful properties of each one: high stiffness and strength (in the case of steel) and
reasonably low weight (concrete). Due to its low density, concrete can be used in bulk
to provide the structure of the required dimensions and geometry and steel is used to
reinforce it only with the necessary amount and direction. Since a new material can be
designed for each component of the edification the possibilities increase immensely and
a more efficient design can be obtained: if material meets better the necessities of the
application the cost (the material itself and sometimes the production) decreases.

Nevertheless, some applications, specially aircrafts, need stiffness-weight ratios which
clearly cannot be provided with concrete. By the 1940s industry was capable to produce
new artificial materials: plastics or polymers. These have normally low stiffness but, very
reduced weight. In the early 1960s carbon fibres, which have very high stiffness, were
developed in UK and started to be used in combination with polymers in aviation indus-
try. Since aircraft components normally have more complex geometries than those used in
edification, the possibility of composite materials of designing the material together with
the component turns out to be even more attractive.

The application of composite materials, specially long fiber reinforced polymers, has
experienced a great increase and nowadays are widely used in some industries, like air-
craft and wind turbine components, but also in leisure applications like sportive cars and
crafts. Generally, composites are used to improve stiffness/weight or strength/weight ratio
of structural members. For this reason and its undeniable industrial usefulness, composite
materials are taught in many under-graduate and graduate courses in universities around
the world, and there exist many descriptive textbooks which cover the generalities like the
one by Matthews and Rawlings [103], their mechanic behavior like those by Christensen
[38] and, recently, by Kollár and Springer [91], among many others.

1.2 Manufacturing of composite materials

Long fibre composites are usually made with carbon or glass fibers embedded in a poly-
mer, commonly epoxy. The fibers are stiff and have high strength and they are expected
to carry the loads to which the component or structure is submitted. The matrix has low
stiffness and low strength and it gives the shape to the component but also, and this is an
important task, it transfers the loads to the fibers and between them.

A single layer of composite have a width of about 0.05− 0.2mm, and, consequently, in
order to obtain usable engineering mechanics components, some layers have to be stacked
to form a lamina, as shown in Figure 1.1. A lamina with fibers in an only direction is
called a unidirectional lamina. Usually, laminae with fibers in different directions are used
to form a laminate. The directions of the fiber in each part of the mechanical component
can be chosen by the designer to give the component a better efficiency in cost or weight.

which holds them together
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Figure 1.1: Stacking of single laminae (left) form a laminate (right) (Figure taken from
Kollar and Springer [91])

One of the basic methods of fabrication of a laminate is to spread the fibers, which are
normally distributed in rolls of layers, following a stacking sequence, which is defined in
the design process, over a mold and then, to pour the liquid epoxy mixed with some curing
agent. The pouring of the epoxy on the fibers can be done by several methods: by hand
(manually spreading epoxy through the fibre layers) or automatically spreading the epoxy
using a vacuum process called Resin Transfer Moulding or RTM. Also, there exist some
pre-impregnated tissues of fibres (called pre-pregs) which have a small quantity of epoxy
soaking the fibres and allow to obtain high volume fractions of fibre. Finally, the liquid
epoxy has to cure during some time and controlled temperature and pressure conditions to
solidify. Usually the different manufacturing processes lead to slightly different mechanical
properties, even using the same constituents, since. In part, these differences are related
to the achieved fibre volume fraction or to the presence (or absence) of micro-bubbles or
voids. For instance, the combination of a RTM process and pressure controlled epoxy
curing can reduce enormously or even eliminate the voids or air micro-bubbles produced
by a non-uniform epoxy spreading.

1.3 Mechanical design with composite materials

The usual design criteria for composite materials is based on trying to align the fibers
with the most critically loaded directions of the mechanical component. Nevertheless, the
behavior of the composite in the transverse or perpendicular plane is also of importance
because normally transverse layers are used in the laminate. Also, in applications with
non-regular shapes the stress state may vary from a point to another, and some of the
layers may be loaded mainly in the transverse direction.

As it was said formerly, long fibre reinforced polymers are today widely used in wind
turbines, aircrafts, small or sportive vessels and crafts. Nevertheless there are still many
phenomena related to composite materials which are not fully understood and which are
the subject of research. Those phenomena may be macroscopical like damage (loss of
strength and/or stiffness) and fatigue (loss of strength under cyclic loads), but also local
or microscopical like delamination (loss of adherence between laminae), debonding (loss of
adherence between fiber and matrix) and matrix cracking. The main difficulty is that usu-
ally these phenomena may take place at the same time and that they are related: fatigue
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Figure 1.2: Typical composite unit cells (Source: Zalamea [160])

depends on all of them and so, the life prediction of composites with cyclic loads is one of
the milestones of the researchers. Furthermore, damage may be seen as the consequence
of the combination of matrix cracking, debonding and delamination in different stages of
the load application.

According to the existence of two scales, the analysis of composite materials can be
undertaken from two different approaches: micromechanical and macromechanical. In the
macromechanical approach the properties of the composite are obtained by averaging or
smearing and a set of properties similar to that of homogeneous materials is produced.
Also failure criteria for the design are normally produced from this approach. Macrome-
chanical analysis requires quite geometrically simple models but is unable to reproduce
some of the phenomena related to the constituents and their interface. Another important
drawback is that the obtention of the composite properties requires an important amount
of experimentation which is usually destructive2.

Although they may not always provide design criteria, micromechanical models are
desirable since they may improve the understanding of the physical mechanisms involved.
Classical micro-models have considered regular distributions of the fiber. As shown in Fig-
ure 1.2, several distributions which lead to different periodic unit cells can be considered.
This periodic models have achieved partially good results but usually results obtained
using this periodic models depend on the chosen geometry [129].

On the other hand, the in-depth analysis of these microscale phenomena has to consider
the random nature of composite materials. This approach is included into a scientific

2In the sense that the samples used for these experiments are broken as a part or as the conclusion of
the experiment
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Figure 1.3: Consequences of matrix cracking (Figure concept taken from Gamstedt [56])

area called micromechanics of random media, which has been object of special issues of
Applied Mechanics Reviews [122], International Journal of Solids and Structures [77] and
recent books, like the one edited by Jeulin and Ostoja-Starzewski [80]. Some authors, like
Matsuda et al. have already observed that [102]:

Transverse randomness of fibre distribution has small effect in the macroscop-
ical behavior of composite laminates but strong effect in the microstructural
stress distributions. Consequently, it is important to consider the random-
ness of fibre distribution for studying microscopic problems such as interfacial
damage, microscopic failure, etc.

Since in usual designs the main loads are parallel to fibre direction, transverse failure
of composites is normally not critical but, of course, it has to be verified in the design and
also contributes to other degradation phenomena like delamination or fibre breakage, as
shown in Figure 1.3.
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1.4 Probabilistic methods in engineering mechanics

The analysis of the phenomena just described involves a close understanding of the mi-
cromechanical features and the macroscopic performance. The use of microstructural
characterization techniques have been widely applied in both traditional and composite
materials in extending this understanding. There also exist some interesting books with
this scope, focused on composite materials, like the one by Summerscales [143].

As it will be detailed in Section 1.5, the main purpose of this work is to relate the mi-
crostructure of the transverse section of long fiber reinforced composites, specially Carbon
fiber reinforced polymers (CFRP), with its probability of failure. The field of engineering
mechanics which, among many other targets, derives expressions and computational or
numerical methods aiming to obtain probabilities of failure and reliability is usually re-
ferred as probabilistic mechanics or probabilistic engineering mechanics.

The importance of probabilistic methods in nowadays computational mechanics is not
only proved by the international publication (Probabilistic Engineering Mechanics [1])
which shows the existence of a full scientific field, but also by special issues of general
computational mechanics publications like Engineering Fracture Mechanics [62, 63] or
Computers and Structures [49]. One of the reasons for this interest on applying probabilisic
techniques to the mechanics of engineering materials, as pointed out by Ostoja-Starzewski
[62, 63] is because “all fracture processes are characterized, to a greater or lesser extent,
by randomness”.

Another proof of the industrial interest on this field, is the fact that recently, com-
mercial finite element related companies like ANSYS [4], MSC [3] and Altair [2] have
developed modules for probabilistic computing and analysis. In fact, the use of reliability
and probability methods in large mechanical systems and production or power plants,
is nowadays quite spread. Nevertheless there is still a lot of work to do to approach the
available techniques to the industry and engineering, specially in the field of the mechanics
of materials.

Probabilistic mechanics usually distinguishes two different sources of randomness within
any physical system: external sources and internal sources. Typical external sources are
loads such as produced by wind, earthquakes, etc. Internal sources can also by divided
into geometric (for instance, any plate manufactured through usual production systems
can have considerable variations of its width at the micro-level) and material. This work
is focused in a material source of randomness: the distribution of the fibres within the
composite at the microscale.

1.5 Objectives

The present work has been developed in the composite materials branch of the research
group AMADE (Analysis of Advanced Materials for Structural Design). Provided the
research group detected the industrial and engineering interest on finding probability of
failure of composite materials , the objectives of this work were established as the follows:
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1. To develop a technique of simulation for the failure in the transverse direction of
long fibre reinforced composite materials

2. To develop a methodology which allow to obtain statistical information concerning
the fibre distribution of the transverse section of composite materials.

3. To analyze the distribution of the fibres in the transverse section of composite ma-
terials

4. To simulate through finite element models which correctly represent the random-
ness due to fibre distribution of the microscale the stress-strain fields present in the
transverse section of long fibre reinforced composites, and to compare the results
from the simulation of the elastic behavior of a periodic model and a random model
to determine if the modelling could affect the failure results.

5. To use the developed technique and the statistical information from the microstruc-
ture of the composite material for obtaining the probability of fracture of simple
geometries of composite materials.

6. To evaluate the influence of the microstructure on the transverse fracture behavior
of the analyzed fibre reinforced composites.

1.6 Thesis layout

This work is divided in three parts. First part includes the state-of-the-art and the theory
on which the research work is based.

Chapters 2 and 4 review the different approaches for finding the elastic properties of
composite materials through macroscopic and microscopic methods and some approaches
which try to find the size of a Representative Volume Element (Chapter 2) and the meth-
ods of analysis of random composite materials (Chapter 4). Chapter 3 reviews some
macroscale and microscale failure criteria for composite materials.

The chapters included in Part II try to fulfill the objectives described in the former sec-
tion. Chapter 6 describes the experimental method for microscopy image processing and
analysis of carbon fibre reinforced composite materials (Objectives # 2 and # 3). Chap-
ter 5 develops a Statistical Representative Volume Element and determines its finite size
by analyzing the convergence of some mechanical and statistical variables (Objective # 1).

The periodic modelling and the random modelling of the transverse section of compo-
site materials are compared in Chapter 7. This Chapter may be seen as a motivation or
justification of the rest of the work. It could have been placed as the first Chapter of Part
II, but since the modelling method is explained in Chapter 5, the author has preferred to
place it next to this.

The simulation of transverse random failure of composite materials is achieved in
Chapter 8 where the simulation results are compared with some test data provided by the
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composites group of the Technical University of Hamburg-Harburg (TUHH).

This work tries to be self-explanatory and, for this reason, Appendixes A and B cover
the essentials which may help to understand the main chapters to the reader with some
mathematics and engineering background.

In Appendix C the whole set of results of the analysis of digital images of the transverse
section of fibre reinforced composites is given.
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Chapter 2

Mechanics of Composite Materials

2.1 Composite materials

A composite is a material composed by distinct constituents or phases. Each of these
phases can be taken as uniform, with known constitutive properties. Although the num-
ber of constituents involved may be greater, in engineering mechanics usually composite
materials are manufactured by embedding one material (usually called the reinforcement)
in another one, called the matrix.

Every point of the composite is occupied by some phase (the cavities can be taken
into account by including one phase with zero properties), and the phases are taken to be
firmly bonded across interfaces. Behavior of individual phases may be nonlinear.

According to Hashin [67] there are two kinds of information which determine the pro-
perties of the composite: the internal phase geometry and the physical properties of each
phase. Considering the geometry of the phases, composite materials can be classified in
particulate materials (in which the reinforcement phase appears in form of particles) or
in fibrous materials, in which the reinforcement is in the form of fibres. These fibres can
be short and have random orientation or can be long and have a designed or intentional
orientation. Unless it was specified, in this work only long fibre reinforced composites are
considered.

2.1.1 Micro, meso and macro scales

In the mechanics of composite materials several length scales may be taken to study. Some
models are constructed from the point of view of only one of this scales, but in many cases
it is necessary to relate events which happen at different length-scales. According to
Alzebdeh and Ostoja-Starzewski [9], when developing computational methods for random
composite materials, the three following length-scales have to be taken in account:

Micro-scale This is the scale of the heterogeneity (inclusion, fibre...) and it is usually
denoted by d. In this scale each constituent material is homogeneous and the in-
teraction is analyzed together with the stress and strain fields in this scale, which

11
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provide useful information for modelling debonding, crack initiation and damage,
etc.

Meso-scale Some models deal with groups of fibres, or with laminae (in long fibre rein-
forced composites). This scale intermediate scale is usually called meso-scale. Also,
some computational models [9] [34] [52] work with finite elements which consider a
group of fibres, then the length-scale of a single finite element defines the meso-scale.

Macro-scale This is the scale of the global structure or mechanical component under
consideration.

2.1.2 The concept of equivalent homogeneity

Although material properties and material behavior strongly depend on the micro-scale,
most of engineering mechanics problems have to be solved in the macro-scale. The macro-
scopic overall properties can be determined experimentally for usual materials, but it is
also of interest to relate this overall behavior to more detailed behavior at the level of the
microstructure, because this leads to a deeper knowledge of the material and can reduce
the experimentation costs.

In the micro-scale composite materials are highly heterogeneous (in fact, any material
is heterogeneous at a sufficiently small length scale) and taking into account all the infor-
mation related to the micro-scale, when solving a macro-scale problem, would be a nearly
impossible task. The usual way to overcome this difficulty is to introduce an equivalent
homogeneous material hypothesis. This equivalent homogeneous material is assumed to
have the same average properties than the heterogenous one, so computations can be per-
formed in these one, avoiding the complex internal structure of the heterogeneous material.
The condition just described is said to be that of effective or equivalent homogeneity [38]
and it is graphically expressed in Figure 2.1. Other terms in common usage with the same
implication are those of macroscopic homogeneity and statistical homogeneity.

Let us assume that it exists a intermediate length scale D, such that the properties
can be averaged for this scale in some meaningful way. For computational purposes, it is
very advantageous if there exists such a length scale of averaging, D , that is still small
compared with the characteristic dimension of the body. In all further considerations it
will be assumed that the scale D of properties averaging exists and is meaningful. This
intermediate scale is usually called Representative Volume Element (RVE) and will be
defined in depth in Section 2.1.3.

The development of methods which allow to obtain this average properties is one of
the historical fields of the mechanics of composite materials [67]. Some of them will be
summarized in the following.

2.1.3 Representative volume element (RVE) definitions

The mathematical description of dissipative phenomena in mechanics of solids needs of a
formulation of continuum mechanics consistent with principles of thermodynamics. This
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Figure 2.1: The equivalent homogeneous material hypothesis (figure concept taken from
Zalamea [160])

theory is commonly called thermomechanics or continuum thermodynamics [104]. This
field postulates the existence of a Representative Volume Element (RVE) which, briefly,
can be defined using Jiang et al. [81] words and say that, “mathematically, the Represen-
tative Volume Element (RVE) is an infinite length scale limit, relative to the microscale
in which the material appears uniform and the continuum concept [101] may be applied”.
However, the concept of Representative Volume Element (RVE) has been in constant
evolution since the days of Hill who defined Representative Volume Element as [74]:

“a sample that (a) is structurally entirely typical of the whole mixture on aver-
age, and (b) contains a sufficient number of inclusions for the apparent overall
moduli to be effectively independent of the surface values of traction and dis-
placement, so long as these values are “macroscopically uniform”. That is, they
fluctuate about a mean with a wavelength small compared with the dimensions
of the sample, and the effects of such fluctuations become insignificant within
a few wave-lengths of the surface. The contributions of this surface layer to
any average can be made negligible by taking the sample large enough”.

This two requirements are expressed in other words, using some statistical concepts,
by Ostoja-Starzewski [121]:

1. statistical homogeneity and ergodicity1 of the material; these two pro-

1As will be seen in Section 4.2.3, a material is suposed to be ergodic when any statistical information
about it can be obtained from a single sample. A material is suposed to be statistically homogeneous if
its probability functions depend only on the relative position
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perties ensure the RVE to be statistically representative of the macro-
response.

2. some scale L of the material domain, sufficiently large relative to the
microscale d (inclusion size) so as to ensure the independence of boundary
conditions.

According to Drugan and Willis [47] there exist to main groups of definitions of RVE:

“One definition arises from the perspective that in order to characterize macro-
scopic composite constitutive response, one must recognize the statistical na-
ture of the microstructure of actual composites. This perspective leads to the
conclusion that the smallest RVE for which a macroscopic ”effective” cons-
titutive theory could apply is one that is sufficiently large to be statistically
representative of the composite - that is, to include effectively a sampling of
all possible microstructural configurations that occur in the composite. This is
the perspective generally adopted and it leads to statements of the type that
the RVE must include a very large number of the composite’s microhetero-
geneities (such as grains, inclusions, voids, cracks, fibres, etc.).

There is another, perhaps more pragmatic, definition of ”representative vo-
lume element”: the smallest material volume element of the composite for
which the usual spatially constant ”overall modulus” macroscopic constitutive
representation is a sufficiently accurate model to represent mean constitutive
response.”

The latter one is the definition adopted by Drugan and Willis. According to their work
[47], this definition leads to much smaller (and so, more attractive from the computational
point of view) size of the RVE.

The definitions given here so far concern to ideal infinite-length Representative volume
Elements and so not sufficient when using computational mechanics for the simulation of
the behaviour of the micromechanics of materials. In this case some criteria which define
somehow the minimum finite size of the RVE have to be found. Section 2.6.1 reviews some
works which, using some of this criteria, find the finite size of the RVE.

2.1.4 The Hill condition

As will be seen later in Section 2.6.1 the Hill Condition may be useful to determine the
minimal size of material which have to be analyzed theoretically to obtain the same results
than the bulk material, so now is just exposed as a theoretical law but a reprise appears
in Section 2.6.1.

The Hill condition or Hill principle poses the equivalence of energetically and mechan-
ically defined effective properties of heterogeneous elastic materials. It can be expressed
[92]:

〈σ : ε〉 = 〈σ〉 : 〈ε〉 (2.1)
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Equation 2.1 implies that the stress and strain fields are uncorrelated. Kröner [92]
shows that this equation stands under the following conditions:

1. the local elastic compliances and surface force densities are bounded

2. the body is macroscopically homogeneous, infinite in the limit

3. no volume forces are present

4. no internal stresses are present2

The Hill Condition of equation 2.1 can be generalized for a nonlinear inelastic medium,
as it is shown in [70].

No real body is infinite, however the Hill Condition will be a good approximation to
real situations if the external dimensions of the composite are sufficiently large compared
to the typical inclusion diameter. Clearly, this is the case of composite materials: the fibre
size is much smaller than the size of any component of a mechanical system, to such an
extent that, as seen in Section 2.1.1, different scales are involved on their analysis.

2.2 Effective properties of composite materials

As pointed out by Jiang et al.[81] the term effective should be reserved for the overall re-
sponse of the RVE, in opposition to the term apparent, which should be used when working
with domains which are smaller than the RVE. In the following, the basic expressions for
computing the effective properties of a composite material are reviewed.

Under conditions of an imposed macroscopically homogeneous stress or deformation
field on the representative volume element, the average stress is defined by:

〈σij〉 =
1
V

∫

V
σij(x) dv (2.2)

and the average strain by:

〈εij〉 =
1
V

∫

V
εij(xi) dv (2.3)

where V is the volume of the RVE.

The average stress and strain fields, as defined in equations 2.2 and 2.3, can be related
using the effective elastic moduli tensor C̄ and the effective compliance tensor S̄ :

〈σ〉 = C̄ : 〈ε〉 (2.4)

〈ε〉 = S̄ : 〈σ〉 (2.5)

2The Hill Condition, as shown in Kröner [92], can be extended for the case when internal stresses, such
like, thermal stresses, are present.
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Consequently, C̄ and S̄ can be seen as the elastic tensors of an homogeneous material
having the same macroscopic elastic behavior than the composite material and, therefore,
to derive the effective properties of a composite material is equivalent to find the effective
stress-strain relation. That is, for the elastic case, to find the effective tensors C or S.
For this purpose different methods can be followed. This methods can be classified in four
main groups:

Micromechanics methods . They determine constitutive relations by setting up some
hypotheses on the stress and strain fields at the micro-scale and analytically solving
the elasticity problem. The first approach in this category is the well known rule
of mixtures (ROM), described in section 2.3.1. Some other approaches are the self-
consistent methods, reviewed in section 2.3.2.

Some classic papers in this field are those by Eshelby [50] and Mori and Tanaka
[110]. Some reviews including this topic are those by Böhm [23] and Li [99].

Bounds for the effective properties This approach, instead of explicitly finding the
effective properties of the material, finds upper and lower bounds for them. The
Voigt and Reuss bounds (described in section 2.4.1) are the simplest ones. The
only information needed about the distribution of the reinforcement is the volume
fraction. By adding the hypothesis of statistical homogeneous distribution Hashin
and Shtrikman [69] found narrower bounds, as described in Section 2.4.3. The more
statistical information is used, the narrower are the bounds, and so, using second
or third order statistics this bounds can be improved. Some of the most prolific
researchers in this field are Willis and Talbot [148] [149] [158], Drugan and Willis
[47], Ponte Castaneda [128] and Torquato [152] [153].

Homogenization methods . They consider the elasticity problem as a two-scale prob-
lem and derive the behavior of the heterogeneous material at the macroscale. They
consider that the material is periodic at the micro-scale and have reached a high
level of sophistication. The main researchers in this field are Sanchez-Hubert and
Sanchez-Palencia [139] [138], Suquet, Michel et al. [144] [78] [79] and, more recently,
Anthoine [10] [11], Feyel [52], Fish [54] [53], Lee and Ghosh [93] [94] [58] [59] and
Zalamea [160] [161].

Computational approaches The evolution of computers gives place to methods which
were unfeasible in the former decades. This methods try to find the effective be-
haviour of the material by ”brute force” solving the problem in the microscale. This
methods have been mainly used in solving problems for which no analytical solution
is available, like the case of non-periodic inclusions. Some papers int his category
are those by Ostoja-Starzewski and co-workers [124] [9] [8], Borbély [25], Kanit [88],
Buryachenko [31], Byström [33], Graham [61], Knight [90]

The latter classification should be seen only for the organisation of the present chapter
purposes. Usually the line dividing each category is not clear and so, the groups of
approaches defined above have points in common.
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2.3 Micromechanics methods

One of the classic approaches for finding the effective properties of composite materials
consists on setting up hypotheses on the microgeometry of the material (such like geome-
try of the inclusions and the assumption of periodicity) and deriving from them analytical
expressions for the effective properties. This section shortly resumes the basic approaches:
the rule of mixtures and the self-consistent method. A comparison of this methods ex-
tended to viscoelastic materials was performed by Brinson [28].

2.3.1 The rule of mixtures (ROM)

A common and well known way to solve the problem of finding the effective properties of
a long fibre reinforced composite is the use of the rule of mixtures. Let us assume that
the domain of the solid under consideration can be subdivided in two subdomains, one
related to the matrix and the other related to the fibre:

Ω = Ωm ∪ Ωf (2.6)

Let us denote the volume of Ω by V and the volume occupied by the matrix and the
fibre by Vm and Vf , respectively.

Finally, let us assume that the composite is loaded in the fibre direction. In this case
and for this type of composite it is reasonable to assume the coupling of the strains of
each constituent along the fibre direction:

ε
(f)
11 = ε

(m)
11 = ε11 (2.7)

where the superscripts f and m denote the fibre and the matrix, respectively. Follow-
ing this hypothesis, the fibre and the matrix are treated like parallel springs.

If we compute now the average stress in the fibre direction 〈σ11〉 as defined in Equation
2.2:

〈σ11〉 =
1
V

∫

Ωm

σ11 dΩ +
1
V

∫

Ωf

σ11 dΩ (2.8)

we obtain:

〈σ11〉 =
Vm

V
〈σ(m)

11 〉+
Vf

V
〈σ(f)

11 〉 (2.9)

where 〈σ(m)
11 〉 denotes the mean stress in the matrix and 〈σ(f)

11 〉 the mean stress in the
fibre. Since the strain is assumed to be constant all over the domain, the effective value
of the Young modulus in the fibre direction (E11) can be found by dividing expression 2.9
by the average strain 〈ε11〉:

〈σ11〉
〈ε11〉 =

Vm

V

〈σ(m)
11 〉

〈ε(m)
11 〉

+
Vf

V

〈σ(f)
11 〉

〈ε(m)
11 〉

(2.10)

Finally, if we define the volume fraction of each constituent as:
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cr =
Vr

V
r = f, m (2.11)

We obtain the effective value of E11:

〈E11〉 = cmE(m) + cfE(f) (2.12)

where E(m) and E(f) are, respectively, the Young’s Modulus of the matrix and the
fibre, which are both isotropic. The latter expression can be written in a more general
form:

P = cmP (m) + cfP (f) (2.13)

where P is any material property. The latter formula is usually called the rule of
mixtures.

In the other hand, for the derivation of the effective properties in the transverse di-
rection (that is, the direction perpendicular to the fibre axis) the composite is loaded in
this direction and the matrix and the fibre can be treated as a series of springs. In this
case, the total strain of the composite could be found by adding the total strain in the
matrix and the total strain in the fibre, that is, fibre and matrix are treated like springs
connected in series:

ε22 = ε
(f)
22 + ε

(m)
22 (2.14)

Proceeding analogously and computing the average strain (Equation 2.3) instead of
the average stress, the next expression can be found:

1
〈E22〉 = cm

1

E
(m)
22

+ cf
1

E
(f)
22

(2.15)

According to the latter expression, under the hypothesis 2.14, the inverse of E22 follows
the rule of mixtures:

P−1 = cm[P (m)]−1 + cf [P (f)]−1 (2.16)

What happens in real long fibre reinforced materials is that the rule of mixtures is a
good approximation for E11 (Equation 2.12), but it is not for E22 (Equation 2.15). One of
the main reasons for this lack of accuracy is that neither equation 2.12 or equation 2.15 use
any information about the geometry and distribution of the fibre within the composite.

For this reason, some modified expressions have been proposed [16] for unidirectional
fibre-reinforced composites. Most of them depend on fitting values, like the Halpin-Tsai
[65] relations:

P =

{
cfP (f) + cmP (m) for E11 and ν12

P (m) 1+ξηcf

1−ηcf
for E22, G12 and ν23

(2.17)

where ξ is a fitting factor and
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η =
P (f)

P (m) − 1
P (f)

P (m) + ξ
(2.18)

Another continuum mechanics-based approach can be found in the work by Oller et
al. [116]. Considering that no real composite has not only a series behavior or a only
a parallel behavior, they have proposed a generalised rule of mixtures which can also be
applied when plasticity is considered [117] and, in general, to non-linear behavior

2.3.2 Self-Consistent Methods

Self-Consistent Methods provide approximate estimates of the effective elastic response by
making use of the phase geometry. The main assumption is that any fibre in the composite
is embedded in an homogenous body with unknown properties.

The basic self-consistent method employs a single fibre embedded in an infinite matrix,
following the classical Eshelby [51] approach3 which can be found in [38]. Some Self Con-
sistent approaches are modifications of the Eshelby formula for finite concentration effects.

The Mori-Tanaka approach [110] is a well-known self-consistent method. It considers
an isolated fibre embedded in an infinite matrix which is subjected to a far-field load σ0.
An interesting reformulation of this method was provided by Benveniste [20], assuming
that the isolated inclusion is loaded by average stress in the matrix. Then, the stress in
the fibre is given by:

σ(f) = W(f) : σ(m) (2.19)

where W(f) is a partial concentration factor, given by:

W(f) = L(f)
[
I + S : [L(m)]−1 : (L(f) − L(m))

]
(2.20)

where L(f) and L(m) are tensors following Hill’s notation for plane strain4 for the fibre
and the matrix, respectively, I is the identity tensor and S can be expressed through a
polarisation tensor P = S : [L(m)]−1 which for cylindrical fibres [162] has components:

P22 = P33 = k(m)+4m(m)

8m(m)(k(m)+m(m))
P23 = P32 = −k(m)

8m(m)(k(m)+m(m))

P44 = k(m)+2m(m)

2m(m)(k(m)+m(m))
P55 = P66 = 1

2m(m)

(2.21)

where m(m) is the torsion modulus of the matrix (G) and k(m) can be written as
k = 2λ/ν.

Then, the effective compliance relation can be expressed using the compliance relations
of the fiber (M(f)) and the matrix (M(m)):

3Eshelby derived some formulae which describe the elastic relations for an inclusion (fibre) embedded
in an infinite matrix

4See Section A.5.1 in Appendix A for a short description of Hill’s notation
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M =
cmM(f) : W(f) + cmM(m)

cmI + cfW(f)
(2.22)

Finally, the effective stiffness tensor L can be obtained by inverting the compliance
tensor L = M−1.

2.4 Bounds on effective properties of composite materials

Instead of explicitly computing the effective properties of the composite by assuming some
geometry or periodicity, some methods consider that the composite material has random
geometry and give upper and lower bounds od the effective properties.

2.4.1 Voigt and Reuss bounds

The first to consider a random material was W. Voigt, in 1887. By assuming a constant
strain through the material, he found an expression for the effective properties. Some
years later, in 1929, Reuss found another equation for the effective properties by assumig
a constant stress through the material. Finally in 1952, R. Hill proved that under the
assumption5:

〈σ : ε〉 = 〈σ〉 : 〈ε〉 (2.23)

the Voigt and Reuss approximations provide upper and lower bounds for the effective
moduli. In this section, Voigt’s upper bound and Reuss’ lower bounds for the elastic cons-
titutive tensor Cijkl will be derived thorugh some energy principles.

Strain energy

It is known [38] [104] that the stress can be expressed as the derivative of the strain energy
with respect to strain as:

σij =
∂W

∂εij
(2.24)

where the strain energy W is given by:

W (εij) =
1
2
Cijklεijεkl (2.25)

W (εij) ≤ 0

The strain energy of Equation 2.25 can be also expressed as a function of the stress
components:

W (σij) =
1
2
Sijklσijσkl (2.26)

5This assumption is usually called The Hill Condition and it has been reviewed in Section 2.1.4
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Theorem of minimum potential energy

Let us consider the elasticity boundary value problem of section (A.3). We define the
potential energy functional:

Uε =
∫

Ω
[W (εij)− Fiui] dΩ−

∫

∂Ωσ

f̄iui d∂Ω (2.27)

where Fi are the body forces, f̄i the prescribed forces, ui the displacement field, Ω is
the dominium under consideration and ∂Ω its boundary.

Theorem 1 (Theorem of minimum potential energy) Of the displacement fields which
satisfy the boundary conditions, the one that also satisfies the equations of equilibrium
makes the potential energy functional (2.27) an absolute minimum.

Theorem of minimum complementary energy

Let us define the complementary energy functional as:

Uσ =
∫

Ω
[W (σij)] dΩ−

∫

∂Ωu

σiūi d∂Ω (2.28)

where ūi are the prescribed displacements.

Theorem 2 (Theorem of minimum complementary energy) Of the stress fields which
satisfy the boundary conditions, the one that also satisfies the equations of equilibrium
makes the complementary energy functional (2.28) an absolute minimum.

Voigt’s upper bound

Let us suppose that we impose some displacement û in the boundary of the body and
let us assume that this displacement causes uniform strain field in the composite ε̂ = ε
(where ε is the average strain as defined in Equation 2.3) . Then, the potential energy
functional 2.27, can be written:

UVoigt =
1
2

∫

Ωf

ε̂ : C(f) : ε̂dΩ +
1
2

∫

Ωm

ε̂ : C(m) : ε̂ dΩ (2.29)

= cf ·
[
ε : C(f) : ε

]
+ cm ·

[
ε : C(m) : ε

]

Since ε̂ does not necessarily satisfy the equilibrium equation, the real energy, following
Theorem 1, has to be lower or equal to that energy computed following the assumption of
homogeneous strain:

Uε ≤ UVoigt → ε : C : ε ≤ ε :
[
cf ·C(f) + cm ·C(m)

]
: ε (2.30)

then:

C ≤ cfC(f) + cmC(m) (2.31)
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where C denotes the effective stiffness tensor, as defined in Equation 2.4. Comparing
equations 2.13 and 2.31 we can say that the rule of mixtures for the stiffness tensor gives an
upper bound for the effective stiffness tensor. The analogy between the Voigt upper bound
development and the rule of mixtures were clear from the beginning since the hypotheses
of homogeneous strain is the same for both.

Reuss’ lower bound

Let us consider we impose the body surface to traction forces f̂ which cause a stress field
σ̂. Let us also assume that this stress field is equivalent to the average stress σ of the real
solution, computed by equation 2.2. Then, the complementary strain energy 2.28 can be
computed:

UReuss =
1
2

∫

Ωf

σ̂ : S(f) : σ̂ dΩ +
1
2

∫

Ωm

σ̂ : S(m) : σ̂ dΩ−
∫

∂Ω
f̂ · u d∂Ω = (2.32)

= cf ·
[
σ : S(f) : σ

]
+ cm ·

[
σ : S(m) : σ

]
−

∫

∂Ω
f̂ · u d∂Ω

Since the stress field σ̂ does not necessarily satisfy the strain compatibility require-
ments, the energy UReuss will be greater or equal to that of the real solution:

U ≤ UReuss → σ : S : σ ≤ σ :
[
cf · S(f) + cm · S(m)

]
: σ (2.33)

and, so:

S ≤ cf · S(f) + cm · S(m) (2.34)

and:

C =
[
S
]−1 ≥

[
cf · S(f) + cm · S(m)

]−1
(2.35)

Once again, by comparing equations 2.16 and 2.35, we can say that the rule of mixtures
for the inverse of the compliance tensor gives a lower bound for the effective stiffness tensor.
Both Reuss bound development and the inverse rule of mixtures development use the same
hypothesis of homogeneous stress field.

2.4.2 Hill’s bounds

The expression of the upper bound of Voigt together with the lower bound of Reuss in a
tensorial form is usually known as the Hill bounds [23]:

[
N∑

i=1

ci · S(i)

]−1

≤ C ≤
N∑

i=1

ci ·C(i) (2.36)
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2.4.3 Hashin-Shtrikman bounds

This section exposes the variational principles which were developed by Hashin and Shtrikman
in 1963 [69] for linear media. Talbot and Willis extended this principles for non linear
media in 1985 (See references [47], [147] and [158]).

The basic idea of the Hashin-Shtrikman principle is to express the stress, strain and
displacement field of the medium relative to a comparison medium. This comparison
medium is subjected to those boundary conditions of the problem under consideration.
Let C0 be the elastic constitutive relation for this comparison medium and ε any strain
field which satisfy the boundary conditions. We can express a stress tensor σ̂ which
satisfies the equilibrium equation as follows:

σ̂ = C0 : ε + τ (2.37)

τ is sometimes called polarization stress and for:

τ = (C−C0) : ε (2.38)

the exact solution for the heterogeneous medium under consideration is obtained. Re-
calling the theorem of minimum potential energy (Theorem 1):

U ≤ 1
2

N∑

r=1

∫

Vr

ε : Cr : ε dV (2.39)

defining 〈εr〉 as the volume average strain over Vr and the deviation of the strain in
Vr with respect to its average value, ε′r:

ε′r = ε− 〈εr〉 (2.40)

and using the next three expressions, which relate the strain volume average over Vr

(〈εr〉) by means of the tensor Âr, the strain volume average (〈ε〉), the elastic relation of
each constituent (Cr) and the average constitutive stiffness tensor of the heterogeneous
material (C):

〈εr〉 = Âr : 〈ε〉 (2.41)

N∑

r=1

Cr : Âr = I (2.42)

Ĉ =
∑

crCr : Âr (2.43)

where Ijkl = 1
2 [δikδjl + δilδjk]

Before some manipulation (which can be found in [38]), the theorem of minimum
potential energy of 2.39 can be rewritten:

ε : (C− Ĉ) : ε ≤ − 1
V

N∑

r=1

∫

Vr

ε′r : (C0 −Cr) : ε′r dv (2.44)
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In the latter expression C is the effective properties tensor. From the inequality 2.44,
bounds for C can be found. This is done by finding solutions for Ĉ, by imposing or
restricting τ some value or condition. Using the Eshelby formula [38] for this purpose and
assuming the material is statistically homogeneous6, the following explicit bounds for the
Lamé constants7 can be found:

k ≤
[

N∑

r=1

cr(k+
g + kr)−1

]−1

− k+
g (2.45)

µ ≤
[

N∑

r=1

cr(µ+
g + µr)−1

]−1

− µ+
g (2.46)

where:

k+
g =

4
3
µmax (2.47)

µ+
g =

3
2
(

1
µmax

+
10

9kmax + 8µmax
) (2.48)

where µmax and kmax are the maximum values of the properties for the N phases.

k ≥
[

N∑

r=1

cr(k−g + kr)−1

]−1

− k−g (2.49)

µ ≥
[

N∑

r=1

cr(µ−g + µr)−1

]−1

− µ−g (2.50)

where:

k−g =
4
3
µmin (2.51)

µ−g =
3
2
(

1
µmin

+
10

9kmin + 8µmin
) (2.52)

where µmin and kmin are the minimum values of the properties for the N phases.

As pointed out by Hashin in [67] the Hashin-Shtrikman bounds provide good approx-
imations for phase stiffness mutual ratios up to 10.

The analogies between the self-consistent method, the Hashin-Shtrikman bounds and
the Mori-Tanaka method are shown in [48].

6Statistics definitions are given in the section 4.2 of Chapter 4. For the present, statistical homogeneity
means that the basic statistics such as the mean, the variance and the density function are constant all
over the material.

7Lamé constants are defined in the Appendix A
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2.4.4 Second and third order bounds

The latter development can be generalized to non-linear materials if the constitutive linear
expression in 2.37 is replaced by a general constitutive relation. If the strain energy of the
comparative medium is W0(ε,x), Equation 2.37 can be rewritten:

σij =
∂W0

∂εij
+ τij (2.53)

Let us define:

(W −W0)∗ = sup
ε
{τε− (W −W0)(ε,x)} (2.54)

so that,

W (ε,x) ≥ W0(ε,x) + τ : ε− σ0 : ε− (W −W0)∗(τ ,x) (2.55)

Then,

Uε ≥ inf
ε∈K

∫

Ω
{W0(ε,x) + τ : ε− σ0 : ε− (W −W0)∗(τ ,x)}dx (2.56)

The so-called bounds of Hashin-Shtrikman type are obtained by ensemble averaging
expression 2.56:

〈Uε〉 ≥ 〈 inf
ε∈K

∫

Ω
{W0(ε,x) + τ : ε− σ0 : ε− (W −W0)∗(τ ,x)}dx〉 (2.57)

The polarisation stress τ is now piece-wise defined and depends on each phase location.
So, the ensemble average of equation 2.57 depends on the two point probability function.

Third order bounds were obtained in the general case by Beran[21] and later for two-
phase materials by Milton [105]. The incorporation of more and more statistical infor-
mation on the distribution of heterogeneities in random materials gives closer bounds as
suggested by the theory of Kröner [92].

There are numerous publications devoted to analytically find closer bounds, using sec-
ond or third order statistics, like references [128],[48] and [149]. In this latter work Talbot
and Willis show that the third order bounds can be seen as a generalization of those by
Hashin-Shtrikman. A development of 2.56 which depends on three-point statistics and
gives closer bounds was also given by Talbot and Willis [148].

According to Kanit et al. [88] for microstructures whith phases with quantitatively
very different properties, the usual bounds do not give a useful estimation of the effective
properties. The work of Kanit et al. [88] show how to use homogenization techniques to
obtain more accurate bounds.
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2.5 Homogenization

The term homogenization can be defined as the process in which an heterogeneous material
is replaced by an homogeneous one having an equivalent mechanical behaviour within a
usual range of loads.

In the Ph.D. thesis by Zalamea [160] the main approaches to the homogenization prob-
lem are summarized. All of them work with two scales 8: a macroscopical scale (whose
coordinate system will be denoted by x) and a microscopical scale (with coordinate system
y). For instance in a laminate the microscopical scale would consider the matrix, the fiber,
the interface between them, possible delamination or debonding phenomena between fibre
and matrix, bubbles in the matrix, etc.[156].

Microscopical scale is usually characterized by being submitted to stress and strain
fields which present fluctuations and oscillations with a wave-length which is related to
de size of the components. This oscillations are not seen in the macroscale but some
phenomena which affect the material in the macroscale (such as damage, fracture and
crack nucleation) are closely-related to them.

Homogenization methods can be roughly divided into two groups: Mean methods and
Asymptotical methods. Although these are the classical approaches new computational-
based methods are worth to mention like the Voronöı Finite Element Method proposed
by Ghosh and Moorthy [58] [59] [109] and the methods by Zalamea [160], by Michel [78]
and by Feyel [52].

2.5.1 Spatial averages approach

Let V be the volume of a representative domain of the heterogeneous media. The main
hypothesis of the mean methods stands that the macroscopic variables of the problem
(stresses and strains) can be obtained computing the mean9 of their microscopical values
within the domain:

σx =< σ >V or εx =< ε >V (2.58)

Where the superscript x denotes the macroscopic scale. Because the dependency on
the macroscopic and microscopic scale we write:

σx(x) =< σ(x, y) >V or εx(x) =< ε(x, y) >V (2.59)

As pointed out by Zalamea [160], the main differences between the homogenization
problem and the classical boundary value problem are:

1. In the homogenization problem the loads are field averages instead of displacements
or mass or surface loads

2. The boundary conditions do not exist, or they are not stated clearly.

8Usually the terms of homogenization and multi-scale methods are employed with the same meaning
9The mean operator < · > is defined 〈f(x, y)〉 := 1

V

∫
V

f(x, y)dV
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In a general form, an elastic constitutive law for an heterogeneous material as a function
of the macroscopical and microscopical scales can be written:

σij(x, y) = Cijklεkl(u(x, y)) (2.60)

where C is the elastic constitutive tensor. As stated in Eq. 2.58 it is assumed that
stresses in the macroscopical scale can be obtained computed the mean of the stress field
in the microscopical scale:

σx(x) =< σ(x, y) >V =< C(x, y)ε(u(x, y)) >V (2.61)

where it is assumed that the microscopical strain ε(u(x, y)) can be expressed as a lineal
function of the macroscopical strain ε(ux(x, y)), then:

ε(u(x, y)) = d : ε(ux(x)) (2.62)

where d is a transformation tensor called strain concentration tensor. By using Eq.
2.62 in Eq. 2.61:

σx(x) = Cx(x) : ε(ux(x)) (2.63)

where Cx =< C : d >V is the effective constitutive tensor of the heterogeneous media.
So, the homogenisation law is indeed a weighted mean of the microscopical constitutive
law, using the strain concentration tensor d as the weight. Since the homogenization law
depends on d, this tensor has to be obtained.

Hill-Mandel method

Let us consider the boundary value problem in the microscopical scale:

σ(y) = C : ε(u(y)) ; εij = 1
2

(
∂ui
∂yj

+ ∂uj

∂yi

)
in V

∂σij(y)
∂yi

= 0 Equilibrium equation in V
ūi(y) = εx

ijyj Boundary condition on ∂V

(2.64)

Considering only the linear problem, the displacement field is a linear function of the
imposed strain field ε(ux), and then:

ui(y) = vkl
i (y)εkl(ux) (2.65)

where vkl
i is the ith component of the displacement vector vkl which is the solution of

the problem 2.64 for a unit strain state defined by:

εij(ux) = Ikl
ij =

1
2
(δikδjl + δilδjk) (2.66)

where Ikl
ij is a second order tensor whose components (ij) are defined in a similar

manner to the fourth order identity tensor Ikl
ij = Iijkl.

From Eq. 2.65 we can obtain the strain field:

εij(u(y)) = εij(vkl(y))εkl(ux) (2.67)
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and so, by comparing equations 2.62 and 2.67 we find the tensor d:

dijkl = εy
ij(v

kl(y)) (2.68)

Once d is known, it can be used to obtain the constitutive tensor C:

Cx
ijkl =< Cijpq(y)dpqkl >V (2.69)

It can be shown [160][144] that the elastic tensor C keeps the following symmetries:

Cx
ijkl = Cx

jikl = Cx
klji (2.70)

The former development can be extended for periodic material, by considering the force
field anti-periodic (which is justified by the action-reaction principle) in the microscale and
by considering the displacement field periodic in the microscale. The extension for periodic
materials can be found in [160]. In the same reference a stress-based development can be
found.

2.5.2 Asymptotic methods

The asymptotic methods for homogenization are detailed in the works by Sanchez-Palencia
et al [139] [138]. As remarked in [139], the two-scale asymptotic expansions is a classical
method in mechanics of vibrations, for instance, the motion of a pendulum with a damper,
which is plotted in Figure 2.2 can be seen as a exponential function in the macroscale and
a sinus funtion in the microscale.
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Figure 2.2: Macro and microscales

This approach obtains asymptotical developments for the heterogeneous medium in the
both macro and micro scales. The problem is developed in both scales by using continuum
mechanics formulae [101]. At the macro scale, it has to be satisfied:

∇σ + ρb = 0 in Ω (2.71)
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σ = C : ε(u)
σ · n = t in Ωt

u = 0 in Ωu

where ρ is the material density, b are the body forces (such as gravity or magnetic
fields), n is the outward normal vector to the boundary surface, t is the traction vector
and u the displacement field.

The problem 2.71 has a single solution and, consequently, u and σ can be obtained,
but if the microscale is too small it is impossible to compute the displacements u. The
adopted solution is to obtain a limit by means of an asymptotical expansion. The equilib-
rium equations for the microscale are re-written in function of this asymptotical expansion,
assuming periodicity of the unit cell. A set of vectors which relate the microscale and the
macroscale can be found by solving the problem at the microscale. By using this vectors
the homogenized constitutive elastic tensor for the macroscopic scale can be computed.
The elastic problem can be solved at the macroscale by using this tensor and the macro-
scopic stress σ and strain ε fields can be obtained.

From the macroscopic stress field σ, one can obtain a stress field σ(x, y) which for
a constant x represents the mean stress in a microscale periodic subdomain. The set of
equations to solve depend on the constitutive relation at the microscale of the problem:
inelastic strain, debonding between fiber and matrix or damage [54].

Within the researchers, as pointed out in the Ph. D. thesis by Zalamea [160], some
of them have published works in which the utility of these methods is questioned in
some conditions. For example, when the dimensional relation between the scales has a
finite instead of infinitesimal value. Terada and Kikuchi [151] question the accuracy of
these approaches in non-linear applications and proposes a general method for non-linear
problems based in energy functionals.

2.5.3 Computational approaches for the homogenization problem

Zalamea [160, 161] proposed a general computational method for solving homogenization
problems by implementing a two-scale method within a Finite Element code with paral-
lelization. The method is general because the consitutitve relation in the microscale (unit
cell) is obtained by solving a finite element problem in this scale, where the boundary
conditions are set up to configure a periodic media.

Car [34] and Zalamea [160], [161] compare the solution given by the method with
experimental values and show the good agreement between them. Similar two-scale FE-
based approaches are those by Michel [78, 79] and Feyel [52].

Some approaches have used homogenization techniques for the estimation of elastic
properties of random composites. These approaches are based on the averaging in some
window, as can be seen in the work by Huyse and Maes [76], or Baxter and Graham [17]
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[18], where a moving window is used. An analogous technique is used by Graham and
Baxter for the simulation of local composite properties [61].

2.6 Computational approaches

When a composite material is considered non-periodic or random10, for the analysis of
inclusion clustering, stress or strain concentration, etc. most of the analytic techniques
are not useful. For this reason, some computational approaches which analyze the mi-
crostructure by means of numerical methods (normally, the Finite Element Method [164])
have been developed. This section reviews some of this techniques, a larger decription of
which can be found in the review by Mishnaevsky et al.[84].

Since the size of the RVE is a crucial point for this techniques some approaches for its
determination are also reviewed.

2.6.1 The size of the RVE

As seen in Section 2.1.3, the Representative Volume Element is thought to ideally have
an infinite length, related to that of the microstructure. When applying computational
methods, this infinite length scale limit has to be relaxed and a finite length for the RVE
has to be found. From the computational point of view a small RVE is desired, but from
the mechanics point of view a big enough RVE which satisfies certain representativeness
criteria is needed.

In other words, starting from the definitions of the RVE given in section 2.1.3, from
the computational mechanics point of view, a question arises: Which is the smallest size
of a valid RVE for a composite material? This section reviews different approaches trying
to give an answer to the latter question.

Convergence of effective properties

According to Hill’s definition of Section 2.1.3, the Representative Volume Element is ex-
pected to have the same effective properties that the whole material. Following this
characteristic convergence studies can be performed with increasing size RVEs.

Gusev [64] considered spherical reinforcements and computed the effective properties
for increasing size RVEs, with the same volume fraction (RVEs having 8, 27 and 64 in-
clusions with cf = 0.27). The ratio between the Young modulus of the inclusion and the
matrix was constant (E(f)/E(m) = 23.3) Although the spheres were randomly distributed
inside the RVE, periodic boundary conditions were used. The periodic boundary condition
can be used since the average behaviour is expected to be the same in any subdomain of

10Although in this section some techniques for the analysis of random microstructures are reviewed, the
description of this techniques is done from the point of view of mechanics. Statistical approaches and
criteria are reviewed in Chapter 4
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the material. Monte Carlo simulations11 were performed for the different RVE sizes and
the effective properties and its scatter were computed. The obtained effective properties
were compared with theoretical formulae results. The dimensionless L/d measure for the
RVE size was used, were L is the length of the unit cell edge and d the sphere diameter.
The results showed that, for those conditions, a cell with 27 inclusions (which corresponds
to L/d = 3.75) could be used as a RVE.

Terada and co-workers [150] performed a convergence analysis which shows that homo-
genization theory is still valid when the material is considered non-periodic. In this case
a sufficiently large RVE is used instead of the periodic cell. In the referenced work three
different types of boundary conditions (displacement, force and periodic)12 were applied to
increasing-size representative volume elements with randomly placed circular inclusions.
The results showed the convergence of the obtained effective properties when increasing
the size of the RVE . The effective properties obtained by means of the three different
boundary conditions can be considered equivalent, and consequently, that the homogeni-
zation method is convergent, when the RVE size approaches 15-20 times the microscopic
scale length (in the example, the inclusion diameter, which means L/d = 15 − 20). The
analysis was only performed for one ratio of the elastic properties of inclusion and matrix
(E(f)/E(m) = 10).

Monte Carlo Simulation of effective properties

In accordance with Kanit et al. [88] the RVE must ensure a given accuracy of the estimated
property obtained by spatial averaging of the stress, the strain, or the energy fields in a
given domain V . In the same work Kanit et al. pose that smaller volumes of V can be
used if the average behavior of several realizations of the microstructure is computed to get
the same accuracy. Their study is applied to a solid composed by polycristals and grains,
which they model by using three-dimensional Voronöı cells13 to obtain estimates of the
mean and variance of the elastic and thermal properties for materials with volume fraction
0.5, 0.7 and 0.9. They perform Monte Carlo simulations and analyze the convergence of
the thermal and elastic effective properties and the variance of the results when increasing
the RVE size. The estimates of the effective properties are compared with Voigt-Reuss
and Hashin-Shtrikman bounds. They conclude that by using Monte Carlo simulation for
the effective properties computation, smaller sizes of the RVE can be used and that the
size of the RVE depends on the number of realizations. That is, for smaller RVE sizes,
greater number of realizations are required, and conversely.

Hill Condition and Convergence of effective properties

The following important conclusion related to the use of finite size RVEs is pointed out
by Ostoja-Starzewski et al. [124]. Let us consider a dominium Ω and a subdominium of

11Although some improvements can be performed [136], Monte Carlo Simulation is based in the repetition
of some experiment which depends on some random variables. Then, distribution functions for the output
can be found.

12See Annex A for boundary conditions descriptions
13Voronöı cells are traingles or thetraedra which include an inclusion on void within. Ghosh and

Moorthey [58] developed a special finite element formulation for Voronöı cells
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it ω ∈ Ω whose size is denoted by δ. This subdominium ω is used as a RVE to compute
the effective elastic tensors. Two procedures can be applied for this purpose:

• Displacement boundary conditions (essential or Dirichlet boundary conditions) of
the type of equation 2.72 are applied to the RVE:

ui = εij · nj (2.72)

where ε̄ is the volume-averaged strain. The condition 2.72 corresponds to the fol-
lowing interpretation of the Hooke’s law, which is written from the standpoint of
controllable strains:

σ = Ce
δ : ε̄ (2.73)

where the superscript e stands for essential boundary conditions. The former equa-
tion can be applied to each finite element in order to obtain an estimate of Ce

δ and
obtain the ensemble average of them 〈Ce

δ〉
• Force boundary conditions (natural or Neumann boundary conditions) of the type

of equation 2.74 are applied to the RVE:

ti = σ̄ij · nj (2.74)

where σ̄ is the volume-averaged stress and nj the outer unit normal to the boundary.
In this case the Hooke’s law is written from the standpoint of controllable stresses:

ε = Sn
δ : σ̄−1 (2.75)

where n denotes the natural boundary condition and δ the scale dependency. An
estimate of Sn

δ can be found for each element in the mesh, by using Equation 2.75.
The ensemble average 〈Sn

δ 〉 of this estimates could then be computed.

The following order relation is pointed out by Ostoja-Starzewski et al. [124][118]:

(SREUSS)−1 ≡ 〈Sn
1 〉−1 ≤ 〈Sn

δ 〉−1 ≤ Ceff ≤ 〈Ce
δ〉 ≤ 〈Ce

δ′〉 ≤ 〈Ce
1〉 ≡ CVOIGT ∀δ′ < δ

(2.76)
where SREUSS and SVOIGT recall the Reuss and Voigt bounds of Section 2.4.1.

Expression 2.76 means that the larger the window scale δ the closer are the bounds,
and in the limit δ → ∞, the bounds coincide and the difference between both types of
boundary conditions disappears. The subscript δ = 1 denotes the smallest scale. A proof
for Equation 2.76, using the energy principles defined in Section 2.4.1, is given in reference
[82]. In the same paper, the requirement of equivalency of the boundary conditions is
shown to be an extension of the Hill Condition of Section 2.1.4.
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Figure 2.3: Convergence of bounds for the elasticity tensor
for the RVE increasing size for Cf/Cm = 100 (left) and Cf/Cm = 104 (right).

(Figure taken from Ostoja-Starzewski et al. [118])

Following this development, Ostoja-Starzewski and co-workers [118] [119] [125] and
Jiang and Jasiuk [82] [81] devoted some papers to the determination of the RVE size and
scale dependency of composite materials.

In reference [118] an extensive work is devoted to the determination of the RVE size.
Several materials showing a wide range of contrast14 values are considered, from rigid or
stiff disks (having large values of the contrast) to holes (having near zero values). Elasticity
Equations are solved using spring networks (Reviewed in Section 2.6.3). Figures plotting
the convergence of stiffness and compliance tensors, which are computed by imposing
essential (Equation 2.72) and natural (Equation 2.74) boundary conditions are given for
each value of the contrast considered (104, 100, 10−2, 10−4). Fibre-reinforced composites,
which are being considered in this work, normally have contrast in the range 100 − 104,
for which in the work by Ostoja-Starzewski, as shown in Figure 2.3, a size of the RVE of
L/d = 25− 30 seems to be enough. Further considerations on the inclusion shape are also
given in the same work.

Variational principles

Drugan and Willis [47] give some quantitative values for the RVE size. Focusing on two-
phase elastic composites with spherical and isotropic randomly distributed reinforcements
and using the Hashin-Shtrikman variational principle the authors find the minimum RVE
length needed for a given accuracy. As seen in Section 2.1.3, Drugan and Willis use ex-
plicitly a slightly different from the classical RVE definition, based only in the accuracy
of the value of the effective property.

Their work is based on expressing the constitutive equation of the composite in the
following non-local manner:

14In composite materials, usually the ratio between the elastic properties of the fiber and the matrix
(E(f)/E(m)) is called the contrast.
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< σ > (x) = L̂ < ε > (x)− 1
2

< T̃ >,mn (0)
∂2 < ε > (x)

∂xm∂xn
(2.77)

Expressions for the fourth-rank tensors L̂ and T̃ can be found in the same reference [47].

To perform the computation of the minimum RVE length for a given accuracy, they
consider ensemble averaged strain fields < ε > (x) that vary with position and determine
at what wavelength this variation will cause a variation in the first right-hand-side term
in 2.77, which is, indeed, the local term. Therefore, they determine the RVE length by
comparing the second right-hand-side term in 2.77 with the first.

As a result, they give the minimum RVE size for different accuracies, volume fractions
of the reinforcement and different ratios of the elastic properties of the reinforcement and
the matrix. They point out that for an accuracy of 1%, for volume fraction from 0.025
to 0.4 the RVE size should be at least 4.5 times the diameter of the reinforcement. For
the same conditions, and for an accuracy of 5% the RVE should only be two times the
inclusion diameter.

2.6.2 The Embedded Cell Approach (ECA)

The Embedded Cell Approach (ECA) is a computational method for the analysis of mi-
cromechanical stress and strain fields which combines macro and micromechanics mod-
elling. The aim is to predict the microfields at high spatial resolution. It has been widely
used for Metal Matrix Composites (MMC) [29] [90].

This technique models the heterogeneous material as a core which contains discrete
phase arrangement (local heterogeneous region) and which is embedded within an outer
region of homogeneous material to which far field loads or displacements are applied, as
shown in Figure 2.4.

The inner region can be a highly detailed description of experimentally observed phase
arrangement and the outer region may be described using some macroscopic constitutive
law [90], determined self-consistently from the behaviour of the core [46], or even can be
a coarse description of the global phase arrangement.

2.6.3 Spring networks

The use of the Finite Element Method in the analysis of microstructures requires of fine
discretization and, consequently, a great number of finite elements which suppose large
computation times. Instead of working with finite elements, Ostoja-Starzewski and co-
workers [123][124] [8] use the spring network technique.

In this numerical technique the dominium is discretized in a regular network of springs.
Inclusions (fibres) are forced to have its center in one of the network points. Then, mechan-
ical properties are associated to each spring, depending on which material they represent.
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Figure 2.4: The Embedded Cell Approach

The equations of the springs are similar to those of the finite difference method [123].

Springs can have also an associated ultimate strength or strain and once they reach
these value they are supposed to break and a zero value is given for its stiffness. Ostoja
and co-workers have used this method for the simulation of damage evolution in random
inclusion composites [124] and polycrystals [60].

Another important advantage of this approach is that, since fibres are forced to have
its center in one of the network nodes, no re-meshing is needed.

2.7 Conclusions

In the present chapter, the main approaches for computing the effective properties of com-
posite materials have been reviewed.

Although the Voigt and Reuss bounds of Section 2.4.1 give values which are far from
real materials, can always be used as a necessary condition of any bound development.
However, the Hashin-Shtrikman derived bounds for elastic two phase composite of Equa-
tions 2.45 - 2.52 give more accurate values and they will be used for the verification of the
Statistical Volume Element developed in Chapter 5.

The different approaches of homogenization procedures imply periodicity of the geo-
metry and so, cannot be used for the simulation of geometrically random materials.

The concept of Representative Volume Element (RVE) is of crucial importance in the
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simulation of the microstructure of composite materials. Although in its theoretical defini-
tion, the RVE is an infinite limit, for the purposes of computational methods, a finite size
volume RVE has to be found. From the mechanics standpoint there are several criteria
which are applicable for this purpose and some work has been performed in this direction.
Unfortunately, the works reviewed so far, which use different criteria for the RVE size de-
termination, as summarized in Table 2.1 , lead to different RVE sizes which vary around
from 4 to 20 times the fibre diameter.

The Embedded Cell Approach (Section 2.6.2) is a simulation technique for random mi-
crostructures which provides a solution to avoid boundary condition concentration effects.
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Chapter 3

Transverse Failure in Polymer
Composites

3.1 Introduction

Fibre reinforced composites are normally composed of glass or carbon fibres and a polymer
matrix. These fibres are much stronger than the polymer matrix and have as a main func-
tion to carry the load. The main function of the matrix is to transfer this load to the fibres.

As happened with the rule of mixtures1, the failure behavior in the direction of the
fibre is dominated by this constituent and, on the other hand, the failure behavior of
the transverse direction2 is influenced mainly by the behavior of the matrix. For this
reason, and since the mechanisms involved in each one are uncorrelated[131] is is normally
distinguished between:

• Fibre failure. Which affects laminae with main loads in fibre direction.

• Matrix failure. Which affects laminae with main loads in the transverse direction.

• Interface failure. Which causes loss of adhesion between fibre and matrix.

As was mentioned in the introduction chapter, the usual methods of design with com-
posite materials try to align the load with the fibres but in complex geometries and in
cross-ply laminates, loads and reactions may also take place in different directions to that
of the fibres. Moreover, composites are seldom used exclusively in the transverse direction,
but 90o layers and off-axis ply layers are usually employed in common laminates. For these
reasons, failure criteria for those plies are also required to reach a safe and efficient design.

From the point of view of damage mechanics the mechanical behavior of the trans-
verse section is also of interest. It is generally accepted that the primary mechanisms of
failure initiation in laminates are: fibre/matrix debonding and matrix failure and that

1Described in Section 2.3.1 of Chapter 2
2As has been used in the former chapters, the transverse direction or transverse plane is any direction

or any plane perpendicular to the fiber direction

39



40 CHAPTER 3. TRANSVERSE FAILURE IN POLYMER COMPOSITES

the predominant mechanism in the initial stage of mechanical degradation in composite
laminates is the formation and growth of intralaminar matrix cracks in off-axis plies. As
denoted by Asp et al. [13] [15], these cracks can be produced by yielding and cavitation
and have an influence in stiffness degradation [6], damage [97, 73] and fatigue [35] and are
related to delamination [113].

The close relation between the phenomena involved in the fracture initiation is ex-
pressed by Asp et al. [15], who affirms that:

“in composites loaded in tension normal to fibers, three competing initiation
mechanisms can be expected to occur: fiber/matrix debonding, yield in matrix
and cavitation-induced brittle matrix failure. In a real composite, which may
have an irregular distribution of fibers, it is expected that the local stress
states would vary such a that the mix of deviatoric and dilatational stress
components could vary from purely deviatoric to purely dilatational. Thus the
matrix could yield in some regions while other regions could fail by cavitation-
induced cracking.”

Asp and co-workers are the responsible of an important set of papers [12, 13, 14, 15]
regarding the initiation of matrix cracking transverse failure of long fibre reinforced com-
posites. It is known -and it can be seen from the elasticity relations of Chapter 2- that
transverse behavior of long fibre reinforced composites is matrix dominated but, as ob-
served by Asp and co-workers [12, 14] and, in fact, the motivation for their work was that,
the strain to failure of a transversely loaded composite (between 0.5 and 0.8%) is much
lower than for the pure matrix in uniaxial tension (normally between 1.8 and 7%). In their
works, they study the stress state in the matrix of fiber reinforced composites using the
poker-chip test [12], they propose a criterion for crack initiation based on the dilatational
energy density [13], and, using this criterion, they make predictions of matrix-initiated
transverse failure for composites with different volume fractions and assuming different
arrays of unit cells [14]. In another work [13], also using the proposed criterion, they
analyze parametrically the influence of some other aspects like: the elastic modulus of the
fibers and the presence of a fiber-matrix interphase. According to Asp and co-workers
[12, 14, 15] the cavitation-induced brittle failure is assumed to occur at a point when the
dilatational energy density attains a critical value. On the other hand, Asp and co-workers
[12, 14, 15] use The Von-Misses criterion as a indicator of the beginning of the yielding in
the matrix, although it is known that it overestimates the yield stress in the first quadrant
of the stress plane, while in the other quadrants it is underestimated.

This chapter summarizes some micromechanical3 failure criteria, specially the one
developed by Asp and co-workers but, first reviews some macromechanical criteria.

3.2 Review of some macroscopic criteria

There already exist some in depth reviews of failure criteria for long fibre reinforced com-
posites, like the one by Paris [126]. The purpose of this section is only to review those

3Micromechanical denotes here that these criteria can be applied to a single constituent
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Figure 3.1: Hashin and Roten [68] criterion for matrix failure

which describe concepts which can be useful for this work.

3.2.1 Hashin’s criterion

Usual transverse failure criteria for composites are concerned with strains and stresses
which are present in the lamina, like the one proposed by Hashin and Roten [68]:

(σ22

Y

)2
+

(σ12

S

)2
= 1 (3.1)

where σ22 is the nominal stress in the lamina in the transverse direction, σ12 is the
nominal shear stress in the plane of the lamina, S is the in-plane shear strength of the
lamina and Y stands for the strength of the lamina in the transverse direction which must
be replaced for the compression strength (YC) or tension strength (YT ) if they are different.
This criteria does not take into consideration interface failure and, as shown in Figure 3.1,
poses that matrix failure mode can be modelled as a quadratic function of transversal and
tangential stresses.

Hashin modified this criteria for the compressive mode [66]:

(
σ22

2ST

)2

+

[(
YC

2ST

)2

− 1

]
σ22

YC
+

(σ12

S

)2
= 1 (3.2)

where ST is the transversal shear strength, S is the shear strength and YC is the
strength in the direction transversal to the fibres in absolute value while σ22 keeps its
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Figure 3.2: Stress components in a UD composite. In this figure σ1 and σ2 denote,
respectively, σ11 and σ22 instead of principal components of the stress tensor as in the rest
of this work . Source: Puck and Schürmann [131]

sign.

3.2.2 IFF Puck’s criterion

Puck’s criterion describes fibre failure (FF) and matrix or inter-fibre (IFF).In this section
only the latter one will be considered, since it is the one related to the topic of this work.

Other approaches can be derived if the failure is assumed to happen in any plane
parallel to the fibers where the stress vector has the components: σn, τnl (longitudinal
direction or fiber direction) and τnt (transversal direction). A failure criteria can be written
for this plane [131, 66]:

(σn

Y

)2
+

(τnl

S

)2
+

(
τnt

ST

)2

= 1 (3.3)

where Y, S, ST are, again, the allowable values for σn, τnl and τnt, respectively. From
this starting point, Puck and Schürman made some improvements and proposed a new
criteria for the transverse or inter-fiber failure [131]. Their starting point was to assume
that failure happened at an inclined plane parallel to the fibres and, according to Mohr’s
theory4 [107], they proceeded on the hypothesis that fracture is exclusively related to the
stress components which act on the fracture plane: σn, τnt, τnl. Figure 3.2 plots these
stresses for a general fracture plane θ.

These three stress components can be easily related to the stress components acting
on the lamina:

σn = σ22 cos2 θ (3.4)

4Which will be reviewed later in this chapter
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τnt = −σ22 sin θ cos θ (3.5)
τn1 = σ21 cos θ (3.6)

Following Puck’s nomenclature the stresses σn, τnt and τn1 represent, respectively, a
transverse stressing (σ⊥), a transverse-transverse shear stressing (τ⊥⊥) and a transverse-
longitudinal shear stressing (τ⊥‖). The subscripts of these stressing terms denote if they
are perpendicular (⊥) or parallel (‖) to the fibre direction. Then, according to Puck and
Schürmann [131]: ”These three stresses σn, τnt, τn1 must necessarily have a common stress
action plane and, consequently, must be compared to the fracture resistances RA5 of their
action plane, and not just to some strength which might belong to any other fracture
plane. Consequently, equation 3.3 can be written in a more general form:

(
σn

R
(+)A
⊥

)2

+
(

τnl

RA
⊥⊥

)2

+

(
τnt

RA
⊥‖

)2

= 1 for σn ≥ 0 (3.7)

With this equation as starting point, Puck and Schürmann [131] and distinguishing
between traction and compression developed the well-known Puck’s criterion, which for
an UD lamina and θfp = 0o can be written:

√(
σ21

S21

)2

+
(

1− p
(+)
⊥‖

YT

S21

)2 (
σ22

YT

)2

+ p
(+)
⊥‖

σ22

S21
= 1 for σ22 ≥ 0 (3.8)

1
S21

(√
σ2

21 + (p(−)
⊥‖ σ22)2 + p

(−)
⊥‖ σ22

)
= 1 for σ22 < 0 (3.9)

where:

p
(+)
⊥‖ = −

(
dσ21

dσ22

)

σ22=0

of (σ21, σ22) curve , σ22 ≥ 0

p
(−)
⊥‖ = −

(
dσ21

dσ22

)

σ22=0

of (σ21, σ22) curve , σ22 ≤ 0

Usual values for this derivative terms are given by Puck et al [130]: p
(+)
⊥‖ = 0.3 and

p
(−)
⊥‖ = 0.2. The graphical interpretation of IFF Puck’s criterion is given in Figure 3.3.

The criteria reviewed so far are macroscopical design criteria and they do not take into
account local phenomena which take place in the matrix, and which may be responsible
of failure. Instead of this, they use stresses associated to a plane. Paris et al [126] proved
experimentally that to associate the failure of the matrix at a plane to a certain interac-
tion between the components of the stress vector associated to the plane does not, generally
speaking, appear to be a physically based hypothesis. In this direction Dávila and Camanho
[42] have recently developed, under the name of LaRC, a group of failure criteria which
take into account in situ effects.

5Where ”A” denotes action plane
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Since the present work is based on microscopical observation and tries to relate the
failure behavior , in the following sections local phenomena and failure criteria are re-
viewed. First, it is convenient to present a short description of the matrix stress state in
the transverse direction of a composite.

3.3 Stress state in the matrix of composites loaded trans-
versely

One of the most common materials which are used for matrixes in long fibre reinforced
composites are epoxies, and, more generally, polymers. These materials are plastics, or
equivalently, they yield when an stress greater than certain constant value is applied to
them. As was said in the introduction, although these materials are plastics the transverse
failure of composites is normally brittle. Some researchers have analyzed these phenomena.

Driven by some studies [55, 43] which suggested that the triaxial matrix stress state
could be important for initiation of transverse failure in the matrix at low strains, Asp and
co-workers analyzed the stress state in the matrix of long fiber reinforced composites [12].
They performed Finite Element analysis to determine the stress state in a transversely
loaded composite. They used a unit cell containing a single fiber and used periodicity
conditions to model a square array of fibers.

From the FE results, they observed that a triaxial stress state acts in the matrix of
the composite. The ratio of the stress component magnitudes is approximately 1: 1: 2 (x
:y : z), where Z, the largest stress component, is in the loading direction. This ratio varies
with position in the composite.

Since a triaxial stress state appears in the matrix of transverse loaded composites the
poker-chip test, which has been used widely for rubbers, was proposed like a convenient
test to determine the properties of the matrix of the composite. In this test a disk-shaped
specimen is subjected to a traction force, in a way that the central part of the specimen
is submitted to a nearly uniform state of triaxial tension [75]. The test and the specimen
are schematized in Figure 3.4.

Using the governing equations of the poker-chip test they obtained a stress state rela-
tion close to 1:1:2 (x:y:z) that is, similar to the stress state in the matrix of a composite
loaded in the transverse direction.

Asp and co-workers [12] performed tests for four different resin systems and compared
the results of the obtained strength and strain to failure with those obtained with uniaxial
tests. The notation used for the names of the epoxy systems is epoxy component/curing
agent, where the name of each epoxy component and curing agent can be found on the
List of symbols section of this work. A good description of each resin and curing agent
can be found in the chapter of Comprehensive Composite Materials by Nairn [112]

The results they obtained are shown in Table 3.3, where it can be seen that the strength
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Figure 3.3: Graphical interpretation of Puck’s criterion for σ22 − σ21 plane

Figure 3.4: Illustration of the poker chip test (left) and typical poker-chip specimen (right).
Source: Asp et al.
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Resin system Uniaxial
strength
(MPa)

Poker-chip
strength
(MPa)

Uniaxial strain
to failure (%)

Poker-chip
strain to
failure (%)

DGEBA/DETA 69.0± 5.4 29.1± 4.5 7.00± 1.5 0.85± 0.1
DGEBA/MHPA 85.9± 3.8 26.9± 5.7 6.5± 1.0 0.57± 0.2
DGEBA/APTA 73.1± 1.2 32.0± 2.2 6.14± 0.5 0.79± 0.1
TGDDM/DDS 59.9± 12 26.6± 7.7 1.77± 0.4 0.55± 0.2

Table 3.1: Fracture data and standard deviations from triaxial and uniaxial tests.
Source: Asp et al. [12]

of the matrix under triaxial state can be reduced from a 55% to a 70% with respect to the
strength under uniaxial stress state and the strain to failure can be reduced between 70%
and 91%. Moreover, the obtained values of the strain to failure with the poker-chip test
are much more similar to the typical values obtained with glass fiber/epoxies composites
than those obtained with the uniaxial test.

Another important conclusion of the research is that epoxies cured with aliphalitic cur-
ing agents (DGEBA/DETA and DGEBA/APTA) show similar stress/strain behavior with
strains to failure around 0.8% and epoxies cured with aromatic and cyclo-aliphatic curing
agents (DGEBA/MHPA and TGDD/DDS) also showed almost identical stress/strain be-
havior and failed at strains of 0.5%.

Finally, as a conclusion, they pointed out that debonding, pre-existing material flaws
and non-uniform fiber distribution are likely to reduce initiation values of transverse strain
failure.

3.4 Criteria for matrix crack initiation

As observed by Asp and co-workers [13], classical approaches in the modelling of matrix
crack initiation observed mainly yielding6 as the first cause and several criteria were pro-
posed. But these criteria usually predicted the effect of hydrostatic compression on the
yield stress satisfactorily but were not accurate when hydrostatic tension was applied.

Asp and co-workers [13] tested three epoxy systems and computed the yield criteria
modified to account the effect of hydrostatic stress. The comparison of the tests data
and the prediction showed that that criterion did not predict the behavior in stress states
close to purely hydrostatic tension. Asp and co-workers proposed that under stress states
resembling those in matrix constrained between fibers, e.g. equibiaxial and equitriaxial
tension (as seen in their former work [12]), yielding is suppressed while brittle failure,
presumably caused by crack growth from cavitation, occurs. Consequently, they proposed
a criterion for this mode of failure based on the critical dilatational strain energy density.

6Yielding is a commonly known phenomenon, associated to plasticity, which produces large increment
of strains for small increments of stress when the effective stress (See definition in Section A.2.3) reaches
certain value usually called yield stress and denoted σy.
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Figure 3.5: Maximum stress criterion

For the experimental validation of the proposed criteria Asp and co-workers performed
uniaxial compression and biaxial tension tests using three different epoxy systems. In the
following of this section, common yielding criteria are reviewed and the criteria proposed
by Asp and co-workers (the dilatational energy density criteria) is summarized.

3.4.1 Brittle failure: Mohr’s criterion

The maximum stress criteria is often employed to predict the failure of brittle materi-
als. This criteria states that failure occurs when the maximum principal stress reaches
the uniaxial tension strength (Xt) or the uniaxial compression strength (Xt). In a plain
stress state, this criteria can be seen as a square defined by Xt and −Xc. The criteria
is satisfied if the principal stresses σ1, and σ2 lie within this square, as shown in Figure 3.5.

A more advanced approach was proposed by Mohr [107], which affirmed that any plane
stress situation could be expressed in terms of a normal stress σn and a shear stress τn.
From this created his well-known Mohr’s circle, shown in Figure 3.6. Mohr’s failure cri-
teria or internal-friction theory states that failure occurs when the Mohr circle at a point
exceeds the envelope created by the two Mohr’s circles for uniaxial tensile strength and
uniaxial compression strength. This envelope is also shown in the same Figure, with a
dashed line.

This failure criteria can also be expressed in terms of the principal stresses. In this
case, if it is plot in the σ1 − σ2 plane it coincides with the maximum stress criterion in
the first and third quadrants. In the second and fourth quadrants it can be represented
as a straight line between (0, σt) and (−σc, 0) and a straight line between (0,−σc) and
(σt, 0), respectively. Figure 3.7 shows Mohr’s criterion and maximum stress criterion in
the σ1 − σ2 plane.
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Figure 3.6: Mohr’s failure criterion in σn − τn plane

Mohr’s criterion has been classically employed in the mechanics of soils and for con-
crete. Usually it is also employed for brittle failure of polymers.

3.4.2 Yielding failure: von Mises and Tresca criteria

The von Mises criterion states that failure occurs when the elastic shear strain energy
density in the material reaches a critical value. It assumes the yielding to be isotropic.
The expression of the yield stress is:

σ2
V M = J2 =

1
2
sijsij (3.10)

Where J2 is the second invariant of the deviatoric part (sij) of the stress tensor7.
An equivalent formulation of the criterion is usually:

σ2
V M =

(σ1 − σ3)2 + (σ2 − σ3)2 + (σ1 − σ2)2

6
(3.11)

where the principal stresses σi follow the convention σ1 > σ2 > σ3. In this form, this
criteria can be seen graphically as a cylinder whose axis σo is located in the intersection
of the three planes defined by the principal stresses8 (that is, σ1 = σ2 = σ3).

The Von Mises criterion does not predict differences in yield stress between compression
and tension, for this reason Raghava et al.[134] suggested the following modification:

2(σyc − σyt)(σ1 + σ2 + σ3) +
+ [(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] = 2σycσyt (3.12)

7See Sections A.2.2 and A.2.3
8As defined in Section A.1, the planes on which the shear stresses vanish are called the principal planes

and the normal stresses on those planes are called the principal stresses
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Figure 3.7: Mohr’s failure criteria in σ1 − σ2 plane

Another well-known approach, the Tresca criterion, proposes that yield will occur when
a critical value of the maximum shear stress, σs, is reached:

σs =
1
2
(σ1 − σ3) (3.13)

The Tresca criterion can be seen graphically as an hexagon on the σ1σ2 plane. This
criteria also can be modified to take into account the dependence of hydrostatic pressure:

σs = σ0
s − α(σ1 + σ2 + σ3) (3.14)

where σ0
s is the shear yield stress in the absence of any overall hydrostatic pressure

and α is a material constant. Both can be found as functions of the compression (σyc)
and tension (σyt) yield limits, which can be determined experimentally:

σ0
s =

(σycσyt)
σyc + σyt

, α =
1
2

σyc − σyt

σyc + σyt
(3.15)

Yield criteria are appropriate for ductile materials, like metals or plastics, but rein-
forced polymers have brittle failure and may not be useful. This fact has been noticed by
some authors [131] and will be discussed in section 3.4.4.

3.4.3 Microcavitation: Dilatational energy density criterion

The strain energy of Section 2.4.1 can be expressed s the addition of two components, the
dilatational and the distortional energies. The distortional term can be written:

Ud =
1

4G
sijsij (3.16)

where G is the shear modulus. It can be seen, by comparison of equations 3.10 and
3.16, that the distortional energy density is the physical basis of the Von Mises criterion
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Epoxy system
Test method DGEBA/DETA DGEBA/APTA TGDDM/DDS

Uv Ud Uv Ud Uv Ud

Poker chip 0.17 0.00 0.20 0.00 0.13 0.00
Thermally loaded epoxy disk (2D) 0.16 0.33 0.27 0.48 0.12 0.23
Biaxial tension 0.21 0.70 0.34 1.00 0.21 0.61
Uniaxial tension −a −a −a −a 0.055 0.42

Table 3.2: Dilatational (Uv) and distortional (Ud) energy densities (MPa) at fracture for
different test methods (a: Non-linear elastic behavior) Source: Asp et al.

[13]

[13].

Under the condition that the distortional energy density at a point is small, much
below that required to cause yielding, Asp et al. [13] proposed that microcavitation will
occur when the dilatational energy density at a point reaches a critical value. Assuming
the material to be linearly elastic, the criterion can be written:

UV =
1− 2ν

6E
(σ1 + σ2 + σ3)2 = U cri

V (3.17)

where σ1, σ2 and σ3 are the principal stresses, ν is the Poisson’s ratio and E the
Young’s modulus. When is satisfied micro-cavitation9 can be considered to start.

3.4.4 Comparison of criteria

Asp et al. [13] carried out some uniaxial, biaxial and multiaxial tests with three different
epoxies. With the uniaxial tests the material constants (σyc, σyt) are determined and with
the biaxial tests a prediction of the yielding is done with each of the formerly described
criteria.

Experimental results show a better agreement in the compression region with the
Tresca criterion and in the tension region with the von Mises criterion. Since this criteria
are three-dimensional it is possible to predict yielding for the composite-like stress state
of the poker-chip tests, as decribed in a former work by Asp et al. [12]. Results show that
matrix yielding will not cause initiation of failure in glass fiber/epoxy composites loaded
transversely and having equitriaxial stress states.

Finally Asp and co-workers [13] compute the dilatational (Uv) and distortional (Ud)
energies for each test and epoxy. This computations are shown in Table 3.2.

From results in Table 3.2, some remarks are done by Asp and co-workers [13]:

• The critical value of the dilatational energy density (Uv) is nearly constant for
DGEBA/DETA and DGEBA/APTA, and not very different for TGDDM/DDS.

9Cavitation is a known phenomena in fluids but here it refers to the apparition of voids or micro-holes.
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• The value of Uv is higher for the three epoxies in the biaxial test than in the poker-
chip test. This may be caused by the fact that the biaxial test produces unequal
principal stresses and, consequently, significant deviatoric stress components which
increase the distortional energy density (Ud).

The work of Asp et al. [13] leads to an important conclusion: in evaluating matrix
behavior in fiber composites loaded transversely, both yielding and crack initiation from
microcavitation must be considered.

3.5 Prediction of transverse failure

From the works by Asp and co-workers it has been seen that matrix in long fiber rein-
forced composites loaded transversely are submitted to a nearly equitriaxial stress state
[12] which cause crack initiation and that the dilatational energy density criterion is a
useful indicator of this phenomena in epoxies[13].

From this basis, Asp et al. [15] performed some simulations and tests on glass fiber
composites loaded transversely. Three different packing arrangements were simulated:
square, hexagonal and square-diagonal each for different volume fractions between 0.2 and
0.8. They assumed two different modes of failure: matrix cracking and yielding. Initiation
of matrix cracking is assumed to happen when the dilatational energy density reached a
critical value Uv > U crit

v , being the critical value U crit
v a parameter of the material which

they have already obtained experimentally in a previous work [13]. For the yielding mode
they used von Mises criterion.

The results of the FE modelling show how in any case the critical yield stress was
reached before the dilatational energy density reached his critical value. That means, the
cavitation-induced brittle fracture (matrix-cracking) is the more critical of the two failure
modes considered. However, the once the crack initiation has started, it may cause local
yielding due to stress concentration in cracked zones. They obtained plots of ultimate
strength (σult) and ultimate strain (εult) versus the fiber content (vf ), as shown in Figure
3.8, where square-diagonal array (square array tilted 45◦ to the load direction) turns out
be the most critical of the three analyzed arrays.

They also compared the results from the square fiber array with the experimental re-
sults reported by de Kok [43] and produced plots of ultimate strength (σult) and ultimate
strain (εult) versus the fiber content (vf ), showing predictions using von Mises yield cri-
teria and dilatational energy density criteria, as shown in Figure 3.9. Results show good
agreement with experimental data.

3.6 Conclusions

• Macromechanical and micromechanical failure criteria for the transverse section of
long fibre reinforced composites have been reviewed.

• From the micromechanical criteria, the dilatational energy density, seems to predict
well the failure on carbon fibre and glass fibre reinforced composites.
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Figure 3.8: Ultimate strength (σult and ultimate strain εult) versus fiber content (vf ))
Source: Asp et al. [15]

Figure 3.9: Experimental data and Failure predictions (von Mises and Dilatational energy)
Source: Asp et al. [15]

• Works which show the dependency of the results of simulations on the chosen geo-
metry of the unit cell have been reported.



Chapter 4

Models for Random Multi-phase
Materials

4.1 Introduction

Traditionally, the study of the micromechanics in composite materials has been performed
assuming periodicity or regularity in the distribution of the fibre. Often, a single inclusion
model has been used to represent the material [38]. This approach provides simplifications
which lead to the possibility of analytical solutions or, in the case of computational meth-
ods, reduces the computation time. However, this approach may represent an idealized
material which may be useful for computing effective elastic properties but differs from
the reality in some important aspects.

It has been experimentally shown that the void and reinforcement distribution have
strong effect on the effective properties of materials [19] [100] [33] and on their plastic
behaviour [95]. For example, in the work by Lewandowski et al. [96] it is shown how
locations with reinforcement clustering are more likely to suffer damage initiation and
accumulation. The work of Werwer et al. [157] shows the dependency of hardening mech-
anisms of metal matrix composites on the inclusion distribution. Recently, the work by
Matsuda et al. [102] showed the dependency of micro stress and strain fields in long fibre
reinforced laminates on the fibre distribution and pointed out that those distributions
should be analyzed in depth for damage prediction.

Some researchers have shown that the computed mechanical behavior depends on the
choice of the unit cell geometry which is used in the analysis [98] [160], so the compu-
tationally advantageous use of periodic boundary conditions together with deterministic
unit cells supposes certain dependency on the discretization or chosen representation of
the material. According to Ostoja et al [124] when considering the random distribution
of the microstructure of composite materials some questions emerge:

1. what is the effect of randomness of inclusions’ arrangements versus (the usually
assumed) periodicity on the damage formation and evolution

2. what are such effects, in terms of damage patterns and effective constitutive laws,

53
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for a wide range of material parameters?

3. what are the scale effects on statistics of key parameters, such as the strain-to-failure
ratio?

4. what are effective stochastic constitutive laws?

This chapter tries to review the theory and state-of-the-art of the research in this
direction. First some definitions about random fields are given. The tools for statistical
modelling of composite materials are summarized in Section 4.4. Some models for the
simulation of random composite materials are reviewed in Section 4.5. First, in Section
4.2, a review on the main concepts of random fields is given. The basics from multivariable
statistics can be found in books such as that written by Johnson [83]. One may consult
the book by Chiang [36] for a further knowledge on stochastic processes and the book by
Vanmarcke [155] for the concepts on random fields.

4.2 Random fields: properties and definitions

4.2.1 Random fields

When analyzing real materials in a microscopic scale there are many variables which
one should consider random, and which depend on their spatial position or depend on
the instant in which they are measured. In other words, a random variable, i.e. the
concentration of certain pollution element in the water of a river, may be strongly related
to the concentration in the points in the nearby and to the concentration in previous
time instants. The same could be said of structural loads such as wind or earthquakes in
buildings or civil constructions. This correlation can be defined in mathematical terms
[40]. Let x ∈ Rd be a spatial location in a d-dimensional space and let us assume Z(x),
measured in x, is a random variable. If we let x vary over an index set Ω ⊂ Rd, we can
express the multivariable random field Z(x) as:

{Z(x) : x ∈ Ω} (4.1)

A process which variation is given in space and time is designed:

{Z(x; t) : x ∈ Ω, t ∈ T} (4.2)

If x ∈ R (that is, the variable is only function of one spatial dimension), the term
random process is used instead of random field.

Usually, the very first assumption which is done when estimating random fields, is
the assumption of ergodicity of the field. A random field is said to be ergodic when any
information about it can be obtained from a single realization1.

1A plain definition of realization could be “the event for which a random variable obtains a definite and
unique value”
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4.2.2 Types of Random Fields

Depending on the nature of the domain Ω, four types of random fields are defined [40]:

• Time series or Random series in which Ω is the temporal dimension. Usually the fa-
tigue behaviour of composite materials [86] [137] and general mechanical engineering
materials [24] [45] are modelled using time series.

• Geostatistical data. When the spatial index x varies continuously within a subset of
Rd. Most of the physical properties of materials can be seen as geostatistical data.
In fact the science of Geostatistics has been mainly developed in the study of geology
and earth sciences.

• Lattice data. When s is a set of equally-spaced points distributed in Rd and related
in some way. Sometimes, in measuring properties, this properties are computed as
mean values. Sometimes, like it happens in finite element meshes, the same value
of the property is considered for a subdomain (the element). In these cases we are
working with lattice data.

• Point patterns. In this case the random variable happens only in some points s.
Actually, the random variable being analyzed is the location or the event (and some-
times also some magnitude related to it). The random position of carbon or glass
fibres in a fibre reinforced composite is a good example of point pattern [114] [141].

4.2.3 Properties of random fields

A random field Z(x) : x ∈ Ω is homogeneous if its distribution functions remain invariant
to translations in the spatial dimensions. This means that the probability functions in this
field only depend on the relative position. In one-dimensional fields the term stationary
is usually employed instead of homogeneous.

Since in real applications it is sometimes difficult to obtain data for which the condi-
tion of statistic homogeneity stands, some relaxations on this conditions can be applied
[120, 121], as is shown in Section 4.2.5.

A random field Z(x) : x ∈ Ω is second-order stationary if [115]:

• The value of the mean µ does not depend on the position x

E[Z(x)] = µ ∀x ∈ Ω (4.3)

• There exists a function B(·) called stationary variance, and it is defined as:

Cov[Z(xi), Z(xj)] = B(xi,xj) = B(xi − xj) = B(h) (4.4)

where Cov[, ] is the covariance, defined in the Appendix B (Equation B.10). If we
consider any lineal combination taking m random field values:
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a1Z(x1) + · · ·+ amZ(xm) (4.5)

with the coefficients {ai} 6= 0 and arbitrary locations {xi}, the variance of this lineal
combination has to be non-negative.

Since the variance is a linear operator [115], this implies:

m∑

i=1

m∑

j=1

aiajB(xi,xj) > 0 (4.6)

A function B(xi,xj) for which the equation 4.6 stands is called positive defined. This
is a very desirable property because, when using positive defined functions for construct-
ing the matrices of lineal systems of equations some computationally efficient numerical
methods can be used in their resolution.

If besides of being second order stationary, the difference between any two values of
the random field is a function of the vector h which joins their respective positions:

Var[Z(xi)− Z(xj)] = 2γ(xi − xj) = 2γ(h) (4.7)

the random field is intrinsically stationary. Then the function 2γ(h) is called vari-
ogram. The field of statistics which studies the instrinsically stationary random fields,
that is, those in which a variogram can be defined, is called Spatial Statistics or Geostatis-
tics [40].

A random field is said to be isotropic if the density functions keep invariant to rotations
in the spatial dimensions. In such a case the statistics of the random field do not depend
on the direction, but only in the distance between points of the domain. Therefore, the
variogram of an isotropic random field it is only a function of the norm or distance of the
vector h:

Var[Z(xi)− Z(xj)] = 2γ(xi − xj) = 2γ(‖h‖) = 2γ(h) (4.8)

Usually the variogram (and also the covariance function) of natural processes has a
constant values for h > h0. Then h0 is called the correlation length and it can be in-
terpreted as the minimum length for which the values of a random field in two different
locations can be considered uncorrelated.

4.2.4 Fourier series expansion of the covariance function

The theorem of spectral representation or Wiener-Khinchin’s theorem of transformation
[40, 32, 114] relates the covariance function of a second-order stationary field2 B(h) with
the spectral density function or power spectrum G(f) using the Fourier transform:

2That is, the stationary variance.
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B(h) =
∫ ∞

−∞
G(f)ei2πfhdf (4.9)

and its inverse transformation:

G(f) =
∫ ∞

−∞
B(h)e−i2πfhdh = 2

∫ ∞

−∞
B(h) cos(2πfh)dh (4.10)

where i is the imaginary unit, i =
√−1.

The spectral density function has analog properties to those of the covariance [32], like
non-negativeness.

The transformation of equation 4.9 converts a problem in the spatial dominium into
a problem in the frequency dominium, and consequently, the physical interpretation of
it stops being intuitive. In spite of that, this transformation is useful because allows to
express a random field using Fourier series:

Z(k) =
n−1∑

j=0

A(j)ei2πkj/n k = 0, . . . , n− 1 (4.11)

or in an equivalent way:

Z(k) =
n−1∑

j=0

[aj cos(2πjk/n) + bj sin(2πjk/n)] k = 0, . . . , n− 1 (4.12)

The relation between 4.11 and 4.12 is established by means of:

• A(j) = aj − ibj = ‖A(j)‖e−iφ(j) A(j) is called the j-th Fourier coefficient.

• ‖A(j)‖ =
√

a2
j + b2

j is the amplitude

• φ(j) = tan−1(−bj/aj) is the phase of the j-th Fourier coefficient.

4.2.5 Definitions for random materials

As seen in section 4.2.3 some type of random fields have properties which simplify dealing
with them. But these definitions are made from the theoretical point of view and when
working with real random fields some of those properties may not be accomplished in a
strict sense. For this reason, Ostoja-Starzewski [120, 121], based on the work perfomed on
machine made paper, propose new definitions which can be applied to the random fields
related to engineering mechanics materials. These definitions stand on considering the
difference between strict-sense stationarity (SSS) and wide-sense stationarity (WSS). The
first one corresponds with the stationarity (homogeneity) as defined in section 4.2.3. Re-
calling this section a random field is stationary or homogeneous if its distribution functions
remain invariant to translations in the spatial dimensions. This means that the probability
functions in this field depend on the relative position.
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If wide-sense stationarity is considered (WSS) only the mean is expected to be invariant
with respect to translations and the covariance functions are expected to depend on the
interpoint separation only, that is:

• The mean of the field, E [Z(x)], can be considered constant, as seen in equation 4.3

• For any two points xi,xj ∈ Rd, the covariance

Cov[Z(xi), Z(xj)] = 〈[Z(xi)− 〈Z(xi)〉] · [Z(xj)− 〈Z(xj)〉]〉 =
Cov(Z(xi)− Z(xj)) = Cov(h) (4.13)

Ostoja-Starzewski affirms in [121] that this conditions are sufficient for the Represen-
tative Volume Element3. It can be seen clearly that these conditions are the same that
those established in Section 4.2.3 for a second-order stationary field, but without assuming
the existence of a stationary variance.

Let us consider that a random composite material is being analyzed by means of a
finite size RVE. The condition for the estimation of any property of a random field is
that of ergodicity. According to Ostoja-Starzewski, when working with RVEs, the random
fields are required to be quasi-ergodic. That concept means that the random field should
be ergodic in volumes small as compared to the characteristic length scales Lθ of variation
of the field statistics.

In such a case, an appropriate model is given by a strict-sense (SS) cyclostationary
random field, which, for a planar system of square L× L unit cells, is stated as:

F (x1 + mL, . . . ,xm + mL(Z1, . . . , Zm)) = F (x1, . . . ,xm(Z1, . . . , Zm)) (4.14)

where L is a shift vector (in any combination of directions along the coordinate axes),
and m is an integer.

But, according to Ostoja-Starzewski [121], if the microstructure has an imperfectly
periodic geometry in addition to possessing some randomness on the level of the unit cell,
then one should model it as a wide-sense (WS) cyclostationary random field, which for a
system of square unit cells is stated as

< Z(x + mL) > = < Z(x) > (4.15)
Cov(xi + mL,xj + mL) = Cov(xi,xj) (4.16)

The former expressions can be useful in numerical methods such like finite elements
or finite differences which discretize the dominium and compute the solutions in the dis-
cretization points.

3See Section 2.1.3 of Chapter 2 for the definition of RVE
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4.3 Models for Spatial Point patterns

As was introduced in Section 4.2.2, the random position of the fibres within a composite
material can be modelled as a random point pattern. In this kind of random fields, the
location of the point (fibre) is the random variable.

4.3.1 Poisson point field

The usual probabilistic function which is assumed to describe the position of inclusions
in a material is the Poisson point field [114] [141]. This model describes complete spa-
tial randomness (CSR) in the distribution of fibres. That means that the probability of
finding N fibres in a subdominium of area A is the same for any chosen subdominium.
Consequently, this model assumes that clusters of inclusions (fibres) do not take place.

The probability of finding k fibres in a window W of area A(W ) is given by:

P [N = k] =
(λ ·A(W ))k

k!
· e−λ·A(W ) k = 0, 1, . . . (4.17)

where λ is the fibre density, that is, the number of fibres per unit area.

The Algorithm 1, of Section 5.2.2, can be used for the simulation of the number of
fibres, given the window area A(W ) and the fibre density λ.

Nevertheless, the Poisson distribution is physically unattainable due to finite dimension
of the inclusions. For this reason, the Poisson distribution is often used for comparison
purposes and may serve to distinguish between aggregated and more regular patterns.

4.3.2 Poisson hard-core model

A slight modification in the Poisson point field model is usually taken into account in order
to reproduce real situations, in which the inclusions have a finite radius. In this case, the
center of two inclusions cannot lay in a distance closer than its diameter. So, this model,
which is also known in the literature as Matérn’s model, is normally employed to describe
the random position of the fibres within the composite.

For the cases in which the radius of the fibre r is much smaller than the sample
window, it can be considered that the Poisson hard-core model and the Poisson model are
equivalent.

4.4 Statistic description of random composite materials

This section provides some useful functions and formulas for the description of the statis-
tics of the constituent distribution in a composite material.

Let us consider a composite material made of i = 1, . . . , n homogeneous and
perfectly bonded constituents. The volume fraction of the constituent i is denoted by ci.
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4.4.1 The indicator function

Let us define the indicator function χr(x) which is equal to 1 when the location x lies in
phase r and zero otherwise [141] [114] [158] :

χr(x) =
{

1 x ∈ r
0 otherwise

(4.18)

4.4.2 Probability functions

Using the indicator function as it has been defined, the probability of the location x
belonging to r (Sr(x)) is defined by the ensemble average of the function χr(x):

Sr(x) = χr(x) (4.19)

The probability of finding the phases r at the point xi and the phase s at the point xj

(in other words, the two-point probability Srs(xi,xj)) can be expressed as:

Srs(xi,xj) = χr(xi)χs(xj) (4.20)

The functions described in equations 4.19 and 4.20 are normally difficult to compute.
However, if the material can be considered statistically homogeneous and ergodic, the
following simplifications can be considered:

Sr(x) = lim
Ω→∞

∫

Ω
χr(x)dx = cr (4.21)

If we sample the dominium Ω with a set of locations xi with i = 1, . . . , n, cr can be
estimated easily:

ĉr =
1
n

n∑

i

Sr(xi) r = f,m (4.22)

If the random field can be considered statistically homogeneous, the two-point proba-
bility Srs depends only on the distance vector between the two locations:

Srs(xi,xj) = Srs(xi − xj) (4.23)

If, moreover, the material can be considered statistically isotropic, the function Srs

depends only on the absolute difference of the locations xi and xj :

Srs(xi,xj) = Srs(|xi − xj |) (4.24)

Z. eman and Šejnoha [163] describe a procedure for the estimation of Srs .
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4.4.3 Second order intensity function

The most informative descriptor of the point distribution is given by the second order
intensity function K(h) [132], which is usually called Ripley’s K-function [111]. This
function is defined as the number of further points expected to lie within a radial distance
h of an arbitrary point and divided by the number of points per unit area.

Corrections due to edge effects have to be performed in the estimation of K(h) [133][111].
In the research work by Mucharreira [111] some of the approaches for the estimation of
K(h) are collected and compared. Ripley’s [135] estimator seems to be the more appro-
priate:

K(h) =
A

N2

N∑

k=1

w−1
k Ik(h) (4.25)

where N is the number of points in the observation area A, Ik(h) is the number of
points in the circle with center at one of the points and radius h and wk is the proportion
of the circumference contained within the sampling area A to the whole circumference
with radius h, as shown in Figure 4.1.

Figure 4.1: .
[Estimation of K(h). ωk is the fraction of the area of the circle with radius h which is

contained by the sampling area A

The second-order intensity function of the Poisson set, KP (h) ,in a two dimensional
dominium is given by [114] [141]:

KP(h) = πh2 h > 0 (4.26)

and for a Mathérn (hard-core) process with minimum (hard-core) distance d [114]
[141]:

KM(h) = π(h− d)2 h− d > 0 (4.27)
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For aggregated distributions (that is, distribution showing clusters), K(h) lie above
the line corresponding to the Poisson set and tends todiverge from it as the clustering
tendency becomes more pronounced. On the other hand, under regular patterns K(h)
tends to be below KP(h) [40].

In Figure 4.2 the second order intensity function of some point distributions is plotted.
The deterministic equally-spaced distribution of points (labelled in the figure as regular)
shows a characteristic form of the second order intensity function, having a “stair” shape.
Each “step” in the “stair” indicates a deterministic inter-point distance existing in the
distribution. Horizontal fragments of the function represent empty spaces at the corre-
sponding distances, that is those inter-point distances do not take place in the distribution.

Figure 4.2: Second Order Intensity functions for different fiber arrangements (source: Pyrz
[133])

The second-order intensity function K(h) is sensitive to local disturbances and can be
useful to distinguish between patterns which look similar [133].

4.4.4 Pair distribution function

The pair distribution function g(h) describes the probability of finding an inclusion whose
center lies in an infinitesimal circular region of radius dh about the point h, provided that
the coordinate system is located at the center of a second inclusion. Then, recalling the
definition of the mathematical expectation B.9, the mean number of inclusions within the
circular area with radius h can be written [132]:

n(h) = 2πρ

∫ h

0
ηg(η) dη (4.28)

where ρ is the number density of inclusions within the observation area A.

This latter function is sometimes called the integrated pair distribution. Recalling the
definition of K(h), the mean number of inclusions within the circular area with radius h,
can also be obtained:
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n(h) = ρK(h) (4.29)

By differentiating expressions 4.28 and 4.29, the following relation between g(h) and
K(h) can be found:

g(h) =
1

2πh

dK(h)
dh

(4.30)

Although g(h) and K(h) are related, they provide quite different physical information.
As was said in the former section, K(h) can distinguish between different patterns and
detect regularities, whereas the pair distribution function g(h) describes the occurrence
intensity of inter-inclusion distances. In this function a local maxima indicates the most
frequent distances between points and a local minima the least frequent ones in the pattern.

Matsuda et al.[102] use the following discretized definition of the pair distribution
function:

g(h) =
1

2πhρdh

1
N

N∑

i=1

ni(h) (4.31)

where h is the radial distance from a fibre center, ρ the number of fibres per unit area,
N the total number of fibre centers in the region considered, ni the number of fibre centers
which lay within an annulus of radius h and thickness dh, with the same center as the
fibre i.

The pair distribution function can be used for the statistic description of a composite
sample, instead of the two-point probability function of Eq. 4.20, when the material can
be considered ergodic and statistically isotropic.

Figure 4.3 shows the pair distribution function for some fibre distributions. In this
figure, it can be seen like the pair distribution function of a Poisson pattern is identically
1. Tsherefore when values of g(h) are greater than 1, the corresponding distances occur
more frequently than in a complete random pattern, and conversely for smaller values.

For any homogeneous distribution g(h) tends to 1 for large values of h. Then, we
can find a distance h0 for which g ≈ 1 for h > h0. This distance h0 could be seen as a
measure of the correlation length4 of the point field .In the deterministic pattern, g(h)
does not tend to a constant value and shows peaks corresponding to the deterministic
inter-inclusion distances.

4.4.5 Nearest-neighbor distributions

The second order intensity function, K(h), and the pair distribution function, g(h), are
useful in describing long range interactions between points. Another interesting measure of
how inclusions or fibers are distributed within the material is given by the nearest-neighbor
distribution which can be obtained easily as the probability distribution function of the

4See Eq. 4.7 and subsequent definition
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Figure 4.3: Pair distribution functions for different fiber arrangements
(source: Pyrz [133])

smallest distance to a fiber for each fiber. Analogously, second or third-nearest-neighbor
distributions may be computed. This nearest neighbor functions focus on short-range in-
teractions between points.

For a Poisson point field the nearest-neighbor distribution function D(h) is given by
equation [114]:

D(h) = 1− e−λπh2
h ≥ 0 (4.32)

and the density function d(h) can be easily found by differenciating the former expres-
sion:

d(h) = λ2πhe−λπh2
h ≥ 0 (4.33)

The mean and the variance of the nearest-neighbor distances are given by [114]:

µ =
1

2
√

λ
(4.34)

σ2 =
1/π − 1/4

λ
(4.35)

The generalized formula for the k-th nearest-neighbor function can also be obtained
analytically [114]:

Dk(h) = 1−
k−1∑

i=0

1
i!

(
λπr2

)i
e−λπr2

(4.36)

= 1− Γ(k, λπr2)
Γ(k)

, r ≥ 0, k = 1, 2, . . .

dk(h) =
2

(
λπh2

)k

hΓ(k)
e−λπh2

, h ≥ 0, k = 1, 2, . . . (4.37)
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where Γ(x, y) is the incomplete gamma function, defined as:

Γ(x, y) =
∫ ∞

z
tx−1e−t dt (4.38)

And the i-th moments are given by [114]:

τk
i =

1

(λπ)i/2 Γ(k)
Γ

(
k +

i

2

)
, k, i = 1, 2, . . . (4.39)

The nearest neighbor probability functions of a complete spatial random (CSR) pattern
can be used for interpreting empirical results obtained for other nearest neighbor functions.
If the empirical function is larger than the function for a CSR pattern in the small values of
r, the empirical point pattern is more clustered than random. Conversely, if the empirical
neighbor function is lower than the function for the CSR pattern in the nearest neighbor
distances, the pattern possibly shows some regularity. Typically, the neighbor distances
for a hard-core pattern show values near zero for some small distance.

4.5 Microstructure Models for Random Composite Materi-
als

In this section a review of some works which deal with different aspects of computational
modelling of random composite materials is given.

4.5.1 Statistical Representative Volume Element

As seen in Section 2.1.3 of Chapter 2 the Representative Volume Element (RVE) is a
representation of a subdomain of the material which can be used in the analysis of mi-
crostructures. In Section ?? of Chapter 2 some mechanical criteria for the determination
of the minimal size of the RVE have been reviewed. In this section, some statistical criteria
are presented.

Representative Volume Element through Neighbor distances

Shan and Gokhale [140] compared the properties of a large sample of material (1 mm2)
and those of RVEs of increasing size. The mechanical properties were computed using the
rule-of-mixtures (Equation 2.13) . The comparison variables were the Young’s modulus
and the ultimate strength. For the statistical comparison, they took into account the
distance to the nearest neighbor, and the distance to the second nearest neighbor. Finally
they made use of the distribution of stresses by computing the probability of fracture of a
point in the dominium.

They determined the size of an RVE for a ceramic matrix composite (CMC) with fibres
of random diameter of mean 14 µm. The resulting RVE was 0.1 mm2 and contained about
250 fibres.



66 CHAPTER 4. MODELS FOR RANDOM MULTI-PHASE MATERIALS

Optimal Random Periodic RVE

Povirk [129] proposed a method to consider the inherent randomness in heterogeneous
material within a usual homogenization technique, which deals with periodic materials.
The main idea of this method is to find a periodic RVE with random position of the rein-
forcement but which is optimally representative of the material. The comparison between
the real material and the objective RVE is done by computing the power spectral density5.
Given the length of the RVE and the number of reinforcements contained thereins, an op-
timal RVE is found by solving a minimization problem with an objective function which
compares the power spectral density of the material and the one corresponding to the RVE.

The author’s argumentation for the use of the power spectral density is that “it can
be thought of as a probability density function in the frequency domain. By choosing a
periodic structure on the basis of its power spectral density, the structure will have similar
spatial distribution of reinforcements, and presumably, similar mechanical behavior, as
the actual random structure”. However, this similarity in the mechanical behavior is not
demonstrated.

The method was applied to an ideal material with E(f) = 450 GPa, E(m) = 72 GPa,
squared reinforcements and 27.5% of reinforcement content. In the cases considered, the
reinforcement distribution seemed not to have a strong effect on the elastic behavior. The
author argued that the influence in the mechanical behavior would be greater if plasticity
were considered in the matrix. According to the author, one of the main interests of this
technique could be the study of the initiation and propagation of damage in a two-phase
or porous material.

Z. eman and Šejnoha [163] developed a similar work to the one by Povrik [129]. In this
case, an optimal for the RVE was found by minimizing the second order intensity function
K(h) (Equation 4.25). The authors applied this technique to real composite materials
and showed its efficiency in finding effective properties of a graphite tow impregnated by
a polymer matrix.

Other approaches

Byström [33] computed the effective conductivity of composites with random inclusions
through a homogenization method. In his work, a small size analysis was performed
to determine which is the minimum number of inclusions to get a satisfactory random
composite. Imposing a volume fraction vf = 0.5 models with 4, 16, 64 and 144 inclusions
were solved. The goodness of the model was evaluated by computing the confidence
interval µ ± σ. As a result a random model with 64 inclusions was considered to give a
satisfactory result.

4.5.2 Effect of random phase distribution

Knight et al. described in their work [90] a procedure for evaluating the effect of the
random distribution of the fibre in the transverse section of a composite material. They

5See Section 4.2.4
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used the Embedded Cell Approach (described in Section 2.6.2 of Chapter 2), applying a
remote unit tensile stress (σ0) in the y direction, at a sufficient distance from the core such
that free surface effects could be neglected.

They performed numerical simulations of embedded cells containing 60 equally sized
and randomly distributed fibres. Only full fibres were considered to lay in the core region.
The size of this core region was determined by imposing a fibre volume fraction. The size-
relations between the core size (L), the embedding region size (H) and the fibre radius (r)
were: H/L = 10.7 and r/L = 0.107. The material properties for the embedding region
were computed using Halpin-Tsai relations 6, using ξ = 2.

Different volume fraction values were considered (0.2, 0.4 and 0.6). In the simulation
of the fibre distribution, fibres were avoided to lie nearer than 1.05d (being d the fibre
diameter) to avoid numerical problems. In the same reference [90], this hypothesis was
shown to not affect the imposed volume fraction of the model.

The effect of different Young’s moduli ratio (E(f)/E(m), where f stands for fibre and
m for matrix) and Poisson’s ratio mismatch (ν(f)/ν(m)) were also considered. They took
into account the case in which fibres are nearly rigid (E(f)/E(m) = 100 such as in carbon
reinforced polymers), the fibres are compliant (E(f)/E(m) = 0.1), and two different cases
for Poison’s ratio mismatch (ν(f) = 0.4, ν(m) = 0.2 and ν(f) = 0.2, ν(m) = 0.4). In the
two first cases the Poisson ratio of both constituents was 0.3 and in the two latter cases
the Young’s modulus ratio was 10.

In the simulation of the case with E(f)/E(m) = 100, the results showed that tensile
bands appeared linking fibres which had centers aligned in a direction close to that of the
applied load. Within these bands stress concentrations (which were typically twice the
applied stress, but could be greater) appeared in the regions of the interface between fibre
and matrix. The magnitudes of stress concentrations seem to have strong dependence
on the distance between fibre centers and to a lesser extent on the angle which form a
vector joining fibre centers relative to the applied load. In the other hand, in the simula-
tion where E(f)/E(m) = 0.1 was imposed these stress bands appeared linking fibres which
have centers aligned in a direction which is nearly perpendicular to that of the applied load.

Additionally, the simulation results showed that the Poisson ratio mismatch only
slightly affects the local stress distributions and their magnitudes.

Finally, a three-parameter Weibull7 reliability function:

R(x) = e
−

(
x−γ

β

)α

(4.40)

was used for fitting the stress. In this function α (the shape parameter), β (the scale
parameter) and γ (the location parameter) are positive constants to be fitted. This func-
tion was found to be well suited for expressing the stress distribution.

6See Equations 2.17 and 2.18
7Some generalities of the Weibull probability distribution function are given in Section B.5
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Matsuda and co-workers [102] have also analyzed the effect of transverse fibre dis-
tribution on the mechanical behavior and strain and stress fields of long fibre-reinforced
laminates. Three different unit cells were considered: hexagonal periodic , Y-periodic and
point-symmetric (in which symmetry of the cell is considered with respect to cell facet
centers), as shown in Figure 4.4. As a measure of the randomness degree provided by each
kind of unit cell, they use the radial distribution function (Equation 4.31).

Figure 4.4: Hexagonal periodic, y-periodic and point-periodic unit cells

For the fibre distributions based on the Y-periodic and point-symmetric cell arrange-
ments, g(h) showed some variations around 1. Conversely, the plot of g(h) for the periodic
hexagonal arrangement showed very sharp peaks. This means that the fibre distributions
based on the Y-periodic and point-symmetric arrangements are, in the words of Matsuda
and co-workers, considerably random.

As shown in Figure 4.5.2, the plot of this function showed that the point-symmetric
cell provides a higher degree of randomness of fibre distribution than the Y-periodic ar-
rangement, due that sharper peaks are found in the plot corresponding to the latter one.

Once the point-symmetric unit cell was chosen, Matsuda et al. [102] implemented a
homogenization technique and applied it to a carbon fibre/epoxy laminate in which the
fibre content wa 56%, the fibre material was considered elastic and the matrix material
was supposed to be elastic-viscoplastic.

By computing the homogenization scheme for both, the point-symmetric and the
hexagonal-periodic unit cells and by using a finite element discretization for the in-plane
section, they obtained strain-stress relations for uni-directional and cross-ply laminates.
Finally, they compared the results with experimental values and the conclusions of their
work were the following:

• The point-symmetric cell arrangement can enhance the randomness of the fibre dis-
tribution in comparison with the Y-periodic arrangement

• Transverse randomness of fibre distribution has small effect in the macroscopical elas-
tic behavior of composite laminates but strong effect in the microstructural stress
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Figure 4.5: Radial distribution function for different fibre arrangements
(a) Y-periodic and point-symmetric and (b) hexagonal (source: Matsuda et al. [102])
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distributions. Consequently, it is important to consider the randomness of fibre dis-
tribution for studying microscopic problems such as interfacial damage, microscopic
failure, etc.

4.5.3 Composite with fibre-rich and fibre-poor regions

Yang and co-workers [159] questioned if the non-periodic (random, as it happens in real
materials) distribution of fibres in a composite causes a stress distribution which is dif-
ferent enough from that one caused by a periodic distribution (from the classical models)
and so, random microstructure modelling has to be performed.

In their work, they take digital images from a glass ceramic matrix composite with
unidirectional aligned SiC fibres. Because of the manufacturing process, the microstruc-
ture of this composite shows strips where the reinforcement volume fraction is low. Some
other regions show reinforcement clustering.

This microstructure was modeled in a parametrically way, as shown in Figure 4.6,
which considers the following parameters:

• (NA)f : number density of fibre in fibre-rich region

• (NA)p : number density of fibre in fibre-poor region

• λf : width of the fibre-rich region

• λp: width of the fibre-poor region

Figure 4.6: Geometrical model for random composite with fibre-rich and fibre-poor regions
(source: Yang et al. [159])

Since there are no well-defined boundaries between fibre-rich and fibre-poor regions,
these parameters were fitted by an iterative Monte Carlo simulation process. In this
process, the set of parameters was randomly changed until some statistical descriptors
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(including the pair distribution function of Equation 4.30) were similar to those obtained
from digital images.

Once the parameters were fitted, FE computations using the Embedded Cell Approach,
(Section 2.6.2) of a typical fibre-rich region, a typical fibre-poor region and an intermediate
region were performed. The authors compared then the stress distribution obtained from
these three scenarios and found that the third one was the most critic. The stress distribu-
tion of this scenario was finally compared with a periodic distribution (one with constant
size of the inclusion and another one which considers inclusions having random size) and
it turned out to be significantly different, specially in the tail of the cumulative density
function, as shown in Figure 4.7 where the random distribution is labelled as Frame - a.

Figure 4.7: Probability distribution function of the principal stress of different fibre ar-
rangements

(source: Yang et al.[159])

4.5.4 Spring networks for random composites

As it was presented in Section 2.6.3, Ostoja et al. [124] used the so-called spring networks
for the simulation of microstructures. Here some aspects related to the simulation of ran-
dom composites are reviewed.
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Ostoja and co-workers used a hard-core Poisson point field (See Section 4.3.1) for the
modelling of the distribution of the fibres within the transverse section of the composite.
Moreover, narrow necks were avoided in the simulation of the fibre location, by requiring
the separation between the centers to be greater than the disk diametre d by about 0.1d.

The dominium was discretized with an equally-spaced grid, which determined the
mesoscale size δ. The links joining each grid point represented springs with either fibre
or matrix elastic properties, according to their position in the dominium. Fibre centers
were forced to lie in the grid points. This way, only re-assigning of matrix or fibre elastic
properties to each spring was necessary and there was no need for computationally cost-
ful re-meshing. Imposing periodic conditions the stiffness and compliance tensors could
be computed. These two tensors were shown to depend on the parameter δ, as seen in
Equation 2.76.

Their technique can be used also for obtaining bounds for the elastic response of the
composite, by feeding the obtained tensors, separately, into a finite element code. More-
over, by repeating this process for a sufficient number of realizations, in a Monte Carlo
simulation procedure, any required moment of the bound can be calculated.

Ostoja et al [124] also proposed an alternative method to decrease computing time.
This is based on LU simulation technique [40, 115]. A former simulation using the spring-
network which provides the cross-correlations of the random tensor fields has to be per-
formed.

The described methodology was also used by the authors to solve a conductivity prob-
lem. In the simulation, the fibre centers were avoided to lie in a distance lower than
1.4 times its diameter. The simulated volume fraction was 20%. Results provided closer
bounds than those given by Voigt and Reuss8 and Hashin9. Lower and upper bounds
provided by this methodology get closer when δ is increased.

4.6 Modelling of random composites with interface defects

Kaminski and Kleiber [87] considered a periodic random fibre composite in plane strain.
The composite was considered random in the following sense:

• Young’s moduli in the different phases of the composite were cut-off Gaussian random
fields10 with specified and bounded first two probabilistic moments. These Young’s
moduli in different regions or phases of the material were uncorrelated.

• In the interface between phases micro-defects were considered. These defects were
modelled as random semi-circles with both their radii and frequency of occurrence

8See Section 2.4.1 of Chapter 2
9See Section 2.4.3 of Chapter 2s

10Cut-off Gaussian random fields are Gaussian or normal distributions in which values are greater or
lower than certain value. For instance, in the simulation of elastic properties values of the distribution are
forced to be positive
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being random. The parameters of these defects were assumed to be cut-off Gaussian
random variables.

Following these hypotheses Kaminski and Kleiber used homogenization theory to ob-
tain the expected values and variances of the effective elastic properties of the composite
material. The results were compared with those obtained using Monte Carlo Simulation.

The main conclusions pointed out that the proposed technique was suitable for many
engineering applications and also that, in future studies with the same model, randomness
in Young’s moduli may be neglected and only randomness of the interphase geometry need
to be considered.
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4.7 Conclusions

This chapter reviews the foundations of random field theory for fibre reinforced compo-
sites and the main functions which can be used for their statistical description such as
the second order intensity function and the pair distribution function. The neighbor dis-
tances have been shown to be useful for distinguishing between different random materials.

Moreover, the most representative works aiming to model computationally transverse
random materials have been reviewed. These works use either statistically arbitrary mod-
els or were based on different criteria for the definition of the size of the representative
volume element, as shown in Table 4.7. Moreover, the analyzed approaches do not lead
to a clear idea about the minimum size of a RVE. For this reason, Chapter 5 of this work
will be devoted to the analysis of the minimum required size of a RVE. In this analysis,
the statistical functions reviewed here will be also considered.

Finally, the need of the modelling the random distribution of the fibers in the compo-
site appears as a common point in the reviewed works which compare periodic and random
models.
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Part II

Analysis and simulation of random
fibre reinforced composites
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Chapter 5

Development of a Statistical
Volume Element

5.1 Introduction

In the Mechanics and Thermodynamics of Solids, the definition of a Representative Volume
Element (RVE) is of paramount importance. A review on the evolution of this definition
can be found in section 2.1.3 of Chapter 2. As a reminder, it could be said that a Repre-
sentative Volume Element is a sample of material which is statistically representative of
the whole material. Although the RVE concept has been used widely in theoretical solid
mechanics, for which an infinitessimal RVE is of practical usefulness in the developments
of theories and formulae, in Computational Mechanics a finite size RVE has to be used.
Then, from the definition of RVE, some criteria which the RVE should satisfy arise.

In Section 2.1.3 of Chapter 2 and Section 4.5.1 of Chapter 4 some mechanical and sta-
tistical criteria which a Representative Volume Element should satisfy have been reviewed.
The works reviewed in these sections follow either mechanical or statistical criteria but,
so far, to the author’s knowledge, it has not been published any work which takes into
account both groups of criteria in depth: some were only based on the Hill Condition,
some others analyzed only the fibre position and none considered the statistics and the
distribution functions of the stress and strain fields. Moreover, the works concerned with
the size of the RVE consider criterium assuming only the application of the RVE for the
simulation of the elastic properties, although some of them use the RVE for damage and
fracture [8] simulation.

Another important conclusion when reviewing the works which try to determine the
finite size of the RVE is that different criterium lead to different sizes and, since no com-
parative study for determining which criteria is the most critical has been performed, no
clear conclusion about which criteria have to be used is available.

For these reasons, a scale-dependent comparative study of the different criteria which
characterize somehow the finite RVE size is performed in this Chapter. Moreover, these
criteria are analyzed with the aim of defining a Statistical Representative Volume Ele-

79
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ment (SRVE). This SRVE has to reproduce the same statistics related to the stress and
strain fields than the whole material and also those statistics related to the fibre distribu-
tion. This way, this SRVE will be able to reproduce the random failure behavior of the
composite.

5.2 Methodology

For the determination of the finite size of the Statistical Representative Volume Element,
models of increasing size are constructed and the evolution of some variables or functions
versus the size of the SRVE are analyzed.

First, let us define the dimensionless variable δ, which relates the side length of the
SRVE L and the fibre radius r:

δ =
L

r
(5.1)

From the literature review and conclusions of chapters 2 and 4 values of δ between
4 and 100 are chosen. The models are transformed into finite element models to which
boundary conditions are applied using the Embedded Cell Approach (ECA), described in
section 2.6.2 and then, they are solved for two different loadcases, as it will be seen later.

Some criteria (based on mechanical and statistical variables and functions) which a
Representative Volume Element has to satisfy are analyzed. Some of these criterium are
found in the literature, but some other aspects are considered. The size above which each
criterion is considered to be satisfied can be found by defining an admissible error for
which the criterion has to be satisfied.

In the analysis, the following hypotheses are considered:

• A criteria is only satisfied by a RVE candidate when all the bigger RVE candidates
satisfy this criteria.

• The biggest RVE candidate is considered to be an RVE, and so to have the same
behavior of that of the material.

The considered variables and functions are the following:

1. Fiber content

2. Effective properties

3. Hill Condition

4. Stress and strain fields

5. Probability density functions of stress and strain in the matrix

6. Distance distributions
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These will be analyzed as a function of the SRVE size (δ) to determine for which size
each of them is satisfied. Consequently, the criterion which is satisfied for a larger δ will
also be used to determine the SRVE size.

5.2.1 Material

The present analysis is performed for a typical carbon fibre reinforced polymers (CFRP),
whose main data is shown in Table 5.1.

Property Value
Ef Transverse direction (MPa) 23000

νf 0.22
Em (MPa) 4000

νm 0.34
vf 0.5

Table 5.1: Typical material properties of a CFRP

The material is considered to be ergodic and statistically isotropic when considering
the stress and strain fields and the fiber position as random fields. The position of the
fibres is assumed to be a Poisson point field. The value of the volume fraction (vf ) which
is shown in Table 5.1 is the mean value of a random variable which is dependent of the
number and position of the fibers in the model. The number of fibers is drawn from a
Poisson distribution and, since complete spatial randomness is assumed, the fiber position
is drawn from an homogeneous distribution. The Poisson parameter λ is obtained from a
fixed fibre volume vf , through the following development. Recalling the definition of the
parameter λ, we can write:

λ =
〈n〉
A

(5.2)

where 〈n〉 is the expected number of fibres which lay in the considered dominium
and A the area of that dominium. On the other hand, the fibre volume vf is the ratio
between the total area which is occupied by fibres and the total area of the dominium
under consideration:

vf =
Af

A
(5.3)

taking into account that the volume fraction and the number of fibres are random
variables and taking the expectation operator of each side of the equality:

〈vf 〉 =
〈Af 〉
A

(5.4)

For the computation of the expectation of the total amount of fibre area, let us divide
the squared area into three different regions, as shown in Figure 5.1. These regions are
chosen because they have different expected fibre area.
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Figure 5.1: Regions associated to the RVE area

The expected number of fibres can be written as a function of the expected number of
fibres in each region (ni) and the area of each region (ai):

〈n〉 =
a1

at
· 〈n1〉+

a2

at
· 〈n2〉+

a3

at
· 〈n3〉 (5.5)

Assuming that the mean volume fraction is constant in any subdominium, the expected
number of fibres of each region i can be obtained using the volume fibre and the expected
fibre area in that region 〈a(i)

f 〉:

〈ni〉 =
vf · ai

〈a(i)
f 〉

(5.6)

which for the defined regions

〈a(1)
f 〉 = af = πr2 (5.7)

〈a(2)
f 〉 = af/2 (5.8)

〈a(3)
f 〉 = af/4 (5.9)

where af denotes the area of a single fibre.
Equation 5.5 can then be rewritten:

〈n〉 =
〈vf 〉
af

{
a2

1

at
+ 2

a2
2

at
+ 4

a2
3

at

}
(5.10)

Finally the parameter λ of the Poisson distribution can be related with the volume
fraction:
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λ =
〈n〉
A

=
vf

af ·A · at

[
a2

1 + a2
2 + a2

3

]
(5.11)

where the areas of the regions can be easily found:

a1 = (a− d)2 (5.12)
a2 = 4 · (d− ξ) · (a− d) (5.13)
a3 = 4 · (d− ξ)2 (5.14)
at = a1 + a2 + a3 = (a + d− 2ξ)2 (5.15)

where ξ is a small length set to avoid trouble in the finite element meshing process.

5.2.2 Random Generation of fibre positions

As it was said in the former section, once the Poison parameter, λ, has been obtained, the
number of fibers is drawn from a Poisson distribution, as shown in Algorithm 1.

1: p = 0
2: r = RAND(0,1)
3: k = −1
4: l = λ ·A(W )
5: while p < r do
6: k = k + 1
7: p = p + lk

k! · e−l

8: end while
Algorithm 1: Generation of the number of fibres

The random fiber locations are simulated using Algorithm 2, which considers the hard-
core Poisson model of Section 4.3.1. An important consideration, due to the finite size of
the diameter, is that the generation of the fibre locations must be done within a window of
area greater than A(W), to allow fibres not having its centre in W, but laying partly in W.
Then, the size E for the simulation window should be E = L+2r. Since the model is going
to be discretized with a discretization size χ, to avoid discretization problems near the
window edges, the size of the simulation window should be E = L+2(r−χ). Furthermore,
to evade discretization problems the minimum allowed distance between centres D will be
D = 2(r + χ). This way fibres laying closer than the discretization size are not allowed in
the simulation. A typical algorithm for fibre generation is Algorithm 2.

Using Algorithm 2 models for δ=4, 6, 8, 10, 15, 20, 35, 30, 40, 50, 60, 75 and 100 are
generated. The obtained SRVE candidate models are shown in Figures 5.2 to 5.6.

During the testing and execution of this algorithm, it has been observed that it is very
time-consuming to obtain volume fractions greater than 0.5. This issue will be considered
in Section 8.2 of Chapter 8.
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Figure 5.2: Random models for the determination of the SRVE finite size (x4000, Scale in
mm)



5.2. METHODOLOGY 85

1: N = number of fibers to be allocated
2: D = 2(r + ε)
3: E = L + 2(r − ε)
4: while i ≤ N do
5: ~xi = [ RAND(0,E), RAND(0,E)] {RAND(P,Q) is a function which draws a random

number between P and Q}
6: j = 1
7: while (j < i)&(d > D) do
8: d= DIST(~xi, ~xj) {The function DIST(~a,~b) computes the distance between points

~a and ~b}
9: j = j + 1

10: end while
11: if j == i then
12: i = i + 1
13: end if
14: end while

Algorithm 2: Generation of fibres location

Figure 5.3: Random models for the determination of the SRVE finite size (x2000, Scale in
mm)

5.2.3 Finite Element Modelling

Each model is meshed with triangular elements, using MSC MARC’s three-node plain
strain element type ]6, as shown in Figure 5.7.
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Figure 5.4: Random models for the determination of the SRVE finite size (x400)
(Scale in mm)
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Figure 5.5: Random models for the determination of the SRVE finite size (x366)
(Scale in mm)
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Figure 5.6: Random models for the determination of the SRVE finite size (x375)
(Scale in mm)
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The embedded cell approach is applied by surrounding the RVE cell by an homogeneous
material whose elastic constants are computed through the Halpin-Tsai equations 1, as
seen in Figure 5.8. The boundary conditions are then applied to the boundary of this
homogeneous material. Since an important requirement for the RVE is the equivalency
of boundary conditions2, two load cases -one with constant forces and one with constants
displacements- are applied, in the way shown in Figure 5.9.

Figure 5.7: FE Mesh in the RVE candidate models

1See Equation 2.17, in section 2.4.3
2See Section 2.1.3
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Figure 5.8: Illustration of the Embedded Cell Approach

Figure 5.9: Force and displacement boundary conditions in the RVE candidate models



5.2. METHODOLOGY 91

The main data relative to the finite element models is given in Table 5.2. Figure 5.10
shows that the number of nodes (and the number of elements) is a power function of δ
with exponent greater than 1. This is reflected by a linear dependency on δ when using
a logarithmic-logarithmic plot. This fact shows the importance of defining the minimal
usable size of the SRVE.

delta Absolute size (mm) Number of fibres Nodes Elements
4 0.0140 3 1358 2594
6 0.0210 6 2513 4904
8 0.0280 16 4094 8066
10 0.0350 15 5835 11548
15 0.0525 47 12571 25020
20 0.0700 64 21201 42280
25 0.0875 114 33181 65016
30 0.1050 147 46056 91990
40 0.1400 249 80231 160340
50 0.1750 406 125250 247928
60 0.2100 566 176158 352254
75 0.2625 948 271566 543070
100 0.3500 1604 470305 940548

Table 5.2: FE main data of the SRVE candidates
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Figure 5.10: Number of nodes and number of elements of the SRVE candidates
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5.3 Convergence of fiber content

In handbooks and manuals [44] [106], a 10% of variation for the value of the fiber content
is assumed as usual in unidirectional lamina. Consequently, it will be considered that a
SRVE candidate has the same fiber content that the model with δ = 100 if the percentual
difference is smaller than 10%.

For the computation of the fiber content of the RVE candidates an algorithm based
on Monte Carlo integration [136] is used. The total amount of fiber area (Af ) is based on
the following conditions:

• If the fiber lays completely within the dominium, Af = Af + πr2

• If it does not lay completely within the dominium, the area of the fiber which lays
within the dominium is computed through a Monte Carlo integration procedure.

Algorithm 3 allows to compute the fiber content with simple computations and a high
accuracy. With this algorithm the fiber content for each SRVE candidate is computed.
Results are given in Table 5.3 and plotted in Figure 5.11. In the same table, the variation
with respect to the immediately smaller SRVE candidate is computed. Also, the percentual
difference with respect to the model with δ = 100 is given in the column labelled as error.
From these values and the plot, it can be observed that variations of the volume fraction
are lower than 10% when δ ≥ 30. In this figure, the mean and the weighted mean of the
fiber content (using the area of the SRVE candidate as the weighting factor) are shown.
The weighted mean gives a value much closer to the real value than the simple mean.

δ vf variation (%) error (%)
4 0.3778 - 20.59%
6 0.2042 59.669% 57.09%
8 0.4431 73.834% 6.86%

10 0.3708 17.762% 22.05%
15 0.4441 17.982% 6.65%
20 0.3963 11.376% 16.70%
25 0.4646 15.859% 2.35%
30 0.4322 7.216% 9.15%
40 0.4242 1.858% 10.83%
50 0.4565 7.326% 4.05%
60 0.4464 2.238% 6.17%
75 0.4759 4.164% 0.04%

100 0.4757 0.036% -

Table 5.3: Volume fraction of the RVE candidates
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1: a: RVE side length
2: coord(n,2): array containing locations of fiber centres
3: n: number of fibers
4: area: total fiber area
5: af = πr2: area of a single fiber
6: for i = 1 to n do
7: x=coord(i,1)
8: y=coord(i,2)
9: if x ≥ r AND x ≤ (a− r) AND y ≥ r AND y ≤ (a− r) then

10: area = area + af

11: else
12: sum=0
13: for i == 1 to npoint do
14: θ = rand(1)·2 · π

{rand(1) is a function which gives a random value between 0 and 1}
15: ρ = rand(1) · r
16: xp = x + ρ · cos(θ)
17: yp = y + ρ · sin(θ)
18: if (x ≥ 0) AND (x <= a) AND (y >= 0) AND (y <= a) then
19: sum = sum +1
20: end if
21: w = sum/npoint
22: end for
23: area = area +w ·af

24: end if
25: end for
26: vf = area/(a·a)

Algorithm 3: Computation of fiber content
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Figure 5.11: Volume fraction of the RVE candidates

5.4 Convergence of effective properties

Following Hill’s very first definition of the RVE, a valid RVE has to be typical of the whole
material in average. That means that the volume fraction and the effective properties of
the RVE are the same of those of the material. In the former section, the fiber content has
been analyzed. Although the elastic properties of a unidirectional lamina can be modelled
as a linear function of the fiber content3, in a microscopic scale, due to edge effects and the
assumption of constant vf which is made in the relation between λ and vf , they can show
some deviation from the linear one. Consequently, an analysis of scale-dependency of the
elastic properties is performed in this section. Moreover, a comparison of the computed
elastic properties for each SRVE candidate is compared with the expressions reviewed in
Section 2.2. This comparison will be used as a validity test for the modelling.

The elastic constants are computed for each SRVE candidate, using both type of boun-
dary conditions: displacements and forces. Results, which are nearly proportional to those
of volume fraction, are given in Table 5.4 and plotted in Figure 5.12. In this Figure, also
a tendency computed by a moving mean model is plotted. It can be observed that small
variations of the elastic constant are obtained for δ > 30. The variation with respect to
the immediately smaller SRVE candidate is computed and shown in Table 5.4 and the
same conclusion is obtained: from δ = 30 variations lower than 10% are obtained when
applying displacements and forces.

The values obtained for E22 can also be compared with the estimations of different

3See Chapter 2
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δ displacement variation (%) error (%) force variation (%) error (%)
4 9288.12 21.93% 9303.71 22.00%
6 7173.48 29.48% 39.71% 7174.66 29.67% 39.85%
8 10956.13 34.53% 7.91% 10980.26 34.66% 7.95%

10 8729.33 25.51% 26.63% 8741.19 25.62% 26.72%
15 10817.84 19.31% 9.08% 10842.49 19.38% 9.10%
20 9962.92 8.58% 16.26% 9982.40 8.62% 16.31%
25 11451.12 13.00% 3.75% 11479.23 13.04% 3.77%
30 10611.34 7.91% 10.81% 10634.07 7.95% 10.85%
40 10409.25 1.94% 12.51% 10430.92 1.95% 12.55%
50 11322.54 8.07% 4.84% 11350.03 8.10% 4.85%
60 10989.00 3.04% 7.64% 11014.56 3.05% 7.66%
75 12030.93 8.66% 1.12% 12062.40 8.69% 1.12%

100 11897.83 1.12% 0.00% 11928.53 1.12% -

Table 5.4: Computed E22 in MPa with displacements and force boundary conditions

Figure 5.12: Computed E22 with displacements and force boundary conditions
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formulae reviewed in Section 2.2, like the rule of mixtures and the Halpin-Tsai expressions.
The results of this comparison are shown in Figure 5.13. As a verification of the modelling
and computational tasks, it can be observed that the computed effective modulus lies
between the lower and upper limits and it is close to the Halpin-Tsai equations.

Figure 5.13: Comparison of computed E22 with theoretical formulae
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5.5 Hill Condition

As reviewed in section 2.1.4, the so-called Hill Condition should be satisfied by any Re-
presentative Volume Element [70]:

〈σ : ε〉 = 〈σ〉 : 〈ε〉 (5.16)

Both sides of equality 5.16 have been computed for each RVE candidate. Results are
shown in Figure 5.14.

Figure 5.14: Energy bounds for the RVE candidates

The bigger the RVE size, the closer are the measures of the energy, as shown in Figure
5.15, where the relative difference between energy bounds is plotted. In the Figure, a
tendency line with a regression exponential fit is shown and it can be verified that for
δ > 15 the relative difference is lower than 5%, which can be considered a small enough
difference.

5.6 Convergence of stress and strain fields

In some of the works reviewed in Chapter 2 [124, 120] the importance of obtaining the
same effective results using the different types of boundary conditions is pointed out. In
this section the convergence of the mean, the variance and the coefficient of variation of the
stress and strain fields is analyzed for both cases of boundary conditions, displacements
and forces, and a comparison to assess their equivalency is performed.
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Figure 5.15: Difference between energy bounds for the RVE candidates

5.6.1 Mean of stress and strain fields

Figures 5.16 and 5.17 show the evolution of the mean strain and the mean stress in each
constituent and in the composite when the size of the SRVE increases. Since the fibre
content in each candidate is a random variable, these plots have to be seen as variations
around a tendency. Moreover, since the volume fraction is not constant within the SRVE
candidates, the mean strain may tend to converge slowly. Nevertheless, this is a normal
situation, since the SRVE has to take into account the fibre content variation, which causes
variation in the elastic constants.

Since the SRVE model with δ = 100 is considered to have the same statistics than the
bulk material, the following hypotheses can be tested4:

H0 : µ(ε(δ)
22 ) = µ(ε(100)

22 ) (5.17)

H1 : µ(ε(δ)
22 ) 6= µ(ε(100)

22 )

where the superscripts 100 δ stand for the mean in the model δ = 100 and any other
model, respectively. Thee hypothesis test is used here for detecting when the mean ob-
tained from a SRVE candidate model can be considered to be equal to the mean of the
whole composite (computed through the model with δ = 100).

A hypothesis test with α = 1%5 has been performed for µ(ε22) in the composite, in
4See Section B.7 in Appendix B for test description
5When performing a hypotheses test α is the error of rejecting the null hypothesis when it is true
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Figure 5.16: Mean strain in the composite and in each constituent
for each loadcase: displacement (up) and force (down)
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Figure 5.17: Mean stress in the composite and in each constituent
for each loadcase: displacement (up) and force (down)
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the fiber and in the matrix. Figure 5.18 shows the results of this test for each δ. These
results show how the null hypothesis can be accepted for δ ≥ 15, since from this value and
for all the considered cases |z0| − z > 0 and, consequently, H0 is accepted for δ ≥ 15.

Analogously, the following hypothesis related to the mean of σ22 5.19 can be tested:

H0 : µ(σ(δ)
22 ) = µ(σ(100)

22 ) (5.18)

H1 : µ(σ(δ)
22 ) 6= µ(σ(100)

22 )

with the superscripts having the same meaning than in the former test. Again, the
hypothesis test for µ(σ22) in the composite, in the matrix and in the fiber has been per-
formed and results plotted in Figure 5.19. Following the same criteria that was used for
µ(ε22), in this case H0 can be accepted for δ ≥ 10.

5.6.2 Variance of stress and strain fields

Figures 5.20 and 5.21 show the evolution of the variances of ε22 and σ22.

The variance is a useful statistic to determine if two samples come from the same
population [108]. That means, the variance of each SRVE candidate and the variance of
the precedent SRVE candidate can be compared using an appropriate hypotheses test:

H0 : σ2(ε(δ)
22 ) = σ2(ε(100)

22 ) (5.19)

H1 : σ2(ε(δ)
22 ) 6= σ2(ε(100)

22 )

The analogous hypothesis regarding the variance of 22 can also be written:

H0 : σ2(σ(δ)
22 ) = σ2(σ(100)

22 ) (5.20)

H1 : σ2(σ(δ)
22 ) 6= σ2(σ(100)

22 )

In Figures 5.22 and 5.23 it has been plotted the results of the test for the variance of
ε22 and σ22, respectively, for a significance of 99 %. These figures show that H0 can be
accepted for δ ≥ 25, since from this SRVE size a positive value of F0 − F is obtained.

5.6.3 Coefficient of variation of stress and strain fields

Another useful statistic to analyze he variation within a sample is the coefficient of varia-
tion ρ, defined as:

ρ =
σ

µ
(5.21)

Since the mean value of the stress and strain is allowed to have some variation, the
coefficient of variation can be used to analyze the standard deviation independently of the
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Figure 5.18: Mean ε22 hypothesis test for both loadcases: displacements (up) and forces
(down)
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Figure 5.19: Mean σ22 hypothesis test for both loadcases: displacements (up) and forces
(down)
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Figure 5.20: Variance of the strain in the composite and in each constituent
for each loadcase: displacement (up) and force (down)
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Figure 5.21: Variance of the stress in the composite and in each constituent
for each loadcase: displacement (up) and force (down)
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Figure 5.22: σ2(ε22) hypothesis test for both loadcases: displacements (up) and forces
(down)
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Figure 5.23: σ2(σ22) hypothesis test for both loadcases: displacements (up) and forces
(down)
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mean. The plots of the coefficient of variation of σ22 and ε22 for the fibre, the matrix and
the composite for each SRVE candidate are shown in Figures 5.24 and 5.25, respectively.

If the biggest SRVE candidate (δ = 100) is considered to have the same statistics of
the whole population, the error can be computed with respect to the value obtained for
this SRVE. In Tables 5.5, 5.6 and 5.7 the percentual relative difference between the coeffi-
cient of variation of the SRVE of size δ = 100 and that of each SRVE candidate has been
computed for the fibre, the matrix and the composite, respectively. Results show that the
relative error is lower than 10% for δ ≥ 50.

δ µ(σ22) σ(σ22) ρ(σ22) error µ(ε22) σ(ε22) ρ(ε22) error
4 1955 1027192 0.5185 39.236% 8.67·10−3 1.66·10−5 0.4696 35.70%
6 2311 1698239 0.5639 51.441% 9.76·10−3 2.87·10−5 0.5495 58.81%
8 2010 736460 0.4269 14.659% 8.80·10−3 1.28·10−5 0.4065 17.48%

10 1979 640302 0.4043 8.582% 8.44·10−3 1.10·10−5 0.3920 13.28%
15 2055 842589 0.4468 19.987% 8.82·10−3 1.40·10−5 0.4249 22.79%
20 2090 697556 0.3996 7.307% 9.00·10−3 1.13·10−5 0.3728 7.74%
25 2092 692598 0.3979 6.849% 8.94·10−3 1.16·10−5 0.3817 10.29%
30 2049 670816 0.3998 7.357% 8.79·10−3 1.12·10−5 0.3801 9.84%
40 2058 573395 0.3680 1.169% 8.83·10−3 9.30·10−6 0.3454 0.18%
50 2076 639954 0.3854 3.493% 8.92·10−3 1.05·10−5 0.3626 4.80%
60 2057 562227 0.3645 2.115% 8.82·10−3 9.20·10−6 0.3441 0.57%
75 2110 718188 0.4016 7.853% 9.04·10−3 1.16·10−5 0.3761 8.69%

100 2087 604079 0.3724 0.000% 8.96·10−3 9.61·10−6 0.3460 -

Table 5.5: Coefficient of variation (ρ) of σ22 and ε22 in the fibre

δ µ(σ22) σ(σ22) ρ(σ22) error µ(ε22) σ(ε22) ρ(ε22) error
4 1226 216796 0.3798 33.95% 0.2548 0.005119761 0.2809 38.25%
6 1143 148033 0.3367 41.46% 0.2502 0.004834539 0.2779 38.90%
8 1203 308436 0.4615 19.75% 0.2545 0.008362426 0.3593 21.00%

10 1225 200041 0.3652 36.50% 0.2677 0.00617799 0.2936 35.44%
15 1203 318370 0.4692 18.41% 0.2624 0.009424998 0.3700 18.65%
20 1194 332011 0.4825 16.09% 0.2567 0.009593754 0.3815 16.12%
25 1196 404664 0.5320 7.49% 0.2614 0.01223629 0.4232 6.96%
30 1208 353844 0.4925 14.35% 0.2613 0.010604754 0.3941 13.36%
40 1198 358870 0.5001 13.03% 0.2597 0.01051337 0.3948 13.18%
50 1202 413772 0.5349 6.98% 0.2593 0.01222206 0.4263 6.27%
60 1197 389583 0.5215 9.32% 0.2596 0.01149625 0.4130 9.19%
75 1184 478369 0.5842 1.59% 0.2564 0.014059263 0.4625 1.68%

100 1193 470275 0.5751 0.00% 0.2572 0.01368741 0.4548 -

Table 5.6: Coefficient of variation (ρ) of σ22 and ε22 in the matrix
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Figure 5.24: Coefficient of variation of the strain in the composite and in each constituent
for each loadcase: displacements (up) and force (down)
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Figure 5.25: Coefficient of variation of the stress in the composite and in each constituent
for each loadcase: displacements (up) and force (down)
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δ µ(σ22) σ(σ22) ρ(σ22) error µ(ε22) σ(ε22) ρ(ε22) error
4 1502 647788 0.5360 1.69% 0.1617 0.0174 0.8169 25.44%
6 1406 735228 0.6098 15.69% 0.1960 0.0139 0.6004 45.21%
8 1569 663505 0.5192 1.49% 0.1432 0.0195 0.9763 10.90%

10 1503 494658 0.4680 11.20% 0.1722 0.0195 0.8122 25.88%
15 1590 736831 0.5398 2.41% 0.1470 0.0211 0.9878 9.85%
20 1557 673720 0.5270 0.01% 0.1563 0.0205 0.9160 16.40%
25 1621 741517 0.5312 0.79% 0.1416 0.0223 1.0555 3.67%
30 1582 669427 0.5173 1.86% 0.1491 0.0216 0.9870 9.92%
40 1571 633480 0.5067 3.86% 0.1509 0.0214 0.9698 11.49%
50 1611 709402 0.5229 0.79% 0.1423 0.0221 1.0455 4.58%
60 1591 652344 0.5077 3.67% 0.1448 0.0218 1.0210 6.82%
75 1635 809564 0.5503 4.41% 0.1359 0.0225 1.1038 0.73%

100 1627 735198 0.5271 0.00% 0.1367 0.0224 1.0957 -

Table 5.7: Coefficient of variation (ρ) of σ22 and ε22 in the composite

5.7 Probability density functions of stress and strain fields
in the matrix

Most of the failure criteria for the composite transverse direction consider that the failure
is caused by cracks in the matrix (See Chapter 3). One of the objectives of this work is to
find probability distribution functions for the failure in the transverse direction. For this
reason, when trying to develop a Statistical Representative Volume Element the stress and
strain probability distribution functions in the matrix have to be analyzed.

At this point the equivalence of boundary conditions and, consequently, the obtained
probability distribution functions, when applying displacements or forces are equivalent
(the shape of the function is equivalent but with different scale). For this reason, only the
probability distribution functions obtained for the displacement boundary condition are
shown.

In Figures 5.26, 5.27 and 5.28 the probability distribution function for ε22 in the ma-
trix is plotted for the SRVE candidates. Figure 5.26 shows that for small SRVE sizes the
distributions seem to be nearly symmetric, but from δ = 25, in Figure 5.27, this tendency
disappears and distributions have a right tail longer than the left tail. One should note
the importance of well reproducing the distributions tails, since the failure of the com-
posite will be related to the values which are in these tails. It is important to notice,
that a random model of the composite will reproduce in a more realistic way these tails
than classical periodic models do6. This fact provides random models of the availability
of determining the failure of the composite more accurately.

Figures 5.29, 5.30 and 5.31 show the probability density function of σ22 in the matrix.
The similitude between two probability distributions can be observed with a QQ-plot.

6This point will be explained with more detail in Chapter 7.
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Figure 5.26: ε22 in the matrix probability distribution function for δ = 4,6,8,10
(left to right, up to down)
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Figure 5.27: ε22 in the matrix probability distribution function for δ = 15, 20, 25, and 30
(left to right, up to down)
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Figure 5.28: ε22 in the matrix probability distribution function for δ = 40, 50, 60, 75 and
100

(left to right, up to down)
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Figure 5.29: σ22 in the matrix probability distribution function for δ = 4, 6, 8 and 10
(left to right, up to down)
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Figure 5.30: σ22 in the matrix probability distribution function for δ = 15,20,25 and 30
(left to right, up to down)
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Figure 5.31: σ22 in the matrix probability distribution function for δ = 40,50, 60, 75 and
100

(left to right, up to down)
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In this plot, if the distributions are equivalent the plot shows a line with slope 1. Figures
5.32 and 5.33 show QQ-plots for ε22 in the matrix and Figures 5.34 and 5.34 show QQ-
plots for σ22 in the matrix. For these figures, the distribution function obtained in each
SRVE candidate is compared with the distribution function of the model with δ = 100.
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Figure 5.32: QQ-plots of ε22 in the matrix for δ = 4, 6, 8, 10, 15 and 20 (left to right, up
to down)

From all these plots it can be considered that the probability distribution of ε22 in the
matrix for the model δ = 20 is equivalent to that corresponding to the model δ = 100.
Regarding σ22 the analogous conclusion can be derived for δ = 25.



120 CHAPTER 5. DEVELOPMENT OF A STATISTICAL VOLUME ELEMENT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X Quantiles

Y
 Q

ua
nt

ile
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X Quantiles

Y
 Q

ua
nt

ile
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

X Quantiles

Y
 Q

ua
nt

ile
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X Quantiles

Y
 Q

ua
nt

ile
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X Quantiles

Y
 Q

ua
nt

ile
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X Quantiles

Y
 Q

ua
nt

ile
s

Figure 5.33: QQ-plots of ε22 in the matrix for δ = 25, 30, 40, 50, 60 and 75 (left to right,
up to down)
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Figure 5.34: QQ-plots of σ22 in the matrix for δ = 4, 6, 8, 10, 15 and 20 (left to right, up
to down)
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Figure 5.35: QQ-plots of σ22 in the matrix for δ = 25, 30, 40, 50, 60 and 75 (left to right,
up to down)
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5.8 Distance distributions

One of the hypothesis of this work is that the non-uniform distribution of the fibers within
a composite affects its failure behavior. For this reason, the SRVE has to represent the
statistical distance distribution of the fibers in the bulk material.

As reviewed in Section 4.4 and as can be found in the papers by Pyrz [132, 133] a useful
way to analyze inclusions or fibres within a matrix is to use the Second order intensity
function and the Pair distribution function. In the following, this functions, together with
the nearest neighbor distance functions, for the different SRVE candidates are analyzed.

5.8.1 Second order intensity function

The Second Order intensity function K(h), as defined in equation 4.25 can be seen as the
expected number of fibers to be found inside a circle of radius h, divided by the Poisson
parameter, λ.

For the SRVE candidates corresponding to δ = 4 to δ = 8, K(h) is not computable
with the estimator of equation 4.25. Figure 5.36 shows the second order intensity function
for δ = 15− 25, δ = 30− 50, and δ = 60− 100. Besides that, this figure includes a plot of
K(h) corresponding to a random pattern (that is, a Poisson process). It can be seen how
when δ grows K(h) tends to that of the random process.

It is also important to notice that K(h) tends to be linear. That means, from a certain
value of h the expected number of fibres to be found is proportional to the sampling area.

5.8.2 Pair distribution function

Recalling equation 4.30, the pair distribution function is a function of the derivative of
K(h), and consequently, can be easily computed can obtained by numerical differentiation:

g(h) =
1

2πr

dK(h)
dh

Figure 5.37 shows the estimated pair distribution function for each SRVE candidate.
The plots in Figure 5.37 also show this function for a Poisson process (for which g(h) = 1).

The considered estimator of K(h)7 counts the number of fibres which are within a
circle of radius h with center in a fibre. Since all the sampling points are fibre centers the
derivative of K(h) is overestimated for the lower values of h. For this reason most of the
plots show peaks for the lower values of h.

For δ = 8, δ = 10 and δ = 15, g(h) does not converge to any constant value, since
the number of fibres in these models is not large enough. For δ = 20 the pair distribution
function shows large fluctuations around a constant value. For δ = 25 and δ = 30 g(h),
seem to converge but for a higher (in the case of δ = 25) and for a lower value (for δ = 30)

7See Equation 4.25
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Figure 5.36: Second order intensity function for the SRVE candidates
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to that of a CSR pattern. For the SRVE candidates with δ ≥ 40 it can be considered that
g(h) is equivalent to a Poisson process.
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Figure 5.37: Pair distribution function for the SRVE candidates
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5.8.3 Neighbor distances

As was described in Section 4.4.5, nearest neighbor distances provide information about
the short range interaction between particles. It is important for the SRVE to reproduce
the short range interaction between fibers of the bulk composite, because this may have
strong influence in the failure properties of the material. In Figures 5.38, 5.39 and 5.40
plots for the first, second and third nearest neighbor probability distribution function are
given. Those plots corresponding to small values of δ (δ=4,6,8) show some peaks which
may lead to the wrong conclusion of presence of some regularity. However, these peaks
are due to the small number of fibres present in those models, more than to regularity.
Those plots corresponding to δ =10, 15, 20, 25 and 30 show nearest neighbor distributions
which are still not smooth enough. For δ ≥ 40 the nearest neighbor functions show typical
shapes of random point patterns.
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Figure 5.38: Neighbor distance functions for δ = 4, 6, 8, 10, 15, 20
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Figure 5.39: Neighbor distance functions for δ = 15, 20 25 and 30
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Figure 5.40: Neighbor distance functions for δ = 40, 50, 60 ,75 and 100
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5.9 Conclusions

A numerical study to determine the finite size of the Statistical Representative Volume
Element has been performed. Finite Element models of different size have been solved
and different criteria regarding mechanical and statistical parameters have been analyzed.
Each analysis has given a minimum model size (δ) for which it is satisfied. The results are
summarized in Table 5.8.

Criteria Description Result
Volume fraction Percentual difference lower than 10% δ ≥ 30

Effective properties Percentual difference lower than 10% δ ≥ 30
Hill Condition Difference between energy bounds lower than δ ≥ 15

Hypothesis test for the mean δ ≥ 15
Strain field Hypothesis test for the variance δ ≥ 25

Coefficient of correlation. Percentual difference δ ≥ 50
Stress field Hypothesis test for the mean δ ≥ 10
Strain field Hypothesis test for the variance δ ≥ 25

Coefficient of correlation. Percentual difference δ ≥ 50
Strain in matrix pdf Similarity of probability density functions δ ≥ 30
Stress in matrix pdf Similarity of probability density functions δ ≥ 25

Distance distributions Comparison with Poisson process δ ≥ 50

Table 5.8: Summary of analyzed criteria

From the analyzed criteria, in the following, it will be considered that the minimum
required size of the SRVE model is δ = 50.
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Chapter 6

Experimental characterization of
the random microstructure of
composites

6.1 Introduction

This chapter contains the image analysis of the transverse section of long fibre reinforced
composites with the aim to describe statistically the fiber distribution. As shown in figure,
this chapter covers the whole experimental process for the acquisition of the necessary data
from the composite. First, briefly, the specimen preparation (Section 6.2) is described.
Next sections include the steps needed for digital image processing and capturing the posi-
tion of the fibres of a sample of the material: Mosaicking (Section 6.3.1), Light correction
(Section 6.3.3), Segmentation and binarization (Section 6.3.2) and Data acquisition (Sec-
tion 6.3.4).

After to these descriptive sections, the statistics of the fibre distribution of four dif-
ferent materials will be analyzed. Three of them were produced in the composites group
of the Technische Universität Hamburg-Harburg. These three materials are manufac-
tured using the same carbon fibres (HTA5131 HTA 5131 400TEX 6K TO AERO from
Tenax) but three different epoxy for the matrix (RTM-6 and 6376 from Hexcel, and 977-2
from Cytec). The fourth analyzed material was produced by the composites group of the
Engineering Faculty of the University of Porto (FEUP). This material is made using a
IM7/8552 pre-preg from Hexcel.

6.2 Specimen preparation

An interesting introduction report to optical microscopy is that by Davidson and Abramowitz
[41] and that by Abramowitz [5]. The reference book by Bousfield [26] can be useful for
microscopy specimen preparation. More specialized information can be found in the book
edite by Summerscales [143], which covers different methods of microscopy and includes
a chapter by Guild and Summerscales devoted to continuous fibre composites. Extensive

131



132CHAPTER 6. CHARACTERIZATION OF THE RANDOM MICROSTRUCTURE...

Figure 6.1: Sequence for the obtention of information of the fibre distribution in CFRP
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information can also be found in some manufacturers’ homepage, for instance Buehler [30].

The usual method for examining composite materials [26] [30] is to embed the sample
into a resin and then to polish the observation surface by using abrasives of decreasing
size. Resin system (resin plus catalyzer) AXON RSF 816 was employed for embedding
the sample. The resin cured under ambient conditions of pressure and temperature during
16 hours. In the polishing process abrasive discs of grading P100, P400, P800 and P1500
were used. After that, a cloth polishing in alumina suspension was performed1.

Figure 6.2 shows typical microscopy samples. A small piece of laminate of CFRP pro-
vided by the University of Porto is embedded in epoxy.

Figure 6.2: Typical FRP microscopy samples: a small piece of laminate is embedded in
epoxy.

Obtaining well polished samples of carbon reinforced composites may be a hard task,
the carbon dust easily scratches the resin of sample surface and fills possible voids in the
material. For this reasons, a good image processing may improve greatly the acquisition
results.

6.3 Digital Image Analysis

Image analysis and image processing are mainly used for two different purposes. The first
one, to prepare the images for the measurement of geometric features and structures which
may be present in the material. And the second, to improve the appearance of images, so
they can be easily examined by the researcher.

The tasks involved in this part of the research work were performed in cooperation with
Dr. Rafael Garćıa from the Computer Vision and Robotics (VICOROB2) research group

1NOTE: Images from TUHH were obtained from samples produced by their personnel with a similar
process, using Struers Epofix epoxy for embedding the sample and polishing with diamond suspension.

2http://vicorob.udg.es/
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of the Department of Electronics, Computer Science and Automatics3 of the University of
Girona, and the students Marc Revenga and Cristina Roura who programmed the com-
puter codes for mosaicking, binarization, light correction and labelling under Prof. Garćıa
and the author’s supervision. The following sections describe briefly these techniques.

6.3.1 Mosaicking

Images bigger than the minimum size of the SRVE, which was determined in Chapter 5,
have to be captured . On the other hand a resolution high enough to identify and cap-
ture the fibres position is also required. The available system is composed by an optical
microscope and a video camera, which sends the images to a computer through a video
card. This system does not allow to acquire images with the minimum required size and
the minimum required resolution at the same time. If an observation is made with a high
magnification, the acquired image will not have a size large enough. On the other hand,
if a low magnification lens is used, the acquired image may have a size large enough, but
the resolution will not be high enough to capture the fibre position.

To solve this technical disjunctive, the mosaicking technique [57] is used. This tech-
nique allows to construct big images by joining smaller ones, as is schematized in Figure
6.3. The software developed by the VICOROB group of the University of Girona works
in real time, so mosaics can be build up during the observation process.

Figure 6.3: Mosaicking technique

As is shown in Figure 6.3, a large image (mosaic) is formed from a matrix of 2 × 2
smaller images. The observer must fix the microscope in an initial position, acquire image
1 and then, with the help of the real-time capacity of the software and system, to displace
horizontally the microscope sample until the live observed image seems to match with im-
age 1. Then image 2 is acquired by the observer. Since the window acquired is larger than
the window used for building the mosaic, the software can make image 2 match exactly
with image 1. Then, the observer should displace the sample vertically until the live image
seems to match with image 2, and acquire image 3. Finally, the observer should displace

3http://eia.udg.es
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the sample horizontally until the live image seems to match with image 1 and image 3.

Some examples of mosaics performed by using this technique can be seen in Figures
6.4, 6.5 and 6.6. Figures 6.4 and 6.6 reproduce typical transverse sections of CFRP. Figure
6.4 shows some vertically aligned matrix-rich regions, possibly produced by the stacking
of fibre layers. Figure 6.6 shows some black spots which appear in the sample polishing
phase. When holes are present, the carbon dust produced by polishing fills this holes,
producing this characteristic holes. The carbon dust can be removed by immersing the
sample in an ultrasound tank, but this process does not ensure the complete removal of
the black spots, which can be used for easily detecting these holes. This image also shows
clearly the presence of matrix vertical regions, produced by the stacking of fibre layers.
The heterogeneous distribution of the fibre within the composite, having some fibre-poor
regions, is observed clearly in this figure.

Figure 6.5 shows a dark field image of a transverse section of CFRP. This observation
technique can also be useful for detecting voids and holes in the matrix, since it provides
the observation a volume sensation. Holes or voids can be detected because they appear
with illuminated contours.

Figure 6.4: Mosaicking technique: CFRP (1). Image formed from 3× 5 images
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Figure 6.5: Mosaicking technique: Dark field image of a CFRP. Image formed from 3× 5
images
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Figure 6.6: Mosaicking technique: CFRP (2). Image formed from 5× 10 images
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6.3.2 Segmentation

The first step in the digital analysis process is the binarization of the digital image. That
means, the color image will be converted in a black and white one, showing in white one
constituent (fibre) and in black the other one (matrix). A threshold value from which the
color will be converted to white and under which the color will be converted to black, has
to be found. This can be easily done by obtaining an histogram (with any image processing
like the GNU licensed, GIMP4) of the distribution of the gray levels in the figure. From
the histogram, a threshold level can be obtained, as shown in Figure 6.7. This Figure
shows a gray level histogram of a digital image of a CFRP obtained with GIMP (right)
and a sketch of the obtention of the threshold level (left). This process which allows to
separate components or objects having similar characteristics is called segmentation.

Figure 6.7: Gray level histogram of a digital image (left) and threshold for binarization
(right)

Once the threshold has been obtained the image can be converted in a binary image.
However, this technique is useful if the light in the image is uniform. As will be seen in

4http://www.gimp.org
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the next section, non-uniform lighting may lead to an erroneous binarization.

6.3.3 Light correction

Some images obtained by light microscopy may show non-uniform lighting which may
cause trouble in the binarization. As it is shown in Figure 6.8: when a high threshold is
chosen some area of the image is converted into black; If conversely, a lower threshold is
chosen, some area of the image is binarized into white.

Figure 6.8: Erroneous binarization due to non-uniform lighting

This errors can be avoided by estimating the local light intensity (by computing the
intensity in subdominiums or windows) and substracting it from the image. Figure 6.9
shows a 3D plot of the local intensity of the former image. It can be observed that pixels
near the corner (0,560) have a local intensity which is about 1.6 times the intensity in the
pixels near the corners (0,0) and (0,748).

If this intensity is subtracted from the original image, a correct binarization can be
performed, as shown in Figure 6.10.

Figure 6.9: Light intensity in an image with non uniform lighting
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Figure 6.10: Light-corrected binarization
Original image(up), light-corrected image(middle), binarized image (down)

6.3.4 Fibre labelling

The aim of this chapter is to characterize the distribution of the fibre within the composite.
This characterization requires the knowledge of the position of each fibres of a sample of
the material. This section describes the technique which allows to find them.

A search window of side 2α + 1 is used. The search window is positioned and the
image within the window (I1) is compared with the pattern image I2, which has the same
size as the window. That is, to identify white fibres5 of radius r the pattern image I2

would be a white fibre of radius r. This process is performed point to point, computing
the summation of squared differences shown in equation 6.1:

SSD(x,y) =
α∑

i=−α

α∑

j=−α

(I1(x1 + i, y1 + j)− I2(x1 + i, y1 + j))2 (6.1)

where x denotes the coordinates of the center of the window and y the coordinates of
the center of the pattern window. This SSD value of equation 6.1 is computed for each
pixel in the image and then, in an iterative process which, among other things, avoids that
two centers lay in a distance closer than the fibre diameter, those points with lower SSD
value are chosen. Figure 6.11 shows the labelling process for one of the TUHH’s images.
As is also shown in this figure, the fibres which do not lay completely within the image
are eliminated in this process. This should have been taken into account because, as was
found in Chapter 5, the sample size should not be smaller than 50 times the fibre radius.

6.4 Digital analysis of some CFRP

This section shows results from the image processing of different carbon fibre reinforced
composites. The results of the digital image analysis will be used to compute the statis-
tical functions which describe point patterns (and which are described in Section 4.4 of
Chapter 4). This analysis will also be used to check if it is possible to distinguish materials
from different sources with some of the statistical functions described in Sections 4.4.3 and
4.4.4 of Chapter 4. Also, the obtained statistical information will be analyzed together

5As seen in the former section, the image has been binarized and, consequently, fibres appear in white
and matrix in black
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Figure 6.11: Labelling process

statistic / material RTM − 6 977− 2 6376
µ(vf ) 0.5455 0.5410 0.5761
σ2(vf ) 0.2069 0.2105 0.0440
µ(nf ) 554.450 549.725 585.450
σ2(nf ) 2146.766 2175.845 458.715

Table 6.1: Summary of statistics for three CFRPs microanalysis

with the simulation results of Chapter 8.

6.4.1 Three CFRP from TUHH

Images from three different CFRP produced by the composites group at Technische Uni-
versität Hamburg-Harburg have been analyzed. These materials have the same fibre (HTA
5131) but three different epoxy systems for the matrix: RTM-6, 977-2 and 6376. For the
human eye, as it is hown in Figure 6.12, the images look very similar and are indistin-
guishable.

40 microscopy images from each material were analyzed. For each image the position
of each fiber was captured and the fiber content was computed. Table 6.1 shows the results
for the fibre content and the number of fibres.

The second order intensity function6 and the pair distribution function7 of the mi-
crostructures have been analyzed. Figures 6.13 and 6.14 show the plot of this function
for some specimen from the three considered materials. In each plot, the second order
intensity function of a complete random pattern is shown by means of a dashed line, for
comparison. The plot of K(h) for the complete sample can be found in Appendix C (Fig-
ures C.19-C.24).

Recalling the qualitative interpretation of the second order intensity function given in
Section 4.4.3, it can be argued that the laminates made from epoxy RTM6 and 977-2 show
some cluster patterns and occasionally (images 04 and 23 in the RTM6 and images images
06 and 14 in 977-2, shown in Figure 6.14) some greatly clusterized patterns. This Figure

6Defined in Equation 4.25
7Defined in Equation 4.30
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Figure 6.12: Transverse section of three CFRP from TUHH
(HTA 5131/RTM-6 (up), HTA 5131/977-2 (middle) and HTA 5131/6376 (bottom))
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also evidences that the dispersion from a CSR pattern is greater in these two materials.
This fact is of course related to the greater variance in the volume fraction observed for
these materials in Table 6.1.
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Figure 6.13: Second order intensity and pair distribution functions for RTM-6 (up), 977-2
(middle) and 6376 (bottom). The number in the legend identifies the image from which
the function has been obtained.
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Figure 6.14: Second order intensity and pair distribution functions for RTM-6 (up), 977-2
(middle) and 6376 (bottom). The number in the legend identifies the image from which
the function has been obtained.
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With the aim to compare the random patterns corresponding to the three analyzed
composite materials, the mean squared difference between the functions for the three
analyzed materials and a CSR pattern has been computed and plot in Figure 6.15. In this
figure it is evidenced that the microstructure of the composite material made using epoxy
6376 can be considered a microscopically complete random material and the composite
materials made from epoxies RTM-6 and 977-2 depart considerably from a CSR pattern
due to the observed clustering.

Figure 6.15: Mean squared difference from a CSR pattern

Figure 6.16 shows how functions K(h) and g(h) are useful in detecting cluster patterns.
In the micrographs on the left, it can be seen the material microscopic image of two
clustered patterns and in the right column the plots for both functions.
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Figure 6.16: Slightly clustered pattern from RTM6 (up) and strongly clustered pattern
from 977-2 (down)



148CHAPTER 6. CHARACTERIZATION OF THE RANDOM MICROSTRUCTURE...

All three materials show similar short-range distributions, as shown in Figures 6.17-
6.19, which show respectively first, second and third nearest neighbor distributions for
some of the images. It can be observed how the short-range distributions reflect typical
Mathérn’s distribution, showing lower values that a CSR pattern (shown in dashed line in
the figures) for distances near to the diameter. Besides this fact, all three materials show
reasonably good agreement with a CSR pattern, especially for the third nearest neighbor
distance (Figure 6.19). This short range similarity with a CSR pattern is also confirmed
by the plots of the mean sum of square-root of squared error (MSSE) which is computed
with respect to a CSR pattern and plot in Figure 6.20.
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Figure 6.17: Distance to first nearest neighbor distribution in RTM6 (up), 977-2 (middle)
and 6376 (bottom). The number in the legend identifies the image from which the function
has been obtained.
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Figure 6.18: Distance to second nearest neighbor distribution in RTM6 (up), 977-2 (mid-
dle) and 6376 (bottom). The number in the legend identifies the image from which the
function has been obtained.
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Figure 6.19: Distance to third nearest neighbor distribution in RTM6 (up), 977-2 (middle)
and 6376 (bottom). The number in the legend identifies the image from which the function
has been obtained.
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Figure 6.20: MSSError in nearest neighbor distribution with respect to a CSR pattern
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6.4.2 CFRP from Porto

A CFRP made from Hexcel IM7/8552 pre-preg by the Engineering Faculty of the Uni-
versity of Porto (FEUP) has been also analyzed. Figure 6.21 shows that the transverse
section of this material is apparently similar to those from TUHH. In this case the fibre
diameter is 5.2 µm. Seven images have been obtained through the mosaicking technique
described in Section 6.3.1. These mosaics where constructed from a set of 3× 3 images.

Figure 6.21: Transverse section of a IM7/8552 CFRP produced in FEUP

The second order intensity function K(h) and the pair distribution function g(h) have
been estimated for the seven images. These estimations are plotted in Figures 6.22 and
6.23.

Figure 6.22: Second order intensity function for IM7/8552 CFRP produced in FEUP
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Figure 6.23: Pair distribution function for IM7/8552 CFRP produced in FEUP

The mean squared difference with respect to a CSR pattern has been computed for
K(h) and g(h) and given in Figure 6.24, together with that corresponding to the CFRPs
analyzed in the former section. Figure shows how the differences are greater for large
values of the distance (h) and that none of the patterns of the materials analyzed could
be very precisely considered a CSR pattern. In spite of this, Figure 6.24 shows that K(h)
and g(h) are very useful for distinguishing materials from different sources.
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Figure 6.24: MSError difference with a CSR pattern for K(h) and g(h)

The nearest neighbor distances have also been analyzed for the seven images. The
plots corresponding to the nearest neighbor functions are shown in Figures 6.25, 6.26 and
6.27.

The error with respect a CSR model has been computed and is shown in the plot
of Figure 6.28. This Figure shows how the point pattern of IM7/8552 CFRP has some
important differences with a CSR pattern.

6.5 Summary and Conclusions

The long range particle interaction of three different carbon reinforced polymers having
the same fibre but different matrix has been analyzed by means of the Second order dis-
tribution function (K(h)) and the Pair distribution function (g(h)). Two of them (those
made with epoxy RTM6 and epoxy 977-2) show similar patterns, departing from a com-
plete spatial randomness. The third one (made with epoxy 6376) fits reasonably well in a
CSR model.

The same analysis has been performed for a composite material performed with a
IM7/8552 pre-preg. The distribution of the fibre in this material can not be considered a
complete spatial random pattern.
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Figure 6.25: Nearest neighbor distance for IM7/8552 CFRP produced in FEUP



6.5. SUMMARY AND CONCLUSIONS 157

Figure 6.26: Second nearest neighbor distance for IM7/8552 CFRP produced in FEUP
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Figure 6.27: Third nearest neighbor distance for IM7/8552 CFRP produced in FEUP
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Figure 6.28: MSSError for three first neighbor distances for IM7/8552 CFRP produced in
FEUP
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Chapter 7

Effects of a Random Fibre
Distribution on the stress and
strain fields of a composite

7.1 Introduction

In this chapter a comparison between a periodic (deterministic) and a random fibre distri-
bution model for a composite material is performed. Both models have the same volume
fraction vf = 0.5 and the same size, that is, the same number of fibres. The deterministic
model is produced by repeating a square unit cell along the dominium and the random
model is produced in the same way that the SRVE candidates of Chapter 5. In both cases,
the Embedded Cell Approach (ECA) which was also described in Section 2.6.2, has been
applied in the modelling for the application of equivalent displacement boundary condi-
tions in the y direction to both models. Only this type of boundary conditions are applied
because the equivalence of force and displacement in the SRVE was shown in Chapter 5.
Since the minimum finite size of the SRVE was found to be δ = L/r = 501 the models in
the present one fulfill this condition. To ensure that the volume fraction of both models
is the same, only full fibres have been considered in both models.

The objective of this analysis is to find out if it is worth to model composite materials
as random materials or if periodic models give a solution which is representative enough.
This representativeness will be considered correct if the periodic model reproduces the
extreme values of some variables. These extreme values are important since they will be
the values for which damage and failure mechanisms will initiate. Since fibres are under
uniform strain and -as it was seen in Chapter 3- transverse failure in composites is a
matrix-dominated phenomena, stress and strain will be only analyzed in the matrix.

1See Chapter 5
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Figure 7.1: ε22 in the matrix in the periodic and in the random model. Maximum strain
in the random model is about 1.36 the maximum strain in the periodic model.

7.2 Comparison of stress and strain fields in the matrix

Figure 7.1 shows ε22 in the periodic and in the random model. It can be seen that the
maximum strain is about 36% higher in the random model. These high strains appear
between fibers which are very close or between fibers which are aligned in the direction of
the load showing high strains and spreading in large matrix areas, with lower strains. An-
other difference between the models is that some compression areas appear in the random
model, while the periodic model only has tractional strains. However these compressive
strains have low magnitude.

A quantitative analysis can be carried out by computing the histograms corresponding
to ε22 in both models. Although to compute an histogram of a non-random field could
seem non-sense, the stress and strain in the matrix of periodic models are not constant
and an histogram could be a good graphic tool to analyze their (deterministic) variation.
These histograms (Figure 7.2) show noticeable differences between the models. The results
for the periodic model show, as expected, less dispersion: about 40% of sample points have
ε22 between 0.1 and 0.2 micro-deformations. But the most significant difference appears
in the extremes of the histograms: the probability of ε22 of being higher than 0.6 and the
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Figure 7.2: Histograms of ε22 in the matrix for the periodic and the random model

probability of ε22 < 0 (that is, being compressive). This is important because damage
initiation in the matrix is likely to start in these highly strained locations. Moreover,
from the design point of view, some failure criteria are based on the absolute value of the
maximum strain. Compressive strains appear in about the 5% of solution points.

Figure 7.3 shows a histogram for σ22 in the periodic and in the random model. This
Figure leads to analogous conclusions to those obtained when analyzing ε22. Although
there exist some failure criteria based on maximum stress, usually failure criteria involve
invariants of the stress tensor. For this reason, some invariant-based quantities are ana-
lyzed in Section 7.4

7.3 Principal stresses

For a clearer comparison of the stresses in the periodic and the random models, prin-
cipal stresses2 can be analyzed. Figures 7.4, 7.5 and 7.6 show the principal stresses in
both models. In the periodic model, the maximum component of the principal stresses σ1

(plotted in Figure 7.4 right bottom) shows bands between fibers in the direction of the
load. In the random model (Figure 7.4 up and bottom left) this stress concentration bands
between fibers only appear between those fibers which are located very close, showing high

2See Section A.2.1 for a definition of principal stresses
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Figure 7.3: Histograms of σ22 in the matrix for the periodic and the random model
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concentration of stresses which have values around 2 times higher than the concentration
stresses of the periodic model. In the random model, low concentration stresses appear in
some fibers which are aligned in the load direction. In this case, the concentration stresses
remain between 0.9− 1.1 times those of the periodic model. Consequently, it seems that
the random model takes into account the possibility of concentration of stresses due to
close distances which are not described by the periodic model.

In the periodic model (Figure 7.5 right bottom), the intermediate component of the
principal stresses (σ2) shows circular concentration areas which start between fibers aligned
in the load direction and which spread along each area of matrix surrounded by four fibers
describing a square. In the random model (Figure 7.5 up and left bottom) high stresses
appear between fibres which lay very close and spreads in large matrix areas. The ratio
between the maximum stresses between fibers in the random model and in the periodic
model is about σrandom

1 /σperiodic
1 = 1.6. In the other hand, the ratio of the stresses in large

matrix areas is about σrandom
1 /σperiodic

1 = 0.76.

Finally, the minimum component of the principal stresses in the periodic model, shows
traction bands which spread in the direction perpendicular to the load. These bands have
a maximum value in the region between fibers aligned in the load direction. Also con-
centration compression bands appear in the direction perpendicular to load showing high
values between fibers. These compression stresses are caused by the conservation of volume
(or mass) in the elastic analysis which makes that if the material is stretched in one di-
rection, in order to keep the same volume, it reduces its size in the perpendicular direction.

In the random model (Figure 7.6 up and left bottom) high traction values appear in
fibers laying very close considering the load direction and high compressive values appear
between fibers closely laying in the direction perpendicular to the load. These compressive
values are about 1.7 times the value of those in the periodic model.

A comparative analysis of the principal stresses can be performed by plotting a his-
togram for each component of the principal stresses (Figure 7.7). It can be seen that the
three histograms are quantitatively different: the mode3 differs in all three cases and in
all three cases the random model has a greater frequency in the tails.

7.3.1 Equitriaxiality

As seen in Chapter 3, the equitriaxiality or the presence of a nearly hydrostatic stress
state is determinant for transverse failure of fiber composites. For the comparison of the
equitriaxiality in the random model with the equitriaxiality in the periodic model the co-
efficients |σ2/σ1| and |σ3/σ1| have been computed for each solution point in the FE model
and are shown in Figure 7.8.

The plot of |σ2/σ1| is similar in both models, although it shows a slightly greater dis-
persion in the random model. In the plot for |σ3/σ1| this greater dispersion in the random
model is accentuated and, moreover, the random model seems to have a greater mean.

3The mode of a histogram is the interval with higher frequency
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Figure 7.4: σ1 In the random and periodic models
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Figure 7.5: σ2 In the random and periodic models
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Figure 7.6: σ3 In the random and periodic models
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Figure 7.7: Histograms of the principal stresses in the matrix for the periodic and the
random model
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As it has been seen in the former sections, the histograms of both models show greater
differences in the extreme values and consequently, this later plot shows greater differences
between the histograms of both models, since it reflects the ratio between the maximum
traction values (σ1) and the maximum compression values (σ3).

As was reviewed in Chapter 3, Asp and co-workers [12], when they analyzed the stress
state in a matrix of a composite loaded transversely, they concluded that there exists
a relation 1 : 1 : 2 between the principal stresses and also that this relation could be
considered a hydrostatic stress state. From the former analysis, it can be concluded that
the relation 1 : 1 : 2 between the principal stresses still remains if a random model is
considered. Since the random model is thought to be more realistic than the periodic one,
it can be affirmed that the stress state in the matrix of composites loaded transversely
can be considered hydrostatic.

7.4 Comparison of invariants

In this section two variables which depend on invariants of the stress tensor will be an-
alyzed: the Von Misses stress and the dilatational energy density (UV )4. As reviewed in
Chapter 3, some failure criteria are based in these invariants.

Figure 7.9 shows the Von Misses stress in the random model. Again, the highest values
appear between fibers which lay in a closer distance measured in the load direction.

Figure 7.10 shows the Von Misses coefficient in the periodic model, where highest val-
ues take place between fibers aligned in the load direction. It can also be observed that
the maximum values in the random model are about 1.37 times the maximum values in
the periodic model. In the other hand, the minimum value of the Von Misses stress in
the random model is about 0.5 times the minimum von Misses stress in the periodic model.

These relations can be observed in the histogram plotted in Figure 7.11. This his-
togram shows that means5 are nearly equivalent and that the frequencies in the higher
intervals are higher in the random model.

Figure 7.12 shows the dilatational energy density in the matrix for the random model.
It can be observed that the value of the dilatational energy density is nearly constant
and shows very high peaks between fibers which are located very closely and lay somehow
aligned in the load direction. The ratio of the high value divided by the constant value is
about 20.

Figure 7.13 shows the dilatational energy density in the periodic model. Concentration
areas appear between the fibers in the load direction. The ratio between the value in this
concentration areas and the low values is about 11.

4See Sections 3.4.2 and 3.4.3 for the definition of the Von Misses stress and the dilatational energy
density, respectively

5The mean can be seen as the projection of the gravity center of the histogram in the abcisae axis
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Figure 7.8: Histograms of the equitriaxiality coefficients in the matrix for the periodic and
the random model
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Figure 7.9: Von Misses Stress in the random model

Figure 7.10: Von Misses Stress in the periodic model
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Figure 7.11: Histograms of the von Mises stress in the matrix for the periodic and the
random model
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Figure 7.12: Dilatational energy density in the random model

Figure 7.13: Dilatational energy density in the periodic model



7.4. COMPARISON OF INVARIANTS 175

Figure 7.14 shows two histograms of the dilatational energy density. The upper his-
togram covers the complete range of the dilatational energy density. It reflects how the
most part of the points in both models are in the same bin (the lower one). In spite of
this, it can be seen in the histogram in the bottom of Figure 7.14 that the range of the
random model is much larger than the range in the periodic model. This phenomena is
very remarkable, since the high values of the dilatational energy density are expected to
cause initiation of transverse failure of the composite. It is also important to remark that
these high values take place in about 1% in the random model, while are not covered by
the periodic model.
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Figure 7.14: Histograms of the dilatational energy density in the matrix for the periodic
and the random model
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7.5 Conclusions

A comparison between a periodic and a random model for the same long fibre reinforced
composite has been performed. The most significant differences are the following:

• The maximum value of ε22 is about 40% higher in the random model and the fre-
quency in the right tail is higher in the random model. In the random model appear
compressive strains (on the 5% of solution points) which are not considered by the
periodic model. Analogous conclusions stand for σ22.

• An analysis of the principal stresses shows that the maximum (in absolute value)
stresses for the first and third components in the random model are 2 and 1.7 times
those in the periodic model. The histograms show notably different probability
distributions in the random and in the periodic model.

• It can be considered that the random model shows the relation 1 : 1 : 2, present
when the periodic distribution of fibers is considered and consequently, the stress
state in the matrix can be considered a hydrostatic stress state.

• The Von Misses stress seems to have a similar mean in both models but, again, the
random model has a greater probability in the tail of the histogram.

• The dilatational energy density in the random model shows a nearly constant value
with some very high peaks in areas between fibers located very close. Observing the
histograms both seem equivalent but, again, the random model reflects higher values
caused by close distances not considered in the periodic model.



178 CHAPTER 7. EFFECTS OF A RANDOM FIBRE DISTRIBUTION...



Chapter 8

A two-scale method for transverse
random composite materials

8.1 Introduction

This chapter is devoted to the probabilistic simulation of the transverse fracture of long
fibre reinforced composites. It was seen in Chapter 7 that a random model reproduces
more realistically the stress and strain fields in the composite than a periodic model does,
specially in the extreme values of the stress and strain components. Using the information
from random models of the microscale, the aim now is to obtain the probability of fracture
at any point in a macro-scale dominium.

To construct this micromodels, the information obtained from the analysis of digital
images (Chapter 6) will be used. The micromodels will be based on the Statistical Repre-
sentative Volume Element developed in Chapter 5.

In this Chapter, a two-scale method (schematized in Figure 8.1) for composite materials
with random elastic and which exhibit random failure behavior is developed. This method
takes into account the random distribution of the fibers at the micro-scale and derives the
behavior of the material at the macro-scale. Consequently, the hypothesis that the random
failure behavior of the composite material is caused by its random microstructure is made.
In the micro-scale the composite material is thought to satisfy:

• All random variables and random fields are ergodic

• All random variables and random fields can be considered second-order stationary

• The position of each fibre is random and it can be modelled with a hard-core model.

• The elastic properties of the constituents (fibre and matrix) are constants.

• The ultimate strength and critical values for failure criteria of the constituents are
constants.

In a similar way to that described in Section 2.1.2, and as it is usually done in homoge-
nization theory, the composite material will be seen in the macro-scale as a homogeneous

179



180 CHAPTER 8. TWO-SCALE METHOD FOR RANDOM COMPOSITES

Figure 8.1: Two-scale method for the failure of random transverse composites

material. That means, the equivalent homogeneity hypothesis is thought to be satisfied.
The material in the macro-scale is thought to have the following properties:

• All random variables and random fields are ergodic

• All random variables and random fields can be considered second-order stationary

• The elastic properties are known constants. , This information can be provided by
the Statistical Volume Element (Chapter 5), or by experimental tests.

• The elastic failure properties are random.

• The elastic and failure properties of two solution points can be considered statistically
uncorrelated.

Expressions which relate the macro and the micro-scale will be obtained in Section 8.4.
But first, simulations on the micro-scale, which will provide information on the statistical
distributions of the stress and strain components, will be performed. This statistical distri-
butions are needed for the macro-micro relations. Section 8.2 is focused on the micro-scale
and describe two methods for the simulation of microstructure patterns of fibre reinforced
composites. The results of the simulations are analyzed and modelled with statistical dis-
tribution functions in Section 8.3.
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8.2 Microstructure simulation

8.2.1 Simulation by random generation of fiber positions

As it was experimentally observed in Section 5.2.2 of Chapter 5, usual algorithms for the
simulation of Poisson point fields or hard-core point fields are not usable for volume frac-
tions greater than 0.5. For this reason, a new algorithm for the simulation of the fiber
position of real fibre reinforced composites has been developed. This algorithm takes some
ideas of algorithms used for the simulation of the molecular nature of fluids and of the
granular nature of powders and porous materials in which random close packing [22] is
attained.

Although its mathematical definition has been recently questioned [154], random close
packing (RCP) of particles is considered a random distribution of particles touching its
nearest neighbor and having the maximum coordination number1. Although it is a random
distribution of particles it is expected to have a certain stability, caused by field forces.
Usually, another state called random loose packing is defined as a random distribution of
particles touching its nearest neighbor.

The critical packing fraction for the RCP state is defined as:

ηRCP ≡ min{η|RNN (η) = 2r} (8.1)

where RNN is the distance to the nearest neighbor of each particle (fibre). The value of
this fraction is not clear but it is generally accepted to fall in the range ηRCP ∼ 0.82−0.89.
This value is not far from the ordered close packing of hard disks: η = ρπr2 = π/

√
(12) ∼=

0.9069 [22].

Simulation algorithms of random packing are normally based in heuristic rules. They
basically, rearrange the particles sequentially in a way that the system gets closer to a
RCP state. Some of these heuristic rules are:

• To avoid any bias in the sequence of particle rearrangements, this sequence is ran-
domized after each iteration.

• If particles are overlapped, the new position of particle i is computed as [72, 71]:

xji = xj + (xi − xj)
2r

dij
(8.2)

where xji is the displacement vector for the separation of the particle i from particle
j, xi and xj are the locations of the centers of particles i and j respectively, r is
the particle radius and dij is the distance between particles i and j. If particle i is
overlapped by ni particles, its new position can be computed:

1The coordination number of a particle i is the number of particles which are in contact with this
particle



182 CHAPTER 8. TWO-SCALE METHOD FOR RANDOM COMPOSITES

x′i =
1
ni

ni∑

j=1

xji (8.3)

This iterative process of separation of particles is usually called relaxation.

• A new movement is accepted if the new maximum overlap is less than the maximum
overlap among all particles [39]. This way, the growing of the maximum overlap,
which could lead to non-convergence, is avoided.

• A particle is vibrated if its coordination number is lower than 4 [72, 71]. That means,
it is given a very small random displacement.

• After a certain number of iterations, packing space is expanded [71].

The purpose of this work is to simulate random distribution of fibers in CFRPs. Usual
volume fractions for CFRPs are values between 0.55 and 0.65 and the distribution of fibers
is not that defined as random close packing or random loose packing. However, since it
is very difficult to simulate distributions with a volume fraction greater than 0.6 with
the inhibition process of Algorithm 22, some ideas from the algorithms for RCP can be
used to construct a new algorithm (Algorithm 4), which allows to simulate random fiber
distributions having volume fraction greater than 0.5.

1: N : number of fibres (Obtained with Algorithm 1 or from material sample histogram)
2: {Generation of the initial positions: }
3: for i = 1 to N do
4: coord(i,1) = RAND(0,L)
5: coord(i,2) = RAND(0,L)
6: {RAND(0,X) is a function which gives uniformly distributed numbers between 0

and X:}
7: end for
8: while Overlaps between fibers exist do
9: for i = 1 to N do

10: Select those fibers which overlap with fiber i
11: ni: Number of fibers which overlap with fiber i
12: if ni > 0 then
13: Compute new position of particle i (Equations 8.2 and 8.3)
14: else
15: Particle moves approaching its nearest neighbor k a random distance between

0 and dik

16: end if
17: Check if overlaps exist
18: end for
19: end while

Algorithm 4: Simulation of fibre distributions with high volume fraction

2See Section 5.2.2
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vf Time (min)
0.40 0.52
0.45 1.67
0.48 2.48
0.49 5.82
0.50 7.43
0.51 13.56
0.52 18.32
0.53 22.54
0.54 32.67
0.55 44.86
0.56 60.33
0.57 80.17
0.58 95.72
0.59 127.67

Table 8.1: Simulation times to obtain random distributions for different mean volume
fractions, using Algorithm 4

To improve the efficiency of Agorithm 4 it is very important to keep in each iteration an
updated database of neighbor fibres, which can be done easily by dividing the dominium
in cells of side 2-3 times the fibre radius.

Table 8.1 shows the simulation times of running Algorithm 4 for different volume
fractions for SRVE models with δ = 50. These simulations were run on a Intel Pentium-
IV 1.4GHz CPU. Simulation times are also plotted in Figure 8.2, where it can be seen
that times grow exponentially with the volume fraction and that the simulation of typical
volume fractions of carbon reinforced composites (between 0.55 and 0.57) may last between
60 and 90 minutes. This supposes a quite large computational time, considering that
afterwards the information on the position of the fibres will be converted in a fine-mesh
finite element model (with an unavoidable time consuming meshing process) and finally
solved.

8.2.2 Simulation by exact microstructure reproduction

As it was described in Chapter 6 and in opposition to what is normally considered in the
theoretical texts [114] [141] some composite materials seem to exhibit random point pat-
terns which cannot be modelled assuming complete spatial randomness. The development
of simulation methods for non-uniform random point patterns escapes the scope of this
work and, in fact, is a nowadays research field in mathematics and statistics. On the other
hand, in the former section it has been observed that the simulation of fibre distributions
of real carbon reinforced composites may last between 60 and 90 minutes and that it grows
as a exponential function of the volume fraction.

In this section a practical solution, which will be referred as exact microstructure
reproduction is employed for simulating random composites with non-uniform random
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Figure 8.2: Simulation times to obtain random distributions for different mean volume
fractions, using Algorithm 4 (Plot of values given in Table 8.1)
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distribution. Digital images of the composite microstructure will be converted into Finite
Element Models. For this purpose, some conversion subroutines have been developed using
PYTHON language. This language can be used for batch preprocessing with MSC.Mentat
software so, in a three step routine, a Finite Element model of a real transverse section of
fibre reinforced composite can be obtained. The procedure includes the following stages:

1. Image acquisition with an optical microscope. To obtain large dominium and high
resolution images, a mosaicking software, developed by the Artificial Vision research
group of the University of Girona, has been used3. This software allows real time
acquisition and assembling of contiguous images for the construction of large and
high resolution digital images.

2. Process the acquired digital images, using the techniques described in Section 6.3,
in order to obtain the position of the center of the fibres.

3. To run a PYTHON routine to convert the information from the image in a meshed
finite element model. An ECA model can be obtained within the same routine.

An example of this conversion methodology is given in Figure 8.3, which shows the
conversion of one of the images from TUHH.

This process, which includes meshing of multiple narrow necks between fibers 4 and
the linear solving, lasts, in mean, 120 minutes from which only 7 come from obtaining the
positions of the fibre centers5. The meshing and solving time should be added to the times
corresponding to the simulation described in the former section, for a better comparison.
This would give about 170-200 minutes.

It can be seen that, for this work’s purposes, exact microstructure reproduction is
much more advantageous than the simulation of the random positions process, not only
because the computational times are smaller but also because the process allow to obtain
models of microstructure patterns which cannot be considered to have a complete spatial
randomness CSR.

8.3 Analysis of results obtained from microstructure simu-
lation

This section presents and analyzes the results of the FEM simulation of the microstructure
of the three materials from TUHH. From 40 images from each material, 40 FE models
have been obtained using the methodology described in Section 8.2.2. Since the images
from TUHH are larger than the minimum size of the SRVE obtained in Chapter 5, the
microstructure model is created from a centered window of size δ = 50r from each digital
image.

3See Section 6.3.1 of Chapter 6
4For a SRVE model with δ = 50 about 290000 triangular elements and about 150000 nodes result from

the meshing process
5Times using the same Intel Pentium-IV 1.4GHz CPU, that in former section
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Figure 8.3: The upper images show the conversion a large image from microstructure (left)
into a finite element model. The images at the bottom show a detail of this conversion.
The fibres have been encircled with a constant radius, for a better appreciation
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[hbtp!] heightMaterial E (MPa) ν Fibre diametre (mm)
HTA 5131 (carbon fibre) 28000 0.23 6 · 10−3

RTM6 (epoxy resin) 2755 0.34 -
977-2 (epoxy resin) 2730 0.34 -
6376 (epoxy resin) 3630 0.34 -

Table 8.2: Material properties used in FE models

Since each fibre is expected to have nearly uniform stress and strain components, the
mesh within each fibre could have been coarser. However, for statistical sampling purposes
it can be useful to have uniformly distributed nodes. The material properties obtained
from the supplier and from TUHH (shown in Table 8.2) have been used for the FE models.

Arbitrary displacements are applied employing the Embedded Cell Approach. And
finally, the models are solved. From each micromodel the following data is stored:

• ε
(m)
ij (k): strain components in the matrix for each node k in the mesh, which lays in

the matrix region

• σ
(m)
ij (k): stress components in the matrix for each node k in the mesh, which lays in

the matrix region

• Mean strain components in the composite:

〈εij〉 =
∫

Ωy

εij(y) dy =
∑N

k=1 εij(k)
N

(8.4)

where Ωy is the dominium of the SRVE and N is the total number of nodes in the
mesh.

• Mean strain components in the composite:

〈σij〉 =
∫

Ωy

σij(y) dy =
∑N

k=1 σij(k)
N

(8.5)

where N is the total number of nodes in the mesh.

From this quantities, the following material constants and quantities can be computed
for each model:

• The Young’s modulus, which considering that the material is isotropic in the 12-
plane, can be obtained as:

E = E22 =
〈σ22〉
〈ε22〉 (8.6)

• Keeping the assumption of isotropy, Poisson’s ratio can be also computed:

ν = ν12 = −〈σ11〉
〈σ22〉 (8.7)
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• From the stored σ
(m)
ij , the dilatational energy density UV and the Von Misses stress

are computed for each node k which lays within the matrix region:

UV (k) =
1− 2ν(m)

6E(m)
(σ11(k) + σ22(k) + σ33(k))2 (8.8)

where E(m) is the matrix Young’s modulus and ν(m) the Poisson’s ratio of the matrix.

• The contribution of the matrix to the total strain for each model:

vεij = 〈ε(m)
ij 〉/〈εij〉 (8.9)

where 〈ε(m)
ij 〉 can be computed:

〈ε(m)
ij 〉 =

∫

Ωm

εij(y) dy =
1
M

M∑

k=1

εij (8.10)

where Ωm is the region of the SRVE occupied by the matrix and M the number of
nodes of the FE mesh which lay on Ωm.

8.3.1 Choice of probability density functions

In this section the probability density functions which more adequately fit the data from
the simulations will be chosen.

Usually, the normal distribution is used for modelling stress components in a body. It
was seen in Chapter 7 and it can be observed in Figure 8.4 that the histograms of the
components of stress are nearly symmetric, so the normal distribution seems to be a good
choice.

Both the Von Misses stress and the Dilatational energy density are magnitudes related
to stress invariants so they could be modelled with a normal distribution but, since they
are non-negative, their histograms (Figure 8.5) show clearly a lack of symmetry. The shape
of the histogram suggests a Weibull distribution but also some transformations (squared
root or logarithm) can be applied to the data to make some symmetry appear or to try
to improve the fit.

Square root and logarithm transformations are applied to UV and σV M . Following to
these transformations, the maximum likelihood estimators for the parameters of normal
and Weibull distributions6 are obtained and then the χ2 goodness-of-fit test is comput-
edThe test is described in Section B.7.3 of Appendix B. The result of the test can be
interpreted as: the closer to 1 is the value for this test, the better the employed fit. Re-
sults for each variable, including the transformations are given in Table 8.3. The table
shows in boldface the best result for each variable. In the following subsections, each

6See Section B.5 of Annex B for the mathematical expressions which define these functions
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Figure 8.5: Histograms for UV and σV M
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variable will be fitted using the distribution and transformation which has a larger value
in the χ2 goodness-of-fit-test.

Variable Weibull Normal
σ11 - 0.94770
σ22 - 0.94860
σ12 - 0.94770

σV M 0.94915 0.94747√
σV M 0.94927 0.94753

log 10(1 + UV ) 0.94902 0.94818
UV 0.94775 0.94499√
UV 0.94840 0.94736

log 10(1 + UV ) 0.94721 0.94472

Table 8.3: χ2 goodness-of-fit test for some variables

According to the obtained results in the χ2 goodness-of-fit test, the stress components
will be modelled with a normal distribution, and a square root transformation will be
applied to the dilatational energy density (UV ) and the Von Misses stress (σV M ) which
then, will be modelled as Weibull distributions.

8.3.2 Probability density function for the stress and strain components

The results from the χ2-goodness-of-fit shown in Table 8.3 have revealed that normal
distribution is a good choice for the stress and strain components. Therefore, maximum
likelihood estimators of the mean and the standard deviation are computed for the results
of each model.

The good agreement of the data with the normal distribution can be observed in
the QQ-plots of Figures 8.6,8.7 and 8.8. This Figure shows the good agrement of the
cumulative distribution function of the data from the simulation (labelled as experimental)
and the fit.

The mean (µ) and the standard deviation (σ) of the three stress components for each
analyzed material are given in Table 8.4.

The same conclusions stand for the strain components, whose empirical mean and
standard deviation are given in Table 8.5.

8.3.3 Probability density function for the Von Misses stress

The results from the χ2-goodness-of-fit shown in Table 8.3 have revealed that Weibull
distribution is a good choice for the square root of the Von Misses stress. Maximum like-
lihood estimators for the Weibull shape and scale parameters have been obtained and are
shown in Table 8.6. The goodness-of-fit can also be observed in the QQ plots of Figure 8.9.
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Figure 8.6: Normal plot and CDF plot for σ11
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Figure 8.7: Normal plot and CDF plot for σ22

Material Variable µ (MPa) σ (MPa)
σ11 22.8182 60.4663

RTM6 σ22 248.1615 88.8809
σ12 22.8182 60.4663
σ11 23.2556 63.9259

977-2 σ22 250.7342 94.2939
σ12 23.2556 63.9259
σ11 23.8360 64.3095

6376 σ22 250.9486 94.4392
σ12 23.8360 64.3095

Table 8.4: Statistics for the stress components
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Figure 8.8: Normal plot and CDF plot for σ12

Material Variable µ (MPa) σ (MPa)
ε11 -0.0343 0.0142

RTM6 ε22 0.0773 0.0239
ε12 -0.0343 0.0142
ε11 -0.0343 0.0142

977-2 ε22 0.0773 0.0239
ε12 -0.0343 0.0142
ε11 -0.0342 0.0142

6376 ε22 0.0773 0.0239
ε12 -0.0342 0.0142

Table 8.5: Statistics for the strain components

Material Variable α β µ σ2

RTM6
√

σV M 1.5660 · 10−7 7.7512 9.6270 2.2300
977-2

√
σV M 11.1506 7.7196 10.8582 2.8019

6376
√

σV M 8.9507 7.9438 10.8532 2.8039

Table 8.6: Statistics for the Von Misses stress
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Figure 8.9: Weibull plots for
√

σV M for RTM6 (up) 977-2 (middle) and 6376 (down)
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8.3.4 Probability density function for the dilatational energy density

As it was in the case of the Von Misses stress, the square root transformation was a con-
venient transformation for the dilatational energy density, which with this transformation
fitted correctly with a two-parameter Weibull distribution. Maximum Likelihood estima-
tors for the shape and scale parameters have been obtained and are given in Table 8.7.

Material Variable α β (MPa) µ (MPa) σ2 (MPa)2

RTM6
√

UV 2.5238 2.1371 1.9100 0.6808
977-2

√
UV 2.4021 2.1636 1.9326 0.7615

6376
√

UV 3.4684 1.7113 1.9374 0.7699

Table 8.7: Parameters and Statistics for the Dilatational energy density

The results for the dilatational energy in the matrix fit very well with a Weibull distri-
bution. This can be seen in Figure 8.10, which shows a QQ plot from a Weibull distribution
for the three analyzed materials and denotes that the data from the simulations can be
modelled with a Weibull distribution function. The fitting is specially good between prob-
abilities 0.05 and 0.995.

8.4 Macro-micro scale relations

This section derives the expressions which relate the results obtained from the micro-
models with the stresses and strains at the macroscale. In the following expressions, the
macroscale will be denoted with coordinate x and the microscale with coordinate y. The
values of the statistics obtained in the simulations will be denoted with a zero superscript,
for instance 〈I0

1 〉 will denote the mean of the first invariant of the stress tensor obtained
in the micro-scale simulation, by imposing an arbitrary value to the boundary conditions.

Starting from the relations of homogenization and effective medium theory it will be
assumed that:

〈σy
ij〉 =

∫

Ωy

σij dy = σx
ij (8.11)

and:

〈εyij〉 =
∫

Ωy

εij dy = εxij (8.12)

8.4.1 Stress components

For those variables which were fitted using normal distributions (the stress components)
the results obtained in the simulations can easily be converted by a simple scaling (See
Equations B.11). For any point x in the macro problem the following relation stands:
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σx
ij = 〈σy

ij〉 = kσij (x) · 〈σ0
ij〉 (8.13)

where kσij (x) is a proportionality constant and 〈σ0
ij〉 is the mean of the stress compo-

nent in the micro-scale, as obtained from the FE solution. So, the variance associated the
stress at a point of the macro-scale, σx

ij(x) , can be expressed:

σ2(σy
ij) = k2

σij
(x) · σ̂2(σ0

ij) (8.14)

Where last equation describes the variance of σ
y
ij (the stress components in the micro-

scale), since the stress components in the macro-scale (σx
ij) are, in fact, deterministic

functions of the position (x).

8.4.2 Strain components

Analogously to has been done with the stress components, the following relations can be
written for the strain components:

εxij = 〈εyij〉 = kεij (x) · 〈ε0
ij〉 (8.15)

σ2(εyij) = k2
εij

(x) · σ̂2(ε0
ij) (8.16)

8.4.3 Dilatational energy density

As it has been seen in Section 8.3.4, the results of the dilatational energy density from the
micromodels can be fitted with a Weibull distribution. That is, if U0

V is the dilatational
energy density at any point in the microscale:

p(
√

U0
V ) =

α0

β0




√
U0

V

β0




(α0−1)

e
−

(√
U0

V
β0

)α0

(8.17)

Let us write down the expression of the stress tensor first invariant at any point in the
microscale:

I
y
1 = σ

y
11 + σ

y
22 + σ

y
33 (8.18)

Consequently, the dilatational energy at any point in the micro-scale can be written:

U
y
V =

1− 2ν(m)

6E
(σy

1 + σ
y
2 + σ

y
3 )2 (8.19)

If the mean operator is applied to both sides of the definition of I1:

〈Iy
1 〉 = 〈σy

11〉+ 〈σy
22〉+ 〈σy

33〉 (8.20)

it can be easily seen that if the first invariant of the stress tensor is expressed as:

Ix
1 = σx

11 + σx
22 + σx

33 (8.21)
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the following expression stands:

〈Iy
1 〉 = Ix

1 (8.22)

In order to relate the results from the microstructure simulations to the macroscale,
Equation 8.22 will be employed. Let us denote with 〈I0

1 〉 the mean of the first invariant of
the stress tensor in the micro-scale models, submitted to arbitrary boundary conditions:

I0
1 = 〈Iy

1 〉 =
∫

Ωm

I1(y)dy (8.23)

where Ωm is the region of the SRVE occupied by the matrix. Then, the mean value
of the dilatational energy density for the matrix at the micro-scale, obtained with the
arbitrary boundary conditions can be written:

U0
V =

1− 2ν(m)

E(m)
I0
1 (8.24)

At this point the results of the FE simulations with arbitrary values of the boundary
conditions can be employed to obtain the results which would be obtained by any other
value of the boundary conditions.

Let us assume that knowing the mean strain in the composite at the micro-scale (〈εij〉),
we could know the mean strain in the matrix at the microscale (〈ε(m)

ij 〉). Since the elastic
properties of the material at the micro-scale are thought to be deterministic, then the
components of the stress (〈σ(m)

ij 〉) could also be known. From these components, the mean
dilatational energy density in the matrix at the micro-scale could be written7:

〈Uy
V 〉 =

1− 2ν(m)

E(m)

(
〈σ(m)

11 〉+ 〈σ(m)
22 〉+ 〈σ(m)

33 〉
)2

(8.25)

〈Uy
V 〉 = 〈U0

V 〉
〈Uy

V 〉
〈U0

V 〉
= U0

V

〈Iy
1 〉2

〈I0
1 〉2

= U0
V

(Ix
1 )2

〈I0
1 〉2

(8.26)

where Equation 8.22 has been applied in the last step. In the last equation the term Ix
1

means the first invariant of the stress tensor of the matrix component. In fact, according
to this work’s notation, this term should mean the invariant of the stress tensor for the
whole composite but, since the purpose here is to use the dilatational energy density only
for a a crack initiation criteria in the matrix, the author has preferred to use this term for
simplicity.

If U0
V is isolated from equation 8.26 the following expression is obtained:

U0
V = Uy

V

〈I0
1 〉2

(Ix
1 )2

(8.27)

According to this, Equation 8.17 can be re-written to express the probability density
function of

√
UV at a point x of the macro-scale:

7From here the superscripts m (indicating the matrix) for UV will be dropped, since UV for the fibre is
of no interest here
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p(
√

UV ) =
α0

β0

〈I0
1 〉

Ix
1

(√
UV

β0

〈I0
1 〉

Ix
1

)(α0−1)

e
−

(√
UV

β0
〈I0

1 〉
Ix
1

)α0

(8.28)

The scale factor β0 can be re-written:

β = β0 Ix
1

〈I0
1 〉

(8.29)

and equation 8.28 simplified to:

p(
√

UV ) =
α

β

(√
UV

β

)(α−1)

e
−

(√
UV
β

)α

(8.30)

where the relation α = α0 stands since the shape parameter remains invariant to
transformation 8.26.

8.5 Applications

By using the results of the microstructure simulation and the microscale-macroscale re-
lations, some applications to derive design maximum strain criteria can be found. These
relations allow to define maximum strain related to an imposed probability of fracture.
Since transverse composite materials normally exhibit brittle fracture, the term fracture
will be understood as crack initiation. Consequently, this criteria take into account the
random nature of composite materials.

8.5.1 Maximum stress

Equations 8.13 and 8.14 can be used to evaluate the probability of failure at any point of
the macro-scale, if the stress σx

ij(x) is compared with a ultimate value σu
ij :

P [σij > σu
ij ] ∼ Norm(kσij (x) · 〈σ0

ij〉, kσij (x) · σ̂(σ0
ij)) (8.31)

where Norm(µ, σ) is a normal distribution of mean µ and standard deviation σ.

8.5.2 Maximum strain

Analogously, Equations 8.15 and 8.16 can be used to evaluate the probability of failure at
any point of the macro-scale, if the strain εxij(x) is compared with a ultimate value εu

ij :

P [εij > εu
ij ] ∼ Norm(kεij (x) · 〈ε0

ij〉, kεij (x) · σ̂(ε0
ij)) (8.32)

where Norm(µ, σ) is a normal distribution of mean µ and standard deviation σ.
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8.5.3 Probability of fracture at a given strain

Using the stored data from the FE simulations of the micromodels the probability of
fracture initiation can be computed following the next steps:

1. Define a critical value for the dilatational energy density (U crit
V ), corresponding to

one of the analyzed materials.

2. Define a strain ε22 to which the composite lamina is expected to be subjected.

3. Compute mean contribution of the matrix to this strain:

〈ε(m)
22 〉 = vεij 〈ε22〉 (8.33)

4. Make use of the matrix elastic properties and the elasticity relations to compute the
mean components 〈σ(m)

ij 〉:

〈σ(m)
22 〉 = E(m) · 〈ε(m)

22 〉 (8.34)

〈σ(m)
11 〉 = ν(m) · 〈σ(m)

22 〉 (8.35)

〈σ(m)
12 〉 =

E(m)

2(1 + ν(m))
〈ε(m)

12 〉 (8.36)

〈σ(m)
33 〉 =

ν(m)E(m)

(1 + ν(m))(1− 2ν(m))
(〈σ(m)

11 〉+ 〈σ(m)
22 〉) (8.37)

5. Make use of the stress components to compute the mean of the first invariant of the
stress in the matrix:

〈I1〉 = 〈σ(m)
11 〉+ 〈σ(m)

22 〉+ 〈σ(m)
33 〉 (8.38)

6. As seen in Section 8.4.3 the parameters of the Weibull distribution can be related to
those obtained for the simulations of the microstructure, in which arbitrary boundary
conditions where used:

β = β0 〈I1〉
〈I0

1 〉
(8.39)

α = α0 (8.40)

7. The probability of failure initiation due to transverse cracks in the matrix is given
by the expression:

P [
√

(UV ) >
√

(U crit
V )] = e

−
(√

Ucrit
V

β

)α

(8.41)
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Figure 8.11: Probability of failure initiation for a constant strain
for HTA5131/RTM6

Figures 8.11, 8.12 and 8.13 show plots for the Weibull functions obtained for three
different materials: HTA5131/RTM6, HTA5131/977-2 and HTA5131/6376, respectively.
In each plot a vertical dashed line shows the critical value for UV (obtained from Asp et
al. [13]). Results show how for HTA5131/RTM6 the probability of initiation of failure is
nearly null for ε ≤ 0.002. For ε = 0.0025 the probability of initiation of failure is small,
and this probability grows for greater values of ε. For HTA5131/977-2 the probability of
initiation of failure can be considered null for ε ≤ 0.003. For ε = 0.004 first cracks are
possible with very small probability and this probability grows. The same description is
usable for HTA5131/6376.

The values of the failure initiation at each strain increment are given in Table 8.8
where the value of P [sqrt(UV ) >

√
(U crit

V )] has been computed for each material, using
Equation 8.41. These values are plot in Figure 8.14. This Figure could be used to define
maximum design strains. For example, if the maximum probability of initiation of matrix
failure is required to be lower than 0.0001, for HTA5131/RTM6 the maximum design strain
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Figure 8.13: Probability of failure initiation for a constant strain
for HTA5131/6376



204 CHAPTER 8. TWO-SCALE METHOD FOR RANDOM COMPOSITES

ε22 HTA5131/RTM6 HTA5131/977-2 HTA5131/6376
5.00E-04 1.00E-25 - -
1.00E-03 6.99E-11 - -
1.50E-03 2.24E-04 - -
2.00E-03 1.71E-02 - -
2.50E-03 9.87E-02 - -
3.00E-03 2.32E-01 1.09E-05 8.07E-05
3.50E-03 3.71E-01 - -
4.00E-03 4.93E-01 2.56E-03 8.15E-03
5.00E-03 - 2.72E-02 5.75E-02
6.00E-03 - 9.19E-02 1.55E-01
7.00E-03 - 1.85E-01 2.72E-01
8.00E-03 - 2.88E-01 3.86E-01
9.00E-03 - 3.85E-01 4.86E-01
1.00E-02 - 4.71E-01 5.68E-01

Table 8.8: Probability of failure initiation

Material µ(εu) σ(εu)
HTA5131/RTM6 0.0034 0.0063
HTA5131/977-2 0.0112 0.0099
HTA5131/6376 0.0081 0.0009

Table 8.9: Failure data for three different CFRPs

would be set at 0.0015, for HTA5131/977-2 set at 0.0030 and for HTA5131/6376 at 0.0034.

Figures 8.15, 8.16 and 8.17 show stress-strain curves for the three analyzed materials.
Although TUHH performed 7 tests this curves show only the result for a single test. The
mean results for these tests are given in Table 8.9.

Figures 8.15, 8.16 and 8.17 also show in an upper horizontal axis the corresponding
values of p[UV > U crit

V ] for some values of the strain in the composite ε22. The value of
the ultimate strain obtained by TUHH (the mean of the seven tests) is also plotted in
these figures by means of a red line. These experimental values are given in Table 8.9.
Finally, an extrapolation of the perfect elastic linear behavior of each material is plotted
in each figure in a dashed line. This extrapolation is computed using Young’s Modulus
(E22) obtained by TUHH.

The curve for HTA5131/RTM6 shows a typical brittle fracture. No significant loss of
stiffness is shown by the material. Fracture happens a little before p[UV > U crit

V ] reaches
the value of 0.37.

The curve for HTA5131/977-2 shows clearly loss of stiffness. The behavior of the ma-
terial is then far from being linear and the two-scale method employed and, consequently,
the results from the simulation will not bes accurate.
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Figure 8.14: Probability of failure initiation
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Figure 8.15: σ − ε traction curve for HTA5131/RTM6

Finally, the curve for HTA5131/6376 shows a nearly brittle behavior, since the material
fractures before experimenting a small loss of stiffness. The mean ultimate strain obtained
by TUHH nearly coincides with a p

[
UV > U crit

V

]
= 0.386.

8.5.4 Simulation of the failure initiation

The obtained data from microstructure simulation can also be used to estimate the failure
initiation by using the algorithm shown in Figure 8.18, and described below. Instead of
obtaining curves for a single value of the macroscopical strain, as was done in the former
section, now a distribution function for the probability of fracture in function of the
macroscopical strain will be obtained. To do this a random position in the microstructure
will be drawn and the macroscopical strain which causes crack initiation at this point will
be found iteratively.

As a very first rough approximation it may be assumed that transverse fracture of
CFRPs is brittle. Therefore, it can be considered to happen suddenly after first cracks
appear.

1. Stored data (〈ε0
ij〉, α, β0) from the microstructure simulation is read.

2. Start a loop for the number of simulations (Nsim).

3. Draw p from a uniform distribution between 0 and 1. This value will identify a
point in the matrix of the microstructure until the critical value of the macroscopical
composite strain which causes crack initiation at this point is obtained.
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Figure 8.16: σ − ε traction curve HTA5131/977-2

Figure 8.17: σ − ε traction curve HTA5131/6376
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Figure 8.18: Simulation of the macroscopical strain which causes failure initiation
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Material µ̂(εu) µ(εu) σ̂(εu) σ(εu) ρ̂ ρ

HTA5131/RTM6 0.0038 0.0034 0.0050 0.0063 1.31 1.85
HTA5131/977-2 0.0072 0.0112 0.0075 0.0099 1.04 0.88
HTA5131/6376 0.0060 0.0081 0.0030 0.0009 0.50 0.11

Table 8.10: Simulation results and failure data for three different CFRPs. the hat over
the estimator denotes values from the computer simulations. Estimators without the hat
obtained from tests by TUHH

4. Impose an initial value of macroscopical deformation

5. The mean strain in the matrix (〈ε(m)
22 〉) can be obtained through the macroscopi-

cal strain (〈ε22〉) and the factor κ(m), obtained from the results of microstructure
simulation.

6. By using equations 8.34 the mean stresses in the matrix (〈σij〉) can be computed.
From them, the mean first invariant of the stress tensor in the matrix (I(m)

1 ) can
also be computed. Then, by applying relations 8.39, the parameters of the Weibull
distribution of the dilatational energy density (UV ) can be obtained.

7. Obtain a realization of UV through the inverse Weibull cumulative density function
with parameters α, β. The value p will be used.

8. If UV > U crit
V a crack will appear in the matrix, at the point represented by p. The

value of 〈ε22〉 is stored and another point of the microstructure is randomly chosen
by drawing a new value of p. If UV does not reach the critical value U crit

V , 〈ε22〉 is
incremented.

Figure 8.19 plots the cumulative density function and Table 8.10 shows the main
statistics of the results of the simulation for the three analyzed materials with values
U crit

V = 0.055 and Nsim= 10000. These values are the statistics of the macroscopical
strain ε22 at which crack initiation takes place. This table also shows the results from
seven experimental tests run for each of this three materials by the composites group of
Technische Universität Hamburg-Harburg (TUHH). Results from the computer simulation
are given in this Table with the symbol (̂). Good agreement between experimental and
simulation data is obtained, for both mean (µ) results and standard deviations (σ). This
agreement could be improved if the number of experimental tests were increased.

8.6 Relation between fibre distribution and failure results

The failure results of the three analyzed materials can be compared with the results of the
digital image analysis of Chapter 6. Table 8.11 recalls the statistics obtained for the local
volume fraction (vf ) and the number of fibres (nf ) for each material.

The coefficient of variation ρ = σ/µ is useful to compare the variances of populations
with different means, for this reason it is given also in Table 8.11. At first sight, it seems to
be a clear relation between the variance of vf and nf and the variance of the experimental
strain to failure, given in Table 8.10: a large variance in the volume fraction seems to cause
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Figure 8.19: CDF of the results of the simulation for HTA5131/RTM6 (up), HTA5131/977-
2 (middle) and HTA5131/6376 (bottom)
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statistic / material HTA 5131/RTM-6 HTA 5131/977-2 HTA 5131/6376
µ(vf ) 0.5455 0.5410 0.5761
σ2(vf ) 0.2069 0.2105 0.0440
ρ(vf ) 0.8338 0.8480 0.3643
µ(nf ) 554.450 549.725 585.450
σ2(nf ) 2146.766 2175.845 458.715
ρ(nf ) 0.0835 0.0848 0.0365

Table 8.11: Summary of statistics for three CFRPs microanalysis

a large variance in the ultimate strain. This happens for materials HTA 5131/RTM-6 and
HTA 5131/977-2. Analogously a small variance of the volume fraction seems to cause a
small variance of the ultimate strain, as happens for HTA 5131/6376. Both experimental
and simulation results agree with this qualitative conclusion. However, only an Analysis
Of VAriance (ANOVA) [27] could confirm this quantitatively.

On the other hand, Figure 8.20 recalls the results from Chapter 6 which revealed that
out of the three analyzed materials, only HTA 5131/6376 can be considered to have a
complete random distribution of the fibre (CSR).

Figure 8.20: Mean squared difference from a CSR pattern

This result also points out that a CSR distribution of the fibre, that is, a random
homogeneous regular distribution of the fibre within the matrix seems to give a smaller
variance of the failure strain.

8.7 Summary and conclusions

Two methods for microstructure pattern simulation have been described. Out of this two
methods, exact microstructure reproduction has been considered to be useful for the pur-
poses of this work, since it ensures a better pattern reproduction and its computational
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cost is lower.

This methodology has been used for the simulation of three different CFRPs laminates.
40 images of each have been converted into FE models and solved for arbitrary value of
the boundary conditions. The obtained results could be used for any value of boundary
conditions and within a macroscale problem by employing the proposed expressions.

Some applications are also proposed. One of them, the simulation of the probability
of failure shows good agreement with experimental data.

Two remarkable facts are observed from the results:

• In the case of brittle fracture, material breaks approximately for p[UV > U crit
V ]

between 0.37 and 0.39.

• There is some correlation between the fibre distribution and the variance of the
failure strain. When the fibre pattern can be considered CSR the variance of the
failure is smaller than for a composite which fibre distribution departs from a CSR
pattern.

However, both facts should be verified and quantified with more experimental tests.



Chapter 9

Conclusions

9.1 Summary and conclusions

1. The State-of-the-Art of modelling and simulation of transverse random composites
has been reviewed. It has been pointed out that the definition of a finite sized
Representative Volume Element, which can be used for the numerical simulation
of transverse random composites, is not clear. The different analysis published up
to now have considered different criteria which lead to different conclusions. These
conclusions cannot be compared since were based on different criteria and different
methods and materials were used for its analysis.

2. A review on the available failure criteria for the matrix have been reviewed. From
these, the dilatational energy density criteria has been chosen, since it is capable to
predict the brittle failure of composites loaded transversely.

3. A numerical scale-dependent analysis has been performed for the determination of
the finite size of a Representative Volume Element which can be used for the simula-
tion of transverse random composites. This volume element is expected to have the
same mechanical and statistical properties than the bulk material. The following
criteria have been taken into account:

(a) Fibre content

(b) Effective properties

(c) Hill Condition

(d) Stress and strain fields

(e) Probability density functions of the stress and strain in the matrix

(f) Distance distributions: K(h), g(h), n1(h), n2(h) and n3(h).

Since both statistical and mechanical criteria have been considered a Statistical
Representative Volume Element has been achieved. The result of this analysis is
that a usable SRVE for the analysis of transverse random CFRPs must have a size
δ = L/r ≥ 50 where L is the length of the size of the SRVE and r the fibre radius.
For the correct application of this SRVE, the Embedded Cell Approach has to be

213



214 CHAPTER 9. CONCLUSIONS

used. This size of the SRVE can also be applied for composite materials with similar
contrast to the analyzed material (for which E(f)/E(f) = 5.75).

4. The same linear elastic analysis for the transverse plane of a CFRP has been per-
formed using a periodic model and using a random model. Results show how the
models are equivalent in mean values but the random models gives much more in-
formation about extreme values of stress and strain fields, which are very relevant in
terms of the occurrence of damage. The most significant conclusions obtained from
this analysis can be summarized as:

• The value of the maximum strain is 36% in the random model than in the
periodic

• The value of maximum principal stress in the random model may be 60% higher
than in the periodic model.

• In spite of the differences observed between the models, the stress state in the
matrix of the random model can still be considered a hydrostatic stress state.

5. The distance functions (K(h), g(h) and nearest neighbor functions) have been used
for the analysis of transverse sections of different CFRPs. These functions may be
useful for distinguishing materials from different sources. The distribution of the
fibre in four different materials has been analyzed. This analysis reveals that from
these four materials only one can be considered to have a complete spatial random
distribution of the fibres.

6. It has been considered that, nowadays, microstructure reproduction, that is, the
conversion of digital images into finite element (or any other computational method)
models seems to be a more appropriate approach than simulation by generation of
random positions because:

(a) The simulation of random patterns of high volume fraction fibre reinforced
composites needs specific algorithms based upon heuristic approaches and the
theory of random close packing. This algorithms can only reproduce complete
spatial randomness (CSR) patterns.

(b) With the algorithms developed so far, a better representativeness of the real
material can be achieved than with statistical models which are only capable of
reproducing a given g(h). This function, as observed in real composites, may
present some dispersion.

7. A two-scale method for the probabilistic analysis of transverse random composites
has been proposed. This method is useful for the determination of design ulti-
mate strain which avoid failure initiation. Several applications and capacities of the
method have been exposed:

• If a maximum stress or maximum strain criteria is employed, the proposed
method allows the definition of maximum macroscopical stress and strains in
function of an imposed probability of failure initiation.
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• Obtention of distribution functions of the dilatational energy density, which
allow to define allowable macroscopical strain for a critical value of the dilata-
tional energy density.

• Obtention of distribution functions which relate the macroscopical strain with
the probability of fracture (understood as crack initiation).

Comparison with experimental data shows that the method is capable to prevent
failure initiation but for a full verification of the computed probabilities a statistically
significant number of tests should be performed. More precisely, the comparison of
the results of the simulation with experimental values reveals that fracture happens
for a value of p[UV > U crit

V ] = 0.37 - 0.39.

8. Observing both digital image analysis and simulation results, it seems to be a relation
between the distribution of the fibre in the composite and the statistics of failure
strain: when the distribution of the fibre departs from a CSR pattern, the variance of
the failure strain seems to be larger that when the fibre distribution can be considered
to be a CSR distribution.

9.2 Future directions

This is an starter work on this field and, consequently, opens a wide range of future
directions. Some of them are aspects which remain unsolved after this work and some are
new achievements which could be reached by following some of the techniques described
in this work. To mention some of them:

1. The CFRPs analyzed show some variation in the diameter. This may affect the
results of the simulation somehow. For a better precision of the methodology, the
variation of the diameter should be taken into account. The lognormal distribution
is usually employed for the modelling of radius of particles [72]:

f(r) =
1√

2πσr
e−(ln r−ln r0)2/2σ2

(9.1)

where ln r0 and σ are the mean and the standard deviation of ln r. In CFRP this
change could lead to a better knowledge and the description of the micromechanics
but results are not expected to vary considerably.

2. The effect of missalligned fibres could be a focus of stress and strain concentration
and consequently, a cause of damage. The SRVE could be used for the simulation
of layers with orientations different to 90o. In this case the fibres would appear
as ellipses in a transverse section. The image acquisition techniques and software
described in Chapter 6 could be easily modified to consider ellipses instead of circles
and compute the orientation of each fiber.

3. Three dimensional techniques for the observation of microstructures have already
been used for the acquisition of material data [146]. The use of Scanning Acous-
tic Microscopy (SAM) and Scanning Electron Microscopy (SEM) may improve the
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knowledge of the micromechanics and could be used to verify micromodels. The use
of embedded optical fiber sensors [145] could also be useful for this purpose.

4. Some researchers deal with matrix cracking as a phenomenon which initiates and is
close related to damage evolution [97, 73], fatigue [35] and delamination [113]. Con-
sequently, the SRVE could be used in a statistical modelling approach for obtaining
probabilistic results for progressive damage, delamination and fatigue.

5. The composite model which has been used can be improved by taking into account
the existence of an interface between fibre and matrix, the strength or the possible
defects in this interface [85] and the presence of voids. For this latter option the use
of the techniques for the analysis of compositional data [7] may be useful.

6. Although the fracture of CFRPs in the transverse direction is usually elastic, non-
linear behavior can take place when layers in different directions are stacked. This
random non-linear behavior could be simulated using the same SRVE size. Some
further developments in the micro-macro relations should be found.
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Appendix A

Elasticity

A.1 Tensor and index notation

In this section the basics of indicial notation, which is usually employed in the Mechanics y
of Continuum are summarized. Further description can be found in the classic text books
such as those by Chou and Pagano [37] or by Malvern [101].

Probably, indicial notation appears like a way of expressing equations which differ only
in subscripts referring to space coordinates in a compact form. For this reason the usual
spatial coordinate symbols x, y, z are replaced in indicial notation by x1, x2, x3.

The basic rules of indicial notation are the following:

• Vectors (or first-order tensors) are expressed as a term with and only subscript, such
as vi. Second-order tensors are written as a term with two subscripts (like the strain
tensor εij) and three-order tensors with three subscripts (such as the elastic tensor
Cijk).

• An equation expressed in indicial notation represents usually three or more equations
in unabridged notation.

• A subscript which appears repeated in a monomial1 is called dummy index and a
non-repeated subscript free index.

• A dummy index must be understood like a summation over that index where the
dummy index takes the values assigned to each spatial coordinate 1, 2, 3. For in-
stance, the scalar product of two vectors ui and vi is expressed in indicial notation
as:

uivi ≡ u · v

• A free index must be understood as a repetition of the equation for each spatial
coordinate. For instance, using the repetition over the dummy index, the next
equation:

1A monomial is defined in Chou and Pagano [37] as a term in an equation written in indicial notation

219
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∂σij

∂xi
= 0

expresses, actually the three following equations in unabridged notation:

∂σ11

∂x1
+

∂σ21

∂x2
+

∂σ31

∂x3
= 0

∂σ12

∂x1
+

∂σ22

∂x2
+

∂σ32

∂x3
= 0

∂σ13

∂x1
+

∂σ23

∂x2
+

∂σ33

∂x3
= 0

• In a correctly written equation, a subscript may appear not more than twice in each
monomial

• If a subscript appears only once in a monomial, it must appear just once in each
other monomial

A.2 The stress tensor

The subscripts of the stress tensor σij have to be understood as follows: the first subscript
i stands for the plane on which the component acts (defined by its normal vector xi)
and the second subscript indicates the direction of the component (given by xj). The
components of the stress tensor with i = j are called the normal stresses, because they act
in a perpendicular direction to a surface and the components with i 6= j are called shear
stresses, since they act in a parallel direction to a surface.

A.2.1 Principal stresses

The planes on which the shear stress vanishes are called the principal planes and the
normal stresses on this planes are called the principal stresses. They can be computed
easily by writing the characteristic equation of the stress tensor and finding the principal
planes. The method can be found in many textbooks such as Chou and Pagano [37] and,
basically, reduces to find the eigenvalues of the stress tensor (σ):

|σ − λ1| = 0 (A.1)

Since σ is symmetric, the three possible solutions are real. Once ordered following the
convention (λ1 ≡ σ1, λ2 ≡ σ2, λ3 ≡ σ3) the eigenvector v(i) for each stress σi can be found
by solving the equation system:

[σ − σi1] · v(i) = 0 i ∈ {1, 2, 3} (A.2)

which produces three orthogonal eigenvectors v(i) which once normalized define the
coordinate system corresponding to the principal directions. The stress state in which

σ1 = σ2 = σ3 (A.3)

is usually called hydrostatic stress state.
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A.2.2 Spherical and deviatoric stresses

The stress tensor can be decomposed as the addition of an spherical part (σesf ) and a
deviatoric part (σ′):

σ = σesf + σ′ (A.4)

σesf :=
1
3
σiiδij (A.5)

σ′ = σ − σesf (A.6)
(A.7)

σ′ may be seen as a measure of how the stress state differs from a hydrostatic stress
state.

A.2.3 Invariants of the stress tensor

Some quantities derived from the stress tensor are of special interest because they remain
invariant with respect to orthogonal rotations. The invariants of the stress tensor are the
following:

I1 = σi (A.8)

I2 =
1
2

(
σ : σ − I2

1

)
= −(σ1σ2 + σ1σ3 + σ2σ3) (A.9)

I3 = det(σ) (A.10)
(A.11)

And those of the deviatoric stress are:

J1 = I2 (A.12)

J2 =
1
2
σ′ijσ

′
ji =

1
2
(I2

1 + 2I2) (A.13)

J3 =
1
3
σ′ijσ

′
jkσ

′
ki =

1
3

(
I3
1 + 3I1I2 + 3I3

)
(A.14)

(A.15)

Using some invariants, the eigenvalues λi of equation A.1 can be found by solving the
following characteristic equation:

λ3 − I1λ
2 − I2λ− I3 = 0 (A.16)

The effective stress or equivalent uniaxial stress is defined as:

σ̄ :=
√

3J2 =

√
3
2
σ′ : σ′ (A.17)
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A.3 Static elasticity problem

Let us consider an homogeneous solid located in the region Ω. The local static equilibrium
equation for this solid is:

∂σij

∂xi
+ ρbi = 0 (A.18)

where bi is a vector of body forces (such as magnetic forces or gravity) which in the
present work will not be considered. So, the static equilibrium equation which will be
considered is:

∂σij

∂xi
= 0 (A.19)

σij is the stress tensor, which can be related through a fourth-order tensor with the
strain2:

σ = C : ε or, in indicial notation, σij = Cijkl · εkl (A.20)

Where ε is the strain tensor defined as:

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(A.21)

In some part of the boundary of Ω some forces and displacements are applied. This
boundary conditions are briefly described in the next section.

A.3.1 Boundary conditions

Different conditions may be applied to the boundary ∂Ω of the domain Ω

• Kinematic uniform boundary conditions (Dirichlet boundary conditions): The dis-
placement u is imposed to a subset ∂Ωu of the boundary ∂Ω such that:

u = ū ∈ ∂Ωu (A.22)

• (Neumann boundary conditions): A traction force t̄ is applied to a subset ∂Ωt of the
boundary ∂Ω such that:

σij · ni = t̄ ∈ ∂Ωf (A.23)

where ni is the normal vector to the boundary ∂Ωt

These are the classic boundary conditions of the mechanics of the continuum which are
normally treated in the classic texts [101], but in addition to these boundary conditions
the hypothesi of periodicity which is required in some approaches such as homogenization
leads to the definition of:

2The operator : expresses the inner product of two tensors and is implicitly defined in this equation.
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• Periodic boundary conditions: the considered dominium is a periodic cell whose
geometry is repeated all along the problem dominium, and so do the boundary
conditions.

A.4 Lamé constants

In the case of isotropy the stress-strain relations can be written as [37]:

σij = λεkkδij + 2µεij (A.24)

where λ and µ are the Lamé elastic constants and δij is the Kronecker’s delta. The
stress-strain relation can be expressed in the following compact form:

σkk = 3kεkk (A.25)

and

sij = 2µeij (A.26)

where sij and eij are the deviatoric components of stress and strain, defined as:

sij = σij − 1
3
δijσkk (A.27)

eij = εij − 1
3
δijεkk (A.28)

in these expressions k is the bulk modulus3 and µ the shear modulus (usually repre-
sented by G).

Finally, the bulk and shear modulus can be related with the commonly used Young’s
modulus (E) and Poisson’s ratio (ν) through:

µ =
E

2(1 + ν)
(A.29)

λ =
νE

(1 + ν)(1− 2ν)
(A.30)

k =
E

3(1− 2ν)
(A.31)

E =
9kµ

3k + µ
(A.32)

ν =
3k − 2µ

2(3k + µ)
(A.33)

3From equations A.24 and A.25 it can be seen that λ = 3k
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A.5 Plane strain conditions

In situations where a mechanical component has constant section and infinite length or
finite length with fixed ends, the following displacement conditions can be considered:

u2 = u2(x2, x3), u3 = u3(x2, x3) and u1 = 0 (A.34)

From this conditions, it can be seen that:

ε23 = ε31 = 0 (A.35)

σ23 = σ31 = 0 (A.36)

And the stress-strain relations can be written:

σ22 = 2µε22 + λ(ε22 + ε33) (A.37)
σ33 = 2µε33 + λ(ε22 + ε33) (A.38)
σ11 = λ(ε22 + ε33) (A.39)
σ12 = µε12 (A.40)

(A.41)

where the following relation may be useful:
These conditions can be used when considering composites in the section which is

perpendicular to fibre direction.

A.5.1 Hill’s notation

For generalized plain strain conditions, the stress-strain relation can be expressed:




σ11

σ22

σ33

σ12


 =




(k + m) (k −m) 0 0
(k −m) (k + m) 0 0

0 0 n 0
0 0 0 m


 ·




ε11

ε22

ε33

ε12


 (A.42)

The constants k, l, m and n are related to the material engineering constants through:

k =
−1

1/G− 4/E4ν2/E
(A.43)

l = 2kν (A.44)
m = G (A.45)
n = E + 4kν2 (A.46)
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A.6 Transversely isotropic media

An anisotropic material is considered transversely isotropic if it is isotropic in one of its
three planes. In a unidirectional long fiber reinforced material the coordinate system is
set to have direction x1 in the fiber direction. Then, plane 23 (that is, the plane which
is perpendicular to fiber direction) is isotropic. The constitutive relations for a transverse
isotropic material are the following:




σ11

σ22

σ33

σ12

σ23

σ31




=




C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C22 C23 0 0 0
0 0 0 C66 0 0
0 0 0 0 C22 − C23 0
0 0 0 0 0 C66



·




ε11

ε22

ε33

ε12

ε23

ε31




(A.47)

With constants:

C11 = E11 + 4ν2
12K23 (A.48)

C12 = 2K23ν12 (A.49)
C22 = µ23 + K23 (A.50)
C23 = −µ23 + K23 (A.51)
C66 = ν12 (A.52)

(A.53)

where K23 is the plain strain bulk modulus, which under the stress-strain state specified
by:

ε11 = 0, ε22 = ε33 = ε

and

σ22 = σ33 = σ

can be defined by:

σ = 2K23ε (A.54)

In such a material only five independent material constants can be defined and the
following relations stand:

ν12 = −ε22

ε11
(A.55)

ν13 = −ε33

ε11
(A.56)

ν21 = −ε11

ε22
(A.57)

ν23 = −ε33

ε22
(A.58)
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ν31 = ν21 (A.59)
ν32 = ν23 (A.60)
ν12

E11
=

ν21

E22
(A.61)

The following relations may be useful:

E22 =
4µ23K23

K23 + µ23 + 4ν2
12µ23K23/E11

(A.62)

ν23 =
K23 − µ23 − 4ν2

12µ23K23/E11

K23 + µ23 + 4ν2
12µ23K23/E11

(A.63)

ν21 =
4ν2

12µ23K23

E11(K23 + ν23) + 4ν2
12µ23K23

(A.64)

ν2
12 =

(
−ν23 − 1

4
E22

K23
+

1
4

E22

µ23

)
E11

E22
(A.65)
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Basic Statistics

B.1 Random variables, distribution functions

A random variable X is a function which is measured in certain sample space S. The
probability that certain event A, related to the random variable, happens is denoted by
P [A]. When working with quantitative real number random variables two different types
of them can be discerned: discrete random variables and continuous random variables.

Discrete random variables

The random variable X is discrete if the set of possible values for X is finite. Then

P{X = xi} = pi, i = 0, 1, . . . (B.1)

The sequence {pi} is called the probability distribution of X and the cumulative prob-
ability, defined as:

P{X ≤ xi} =
∑

x≤xi

pi = F (x) −∞ < x < ∞ (B.2)

is called probability distribution function (PDF) of X.

B.1.1 Continuous random variables

The random variable X is continuous if there exists a non-negative function f , such as,
for any a ≤ b:

P [a < X ≤ b] =
∫ b

a
f(x)dx (B.3)

The function f(x) is called probability density function or density function, of X .
This function has the following property:

∫ +∞

−∞
f(x) dx = 1 (B.4)

227
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The probability distribution function, sometimes called cumulative density function of
X is:

F (x) = P [X ≤ a] =
∫ a

−∞
f(x)dx (B.5)

Using the former definitions in equations B.4 and B.5 the following expression could
be proved :

F (x) = P [a < X ≤ b] = F (b)− F (a) (B.6)

F (x) is monotonically increasing between 0 and 1 whereas the domain of f(x) is (−∞
,+∞).

For continuous random variables, the next equation also stand:

f(x) =
dF (x)

dx
(B.7)

B.2 Mathematical expectation

Also called mean value or expected value, the mathematical expectation (< · > or E[·])
is the weighted mean of the possible values of a random variable, using the probability
density function as the weight function. For a discrete random variable it can be written:

E[X] =
n∑

i=1

xi · f(xi) (B.8)

and for a continuous variable:

E[X] =
∫ ∞

−∞
x · f(x) (B.9)

B.3 Moments, variances and covariances

B.3.1 Statistical Moments

Some expected values of the random variable X are of special interest:

1. The moments τr = E[Xr] r = 1, 2, ...

2. The factorial moments E[X(X − 1) · . . . · (X − r + 1)] r = 1, 2, ...

3. The central moments E[X − E(X)]r r = 1, 2, ...

The first moment, E[X] is called the mean and is usually written as µX or < X >.
The second central moment is the variance, represented usually by Var[X] or σ2[X].

The variance is a useful measure of the dispersion in a data set. The square root of the
variance, σ[X] =

√
σ2[X] is usually called the standard deviation.

A practical measure of the relation between two random variables X and Y is the
covariance which is defined as follows:
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Cov[X, Y ] = E(X · Y ) (B.10)

The covariance of two variables X and Y is also usually expressed by σX,Y .
Like the mean operator, the variance is a linear operator and consequently, the variance

of a linear functionof random variables with coefficients ci can be written:

Var[c0 + c1X1 + . . . + cnXn] =
n∑

i=1

c2
i · σ2

Xi
+

n∑

i=1

n∑

j=1︸ ︷︷ ︸
i6=j

cicjσXi,Xj (B.11)

B.4 Standarized variables and the Correlation Coefficient

The standarization of the random variable X is defined as the following transformation:

U =
X − E(X)

σx
(B.12)

where σx is the standard deviation. The standarized variable U has null mean and
unity standard deviation.

E(U) = 0 σU = 1 (B.13)

Let X and Y be two random variables and U and V their respective standarized
variables. The correlation coefficient between X and Y , ρXY , is defined as the covariance
between U and V :

ρXY = Cov[U, V ] = E(UV ) = E

[
X −E(X)

σX

] [
Y −E(Y )

σY

]
(B.14)

or, also:

ρXY =
Cov[X, Y ]

σXσY
(B.15)

When ρXY = 0, it is said that X and Y are independent or uncorrelated variables.
The closer to 1 is the value of ρXY the greater correlation exists between X and Y .

B.4.1 Approximate variance

There is no exact expression for obtaining the variance of a random variable function
which is a function of dependent variables. One may use the Taylor series expansion for
this purpose,

Let φ(X) be a random variable function, with variables X = (x1, ..., xn). The Taylor
series expansion for φ(x) in the around the expected value µ = (µ1, ..., µn) is:

φ(X) = φ(µ) +
n∑

i=1

(xi − µi)φi(µ) (B.16)

where φi = ∂
∂xi

φ(x)|X=µ.
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Applying the property of linearity of the variance operator [115] to B.16, the approxi-
mated variance of φ(x) is obtained:

Var[φ(x)] =
n∑

i=1

[φi(µ)]2 φ2
xi

+
n∑

i=1

n∑

j=1︸ ︷︷ ︸
i6=j

[φi(µ)] [φj(µ)] (B.17)

Some numerical methods [89, 142] use the Taylor series expansion for approximating
random fields in which the variables may be correlated.

B.5 Common probability functions

Some of the probability functions which are of interest in engineering mechanics are the
Gauss distribution (or Normal distribution) and the Weibull distribution.

The density function of a Normal distribution with mean µ and variance σ2 is:

f(x) =
1√

2π · σ · e
−(x−µ)2

2σ2 (B.18)

Generally one tends to work with standarized variables, and so to use the standard
Normal distribution:

f(x) =
1√
2π

· e−x2/2 (B.19)

The Normal distribution is often used for modelling the elastic properties of materials
or thermal expansion coefficients.

From the point of view of mechanic properties of materials, another statistic distribu-
tion used frequently is the Weibull function. Since this distribution function is useful in
modelling of extreme values it is used mainly for properties related to the mechanic failure
of the material, such as the ultimate strength (σu) or the yield stress (σy). Actually there
exist several types of Weibull distributions, depending the number of parameters involved.
The most general is the three parameter Weibull, for which:

f(x) =
α

β

(
x− γ

β

)α−1

e
−

(
x−γ

β

)α

(B.20)

F (x) = e
−

(
x−γ

β

)α

(B.21)

where α is the shape parameter, β the scale parameter, and γ the location parameter.
All of them have to be greater than 0. The expression for a two-parameter Weibull
distribution can easily obtained by making γ = 0.

Although Equations B.20 and are quite spread, some modifications are also used. For
instance, the Weibull distribution function used in the modelling of ultimate tension of
some fibers used in composite materials is [106, 127]:

F (σ) = 1− e−βLσα
(B.22)
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and its density function:

f(σ) = Lαβσα−1e−Lβσα
(B.23)

where σ ≤ 0 is the random variable ultimate strength of the fiber, L > 0 is the fiber
length and α, β > 0 are, respectively, the shape and the scale parameter which have to be
experimentally fitted.

B.6 Maximum Likelihood Estimators (MLE)

Let x be a random variable with probability density function:

f(x; θ1, θ2, . . . , θk) (B.24)

where θ1, θ2, . . . , θk are a set of constant parameters to be estimated. Let x1, x2, . . . , xN

be a set of N independent experimental results. The likelihood function, L, is defined
through the following product:

L(x1, . . . , xN |θ1, . . . , θk) =
N∏

i=1

f(xi; θ1, θ2, . . . , θk) (B.25)

The logarithmic likelihood function, Λ, can be written:

Λ = lnL(x1, . . . , xN |θ1, . . . , θk) =
N∑

i=1

ln f(xi; θ1, . . . , θk) (B.26)

The maximum likelihood estimators (MLE) of the parameters θ1, . . . , θk are obtained
by maximizing the function Λ1. That is the parameters θ1, . . . , θk are the solution of the
set of equations:

∂Λ
∂θj

= 0 j = 1, . . . , k (B.27)

B.7 Hypothesis Testing

A statistical hypothesis is an affirmation or statement on a statistical parameter. The null
hypothesis, usually noted as H0, defines the hypotheses which is thought to be true. The
alternative hypothesis, which is denoted by H1, is the statement which is verified if the
null hypothesis is not true.

The error of rejecting the null hypotheses when it is true is called the type I error, and
the probability of committing it is denoted by α. The value of α is important, since it
determines the statistical test, and has to be fixed before analyzing the data. It also exists
a so-called type II error which is committed when the null hypotheses is not rejected,
although it is false. The probability of committing the error of type II is β.

This concepts will be clarified in the following sections where the techniques for testing
hypotheses on the mean and the variance of samples are reviewed.

1Sometimes the function L is used instead, but Lambda is normally easier to work with
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Further information can be found in reference books such as those by Montgomery
[108], and by Box et al. [27].

B.7.1 Inference about the differences in means

The two populations are assumed to be independent and normally distributed.

H0 : µ = µ0

H1 : µ 6= µ0

In the case of known variances σ2
1 and σ2

2, the statistic Z0 is used:

Z0 =
ȳ1 − ȳ2√
σ2
1

n1
+ σ2

2
n2

(B.28)

The null hypotheses is rejected if |Z0| > Zα/2

B.7.2 Inference about the variances of normal distributions

In this case, for the comparison of the variances from two different samples the hypothesis
can be written:

H0 : σ2
1 = σ2

2

H1 : σ2
1 6= σ2

2

The statistic to be used is:

F0 =
S2

1

S2
2

(B.29)

where S2
1 and S2

2 are the estimators of the variances. The null hypothesis is rejected if
F0 < F1−α/2,n1−1,n2−1.

B.7.3 χ2 goodness-of-fit test

This test can be used for testing if a probability distribution function is a good choice for
fitting some data, or for checking the assumption of normality of the sample.

χ2
N−1 =

N∑

i=1

(P̂ (xi)− P (xi))2

P (xi)
(B.30)

where P (xi) is the cumulative density function which is assumed to be a good fit for
the data, P̂ (xi) is the experimental cumulative density function.



Appendix C

Results of microstructure image
analysis of composites

C.1 Nearest neighbor distance

Figure C.1: Nearest neighbor distance RTM6 (I)
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Figure C.2: Nearest neighbor distance RTM6 (II)



C.1. NEAREST NEIGHBOR DISTANCE 235

Figure C.3: Nearest neighbor distance 977-2 (I)
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Figure C.4: Nearest neighbor distance 977-2 (II)



C.1. NEAREST NEIGHBOR DISTANCE 237

Figure C.5: Nearest neighbor distance 6376 (I)
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Figure C.6: Nearest neighbor distance 6376 (II)
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C.2 Second nearest neighbor distance

Figure C.7: Second nearest neighbor distance RTM6 (I)
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Figure C.8: Second nearest neighbor distance RTM6 (II)
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Figure C.9: Second nearest neighbor distance 977-2 (I)
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Figure C.10: Second nearest neighbor distance 977-2 (II)
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Figure C.11: Second nearest neighbor distance 6376 (I)
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Figure C.12: Second nearest neighbor distance 6376 (II)
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C.3 Third nearest neighbor distance

Figure C.13: Third nearest neighbor distance RTM6 (I)
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Figure C.14: Third nearest neighbor distance RTM6 (II)
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Figure C.15: Third nearest neighbor distance 977-2 (I)
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Figure C.16: Third nearest neighbor distance 977-2 (II)
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Figure C.17: Third nearest neighbor distance 6376 (I)
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Figure C.18: Third nearest neighbor distance 6376 (II)
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C.4 Second-order intensity function

Figure C.19: Second-order intensity function RTM6 (I)
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Figure C.20: Second-order intensity function RTM6 (II)
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Figure C.21: Second-order intensity function 977-2 (I)
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Figure C.22: Second-order intensity function 977-2 (II)



C.4. SECOND-ORDER INTENSITY FUNCTION 255

Figure C.23: Second-order intensity function 6376 (I)
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Figure C.24: Second-order intensity function 6376 (II)



C.5. PAIR DISTRIBUTION FUNCTION 257

C.5 Pair distribution function

Figure C.25: Pair distribution function RTM6 (I)



258 APPENDIX C. MICROSTRUCTURE IMAGE ANALYSIS OF CFRP

Figure C.26: Pair distribution function RTM6 (II)
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Figure C.27: Pair distribution function 977-2 (I)
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Figure C.28: Pair distribution function 977-2 (II)
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Figure C.29: Pair distribution function 6376 (I)
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Figure C.30: Pair distribution function 6376 (II)
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