

VISIBILITY AND PROXIMITY ON
TRIANGULATED SURFACES

Marta FORT MASDEVALL

ISBN: 978-84-691-5959-0
Dipòsit legal: GI-1196-2008

VISIBILITY AND PROXIMITY ON

TRIANGULATED SURFACES

PhD. Dissertation

by

Marta Fort

Advisor

Dr. Joan Antoni Sellarès

Programa de Doctorat de Software

Universitat de Girona

2008

Abstract

In this thesis, we solve visibility and proximity problems on triangulated surfaces con-

cerning generalized elements. As generalized elements, we consider: points, segments,

polygonal chains and polygonal regions. The proposed strategies use algorithms of Com-

putational Geometry and Graphics Hardware.

We start by studying multi-visibility problems on triangulated terrain models concern-

ing a set of generalized view elements. We present two methods to obtain approximate

multi-visibility maps. A multi-visibility map is a subdivision of the terrain domain encod-

ing visibility according to different criteria. The first method, of complex implementation,

uses exactly computed visibility information to approximately reconstruct the unknown

multi-visibility map. The second, from which implementation results are provided, uses

approximate visibility information to compute and visualize discrete multi-visibility maps

by exploiting graphics hardware capabilities. As applications, we compute multi-visibility

maps, solve inter-region multi-visibility problems and approximately answer point and

polygonal region multi-visibility queries.

Next, we tackle proximity problems on triangulated polyhedral surfaces, where general-

ized obstacles are allowed, considering generalized sources. We present two methods, with

implementation results, to compute distances on polyhedral surfaces from a generalized

source. The first method computes exact shortest path distances from generalized sources.

The second provides approximate weighted shortest path distances from generalized sites

on weighted polyhedral surfaces. Both methods are posteriorly extended to handle the

multiple-site problem where the corresponding distance field is obtained. As applications,

we compute discrete order-k Voronoi diagrams and approximately solve some facility lo-

cation problems. We also provide a theoretical study on the order-k Voronoi diagram

complexity of a set of generalized sources for the non-weighted case.

i

Resum

En aquesta tesi es solucionen problemes de visibilitat i proximitat sobre superf́ıcies tri-

angulades considerant elements generalitzats. Com a elements generalitzats considerem:

punts, segments, poligonals i poĺıgons. Les estratègies que proposem utilitzen algoritmes

de geometria computacional i hardware gràfic.

Comencem tractant els problemes de visibilitat sobre models de terrenys triangulats

considerant un conjunt d’elements de visió generalitzats. Es presenten dos mètodes per

obtenir, de forma aproximada, mapes de multi-visibilitat. Un mapa de multi-visibilitat

és la subdivisió del domini del terreny que codifica la visibilitat d’acord amb diferents

criteris. El primer mètode, de dif́ıcil implementació, utilitza informació de visibilitat

exacte per reconstruir de forma aproximada el mapa de multi-visibilitat. El segon, que va

acompanyat de resultats d’implementació, obté informació de visibilitat aproximada per

calcular i visualitzar mapes de multi-visibilitat discrets mitjançant hardware gràfic. Com

a aplicacions es resolen problemes de multi-visibilitat entre regions i es responen preguntes

sobre la multi-visibilitat d’un punt o d’una regió.

A continuació tractem els problemes de proximitat sobre superf́ıcies polièdriques tri-

angulades considerant seus generalitzades. Es presenten dos mètodes, amb resultats

d’implementació, per calcular distàncies des de seus generalitzades sobre superf́ıcies poliè-

driques on hi poden haver obstacles generalitzats. El primer mètode calcula, de forma

exacte, les distàncies definides pels camins més curts des de les seus als punts del poliedre.

El segon mètode calcula, de forma aproximada, distàncies considerant els camins més

curts sobre superf́ıcies polièdriques amb pesos. Com a aplicacions, es calculen diagrames

de Voronoi d’ordre k, i es resolen, de forma aproximada, alguns problemes de localització

de serveis. També es proporciona un estudi teòric sobre la complexitat dels diagrames de

Voronoi d’ordre k d’un conjunt de seus generalitzades en un poliedre sense pesos.

iii

Resumen

En esta tesis se solucionan problemas de visibilidad y proximidad en superficies triangu-

ladas considerando elementos generalizados. Como elementos generalizados consideramos:

puntos, segmentos, poligonales y poĺıgonos. Las estrategias propuestas utilizan algoritmos

de geometŕıa computacional y de harware gráfico.

Se empieza con los problemas de visibilidad sobre terrenos triangulados considerando

un conjunto de elementos de visión generalizados. Se presentan dos métodos para obtener

de forma aproximada mapas de multi-visibilidad. Un mapa de multi-visibilidad es una

subdivisión del dominio del terreno que codifica la visibilidad. El primer método, de

dif́ıcil implementación, utiliza información de visibilidad exacta para reconstruir aproxi-

madamente el mapa de multi-visibilidad. El segundo, que se presenta con resultados de

implementación, obtiene información de visibilidad aproximada para calcular y visualizar

mapas de multi-visibilidad discretos utilizando hardware gráfico. Como aplicaciones, se

resuelven problemas de multi-visibilidad entre regiones y se responden preguntas sobre la

multi-visibilidad en un punto o una región.

A continuación se tratan los problemas de proximidad sobre superficies poliédricas

trianguladas considerando sedes generalizadas. Se presentan dos métodos, con resultados

de implementación, para calcular distancias desde sedes generalizadas sobre superficies

poliédricas dónde pueden haber obstáculos generalizados. El primer método calcula, de

forma exacta, distancias definidas por los caminos más cortos desde las sedes hasta los pun-

tos del poliedro. El segundo método da distancias aproximadas considerando los caminos

más cortos sobre superficies poliédricas con pesos. Como aplicaciones, se calculan diagra-

mas de Voronoi de orden k, y se resuelven, de forma aproximada, algunos problemas de

localización de servicios. En el caso en el que no se consideran pesos, se realiza un estudio

teórico sobre la complejidad de los diagramas de Voronoi de orden k de un conjunto de

sedes generalizadas.

v

Published Work

Publications

Visibility:

- N. Coll, M. Fort and J.A. Sellarès, Approximate Multi-Visibility Map Computa-

tion, 21th European Workshop on Computational Geometry, pp 97-100, Eindhoven,

March 2005.

- N. Coll, M. Fort and J.A. Sellarès, Multi-visibility in terrains, Actas XI Encuentros

de Geometŕıa Computacional, Santander, Spain, pp 71–78, Santander, June 2005.

- N. Coll, M. Fort, N. Madern and J.A. Sellarès, Computing Terrain Multi-visibility

Maps for a Set of View Segments Using Graphics Hardware,ICCSA 2006, Lecture

Notes on Computational Science 3980, pp. 81–90, Springer-Verlag, Glasgow, May

2006.

- N. Coll, M. Fort, N. Madern and J.A. Sellarès, Multi-visibility maps of triangu-

lated terrains, International Journal of Geographical Information Science, Volume

21, Issue 10, pp 1115-1134, November 2007.

Proximity:

- M. Fort and J.A. Sellarès, Generalized Source Shortest Paths on Polyhedral Surfaces,

23th European Workshop on Computational Geometry, pp 186–189, March 2007.

- M. Fort and J.A. Sellarès, Generalized Voronoi Diagrams on Polyhedral Terrains

Actas XII Encuentros de Geometŕıa Computacional, Valladolid, Spain, pp 239-246,

2007.

vii

viii

- M. Fort and J.A. Sellarès, Generalized Higher-Order Voronoi Diagrams on Polyhe-

dral Surfaces, The 4th International Symposium on Voronoi Diagrams in Science

and Engineering, pp. 74-83, Wales, July 9th-11th, 2007.

- M. Fort and J.A. Sellarès, Computing Distance Functions from Generalized Sources

on Weighted Polyhedral Surfaces, (accepted to The 2008 International Conference

on Computational Science and Its Applications, Perugia (Italy), June 30th to July

3rd).

- M. Fort and J.A. Sellarès, Generalized Higher-Order Voronoi Diagrams on triangu-

lated Surfaces (submitted to Applied Mathematics and Computation)

- M. Fort and J.A. Sellarès, Generalized Distance Functions on Weighted Triangulated

Surfaces with Applications, (submitted to International Journal Computational Ge-

ometry and Applications).

Acknowledgements

First of all, I would like to thank my advisor Joan Antoni Sellarès for his ideas, support,

advise, dedication, hard work, and for given me every facility during the development of

the thesis that I have needed. Also warmest thanks must go to my parents, Josep Fort

and Maria Llüısa Masdevall, my sister Carme Fort, my partner Albert Sánchez and my

grandparents, whose patience, support and impeccable understanding allowed me to write

this thesis.

Thank also to the Departament d’Informàtica i Matemàtica Aplicada, especially to

Xavier Pueyo and Toni Sellarès, wo welcomed me at the beginning of my PhD, as well

as to my cousin Maria Fuentes and Narćıs Coll who encouraged me to start a PhD on

Computational Geometry in GGG.

I am also very grateful to Narćıs Coll and Sergio Cabello for their contributions in

some parts of the thesis. I also give thanks to Anna Casas, Teresa Paradines and Eduard

Oliver for the implementations of the different algorithms proposed throughout: to Yago

Dı́ez for revising most of my papers and English documents and Narćıs Madern and Pau

Estalella for providing me GPU and programming advice.

Finally, my thanks to my friends and colleagues at the Universitat de Girona, with

whom I shared lunch times, coffee-breaks and long talks, with special thanks to: Yago

Diez, Pau Estalella, Anton Bardera, Narćıs Mardern, Ferran Prados, Quim Chaves, David

Hugas, as well as Imma Boada, Marité Guerrieri and Teresa Paradinas.

This thesis was partially supported by project TIN2004-08065-C02-02, TIN2007-67982-

C02-02 and grant AP2003-4305.

ix

Contents

1 Introduction 1

1.1 Contribution . 3

1.2 Overview . 6

2 Basic Concepts and Previous Work 9

2.1 General definitions and notation . 9

2.2 Basic data structures and algorithms . 12

2.2.1 Doubly-connected edge list . 12

2.2.2 Sweep algorithm . 12

2.2.3 Convex hull . 14

2.2.4 Arrangements . 14

2.2.5 Delaunay triangulation . 14

2.2.6 Subdivision traversal . 15

2.2.7 Unknown planar subdivision approximation 15

2.2.8 Visibility in the plane . 16

2.2.9 Voronoi diagrams in the plane and in space 18

2.2.10 Facility location problems . 21

2.3 Graphics hardware . 22

2.3.1 Graphics pipeline . 22

xi

xii Contents

2.3.2 Planar parameterization . 24

2.3.3 Graphics hardware applications . 24

2.3.4 Visibility problems . 26

2.3.5 Proximity problems . 27

2.4 Terrain representation . 28

2.4.1 Triangulated Irregular Model . 28

2.4.2 Weighted terrains . 29

2.4.3 Realistic terrains . 30

2.4.4 Terrains as polyhedral surfaces . 30

2.5 Visibility on triangulated terrains . 31

2.5.1 Basic definitions . 31

2.5.2 View point . 33

2.5.3 View segment . 35

2.5.4 View polygon: a view terrain face 37

2.5.5 Visibility maps complexity . 37

2.6 Shortest paths on triangulated polyhedral surfaces 38

2.6.1 Shortest paths . 38

2.6.2 Weighted shortest paths . 41

2.6.3 Voronoi diagrams on triangulated surfaces 46

2.6.4 Facility location problems on a triangulated terrain 49

3 Multi-visibility on terrains 51

3.1 Basic properties . 52

3.2 Algorithm overview . 53

3.3 Visibility computation . 54

3.3.1 Skew projection . 55

Contents xiii

3.3.2 Exact segment-segment visibility algorithm 56

3.3.3 Critical points computation . 57

3.3.4 Visibility computation on a segment 65

3.3.5 Multi-visibility map computation . 67

3.4 Computational cost . 69

3.5 Obtaining any desired multi-visibility map 70

3.6 Inter-region multi-visibility on terrains . 71

3.7 Conclusions . 72

4 Multi-visibility on terrains by using Graphics Hardware 73

4.1 Process overview . 73

4.2 Visibility information computation . 74

4.2.1 Approximate segment-segment visibility algorithm 75

4.2.2 Computational cost . 80

4.3 Multi-visibility maps visualization . 81

4.4 Multi-visibility queries . 82

4.5 Implementation and experimental results 84

4.6 Conclusions . 91

5 Distances on polyhedral surfaces 93

5.1 Implicit distance function . 94

5.1.1 Point and segment sources . 94

5.1.2 Polygonal sources . 102

5.1.3 Polygonal obstacles . 103

5.2 Implicit distance field computation . 104

5.3 Distance and shortest path computation . 105

xiv Contents

5.3.1 Influence regions . 105

5.3.2 Distance computation . 106

5.3.3 Shortest path computation . 106

5.4 Voronoi diagram complexity . 107

5.4.1 Properties of the closest and furthest Voronoi diagram 108

5.4.2 Properties of order-k Voronoi diagrams. 110

5.4.3 Pathologies of order-k Voronoi diagrams. 113

5.4.4 Complexity of order-k Voronoi diagrams 118

5.4.5 Complexity of order-k Voronoi diagrams on Realistic Terrains 121

5.5 Conclusions . 123

6 Weighted distances on polyhedral surfaces 125

6.1 Implicit distance function computation . 126

6.1.1 Discretization scheme . 126

6.1.2 From point source to node . 132

6.1.3 From segment source to node . 133

6.1.4 From polygonal line source to node 135

6.1.5 Polygonal obstacles . 137

6.2 Implicit distance field computation . 138

6.2.1 Distance field propagation . 139

6.3 Distance and shortest path computation . 141

6.3.1 Influence regions . 141

6.3.2 Distance computation . 141

6.3.3 Shortest path computation . 143

6.4 Conclusions . 144

Contents xv

7 Discrete distance function and applications 145

7.1 Distance vectors . 146

7.1.1 Punctual source . 146

7.1.2 Segment source . 147

7.2 Discrete distance function computation . 147

7.2.1 Discrete distance function computation 149

7.3 Discrete closest Voronoi diagrams . 151

7.4 Discrete high order Voronoi diagrams . 152

7.4.1 Closest Voronoi diagram . 153

7.4.2 Furthest Voronoi diagram . 153

7.4.3 order-k Voronoi diagram . 154

7.5 Visualization on the polyhedral surface . 154

7.6 Approximating the 1-Center . 155

7.7 Approximating the 1-Median . 156

7.8 Experimental results . 157

7.9 Conclusions . 161

8 Conclusions, further comments and future work 163

8.1 Conclusions . 163

8.2 Further comments . 165

8.3 Future work . 166

Chapter 1

Introduction

In this thesis we solve visibility and proximity problems by using techniques of Computa-

tional Geometry and Computer Graphics.

Computational Geometry deals with the study of efficient algorithms to solve geomet-

ric problems. As a consequence, a fundamental task is identifying concepts, properties,

and techniques which aim at efficient algorithmic development. This leads to the analy-

sis of the combinatorial complexity of geometric structures, the study of geometric data

structures, the complexity of algorithms, etc. The methods studied in this area allow

the design and analysis of algorithms for the efficient solution of numerous geometric

problems that arise in other application areas such as astronomy, geographic information

systems, CAD/CAM, data mining, graph drawing, graphics, medical imaging, metrology,

molecular modelling, robotics, signal processing, textile layout, typography, video games,

vision, VLSI, and windowing systems. Recently computational geometers exploit Com-

puter Graphics algorithms and techniques to make their algorithms more implementable

and practical.

Computer Graphics is a flourishing field within computer science. Driven by the

tremendous increase in speed and quality of hardware and software, it has rapidly gained

popularity among a wide variety of users. With applications as far-reaching as special

effects, synthetic content, interactive TV, graphical user interfaces, information visualiza-

tion, interactive art, industrial design, education, computer games, virtual reality, and

the Internet, Computer Graphics plays an increasingly important role in our lives, both

practically and culturally. In many of its applications it uses geographical information

systems in its applications.

1

2 Chapter 1. Introduction

There is a strong disparity between the nature of the contributions of papers in each

of these two areas of knowledge. Computational Geometry papers most often focus on

improvements for upper bounds and do not, in general, report on an implementation. The

field of Computer Graphics, on the other hand, considers that an implementation is an

integral part of the work. However, geographic information systems (GIS) are used in

both Computational Geometry and Computer Graphics. GIS can be seen as a system of

hardware, software and procedures designed to support the capture, management, analysis,

modelling and displaying of spatially referenced data, pertaining to land, water, and air

resources to solve complex planning and management problems. A substantial part of

all activities performed by a GIS involves complex computations such as location, shape,

proximity, and spatial distribution depending on the geometry of data. Since the amount

of data stored in a GIS is usually very large, data structures and algorithms that achieve

a good tradeoff between high computational efficiency and low storage space are required.

An important application of GIS is the representation of a terrain surface using a tri-

angular terrain model. This representation plays a crucial role in a considerable number

of simulations (traffic or flooding simulations) and in problems related to terrain analysis.

Classical terrain analysis problems include visibility determination, proximity computa-

tions (nearest neighbors, optimal path), topographic feature extraction (degree and direc-

tion of slopes, contour lines) or computation of watershed and drainage networks. Such

studies on terrains allow the resolution of facility location problems where the best place-

ment of a facility (hospital, school, nuclear power plant, etc.) under various constraints

has to be determined. Solving these problems implies working with algorithms that are

difficult to implement, present high computational cost and demand complex data struc-

tures. Algorithms with similar drawbacks have been recently solved by taking advantage

of a completely different strategy that uses graphic processing units (GPUs).

The increasing power, programmability, and precision of GPUs have motivated a great

deal of research on General-Purpose Computation on Graphics Hardware (GPGPU) as

an alternative to CPUs. GPGPU researchers and developers use the GPU as a compu-

tational coprocessor rather than as an image-synthesis device. Ideal applications have:

large data sets, high parallelism and minimal dependencies between data elements. Some

applications that use computational geometric research topics including visibility compu-

tations, distances, data structures for ray tracing, clipping and radiosity; hidden surface

elimination algorithms; automatic simplification for distant objects; morphing; convert-

ing triangulated surfaces to strips of triangles. There also exist specialized applications

1.1. Contribution 3

using GPU in which other geometric ideas as well as GIS models are needed including

architecture, virtual reality, and video game programming.

In this thesis we are going to focus on the study of some terrain analysis problems by

using Computational Geometry strategies together with the GPU power.

1.1 Contribution

The contributions presented in this thesis can be grouped in two main topics: 1) visibility

problems on triangulated terrains, and 2) proximity problems on triangulated polyhe-

dral surfaces. In both cases we consider a set of generalized elements containing points,

segments, polygonal lines and polygonal regions.

Visibility problems

We present two ways to obtain approximate multi-visibility maps on triangulated ter-

rains corresponding to a set of generalized view elements (points, segments, polygonal

lines or a polygonal regions). The first strategy uses mainly Computational Geometry

tools while the second strategy also Graphics Hardware.

Multi-visibility on terrains

- An algorithm to exactly compute weak or strong visibility on a segment of a

triangulated terrain from a generalized view element.

- The structure of any specific multi-visibility map of a set of view elements is

approximately obtained.

- An algorithm to approximately solve the inter-region multi-visibility problem

on terrains.

- A way to solve different point and polygonal region multi-visibility queries.

- The study of the computational cost of the presented algorithms. Which is

adapted for the special case or a realistic terrain.

Multi-visibility on terrains by using GPU

- An approximate algorithm for obtaining weak or strong visibility on a segment

of a terrain from generalized view elements, with its implementation.

4 Chapter 1. Introduction

- An improvement on the previous algorithm by providing a faster and more

robust visibility computation algorithm on a segment from a generalized view

element.

- A practical and implemented algorithm for visualizing approximate multi-visibility

maps, obtained by using the GPU, for a triangulated terrain and an heteroge-

neous set of generalized view elements.

- An algorithm to solve efficiently and approximately various point and polygonal

region multi-visibility queries.

- The study of the computational cost of the provided algorithms. It is adapted

to the special case of a realistic terrain.

- The implementation of the proposed methods and experimental results.

Proximity problems

We consider weighted and non-weighted triangulated polyhedral surfaces and provide

a way to obtain shortest paths on each of the two kinds of surfaces when a generalized

source is considered. The algorithms are extended to consider a set of generalized sources,

in this case the algorithm outputs its distance field which gives for each point of the surface

the shortest path distance from the point to the closest site in the set. As applications we

obtain discrete high-order Voronoi diagrams and approximately solve some facility location

problems. We also provide a theoretical study on the complexity of high-order Voronoi

diagrams on non-weighted polyhedral surfaces.

Distance computation on polyhedral surfaces

- An algorithm to compute shortest paths from generalized sources and polyhe-

dral surfaces with obstacles.

- A generalization of the algorithm to the case of several generalized sites provid-

ing their implicit distance field, which implicitly represents their closest Voronoi.

- A way to obtain the shortest path from arbitrary points on the polyhedral

surface to the source and to answer punctual shortest path distance queries.

- The study of the computational cost of all the presented algorithms.

- The implementation of the proposed methods for the special case of triangulated

terrains and experimental results.

1.1. Contribution 5

- A theoretical study of the complexity of the Voronoi diagram of a set of gener-

alized sites.

- A theoretical study of the complexity and properties of order-k Voronoi dia-

grams of generalized sites on triangulated polyhedral surfaces.

- The complexity analysis of the algorithms and order-k Voronoi diagrams for a

special triangulated polyhedral surface: a realistic terrain.

Distance computation on weighted polyhedral surfaces

- A discretization scheme to build a discrete graph on a weighted polyhedral

surface that provides (1+ε)-approximate weighted shortest path distances from

generalized sources.

- A way to compute approximate distance functions from a generalized site

on a possibly non-convex weighted polyhedral surface P with obstacle (using

Bushwack strategy).

- A generalization of the algorithm to the case of a set of generalized sites, giving

their distance field.

- The process for obtaining the distance from and the shortest path from S to

any point of P.

- The study of the computational cost of the provided algorithms.

- The implementation of the proposed methods for the special case of a weighted

triangulated terrain and experimental results.

Voronoi diagrams and facility location problems

- An algorithm that uses hardware graphics to discretize the obtained distance

function or fields.

- An algorithm, based on distance functions and hardware graphics capabilities,

specifically designed to compute discrete closest Voronoi diagrams of a set of r

generalized sites on a weighted polyhedral surface P with obstacles.

- An algorithm, based on distance functions and hardware graphics capabili-

ties, that allows the computation of all discrete order-k Voronoi diagrams,

k = 1 . . . r − 1.

- An algorithm to compute an approximate 1-Center of a set of generalized sites.

- An algorithm to compute an approximate 1-Median of a set of generalized sites.

6 Chapter 1. Introduction

- The complexity analysis of the mentioned algorithms.

- An implementation of the previously mentioned algorithms for the special case

of triangulated polyhedral terrains we also present experimental results.

1.2 Overview

The rest of the thesis can be subdivided into four main parts. The first one consists on

Chapter 2, where preliminaries are presented. The second one contains Chapter 3 and

Chapter 4 where visibility problems are considered. The third one is where proximity

problems are tackled and consists of Chapter 5 to Chapter 7. Finally, the last one is

Chapter 8 where conclusions and further comments are done.

In Chapter 2 Basic concepts an previous work, we review previous work upon

which our research draws. We provide some basic notation, concepts and algorithms to

solve visibility and proximity problems in R2 and R3. Next, we introduce the Graphics

Hardware and provide some applications and basic algorithms. We give a brief overview

on how terrains are represented, and finally, we present the existent algorithm for solving

visibility and proximity problems from punctual sources on terrains.

In Chapter 3 Multi-visibility on terrains, we present some basic properties, next, we

provide the algorithm to compute exact weak or strong visibility information from a view

segment and we explain how multi-visibility information is computed and stored. Finally

we explain how the multi-visibility map is obtained and specifying some applications.

Complexity analysis is provided along the chapter.

In Chapter 4 Multi-visibility on terrains by using graphics hardware, an ap-

proximate algorithm for computing visibility information from a view segment by using

Graphics Hardware is provided. Next, we explain how the multi-visibility map is obtained

and visualized on the screen and mention some applications. The study of the compu-

tational cost of the algorithms is also given. We present some experimental results and

images of our implementation.

In Chapter 5 Distances on polyhedral surfaces, we provide an algorithm for ob-

taining exact shortest paths distance functions on a non-convex polyhedral triangulated

surface with generalized obstacles from generalized sources. The algorithm is general-

ized for the case of a set of generalized elements to provide their distance field. We also

present a way to compute distances and shortest paths from a point of the polyhedral

1.2. Overview 7

surface to the closest generalized element. The Chapter ends with a theoretical study of

the properties and complexity of the Voronoi diagram of a set of generalized sites on a

non-convex polyhedral surface. We also study the complexity and properties of high-order

Voronoi diagrams of such a set of sites on a triangulated polyhedral surface. The proposed

algorithms have been implemented and experimental results are presented in Chapter 7.

In Chapter 6 Weighted distances on polyhedral surfaces, we present an algorithm

for obtaining approximate shortest paths distance functions on a non-convex polyhedral

triangulated surface with generalized obstacles from generalized sources. We start by

providing a discretization scheme to obtain a discrete graph on the polyhedral surface that

gives (1 + ε)-approximate distances from generalized sites. The algorithm is generalized

for the case when a set of generalized sources is considered and provides their distance

field. Finally we give a way to compute distances and shortest paths from a point of the

polyhedral surface to the closest generalized element. The proposed algorithms have been

implemented and experimental results are presented in Chapter 7.

In Chapter 7 Discrete distance function and applications, a discrete represen-

tation of the distance functions and distance fields obtained in Chapter 5 and Chapter 6

are obtained by using Graphics Hardware. We provide an algorithm to obtain the Closest

Voronoi diagram from the distance field. Next, general algorithms are used to compute

the closest, furthest and any order-k Voronoi diagram. An algorithm to obtain an approxi-

mate 1-Center and an approximate 1-Median is also presented. Finally, some experimental

results and images are given.

Finally, in Chapter 8 Conclusions and further comments, we provide the conclu-

sions of this thesis and we end with some further comments.

8 Chapter 1. Introduction

Chapter 2

Basic Concepts and Previous

Work

In this chapter some basic concepts and the previous work related to visibility on terrains

and distances on polyhedral surfaces developed in Computational Geometry, Geographical

Information Systems and Computer Graphics are presented.

First, some general definitions and notation are given (Section 2.1). Next, some basic

data structure and algorithms that are used in the algorithms presented in this thesis

are given (Section 2.2). Graphics hardware is introduced and some general algorithms

base on the GPU are provided (Section 2.3). Next, we present some definitions related to

terrain models (Section 2.4) together with previous work related to visibility on terrain

models (Section 2.5). Finally, proximity problems on triangulated polyhedral surfaces are

presented with the previous work related to these problems (Section 2.6).

2.1 General definitions and notation

In this section the definitions and notation that are used in this thesis are provided,

starting with some general definitions in Rd for d = 2, 3 where u = (u1, . . . , ud) and

v = (v1, . . . , vd) denote d-dimensional vectors, and p = (p1, . . . , pd) and q(= q1, . . . , qd)

d-dimensional points.

• Sum of vectors. The vector u + v = (u1 + v1, . . . , ud + vd).

9

10 Chapter 2. Basic Concepts and Previous Work

• Product between a vector and a real number. The vector λu = uλ = (λu1, . . . , λud).

• Scalar product between vectors. The real number u · v = u1v1 + · · ·+ udvd.

• Norm of a vector. The positive real number ||u|| =
√

u2
1 + · · ·+ u2

d.

• Vector that joins two points. The vector −→pq = (q1 − p1, . . . , qd − pd).

• Euclidean distance between two points.

d(p, q) = ||pq|| =
√

(q1 − p1)2 + · · ·+ (qd − pd)2.

• Convex set A in Rd. A set of points A in Rd such that for any two point p and q in

A segment pq is entirely contained in A.

• Generalized element. A point, segment, polygonal chain or polygonal region in Rd.

• Convex hull of a set of points A in Rd (CH(A)). The smallest convex set in Rd

containing A.

• Planar Subdivision S. A set of planar regions with disjoint interiors and whose union

is the total plane (See Figure 2.1).

– Vertex of P. The intersecting point (if it exists) of two different edges of P.

– Edge. The common points of two adjacent regions.

– Face. Each region of P.

– Adjacent regions. Two not disjoint regions of a planar subdivision.

Figure 2.1: Planar subdivision (Delaunay triangulation).

• Triangulation. A planar subdivision whose bounded regions are triangles (Figure

2.1).

2.1. General definitions and notation 11

• Triangulation of a set of points P . A triangulation whose vertices are the elements

of P .

• Delaunay triangulation of a set of points P . A triangulation of a set of points P

such that no point in P is inside the circumcircle of any triangle of the triangulation.

• Constrained Delaunay triangulation of P . A triangulation of P where some edges

are specified. It is such that if the circumcircle of a triangles contains a point p ∈ P ,

the line segments from p to the vertices of the triangles intersect a specified edge.

• Polyhedron. A polyhedron is a solid in R3 bounded by planar facets.

• Polyhedral surface. A polyhedral surface is the boundary of a polyhedron, which

contains vertices, edges and faces.

• Arrangement of r surfaces in Rd. The subdivision of Rd induced by the surfaces.

– Upper envelope. The set of points with r − 1 surfaces below them, and no

surfaces above them.

– Lower envelope. The set of points without surfaces below and strictly r − 1

above them.

– k-th level. The set of points with at most k−1 surfaces strictly below it, and at

most r − k surfaces strictly above. The lower and upper envelopes correspond

to the 1-th and r-th levels, respectively.

Figure 2.2: The third level in an arrangement of segments.

12 Chapter 2. Basic Concepts and Previous Work

2.2 Basic data structures and algorithms

In this section some data structures and algorithms used in Computational Geometry

are presented. Defining the doubly-connected edge list is the first step(Section 2.2.1).

Next sweep algorithms, which are widely used in Computational Geometry for solving

several basic problems, are presented (Section 2.2.2). We provide basic algorithms and

the complexity of basic structures such as the convex hull (Section 2.2.3), an arrangement

of surfaces (Section 2.2.4) or a Delaunay triangulation (Section 2.2.5). Next, we describe an

algorithm to traverse a planar subdivision, which optimally reports the regions, edges and

vertices of a planar subdivision (Section 2.2.6), together with another one to approximately

reconstruct an unknown planar subdivision using line probes and a DCEL (Section 2.2.7).

Next we start with specific concepts and problems related to visibility and proximity.

We start with basic concepts and algorithms related to visibility on the plane and space

(Section 2.2.8), we go on with basic algorithms to compute Voronoi diagrams on the plane

and space, which are used to solve proximity problems (Section 2.2.9), and we finish with,

facility location problems on the plane and space(Section 2.6.4).

2.2.1 Doubly-connected edge list

A doubly-connected edge list (DCEL) is a structure used to represent planar subdivisions

(triangulations, Voronoi diagrams, etc.), polyhedral surfaces, polytopes in R3, etc. [35].

It supports operations for example: given a region, it obtains its adjacent regions, edges

or vertices. A DCEL contains a record for each face, edge, and vertex of the subdivision

(Figure 2.3). Besides the geometric and topological information each record may also store

additional information. The geometric and topological information stored in the DCEL

enables us to perform basic operations like: walking around a face in counterclockwise

order, accessing one face from an adjacent one given the common edge, visiting all the edges

around a given vertex. In the DCEL structure, edges in the subdivision are represented

by two directed half-edges: one of the half-edges bounds one face incident to the half-edge

of the other half-edge bounds the other face.

2.2.2 Sweep algorithm

Sweep algorithms are used to simplify several problems in Rd reducing them to problems

in Rd−1. Problems in the plane are reduced to problems in a line by using a sweep line

2.2. Basic data structures and algorithms 13

Figure 2.3: DCEL structure.

algorithm, in the same way, problems in space are reduced to problems in the plane by

using a sweep plane algorithm. Sweep algorithms already exist to compute: the intersection

points of a set of segments in the plane, the overlay of two planar subdivisions, the Voronoi

diagram of a set of points in the plane, the visible parts of a scene in the plane, the closest

pair of a set of points in space, the intersection of planar polygons as objects in space, the

computation of tetrahedralizations, of convex hulls, etc [35, 39, 74].

A sweep line/plane algorithm splits the problem domain into two regions: an explored

region and an unexplored one. The sweep line/plane applies an ordering to the problem.

Thus, we get a result on the explored area based on what we have seen so far and ignore

the unexplored area. In fact, only the elements that have already been reached or crossed

can possibly affect the current computation. The entire problem area/volume is examined

by ”sweeping” the line/plane across the set of elements from one extreme to another.

While we sweep, we keep track of all the elements intersecting the sweep line/plane. The

status of the sweep line/plane is the set of elements intersecting it. The points where the

status changes are called event points. In Figure 2.4 the status of the sweep line when a

sweep line algorithm is used to compute the intersection points of a set of segments in the

plane can be seen.

Figure 2.4: Sweep line algorithm for computing the intersection points of a set of line segments.

14 Chapter 2. Basic Concepts and Previous Work

2.2.3 Convex hull

The convex hull CH(A) of a set A of points of Rd is the smallest convex set in Rd containing

A and has complexity O(n) where n is the cardinality of A and d = 2 or 3.

Several algorithms to compute CH(A) already exist, which can be obtained by using a

divide and conquer technique [119] obtaining a O(n log n) time complexity algorithm. An

incremental construction with expected O(n log n) time complexity also exists [35]. There

also exist two optimal output-sensitive algorithms for the planar case with O(n log h) time

complexity, where h is the number of points in the hull [24, 25, 85].

2.2.4 Arrangements

The arrangement induced in the plane by a set L of n lines in the plane has O(n2) vertices,

edges and faces. A DCEL representing such an arrangement of lines in O(n2) time can

be built [35]. The complexity of the k-th level is O(n
√

k + 1), and the lower and upper

envelope can be obtained in maximal O(n log n) time complexity [99]. It has also been

proved that the complexity of any single level in an arrangement of n line segments in the

plane is O(n3/2) [3].

When a set of n planes in space is considered, the arrangement has complexity θ(n3)

and a k-th level O(n2k2/3) [3, 25]. The upper and lower envelope of an arrangement of

r surfaces in space, under some general conditions, is O(n2+ε) for any ε > 0, and the

complexity of all the l ≤ k levels is O((k + 1)1−εn2+ε) [128]. Sharir studied arrangements

in higher dimensions and provided upper bonds on their complexity and applications of

these arrangements [134].

2.2.5 Delaunay triangulation

There are several algorithms to compute Delaunay triangulations, as well as some incre-

mental algorithms that repeatedly add one vertex at a time and retriangulate the triangu-

lation until a Delaunay triangulation is obtained. With this technique, a naive incremental

algorithm results in a running time of O(n2). If a sweep line to insert the vertices sorted

is used the expected running time becomes (n3/2) time, and if vertices are inserted at

random the expected running time is O(n log n). An efficient O(n log n) time incremental

algorithm that uses a tree structure is given [36].

2.2. Basic data structures and algorithms 15

There are in existence optimal algorithms which use a divide and conquer algorithm

for triangulations in two dimensions due to Lee and Schachter [147]. The set of vertices is

recursively split into two sets. The Delaunay triangulation is computed for each set, and

then the two sets are merged in O(n) time. The total running time is O(n log n).

A constrained Delaunay triangulation can be constructed in three steps: first the given

points and the endpoints of the constrained edges are inserted, then, the specified edges

are enforced and finally the edges are swapped if the Delaunay criterion is violated [61].

2.2.6 Subdivision traversal

A subdivision traversal algorithm enumerates all vertices, edges and faces of a planar

subdivision, S, stored in a data structure, for example in a DCEL (Section 2.2.1). Some

techniques traverse S by using extra storage such as mark bits on the edges, vertices, or

faces of S, a data structure, etc (for a survey [36]). However, there are some algorithms

without extra storage to traverse S [36, 20]. De Berg et al. [36] traverse any connected

subdivision with n vertices in O(n2) time and any convex subdivisions in O(n) time. The

algorithm can be adapted to solve region queries and enumerates only the connected subset

S ′ of S. In these cases the running time depends on the vertices in S ′. Bose and Morin

[20] slightly modified the algorithm of de Berg et al. so that it runs in O(n log n) time.

2.2.7 Unknown planar subdivision approximation

In this Section the algorithm of Coll et al. [33] that reconstructs an approximation of an

unknown planar subdivision with information gathered from linear probes of the subdivi-

sion is presented.

Given an unknown bounded planar subdivision S, the algorithm approximately recov-

ers the vertices, edges and faces of S from the information of linear probes (Figure 2.5).

The algorithm maintains an approximation of the planar subdivision which is updated

after processing the information of each line probe and converges to S as the number

of line probes increases. The accuracy of the reconstruction and the convergence speed

depends on how line probes are chosen. The best way to chose them is by generating lines

uniformly distributed over a bounding box B of S.

Subdivision S partitions a line probe L into a finite set of segments with endpoints

on edges or vertices of S. These segments have to be computable. Once obtained, each

16 Chapter 2. Basic Concepts and Previous Work

segment has to be labelled with the face of S where it is contained. The reconstruction

algorithm maintains a triangulation of the endpoints of the segments from where an ap-

proximation of the unknown subdivision can be extracted. The mean computational cost

of the algorithm when k lines are processed is O(k log k).

Figure 2.5: From left to right we have: the unknown planar subdivision, the line probes and the

approximate reconstruction with the information gathered from the line probes.

2.2.8 Visibility in the plane

Visibility problems have been widely studied from different areas such as Computer Graph-

ics, Computational Geometry and also specialists working on GIS when dealing with vis-

ibility on terrains.

A scene consisting of a set of opaque elements placed in the plane or in space (sometimes

the elements are the faces of a terrain) and an view element are usually given. Generally,

a view element is a point, V , or a segment, s, from where the visibility is studied. The aim

is to determine the parts of the scene that are visible from the view element. By definition,

a point q is visible from V if the interior of the line segment pq does not intersect with any

opaque element conforming the scene; q is strongly visible from s if q is visible from every

point of the view segment s; q is weakly visible from s if q is visible from some point of s.

Visibility studies in R2 are the basis for some of the important algorithms working

in R3 and in terrains. A typical R2 scene contains a set of static segments and a view

point or view segment (See Figure 2.6). Following this, the typical algorithms to compute

visibility from different types of view elements and the structures used to compute and

store visibility information are presented.

2.2. Basic data structures and algorithms 17

a) b) c)

Figure 2.6: Typical scenes in R2 where the visible parts are marked in blue when considering a:

a) view point; b) view segment and weak visibility; c) view segment and strong visibility.

2.2.8.1 View point

The visible parts of a scene from a view point can be computed as: a) the lower envelope of

the set of segments [29, 72] by using a dynamic approach, a divide-and-conquer technique,

a parallel algorithm, etc. b) as the illuminated parts of the scene when a point light source

is placed on the view point, these algorithms deal with shadow points and visibility cycles

[62] which are explained in the next section. c) using a ray tracing technique in the GPU,

one of the most used rendering techniques in Computer Graphics, [122]. It checks whether

a ray intersects the scene, and where the scene is intersected, consequently whether the

intersection point is visible (Section 2.3.3).

2.2.8.2 View segment

When considering algorithms to compute visibility form a view segment we can distinguish

between the exact and approximate algorithms. There are some exact algorithms that

provide the visible parts of the scene from every point of s, and some others that compute

the weakly or strongly visible parts of the scene. Among the approximate algorithms an

algorithm that uses graphics hardware and the GPU to compute visibility of a segment of

the scene from the view segment is highlighted (Section 2.3.3).

Exact algorithms that provide the visible parts of the scene from every single point of

s are sweep algorithms [63, 64, 113]. A moving point V is placed on the view segment and

it is moved along s keeping track of the critical points. Critical points are those points

where the visible scene in both directions of any of its neighborhoods in s is different. In

a critical point it is said that a topological or visibility change occur. This moving point

technique can be generalized to handle free trajectories of the moving point. On the other

18 Chapter 2. Basic Concepts and Previous Work

hand, the weakly or strongly visible parts of the scene from a view segment are obtained

by placing a linear light source on the view segment [62]. The amount of light received by

each part of the scene is computed after finding the critical points by using the moving

point strategy. Depending on the amount of light, a part of the scene is weakly, strongly

or not visible.

2.2.8.3 Visibility data structures

Several structures are used to compute or maintain the visible parts of the scene. The

main ones are: the visibility graph [64, 63, 113, 148], the topological map [113, 148], the

visibility cycle [62] and the visibility complex [118, 125].

In our algorithms visibility cycles which are ordered sequences of visible segments

and segments endpoints conforming the scene that are from the view point V are used.

Depending on whether the segments conforming the scene are considered to be transparent

or opaque, the transparent visibility cycle or the opaque visibility cycle, is respectively

obtained. Transparent visibility cycles usually store for each vertex, w, the first edge after

w intersected by the ray going from V to w [62].

2.2.9 Voronoi diagrams in the plane and in space

A Voronoi diagram encodes proximity information for a set of given objects which are

named sites. It is a fundamental concept of Computational Geometry and has been widely

studied [12, 13, 32, 41, 115, 120]. Algorithms and studies related to Voronoi diagrams on

the plane, space and also on non-weighted polyhedral surfaces can be found. Voronoi

diagrams on the plane or space have been extended to work with different types of sites

and distances. In the next sections some definitions and results for Voronoi diagrams on

the plane and space, and next on polyhedral terrains are given.

Algorithms to compute Voronoi diagrams on the plane or space are useful not only for

the information of proximity that they store. They are also useful to obtain the Delaunay

triangulation of the set of sites defining the diagram. In fact, the Delaunay triangulation

is the dual graph of the Voronoi diagram, and two sites of S are joined by an edge of the

Delaunay triangulation when their Voronoi regions are adjacent.

2.2. Basic data structures and algorithms 19

2.2.9.1 Voronoi diagram of a set of points

The Voronoi diagram of a set, S = {s1, . . . , sr}, of r point sites in Rd with d = 2, 3 is the

subdivision of the plane into Voronoi regions which are associated to the sites. In fact,

each site has a Voronoi region associated. The Voronoi region of site si contains the points

of Rd closer to si than to any other site sj

V (si) = {x ∈ Ed | d(si, x) ≤ d(sj , x)}

where d(x, y) denotes the Euclidean distance. The locus of equidistant points from two

sites si and sj of S is named the bisector between sites si and sj and is denoted βij , thus,

βij = {x ∈ Ed | d(x, si) = d(x, sj)}. Notice that βij is a plane in R3 and a line in R2. The

Voronoi diagram of S is the family of Voronoi regions of all the sites of S. In practice, we

often work with a bounded region K and the part of each Voronoi region contained in K is

considered. In Figure 2.7 a) a Voronoi diagram of a set of points in the plane considering

Euclidean distance is shown.

When S contains points of Rd in general position, no d + 2 points are cospherical.

The vertices of the Voronoi diagram are the centers of the spheres passing through d + 2

points. The complexity of the Voronoi diagram is O(rd
d
2
e), [145]. Practical and robust

optimal O(r log r) and O(r2) algorithms for computing the exact Voronoi diagram of a

set of points in 2D and 3D have been developed in Computational Geometry and related

areas. There is also an incremental algorithm in existence that works in R2 and R3 [22],

with complexity O(rd
d
2
e+1).

2.2.9.2 Generalized Voronoi diagram

The Voronoi diagram concept has been extended according to its practical applications

[12, 13]. With this aim, sites of different shape or nature, weights associated to the

sites, different distance functions for each site, etc. have been considered yielding to the

Generalized Voronoi diagrams [17, 18, 32, 115].

The set of sites S = {s1, . . . , sr} is now a set of r different geometric objects in Rd.

Each site is associated to a distance function dsi(x). The Generalized Voronoi diagram

has as Voronoi region of a site si the set of points x ∈ Rd, such that, dsi(x) ≤ dsj (x)

∀j 6= i. The bisector between two different sites si and sj is defined, again, as βij = {s ∈
Ed | dsi(x) = dsj (x)}. If a set of line segments with Euclidean distance is considered,

the bisectors are line and parabolic segments [145]. In Figure 2.7 b) and c) we show

20 Chapter 2. Basic Concepts and Previous Work

an example of Voronoi diagrams on the plane considering a set of segments and a set of

generalized sites, respectively.

a) b) c)

Figure 2.7: Voronoi diagram in the plane, considering Euclidean distance and a set of: a) point

sites; b) segment sites; c) generalized sites: a segment, a curve and two semi-line sites.

The Voronoi diagram of a set of line segments with Euclidean distance can be exactly

obtained in O(r log r) time by using the optimal algorithm provided by Yap [156]. Discrete

generalized Voronoi diagrams on R2 and R3 and the distance functions defined by the sites

can be computed by using graphics hardware (Section 2.3.3).

2.2.9.3 Higher order Voronoi diagram

A Voronoi diagram gives information of the closest site and a order-k Voronoi diagram

informs us of the k closest sites at each point. Let S = {si} be a set of r sites with

associated distances {dsi} and S′ ⊂ S a subset of k sites, k ∈ {1, . . . , r − 1}. The set of

points of Rd closer to each site of S′ than to any other site of S is possibly an empty region

called the order-k Voronoi region of S′. The set of order-k Voronoi regions of all subsets

of k sites of S is called the order-k Voronoi diagram of S. The order-1 Voronoi diagram is

called the closest Voronoi diagram or simply the Voronoi diagram, and the order-(r − 1)

Voronoi diagram is called the furthest Voronoi diagram.

The size of the order-k Voronoi diagram of a set of r sites in the plane is O(k(r− k)),

the first proof of this result was given by Lee, [92], some years latter an alternative proof

was provided by Shmitt and Spehner, [130]. The size of all the Voronoi diagrams of order

lower or equal to k is, consequently, O(rk2). In higher dimensions, the size of all the

Voronoi diagrams of order lower or equal to k is O(kd
d+1
2
erd

d+1
2
e) this was proved by Cole

and Sharir, [30]. See Figure 2.8 to see the first, second, third and forth order Voronoi

diagram of a set of point sites.

2.2. Basic data structures and algorithms 21

Figure 2.8: a) Voronoi diagram of a set of points. b) order-2 Voronoi diagram. c) order-3 Voronoi

diagram. d) order-4 Voronoi diagram.

2.2.10 Facility location problems

Classical facility location problem determine the location X where a new facility should

be located so as to minimize an objective function [38, 102] when a set of existent facilities

represented by r sites is given. The set of points may represent customers, plants to be

serviced, schools, markets, distribution sites, etc. and as an objective function we can use

the Euclidean distance from X to its furthest customer. The two specific facility location

problems that are considered are the 1-Center and the 1-Median. The former minimizes

the maximal distance to an existent facility, and the latter, the sum of the distance to all

the existent facilities.

When a set S of generalized sites is considered, the 1-Center is the point that minimizes

the maximum distance to the sites. This point lies at a vertex or on an edge of the furthest

Voronoi diagram and is the center of the smallest enclosing disc (the disc with the smallest

radii containing S). The 1-Center of a set of r point sites in the Euclidean plane can be

determined in O(r) time [101, 154]. Agarwal et al. [5] present an approach to efficiently

solve the 1-Center problem for a set of points P in the plane using graphics hardware.

The 1-Median of the set S of point sites is the point that minimizes the sum of distances

to the sites. No polynomial-time algorithm for computing the 1-Median, also known as

22 Chapter 2. Basic Concepts and Previous Work

the Fermat-Weber point, of a set of r point sites in the Euclidean plane is known, nor

has the problem been shown to be NP-hard. The most common approximation algorithm

is Weiszfeld’s algorithm [153], an iterative procedure that converges to the 1-Median.

Chandrasekaran and Tamir [26] present a polynomial time approximation scheme based

on the standard ellipsoid method. Bose et al. [19] give a linear-time randomized algorithm

and an O(r log r) time deterministic one for ε approximations of the Euclidean median.

Agarwal et al. [5] present an algorithm for obtaining the 1-Median of a set of points P in

the plane using graphics hardware.

2.3 Graphics hardware

The increasing programmability and high computational rates of graphics processing units

(GPUs) make them attractive as an alternative to CPUs for general-purpose computing.

Recently, different algorithms and applications that exploit the inherent parallelism, easy

programmability and vector processing capabilities of GPUs have been proposed [117, 122].

In Computational Geometry and GIS fields there are several algorithms that have a fast

hardware-based implementation [5, 43, 67, 76, 86, 87, 111].

In this section the graphics hardware pipeline (Section 2.3.1) is explained. The con-

cept of a planar parameterization which is used when working with models in R3 and

GPU is presented (Section 2.3.2). In addition graphics hardware applications presenting

some general algorithms and finally some specific ones related to visibility and proximity

(Section 2.3.3).

2.3.1 Graphics pipeline

The graphics pipeline [132] is divided into several stages, which are implemented as sep-

arate pieces of hardware on the GPU. The input to the pipeline is a list of 3D geometric

primitives expressed as vertices defining points, lines, or polygon corners with attributes

associated such as 3D coordinates, color, texture coordinates, etc. The output is an image

in the frame buffer. The frame buffer is a collection of several hardware buffers corre-

sponding to two dimensional grids whose cells are called pixels. Each pixel in the frame

buffer is a set of some number of bits grouped together. There exist different buffers: the

stencil buffer, the depth buffer and the color buffer which store stencil, depth, and RGB

color values, respectively.

2.3. Graphics hardware 23

In order to store information in arrays in the GPU textures, arrays in the GPU, are

used and the information they store is accessed by using texture coordinates. At present,

and depending on the GPU, the maximal size of a texture is 2048×2048 or 4096×4096 and

at most eight textures can be simultaneously used. There are several types of textures:

RGBA-textures which store four numbers of a maximum of 16 bits in each position, one

in each of the RGBA channels (making 64 bits per position); depth textures store depth

values, a single number per position, which can have up to 32 bits.

In the first stage of the pipeline, per-vertex operations take place. Each input vertex is

transformed from 3D coordinates to window coordinates. The next stage is rasterization.

When it is finished, a fragment, with its associated attributes, for each pixel location

covered by a geometric primitive is obtained. Fragment attributes such as depth, color,

texture coordinates, etc. are obtained from the attributes associated to the vertices by

linear interpolation. The third stage, the fragment stage, computes the color for each pixel

according to the fragments corresponding to it. Each fragment passes a series of tests

(scissor, alpha, stencil, depth) and per-fragment operations (updating, blending, logical

operations, etc.) to avoid rendering or modifying the appearance of some fragments before

being placed into its corresponding pixel of the frame buffer. Per fragment operations can

use values from textures to modify its depth, color, etc. Finally, the fragments that pass

the tests and the operations of the previous stage are drawn or rendered on the screen

or on a specified texture with the appropriate color. The information of a user defined

rectangle of the color buffer can be easily transferred to the CPU or directly to a texture.

The graphics pipeline is schematically represented in Figure 2.9.

Figure 2.9: The graphics pipeline

The unique programmable parts of the graphics pipeline are the vertex and fragment

shaders. Vertex shaders are executed on a per-vertex basis and fragment shaders, also

24 Chapter 2. Basic Concepts and Previous Work

called pixel shaders, are executed on a per-fragment basis. Fragment shaders can change

the appearance of the pixels by combining fragment values, such as color and depth,

with values stored in the fragment attributes or in textures, which are sent to them as

parameters. If necessary, a fragment shader can output data to different render targets in

a single pass by using MRT (multiple-render-target) buffers.

2.3.2 Planar parameterization

A basic use of graphics hardware is rendering scenes, generally defined by polyhedra, in R3.

These scenes have to be mapped totally or partially to two dimensional arrays, textures,

to provide some rendering effects on them. With this aim, each polygonal face of the scene

is then mapped to a polygon in the plane with approximately the same shape (angles and

area) as that in the scene. Two different polygons of P are mapped so that the image of

the polygons do not overlap (See Figure 2.10). These mappings from R3 to R2 are known

as planar parameterizations of a scene or surface. Computing a parameterization means

finding the image also referred to as planar coordinates of each polygon of a scene. It is

generally assumed that all the polygons are triangles. However, this is not a restriction

because any polygon can be triangulated. Planar parameterizations are well known and

used in various problems such as: texture mapping, geometry processing, remeshing, etc.

[23, 50].

The problem of obtaining a parameterization maintaining the shape of the triangles is

also known as the triangle packing problem. The algorithm proposed by Carr et al. [23]

translates and rotates the mesh triangles so that they are placed in the xy−plane with

the longest edge aligned to the x−axis. After sorting the triangles by increasing altitude,

each other triangle is flipped, triangles are grouped into equal length sections and finally

triangle groups are stacked vertically. At the end of the process, the triangles are packed

into an axis-parallel rectangular region R. The time cost of the algorithm is O(n log n).

These algorithms work with polyhedral surfaces that are not necessarily homeomorphic

to spheres.

2.3.3 Graphics hardware applications

In the next sections we present examples of applications of the graphics hardware in

several areas such as solving problems related to: visibility, Voronoi diagrams, facility

location, etc. Notice that graphics hardware uses pixels, thus, if we use the pixels to

2.3. Graphics hardware 25

a) b)

Figure 2.10: a) A triangulated surface representing a rabbit; b) A planar parameterization of the

surface presented in a). The red in image b) corresponds to the red area in image a).

represent a plane, it is discretized and the output is a discrete representation of what we

are computing.

2.3.3.1 Upper and lower envelopes

Hardware graphics capabilities can be used to obtain easily a discrete representation of

the upper or lower envelopes of Φ = { z = πi(x, y) : i = 1 . . . n } a given set of n planes in

space. The functions defining the planes are painted one after the other, and the z value

is stored at the depth value. The depth test is used to store, in each pixel, the minimum

or maximum depth value depending on whether we are interested in the lower or upper

envelope, respectively. If each function is painted in a different color, the final color of

each pixels is the one associated to the function giving the minimum or maximum z value.

2.3.3.2 Depth peeling

Depth peeling or order-independent transparency is a recently developed technique in GPU

programming first implemented by Everitt [42], and used in several algorithms [45, 112].

The depth peeling, is used to obtain the k-th level of an arrangement in R3 (Section 2.1).

This is a multi-pass algorithm, which ”peels” off one level of an arrangement at each step.

At each step, all the functions conforming the arrangement are rendered. Before writing

to the frame buffer, the current depth is compared against the closest depth found in the

previous pass. Thus, at pass k the frame buffer contains the kth level of the arrangement.

26 Chapter 2. Basic Concepts and Previous Work

This is done by using two depth buffers, one for the previous level closest depth, and one

for the current level closest depth. At each step, the fragments with depths smaller than

or equal to the closest depth for the previous level are rejected. At the first stage they are

compared to zero. Among the not discarded fragments, the one with the smallest depth

value is stored in each pixel. Since graphics hardware typically does not possess more

than one depth buffer, Everitt [42] recommended a shadow mapping hardware function as

a second, read-only depth buffer. Liu et al. [94] presented a faster algorithm which pells

multiple layers of pixels per rendering pass. They sort and write multiple fragment colors

and depths at each step via multiple-render-target (MRT) buffers.

2.3.3.3 Reduction-type operations

Reductions, map large textures of size M×M to a texture of size 1×1. Equivalently, they

receive (several) input vector(s) of length N ¿ 1, N a power of two, and output a scalar.

Applications for such an operation are the computation of the maximum or the minimum

of a given floating vector; vector norms, dot products, etc [60, 97]. The algorithm to

compute the minimum of a set of M ×M floating numbers recursively reduces the output

size by computing the local maximum of each 2 × 2 group of elements and storing it

in the corresponding output location [60]. The vector length decreases from M × M to

M/2×M/2 at each step, until a 2× 2 texture is reduce to the final 1× 1 ”scalar” texture.

Consequently, the solution is obtained in a logarithmic number of iterations.

2.3.4 Visibility problems

In Computer Graphics, one of the most used rendering techniques is ray tracing. It is used

to check whether a ray intersects the scene, and where the scene is intersected. Ray tracing

problems can be easily, and quickly solved in the GPU for instances with the algorithm of

Purcel et al. [122].

Koltum et al. [86] present an approximate algorithm which combines the hardware

parallelism and a bounded dual ray space to compute the visible parts of a segment s′

conforming the scene in the plane from a view segment s. The bounded dual space is

represented by the framebuffer and the pixels are dual points. Each pixel represents a

ray from the view segment s to s′. The pixels representing rays that intersect the other

segments conforming the scene are marked in the framebuffer by considering one by one

all the segments conforming the scene (See Figure 2.11). Finally, the algorithm checks

2.3. Graphics hardware 27

whether there is a pixel that has not been marked. Such a pixel shows that there exists

a ray from s to s′ joining a point of s′ that is visible from s. Then, s′ is assumed to be

visible from s.

Figure 2.11: Four different scenes (top). Their dual ray space (bottom) where dark pixels represent

rays from s1 to s2 intersecting another segment of the scene.

2.3.5 Proximity problems

Exist algorithms using graphics hardware can approximately solve proximity problems.

By using GPU we can obtain any k-closest Voronoi diagram and some facility location

problem such as the 1-center or 1-median can be solved.

Several algorithms to approximately compute Voronoi diagrams already exist [5, 76,

138, 142]. Amongst them, Agarwal et al. [5] provide an algorithm to compute a discrete

generalized Voronoi diagram by rendering the distance functions of the generalized sites

and obtaining their lower envelope by using the depth buffer [5]. In the same way, the

furthest Voronoi diagram can be obtained by finding the upper envelope of the distance

functions determining the fragment with bigger depth value for each pixel.

Fischer and Gotsman [45] use the depth-peeling technique to extract, in k passes, the

top k levels of their arrangement of n distance functions of n point sites in the plane. Each

ith-level corresponds to pixels painted in a maximum of n different colors whose depth

value is the distance from the pixel to the ith nearest site. At the kth step, the algorithm

obtains the kth-nearest point diagram, and the k-th order Voronoi diagram is obtained

28 Chapter 2. Basic Concepts and Previous Work

by summing the colors of the ith-nearest diagrams, i = 1 . . . k, or overlaying them with

transparency 1/k. If the former strategy is used, colors have to be chosen in the way that

all the sums give distinct colors. Coding theory studies this problem [21]. However, they

observed that random 8-bit colors per site suffices to be able to distinguish between the

cells. It is important to mention that Agarwal et al. [5] provide a way to compute the

furthest Voronoi diagram of a set of generalized sites by rasterizing the distance functions

and using the depth buffer to compute their upper envelope.

There is also an algorithm to approximately obtain the 1-center of a set of sites.

Agarwal et al. [5] compute for each pixel
∑

d(p, q), encoding the distance function in the

color component and blending the colors. Finally, they find the overall minimum.

2.4 Terrain representation

Informally, a terrain is a surface that is intersected by any vertical line at most once.

Consequently, a terrain is a surface in R3 that can be modelled as the graph of a bidi-

mensional function defined over a simply-connected subset of the xy−plane, the domain.

Thus a terrain is defined on a subdivision Σ of the domain D as a collection of planar

regions R = {t1, . . . , tn} and a family Φ of continuous functions z = φi(x, y), i = 1 . . . n,

defined on ti and such that, on the common boundary of two adjacent regions ti and tj , φi

and φj take the same value. Consequently, a pair (R, Φ) defines a terrain T . The graph

of each function φi is called face and is denoted fi. The restriction of each function φi to

an edge or vertex of Σ is called edge and vertex of the terrain, respectively.

Terrains are usually modelled as Regular Square Grids or Polyhedral Terrain Models.

Regular Square Grid models have regular rectangular grids subdividing the domain and

Bezier curves or Bezier patches as functions [44, 137] (Figure 2.12 a). They are usually

used as smoothing techniques rather than to obtain accurate terrain representations. Poly-

hedral Terrain Models, PTM, have a domain subdivision consisting of a straight line plane

graph and and linear interpolating functions. Consequently, the graph of a triangulated

polyhedral terrain model consists of a network of polygonal planar faces (Figure 2.12 b)).

2.4.1 Triangulated Irregular Model

A special PTM is a Triangular Irregular Network (TIN) which is characterized by a tri-

angular subdivision of the domain [14, 150, 127]. TIN models are used to deal with

2.4. Terrain representation 29

a) b)

Figure 2.12: a) A terrain modelled with Bezier curves. b) A terrain modelled with a triangulated

irregular network.

irregularly distributed data because they preserve the roughness of the terrains and may

include special features such as points (peaks, pits, passes) or lines (ridges, valleys). These

models have deserved interest from Computational Geometry specialists working on GIS

problems and have been widely used in this field [14, 35, 150, 139]. A TIN modelling a

set of points representing a terrain can be obtained by using: a Delaunay triangulation of

the terrain vertices projected on the domain; a constrained Delaunay triangulation when

some important features need to be preserved; etc. [35, 37, 66, 127, 139]

From now on T denotes a triangulated polyhedral terrain modelled by a TIN and D

its triangulated domain.

2.4.2 Weighted terrains

Sometimes it is necessary to take into account the difference between a smooth terrain, a

rocky terrain, a terrain consisting of different types of regions (e.g. forest, rocks, desert,

lake, river), etc. With this in mind, a weight is associated to each face of the polyhedral

surface [7, 8, 105, 143, 159], these special kinds of terrains are called weighted terrains.

When we work with a weighted terrain each face f1, . . . , fn has a positive weight associated

to it, w1, . . . , wn, respectively. The weight associated to an edge, is the minimum of the

weights of the two neighboring faces. Notice that non-weighted terrains can be seen as a

special case of a weighted terrain considering all the weights equal to one.

30 Chapter 2. Basic Concepts and Previous Work

2.4.3 Realistic terrains

Realistic terrains are considered in Computational Geometry to be able to obtain more

accurate complexity analysis studies. If arbitrary TIN models are considered, there is

a big gap between the worst case time complexity and the actual running time of the

algorithms. Realistic input terrain models are considered to reduce this difference. A

terrain is a realistic terrain if it fulfills the following characteristics [107] (See Figure 2.13):

1. the triangulation of the domain is a k-low-density triangulation,

2. the boundary of the domain is a rectangle with side lengths 1 and q.

3. the longest edge of the domain triangulation is at most d times as long as the shortest

one.

where α, c, d are positive constants and planar triangulation is a k-low-density triangula-

tion if for any square Q, the number of edges intersected by Q of length greater or equal to

q is at most k, where q is the side length of Q. When working with distances on terrains,

the following extra property has to be considered:

4. the dihedral angle of the supporting plane of any triangle in T with the xy-plane is

at most β, where β < π
2 is some constant.

A property of these terrains is that any line traversing the terrain domain intersects

at most O(
√

n) triangles.

2.4.4 Terrains as polyhedral surfaces

A terrain can be seen as a special case of a polyhedral surface. In fact, a triangulated

terrain with n faces can be transformed to a polyhedral surface by adding O(n) triangles.

The obtained polyhedral surfaces is homeomorphic to a sphere and has the original terrain

on top [10, 11] (Figure 2.13). This property is important because it ensures that algorithms

for polyhedral surfaces can be used when working on terrains.

2.5. Visibility on triangulated terrains 31

a) b)

Figure 2.13: a) A realistic terrain fulfilling properties 1, 2 and 3. b) A polyhedron containing a

terrain on its top.

2.5 Visibility on triangulated terrains

Visibility computations on terrain models have their main applications in Geographic

Information Systems (GIS) [48, 53, 55, 57, 88, 108, 121]. They are useful for many ap-

plications related to terrain analysis such as site or path selection, path planning, mobile

phone networks design, line-of-sight communication, orientation and navigation on ter-

rains, environmental modelling, etc. Visibility problems, viewshed analysis problems in

GIS context, have deserved interest from Computer Graphics, Computational Geometry

and also specialists working on GIS problems. Existent studies dealing with visibility on

terrains consider view points, view segments and view terrain faces. Some of them are

designed to work with terrains, but those that can be used with general scenes in space

are also presented.

First, some specific definitions related to visibility on terrains are given. Next some

algorithms to solve the visibility problem considering first a view point and next a view

segment are provided.

2.5.1 Basic definitions

A view element v is a generalized element (point, segment, polygonal chain, polygon, etc.)

placed on or above the terrain, i.e. its projection onto the xy-plane is contained in domain

D and any point (x, y, z) ∈ v is such that z ≥ z′ where (x, y, z′) is the point of the terrain.

A point P on the terrain is visible from a view point Q if the interior points of the line

32 Chapter 2. Basic Concepts and Previous Work

segment QP with endpoints Q and P lies above the terrain. When dealing with a view

segment, view polygonal chain or view polygon v, it is said that a point P is weakly visible

if P is visible at least from a point of v and it is said that it is strongly visible if P is visible

from every single point of v. From now on the term visibility will refer to weak and strong

visibility whenever it is not specified.

The visibility map of a view element v is the partition of the domain D into visible and

not-visible maximal connected regions. A region of the domain is labelled as visible (not-

visible) when all its corresponding points on the terrain are visible (not-visible) from v

(see Figure 2.14).

Figure 2.14: In white the projection on the xy-plane of the visible points from a view point.

Multi-visibility maps related to a set V = {v1, . . . , vi, . . . , vr} of view points are ob-

tained combining the visibility maps of the elements in V . A multi-visibility map is a

subdivision of the domain D of the terrain into regions according to different criteria. A

multi-visibility map can be addressed to answer different questions: which points of the

terrain are visible from every single view element?, which points are visible from at least

one view element?, from how many view elements is each point visible?, from which view

elements is each point visible?, etc. Typical multi-visibility maps are: the union, the in-

tersection, the count and the overlay. The union map subdivides the domain into maximal

regions containing points that are visible from at least one view element. The intersection

map yields to maximal regions of points that are visible from every view element. The

count map subdivides the domain according to the cardinal of the set of view elements

from which a region is visible. Finally, the overlay map is obtained superimposing the

visibility maps of all view elements and labelling each region in the resulting partition of

2.5. Visibility on triangulated terrains 33

the domain with the set of indexes of the view elements from which that region is visible

(see Figure 2.15).

a) b)

Figure 2.15: a) Union map: Visible areas are painted in white and non visible areas in grey b)

Counting map: lighter red areas are visible from larger numbers of view points, and white triangles

show the position of the cairns. (Image taken from [?])

2.5.2 View point

Floriani et al. [54] present a survey of existent algorithms to compute the visible parts of

a terrain from a view point V , the most important ones in the Computer Graphics area

are summarized in Table 2.1. In GIS context visibility problems have been widely studied

generally using Digital Elevation Models. Algorithms tend to provide discrete visibility

maps, include uncertainty in the initial terrain model and study error and probability in

the results [46, 48, 49, 57, 88, 121, 140]. Multi-visibility problems for a set of view points

have also been studied [9, 58, 59, 83, 96, 116]. .

Next a brief overview of the most common techniques which use: a front-to-back order,

lines of sight, concentric rings, a radial sweep and finally radial sectors is provided.

• Front-to-back : Terrain faces are processed in front-to-back order with respect to V .

Face f is in front of face f ′ if both are intersected by a ray originated at V , and f

is nearer from V than f ′. This method works with sortable terrain models, where a

front-to-back order exists. Delaunay TINs and TINs from regular grids are always

sortable [52], and a general TIN becomes sortable by splitting some of its triangles

[30].

34 Chapter 2. Basic Concepts and Previous Work

Approach Authors Input Output

Front-to back De Floriani et al., 1989 [51] TIN Continuous Vis. Map

Front-to back Lee 1991 [93] TIN Discrete Vis. Map

Line-of-sight Shapira, 1990 [133]; RSG Discrete Vis. Map

Blellock 1990 [16]

Line-of-sight Mills, Fox and Heimback, 1992 [103]; RSG Inter-visibility

parallel algor. Teng, De Menthon and Davis 1993 [146] Visibility Map

Line-of-sight Sorensen and Lanter, 1993 [140] RSG Continuous Vis. Map

Sector-based Stewart,1998 [141] RSG; Approx horizon

TIN∗

Concentric ring Franklin and Ray, 1994 [57] RSG Discrete Visibility

approx. algor. Map

Line-of-sight Fisher, 1996 [47] RSG Extended viewshed

Radial sweep Van Kreveld, 1996 [149] RSG Extended viewsheds

Line-of-sight Rallings et al., 1998 [123] RSG Visibility counts

parallel algor.

TIN∗: only considering the TIN vertices

Table 2.1: Summary of visibility algorithms for a view-point

• Line-of-sight : This strategy takes into account a discrete set, P, of points of T .

Lines-of-sight (rays) emanating from V and going to P ∈ P are intersected with

the faces, in fact, usually the interior of the faces are ignored and only the edges

are considered. Point P is visible if its line-of-sight does not intersect a face before

reaching P .

• Concentric rings: This algorithm starts at the ring adjacent to V , the faces adjacent

to V , and keeps on exploring all the faces computing the visibility of a point P in

the i-th ring by using the previous ring information.

• Radial sweep: A line-of-sight rotating around V is considered. The line stops at

certain events, points where visibility changes, and visibility information for all the

faces intersected by the line is computed.

• Sector-based : A set of radial sectors is considered for every view point and each

sector is processed individually. Thus a parallel implementation can be used with a

2.5. Visibility on triangulated terrains 35

per-sector basis.

Some other algorithms that use hardware graphic to compute visibility from a view

point [34, 65, 77, 158] can be found. Some of these algorithms consider a grid covering the

space and for each grid cell compute and store the visible areas of the scene, consequently

the storage cost is huge. However, the most general technique is named Hidden Surface

Removal [68, 100]. This is used for visualizing R3 general scenes on the screen of a

computer, and is a practical way to obtain a visibility map of a TIN [68]. The scene is

projected onto a view-plane, represented by the screen, and only the visible areas are seen,

thus, their projection on D is the visibility map (see Figure 2.16). Instead of rendering all

the scene, they have some tricks to avoid rendering, or reject some geometry that can not

be visible [56]. The most used ones are the following:

• Back-face culling : avoids rendering geometry that faces away from the viewer.

• Viewing-frustum culling : avoids rendering geometry placed outside the part of the

scene projected on the screen, the viewing frustum.

• Occlusion culling : avoids rendering geometry that is occluded by some other parts

of the scene (a specific method for terrains is given in [155]).

• Visibility culling : rejects the invisible geometry using (hopefully tight) estimations

of the visible regions, it uses the previous ones.

Figure 2.16: The visibility map and the visible image on the xy-plane and xz-plane, respectively.

The not visible region of the domain is the green one.

2.5.3 View segment

Algorithms to compute visibility from a view segment, reduce the problem to compute

visibility from a moving view point placed on the segment. A distinction is made between

36 Chapter 2. Basic Concepts and Previous Work

algorithms that provide exact and approximate solutions.

Among the exact algorithms an explanation of the algorithm of De Berg et al. because

it is the basis of our algorithm [15]. De Berg et al. [15] present an algorithm obtains exactly

the visible parts of the scene from a moving view point V on s. They give a general algo-

rithm for scenes in R3 which is particularized to work on terrains and finally on terrains

and vertical view segments. They consider a view point V which moves along s and com-

pute the critical points where topological change occurs. Only some points produce visible

topological changes. When this happens, the visible scene is updated. To efficiently handle

the updates they use some auxiliary information obtained in an initialization step where

the initial visibility cycles are also computed with an algorithm provided by McKenna

[100]. When general scenes in R3 are considered, critical points are obtained by using the

transparent and opaque visibility cycles. For general scenes, the worst case complexity of

the algorithm is O(n2 + l log n) time and O(n2) space, where l is the number of transpar-

ent topological changes which is at most n3/3. The computational complexity becomes

O(n2 log n+ l) time when l /∈ O(n2). For the special case of terrains, they use the fact that

terrain edges are sortable: edge ei is smaller than edge ej if there exists a forward ray from

V that intersects first ei and next ej . By using this property, critical points can be obtained

with an algorithm that uses the first i − th sorted edges conforming the horizon line. It

reduces the computational complexity to O((n+k)λ3(n) log n) time and O(nλ3(n)) space,

where k is the number of opaque topology changes and λ3(n) ∈ O(nα(n)), α(n) is the

very slowly growing inver Ackerman function [71]. When s is a vertical view segment the

number of possible visible topological changes and consequently the computational cost of

the algorithm becomes O(nλ4(n) log n) time and O(λ4(n)) space (λ4(n) = Θ(n2α(n))) [2].

Finally there are already exist some algorithms to compute the visible parts of a terrain

from a moving point of view following a not prefixed general trajectory [75, 157]. Notice

that these algorithms compute the visible parts of the scene or a terrain from each point

of s. However they do not obtain the visibility map.

Approximate solutions are provided by algorithms that use Computer Graphics tech-

niques, such as the general Hidden Surface Removal algorithm [56]. Koltun et al. present

an algorithm to compute the visibility of a scene with urban building [86] in an approx-

imate fashion. These algorithms compute the visible parts from a moving point of view

placed on the view segment. In GIS context, visibility from a segment is simulated as

visibility from a set of points placed on the segment. Multi-visibility problems for a set of

view points has been studied by several authors in this context [9, 58, 59, 83, 96, 116].

2.5. Visibility on triangulated terrains 37

2.5.4 View polygon: a view terrain face

Concerning view region elements, Krevel et al. [108] provided an algorithm to compute

strong inter-region visibility between two terrain regions in O(n2+ε) worst case time com-

plexity. Wang and Zen [152] present an algorithm to compute the weak visible parts of a

general scene in R3 from a view triangle. The computational complexity of the algorithm

is O(n8) time and O(n6) space, which is reduced to O(n6) time and O(n4) space algorithm

for the special case of terrains. In the paper the following Lemma, which is proved using

the fact that any vertical line intersects the terrain at most once, is stated.

Lemma 2.5.1 (Wang and Zen 2000) Let us consider a terrain T and a face of T as

a view polygon P. The weakly visible parts of T from P are the weakly visible parts of T
from ∂P.

Thus, if we consider a terrain face as a view polygon, P, we have to study the visibility

from the boundary segments of P. By using this observation, the weakly visible parts of

T from a face of the terrain, P, can be determined by studying the boundary segments of

P and using the algorithms to compute weak visibility for view segments.

There are also approximate algorithms in existence that use hardware graphic to com-

pute visibility from view regions [31, 40, 129]. Some of these algorithms consider a grid

covering the space and for each grid cell compute and store the visible areas of the scene,

consequently the storage cost is huge.

2.5.5 Visibility maps complexity

The problem of computing the visibility map of a terrain from a view point using TIN

models is studied in [15, 53, 55, 150]. To obtain a visibility map we need the visible parts

of the scene, which are computed by using the algorithms given in Section 2.5.

Combinatorial results related to the complexity of the visibility map are given in [106,

107, 152]. Wang and Zhu proved [152] that given a general scene in R3, the complexity

of the weakly visible regions of a triangle from a view triangle is Θ(n6), which is reduced

to O(n4) for the special case of a terrain. Moet et al. [106] proved that the complexity

of the strong visibility map, the visibility map when strong visibility is considered, for a

view segment is Ω(n2) and for a view triangle is O(n2 log n). They also proved that the

complexity of the weak visibility map of a view segment is Ω(n4) and for a view triangle

38 Chapter 2. Basic Concepts and Previous Work

is O(n5). Finally, Moet et al. [107] proved that the visibility map of a view point when

considering a realistic terrain has complexity Ω(n
√

(n)).

2.6 Shortest paths on triangulated polyhedral surfaces

Computing shortest paths on polyhedral surfaces, which are assumed to be triangulated,

is a fundamental problem in Computational Geometry with important applications in

geographical information systems (GIS), Computer Graphics and robotics. Consequently,

the shortest path problem in polyhedral surfaces when a point source s is given have been

widely studied considering both non-weighted and weighted surfaces. In Section 2.4.4 it

is explained that a terrain can be seen as a polyhedral surface by using an algorithm of

Aronov et al. [10]. Aronov et al. also prove that the shortest path between two points

on the faces of the original terrain will not leave the original terrain. Thus, the shortest

path problem on terrains can be solved by using more general algorithms for computing

shortest paths on polyhedral surfaces.

We can find two different types of solutions depending on whether: a) we are given a

target point t and we are interested in finding the shortest path from s to t; b) we are not

given any specific target and we are interested in solving the single source to any target

problem. Shortest paths on a polyhedral surface solving the single source to any target

problem define a distance function. For a given point source s, the distance from s to any

point p of the polyhedral surface, Ds(p), is given by the length of the shortest path.

In the next sections we give some basic definitions, characterize the shortest paths

in weighted and non-weighted settings, and provide an overview of the most important

algorithms to compute shortest path.

2.6.1 Shortest paths

Algorithms for obtaining shortest path on (non-weighted) polyhedral surface have been

widely studied [28, 79, 80, 95, 104, 131, 144]. These algorithms can be subdivided into two

categories, those providing exact solutions and those giving approximate solutions. We

start with some basic definitions and properties of shortest paths on non-weighted poly-

hedrons, and finally overview the existent exact and approximate algorithms for obtaining

shortest paths to point sources.

2.6. Shortest paths on triangulated polyhedral surfaces 39

2.6.1.1 Basic definitions

Let P be a possibly non-convex polyhedral surface represented as a mesh consisting of n

triangular faces f1, . . . , fn.

The length of a path π on P is defined as |π| =
∑n

i=1 |πi|, where |πi| denotes the

Euclidean length of the path lying inside the face fi. The shortest path between two

points p and q on P is the path between them of least length and is denoted π(p, q).

When a shortest path crosses an edge at point p, it is said that the shortest path has a

bending point on p, or, equivalently, that p is a bending point of the shortest path.

For a given point source s, the distance from s to a point p of the polyhedral surface

P, Ds(p), is given by the length of the non-weighted shortest path from p to s, π(s, p).

A path that is locally a shortest path is called a geodesic. All the shortest paths are

geodesics, but not all the geodesics are shortest path. Geodesic properties have been the

basis of different algorithms to compute shortest paths [104].

2.6.1.2 Geodesic properties

Mitchell et al. [104] studied the geodesics on non-convex triangulated surfaces. After

the study they highlighted the three following properties, which are represented in Figure

2.17, as the characterization of this type of geodesic:

Property 2.6.1 In the interior of a triangle a geodesic is a straight line.

Property 2.6.2 When crossing an edge a geodesic corresponds to a straight line if the

two adjacent triangles are unfolded or placed into a common plane.

Property 2.6.3 A geodesic can go through a vertex if and only if the total angle of the

vertex is at least 2π.

Following the previous terminology, the operation of obtaining the plane containing

adjacent triangles is called the planar unfolding. A vertex whose total angle α is at least

2π i called a saddle vertex, and a saddle vertex is hyperbolic if α > 2π and parabolic

if α = 2π. Apart from the previous three properties any geodesic fulfills the following

Property.

40 Chapter 2. Basic Concepts and Previous Work

a) b) c)

Figure 2.17: A planar unfolding containing π(s, t). b) A geodesic going through a saddle vertex.

c) The angle defined by the geodesic shown in b) at the saddle vertex.

Property 2.6.4 Two shortest paths originating at the same source point cannot intersect

in the interior of any triangle.

Concerning the complexity of non-weighted shortest paths, Mitchell et al. [104] proved

that the shortest path on a non-convex polyhedral surface with O(n) triangles can traverse

up to Ω(n) faces. Moet et al. [107] proved that when considering realistic terrains this

complexity decreases to Ω(
√

n).

2.6.1.3 Exact algorithms

Mitchell et al. [104] present an algorithm for solving the single point source shortest path

problem by using a ”continuous Dijkstra” method which propagates distances from the

source to the rest of P. The algorithm constructs, in O(n2 log n) time, a data structure

called the shortest path map that implicitly encodes the shortest paths from a given source

point to the rest of points of P. The structure allows for single-source shortest path

queries, providing the length of the path and the actual path in O(log n) and O(log n+n)

time respectively, where n is the number of mesh edges crossed by the path. Different

improvements of this algorithm have been proposed. Surazhsky et al. [144] described

a simple way to implement the algorithm and showed that it run much faster on most

polyhedral surfaces than the O(n2 log n) theoretical worst case time. Recently, Liu et

al. [95] gave some important implementation details of the algorithm of Surazhsky et al.

to properly obtain the desired result.

Chen and Han [28], using a rather different approach, improved the O(n2 log n) com-

plexity to an O(n2) time algorithm. Their algorithm constructs a search tree and works by

unfolding the facets of the polyhedral surface. The algorithm also answers single-source

shortest path queries in O(log n + n) time. Kaneva and O’Rourke [79] implemented Chen

2.6. Shortest paths on triangulated polyhedral surfaces 41

and Han’s algorithm and reported that the implementation is difficult for non-convex

polyhedral surfaces and that memory size is a limiting factor of the algorithm.

Kapoor [80] presented an algorithm following the ”continuous Dijkstra” paradigm that

computes a shortest path from a source point to a target point in O(n log2 n) time. How-

ever, it is an obscure algorithm from which no extended version or implementation is

known. Recently, Schreiber and Sharir [131] provided an O(n log n) worst case time algo-

rithm for convex polyhedral surfaces.

Table 2.2: Results on exact Shortest Paths on Polyhedral Surfaces

Polyhedral Cost Approx. Time

Surface Metric Ratio Complexity Reference

Convex Euclidean 1 O(n3 log n) Sharir and Schoor 1986 [136]

Convex Euclidean 1 O(n log n) 1986 Schreiber and Sharir [131]

Non-convex Euclidean 1 O(n2 log n) Mitchell et al. 1987 [104]

Non-convex Euclidean 1 O(n2) Chen and Han 1996 [28]

Non-convex Euclidean 1 O(n log2 n) Kapoor 1999 [81]

2.6.1.4 Approximate algorithms

Surazhsky et al. [144] propose an approximate version of their exact algorithm. They

use the continuous Dijkstra and proceed as in their exact method but virtually moving

the sources to simplify the algorithm. Many other approximate algorithms can be used

to obtain approximate shortest paths on polyhedral surfaces by considering non-weighted

shortest path as a particular case of weighted shortest paths. These algorithms are ex-

plained in next section where weighted shortest paths are considered.

2.6.2 Weighted shortest paths

Weighted terrains are often used, and consequently it is necessary to compute shortest

paths on weighted terrains. The problem is solved on weighted triangulated polyhedral

surfaces which is a general case of weighted polyhedral terrains.

42 Chapter 2. Basic Concepts and Previous Work

Table 2.3: Results on Shortest Paths on Polyhedral Surfaces

Polyhedral Cost Approx. Time

Surface Metric Ratio Complexity Reference

Convex Euclidean 2 O(n) Herhberger et al. 1995 [73]

Convex Euclidean 1 + ε O(n log 1
ε

+ 1
ε3) Agarwal et al. 1997 [4]

Convex Euclidean 1 + ε O(n + log n
ε1.5 + 1

ε3) Har-Peled 1999 [69]

Convex Euclidean 1 + ε O(n√
ε

+ 1
ε4) Agarwal et al. 2002 [6]

Convex Euclidean 1 + ε O(
√

n
ε1.25 + f(ε−1.25))(∗) Chazelle et al. 2003 [27]

Non-convex Euclidean 1 + ε O(n2 log n + n
ε

log 1
ε

log n
ε
) Har-Peled 1999 [70]

Non-convex Euclidean 7(1 + ε) O(n5/3 log5/3 n) Vardarajan et al. 2000 [151]

Non-convex Euclidean 15(1 + ε) O(n8/5 log8/5 n) Vardarajan et al. 2000 [151]

* This uses the Las Vegas algorithm, which approximates the distance between two points on the surface

of a convex polytope, but not the path itself. The term f(ε−1.25) represents the time required to compute

an exact shortest path on the surface of a convex polytope consisting of ε−1.25 triangular faces.

2.6.2.1 Basic definitions

Let P be a possibly non-convex weighted polyhedral surface represented as a mesh con-

sisting of n triangular faces f1, . . . , fn with associated positive weights w1, . . . , wn. The

weight associated with an edge, is the minimum of the weights of the two neighboring

faces.

Given a polyhedral surface P, we define the cost of a path Π on P as ‖Π‖ =
∑n

i=1 wi|πi|,
where |πi| denotes the Euclidean length of the path Π lying inside the face fi. Given two

points p and q on P, the path between them of least cost is called the weighted shortest

path and denoted Π(p, q).

Let ε be a parameter in (0, 1) a (1 + ε) approximation of a weighted shortest path

between points p and q is a path between p and q whose cost is at most (1 + ε) times the

cost Πp,q.

2.6.2.2 Weighted geodesic properties

Mitchell and Papadimitriou [105] studied the properties of geodesics on weighted surfaces,

and provided a characterization. According to Mitchell and Papadimitriou geodesics on

weighted surfaces fulfill the following properties:

Property 2.6.5 Two shortest paths originating at the same source point cannot intersect

2.6. Shortest paths on triangulated polyhedral surfaces 43

in the interior of any triangle.

Property 2.6.6 In the interior of a face a geodesic defines a set of line segments which

can contain from 0 to up to O(n) segments.

Property 2.6.7 Geodesics cross and go along edges according to Snell’s law.

Snell’s law: Snell’s law states that the following equality is fulfilled:

w′ sinα = w sinα′.

Where s and s′ are two adjacent segments defining a geodesic on faces f and f ′, respec-

tively; p is the common endpoint of s and s′; e is the edge containing p; w is the weight of

f ; w′ is the weight of f ′; α is the in-angle in p which is the counterclockwise angle between

s and the normal to e; and α′ is the out-angle in p defined as the counterclockwise angle

between s′ and the normal to e (see Figure 2.18).

Figure 2.18: The in-angle and out-angle of a geodesic.

According to the previous properties, weighted shortest paths consist of a sequence of

edge-using and face-crossing segments with endpoints, the bending points, on the poly-

hedral edges. Edge-using segments are edge subsegments and face-crossing segments join

points on different edges of the same face.

Concerning the complexity of weighted shortest paths, Mitchell and Papadimitriou

[105] proved that the shortest path on a non-convex weighted polyhedral surface with

O(n) triangles can cross up to Ω(n2) faces.

2.6.2.3 Weighted shortest path computation

To the best of our knowledge, no exact algorithm for solving the weighted shortest path

problem exists. The vast majority of algorithms, which are summarized in Table 2.4, for

computing approximate shortest paths employ a discretization method and are designed to

work with triangulated polyhedral surfaces homeomorphic to a sphere (convex polyhedra,

44 Chapter 2. Basic Concepts and Previous Work

Table 2.4: Results on Shortest Paths on Polyhedral Surfaces

Polyhedral Cost Approx. Time

Surface Metric Ratio Complexity Reference

Non-convex Weighted Additive O(n3 log n) Lanthier et al. 2001 [89]

Non-convex Weighted 1 + ε O(n8 log(n
ε
)) Mitchell et al. 1991 [105]

Non-convex Weighted 1 + ε O(n
ε2 log n log 1

ε
) Aleksandrov et al. 1998 [1]

Non-convex Weighted 1 + ε O(n
ε

log 1
ε
(1√

ε
+ log n)) Aleksandrov et al. 2000 [7]

Non-convex Weighted 1 + ε O(n
ε

log n
ε

log 1
ε
) Reif and Sun 2000 [124]

Non-convex Weighted 1 + ε O(n√
ε

log n
ε

log 1
ε
) Aleksandrov et al. 2005 [8]

or possible non-convex hole-free polyhedra) except for that given by Alexandrov et al. [8]

which works with polyhedral surfaces not necessarily homeomorphic to a sphere.

In 1991 Mitchell and Papadimitriou [105] gave the characterization of the shortest

paths on weighted surfaces and presented an algorithm that uses the continuous Dijkstra

method to provide an (1+ε) approximate shortest path, which runs in O(n8 log n/ε) time

and O(n4) space. It is the only algorithm that computes a (1 + ε) approximation of the

shortest paths without discretizing the polyhedral surface.

Most algorithms discretize the polyhedral surface and reduce the problem to the deter-

mination of shortest paths on weighted graphs. Shortest paths on the graph are typically

found by using the Dijkstra algorithm [1, 7, 8], which can be accelerated by using the

geodesic properties presented in section 2.6. The discretization scheme places Steiner

points on the triangle edges or on the bisectors of the triangle vertices. Between the

former, the best algorithm was proposed by Aleksandrov et al. [7]. This follows a log-

arithmic discretization scheme and has time complexity O(n/ε log 1/ε (1/
√

ε + log n)).

An algorithm of O(n/
√

ε log n/ε log 1/ε) time complexity that uses the latter approach

is presented again by Aleksandrov et al. [8].

Recently, an alternative strategy to Dijkstra algorithm called Bushwhack strategy has

been used. It was proposed by Sun and Reif [143] and uses the property that two shortest

paths do not intersect in a triangle. Considering an improved version of the discretization

scheme introduced by Aleksandrov et al. [7] they obtained an approximate shortest path in

O(n/ε log 1/ε log n/ε) time. In the next sections, we explain how the bushwack strategy

works.

The previous algorithms compute (1 + ε)-approximate shortest paths. However, there

are several approximate algorithms [82, 84, 90, 98, 109, 114, 144] in existence whose output

2.6. Shortest paths on triangulated polyhedral surfaces 45

is a path which is supposed to be a shortest path, without having a bound on the committed

error. These algorithms usually discretize the domain by considering only the polyhedron

vertices. Some of them use a hierarchical representation of the triangulation which contains

several triangulations of different levels of detail. The algorithms start by computing an

initial shortest path in a simpler graph which is progressively improved by using a selective

refinement of the triangulation considering only the triangles the path intersects. Some

others use the Fast Marching Method [84, 98, 114]. They compute approximate distances

to the vertices of the triangulation by propagating a wavefront using a typical discrete

Dijkstra. When the distance to a vertex is to be recomputed, they find the direction of

the shortest path using a gradient term obtained solving an equation which depends on

the method.

2.6.2.4 Bushwack strategy

Sun and Reif [143] proposed the Bushwhack strategy to compute distances from a vertex

source, sv, on the graph nodes using the fact that no shortest path intersects in the

interior of a face. The basic idea of this strategy is to track and keep together groups of

shortest paths by partitioning each face edge into a set of (discrete) intervals, containing

nodes, so that all shortest paths that cross an interval have the same structure. In the

initialization step, Bushwhack creates discrete intervals, encoding the distance function

Dvs of the vertex source vs, on the edges of the triangles containing vs. Shortest paths

are propagated across mesh triangles in a lazy and best-first propagation scheme. When

a node v on an edge e is first visited, an interval I is created. An interval is denoted

Iv,e,e′ when it contains nodes of edge e′, where e′ is opposite to v when v is a vertex or is

adjacent to e otherwise (See Figure 2.19). Interval Iv,e,e′ contains those contiguous nodes

of e′ whose shortest path from vs to v′ ∈ Iv,e,e′ may use node v before arriving at v′ via an

edge-using or face-crossing segment contained on the face determined by e′ and v. Node

v is also called the virtual source of interval Iv,e,e′ and denoted Is. Such intervals do not

overlap and on average each interval will contain O(1) Steiner points. The Bushwhack

strategy complexity is of O(mn log mn) time and O(mn) space when a graph with m nodes

per edge on a polyhedral surface of n faces is used.

46 Chapter 2. Basic Concepts and Previous Work

Figure 2.19: A point source s with approximate shortest paths to vertices v1, . . . , v5 and the

interval Iv3,e,e′ associated to v3.

2.6.3 Voronoi diagrams on triangulated surfaces

Several studies related to Voronoi diagrams on non-weighted polyhedral surfaces consid-

ering a set S of r point sites and the shortest path distance already exist. Before studying

the closest [11, 104, 110] and the furthest [11, 126] Voronoi diagrams on a polyhedral

terrain, some properties of the equidistant points between two sites s and t ∈ S when

considering shortest paths on polyhedral surfaces are given. The terminology is the one

introduced by Aronov et al. [11]. Results related to realistic terrains are provided by Moet

et al. [107].

2.6.3.1 Basic definitions and properties

The bisector between point site si and sj ∈ S, βij , is the set of points p on the terrain

equidistant from si and sj and they have the following properties [110] .

Property 2.6.8 A bisector consists of O(n2) straight-line segments and hyperbolic arcs

for general terrains.

Property 2.6.9 Two bisectors, βij and βik, intersect at most twice, where si, sj, sk ∈ S

and are different.

Property 2.6.10 If two sites of S are located at the same distance to a vertex of the

polyhedral surface P, then two-dimensional bisectors exist.

2.6. Shortest paths on triangulated polyhedral surfaces 47

It is assumed that the previous degeneracy does not happen.

An edge of the Voronoi diagram is the interior of the boundary between two adjacent

regions; thus, each edge lies on a bisector.

A vertex of the Voronoi diagram is the non-empty intersection of the closures of three

or more regions of the Voronoi diagram. It is assumed that all vertices have degree three;

otherwise, a degeneracy is present.

A breakpoint is an intersection point between two adjacent segments or arcs conforming

a Voronoi edge, or a point where a bisector crosses an edge of P. These points are named

breakpoints as opposed to the vertices of the diagram.

The total complexity of a Voronoi diagram is the sum of the number of vertices and

breakpoints in the diagram.

2.6.3.2 Closest Voronoi diagram

Some existent exact algorithms for computing shortest paths from a fixed point s can be

generalized to the multiple source case when a set of point sites S of r sites is given. When

the generalization is possible, the algorithm computes for any point p ∈ P the shortest

path that joins the closest site of S to p and p, and its corresponding distance. It yields the

construction of the Voronoi diagram. The most important algorithm to obtain the closest

site Voronoi diagram of a set of point sites on a polyhedral surface is the one proposed by

Mitchell et al. [104] by using the implementation details given by Surazhsky et al. [144].

The algorithm proposed by Mitchell et al. [104] to obtain the closest Voronoi diagram

requires O(r̃2) space and O(r̃2 log r̃) time, in the worst case, where r̃ is the maximum

between n and r.

Aronov et al. [11] presented a study of the Closest Voronoi diagrams properties, some

of them were previously given by Mount et al. in [70, 104]. Among them the following

ones are highlighted.

Lemma 2.6.1 (Aronov et al. 2003) Voronoi regions are path-connected.

Theorem 2.6.1 (Aronov et al. 2003) The total complexity of the closest Voronoi di-

agram is, in worst case, Ω(r̃2) with r̃ is the maximum of r and n

48 Chapter 2. Basic Concepts and Previous Work

Closest Voronoi diagrams on realistic terrains

When considering realistic terrains some bound can be reduced. Moet et al. [107]

present some interesting results that are presented next. To obtain some of these results

they introduce the concept of a trace, there are three different types of traces. The first

one contains points that have two shortest paths having the same edge sequences except

for edges incident to v from source s to them, it is the trace of a vertex v with total

angle < 2π. The second one is the maximal connected set of points on the boundary of

the geodesic region of vertex v with total angle ≥ 2π. The geodesic region of a vertex v

contains the points of the terrain whose shortest paths from to s pass through v as the

last vertex. The last one is the junction trace of a point q, where q is a point where two

traces end, is the set of points with two different shortest paths from s, and such that

the edge sequences of these two shortest paths are the same starting at one edge of the

triangle that contains q. Traces do no intersect and no trace intersects a shortest path

from source s.

Some of the special results for the case of realistic terrains are the ones presented next:

• A shortest path between two points intersects O(
√

n) triangles.

• A bisector has O(n
√

n) and Ω(n) breakpoints instead of O(n2).

• Any trace has complexity O(
√

n)

• There are at most O(n + m) traces in the closest Voronoi diagram.

• The complexity of the closest Voronoi diagram is O((n + r)
√

n) and Ω(n + r
√

n)).

2.6.3.3 Furthest Voronoi diagram on terrains

As far as we know there are no studies related to the furthest site Voronoi diagrams

on polyhedral surfaces. However, we can find some studies on the furthest site Voronoi

diagrams on polyhedral terrains [11, 126] can be found. Aronov et al. [11] studied and

presented an algorithm for obtaining the furthest site Voronoi diagram on a polyhedral

surface, P, when a set S of point sites is given. It uses a divide and conquer technique

on S. They stop subdividing S when |S| = 2, when S has only two sites, the furthest

and closest Voronoi diagrams have the same regions and only differ in the site each region

is associated to. The closest Voronoi diagram of the two sites is computed by using the

Mitchell et al. [104] technique, and by using a merging step, the furthest site Voronoi

2.6. Shortest paths on triangulated polyhedral surfaces 49

diagram of the initial set S is obtained. Their algorithm provides the furthest Voronoi

diagram in O(r n2 log2 r log n) expected time.

Apart from the algorithm to obtain the furthest Voronoi diagram, Aronov et al. [11]

showed some interesting results. The following ones are highlighted:

Lemma 2.6.2 (Aronov et al. 2003) The furthest site Voronoi diagram of a set S with

r sites has O(r) path connected cells, O(r) vertices, and O(r) edges.

Theorem 2.6.2 (Aronov et al. 2003) The maximum total complexity of the furthest

site Voronoi diagram S is Θ(r n2).

In the paper they provide an intermediate result which is used to prove the complexity

of the furthest Voronoi diagram that we will also use:

Lemma 2.6.3 (Aronov et al. 2003) Let B be a set of pseudocircles on the surface of

a simple polyhedron P. If the common interior of the pseudocircles in B is non-empty,

then their common exterior is path-connected.

2.6.4 Facility location problems on a triangulated terrain

The 1-Center problem has also been solved on a triangulated polyhedral terrain considering

the shortest path distance from a set of r point sites. The 1-Center is located at a vertex

or on an edge of the furthest Voronoi diagram. By using this property, Aronov et al. [11]

give an algorithm for locating the 1-Center of the set of r point sites on a triangulated

terrain in O(rn2) time.

Lanthier et al. [91] to the best of our knowledge, provide the only algorithm available to

obtain an approximate 1-Center of r point sites on the surface of a terrain with n triangular

faces. The theoretical worst case running time of the algorithm is O(r n2 log rn + rn3) for

non-weighted terrains, and O(r n3 log rn + rn5) for weighted ones. However, for typical ter-

rain data, the expected running time is O(r n log rn) for both weighted and non-weighted

terrains.

50 Chapter 2. Basic Concepts and Previous Work

Chapter 3

Multi-visibility on terrains

In this chapter the problem of approximately reconstructing an unknown multi-visibility

map for a terrain modelled by a TIN with respect to an heterogeneous set of view elements

containing points, segments, polygonal chains and polygons is addressed. An algorithm

whose input is a terrain modelled by a TIN, a set V of view elements and a specified

visibility criterion, weak or strong, for each view element in V is presented. The output is

the representation of the desired approximated multi-visibility map obtained by using an

algorithm for approximately reconstructing unknown planar subdivisions (Section 2.2.7).

After obtaining the multi-visibility map, point and polygonal region multi-visibility queries

can be answered in an approximate fashion.

In order to obtain the approximated multi-visibility map, visibility information is not

computed on all the points of the domain, but on a set of line probes contained on it.

Line probes are intersected with the triangulation of the terrain domain yielding a set

of segments that are lifted onto terrain faces. The visibility of these segments is com-

puted, after decomposing the view elements into view segments (Section 3.1), by using

the segment-segment visibility algorithm (Section 3.3). With this information the desired

multi-visibility map is obtained (Section 3.3.5). The algorithm can be restructured in such

a way that, after a preprocessing stage the algorithm provides any multi-visibility map we

are interested in (Section 3.5).

51

52 Chapter 3. Multi-visibility on terrains

3.1 Basic properties

Before describing the method, some definitions and properties that are used to facilitate

the visibility computation process are presented. In fact, these allow us to decompose any

view element to a set of view segments.

A view element (point, segment, polygonal chain, polygon, etc.) v is an element placed

on or above the terrain, i.e. its projection onto the xy-plane is contained in domain D

and any point (x, y, z) ∈ v is such that z ≥ z′ where (x, y, z′) is the point of the terrain.

A point p on the terrain is visible from a view point q if the interior points of the line

segment qp with endpoints q and p lie above the terrain.

When dealing with a view segment, view polygonal chain or view polygon v, we can

consider either weak visibility (point p is visible when it is visible from at least a point of

v) or strong visibility (point p is visible when it is visible from every single point of v).

From now on the term visibility will refer to weak and strong visibility whenever it is not

specified.

Lemma 3.1.1 A view polygon P can be represented as the polygonal chain conforming

its boundary (∂P).

Proof. We first prove the result for weak visibility and then for strong visibility.

Let p ∈ T be a weakly visible point from P . Then, there is a point u ∈ P where the

segment up has all its points above or on T . Let us consider π the vertical plane through

up, and u′ the highest intersection point between π and P . Point u′ is necessarily in ∂P ,

and p is also visible from u′. Consequently if p is visible from a point of P , it is also visible

from a point of ∂P .

Now, let p ∈ T be a non strongly visible point from P , then, there is a point u ∈ P

where the segment up has some points below T . Let π be the vertical plane through up

and Pπ = π∩P . If Pπ is a point, it is in ∂P , and p not strongly visible from ∂P . If Pπ is a

segment, let u′ be the lowest endpoint of Pπ (see Figure 3.1). Then, segment u′p contains,

necessarily, points below T , and p is not visible from u′ ∈ ∂P .

Consequently p is weakly or strongly visible from P , if and only if it is weakly or

strongly visible from ∂P , respectively. 2

3.2. Algorithm overview 53

Figure 3.1: The section of a terrain given by the vertical plane delimited by point p and

a point of the view polygon P .

Lemma 3.1.2 A view polygonal chain can be represented as a set of view segments con-

forming a unique view element.

Proof. A point is weakly visible from a view polygonal chain if it is weakly visible from

at least one of its segments and it is strongly visible if it is strongly visible from every

segment. Then, by computing the visibility information of each segment and adequately

combining it, we are able to work with view polygonal chains as sets of view segments. 2

A view point can be considered as a degenerate segment. Lemma 3.1.1 proved that the

visibility from a view polygon is given by the visibility of the polygonal line conforming

its boundary. Lemma 3.1.2 shows that the visibility from a polygonal line can be ob-

tained considering the segments conforming it and combining, adequately, their visibility

information. Thus we can state the following proposition.

Proposition 3.1.1 Visibility from a generalized view element can be computed by appro-

priately using an algorithm to compute visibility from a view segment. 2

Consequently, to work with points, segments, polygons and polygonal lines it suffices

to design an algorithm to compute visibility from view segments.

3.2 Algorithm overview

The method we present uses an approach of Coll et al. [33] that reconstructs an approxi-

mation of an unknown planar subdivision with exact visibility information gathered from

linear probes of the subdivision (Section 2.2.7).

54 Chapter 3. Multi-visibility on terrains

The input of the algorithm is a terrain T with domain D modelled by a TIN with n

triangular faces, a set V of view elements, a specified visibility criterion, weak or strong,

for each view element in V and the kind of multi-visibility map we are interested in. The

output is the structure of the desired multi-visibility map stored in a DCEL (Section 2.2.1).

Visibility information is exactly computed in a quite complex algorithm that uses

opaque and transparent visibility cycles (Section 2.2.8). We consider several lines, line

probes, randomly chosen on the terrain domain. Each line is intersected with the triangu-

lation of the terrain domain yielding to a set of segments that are lifted onto terrain faces.

The visibility of these segments is computed after decomposing the view elements into view

segments (Section 3.1), using the segment-segment visibility algorithm (Section 3.3). The

desired multi-visibility information of the first line probe, obtained by merging the visibility

information of all the view elements (Section 3.3.5), is used to obtain the first approxi-

mated multi-visibility map. After obtaining the multi-visibility of a new line probe, the

approximated multi-visibility map is updated and its error is recomputed (Section 2.2.7).

The process ends when either the committed error in the multi-visibility map is smaller

than a threshold or a preestablished maximal number of line probes have been studied.

When the algorithm finishes, we have an approximated multi-visibility map represented

in a DCEL (Section 2.2.1). Consequently, some queries such as point or region queries can

be answered by using standard methods for planar subdivisions. A scheme of the process

is given in Figure 3.2.

Figure 3.2: A schematic process overview of our algorithm

3.3 Visibility computation

In this section how the visible parts of a segment s, placed on a terrain face, from a view

segment v are exactly computed is explained. This algorithm is referred to as the exact

segment-segment visibility algorithm. In order to compute segment-segment visibility, a

3.3. Visibility computation 55

projection from R3 to R2 called skew projection is used (Section 3.3.1). An overview

of the segment-segment visibility algorithm (Section 3.3.2), which first computes critical

points (Section 3.3.3) and next determines the visible parts of segment s from segment v

is provided (Section 3.3.4).

The segment-segment algorithm is repeatedly used in each segment of each line probe

L. Since the computation of the visibility on each s is completely independent from the

computation on any other segment, this process can be parallelized by considering different

segments s in parallel.

3.3.1 Skew projection

Let s and v be two non coplanar segments in R3 so that they determine a solid tetrahedron

Tv,s. Consider segments v and s parameterized by t and u from 0 to 1, respectively. We

denote vt the point of v with parameter value t and su the point of s with parameter

value u. Denote U = { (t, u) | 0 ≤ t, u ≤ 1} the unit square in R2. Segment s = vtsu with

endpoints vt ∈ v and su ∈ s determines the point (t, u) ∈ U (see Figure 3.3).

For each point p ∈ Tv,s let πp,v and πp,s be the planes through point p and segments v

and s, respectively. Let wp = πp,v ∩ πp,s ∩ Tv,s be the unique segment through p with

endpoints in v and s.

A mapping sk : Tv,s 7→ U that maps point p ∈ Tv,s to the point in U that corresponds

to segment wp is defined. Notice that all the points q ∈ wp satisfy D(q) = D(p). This

mapping is a restriction of the skew projection introduced by Jaromczyk and Kowalukin

in [78], and it is continuous in the interior of Tv,s.

Figure 3.3: Given two segments s, v and a point p, the image of the p for the skew projection is

sk(p) = (t, u)

56 Chapter 3. Multi-visibility on terrains

3.3.2 Exact segment-segment visibility algorithm

Let v be a view segment with its corresponding visibility criterion (weak or strong) and

s a segment on a terrain face. To compute the visible parts of s from v we consider H
the convex hull of segments s and v, which, depending on the relative position of the

segments is a line segment, a polygon or a tetrahedron. We assume that s and v are not

coplanar, otherwise we are considering a problem in R2. Denote F the set of terrain faces

that may prevent v from seeing s. In Figure 3.4 a segment s and several view segments v

with the corresponding convex hulls H and some terrain faces contained in F can be seen.

Set F is obtained choosing the faces intersecting H among those whose projections onto

D intersect HD, the projection of H onto D. The faces whose projection intersects HD
are obtained with the optimal algorithm for windowing queries and subdivision traversal

given in Section 2.2.6. According to this algorithm the following lemma can be provided.

Lemma 3.3.1 The set of terrain faces that may prevent v from seeing s can be obtained

in O(n′) time and storage, where n′ is the number of terrain faces intersecting HD. 2

a) b) c)

Figure 3.4: A segment s on the terrain and a view element v, their convex hull H and some terrain

faces contained in F .

In order to obtain the visible parts of s from v, we first place a moving point on

v and obtain the list of critical points of v where an opaque topology change occurs

(Section 3.3.3). As stated in Section 2.2.8 these are the points where the visibility of s can

change. Next, the visible parts of s by considering v as a linear light source and using the

critical points where opaque topology changes occur are determined (Section 3.3.4). With

this aim, segments v and s are parameterized by parameters t and u in [0, 1], respectively.

The point in v with parameter t is denoted vt; accordingly, su denotes the point in s with

parameter u. Point v1 is chosen to be higher than v0 and s0 and s1 so that the orthogonal

projections onto the terrain domain D of segments v0s0 and v1s1 do not intersect.

3.3. Visibility computation 57

3.3.3 Critical points computation

To compute critical points we use a triangle-sweep algorithm on H. The view point vt is

moved along v, from t = 0 . . . 1, and maintain segment s fixed. We use the transparent and

opaque visibility cycle, which consist of two ordered lists of terrain edges intersecting the

sweeping triangle are used (Section 2.2.8.3). The transparent visibility cycle contains all

the terrain edges, however, the opaque one only contains visible edges from vt. Algorithms

using visibility cycles to compute visibility information use a pre-process stage which is

avoided by storing some extra information in the cycles and adding auxiliary edges and

faces in the terrain.

Figure 3.5: The convex hull H swept by the triangle Tt with several TIN edges and their pierce

points depicted on several view triangles.

Auxiliary edges and faces are defined by considering, the set E of segments obtained

by intersecting H with the triangles in F (Section 3.3.2). Every vertical segment joining

an endpoint of a segment in E with its orthogonal projection onto the terrain domain D
is an auxiliary edge. Auxiliary faces are the quadrilaterals determined by a segment of E

and its orthogonal projection onto D, i.e. they are contained on a vertical plane through

edge e. From now on and whenever it is not specified, faces and edges mean both, TIN

and auxiliary edges. The following lemma bounds the number of auxiliary edges and faces

that have been introduced.

Lemma 3.3.2 O(n′) auxiliary edges and faces are used. 2

58 Chapter 3. Multi-visibility on terrains

At a given time t we denote: Tt the sweep-triangle defined by s and vt; pe,t the

intersection point, pierce point, of edge e and Tt; fe,t the face behind e, the first face

intersected by the ray vtpe,t after going through pe,t, if it gets to s without intersecting

any face fe,t = s; tvct the transparent visibility cycle; ovct the opaque visibility cycle; and

zt an ordered list of faces intersecting vtu1. Faces in zt are ordered by increasing distance

from vt. In the cycles, edges are ordered according to the angular order of their pierce

points.

This algorithm consists of an initialization step where structures are initialized and

then the sweep starts. During the sweep the list of faces zt, the transparent visibility

cycle tvct, the opaque visibility cycle ovct, and the face behind the edges stored in tvct

are maintained. We say that a change occurs when some of the structures or information

stored has to be updated. Thus, during the sweep, we have to determine the points vt

where a change occurs. These points are named critical points and are characterized by

events. Critical points producing opaque changes are also called shadow points. Notice

that auxiliary edges produce critical points, however, they do not produce shadow points

because auxiliary edges are not visible from vt.

The general idea is that: the transparent visibility cycle is needed to compute the

critical points; the opaque one to determine when a critical point is a shadow point; the

faces behind the edges, fe,t, to determine where the changes are produced and the list of

faces zt to easily update the faces behind the edges. Next we will characterize the critical

points, and handle the updating of the stored information.

3.3.3.1 Critical points characterization

In the next Lemma we will show that all the critical points cause transparent topology

changes.

Lemma 3.3.3 Any critical point causes a transparent topology change, and viceversa.

Proof. Let p be a critical point, if it is defined by a change on the opaque or transparent

topology cycle the lemma is obvious. If there is a change in zt, there is a change in tvct

and a transparent topology change occurs. Finally, if fe,t, the face behind an edge e, has

to be updated; again two edges intersecting Tt exchange their angular position in tvct. 2

3.3. Visibility computation 59

The point where a topology change occurs can be easily determined according to the

following properties:

(1) A transparent topology change occurs if and only if there are two edges e and e′ and

a line segment going through vt, e, e′ and s. It also occurs when an edge starts or

stops intersecting H

(2) A transparent topology change is an opaque topology change if the line segment

from v to s that goes through edges e and e′ does not pass through the interior of

any face.

Therefore, we can provide the following Property 3.3.1 which ensures that any trans-

parent topology change can be characterized by a 4-tuple (t, e, e′, u) where su (/ut) is

the intersection point between s (/v) and the segment through vt (/ut), e, e′ and s (/v).

Coordinates u and t are obtained by using the skew projection (Section 3.3.1) of segments

e and e′. Points where an edge e starts or stops intersecting H are also considered, these

points are characterize by using the 4-tuple (t, e, e, u).

Property 3.3.1 Point vt is a critical point if and only if there are two edges e and e′ and

a line segment ` going through vt, e, e′ and s or an edge e starts or stops intersecting H.

It is a shadow point if ` does not intersect the interior of any face.

Critical points are encoded by using the 4-tuple, but only those with t and u within

[0, 1] are considered, the rest are rejected because they are not produced in segments v

and s. The unrejected critical points are stored in a priority queue by increasing order.

Events are ordered by the lexicographical order defined by the following four real numbers:

(t, u, |pvt|, |qvt|) where p and q are, respectively, the intersection points of Tt with e and

e′ and |pvt| and |qvt| the Euclidean distance from p and q to vt, respectively. It defines a

partial ordering on the events. Notice that two events are not comparable if and only if

the 4-tuples are equal, and consequently their four edges define the same pierce point on

Tt (this may happen with the edges incident to a vertex). When we have two events not

comparable with the previous partial order, events with e 6= e′ are handled before those

with e = e′, if e = e′, those with a TIN edge are considered first and then, those with

auxiliary edges.

In practice, critical points are obtained by considering three different types of events.

Events of type (1) and (2) are obtained in an initialization-step where we also obtain some

60 Chapter 3. Multi-visibility on terrains

events of type (3), but we keep on obtaining these kind of events during the whole sweep

using new adjacent pairs of ordered edges in tvct. The three types are the following:

(1) Tt contains a pierce point which is an endpoint of an edge.

(2) A TIN edge intersects the boundary of Tt.

(3) Two edges exchange their order in tvct.

Figure 3.6: In the figure we can see different events of type (1) at the same t.

3.3.3.2 Initialization step

First of all, the priority queue of events E is initialized. In the initialization stage, all the

events of type (1) and (2) are computed and stored in the priority queue by increasing t.

Events of type (1) are obtained by considering the edges e intersecting H, whose 4-tuple

are (t, e, e, u). Coordinate t is computed by intersecting the plane delimited by s and the

corresponding endpoint of e, p, with segment v. Coordinate u is obtained intersecting s

with the line defined by segment vtp. Events of type (2) are obtained by considering the

TIN edges that intersect the boundary of H, ∂H. Their 4-tuple is (t, e, e, u) with t or u

equal to 0 or 1. Parameters u and t are computed as in the previous case considering the

endpoint of e instead of the intersection point ∂H ∩ e.

The initial transparent and opaque visibility cycle tvc0, ovc0 is computed. The trans-

parent visibility cycle tvc0 is given by the edges e producing events with 4-tuple (0, e, e, u).

These edges have to be ordered by increasing u. Therefore, the order in tvc0 coincides

with the increasing order of the events in E. To build tvc0 the events of the priority queue

3.3. Visibility computation 61

of type (0, e, e, u), which are deleted from E are considered. For each edge e, fe,0, the

face behind e, by using a line-sweep that sweeps T0 around v0 is computed. Finally edge

e with fe,0 is stored in tvc0. The opaque visibility cycle ovc0 contains the edges of tvc0

that are visible from v0, thus for each edge e we check whether e is visible from v0. This

can be done by using, again, the sweep on T0. In the case that e has to be stored in ovc0,

event (0, e, e, u) is stored in the list of shadow points Cs whenever fe,0 = s. The list of

faces intersecting v0s1, z0, is obtained at the last step of the sweep used to compute the

faces behind the edges.

Finally events of type (3) obtained from tvc0 are inserted in the priority queue E.

All the pairs of adjacent edges in tvc0 are considered. Using the skew projection (Sec-

tion 3.3.1), the coordinates t and u where these points exchange their angular position are

computed.

Lemma 3.3.4 The complexity of the initialization step is O(n′ log n′) time and O(n′)

storage, in the worst case.

Proof. In the initialization step at most O(n′) events of types (1) and (2) (Lemma 3.3.2)

are inserted in E. Each 4-tuple defining such an event is obtained in O(1) time, therefore

the time needed to compute and insert the events in E is O(n′ log n′). Obtaining tvc0, ovc0

and z0 takes O(n′ log n′) time and O(n′) storage: at most O(n′) events from E are deleted

and we use a sweep algorithm on T0, which takes O(n′ log n′) time and O(n′) storage. At

most O(n′) events of type (3) are obtained from tvc0 and added to E in O(n′ log n′) time.

Thus, the total complexity of the initialization step is O(n′ log n′) time, and O(n′) storage.

2

3.3.3.3 Sweep algorithm

During the sweep, more than one event at the same time t can be found. Since events of

type (3) are found during the sweep, it is important to avoid inserting events that have

already been handled. Do to this we do not insert new events with time smaller than t, the

current time, and before inserting an event with time t we check whether it has already

been handled. This is done by using a list Et containing all the handled events at time t.

A list Vt of visible points at time t, is used to avoid repeating some computations.

While the priority queue E is not empty, the first event of E, ν = (t, e, e′, u), is taken

and deleted from E. Assume that t′ is the time of the previously handed event. Thus we

62 Chapter 3. Multi-visibility on terrains

have to update tvct′ , the faces behind its edges, ovct′ , zt′ , Et′ , Vt′ and E. If ν produces

an opaque topology change on s, event ν is stored in the list of shadow points on s, Cs.

Notice that this happens when it produces a change in ovct′ and s is the old or new face

behind edge e or e′, i.e. s ∈ {fe,t′ , fe′,t′ , fe,t, fe′,t}. In the case that t is not equal to t′

lists Et′ and Vt′ are emptied, the rest of the updates are handled depending on the type

of event we are considering:

A) An auxiliary edge e appears or disappears: Since we are considering auxiliary

edges, opaque topology changes do not occur. Consequently, we have to update tvct′ , the

face behind edge e and if u = 1 list zt′ .

- The updated transparent visibility cycle, tvct, is obtained by deleting e from tvct′ if

e is in tvct′ , or adding e to tvct′ , otherwise.

- If u = 1, the updated list of faces zt is obtained by considering all the auxiliary

faces having pierce point pe,t as a vertex. The auxiliary faces contained in zt′ are

deleted from it and the auxiliary faces not contained in zt′ are added to it.

- When e is added to tvct′ we have u = 1 and the face behind e is found by using zt.

Priority queue E is updated according to new adjacent pairs of edges in tvct, this

produces at most two new events.

- The priority queue is updated by considering the possibly new events of type (3).

Lemma 3.3.5 An event where an auxiliary edge appears or disappears can be handled in

O(log n′) worst case time.

Proof. We need O(log n′) time to locate e in tvct′ and update it and O(log n′) time to

update zt′ . Auxiliary faces adjacent to this pierce-point, which is an endpoint, can be

obtained in O(1). We need O(log n′) worst case time to obtain the face behind e. Finally,

at most two new events are created in O(1) time and inserted in O(log n′) time in E. 2

B) A TIN edge e appears or disappears: A TIN edge can appear or disappear

elsewhere, thus we may have to update tvct′ , the face behind e, Vt′ , ovct′ and if u = 1 list

zt′ .

- The updated transparent visibility cycle, tvct, is obtained by deleting e from tvct′ if

e is in tvct′ , or adding e near an edge e′ ∈ tvct′ defining the same pierce point as e,

which always exists, otherwise.

3.3. Visibility computation 63

- Priority queue E is updated according to new adjacent pairs of edges in tvct, which

produce at most two new events.

- When e is inserted in tvct near e′ the face behind e is the face behind e′.

- The set of visible points Vt is updated when e appears in ovct′ . In this case, pierce

point pe,t is visible and is stored in Vt by using the tuple (t, u, |pe,tvt|) that encodes

pe,t.

- The updated opaque visibility cycle, ovct, is obtained by deleting e from ovct′ if e is

in ovct′ , or adding e to ovct′ if e is not in ovct′ and the tuple encoding pe,t is in Vt.

- List zt′ is updated when u = 1. The TIN faces are updated by determining the

faces having the endpoint of e as a vertex. We check whether the faces contained in

zt′ have to be deleted, and whether the faces not contained in zt′ have to be added.

Lemma 3.3.6 An event where a TIN edge appears or disappears can be handled in O(log n′)

worst case time.

Proof. We need O(log n′) time to locate e in tvct′ , in ovct′ and to update zt′. The new

face behind e is determined in O(1) time. Notice that finding the faces adjacent to the

endpoint of e can be done in O(1) time by using a DCEL structure and due to the fact

that each vertex is contained in a constant number of faces. At most two new events are

created in O(1) time and inserted in O(log n′) time. 2

C) Two edges e and e′ exchange their angular position: Two edges can exchange

their angular position elsewhere, thus we may have to update tvct′ , the faces behind its

edges, Vt′ and ovct′ . In this case event ν can only be handled if edges e and e′ are adjacent

in tvct′ . Priority queue E always contains an event with time t fulfilling the previous

property, thus we keep on taking events from E until we obtain one fulfilling it. The

removed events that have not been handled are reinserted in E.

- The updated transparent visibility cycle is obtained by exchanging the angular po-

sition of e and e′.

- Priority queue E is updated according to new adjacent pairs of edges in tvct, it

produces at most two new events.

64 Chapter 3. Multi-visibility on terrains

- The opaque visibility cycle is updated when e and e′ appear in ovct′ . In this case

the edge further from vt is deleted. In the case, that only one edge, assume that it

is edge e, appears in ovct′ , insert e′ in ovct whenever e′ is an edge of fe,t′ or of fe,t.

- The faces behind the edges are updated depending on:

i) If fe,t′ = fe′,t′ , let e be the edge with |pe,tvt| < |pe′,tvt|, then fe′,t = fe′,t′ and

fe,t = fi with fi the face containing e′ minimizing the clock-wise angle ̂pe,tpe′,tq,

where q ∈ Tt ∩ fi.

ii) If fe,t′ 6= fe′,t′ and fe,t′ contains e′, let f be the other face adjacent to e′

different from fe,t′ , if the angle determined by f and the ray vtsu is bigger than

π, fe,t = fe′,t′ and fe′,t = fe′,t′ . In the case that the angle is at most π: fe,t = f

and fe′,t = fe′,t′

iii) If fe,t′ = fe′,t′ and fe′,t′ contains e proceed analogously to the previous case.

iv) Otherwise nothing is done.

Lemma 3.3.7 An event where two edges exchange their angular position can be handled

in O(log n′) worst case time.

Proof. The time needed to obtain an appropriate event can be considered to be O(1).

We may obtain an event (t, e, e′, u) with e and e′ not adjacent in tvct′ when pe,t = pe′t

is a vertex of e which is incident to some other edges. The number of vertices contained

in Tt can be considered O(1) and each vertex is incident to a constant number of edges.

Thus in constant time, an appropriate event is obtained. Consequently, the time needed

to reinsert the events in E is O(log n′). Once the event is found, we need O(log n′) time

to locate e in tvct′ which can be updated in O(1) time, the updating of fe,t and fe′,t can

also be done in O(1) time. Locating e in ovct′ is done in O(log n′) worst case time, and it

is updated in O(1) time. Therefore, these events can be handled in E in O(log n′) worst

case time. At most two new events are created in O(1) time and inserted in O(log n′)

time, after checking whether they are stored in Et in O(1) time. 2

If Figure 3.7 we can see several steps of the sweep algorithm when a segment s on the

terrain and a view segment v are considered. In the Figure 3.7 the TIN faces contained

in F have been painted, auxiliary faces and edges are not represented.

Proposition 3.3.1 The shadow points producing topological changes on s can be obtained

in O(n′2 log n′) time and O(n′2) storage, in the worst case.

3.3. Visibility computation 65

a) b)

c) d)

Figure 3.7: Representative steps of the sweep algorithm, segment s is on the terrain and v the

view element. Faces in F and the convex hull H are painted. (a) The initialization step. (b) Two

critical points at the same time t: e intersects ∂Tv,s producing a shadow point, and e1 and e3

exchange their angular position. (c) Edges e2 and e4 produce a transparent topology change. (d)

The vertex produces an opaque topology change, it is a shadow point.

Proof. Since according to Lemma 3.3.3 all the critical points cause transparent topology

changes which are associated with pairs of edges due to Property 3.3.1, we may handle up

to O(n′2) events, one per edge pair and one per edge endpoint. The initialization step is

done in O(n′ log n′) time and O(n′) storage due to Lemma 3.3.4. The storing of events in

E takes O(n′2 log n′) time and O(n′2) storage. Any event can be handled in O(log n′) time

according to Lemma 3.3.5, Lemma 3.3.6 and Lemma 3.3.7. Therefore, the sweep process

takes, in the worst case, O(n′2 log n′) time and O(n′2) storage. 2

3.3.4 Visibility computation on a segment

To obtain the visible parts of segment s from segment v, we act as if we placed a linear

light along v and determine the illuminated parts of s. We use the list of events producing

shadow points on s, Cs. They are then stored by increasing u coordinate and partition

s into fragments. Each of these subsegments is such that all the points contained in it

are visible from the same set of points of v. In other words, all the points receive the

same amount of light. By computing the visible part of v from s0 and sweeping s, we can

determine the visible parts of v at each subsegment of s and consequently compute the

weakly and strongly visible parts of s from v.

66 Chapter 3. Multi-visibility on terrains

To compute the visible parts of v from s0, the triangle tr0 defined by v an s0 is

considered. The maximal visible subsegments of v from s0, by using an angular sweep

around s0 is determined. The endpoints of the visible parts of v are delimited by a line

segment emanating from s0 to v going through an edge e that intersect tr0. Thus, each

endpoint of a visible subsegment of v can be characterized by an edge ẽ and each visible

subsegment of v by a pair of edges (ẽ, ĕ). Visible subsegments of v are stored in a list V0,

which, at the end of the process, contains the maximal visible subsegments of v from s0.

To compute the visible parts of s from v, s0 is moved along s and V0 is updated

stopping at each shadow point of Cs. Assume that ν = (t, e, e′, u) is the shadow point to

handle, and u′ the coordinate of the last shadow point considered. We proceed as follows:

i) If (e, e′) ∈ Vu′ , subsegment (e, e′) is deleted from Vu′ . The visible subsegment of v

delimited by edges e and e′ is a point which will not be visible for u′ > u + ε with

0 < ε ¿ 1.

ii) If (e, e′′) ∈ Vu′ with e′′ 6= e′ an edge, the visible subsegment (e, e′′) is replaced by

(e′, e′′). Edges e and e′ exchange their angular position and the visible subsegment

will have an endpoint at e′ and not at e.

iii) If (e′, e′′) ∈ Vu′ with e′′ 6= e an edge, the visible subsegment (e′, e′′) is replaced by

(e, e′′). Again, e and e′ exchange their angular position and the visible subsegment

will have an endpoint at e and not at e′.

iv) If neither e nor e′ delimit a visible segment of Vu′ , the visible subsegment of v

delimited by (e, e′) is inserted in Vu. From now on these two edges will determine a

visible subsegment of v.

An edge e can not delimit two different visible subsegments of v at u′. Each edge e

that defines an endpoint of a visible subsegment, defines, necessarily, an endpoint of a

non-visible subsegment. Thus, the previous cases are exclusive and exhaustive. In other

words, for each shadow point one and only one of the four previous cases is satisfied.

Finally, the weakly visible parts of s are those parts that are visible from at least a

point of v, which are the subsegments of s having Vu not empty. To determine the weakly

visible subsegments, the first and last point of s having Vu not empty, until we get s1 is

stored alternatively. The strongly visible parts of s are those parts that are visible from

every point of v, thus Vu has to contain the whole segment v. When Vu contains a single

subsegment, Vu = {(e, e′)}, we check whether it is the whole s. Assume that Vu is then

3.3. Visibility computation 67

modified at coordinate u′ and that v0 < e < e′ < v1 considering the angular order on

the plane delimited by v and s(u+û)/2. Let π be the plane delimited by v0 and e, π′ that

delimited by e′ and v1, and denote sp = π∩s and sp′ = π′∩s. If π (/π′) does not separate

p′(/p) and e′(/e), the subsegment spsp′ ∩ su, su′ is strongly visible, otherwise susu′ is not

strongly visible.

Lemma 3.3.8 The total complexity of obtaining the visible parts of s by using the list of

shadow points causing opaque topology changes on s is O(n′2 log n′) time and O(n′2) space,

in the worst case.

Proof. The visible parts of v from s0 are computed in O(n′ log n′) time and O(n′) storage.

The visible parts of s from v are obtained by sweeping s considering at most O(n′2) shadow

points. Since each update is handled in O(log n′), O(n′2 log n′) time and O(n′2) storage is

needed, in the worst case. 2

The next proposition provides the complexity of obtaining the visible parts of s from v,

which is the complexity of the segment-segment algorithm. It is a consequence of Propo-

sition 3.3.1 and Lemma 3.3.8.

Proposition 3.3.2 Given a view segment v and a segment s, the worst case complexity

of the segment-segment algorithm is O(n′2 log n′) time and O(n′2) space, where n′ = O(n)

but generally n′ ¿ n. 2

In the next figure we represent how the visible parts of segment pq from ab are de-

termined, when the depicted triangles occlude the visibility. The pairs of vertices written

below line segment pq are the shadow points produced by the triangles, ab and pq, and

those vertices written above pq represent the visible parts of ab. By using the shadow

points we sweep pq and maintain the visible parts of ab using the previous algorithm.

3.3.5 Multi-visibility map computation

The aim of our algorithm is to obtain the multi-visibility map specified in the input of

the algorithm. By using the exact segment-segment visibility algorithm, the visibility on

each segment s of line probe L from a view element is computed. Once it has been done

for every view element the multi-visibility on s is computed. When each segment s has

68 Chapter 3. Multi-visibility on terrains

acdc gf af agp q

ad ac (-) gf ag (-)

v

e

c

a b

d

f

g

h

i

Figure 3.8: The visible parts of segment pq from ab are the parts delimited by the dashed lines

having above a non empty list (−).

been considered, the multi-visibility on L is exactly obtained and finally the approximated

multi-visibility map is reconstructed.

Multi-visibility information is stored in a copy of line probe L, LM , which is pro-

gressively updated after considering each view element. Let s be a segment of the line

probe L, then, the visibility of s from the first view element v1 according to its visibility

criterion: weak or strong is studied. The visible parts of s from v1 are stored in LM .

Next, the visibility of s from v2 is computed, and LM is updated according to the kind of

multi-visibility map we are interested in obtaining. The process is repeated until all the

segments have been considered. When all the segments conforming L have been studied

for all the view objects, LM contains the multi-visibility information of L.

To obtain the overlay map the information of all the view objects is superimposed.

Then the subsegments of s with the set of view elements from which they are visible

are labelled. To obtain the union map, the union of all the visible subsegments of s are

considered and labelled as visible. The intersection map is obtained by considering the

intersection of all the visible subsegments of s and labelled as visible. Finally, the count

map is obtained by superimposing the information of all the view objects and labelled

with the number of view elements each segment is visible from.

Notice that the computation of the multi-visibility map on each segment s is inde-

pendent from the computation to any other segment s′. We have already mentioned that

the segment-segment algorithm can be parallelized, the process of storing the visibility

3.4. Computational cost 69

information in order to obtain the multi-visibility information can be also parallelized

considering different segments s and s′ in parallel.

Let us assume that we are given a set of r view elements that are decomposed into R

view segments. Next lemma specifies the complexity of the algorithm to obtain the multi-

visibility information on a segment s ignoring the time needed in the segment-segment

algorithm which is used R times.

Lemma 3.3.9 The worst case extra time complexity to obtain the multi-visibility of a

segment s form a the set of view elements V is O(n2R).

Proof. To obtain the multi-visibility on segment s, visibility from the R view elements

needs to be overlayed. Each view segment s may be subdivided into O(n′2) subsegments

for each view segment, n′ depends on the view element. Thus we use that in the worst

case n′ ∈ O(n). Therefore the complexity is O(n2R) time, and O(n2R) space. 2

Once we have studied all the segments s conforming a line probe, the line probe is used

to update the multi-visibility map reconstruction by adding the information provided by

the new line probe. The committed error on the new approximation is computed and if

desired, a new line probe is considered to keep on refining the reconstructed multi-visibility

map. At the end of the process, an approximate reconstruction of planar subdivision

induced by the desired multi-visibility map is obtained. In fact it is obtained in a DCEL

structure. Then typical algorithms for answering point or region queries on a planar

subdivision can be used to answer multi-visibility queries (Section 2.2.6). In Chapter 4

more details are given about which queries can be answered, and the type of multi-visibility

map required.

3.4 Computational cost

Finally,the computational cost of the whole algorithm is analyzed. It has been partially

analyzed, but the complexity of the whole algorithm has not been calculated.

Let us assume that we are working with a terrain with n faces. Let V be the set

of r view segments, and R the total number of view segments conforming the r view

elements, r ≤ R. Let us assume that during the whole algorithm we have used m line

probes that define M line segments when they are intersected with the terrain domain

70 Chapter 3. Multi-visibility on terrains

triangulation, in the worst case M ∈ O(mn). Consequently the segment-segment visibility

algorithm has been used O(RM) times. The total time used by the segment-segment

visibility algorithm is O(RMn2 log n) and O(n2) space. Notice that, in the segment-

segment visibility algorithm only the visible parts of each view segment are stored. These

visible parts are then used to obtain the multi-visibility information (Proposition 3.3.2).

The multi-visibility information of all the line probes is obtained in O(MRn2) time. At

each step we only store the multi-visibility of the current line probe, which defines at

most O(n) line segments and is used to update the multi-visibility map. Therefore the

space complexity is O(n3R). The reconstruction of the approximate multi-visibility map

is obtained (Section 2.2.7) in O(m log m) mean time. Thus the following theorem can be

stated.

Theorem 3.4.1 The time complexity of obtaining a desired multi-visibility of a set of

view elements conformed by R view segments on a terrain T of n faces by using m line

probes defining M segments on T is O(RMn2 log n + m log m). 2

It can be said say that the time complexity of obtaining the desired multi-visibility of

a set of view elements, defined by R view segments on a terrain T of n faces, with the

algorithm to approximately reconstruct planar subdivisions is O(Rmn3 log n + m log m).

This is obtained by using the fact that M ∈ O(nm). If a realistic terrain is considered,

the number of faces intersected by a line is O(
√

n) (Section 2.4.3). Therefore the multi-

visibility map is obtained in O(RMnn2 log n + m log m) time with M = O(n
√

n).

3.5 Obtaining any desired multi-visibility map

Given a terrain T and a set of r view elements V , with associated weak or strong visibility

criterion, the previous algorithm can be modified to compute any desired multi-visibility

map after a pre-processing stage.

The previous algorithm is divided into two stages. In the first one visibility information

on a preestablished set of uniformly distributed lines on D for every view element is

computed. In the second one the desired multi-visibility map is reconstructed using the

already computed visibility information. We could also compute in the pre-processing

stage an approximate reconstruction of the overlay map which contains all the visibility

information. Next, from the overlay map any desired multi-visibility map can be obtained.

3.6. Inter-region multi-visibility on terrains 71

As before, at the end of the process, an approximate reconstruction of planar subdivi-

sion induced by the desired multi-visibility map in a DCEL structure is obtained. There-

fore, multi-visibility queries, can be answered by using typical algorithms for answering

point or region queries on a planar subdivision (Section 2.2.6).

3.6 Inter-region multi-visibility on terrains

Algorithms to compute visibility from generalized view elements can be used to compute

weak or strong inter-region visibility on terrains. To compute inter-region visibility we

have to be given two terrain regions R1 and R2, and the aim is to obtain the mutually

visible parts of R1 and R2. This can be done by using our algorithm.

Region R1 is considered as a view area. Since we are interested in visibility on R2, line

probes are restricted on the projection of R2 onto the terrain domain. Visibility on R2 is

computed by considering all the terrain triangles and according to the specified visibility

criterion, using the guidelines provided next. By doing so we, the visible parts of R2

from R1 can be obtained. Then, R2 is considered as the view area, the line probes are

restricted on the projection of R1 onto the terrain domain to obtain the visible parts of

R1 from R2.

Depending on whether weak or strong visibility is considered, we proceed in one of the

two following ways:

- weak visibility: the set of view elements contains the polygons obtained by in-

tersecting the terrain faces with R1 with weak visibility criterion associated. Their

union multi-visibility map restricted on R2 is computed. Since two points are mu-

tually visible or mutually not-visible, we can consider as set of view elements the

polygons obtained by intersectingR2 with the terrain faces containing weakly visible

points from R1. Now the union multi-visibility map restricted on R1 is computed.

- strong visibility: the set of view elements contains the polygons obtained by inter-

secting the view area R1 with the terrain faces, they have associated strong visibility

criterion. The intersection multi-visibility map restricted to R2 is computed. Next,

we consider as view area R2 and the intersection multi-visibility map restricted to

R1 is computed. Previously computed information cannot be used because a visible

point of R1 has to be visible from every single point of R2.

72 Chapter 3. Multi-visibility on terrains

Thus, the weak and strong inter-region visibility problem on a terrain can be solved.

3.7 Conclusions

A way to exactly compute the visible parts of a segment from a general view element which

can be a view point, segment, polygon or polygonal is given. This algorithm is the first to

compute an approximation of a multi-visibility map on a terrain domain when considering

generalized view elements and strong or weak visibility.

However, it is expensive both in time and storage and is difficult to turn into a practical

algorithm. Bearing these problems in mind, another approach based on graphics hardware

capabilities is being developed from a practical point of view.

Chapter 4

Multi-visibility on terrains by

using Graphics Hardware

In this chapter we address the problem of visualizing approximate multi-visibility maps,

obtained by using the GPU, for a terrain modelled by a TIN with respect to an hetero-

geneous set of view elements containing points, segments, polygonal chains and polygons.

We handle both weak and strong visibility, and we also efficiently solve, approximately,

different point and polygonal region multi-visibility queries. The method presented here

differs from the one presented in the previous chapter in how visibility information is

computed and how multi-visibility maps are represented.

We consider a grid covering the domain and, in a preprocessing stage, the approximate

visibility map of each view element is computed (Section 4.2). Visibility information is

obtained by repeatedly using an algorithm that approximately computes segment-segment

visibility (Subsection 4.2.1). Then we can visualize a discrete approximation of any multi-

visibility map from the visibility maps previously obtained (Section 4.3). We can also

efficiently answer point and polygonal region multi-visibility queries (Section 4.4) including

multi-visibility inter-region queries. Finally, we present experimental results obtained with

the implementation of our algorithms (Section 4.5).

4.1 Process overview

The input of the algorithm is a terrain modelled by a TIN, a set V of view elements and

a specified visibility criterion, weak or strong, for each view element in V . The output

73

74 Chapter 4. Multi-visibility on terrains by using Graphics Hardware

is the visualization of the desired approximate multi-visibility maps. After visualization,

point and polygonal region multi-visibility queries can be answered.

Visibility information is computed approximately in a preprocessing stage with a robust

and easy-to-program method by using graphics hardware. In this stage the terrain domain

is discretized into a rectangular grid and the discrete visibility map of every view element

is computed (Section 4.2). Each grid column is represented by the vertical line through

the centers of its cells. A visibility map is obtained by scanning the lines representing

the grid columns from left to right. Lines are intersected with the triangulation of the

terrain domain yielding a set of segments that are lifted onto terrain faces. The visibility

of these segments is computed, after decomposing the view elements into view segments

(Section 3.1), by using the segment-segment visibility algorithm (Section 4.2.1). Finally,

the rectangular grid with all visibility information is transferred to the GPU using textures.

After the preprocessing stage, we can visualize any multi-visibility map (Section 4.3)

and answer queries related to it (Section 4.4). A scheme of the process is given in Fig-

ure 4.1.

Figure 4.1: A schematic process overview of our algorithm

4.2 Visibility information computation

Visibility information is computed in the preprocessing stage where the domain of the

terrain is discretized into a rectangular grid of size M ×N . This size is chosen according

to a parameter µ representing the number of grid points per length unit of the terrain

domain. Notice that the bigger the µ, the more precision we have in the obtained results.

Visibility maps are obtained by scanning the lines representing the grid columns. As

explained in Section 4.1, visibility in each line is determined by repeatedly using an al-

gorithm that approximately computes segment-segment visibility (Section 4.2.1). In the

following step, the discrete visibility map of each view element of V is properly stored by

4.2. Visibility information computation 75

using a true/false (visible/not visible) criterion in a single bit of each grid position.

Finally, at the end of this stage, the grid with the visibility information is transferred

to the GPU in a RGBA-texture (see Section 4.3). The initial grid covering the domain is

accordingly mapped into a unidimensional array A of size 4MN , which is later transferred

to a texture. Every four consecutive elements of A represent the same grid point and are

stored in the four channels of a texture position. Therefore, we can represent up to 64

visibility maps, one per bit, in a single array A (texture). In the case when we have more

than 64 view elements, we need an array for every 64 view elements or fraction. When a

texture is not sufficient to cover the grid (M, N > 4096) more than one is used and the

information is appropriately transferred to them.

4.2.1 Approximate segment-segment visibility algorithm

Given a view segment v with its corresponding visibility criterion (weak or strong) and a

segment s on a face of the terrain, we want to compute the visible parts of s from v.

Let H be the convex hull of segments s and v which, depending on the relative position

of the segments, is a line segment, a polygon or a tetrahedron. Denote F the set of terrain

faces that may prevent v from seeing s. The set F is obtained by choosing from among

the faces, whose projection onto the xy-plane intersect the projection of H, the ones

intersecting H and front-facing at least one endpoint of v. A face f is front-facing a point

p if the dot product of the upward normal of f and a vector from a point on f to p is

positive. The faces whose projection intersects the projection of H are obtained using an

optimal algorithm for windowing queries and subdivision traversal presented in Section

2.2.6. Consequently we can provide the following Lemma.

Lemma 4.2.1 The set F of faces that may prevent v from seeing s can contain O(n)

faces and is obtained in O(n) worst case time.

We parameterize v(/s) by t(/u) in [0, lv](/[0, ls]) where lv(/ls) are the lengths of v(/s).

The point in v(/s) with parameter t(/u) is denoted vt(/su). Let Skvs be the mapping

that maps each segment st,u of endpoints vt and su to the pair Skvs(st,u) = (t, u) of the

bounded rectangular R = [0, lv]× [0, ls]. This mapping coincides with the skew projection

(Section 3.3.1) but having as image [0, lv]× [0, ls] instead of [0, 1]× [0, 1]. Notice that Skvs

is a bijection between R and the set of segments with endpoints at v and s. For each face

76 Chapter 4. Multi-visibility on terrains by using Graphics Hardware

f ∈ F , denote Skvs(f) the set of pairs (t, u) ∈ R such that the segment st,u intersects f ,

this set is named the image of f by Skvs.

We denote U = ∪f∈F Skvs(f) ⊂ R, the union of all the images of the faces of F

by Skvs. Pairs in U correspond to segments from v to s that intersect at least one face

of F . Consequently, pairs in R not covered by U correspond to non blocked segments, i.e.

segments with endpoints at v and s that do not intersect any face of the terrain, and hence,

the point of segment s is visible from the one of v. A point su0 ∈ s is weakly visible from

v if there exists at least one non blocked segment connecting su0 with v. This happens if

and only if there is an existing pair (u0,t)∈ R contained in R− U . Therefore, the weakly

visible points of s can be obtained by computing pru(R−U), which is the projection of the

pairs not contained in U on the u−axis. On the other hand, point su0 ∈ s is not strongly

visible from v if there are blocked segment from su0 to v. This happens if and only if there

are already pairs (u0,t)∈ R contained in U . Consequently, the strongly visible parts of

s are the parts of [0, ls] not contained in pru(U), or equivalently the not strongly visible

parts are given by pru(U) (see Figure 4.2). These results are stated in Lemma 4.2.2.

Lemma 4.2.2 The strongly and weakly visible points of s are given by pru(U) and pru(R−
U), respectively. 2

Figure 4.2: A union U painted white over a black background. On the left, the image is hori-

zontally projected to obtain the strongly visible parts of s. On the right, the projection is done

according to the definition of weak visibility. Grey subsegments correspond to the visible parts.

In Subsection 4.2.1.1, we propose an approximate method to compute U with a simple

and easy-to-program algorithm that avoids analytic computations and robustness problems

4.2. Visibility information computation 77

common in geometric algorithms.

4.2.1.1 Visibility computation using graphics hardware

In order to compute the union U associated to a pair of segments s and v, we discretize

into a grid of w × h pixels the bounded region R maintaining a specific number of pixels,

µ′, per unit of length. The value µ′ is a parameter and affects the accuracy of the obtained

results, the bigger the µ′ the lower the error. We render each region Skvs(f), by using

graphics hardware, on a rectangle of the frame buffer representing the grid. If a single

frame buffer does not suffice to represent all the grid, or equivalently if the grid resolution,

µ′le × µ′lv, exceeds the frame buffer resolution, we partition R in subrectangles so that

each part can be represented in the frame buffer. In such a case the region of U contained

in each part is computed independently, making necessary more than one rendering step

to compute the whole union U .

Regions Skvs(f) are painted white on an initial black background. To paint Skvs(f)

we proceed as follows. For each face f in F we render the whole rectangle [0, lv] × [0, ls]

obtaining wh fragments. For each fragment, whose associated pixel location defines a

segment with endpoints on v and s, we use a fragment shader to check whether the

segment intersects f . If this is so, the fragment is colored white and discarded otherwise,

thus, white fragments correspond to Skvs(f). Thus, the final result is that pixels contained

in at least one Skvs(f) are colored white and the rest are black, whenever the screen was

initially black. Union U may involve up to O(n) faces, thus, the time complexity of this

part of the algorithm is the one provided in the next Lemma 4.2.3. In it the time needed to

render a pixel is referred as the rendering time. Notice that w and h are taken proportional

to the length of segments s and v, and therefore they are, in general, much smaller than

M and N which are the size of the initial grid discretizing the terrain domain.

Lemma 4.2.3 For a given face f , Skvs(f) is rendered in O(wh) rendering time. Union

U is rendered in O(nwh) worst case rendering time.m 2

To determine whether segment st,u intersects face f , which is a triangle, we send the

vertices of f , and the origin and direction vectors of segments v and s to the fragment

shader. In the fragment shader: first, we use the position of each fragment on the screen,

its coordinates in R, to determine t and u; second, and by using the information related

to v and s we compute vt and su, the segment endpoints; finally, we check whether the

78 Chapter 4. Multi-visibility on terrains by using Graphics Hardware

segment intersects f , by using a strategy similar to the one used in rendering techniques to

handle ray tracing problems in the GPU (Section 2.3.4). The whole process is fast thanks

to the GPU parallelism capabilities.

After painting all the regions, the visible parts of s are obtained by adequately project-

ing the obtained image according to Lemma 4.2.2. Hence, the subsegment of s contained

in a pixel is weakly visible if in the corresponding row there is a black pixel, and it is

strongly visible if there are no white pixels in it (Figure 4.2). Projections can be obtained

transferring the image to the CPU (using the OpenGL glReadPixels function) and keeping

track of the black pixels in each row. However, it is faster to obtain using the following

reduction-type algorithm (Section 2.3.3.3). The initial window w × h is progressively re-

duced to a column 1× h where visibility information is projected. At step i for each row,

we store at column i a white(/black) pixel if at columns 2i or 2i+1 there is a white(/black)

pixel when considering weak(/strong) visibility. After log w steps, we have a single column

with the desired projection. This column contains the visibility information of s and is

transferred to the CPU (using the OpenGL glReadPixels function). In the next Lemma

we present the time needed to obtain the visible parts of s, where, the time needed to

transfer a pixel from the GPU to the CPU is to referred as the reading time.

Lemma 4.2.4 Visibility information on s can be obtained after rendering U in O(2hw)

rendering time and O(h) reading time.

Proof. Concerning rendering time, we have to realize log w rendering steps. At step i we

render a rectangle of size w
2i × h. Consequently, the total number of rendered pixels is

wh + wh
2 + wh

4 + · · · + wh
2log w =

∑log w
i=0

wh
2i =wh

∑log w
i=0

1
2i which is a harmonic series with

scale factor 2wh and wh
∑log w

i=0
1
2i = 2wh. Concerning the reading time, we have to read

a single column of length h, this is O(h) time. 2

Notice that when the grid resolution, µ′le × µ′lv, exceeds the frame buffer resolution

and R is partitioned in subrectangles, union U is obtained in different parts that need to

be collectively projected.

4.2.1.2 Acceleration

We avoid repeating some face dependent operations by grouping, for each face f0 of the

terrain, the set of segments Sf0 on f0 induced by the grid columns covering the region

4.2. Visibility information computation 79

of the domain associated to f0. Before studying the visibility of the segments in Sf0 we

need to: 1) delete the part of the view segment v whose points do not front-face f0 (we

still denote v the remaining part of the view segment); 2) compute Ff0 , the set of terrain

faces that intersect Hf0 , the convex hull of f0 and v. Note that Ff0 are the faces that may

prevent v from seeing f0. Set Ff0 is contained in the set of faces whose projection onto

the xy-plane intersects the projection of Hf0 . This last set can be efficiently obtained by

using the algorithm provided in Section 2.2.6. Given view segment v and set Ff0 we study

the visibility of segments s ∈ Sf0 using the segment-segment visibility algorithm.

Lemma 4.2.5 Given a view segment v the time needed, during the whole algorithm, to

compute the faces that may prevent v from seeing a segment s is O(n2).

Proof. We obtain a set Ff of faces that may prevent v from seeing a specific segment s for

each terrain face f . The time needed to obtain such a set Ff is, in the worst case, O(n),

the terrain has n faces, thus the time needed in computing faces is O(n2) in the worst

case. 2

To study the segment-segment visibility for a pair of segments (v and s with s ∈ Sf0)

we paint the corresponding U = ∪f∈Ff0
Skvs(f) ⊂ R white on an initial black frame buffer,

i.e. we use a true/false code that can be stored in a bit. Since each pixel of the frame buffer

has 48 color bits (16 bits per three color channels), we can simultaneously represent the

unions corresponding to a collection of pairs of segments (v, s1) ,, (v, sk), with 1 ≤ k ≤ 48

in it, using a different bit for each pair. To merge the color of the already rendered

fragments (unions) with the incoming ones we use the per-fragment glLogicOp operation,

specifying the or logic option. Observe that the use of or logic and the black color of the

pixels not contained in the regions guarantee that the union is properly painted. Then we

use the explained reduction-type algorithm by using a fragment shader in the rendering

steps to appropriately merge the bits. Thus by using this observation, Lemma 4.2.3 and

Lemma 4.2.4 we can provide the following result.

Lemma 4.2.6 The complexity of obtaining the visible parts of a cluster of 48 segments

from a view segment is O(48 nh̄w̄ + 2h̄w̄) worst case rendering time and O(h̄) reading

time, where w̄ and h̄ are the maximal used width and height. 2

These considerations do not contradict the fact that the algorithm can be parallelized.

This can be done by using the fact that the visibility study of each cluster of 48 pairs

80 Chapter 4. Multi-visibility on terrains by using Graphics Hardware

of segments is independent. Thus, the process can be accelerated by parallelizing these

computations.

4.2.2 Computational cost

Let us consider a terrain T with n triangles and a set of r view segments, let R be the total

number of view segments conforming the r input view elements, r ≤ R. Assume that the

grid discretizing the terrain domain is of size M×N . We assume that the hidden constant

in the reading time is K, the constant hidden in the rendering time is not specified as it

is much smaller. Then we can provide the following Theorem:

Theorem 4.2.1 Visibility information concerning terrain T and the set of view elements

V is obtained in O(R(n2 + nNh̄(nw̄ + 1
48(w̄ + K)) + MN)).

Proof. Let us first consider a single view segment v. The total number of vertical segments

determined by the terrain faces is O(nN) in the worst case. The total time needed to obtain

the faces that may prevent a view segment from seeing segment s is O(n2) (Lemma 4.2.5).

The time needed to obtain all the unions U is O(Nn2wh) worst case rendering time,

while the unions are projeted once for each cluster of 48 segments. Consequently this

takes O(Nn
48 (h̄w̄ + h̄K)) considering both the rendering and the reading worst case time

(Lemma 4.2.6). Multi-visibility information is stored in the CPU in an array of size M×N

which is updated for each view segment and this is done in O(MN) time time. Thus the

time needed for each view segment is O(n2 +nNh̄(nw̄+ 1
48(w̄+K))+MN). Since we have

R view elements, the worst case total time is O(R(n2 + Nh̄(nw̄ + 1
48(w̄ + K)) + MN)). 2

If we consider a realistic terrain (Section 2.4.3) the number of faces intersected by a

line is O(
√

n). Therefore the multi-visibility map is obtained in O(R(n2 +
√

nNh̄(nw̄ +
1
48(w̄ + K)) + MN)).This is stated in the following Proposition.

Proposition 4.2.1 Visibility information concerning a realistic terrain T and the set of

view elements V is obtained in O(R(n2 +
√

nNh̄(nw̄ + 1
48(w̄ + K)) + MN)) 2

Notice if we are not interested in storing the visibility information in the CPU we

can directly store it in a texture in the GPU by using an appropriate fragment shader.

Once the projection of a cluster of 48 unions has been done, it can be transferred to a

4.3. Multi-visibility maps visualization 81

M × N texture. We do not proceed in this way because it is quite complicated, due to:

the clustering of 64 bits we consider; the scale factor (µ′ls × µ′lv which is the resolution

where the visibility on s is obtained and it is completely independent from M ×N); the

fact that we have to ”rebuild” the view elements from the view segments, etc.

4.3 Multi-visibility maps visualization

After transferring the visibility map of the r view elements of V to textures in the GPU,

which is done in O(rMN) time, a fragment shader is used to visualize, on the screen,

any multi-visibility map of any specified region of the terrain in a window. The fragment

shader obtains the textures, the type of multi-visibility map desired and the number of

view elements in V as input parameters.

Depending on the grid dimension and the window size, each pixel may contain more

than one grid position or, each grid position may correspond to more than one pixel.

The maximal precision in a multi-visibility map is obtained when each pixel represents

a grid position, i.e. the grid and screen resolution match. When the grid resolution is

exceeded, several pixels represent the same grid position and when it is not reached only

some information is visualized. To color each pixel we use the information stored in the

grid position containing the pixel center.

Next we describe how the union, intersection and count maps can be obtained. To

obtain the union map, the fragment shader colors a pixel whose center corresponds to

a position of the texture storing a value with a bit equal to 1 in white (visible) and in

black otherwise (not visible). The intersection map is obtained coloring a pixel white

corresponding to a position of the texture when its value has all the used bits equal to 1

(visible) and black otherwise (not visible). Notice that when we have k ≤ r view elements

of V in a texture, 1 ≤ k ≤ 64, the fragment shader only uses the corresponding k bits of

the texture values to compute the union and intersection maps. To obtain the count map

it colors each pixel in the appropriate color according to the number of bits equal to 1 of

the value stored in the corresponding position of the texture.

Visualizing the union, intersection and count maps for a subset of view elements or

also the overlay map of subsets of V is not difficult. Since in the screen we can only

represent eight bits per color channel, the maximum size of the subset is 24 to guarantee

that each region of the overlay has a different color. The overlay map of such a subset

82 Chapter 4. Multi-visibility on terrains by using Graphics Hardware

of V is obtained by associating a color to each view element of the subset, painting each

visibility map accordingly and obtaining the merged image. The visibility map of each

single view element is obtained by coloring a pixel if its corresponding texture value has

the bit associated to the view element equal to 1. Therefore, we have to send the bit

we have to check and the corresponding texture as input parameters to the fragment

shader. As we have said, once all the visibility maps have been painted, different colors

are merged and each pixel is colored accordingly. This merged image is obtained by using

the glLogicOp operation specifying the or logic constant and painting the visibility map

of each view element with its color on an initial black background. As an example in

Section 4.5 we can find the overlay of three view elements (a view point, a view segment

and a view polygonal chain) represented by using different gray levels in Figure 4.11.

Proposition 4.3.1 Once the visibility information is transferred to the GPU in O(r
64MN)

time, the time needed to obtain any desired multi-visibility map in a window of size H×W

is O(HW). 2

Notice that the time needed to visualize a multi-visibility map depends on the number

of pixels of the window where it is visualized and the time needed by the fragment shader.

This time is not only independent from the number of terrain faces and view elements,

but also from the dimensions of the grid covering the domain.

A zoom option can be easily handled. A region of interest of the domain can be chosen

and any of its multi-visibility maps can be visualized by using the whole screen. Moreover,

once we have obtained a multi-visibility map on the terrain domain, we can transfer the

image in a texture and use this information to paint the multi-visibility map on the terrain,

in R3. Each terrain point is painted according to the color stored in the corresponding

texture position.

4.4 Multi-visibility queries

We can be interested in obtaining multi-visibility information of a specific point of the ter-

rain, in answering a point multi-visibility query. Among the point multi-visibility queries

we can answer, there are the following ones: is the point visible from every view element?,

is the point visible from a view element?, how many view elements is the point visible

from?, which view elements is the point visible from?, is the point visible from a specific

view element?, etc. Multi-visibility point queries are answered by considering a suitable

4.4. Multi-visibility queries 83

multi-visibility map. For example, in order to answer the previously mentioned queries the

multi-visibility maps to be considered are: the intersection map, the union map the, count

map, the overlay map and the visibility map of the specific view element, respectively.

Each multi-visibility query can be answered according to the information visualized

on the screen, or with maximal precision according to the visibility information stored in

the M ×N initial grid. To obtain the answer we use the glReadPixels OpenGL function

or we find the grid position containing the queried point, respectively. In both cases, the

time needed to answer a point multi-visibility query is constant. However, notice that in

the second case we do not need to visualize the multi-visibility map.

All the previous questions can also be answered when, instead of a point, a polygonal

region is specified. However, the question may be focused on existence or quantity. For

instance: is there any point in the region that is visible from every view element?, which

percentage of the region contains points that are visible from every view element? When

using the visualized information, the answer is obtained by reading the minimal axis-

parallel bounding box covering the region with the glReadPixels OpenGL function (see

Figure 4.3). When using the information stored in the initial grid, all the grid positions

contained in the region are considered. Therefore, polygonal region multi-visibility queries

can be answered in O(number of pixels in the window) time, by using the visualized

information, or in O(MN) worst case time, by using the information stored in the initial

grid.

Figure 4.3: The union map and a query polygonal region in grey. The minimum axis-parallel

bounding box in a dashed grey0 line.

This process can also be used to solve inter-region multi-visibility problems on terrains

84 Chapter 4. Multi-visibility on terrains by using Graphics Hardware

using the strategy provided in Section 3.6 and the strategy to compute visibility by using

graphics hardware presented in Section 4.2.

4.5 Implementation and experimental results

The algorithms proposed in this chapter have been implemented in C++ and OpenGL.

In this section, we provide some experimental results to show the good performance and

efficiency of these algorithms. All tests have been carried out on an Intel(R) Pentium(R)

D at 3GHz with 1GB of RAM and a GeForce 7800 GTX/PCI-e/SSE2 graphics board.

Our implementation handles heterogeneous sets of view elements containing view

points, segments, polygonal chains and polygons. The user can choose µ (specifying

the size of the initial grid), and µ′ (specifying the length per pixel used to compute the

visibility information). By default, µ′ is the number of grid positions per unit length in-

duced by the initial grid. The implementation, that handles a zoom option, allows for the

visualization of the union, intersection, count and overlay (of one, two, three or all the

view elements, if there are less than 24 view elements) maps on the domain or in R3 on

the terrain. It also answers multi-visibility queries.

In Tables 4.1, 4.2 and Figure 4.4 , we analyze the computational complexity of these

algorithms according to experimental results. We start analyzing the complexity of the

preprocessing stage by checking the relationship between time and the values of n, r and

M = N , the number of faces, view segments and columns of the grid discretizing the

domain, respectively. Then, we analyze the time needed to visualize a multi-visibility

map.

Preprocessing stage

In Table 4.1 and Table 4.2 we give the number of pairs of segments and triangles

considered, as well as the colored and read pixels, in order to show the number of operations

done. Table 4.1 presents the time used in the preprocessing stage for several terrains with

different n values, two view segments and several M×N grids. Table 4.2 refers to terrains

with n = 800 and n = 3200, a grid of size 500 × 500 and varying r. We can also find in

the Table 4.1 and Table 4.2 the number of triangles sent to render, as well as the number

of colored and read pixels. In Figure 4.4, where the time spent in the preprocessing

4.5. Implementation and experimental results 85

stage is compared to n considering several grid dimensions, we observe that time depends

quadratically on n, as was shown (Section 4.2.2). In the three cases the adjusted coefficient

of multiple determination for the quadratic fit is 0.999. Figure 4.4 is obtained using the

results presented in Tables 4.1 and 4.2.

In Tables 4.1 and 4.2 we can see that the number of studied pairs has the same behavior

as the number of read pixels, and the number of considered triangles the same as the

colored pixels. Notice that, in the results obtained with the scenes considered, the number

of studied pairs and read pixels decreases when n increases from 7200 to 12800. This

happens because we only study those segments on faces that do face the view segment.

Thus, the number of studied pairs does not depend directly on n, but also on the position

of the view segment.

Table 4.1: Preprocessing stage tests. In this table we show SS the number of segment-segment

visibility computations, T painted triangles, Cpix colored pixels, Rpix read pixels and execution

time in the preprocessing stage for two view elements and various terrains depending on the number

n of terrain faces and the size N ×N of the initial grid covering the domain.

n N SS T (×106) Cpix (×106) Rpix (×106) time (s)

800 500 18300 0.113824 192.855 2.219 7

800 1000 36600 0.229899 385.571 3.74102 9

800 4096 150508 0.950526 1578.89 11.3329 20

3200 500 34957 0.700112 1436.73 5.28961 35

3200 1000 67225 1.40049 2873.65 9.69502 42

3200 4096 277509 5.84242 11750.7 27.9186 82

7200 500 73485 2.06396 5342.64 13.5641 168

7200 1000 141539 4.1712 10686.5 26.5291 187

7200 4096 565035 17.2496 43770.1 79.2885 319

12800 500 62727 2.44284 7667.97 12.0897 560

12800 1000 116493 4.88513 15328.4 24.7562 576

12800 4096 465972 20.3909 62868.7 76.1341 743

20000 500 105465 4.51306 16947.0 26.3929 1303

20000 1000 210930 9.51831 33831.4 55.2668 1336

20000 4096 884653 40.5104 133442 178.058 1686

86 Chapter 4. Multi-visibility on terrains by using Graphics Hardware

Figure 4.4: Execution time versus number of terrain faces for several grid dimensions.

Multi-visibility map visualization

Finally some multi-visibility maps are shown. With this aim, we use the terrain and

the three view elements (a point, a segment and a polygonal chain) depicted in Figure 4.5.

For the segment and polygonal chain we use the weak visibility criterion. The results are

visualized on the domain and also in R3 on the terrain. To facilitate the understanding

of R3 figures we use illumination. Consequently, the image colors are slightly altered

according to the light position.

Figure 4.5: Two different views of the considered terrain with three view elements over the terrain:

a point, a polygonal chain and a segment

The union map is given in Figure 4.6, where visible points from at least one view

4.5. Implementation and experimental results 87

Table 4.2: Preprocessing stage tests. In this table we show SS the number of segment-segment

visibility computations, T painted triangles, Cpix colored pixels, Rpix read pixels and execution

time in the preprocessing stage for various terrains depending on the number n of terrain faces

and the number r of view segments considering a 500× 500 grid covering the domain.

n r SS T (×106) Cpix (×106) Rpix (×106) time (s)

800 1 12900 0.144298 167.519 1.07429 4

800 5 37975 0.317551 363.719 3.01567 15

800 10 81950 0.667980 672.105 5.76114 28

800 15 142575 1.13747 1294.02 11.405 46

800 20 203250 1.79864 1915.43 15.6315 60

3200 1 15509 0.303405 488.587 1.85078 16

3200 5 98683 1.96699 3828.61 14.2134 94

3200 10 201279 4.14537 7751.3 26.6047 188

3200 15 311415 6.50442 11861.2 39.9502 296

3200 20 435058 9.77866 20508.8 62.3632 422

element are painted lighter and the not visible ones darker. The intersection map is given

in Figure 4.7, where lighter points are visible from every single view element.

Figure 4.8 shows the count map, where points are colored in a white to black gradation

according to the number of view elements they are visible from (0 black - 3 white).

The visibility map of the view polygonal chain is shown in Figure 4.9, where points

weakly visible from the view polygon are colored lighter. A two view elements (the segment

and the point) overlay map is given in Figure 4.10 where the points are colored according

to the subset of view elements they are visible from. The three view elements overlay map

is given in Figure 4.11, where, again, the points are colored according to the subset of

view elements they are visible from.

With our implementation, we achieve the visualization of the union, intersection, count,

overlay of one view element and overlay of all the view elements maps in 0.006 seconds.

The overlay map of two view elements takes 0.011 seconds and of three view elements

0.017 seconds. Once the information is computed and transferred to the GPU, the time

depends on the fragment shader and the number of images we have to merge. Notice that

when obtaining overlays of more than one view element, the number of merged images is

more than one, except for the overlay of all the view elements where all the information

stored in the texture is used.

88 Chapter 4. Multi-visibility on terrains by using Graphics Hardware

Figure 4.6: On the left, the union map of a view point, a view segment and a view polygonal

chain; the points of the domain are colored according to whether they are visible from at least one

view element or not; the projection of the view elements is also shown. On the right, the view

elements and the union map on the terrain are shown.

Figure 4.7: On the left, the intersection map of a view point, a view segment and a view polygonal

chain; the points of the domain are colored according to whether they are visible from all three

view elements or not; the projection of the view elements is also shown. On the right, the view

elements and the intersection map on the terrain are shown.

4.5. Implementation and experimental results 89

Figure 4.8: On the left, the count map of a view point, a view segment and a view polygonal

chain; the points of the domain are colored according to the number of view elements they are

visible from; the projection of the view elements is also shown. On the right, the view elements

and the count map on the terrain are shown.

90 Chapter 4. Multi-visibility on terrains by using Graphics Hardware

Figure 4.9: On the left, the visibility map of the view polygonal chain; the points of the domain

are colored according to whether they are visible or not; the projection of the view polygonal chain

is also shown. On the right, the polygonal chain and its visibility map on the terrain are shown.

Figure 4.10: On the left, the overlay map of the view point, P , and the view segment, S; the points

of the domain are colored according to the view elements they are visible from; the projection of

P and S is also shown. On the right, P , S and their overlay map on the terrain are shown.

4.6. Conclusions 91

Figure 4.11: On the left, the overlay map of the view point, P , and the view segment, S, and

the view polygonal chain L; the points of the domain are colored according to the view elements

they are visible from; the projection of the view elements is also shown. On the right, the view

elements and their overlay map on the terrain are shown.

4.6 Conclusions

We have presented a method to visualize multi-visibility maps of a triangulated terrain

containing an heterogeneous set of view elements (points, segments, polygonal chains and

polygons) for weak and strong visibility. We compute approximate visibility information

in a pre-processing stage by repeatedly using graphics hardware and then from this in-

formation visualize any multi-visibility map on the screen with a zoom option. We also

answer point and polygonal region multi-visibility queries. The results obtained with our

implementation show that our approach is practical, robust and efficient.

92 Chapter 4. Multi-visibility on terrains by using Graphics Hardware

Chapter 5

Distances on polyhedral surfaces

We present an exact algorithm for computing shortest paths, and consequently distances,

from a generalized source (point, segment, polygonal chain or polygonal region) on a trian-

gulated non-convex polyhedral surface in which polygonal chain or polygon obstacles are

allowed. It extends the ideas developed by Surazhsky et al. [144] for the implementation of

the algorithm by Mitchell et al. [104] to the case of generalized sources and a polyhedral

surfaces with obstacles. In this chapter, we present an algorithm to obtain an implicit

representation of the distance function defined by shortest paths on P to a generalized

source (Section 5.1). The algorithm easily extends to the case of several sites providing

their distance field, which intrinsically encodes the closest Voronoi diagram of the set of

generalized sites (Section 5.2). From the implicit representations we obtain the distance

or the shortest path to any point p ∈ P (Section 5.3). Finally we give a theoretical study

on the complexity of higher-order Voronoi diagrams of a set of generalized sites on a non-

convex polyhedral surface assuming non-degenerate position (Section 5.4). The chapter

ends with some conclusions (Section 5.5). The algorithms described in this chapter have

been implemented. In Chapter 7 we provide execution times for different terrains, which

are special triangulated surfaces, and sets of generalized sites.

We consider P a polyhedral surface represented as a mesh consisting of n triangular

faces and a generalized element on P playing the role of a source s. Obstacles on P are

modelled by a set of non-punctual generalized elements on P. A shortest path from a

generalized source to a point on P is a path from the source and the point with minimal

length such that the path stays on P and avoids the obstacles. The shortest path distance

function defined by a source point p on P is a function dp such that for any point q ∈ P,

93

94 Chapter 5. Distances on polyhedral surfaces

dp(q) is the Euclidean length of the shortest path along P from q back to point p. The

shortest path distance function defined by a generalized source s is a function ds such that

for any point q ∈ P, ds(q) is the length of the shortest path from q back to source s.

5.1 Implicit distance function

A quick overview of our algorithm to compute shortest path distances from a generalized

source on a polyhedral surface with obstacles is provided first. The shortest path problem

from a generalized source s is solved by tracking together groups of shortest paths and

partitioning each triangle edge into a set of intervals. All shortest paths that cross an

interval are encoded locally using a parameterization of the distance function ds. After

an initialization step, where intervals encoding ds in the edges of the triangles containing

s are created, the distance function is propagated across mesh triangles in a ”continu-

ous Dijkstra” fashion by repeatedly using an interval propagation process. A complete

intrinsic representation of ds is obtained when the propagation process ends. From this

representation, the shortest path from any point q to source s is computed by using a

”backtracing” algorithm.

5.1.1 Point and segment sources

A point can be considered as a degenerated segment whose endpoints coincide and con-

sequently, an algorithm for computing the distance function of a segment source can be

used for the special case of a point source. Consequently, we center our study on segment

sources. We start by providing some properties of shortest paths for segment sources and

next explain the algorithm steps.

Lemma 5.1.1 Shortest paths from a segment source s to any destination point q fulfill

the following four properties:

1. In the interior of a face a geodesic is a straight line

2. When two neighboring faces are unfolded in a common plane, a geodesic becomes a

straight line.

3. A geodesic can only go through a vertex v if it is a boundary vertex or if its total

angle is bigger than 2π.

5.1. Implicit distance function 95

4. A geodesic starting at an interior point of s is orthogonal to s in f , where f is a

face of P containing s.

Proof. The shortest path distance function defined by a segment source s is given by

ds(q) = min
p∈s

dp(q).

Since s is a closed interval and ds(q) is a continuous function the minimum is reached at

a point of s. Consequently these shortest path are shortest paths to a point source and

necessarily fulfill Property 2.6.1, Property 2.6.2 and Property 2.6.3, which correspond to

the first three points. Finally the fourth property characterizes the fact that each point

is connected with the closest point of segment s, thus a path obeys the the properties of

shortest paths to segments in the plane. 2

To compute the distance function ds for a segment source s we track together groups

of geodesic paths by partitioning the edges of P into intervals. Geodesic paths that cross

an interval go through the same triangles and bend at the same vertices of P. In an

initialization step, intervals defining ds in the triangle(s) containing s are created. Then

the distance function is propagated across triangles in a Dijkstra-like sweep in such a way

that, over each interval, ds can be represented in a compact way by using an appropriate

codification.

5.1.1.1 Distance function codification

The distance function and the shortest paths defining it are encoded and propagated by

using intervals, subsegments of the edges of P. We use two different types of intervals:

1) intervals associated to the interior of the segment source s; 2) intervals associated to

either an endpoint of s or a vertex of P.

Consider a shortest path from the source segment s to some point q on an edge e, and

let us assume that this path does not bend at any mesh vertex. When all the triangles

intersecting the path are unfolded in a common plane, the path forms a straight line

(Lemma 5.1.1). The set of neighboring points of q on e whose shortest paths back to s

pass through the same sequence of triangles form: a) a pencil of rays emanating from

an endpoint of s; b) a pencil of orthogonal rays emanating from the interior of s (see

Figure 5.1). In both cases we represent the group of shortest paths over an interval on the

edge e.

96 Chapter 5. Distances on polyhedral surfaces

Assume now that the shortest path from p ∈ s to q bends at one or more vertices

on its way to the source s, and let v be the nearest such vertex to q. Consider the set

of neighboring points on e whose shortest paths back to v go through the same strip of

triangles. In the unfolding of the strip between e and v, these shortest paths will form a

pencil of rays emanating from the pseudosource vertex v, as seen in Figure 5.1. As before,

we represent this group of shortest paths over an interval on the edge e. Consequently, we

can provide the following Property.

Property 5.1.1 Shortest path emanating from a segment source s can be grouped by using

intervals on the edges of P.

a) b)

Figure 5.1: An unfolded strip of triangles with: a) a segment source; b) a polygonal chain source.

Intervals representing a group of geodesics emanating from a punctual source p (an

endpoint of s, a punctual source, or a mesh pseudosource vertex) are called p-intervals,

and intervals representing a group of geodesics emanating from interior points of s are

called s-intervals. Intervals not only group shortest paths, but also encode them.

p-intervals The group of geodesics associated to a p-interval I originated at a point

p (an endpoint of s or a pseudosource vertex) is locally encoded by using a 6-tuple

(b0, b1, d0, d1, σ, τ). Where b0, b1 ∈ [0, |e|] measure the Euclidian distance from the end-

points of I to the origin (the lexicographically smallest endpoint) of e. Distances d0 and

d1 measure the Euclidean distance from the endpoints of I to p, direction τ specifies the

side of e on which p lies, and σ encodes the distance from p to s.

Lemma 5.1.2 A source p defining a p-window can be positioned in O(1) on the plane of

a triangle t containing I by using the 6-tuple (b0, b1, d0, d1, σ, τ). The distance function

within I can be recovered in O(1) time.

5.1. Implicit distance function 97

Proof. Point p is positioned by simulating the planar unfolding adjacent to e in the rect-

angular coordinate system Se that aligns e with the x-axis as it is shown in Figure 5.2 a).

To obtain the position of p = (px, py) we have to solve the following system

{
(px − b0)2 + p2

y = d2
0

(px − b1)2 + p2
y = d2

1

The solution is px = b21−d2
1−(b20−d2

0)
2(b1−b0) and py = ±

√
d2

0 − (px − b0)2. The sign of sy is chosen

according to parameter τ . Once the source has been located the distance from source s

to a point q ∈ I is

ds(q) = ||qp||+ σ.

The operations involved in both processes take constant time. 2

The point source obtained from (b0, b1, d0, d1, σ, τ) in the coordinate system Se is re-

ferred as the virtual source of I and noted Is.

s-intervals The group of geodesics associated to an s-interval I is locally encoded by

using a 5-tuple (b0, b1, d0, d1, φ). Where b0, b1 ∈ [0, |e|] are the distances from the endpoints

of I to the origin of e, d0 and d1 measure the distance of the endpoints of I to s, finally

the angle determined by e and the rays emanating from s is stored in φ ∈ [0, 2π].

Lemma 5.1.3 Given an s-interval, the part s′ of s from which geodesics to I emanate

can be positioned from the 5-tuple (b0, b1, d0, d1, φ) in O(1) time. The distance function

within I can be recovered in O(1) time.

Proof. Segment s′ is positioned by simulating the planar unfolding adjacent to e in the

rectangular coordinate system Se that aligns e with the x-axis as it is shown in Fig-

ure 5.2 b). According to the parameters stored in the 5-tuple and using Se, the vir-

tual segment source is the segment delimited by point (b0 + d0 cosφ, d0 sinφ) and point

(b1 + d1 cosφ, d1 sinφ), which are obtained by using basic trigonometry. The distance

from s′ to a point q = (qx, p) ∈ I is

ds(q) = d(q, s′) = d0 +
(d1 − d0)(x− b0)

b1 − b0
,

this distance is computed by using Tales rule. The operations involved in both process

take constant time. 2

98 Chapter 5. Distances on polyhedral surfaces

a) b)

Figure 5.2: The virtual source s is positioned using the information stored in: a) a p-interval; b)

a s-interval.

The obtained segment source is referred again as the virtual source of I and noted Is.

According to Observation 5.1.1 shortest paths can be grouped by using intervals,

Lemma 5.1.2 and Lemma 5.1.3 prove that the distance function can be recovered from the

information stored in the intervals. Therefore, we can provide the following Proposition.

Proposition 5.1.1 Distance function ds can be encoded by using p-intervals and s-intervals.

2

5.1.1.2 Interval propagation

We propagate the distance function ds encoded in an interval on an edge e to the next ad-

jacent triangle t in the unfolding by creating new (potential) intervals on the two opposing

edges of t. They are potential intervals because they may overlap previously computed

intervals. Consequently, we must intersect the potential interval with previous intervals

and determine the combined minimum distance function.

Lemma 5.1.4 The distance function encoded in an interval I can be propagated in O(1)

time.

Proof. Given a p-interval or s-interval I on an edge e, we propagate ds by computing

how the pencil of straight rays representing geodesics associated to I extends across one

more unfolded triangle t adjacent to e. New potential intervals can be created on the

opposing edges of t (see Figures 5.3 a) and b)). To encode ds in a new potential interval

on e′ we first obtain the position of the source in the coordinate system Se. Then, we

consider the rays emanating from the source through the endpoints of I to determine the

5.1. Implicit distance function 99

new interval [b′0, b
′
1] on e′. New distances d′0 and d′1 from the interval endpoints to the

source are computed. For p-intervals σ′ does not change and for s-intervals the angle φ′

is the angle defined by the rays and edge e′. When the interval I is adjacent to a saddle

vertex v, geodesics may go through it. Vertex v is a new pseudosource and generates new

potential p-intervals with σ′ given by d0 or d1 when I is an s-intervals and σ′ given by

d0 + σ or d1 + σ when I is a p-intervals (see vertex v of Figure 5.3 c).

Since Is is obtained in O(1) time (Lemma 5.1.2 and Lemma 5.1.3), and computations

involved in this process take constant time, the whole cost is O(1).

a) b) c)

Figure 5.3: Examples of s-interval propagation resulting in: a) a new single interval; b) two new

intervals; c) a new single interval and a pseudosource vertex v.

2

5.1.1.3 Interval overlapping

After the propagation, each new potential interval I ′ on edge e′ may overlap with previ-

ously created intervals. Let I be a previously created interval which overlaps I ′, notice

that both I and I ′ can either be s-intervals or p-intervals. We have to decide which interval

defines the minimal distance on the overlapped subsegment δ = [b0, b1] ∩ [b′0, b
′
1]. In this

process, interval I ′ or I can be deleted or trimmed. The most interesting case is when

they are trimmed but not deleted. To correctly obtain the intervals we have to compute

the point q in δ where the two distance functions coincide. Notice that in this stage we

discard those geodesics encoded in I and I ′ that cannot be shortest paths.

Lemma 5.1.5 The overlapping of two intervals is computed in O(1) time.

Proof. To obtain the point q where the distance functions defined by I and I ′ coincide,

we define the rectangular coordinate system Se′ that aligns e′ with the x-axis. In this

100 Chapter 5. Distances on polyhedral surfaces

coordinate system point q is (qx, 0), and let the virtual sources be Is = (ix, iy) and I ′s =

(i′x, i′y). To obtain q we have to solve the equation obtained when we make that the distance

functions coincide at q. Depending on wether I and I ′ are p-intervals or s−intervals, we

have to distinguish between the three following cases.

• Two p-intervals: with I = (d0, d1, b0, b1, σ, τ) and I ′ = (d′0, d
′
1, b

′
0, b

′
1, σ

′τ ′). We solve

the equation |Isq|+ σ = |I ′sq|+ σ′, or equivalently
√

(ix − qx)2 + i2y + σ =
√

(i′x − qx)2 + i′2y + σ′.

This equation can be reduced to a quadratic equation with a single root in δ.

This equation is Aq2
x + Bqx + C = 0 with A = α2 − β2, B = γα + 2i′xβ2 and

C = 1/4 γ2 − ||I ′s||2β2, where α = i′x− ix, β = σ′−σ and γ = ||Is||2−||I ′s||2−β2.

• An s-interval and a p-interval: with I = (d0, d1, b0, b1, φ) and I ′ = (d′0, d
′
1, b

′
0, b

′
1, σ

′, τ ′)

an s-interval and a p-interval respectively. In this case Is is a virtual segment source

and I ′s a virtual punctual source. We solve the equation d(Is, q) = |I ′sq|+σ′, where

d(Is, q) is the Euclidean distance from q to segment Is, using the correspondent

formulas we obtain:

d0 +
d1 − d0

b0 − b1
(qx − b0) =

√
(i′x − qx)2 + i2y + σ′.

This equation can be reduced to the quadratic equation Dq2
x + Eqx + F = 0

with a single solution in δ. The quadratic equation coefficients are D = η2 − 1,

E = 2 (η κ + i′x), F = κ2 − ||I ′s|| where η = d1−d0
b0−b1

and κ = (d′0 − ηb′0 − σ′).

• Two s-intervals: with I = (d0, d1, b0, b1, φ) and I ′ = (d′0, d
′
1, b

′
0, b

′
1, φ

′). We have two

virtual segment sources Is and I ′s and the equation we have to solve is d(Is, q) =

d(I ′s, q), consequently we obtain the equation:

d0 +
d1 − d0

b0 − b1
(qx − b0) = d′0 +

d′1 − d′0
b′0 − b′1

(qx − b′0),

which is a linear equation with a single solution qx = ηb0−d0−(η′b′0−d′0)
η−η′ where η = d1−d0

b0−b1

and η′ = d′1−d′0
b′0−b′1

.

In all three cases the virtual sources are determined in constant time (Lemma 5.1.2

and Lemma 5.1.3), and the solution of the obtained equations is computed in O(1) time.

Consequently, the overlapping between two intervals takes O(1) time. 2

Notice that in this process some already existent intervals can be deleted but only two

already existent intervals can be trimmed but not deleted.

5.1. Implicit distance function 101

5.1.1.4 Continuous Dijkstra propagation strategy

The algorithm uses a Dijkstra-like propagation strategy. In the initialization step, we

create intervals encoding the distance function on the edges of the triangle(s) containing

the segment source s. If the closest point of s to point q ∈ P is an interior point of s,

point q is contained in an s-interval. On the other hand, if the closest point of s to q is

an endpoint of s, point q is contained in a p-interval.

When intervals are created they are stored in a priority queue which contains both

s-intervals and p-intervals. Intervals are stored by increasing distance to the source.

The minimum distance from an s-interval to s is min(d0, d1). For p-intervals we use

min(d0, d1) + σ as their weight in the priority queue, even though it may not be the min-

imal distance. This can be done because the solution obtained does not depend on the

order in which intervals are removed from the queue, however, by using the priority queue

a wavefront is simulated and the process is accelerated.

The first interval of the priority queue is selected, deleted and propagated. Next,

overlappings are checked, intersections are computed and the new intervals are added to

the priority queue. Notice that when there is an overlap, intervals may be modified or

deleted and the priority queue has to be updated accordingly.

Now, we present some Lemmas to determine the time and space complexity needed

to obtain the shortest path distance functions from a segment source. We first bound

the number of intervals generated on each mesh edge. Remember that we work with a

non-convex polyhedral surface P represented as a mesh consisting of n triangles and a

segment source placed on P.

Lemma 5.1.6 The algorithm creates, at most, O(n) intervals per mesh edge.

Proof. Assume that on the edge e there are n̂ intervals. Consider n̂ shortest paths starting

at an interior point of each interval of e and arriving at s. There may be shortest paths

arriving at interior points of s and others at the endpoints of s. We sort the n̂ shortest

paths clock-wise around e and consider pairs of consecutive shortest paths. There may exist

at most four pairs of consecutive shortest paths that traverse exactly the same triangles.

This may only happen when: 1) one path arrives at an interior point of s and the other

to an endpoint of s; 2) the first path arrives at an endpoint of s and the second path to

the other endpoint of s. The other pairs of consecutive shortest paths are associated to

a triangle-vertex pair (t,v), where t is the last triangle traversed by both shortest paths,

102 Chapter 5. Distances on polyhedral surfaces

and v is the vertex separating the pair of paths. Observe that the vertex v may be the

first pseudosource of one of the shortest paths. It is not difficult to see that at most

two different pairs of shortest paths can be associated to the same (t,v) pair (when v is

a pseudosource). Since there exists a bijection between triangle-vertex pairs and edges,

n̂ ∈ O(n). 2

Lemma 5.1.7 At most O(n2) intervals can be deleted in the overlapping step.

Proof. Once an interval is deleted it can not be propagated and an interval that has been

propagated can not be deleted in the future because it defines the minimum distance at

some point. Any interval creates at most two new intervals on the opposite edges. These

two new intervals may end up being deleted before being propagated. Thus, according to

Lemma 5.1.6 there are at most O(n2) created intervals that can be deleted. 2

Theorem 5.1.1 The distance function defined by a segment source can be propagated on

a non-convex triangulated surface with n faces in O(n2 log n) time and O(n2) space.

Proof. At most O(n2) intervals are created and propagated, thus the time needed to

propagate and create them is O(n2) (Lemma 5.1.4, Lemma 5.1.7). The time needed in the

overlapping process is O(n2) because a most O(n2) intervals are deleted in O(1) time each

(Lemma 5.1.7), and at most two intervals are trimmed at each step in O(1) time (Lemma

5.1.5). This yields a O(n2) complexity. Consequently, the time complexity for computing

the shortest path distance function is bounded by the maximum between the number of

created intervals and the time needed to create and maintain the priority queue. In the

worst case the total complexity is O(n2 log n) time and the O(n2) space. 2

5.1.2 Polygonal sources

The distance function defined by a polygonal chain is obtained by simultaneously consid-

ering all the segments of the polygonal chain in the initialization step. For each segment

s of the polygonal chain we create potential s-intervals in the triangle(s) containing s and

for each vertex we create potential p-intervals. We handle one segment/point conforming

the polygonal line after the other, new potential intervals are intersected with the already

created ones to ensure that they define the actual distance function. The other parts of

the algorithm do not need changes.

5.1. Implicit distance function 103

The distance function defined by a polygonal region r, a connected region of P whose

boundary is a closed polygonal chain, is the distance function defined by its boundary in

the complementary of r, and is 0 in the interior of r. We compute the distance function

defined by its boundary polygonal chain creating, in the initialization step, intervals only

in the complementary of r. From now on r̃ denotes the number of segments conforming

the generalized source s, it will be different from 1 when s is a polygon or polygonal line.

Lemma 5.1.8 At most O(n + r̃) intervals per mesh edge are created.

Proof. We proceed as in the proof of Lemma 5.1.6. Now we have at most four shortest

paths traversing the same edges and faces for each segment conforming the polygon or

polygonal source. Consequently the number of intervals is now O(n + r̃). 2

Putting together this Lemma and the previous observations on how we have to modify

the algorithm to compute shortest paths from segment sources allow us to provide the

following Theorem.

Theorem 5.1.2 The distance function defined by a polygonal or polygon source can be

propagated on a non-convex triangulated surface with n faces in O(n(n + r̃) log(n + r̃))

time and O(n(n + r̃)) space.

Proof. The algorithm provided to compute shortest paths from a segment source works

with minor changes. These changes do not affect the time or space complexity of the algo-

rithm which is again determined by the number of created intervals. Lemma 5.1.8 bounds

the number of created intervals by O(n(n + r̃)), and consequently the time complexity of

the algorithm is O(n(n + r̃) log(n(n + r̃))) which equals O(n(n + r̃) log(n + r̃)). The space

complexity is O(n(n + r̃)). 2

5.1.3 Polygonal obstacles

Given a, possibly non-convex, polyhedral surface P (which may represent a terrain), we

model obstacles as polygonal chains or polygonal regions (which may represent rivers,

lakes, etc) on P. The polyhedral surface is retriangulated so that the obstacles are repre-

sented as several mesh triangles, edges and vertices. We keep n as the number of triangles

of the new mesh. We assume that paths cannot traverse the polygonal obstacles, but we

104 Chapter 5. Distances on polyhedral surfaces

let paths go along them. Now, geodesic paths can go through a vertex not only if it is a

saddle vertex but also when it is an obstacle vertex. To compute shortest paths we only

need to make two modifications in the interval propagation process. On the one hand

intervals on an obstacle edge are not propagated. On the other, obstacle vertices are new

pseudosource vertices regardless of their total angle. These modifications do not increase

the time or space complexities of the algorithm. Thus we can claim:

Theorem 5.1.3 The distance function defined by a generalized element on a polyhedral

surface with obstacles can be computed in O(n2 log n) time and O(n2) space. 2

5.2 Implicit distance field computation

The algorithm for computing the distance function from a generalized source extends

naturally to the case of several sites. In this case we obtain a generalized distance field,

which for any point of P gives the shortest path distance to its nearest site. Notice that

the implicit distance field provides the implicit generalized Voronoi diagram.

In the initialization step we generate intervals for each single site and store them in

a unique priority-queue. Thus, we propagate the distance functions defined by all the

sites simultaneously. This way we obtain a codification of the distance field that yields an

implicit representation of the Voronoi diagram of the set of generalized sites.

From now on we denote by r̃ the total number of segments conforming the set S of

generalized sites.

Theorem 5.2.1 The implicit distance field of a set of r generalized sites can be obtained

in O(n(n + r̃) log(n + r̃)) time and O(n(n + r̃)) space.

Proof. When the distance field of a set of generalized sites is computed, the maximum num-

ber of created intervals per edge is O(n+ r̃), this can be proved similarly to Lemma 5.1.8.

It gives at most O(n(n+r̃)) created and deleted intervals providing a O(n(n+ r̃) log(n+r̃))

time and O(n(n + r̃)) space complexity. 2

5.3. Distance and shortest path computation 105

5.3 Distance and shortest path computation

When the propagation of the distances function has concluded, the distance from any

point of a triangle of P to the source can be obtained from the implicit distance function.

If we are given a set of sites S, we can compute the shortest path distance to the closest

site and the actual path but using the same technique by using the implicit distance field

of S instead of the distance function of a source s.

5.3.1 Influence regions

To make the computation of the distance and shortest paths easier, we first determine

which points of P can be reached by the geodesics encoded in an interval.

Let I be an interval on a mesh edge e and t be a triangle adjacent to e. We define the

influence region of interval I, denoted RI , as the set of point of t that can be reached by

geodesics encoded in I. According to the geodesic properties, a point q ∈ t is reached by

a geodesic associated to I in the planar unfolding adjacent to e when: 1) the triangle t

and the virtual source of I, Is, are placed in opposite sides of e; 2) the point q belongs

to a line emanating from Is or orthogonal to Is depending on whether I is a p-interval

or s-interval, respectively. Therefore, each interval I defines a unique influence region RI

which is a polygon of at most five vertices contained in one of the two adjacent triangles

to e.

When I has an endpoint in a saddle vertex v of t, the interval I can also define a

pseudosource. The points of t that are not contained in RI and that can be reached by

a line segment emanating from the pseudosource v without intersecting RI determine the

influence region of pseudosource v, Pv, which is a convex polygon of at most three vertices.

Lemma 5.3.1 The influence region RI of an interval can be computed in O(1) time.

Proof. To compute the influence region we have to propagate interval I and determine

the convex hull defined by the endpoints of the obtained intervals. Since the propagation

is done in O(1) time (Lemma 5.1.4) and since RI has at most five vertices, region RI can

be obtained in O(1). 2

106 Chapter 5. Distances on polyhedral surfaces

5.3.2 Distance computation

The shortest path distance from any point q on a triangle t to the source s can be obtained

by finding the interval Im on the edges of t or the pseudosource v defining the minimum

distance value.

If dI denotes the distance function defined by the interval I in RI , we have dI(q) =

ds(q′) + |qq′|, where q′ is a point on I such that the line segment qq′ from q′ to q is

contained in a geodesic emanating from Is. Notice that to determine Im, those intervals

whose influence area do not contain q′ can be directly discarded. Therefore, we only take

into account an interval I on an edge e if its virtual source Is and triangle t are located in

different sides of e, and q ∈ RI . If q belongs to the influence region of a pseudosource v,

the distance function defined by v, dv(q) = ds(v) + |qv|, needs also to be considered. If we

denote Ω the set of not discarded intervals and the possible pseudosources, we have that

ds(q) = minι∈Ω dι(q). Thus we claim the following Proposition.

Proposition 5.3.1 The length of the shortest path from a point of P to the source s or

to its nearest source in S can be obtained by standard methods in O(n + r̃) and O(n + r̃)

time, respectively. 2

5.3.3 Shortest path computation

The shortest path from any point q on a triangle t to the source s can be obtained by

using a backtracing technique.

Proposition 5.3.2 The shortest path from a generalized source s to point p can be ob-

tained in O(n+ r̃ +n) time, where n is the number of crossed triangles. The shortest path

to the closest site of S is obtained in O(n + r̃ + n) time.

Proof. We first determine the element, interval or vertex, ιm defining the minimum dis-

tance to q. There exist two possibilities: 1) If ιm is an interval Im, we jump to the adjacent

triangle t′ by using the direction τ when Im is a p-interval or the angle φ when Im is an

s-interval; 2) If ιm is a pseudosource, it is an endpoint of an interval Im which is used to

jump to the adjacent triangle. Then, we keep on jumping to the adjacent triangle until

we get s.

According to Proposition 5.3.1 the distance can be obtained in O(n + r̃) or O(n + r̃)

5.4. Voronoi diagram complexity 107

time. Once ιm is obtained we jump to a previous interval in constant time by locating

the virtual source ιsm and finding the new interval when ιm is an interval, or checking the

adjacent edges to the virtual source ιm otherwise. Both searchings can be done in constant

time. 2

5.4 Voronoi diagram complexity

We consider a triangulated polyhedral surface P with n triangles, homeomorphic to either

the plane or the sphere, and a set S = {s1, . . . , sr} with r generalized sites containing

points, line segments, polygonal chains or a polygons. The distance d(p, q) between two

points p, q ∈ P of the surface is the shortest path distance given by the shortest path from

p to q which is given by dp(q).

In this section, a (generalized) site s on P is a point or a line segment contained

in P. As far as our results are concerned, there is no advantage in considering more

complicated sites (polygonal chains or polygons) instead of the family of segments that

defines them. In this section, considering objects of constant description complexity is

relevant for the results below. Otherwise some demonstrations, for instance those using

the random sampling fall apart because some objects are more complex than others.

Let S = {s1, . . . , sr} be a set of r generalized sites in P. We assume that the sites are

pairwise interior-disjoint. A bisector βij defined by sites si and sj is the locus of points at

the same distance from si and sj . When a vertex of the surface P is equidistant from two

sites, it may happen that a bisector contains two-dimensional pieces. We exclude this case

as degenerate, during only the complexity analysis, and assume henceforth that no vertex

of the surface is equidistant from two sites. With this assumption, a bisector consists of

straight-line, parabolic and hyperbolic segments for being defined by weighted distances

from point sources or non weighted distances from segment sources. We assume that no

three bisectors intersect in a point, the case when three bisectors intersect in a point is

also excluded as a degenerate case. A breakpoint is the intersection between two adjacent

segments or arcs on a Voronoi edge, the point where a bisector crosses an edge of P is also

considered a breakpoint.

We are interested in order-k Voronoi diagrams of S. We next recall its definition,

together with other related concepts. For a subset S′ of the sites, the Voronoi region or

108 Chapter 5. Distances on polyhedral surfaces

cell V or(S′) of S′ is defined as

V or(S′) = {p ∈ P | ds′(p) ≤ ds(p) ∀s′ ∈ S′, s ∈ S}.

For each integer 1 ≤ k ≤ r − 1, the order-k Voronoi diagram of S is the family of

Voronoi regions of all subsets of k sites of S. When k = 1 and k = r − 1 the order-

k Voronoi diagrams are called the (closest) Voronoi and the furthest Voronoi diagram,

respectively. A k-region is a Voronoi region in the order-k Voronoi diagram. A k-edge

is a connected component in the intersection of two k-regions. A k-edge always lies on

the bisector of two sites. A k-breakpoint is a breakpoint on a k-edge. A k-vertex is the

intersection point of three or more k-regions.

The terms edges and vertices of the order-k Voronoi diagram are chosen because of

their resemblance with a graph embedded in the surface P . The removal of edges from

the surface leaves a set of faces. The closure of a face corresponds to a order-k Voronoi

cell, and vice versa. Finally, let us remark the difference between vertices and breakpoints:

while vertices correspond to endpoints of edges, breakpoints can only appear along the

relative interior of edges.

The complexity of the order-k Voronoi diagram is the total number of k-regions, k-

vertices, k-breakpoints and k-edges. The purpose of this work is to study the complexity

of order-k Voronoi diagrams.

We start by providing some results referred to the closest Voronoi diagram (Sec-

tion 5.4.1). Then we study order-k Voronoi diagrams on triangulated surfaces homeo-

morphic to a sphere (Section 5.4.2 to Section 5.4.4). Finally, we provide bounds for the

special case of a Realistic terrain (Section 5.4.5).

During this section, we will provide some examples using terrain models instead of

polyhedral triangulated surfaces. Notice that it can be done due to the fact that any

terrain can be represented by a polyhedral surface (Section 2.4.4). Notice that when we

consider a terrain with n triangular faces, the obtained polyhedral surface has O(n) faces.

Thus complexities on triangulated terrains or on polyhedral surfaces are exactly the same.

5.4.1 Properties of the closest and furthest Voronoi diagram

Lemma 5.4.1 In the closest Voronoi diagram the cell of a site s ∈ S, Cs, is path-

connected.

5.4. Voronoi diagram complexity 109

Proof. Let us consider two points p and q in Cs, shortest paths πp,s from p to s and

shortest path πs,q from s to q. Path π = πp,s ∪ πs,q connects p and q. We will prove

that π is contained in Cs for the sake of contradiction. Assume that there exists a point

t in πp,s ⊂ π that is not contained in Cs, then there exist a site s′ closer to t than site s.

Consequently the following inequality holds ds′(p) ≤ ds′(t) + dt(p) < ds(t) + dt(p) = ds(p)

because distances are given by the shortest path lengths. It contradicts the fact that

p ∈ Cs. 2

Lemma 5.4.2 Bisector βsi,sj is connected and homeomorphic to a circumference.

Proof. Consider the Voronoi diagram of S = {si, sj}, Csi and Csj cover the whole surface

P and they are path connected (Lemma 5.4.1). By definition Csi ∩Csj = βi,j which is the

boundary of Csi and Csj . Since P is homeomorphic to a sphere, βi,j is homeomorphic to

a circumference. 2

Lemma 5.4.3 Any vertex of a closest Voronoi diagram has at least degree three.

Proof. Consider v to be a vertex of the closest Voronoi diagram defined as the intersection

point v of bisector βi,j and βi,k. Then v is also a point of βt,u because dsi(v) = dsj (v) =

dsk
(v), and consequently v is a vertex of degree at least three. 2

Lemma 5.4.4 Each bisector βi,j consists of O(n(n + r̃)) straight-line segments and hy-

perbolic arcs, where r̃ is the number of segments conforming the set of sites S.

Proof. The complexity of a bisector on each face is O(n+ r̃) due to Lemma (Lemma 5.1.8).

Since a bisector intersects at most O(n) faces, the total complexity is O(n(n + r̃)) 2

Lemma 5.4.5 For any three distinct sites si, sj and sk, bisectors βi,j and βi,k can not

intersect more than twice.

Proof. Consider the closest Voronoi diagram of {si, sj , sk}. Let v be an intersection point

of βi,j and βi,k. Then, v is also a point of βj,k because dsi(v) = dsj (v) = dsk
(v), and

consequently v is a vertex of degree at least three of the closest Voronoi diagram.

110 Chapter 5. Distances on polyhedral surfaces

Suppose for the sake of contradiction that bisectors βi,j and βi,k, and consequently βj,k

intersect at least at three different points v1, v2 and v3. Connect each site si, sj , sk to

each point v1, v2 and v3 by a shortest path. These paths have the following properties:

i) No two of the shortest paths sharing an end point cross. Consider a pair of paths not

sharing an end point, say πsiv1 and πsjv2 . The former is contained in Csi and the later in

Csj , the Voronoi regions associated to si and sj , respectively, and their intersection lies in

βi,j . In particular the two paths cannot cross. ii) A shortest path can not cross a site. In

fact if shortest path πsi,vl
crosses sj : dsi(vl) > dsj (vl) which is impossible for being vl a

point of βij . Using this property sites si, sj and sk can be homeomorphicaly transformed

to point sites without changing the topology defined by the mentioned shortest paths.

Consequently we obtain six points (three sites and three intersection points) and nine

interconnecting paths forming a non-crossing embedding of K3×3, the 3 × 3 complete

bipartite graph, on the topological sphere which is a contradiction. 2

Lemma 5.4.6 The furthest Voronoi diagram of a set S of r generalized sites has O(r)

cells, vertices and edges.

Proof. Let us consider Ri>j the region of points that are further from si than sj . Thus

the furthest Voronoi region associated to si, Csi is ∩j=1...r|j 6=iRi>j which is the common

exterior of a set of pseudo-disks that contain si. By using Lemma 2.6.3 the intersection

is path connected so there is at most one region per site. Since each vertex has at least

degree three, it has O(r) cells, vertices and edges. 2

Theorem 5.4.1 The maximum complexity of a furthest Voronoi diagram of a set of r

generalized sites is O(rn(n + r̃))

Proof. It has at most r bisectors of complexity O(n(n + r̃)) (5.4.4) yielding a complexity

of O(rn(n + r̃). For a set of point sites, the maximum complexity of the furthest Voronoi

diagram is Θ(rn2) (Theorem 2.6.2), thus the provided bound is tight when r̃ < n. 2

5.4.2 Properties of order-k Voronoi diagrams.

Let v be a k-vertex and s1, s2, s3 be the three sites defining v: v is at the intersection of

the bisectors β12, β13, β23. A disk centered at v with radius ds1(v) contains s1, s2, s3 and

possibly some other sites, which we denote by Sv.

5.4. Voronoi diagram complexity 111

Lemma 5.4.7 The cardinality of Sv with v a k-vertex is either k − 2 or k − 1.

Proof. A vertex v is a point that is equidistant to three sites, thus there exists a closed

circle centered at v containing l sites, l− 3 of these sites are interior to the circle. We will

prove that such a point is a (l +1)-vertex and a (l +2)-vertex proving the previous result.

This is true because in a neighborhood of v there exist points contained in a: i) (l+1)-edge,

because these points are centers of circles containing two points in the boundary and l− 1

points in the interior. ii) (l+2)-edge because they are centers of circles containing 2 points

in the boundary and l − 2 points in the interior. Since distance functions are continuous

it is always fulfilled. 2

The following Lemma states intuitively that when a k-edge is traversed, the sets of the

k nearest sites differ in a single site. We denote Ci a cell of a order-k Voronoi diagram, Si

the set of k sites defining Ci and βkl the bisector defined by sites sk and sl.

Lemma 5.4.8 Given two k-cells, C and C ′ with a common k-edge e ⊂ βij, The intersec-

tion of sets SC and SC′ contains k − 1 sites, in fact, sets SC and SC′ only differ in the

sites defining βij.

Proof. Assume that k-edge e is on bisector βij , points on e stay at the same distance

from si and sj . If we consider a neighborhood U of a point p ∈ βij such that U does not

intersect any other bisector, we can sort the sites of S \ {si, sj} according to dsk
(p) with

sk ∈ S \ {si, sj}. Since distance functions are continuous and U does not intersect any

other bisector the inequalities hold for every q ∈ U . If we also consider sites si1 and si2 we

have in p the same ordered chain but with the equality dsi(p) = dsj (p). When an arbitrary

point is considered, the inequality will depend on the side of βij where q is placed. When

e is a k-edge it also changes the set of the k-nearest sites, thus in one side of e site si

is the k-nearest site and sj the (k + 1)-nearest one, while in the other is the other way

round. Consequently, given two k-regions C and C ′ with a common edge e, edge e is in

the bisector defined by the sites in {SC ∪ SC′} \ {SC ∩ SC′}.

2

Lemma 5.4.9 A k-vertex has at least degree three.

Proof. Suppose for the sake of contradiction that there exists a k-vertex v, the intersection

point v of bisector βs, t and βs, u, which has degree two. This necessarily contradicts

112 Chapter 5. Distances on polyhedral surfaces

Lemma 5.4.8. 2

Lemma 5.4.10 The union of the k-cells having site si as one of the k closest sites, Usi,

is path connected.

Proof. Let us consider any two points p and q of U , shortest paths πp,si from p to si and

shortest path πsi,q from si to q. Path π = πp,si ∪ πsi,q connects p with q. Assume that

there exists a point t in πp,si ⊂ π that is not contained in Usi , then there exist k sites

closer to t than site si. The distance from any of these k sites s′j to p fulfills the following

inequality: dsj (p) ≤ ds′j (t) + dt(p) < dsi(t) + dt(p) = dsi(p). It contradicts the fact that p

has si as one of the k closest sites. 2

Lemma 5.4.11 Let Ck+1 be a (k + 1)-cell and Ck a k-cell, then Ck+1 * Ck.

Proof. Assume that, on the contrary, Ck+1 ⊂ Ck. Let SCk
and SCk+1

be the sets of

sites defining Ck and Ck+1, respectively. Since Ck+1 ⊂ Ck are a k + 1-cell and a k-cell,

respectively, there exists a site sk+1 such that SCk+1
= SCk

∪{sk+1}. If site sk+1 is located

in Ck, it is the closest site to some points of Ck and sk+1 ∈ SCk
reaching a contradiction.

Thus, sk+1 is not located in Ck. Let us consider the shortest path, π, from sk+1 to a point

p ∈ Ck+1 (see Figure 5.4). Due to the not degenerate position of the sites, path π contains

a point q in Ck \Ck+1. Point q is such that dsk+1
(p) = dq(p) + dsk+1

(q) and if the k + 1th

closest site to q is s′ 6= sk+1 then ds′(p) ≤ dq(p) + ds′(q) < dq(p) + dsk+1
(q) = dsk+1

(p),

thus s′ is closer to p than sk+1 getting a contradiction. 2

Figure 5.4: Cells Ck and Ck+1 are cells of a k-cell and a (k +1)-cell, respectively, π is the shortest

path from site sk+1 to a point p ∈ Ck+1.

Property 5.4.1 Each face of the order-(k + 1) Voronoi diagram contains an edge of the

order-k Voronoi diagram.

5.4. Voronoi diagram complexity 113

Proof. A face of the order-(k + 1) Voronoi diagram which does not contain any edge of

the order-k one is contained in a face of the order-k Voronoi diagram. This contradicts

Lemma 5.4.11. 2

5.4.3 Pathologies of order-k Voronoi diagrams.

5.4.3.1 Edges without vertices

Although the definition of edges and vertices resemble those of graphs embedded in P, the

situation may be quite different.

Lemma 5.4.12 There exist order-k Voronoi diagrams with edges that form closed curves

in P and are not adjacent to any vertex.

Proof. Let us consider a large plane with a truncated triangular pyramid on it, as shown

in Figure 5.5. The base of the pyramid is an equilateral triangle with edges of length l,

the edges of the top triangle are of length 0.9l and the pyramid height is 1000l. We place

a single site on the top of the truncated triangular pyramid and several sites on the plane:

one near the pyramid base and some other ones far from it, as in Figure 5.5a). The region

corresponding to the site on the top of the pyramid has no vertices and its edge is a closed

curve.

Another example is obtained by considering a prism with triangular base. Consider a

line ` parallel to an edge of the prism from one base to the other, as in Figure 5.5 b). We

place r sites on `, no pair of bisectors intersect and some of them define the boundary a

k-cell. Consequently k-cells may have closed curve edges without vertices. 2

We want to prove that there exist at most O(r) k-edges without vertices. This is

proved by showing that we have a different site s ∈ S in the interior of each such a region,

or equivalently that we can associate a different site to each such a region. All the edges

and bisectors considered in this section are k-edges without vertices that are defined by a

bisector.

In the following Lemmas we consider a set of bisectors B = {βi : i = 1 . . . l} defining

a chain of nested regions of the order-k Voronoi diagram (see Figure 5.6). Let Ri be the

interior of the region delimited by βi so that R1 ⊃ R2 ⊃ . . . ⊃ Rl and let Si be the set of

k closest sites to the points of the region Ri \Ri+1.

114 Chapter 5. Distances on polyhedral surfaces

a) b)

Figure 5.5: Example of: a) closest Voronoi diagram with a region, the one containing the points

of the truncated pyramid top, without vertices; b) order-3 Voronoi diagram with all the regions

without vertices.

a) b)

Figure 5.6: Nested regions of a order-k Voronoi diagram defining: a) a chain of bisectors B =

{β1, β2, β3}. b) two chains of closed bisectors B = {β1, β2, β3} and B′ = {β′1, β′2, β′3}.

Each bisector βi is defined by the equidistant points to sites si,1 and si,2, one of these

sites is contained in Ri and the other in its complementary.

Lemma 5.4.13 Given B, a chain of nested regions, let s be a site defining bisectors βi

and βj with i < j. Then site s is: a) located in Ri \Rj. b) in Sl for i ≤ l ≤ j − 1. c) does

not define any other bisector containing an edge.

Proof. Assume that s ∈ Rj , then necessarily s ∈ Sj and consequently s /∈ Sj−1, let Uj be

a neighborhood of βj , then s is one of the k-closest sites in Uj ∩Rj and it is not one of the

k-closest sites in Uj ∩Rc
j , where Rc

j is the exterior of Rj (Lemma 5.4.8). Analogously, let

Ui be a neighborhood of βi, then s is one of the k-closest sites of points either in Ui∩Ri or

Ui ∩Rc
i . In any of the two possible cases we obtain a non path connected region of points

having s as one of the k-closest sites, which contradicts Lemma 5.4.10. Thus, s can not

5.4. Voronoi diagram complexity 115

be contained in Rj . Therefore, s /∈ Sj and s ∈ Sj−1. If we assume that s is contained in

the exterior of Ri, and we proceed in a similar way we obtain a contradiction again. Thus,

s ∈ Ri \Rj , s /∈ Sj , s ∈ Sj−1 and s ∈ Si.

To prove that s ∈ Sl for i < l < j − 1 we proceed in the same way. We obtain, by

using Lemma 5.4.8, two not path connected regions containing s as one of the k-closest

sites. This contradicts Lemma 5.4.10 and proves item c). 2

Lemma 5.4.14 If region Ri contains l nested regions in its interior, it contains, at least,

l + 1 sites.

Proof. This result is proved by induction from l = 0 to l = h. When l = 0, region Ri

necessarily contains one of the two sites defining βi, thus Ri contains one site. Now we use

induction, assume that if Ri contains l = h− 1 regions and h sites. We prove it for l = h:

when region Ri contains h regions, it contains h + 1 sites. Let s be the site involved in

βi defining Ri, the biggest region, so that s ∈ Ri. If s has not been involved in any other

bisector delimiting a region interior to Ri, it is not in the h sites obtained by induction,

thus Ri contains h + 1 sites. If s is also involved in another bisector βj so that Rj ⊂ Ri,

site s ∈ Ri \ Rj (Lemma 5.4.13 a)), and s has not been counted yet, for being located in

the complementary of Rj . According to Lemma 5.4.13 c) no more possibilities exist, and

consequently Ri contains l + 1 sites. 2

Let us now consider two sets of closed bisectors B = {βi : i = 1 . . . h} and B′ = {β′i :

i = 1 . . . h′} defining two chains of nested regions of the order-k Voronoi diagram such

that there exist an integer i0 ≥ 1 with βi = β′i for i < i0 and Ri ∩ R′
i = ∅ for i ≥ i0 (see

Figure 5.6b))

Lemma 5.4.15 If region Ri contains l regions delimited by closed curve edges, then, Ri

contains l + 1 sites.

Proof. We consider B and B′, two sets of nested regions, having βi = β′i for i < i0 and

Ri0 ∩R′
i0 = ∅. According to Lemma 5.4.14, if region Ri0(/R′

i0
) contains hi0(/h′i0) regions,

it contains hi0 + 1(/h′i0 + 1) sites.

By using this notation R0 contains (i0 − 2) + (hi0 + 1) + (h′i0 + 1) = i0 + hi0 + h′i0
regions, thus it has to contain i0 + hi0 + h′i0 + 1 sites. Thus, we have to prove that apart

from the already counted sites, R0 contains i0 − 1 extra sites.

116 Chapter 5. Distances on polyhedral surfaces

This is proved by induction and considering each bisector βj = β′j for j = i0 − 1 to

j = 1. Let us start with j = i0 − 1 and let s be the site defining βj so that s ∈ Rj , we

show that site s has not been counted before, if: i) s does not define any other bisector βk

nor β′k with k > j, s has not been counted before (Lemma 5.4.14); ii) s defines one other

bisector βk, then s ∈ Rj \Rk (Lemma 5.4.13 a)) and we have only counted sites s defining

a bisector β so that s ∈ R (Lemma 5.4.14), thus s is not counted yet; iii) s defines one

other bisector β′k, it is analogous to case ii). iv) s defines two other bisectors βk and β′k′ ,

then, s ∈ (Rj \Rk)∩ (Rj \R′
k′) = Rj \ {Rk ∪R′′

k} (Lemma 5.4.13), since s can not define

any other bisector of B nor B′ (Lemma 5.4.13 b)) the same reasoning of ii) shows that s

has neither been counted yet.

The induction step uses exactly the same reasoning. Finally, by doing j = 0 we

obtained the remaining i0 − 1 more sites. 2

Combining Lemmas 5.4.14 and Lemma 5.4.15 we conclude the following proposition.

Proposition 5.4.1 There exist O(r) edges without vertices in a order-k Voronoi diagram.

2

For an example of a order-1 Voronoi diagram with O(r) cells see Figure 5.7 a). It

is obtained by using r − 1 truncated triangular pyramids with a site s on the plane and

one site on the top of each pyramid. The region corresponding to the site on the plane

contains all the points of the plane, and the regions of the other r − 1 sites are delimited

by edges without vertices. Several nested regions can be obtained by using the scheme

provided in Figure 5.7 b), order-k Voronoi diagrams with such regions can be obtained by

replacing the pyramids by prisms as it is done in Figure 5.5 and Lemma 5.4.12.

5.4.3.2 Path-connectivity of the cells

We want to show that order-k Voronoi diagrams in polyhedral surfaces are substantially

more complex than in the plane, and also more complex than closest Voronoi diagrams.

For example, the cells of order-k Voronoi diagrams in the plane or the cells of closest or

furthest Voronoi diagram in polyhedral surfaces are path-connected (Section 2.6.3.3). This

is not true for the general case.

Lemma 5.4.16 For any given k ≥ 2, there exists a polyhedral surface and a set of sites

such that the order-k Voronoi diagram has some disconnected cells.

5.4. Voronoi diagram complexity 117

a) b)

Figure 5.7: a) not nested cells without vertices. b) Concentric regions without vertices

Proof. We describe a polyhedral surface P embedded in 3-dimensional Euclidean space.

Consider three squares, Qi, i = 1 . . . 3, of sides of length 1.1, 1 and 0.9, respectively. They

are placed in planes parallel to the xy-plane, with their centers on the line x = y = 0,

and with their sides parallel to the x, y coordinate axis. Squares Q1 and Q3 are placed at

height zero and Q2 at height 1000. Let P be the polyhedral surface obtained by gluing

xy-plane minus the interior of Q1, the pyramid with base Q1 and Q2 (without the base),

the pyramid with base Q2 and Q3 (without the base), and the square Q3. Let ` be the

curve obtained by intersecting P with the vertical plane y = 0. See Figure 5.8a) for a

projection onto the xy-plane.

We place 3k point-sites along `, as follows. First, we place k sites in Q3, symmetrically

respect to its center. We then place k sites in each side of the portion of the xy-plane

outside Q1, distributed in four groups: Sl
1, Sl

2, Sr
1 and Sr

2 . Groups Sl
1, Sr

1 contain dk/2e
points, while groups Sl

2, Sr
2 contain bk/2c points. Within each group, the points are

regularly spaced at distance ε, where 0 < ε ¿ 1/k. The points Sl
1 are placed to the left of

Q1, along `, at distance ε from Q1, and set Sl
2 at distance 1 from Sl

1. We do the same on

the right of Q1 but placing Sr
2 closer to Q1 than Sr

1 (see Figure 5.8a)).

Consider the Voronoi region R having Sl
1 ∪ Sr

2 as closest sites. First, note that R

is nonempty because it contains the point (0, 1.1, 0) in its interior, and hence R is a

Voronoi cell of the order-k Voronoi diagram. However, no point on ` is in R, and since the

construction is symmetric, this means that R has at least two path-connected components.

118 Chapter 5. Distances on polyhedral surfaces

The construction for k = 2 is shown in Figure 5.8b) (xy-projection) and in 5.8 c) (3D

scene).

We can also obtain a polyhedral surface having the same properties by considering a

cube with two such constructions in two opposite faces. 2

a) b) c)

Figure 5.8: Example of a order-k Voronoi diagram with disconnected cells. a) general scene b)

a order-2 Voronoi diagram projected on the xy-plane, the disconnected cell is the red one and

corresponds to the two sites marked with a circle. c) the order-2 Voronoi diagram of figure b) on

the 3D scene.

5.4.4 Complexity of order-k Voronoi diagrams

For any given k, bounds for the complexity of all the order-i Voronoi diagrams together,

for i = 1 . . . k, are presented. We use a similar approach to the one provided by Clarkson

and Shor [30] and Sharir [135]. Let Bk be the number of k-breakpoints, and let B≤k be

the number of i-breakpoints for i = 1 . . . k. Similarly, let Vk be the number of vertices

Lemma 5.4.17 The complexity of the order-k Voronoi diagram is proportional to Bk+Vk.

Proof. Each edge that is not adjacent to a vertex (c.f. Lemma 5.4.12) contains some

breakpoints. Therefore, the number of k-edges that are not adjacent to any vertex is

bounded by Bk. The number of k-edges that are adjacent to some vertex is bounded by

O(Vk), as follows by applying Euler’s formula to the planar graph defined by the k-vertices

and the k-edges adjacent to some k-vertices. Finally, the number of k-cells is bounded by

the number of k-edges because of Euler’s formula. 2

5.4. Voronoi diagram complexity 119

Lemma 5.4.18 B≤k = O(kn(kn + r)) = O(k2n2 + knr) for any 1 ≤ k ≤ r − 1.

Proof. Draw a random sample R of S, by independently drawing each element of S with

probability p. We will set below p to an appropriate value. Let B(R) be the number of

breakpoints of the order-1 Voronoi diagram of R in P. From the bounds on the complexity

of order-1 Voronoi diagrams, we know that B(R) = O(n2 + |R|n). Since |R| follows a

binomial distribution, we have

E [|R|] = rp,

and therefore

E [B(R)] = O(n2 + nrp). (5.1)

Consider a breakpoint b in some j-edge e of the order-j Voronoi diagram of S. Let

s, s′ be the two sites defining the bisector that contains b. Note that a disk centered at b

and with radius ds(b) contains s, s′ and j − 1 sites, which we denote Sb. The point b is a

breakpoint in the order-1 Voronoi diagram of the random sample R if and only if s, s′ are

in R and any other of the j − 1 sites Sb are not in R. Therefore, the probability that b is

a breakpoint in the order-1 Voronoi diagram of R is precisely p2(1 − p)j−1. By linearity

of expectation we then have

E [B(R)] =
r−1∑

j=1

Bjp
2(1− p)j−1

≥ p2
k∑

j=1

Bj(1− p)j−1

≥ p2(1− p)k−1
k∑

j=1

Bj

= p2(1− p)k−1B≤k.

Manipulating and substituting equation (5.1) we see

B≤k ≤ E [B(R)]
p2(1− p)k−1

=
O(n2 + nrp)
p2(1− p)k−1

.

Finally, setting p = 1/k we obtain

B≤k = O

(
n2 + nr/k

(1/k)2(1− 1/k)k−1

)
= O

(
k2n2 + knr

)
,

where we have used that

1
(1− 1/k)k−1

=
(

k

k − 1

)k−1

≤ e.

2

120 Chapter 5. Distances on polyhedral surfaces

Lemma 5.4.19 We have V≤k = O(k2r) for any 1 ≤ k ≤ r − 1.

Proof. This proof is very similar to the previous. Draw a random sample R from S, by

independently drawing each element of S with probability p. Let V (R) be the number

of vertices of the order-1 Voronoi diagram of R in P. From the known bounds we have

V (R) = O(|R|) = O(rp).

Consider a j-vertex v, and let s1, s2, s3 be the three sites defining v: v is in the

intersection of the bisectors β12, β13, β23. A disk centered at v and with radius ds1(v)

contains s1, s2, s3 and possibly some other sites, which we denote by Sv. The cardinality

of Sv is either j− 2 or j− 1. The point v is a vertex in the order-1 Voronoi diagram of the

random sample R if and only if s1, s2, s3 are in R and any other of the sites Sv are not in

R. Therefore, the probability that b is a breakpoint in the order-1 Voronoi diagram of R

is precisely p3(1− p)|Sv | ≥ p3(1− p)j−1. By linearity of expectation we then have

E [V (R)] =
r−2∑

j=1

Vjp
3(1− p)j−1

≥ p3
k∑

j=1

Vj(1− p)j−1

= p3(1− p)k−1V≤k.

Like in the previous proof, we manipulate, substitute V (R) = O(rp), and set p = 1/k to

get

V≤k ≤ E [V (R)]
p3(1− p)k−1

=
r/k

(1/k)3(1− 1/k)k−1
= O(k2r).

2

Combining Lemmas 5.4.17–5.4.19 we can conclude our main result:

Theorem 5.4.2 Let P be a polyhedral surface with n triangles, let S be a set of r sites,

where each site is either a segment or a point in P, and let k be an integer 1 ≤ k ≤
r − 1. The complexity of all the order-i Voronoi diagrams of S together for i = 1 . . . k is

O(k2n2 + k2r + knr). 2

5.4.4.1 Discussion

In the plane, where n = O(1), it is known that the order-k Voronoi diagram of r has

complexity Ω(k(r − k)) [92, 145]. If we add the complexity of all the order-i Voronoi

5.4. Voronoi diagram complexity 121

diagrams for i = 1 . . . k, we obtain that the total complexity is Ω(rk2). Thus, the bound

in Theorem 5.4.3 is tight when term k2r dominates.

We can build an example with complexity O(krn). We consider two symmetric semi-

circles each of which contains r/2 sites as is shown in Figure 5.9 a) and a triangulation

placed as the one in Figure 5.9 b). Each order-i Voronoi diagram has r − 2 edges-i that

intersect O(n/8) triangles. Consequently the total complexity is Ω(knr) and the bound

in Theorem 5.4.3 is tight when term knr dominates.

a) b)

Figure 5.9: a) A set of 18 red sites and their closest, order-2, order-3 and furthest Voronoi

diagrams. b) The previous set of sites with their Voronoi diagrams and a triangulation producing

O(knr) breakpoints.

We have not been able to find an example with complexity O(n2k2). We have only

been able to provide lower bounds to show that the total complexity of the order-k Voronoi

diagrams of generalized sites on a polyhedral surface is Ω(k2r+krn). We have also proved

that the furthest Voronoi diagram has complexity Ω(rn2).

5.4.5 Complexity of order-k Voronoi diagrams on Realistic Terrains

As we have already said a terrain is a special polyhedral surface, it can be transformed

to a polyhedral surface by using a technique provided in Section 2.4.4. However, in this

section, we are interested in the complexity on a realistic terrain. Thus, we only count

the vertices, edges or breakpoints not placed on the original terrain. As we show, when

considering realistic terrains we can reduce some bounds related to the complexity of the

Voronoi diagrams.

122 Chapter 5. Distances on polyhedral surfaces

Lemma 5.4.20 The shortest path from a generalized source s to a point on a realistic

terrain crosses O(
√

n) faces.

Proof. Let πs,p be the shortest path from the generalized site s to point p and q = πs,p∩ s.

Since πs,p is the shortest path from point q to point p it traverses up to O(
√

n) faces

(Section 2.4.3). 2

Lemma 5.4.21 The number of breakpoints of a bisector between two generalized sites on

a realistic terrain is O((n + r̃)
√

n).

Proof. Let βi,j be the bisector defined by sites si and sj , and p and q two consecutive

points whose shortest paths to the sites cross a different sequence of triangle edges. Notice

that these points have two shortest paths that go from the sites to them. There may

exist up to O(n+ r̃) such points. The part of the bisector joining p to q intersects at most

O(
√

n) triangles. This is proved in the same way that Moet et al. proved the result for the

special case of point sites [106]. Let us consider Πsi,p, Πsi,q, Πsj ,p, and Πsj ,q, the shortest

paths from si and sj to points p and q. If there exits more than one shortest path those

enclosing smallest area are considered. Since Πsi,p, Πsi,q are the shortest path from points

p and q to a point of si and sj , respectively, they cross O(
√

n) triangles (Section 2.4.3).

Points p and q are two consecutive points of βi,j where the edges crossed by the shortest

path change, thus, in the enclosed area by the paths there are no terrain vertices and the

bisector also intersects O(
√

n) triangles. 2

Proposition 5.4.2 The closest Voronoi diagram of a set S of r generalized sites defining

r̃ line segments has complexity O((n + r̃)
√

n).

Proof. Shortest paths from a segment source can be homeomorphicaly transformed to

shortest paths from three points representing the two segment endpoints and the segment

interior. Moet et al. (Section 2.6.3.2) proved that when r̃ point sources are considered

there are O(n + r̃) discontinuity points, points where there exists a discontinuity on the

edge sequence traversed by shortest paths. Since each segment delimited by two such

points intersects O(
√

n) triangles, the complexity of the is O((n + r̃)
√

n). 2

The Voronoi diagram of a set of r sites on a Realistic terrain has complexity O((n +

r)
√

n) (Section 2.6.3). Considering this bound the provided Lemmas and the Theorem for

the special case of a realistic terrain are the following ones.

5.5. Conclusions 123

Lemma 5.4.22 We have B≤k = O(k
√

n(kn + r)) for any 1 ≤ k ≤ r − 1.

Proof. This proof is analogous to proof of Lemma 5.4.18 considering B(R) = O(n
√

n + |R|√n).

Since |R| follows a binomial distribution, we have E [|R|] = rp
√

n, and therefore

E [B(R)] = O(
√

n(n + rp)). (5.2)

By using the reasoning provided in Lemma 5.4.18 we have that

E [B(R)] = p2(1− p)k−1B≤k.

Manipulating, substituting equation (5.2) and setting p = 1/k we obtain

B≤k = O

(
n
√

n +
√

nr/k

(1/k)2(1− 1/k)k−1

)
= O

(
k2n

√
n + kr

√
n
)

= O(k
√

n(kn + r)).

2

The number of vertices is not modified so the following lemma can be given

Lemma 5.4.23 We have V≤k = O(k2r) for any 1 ≤ k ≤ r − 1 when a realistic terrain is

considered.

Combining Lemmas 5.4.22–5.4.22 we can conclude the following theorem.

Theorem 5.4.3 Let P be a realistic terrain with n triangles, let S be a set of r sites,

where each site is either a segment or a point in P, and let k be an integer 1 ≤ k ≤
r − 1. The complexity of all the order-i Voronoi diagrams of S together for i = 1 . . . k is

O(k
√

n(knr) + k2r). 2

5.5 Conclusions

We have presented an algorithm for computing exact shortest paths from generalized

sources (point, segment, polygonal line and polygon sources) on triangulated polyhedral

surfaces with several generalized obstacles. The algorithm takes O(n(n + r̃) log(n + r̃))

time and O(n(n+ r̃)) space, where r̃ is the number of segments conforming the generalized

source. The algorithm is extended to the case of several generalized sites when their

implicit distance field is obtained in O(n(n + r̃) log(n + r̃)) time and O(n(n + r̃)) space

124 Chapter 5. Distances on polyhedral surfaces

where r̃ is the total number of segments conforming the generalized sites. The output of

algorithm is a codification of the distance function or distance field. From this codification

the distance from a point on P to the site and the actual shortest path can be obtained

in O(n + r̃ + n) time, where n is the number of faces the path goes through. We can also

obtain the shortest path distance and the actual shortest path to the closest site of a set

S in in O(n + r̃ + n) time.

We want to mention that the algorithm of Chen and Han, a typical algorithm for

computing exact shortest paths on polyhedral surfaces, can also be adapted to support

generalized sites without increasing the time and storage complexity of the original algo-

rithm. This algorithm works when the one angle one split observation holds, and it holds

when generalized sites are considered.

Finally we provide a theoretical study of high-order Voronoi diagrams of a set of gen-

eralized sources a polyhedral surface P. We generalize some basic properties of order-k

Voronoi diagrams such as that a k-cell and can not contain a (k+1)-cell, or that a k-vertex

has at least degree three. We prove that the furthest Voronoi diagram has O(r) path con-

nected cells. We then present some pathologies of order-k Voronoi diagrams, for instances:

two bisectors may cross more than twice, there exist up to O(r) k-cells without vertices,

and k-cells ar not necessarily path-connected. Concerning general polyhedral surfaces we

end with a study the complexity of the order-k Voronoi diagrams by using a probabilistic

proof which is O(k2n2 + k2r + krn) and Ω(krn + rk2). This section is ended by providing

some bounds and properties of shortest paths and Voronoi diagrams of arbitrary order

on realistic terrains which can be considered as a special case of triangulated polyhedral

surfaces.

Chapter 6

Weighted distances on polyhedral

surfaces

In this chapter, the problem of computing approximate distance functions from a gener-

alized source on a possibly non-convex weighted polyhedral surface P with obstacles is

addressed.

We present an algorithm to compute (1+ε)-approximate weighted shortest paths, and

consequently, the distances from a generalized source (point, segment, polygonal chain or

polygonal region) on a non-convex weighed polyhedral surface in which polygonal chain

or polygon obstacles are allowed (Section 6.1). The algorithm easily extends to the case

of several sources providing their distance field, which intrinsically encodes the closest

Voronoi diagram of the set of generalized sites (Section 6.2). From the implicit represen-

tations, the distance or the shortest path to any point p ∈ P is obtained (Section 6.3).

Finally we end with some conclusions (Section 6.4). Algorithms described in this chapter

are implemented and implementation results are presented in Chapter 7 (Section 4.5).

Let P be a possibly non-convex polyhedral surface represented as a mesh consisting

of n triangular faces f1, . . . , fn with associated positive weights w1, . . . , wn, respectively,

with wi ≥ 1. The weight associated with an edge is the minimum of the weights of the

two neighboring faces. The cost of a path Π on P is defined as ‖Π‖ =
∑n

i=1 wi|Πi|,
where |Πi| denotes the Euclidean length of the path lying in face fi. Notice that a non-

weighted polyhedral surface can be considered a weighted polyhedral surface with wi = 1

for i = 1 . . . n.

125

126 Chapter 6. Weighted distances on polyhedral surfaces

6.1 Implicit distance function computation

We compute (1 + ε) approximate distance functions for generalized sources by extending

the weighted discrete graph and the Bushwack strategy proposed by Sun and Reif [143] to

handle generalized sources. Sun and Reif use Bushwhack strategy to compute distances

from a vertex source to the graph nodes, on a graph that provides (1 + ε)-approximate

weighted shortest paths from a source vertex to any vertex.

Bushwack strategy (Section 2.6.2.4) can only be used if two shortest path do not

intersect in the interior of a face. This strategy tracks and keeps together groups of

shortest paths by partitioning each face edge into a set of (discrete) intervals so that all

the shortest path that cross an interval have the same structure. Given two edges e and

e′ of a face f and v a node on e, interval Iv,e,e′ codifies the shortest paths emanating from

node v to nodes on edge e′ and the distance they define, for further details see Section

2.6.2.4. Node v, also denoted Is, is called the virtual source of interval Iv,e,e′ .

We start this section by describing our discretization scheme which provides (1 + ε)-

approximate distances from a point or segment source to a graph node. Next, we show

that the Bushwack strategy can be used for the case of a point source in general position

and for a segment source. We consider polygonal line and polygon sources and end by

placing generalized obstacles on the surface.

6.1.1 Discretization scheme

We define a logarithmic discretization scheme which places Steiner points on the edges of

the triangulated polyhedral surface P according to a given parameter 0 < ε ≤ 1. The

scheme we propose adapts the one provided by Sun and Reif [143] to take into account a

point or segment source s which is not necessarily a vertex nor an edge.

We start with some definitions and notation. We denote E the set of edges of P, f

a face, e an edge, v a vertex and x an arbitrary point. We define F (f) as the union of

the faces without empty intersection with f , face f included, F (x) as the union of the

faces containing point x. Let E(x) denote the set of edges containing x and S(x) the set

of sources contained in F (x) \ {x}. In the current case S(x) will be empty or {s}. Let

Dx be the minimal distance between x and S(x) ∪ E \ E(x), De = sup{Dv|v ∈ e} and

Dve = D(e). For each point x we define the radius r′(x) to be Dx/5, and the weighted

radius r(x) of x to be wm
wM

r′(x), where wm, wM are the minimal and maximal weights of

6.1. Implicit distance function computation 127

the faces in F (x). Notice that these radius take into account not only the proximity of the

edges in E \E(x) but also the proximity of s to x, when x is in F (s). Finally V (x) is the

vicinity of point x. Vicinity V (x) is defined as having radius rε(x) = εr(x). It contains all

the points around x at a distance of at most rε(x). When instead of a point x, a source s

is considered F (s), S(s), E(s), Ds, r′(s), r(s), V (s) and rε(s) are analogously defined.

Steiner points are placed on the edges of P considering that source s and each vertex

v has a vicinity. For a given vertex vi Steiner points vi,1, vi,2, . . . , vi,ki are on edge e = vivj

and outside the vicinities. They are chosen according to the following criteria:

- When e is not in F (s), the first node is placed so that |vivi,0| = rε(vi), the rest using

the equality |vi,kvi,k+1| = ε Dvi,k
, until placing vi,ki where vi,kivi + ε Dvi,ki

≥ |vive|.

- When e ∈ F (s) we take into account the vicinity of s, V (s). If e ∩ V (s) = ∅ we

proceed as in the previous case. Otherwise, when e ∩ V (s) 6= ∅, e \ V (s) defines

two subedges viv and vvj , since we are considering vi we choose Steiner points on

e′ = viv. Steiner point vi0 is placed so that |vivi,0| = rε(vi), Steiner points for

i = 1 . . . ji so that |vi,kvi,k+1| = ε Dvi,k
until k = ji where vi,jiv + εDvi,ji

≥ |vi, ve′ |.
The rest of the points are placed considering endpoint v, Steiner point vi,ki = rε(v),

for k = ki . . . ji + 1 according to |vi,kvi,k+1| = Dvi,k
until vi,ji+1v + εDvi,ji+1 ≥ |v, ve′ |.

Lemma 6.1.1 The number of Steiner points placed on each edge is in O
(

1
ε log 1

ε

)
.

Proof. The logarithmic scheme places O(1
ε log 1

ε) Steiner points per edge. The hidden

constant when the first case is considered is C(e) = O

(
|e|
De

log |e|√
r(v1)r(v2)

)
. When the

second case is used the constant becomes C(e) = O

(
(De′+De′′)|e|

De′De′′
log |e|√

r(v1)r(v2)

)
where e′

and e′′ are the sub-edges defined by e \ V (s).

2

A graph whose nodes are the vertices of P and the Steiner points is built. Graph

edges consist of face-crossing segments joining pairs of Steiner points of the same face,

and edge-using segments joining consecutive nodes along an edge (see Figure 6.1), and

each vertex v to the first node of the edges having v as incident vertex.

Notice that when s is a vertex, this scheme is the logarithmic scheme provided by Sun

and Reif [143]. We will prove that we have adapted the logarithmic scheme to guarantee

128 Chapter 6. Weighted distances on polyhedral surfaces

Figure 6.1: Steiner points on two surface faces with the edges emanating from node v.

an (1 + ε)-approximate shortest path from a point or source s to the graph nodes with s

in an arbitrary position. In this chapter we will show that this scheme, can be used to

handle any generalized source.

In Figure 6.2 we show a triangulated polyhedral surface representing mushroom. The

polyhedral has 448 faces, we have considered ε = 0.5 and the figure shows the Steiner

points obtained by using this discretization scheme. Faces are painted in a blue gradation

according to the face weight. Green faces have weight around one and blue faces around

five.

a) b)

Figure 6.2: Steiner points on the faces of a triangulated polyhedral surface representing a mush-

room.

6.1.1.1 Approximation analysis

We are interested in bounding the committed error when using the graph presented in

Section 6.1.1 to compute weighted distances from s: a point source in arbitrary position

6.1. Implicit distance function computation 129

or a segment source. With this aim different Lemmas are presented.

From now on we denote w̃ and w′, the largest and smallest weight of the faces of P
and we assume ε ≤ 1.

Lemma 6.1.2 For any path p from source s ∈ fs to node t ∈ ft, which does not intersect

the vertex vicinities of ft, there is a normalized path p̂ so that ||p̂|| = (1 + ε
2)||p||.

Proof. Assume that p passes through a vertex vicinity, V (v). We distinguish between two

situations depending on whether v is a vertex of fs or not (See Figure 6.3).

A) Let us assume that v is a vertex of fs. We denote u1, u2, the first bending point of

p in V (v) and u′′2 the last bending point of p in F (v) (See Figure 6.3 a)). By using

the definition of Dv and the fact that the radius of V (v) is ε
5Dv we obtain:

On the one hand, that |p[u′′2, u2]| + |u2v| ≥ |u′′2v| ≥ Dv and |p[u′′2, u2]| ≥ Dv − εDv
5

for being |u2v| ≤ εDv
5 . Therefore,

|u2v|
|p[u′′2, u2]| ≤

ε ·Dv/5
Dv − ε ·Dv/5

=
ε

5− ε
≤ ε

4
(1)

On the other hand, that |p[s, u1]| + |u1v| ≥ |sv| ≥ Dv and p[s, u1]| ≥ Dv − εDv
5 for

being |u1v| ≤ εDv
5 . Therefore,

|u1v|
|p[s, u1]| ≤

ε ·Dv/5
Dv − ε ·Dv/5

=
ε

5− ε
≤ ε

4
(2)

We denote r1(/r2) the region with minimum weight traversed by p[s, u1](/p[u2, u
′′
2])

and u′1(/u
′
2) the last point of p in r1(/r2). Notice that u′1 may be s. Finally we denote

wr1(/wr2) the weight of r1(/r2) (See Figure 6.3 a)). Let us consider the normalized

path p̂[s, u′′2] = {p[s, u′1], u′1v, vu′2, p[u′2, u
′′
2]}. By comparing the costs of p̂[s, u′′2] and

p[s, u′′2] and using inequalities (1) and (2) we obtain that:

||p̂[s, u′′2]|| − ||p[s, u′′2]|| = wr1 |u′1v|+ wr2 |vu′2| − ||p[u′1, u1]|| − ||p[u1, u2]|| − ||p[u2, u
′
2]||

≤ (wr1 |u′1v| − ||p[u′1, u1]||) + (wr2 |vu′2| − ||p[u2, u
′
2]||)

≤ wr1 |u1v|+ wr2 |vu2| ≤ wr1

ε

4
|p[s, u1]|+ wr2

ε

4
|p[u2, u

′′
2]|

≤ ε

4
||p[s, u1]||+ ε

4
||p[u2, u

′′
2]|| ≤

ε

4
||p[s,u

′′
2]||

130 Chapter 6. Weighted distances on polyhedral surfaces

Therefore,

||p̂[s, u′′2]|| ≤ (1 +
ε

4
)||p[s, u′′2]|| (3)

B) Now, we assume that v is not a vertex of fs. We proceed in a similar way. Let u′′1,

and u′′2 be the first and last bending points of p in F (v) (See Figure 6.3 b)). Point

u′′1 plays the role of s, so we define p̂[u′′1, u
′′
2] = {p[u′′1, u

′
1], u

′
1v, vu′2, p[u′2, u

′′
2]} (Figure

6.3 b)). It can be proved that

|u1v|/|p[u′′1, u1]| ≤ ε

4
(4)

(equivalent to (1)), again using the same reasoning, a result equivalent to (3) is

obtained:

||p̂[u′′1, u
′′
2]|| ≤ (1 +

ε

4
)||p[u′′1, u

′′
2]|| (5)

Assume that p passes through l vertex vicinities, V (v1), V (v1), . . . , V (vl). For each

vertex we replace the subpath pi of p that passes through V (vi) for the normalized path p̂i.

Using the correspondent inequality ((3) or (5)) for each vicinity, we find that ||p̂|| ≤ ||p||+ ε
4∑l

i=1 ||pi|| ≤ (1 + ε
2)||p||. 2

Notice that in the previous Lemma we have used a vertex vicinity V (x) of radius εr′(v).

However, we have defined vicinities of radius εr(v) = ε wm
wM

r′(v) which is necessary in the

following Lemma.

Lemma 6.1.3 For any path p from source s ∈ fs to node t ∈ ft there is a normalized

path p̂ so that ||p̂|| = (1 + ε
2)||p||.

Proof. Assume that p passes through a vertex vicinity, V (v). In Lemma 6.1.2 we have

studied the cases when v is not a vertex of ft, thus we assume that v is a vertex of ft. By

using the notation introduced in Lemma 6.1.2 we define the normalized path p̂[u′′1, t] =

{p[u′′1, u
′
1], u

′
1v, vu′2, p[u′2, t]} (See Figure 6.3 c)). In this case |vu2|+|p[u2, u

′′
1]| ≥ |vu′′1| ≥ Dv

and |p[u2, u
′′
1]| ≥ Dv − εDv

5 for being |vu2| ≤ ε wm
wM

Dv
5 . Therefore,

|u2v|
|p[u2, u′′1]|

≤ ε · wm/wM ·Dv/5
Dv − ε ·Dv/5

=
wm

wM

ε

5− ε
≤ wm

wM

ε

4
(6)

Let us now bound ||p̂[u′′1, t]|| − ||p[u′′1, t]||, by proceeding as in Lemma 6.1.2 and using

inequalities (4) and (5):

6.1. Implicit distance function computation 131

||p̂[u′′1, t]|| − ||p[u′′1, t]|| ≤ . . . ≤ wr1 |u1v|+ wr2 |vu2|
≤ wr1

ε

4
|p[u′′1, u1]|+ wr2

wm

wM

ε

4
|p[u′′1, u2]|

≤ ε

4
||p[u′′1, u1]||+ wm

wM

ε

4
wr1

min(wr1 , wr2)
||p[u′′1, u2]||

≤ ε

4
||p[u′′1, t]||.

Therefore,

||p̂[u′′1, t]|| ≤ (1 +
ε

4
)||p[u′′1, t]|| (7)

If path p passes through l vertex vicinities, V (v1), V (v1), . . . , V (vl), then for each

vertex, we replace the subpath pi of p that passes through V (vi) for the normalized path

p̂i. Using the corresponding inequality ((3),(4) or (7)) for each vicinity we find that

||p̂|| ≤ ||p||+ ε

4

l∑

i=1

||pi|| ≤ (1 +
ε

2
)||p||.

2

a) b) c)

Figure 6.3: A subpath of path p from s ∈ fs to t ∈ ft in red, in dashed green a normalized path

p̂ and in blue a path on the graph. Path p goes through vertex vicinity V (v), where v is: a) a

vertex of the face containing s; b) a vertex of a face not containing s nor t. c) a vertex of a face

containing t.

Theorem 6.1.1 The obtained graph contains a (1 + 3ε)-approximation of the shortest

path Π from point source s to an arbitrary node t.

Proof. According to Lemma 6.1.3 a normalized path Π̂ such that ||Π̂|| ≤ (1 + 1
2ε)||Π||

exists.

132 Chapter 6. Weighted distances on polyhedral surfaces

Let v = v1v2 be a segment of Π̂ contained in a face f . Endpoint v1(/v2) of v1v2 is on a

segment u1,1, u1,2(/u2,1, u12,2) which is delimited by either two Steiner points or a vertex

and a Steiner point. They are named a pure Steiner segment and a half Steiner segment,

respectively. Segments conforming Π̂ belong to one of the following three categories:

(1) Both endpoints are on pure Steiner segments; (2) An endpoint is on a pure Steiner

segment and the other on a half Steiner segment; (3) Both endpoints are on half Steiner

segments. For each of the three cases, it can be proved that |u1,i, u2,j | ≤ (1 + 2ε)|v1v2| for

i, j ∈ {1, 2}:
|v1v2| ≤ |v1u1i|+ |u1iu2j |+ |u2jv2| ≤

≤ ε|v1v2|+ |u1iu2j |+ ε|v1v2| = |u1iu2j |+ 2ε|v1v2|.

Consequently, we can construct a path Π′ such that

||Π′|| ≤ (1 + 2ε)||Π̂|| ≤ (1 + 2ε)(1 +
ε

2
)||Π|| ≤ (1 +

5ε

2
)||Π||.

2

6.1.2 From point source to node

Let us consider an arbitrary point source s in a face of P. We provide a way to obtain

approximate shortest paths from s to any node of the graph considering the discrete graph

presented in Section 6.1.1 by adapting the Bushwack strategy.

6.1.2.1 Distance function propagation

We have proved that the obtained graph provides (1+ε)-approximate shortest paths from

a point source s to the graph nodes. The fastest way to compute distances on discrete

graphs is by using Bushwack strategy. However, this strategy can only be used when

shortest paths do not intersect in the faces interior.

Since according to Property 2.6.5 (Section 2.6.2), two shortest paths originating from

the same source point cannot intersect in the interior of any face, we can use Bushwhack

strategy to compute distances from a point source s.

Now s is not a vertex, thus, we have to adapt the initialization step where intervals

Is,−,e associated to the source s are created. These intervals encode distance function ds of

source s, on the edges e of the triangle(s) containing s. Bushwack strategy propagates the

distance function across mesh triangles in a lazy and best-first propagation scheme. When

6.1. Implicit distance function computation 133

a node v on an edge e is first visited, several intervals Iv,e,e′ are created, with e′ opposite to

v when v is a vertex or adjacent to e otherwise. Interval Iv,e,e′ contains those contiguous

nodes of e′, whose shortest path from s to v′ ∈ I(v, e, e′), may use node v before arriving

at v′ via an edge-using or face-crossing segment contained on the face determined by e′

and v (See Figure 6.4).

Figure 6.4: A point source s with approximate shortest paths to vertices v1, . . . , v5 and the interval

Iv3,e,e′ associated to v3.

According to the observations given in this section, we can use Bushwack strategy

whose complexity is O(mn log(mn)) time and O(mn) space when we consider a surface

with n edges and m nodes per edge. Thus according to Lemma 6.1.1 and Theorem 6.1.1

we state the following Theorem.

Theorem 6.1.2 (1 + 3ε)-approximate distances from a point source s to the graph nodes

can be obtained in O(mn log(mn)) time and O(mn) space, where m ∈ O(1
ε log 1

ε). 2

6.1.3 From segment source to node

Let us now consider a segment source s on P. We compute approximate weighted distances

from s to P building the graph by using the provided discretization scheme. We show

that we obtain (1 + ε)-approximate distances which can be computed by using Bushwack

strategy.

We use the discretization scheme presented in Section 6.1.1. It is important to note

that Ds is the minimal distance between s and the edges of P that do not intersect s. This

134 Chapter 6. Weighted distances on polyhedral surfaces

is used to define the radius of V (s), the vicinity of s, which is rε(s) = ε wm
wM

Ds
5 . Given point

x, Dx is the minimal distance between x and S(x) ∪ E \ E(x), where S(x) = {s} \ {x}
when s ∈ F (x) or S(x) = ∅, otherwise. Consequently the discretization scheme takes into

account the proximity of segment s and provides a (1 + 3ε)-approximation of the optimal

path from the segment source s to a node t.

6.1.3.1 Distance function propagation

Again, to be able to compute approximate shortest paths by using the Bushwhack strategy,

we have to prove that two shortest paths from s to arbitrary points on P do not intersect

in the interior of a face (Lemma 6.1.4) and adapt the initialization step where we create

intervals on the edges of the face(s) containing s. Notice that these intervals will contain

both edge-using and face-crossing segments from s to the nodes. Each node will be joined

to the point of s defining minimum distance. Consequently, in the faces containing f we

can find two different types of edges: those emanating from the endpoints of s and the

rest that are perpendicular to segment s (See Figure 6.5).

Figure 6.5: Shortest paths from the orange segment source s ∈ fs to some green nodes on fs.

Lemma 6.1.4 Let s be a segment source and p, p′ two points of P. Denote Πs,p and Πs,p′

the shortest paths from s to p and to p′, respectively. Shortest paths Πs,p and Πs,p′ do not

intersect in the interior of any face, except for in s.

Proof. To prove the lemma, we will assume that Πs,p and Πs,p′ intersect in a point

q /∈ s in the interior of a face f . We will define two new paths Π′s,p and Π′s,p′ such that

||Π′s,p||+ ||Π′s,p′ || < ||Πs,p||+ ||Πs,p′ ||, this contradicts the fact that Πs,p and Πs,p′ shortest

paths. Let v1 and v2 be the intersection points of Πs,p with f (v1 closer to s than v2).

Points v′1 and v′2 are analogously defined for Πs,p′ . In Figure 6.6 we can easily see that if we

define two new paths replacing the segments containing q (the shortest path intersection

point) for the dotted segments, we obtain two paths Π′s,p = {Πs,v1 , v1v′2, Πv′2,p′} and Π′s,p′ =

{Πs,v′1 , v
′
1v2, Πv2,p} fulfilling the previously mentioned inequality. In fact, if w is the weight

6.1. Implicit distance function computation 135

of f , ||Πs,p|| = ||Πs,v1 ||+w|v1v2|+||Πv2,p||, and ||Πs,p′ || = ||Πs,v′1 ||+w|v′1v′2|+||Πv′2,p′ ||. Since

|v1v2|+ |v′1v′2| > |v1v
′
2|+ |v′1v2|, then ||Πs,p||+ ||Πs,p′ || > ||Π′s,p||+ ||Π′s,p′ ||. Consequently,

two shortest paths can not cross in the interior of a face f . 2

a) b)

Figure 6.6: Shortest paths from segment source s to points p and p′, when p and p′ are closer to:

a) the same point of s. b) different points of s.

We can use Bushwack strategy (Lemma 6.1.4) to compute distances from s on the

graph to provide (1 + 3ε)-approximate distances (Theorem 6.1.1). The complexity of

Bushwack strategy is O(mn log(mn)) time and O(mn) space when we consider a surface

and n edges with m nodes per edge with m ∈ O(1
ε log 1

ε) (Lemma 6.1.1). Therefore, the

following Proposition can be stated.

Proposition 6.1.1 We can obtain a (1 + 3ε)-approximate distance defined by a segment

source s in O(mn log(mn)) time and O(mn) and space, where m ∈ O(1
ε log 1

ε). 2

6.1.4 From polygonal line source to node

The distance function defined by a polygonal chain s defined by r′ segments, is obtained

by considering s as the union of all the segments si defining it. In this case we define a

vicinity around s as the union of the vicinities of the segments defining s.

The discretization scheme follows the same guidelines. However, now V (s) may inter-

sect two or more times the same edge e. Consequently when we consider e \ V (s) we can

obtain more than two sub-edges, and some of them are not incident to a vertex of P. In

subedges e′ = uv not incident to a vertex we place one Steiner point at each endpoint u

and v and then we use the logarithmic scheme along e′ using first u and next v, in both

136 Chapter 6. Weighted distances on polyhedral surfaces

cases until we get point ve′ (See Figure 6.7). All the Steiner points on these edges should

be placed the first time that e is considered.

a) b)

Figure 6.7: a) A polygonal line source intersecting an edge e, in dark blue, nine times. b) Detail

of subedge i2i3 with its corresponding Steiner points.

Consequently, when s intersects r′-times edge e, we obtain r′ + 1 subedges and we

place O(1
ε log 1

ε) nodes per subedge. The total number of Steiner points in this case is

O(r′ 1ε log 1
ε). This result is stated in the following Lemma.

Lemma 6.1.5 The number of Steiner points generated on an edge intersected r′ times by

the Vicinity of s is O(r′ 1ε log 1
ε) Steiner points. 2

We assume that the intersection between s and the edges of P is computed when s is

placed on P. By properly storing the intersection points, the r′ subedges can be obtained

in O(r′) time. Previously proved results related to normalized paths remain true, and

therefore we can provide the following Theorem.

Theorem 6.1.3 The graph contains a (1 + 3ε)-approximation of any optimal path from

a polygonal line source s to a node t. 2

A polygonal region s is a connected region of P whose boundary, ∂s, is a closed

polygonal chain. The distance defined by s is 0 in s and the distance function defined

by ∂s in P \ s. Therefore, the distance defined by a polygonal region can be computed

considering the polygonal line source defining its boundary and propagating its distance

to P \ s and giving distance 0 in s. This is summarized in the next result.

Observation 6.1.1 The distances from a polygonal region s can be computed by consid-

ering its boundary polygonal line ∂(s). 2

6.1. Implicit distance function computation 137

6.1.4.1 Distance function propagation

We will show that any two shortest paths from s to two different points of P can not

intersect in the interior of any face, except in a point of s.

Lemma 6.1.6 Let s be a polygonal line source and p, p′ two points of P. The shortest

paths from p, p′ to s do not intersect in the interior of any face, except for perhaps in s.

Proof. A polygonal line s can be seen as a set of segment sources, with the segments

defining the polygonal line. Lemma 6.2.2 in the next section proves that two shortest

paths emanating from different generalized sources of a set of sources S do not intersect in

the interior of a face except for in S. The proof of the current Lemma is analogous to that

one considering a set S containing only the segments conforming the polygonal source s.

2

Therefore, we can use Bushwack strategy by adapting the initialization step where we

consider each segment si conforming the polygonal line s independently. Let s1, . . . , sk

b the segments conforming s. We create intervals Isi,−,e′ containing the nodes closer to

si than to any other already considered segment sj , j < i. When a new segment sj is

considered the previously computed intervals may be modified which is what happens

during the propagation step.

This method can also be used to compute distances from a polygonal region according

to Observation 6.1.1. When considering a polygonal region, in the initialization step we

will only define intervals in P \ s.

Thus by using Lemma 6.1.6, Lemma 6.2.1 and making the logical assumption that the

polygonal s intersects each edge a constant number of times, we can state the following

Proposition.

Proposition 6.1.2 We can obtain a (1+3ε)-approximate distance defined by a polygonal

line or polygon source s in O(mn log(mn)) time and O(mn) space, where m ∈ O(1
ε log 1

ε).

2

6.1.5 Polygonal obstacles

Given the polyhedral surface P, with obstacles represented as several surface faces, edges

and vertices (Section 5.1.3), we can adapt the algorithm to compute approximate weighted

138 Chapter 6. Weighted distances on polyhedral surfaces

shortest paths that can go along obstacle edges, but not through them. Obstacle edges

have their nodes duplicated somehow. A copy of the nodes is used for each face. The

shortest path arriving at a node on an obstacle edge can not go through the edge. It can

only be propagated along the edge or back to the face it comes from. Thus the only thing

that we have to change are the edges of the obtained graph.

These modifications do not affect the discretization scheme nor the proofs of the pro-

vided Lemmas. Consequently we can state the following Theorem which summarizes the

results obtained until now, assuming 0 < ε ≤ 1 and that source s intersects each edge a

constant number of times, if it is not on an edge.

Theorem 6.1.4 Let P be a weighted triangulated polyhedral surface with generalized ob-

stacles and s be a generalized source on P, a (1 + 3ε)-approximate distances from s can

be obtained by using Bushwack strategy in O(mn log(mn)) time with m ∈ O(1
ε log 1

ε). 2

Notice that we have not specified the cost when a realistic terrain is considered because

no changes exist. The number of Steiner points is exactly the same and consequently the

complexity or the Bushwack strategy too.

6.2 Implicit distance field computation

When we consider a set of sites S we can use the graph to obtain their distance field,

which for any node gives the approximate shortest path distance to its nearest site of S.

The scheme provided in Section 6.1.1 contemplates the case when more than one site

is considered. Thus, it can be used to obtain a graph where we will obtain a (1 + 3ε) -

approximation of the distance field. In this case we have to proceed as explained in the

case of polygonal sites in Section 6.1.4. When we place Steiner points on an edge e that

is intersected by V (S) = ∪s∈SV (s) we have to handle each sub-edge of e apart and use

the logarithmic scheme more than twice. Consequently the number of Steiner points, may

increase.

Lemma 6.2.1 The number of Steiner points generated on an edge intersected r′ times by

vicinity V (S) of the sources in S contains O(r′ 1ε log 1
ε) Steiner points. 2

The results related to the ε-approximation provided in previous sections remain true.

Consequently, we can state the following Theorem.

6.2. Implicit distance field computation 139

Theorem 6.2.1 The graph allows the computation of a (1 + 3ε)-approximate distance

field defined by a set of generalizes sites S. 2

In Figure 6.8 we show the triangulated polyhedral surface representing a mushroom

with a polygonal source on the right and a line segment source on the right. Steiner points

are colored in a from blue to green gradation according to the distance to the closest site.

Figure 6.8: A triangulated polyhedral surface with two generalized sites. Steiner points are

painted in a from blue to green gradation according to the distance to the closest site.

6.2.1 Distance field propagation

Bushwhack algorithm can be used to obtain the distance field of a set of generalized sites

as this is proved in the following Lemma.

Lemma 6.2.2 Let us consider a set of generalized sites S and two points of P, p and p′.

Denote ΠS,p the shortest paths that joins p to the closest site of S to p, and ΠS,p′ the one

joining S with p′. Then ΠS,p and ΠS,p′ do not intersect in the interior of a face.

Proof. Assume that ΠS,p and ΠS,p′ are the shortest paths form p and p′ to S, respectively.

Then, the sum of their costs is smaller than the sum of the costs of any other two paths

from p and p′ to S. We will assume that ΠS,p and ΠS,p′ intersect in the interior of a face

f and get a contradiction. Let s ∈ S be the site where ΠS,p originates, v1 and v2 the

intersection points of Πp,S with f (v1 closer to s than v2). Site s′ ∈ S and points v′1 and

v′2 and analogously defined for ΠS,p′ (see Figure 6.9). According to this notation the cost

of ΠS,p , ‖ΠS,p‖, is d(s, v1)+w|v1v2|+d(v2, p), and ‖ΠS,p′‖ = d(s′, v′1)+w|v′1v′2|+d(v′2, p
′).

140 Chapter 6. Weighted distances on polyhedral surfaces

Let us consider now two alternative paths Π′S,p and Π′S,p′ defined by the set of points

{s′, v′1, v2, p} and {s, v1, v
′
2, p

′} that join S with p and p′, respectively. Since ‖v1v2‖ +

‖v′1v′2‖ > ‖v1v
′
2‖+ ‖v2v

′
1‖, then ‖ΠS,p‖+ ‖ΠS,p′‖ > ‖Π′S,p‖+ ‖Π′S,p′‖ which contradicts the

fact that Πs,p and Πs,p′ are shortest paths. Consequently, two shortest paths can not cross

in the interior of a face f . 2

a) b)

Figure 6.9: Shortest paths from points p and p′ to: a) segment site s, when p and p′ are closer to

the same point of s. b) different points segment sources s and s′.

The Bushwack strategy is adapted to compute the distance field by propagating the

distance function of all the sites at once. This is achieved by considering all the sites in the

initialization step. We consider the first site and define intervals on the faces it intersects.

Next, we consider the second site and again define its intervals taking into account the

previously defined ones which can be modified. Since intervals emanating from different

sites are stored in the same list, we propagate their distance field. Similar to Bushwack,

the shortest path with minimal cost is propagated at each step. The difference is that,

now, the paths may come from different initial sites. The time and space complexity

does not increase, and is again O(mn log(mn)) and O(nm), whenever each edge of e is

intersected by S a constant number of times.

Theorem 6.2.2 A (1 + 3ε)-approximate distance filed defined by a set S of generalized

sites on a triangulated weighted polyhedral surface P with obstacles can be obtained by

using the Bushwack in O(mn log(mn)) time where m ∈ O(1
ε log 1

ε). 2

6.3. Distance and shortest path computation 141

6.3 Distance and shortest path computation

When the propagation of the distance function from a generalized source to the nodes has

concluded, the distance and also the shortest path to any point on P can be obtained. If

we are given a set of sites S, we can compute the shortest path distance to the closest site

and the actual path by using the distance field defined by S.

6.3.1 Influence regions

The approximate distance function in the interior of the faces is computed by propagating

the shortest paths arriving at the nodes of the discrete graph to the face points. Given a

node v contained on edge e, Bushwhack algorithm defines intervals Iv,e,e′ associated to v, e

and the edges e′ 6= e of the face(s) containing v or opposite to v when v is a vertex. These

intervals contain the nodes (Steiner points and vertices) that, according to the previously

visited nodes, may be reached by a shortest path that leaves from v. Now, for each interval

Iv,e,e′ we define the influence region of I, denoted RI , on the face f containing e, e′ and

v, as the set of all points of f that, according to Iv,e,e′ can be reached by a shortest path

emanating from v.

To compute RI for a given interval Iv,e,e′ on face f with edges e, e′ and e′′ (see Figure

6.10), we consider: a) the previously visited nodes vl, vr, of e placed contiguously on the

left and right of v, respectively; b) the nodes v′l, v′r of e′ placed contiguously on the left

and right of Iv,e,e′ . If Iv,e,e′ contains the leftmost(/rightmost) vertex of e′, v′l(/v
′
r) is the

corresponding vertex of e′. Region RI is the polygonal region of vertices {vl, v
′
l, v

′
r, vr}.

Consequently RI is a region of at most four vertices. Notice that the influence region RI

of an interval can be computed in O(1) during the Bushwack algorithm.

Property 6.3.1 The influence region RI of an interval can be computed in O(1) with the

information computed during Bushwack algorithm. 2

6.3.2 Distance computation

The shortest path distance from any point q ∈ f to the source s can be obtained by finding

the node vm on the edges of f defining the minimum distance value. If ds,v denotes the

distance function defined by s and node v, we have ds,v(q) = ds(v)+w|vq|, where w is the

142 Chapter 6. Weighted distances on polyhedral surfaces

a) b)

Figure 6.10: The shadowed region is the influence region of v when v′l and v′r belong to: a) the

same edge. b) different edges.

weight of f . Notice that to determine vm, those nodes whose influence region does not

contain q can be directly discarded. The cost of the shortest path from a point of P to its

nearest site can be obtained by standard methods.

6.3.2.1 Approximation analysis

We have provided a way to compute distances from a generalized source s to all the points

on a surface. We use a graph that provides (1 + 3ε)-approximate distances from s to the

nodes. Let us now bound the error produced when obtaining the distance from s to an

arbitrary point t of P.

Proposition 6.3.1 We can obtain (1+4ε)-approximate shortest paths from a generalized

source s to an arbitrary target point t ∈ P. 2

Proof. As we are interested in obtaining a path on the graph, normalized paths are

considered. Let Π′′ be a normalized path such that ||Π′′|| ≤ (1 + 1
2ε)||Π||. Let us assume

that {s, p1, . . . , pk, t} are the bending points of Π′′ and let vi be the closest Steiner point to

pi is vi. We will prove that path p̂ = {s, v1, . . . , vk, t} is so that ||p̂|| ≤ (1+3ε)||Π′′||. Using

this inequality, we find that ||p̂|| ≤ (1 + 3ε)(1 + 1
2ε)||Π|| = (1 + 4ε)||Π||, and consequently

||Π′|| ≤ ||p̂|| ≤ (1 + 4ε)||Π||.

Let us denote s0 = s, p1, si = pipi+1, sk = pk, t, ŝ0 = s, v1, ŝi = vivi+1 and ŝk = vk, t.

In Lemma 6.1.1 we have proved that |ŝi| = (1 + 2ε)|si| for i = 0 . . . k − 1. The inequality

(|ŝk|−|sk|) ≤ ε wm
wM

|sk−1| is fulfilled because (|ŝk|−|sk|) is smaller than the distance between

two Steiner points. Consequently,

||p̂|| − ||Π′′|| =
i=k−1∑

i=0

wi(|ŝi| − |si|) + wk+1(|ŝk| − |sk|) ≤
i=k−1∑

i=0

2ε ||si||+ ε||sk−1|| =

= 2ε ||Π′′(s, pk)||+ ε||sk−1|| ≤ 2ε||Π′′||+ ε||Π′′|| = 3ε||Π′′||

6.3. Distance and shortest path computation 143

2

When a set of sites S is given, the distance to the closest site can be computed by

using the (1 + 4ε)-approximate distance filed. By using this result and a proof similar to

that of the previous Proposition, we can provide the following Theorem which summarizes

all the obtained results.

Theorem 6.3.1 Given a set of generalizes sites S, we obtain a (1 + 4ε)-approximation

of their distance field. When S = {s} we obtain a (1 + 4ε)-approximation of its distance

function. 2

Distance fields are important because they define Voronoi diagrams. When distances

are exactly computed, the points that are equidistant from two sites define the Voronoi

diagram bisectors. Since now we are working with approximate distances, we should study

where the exact bisectors are when the approximate distance is used. Let ds denote the

(1 + 4ε)-approximate distance function and d̃s the exact distance function for a source s.

Let p be a point of an exact bisector determined by sites s0 and s1, thus, d̃s0(p) = d̃s1(p).

Therefore the following Proposition can be stated.

Proposition 6.3.2 The error produced on a Voronoi diagram bisector tends to 0 when ε

tends to 0.

Proof.

|ds0(p)− ds1(p)| ≤ |ds0(p)− d̃s0(p)|+ |d̃s0(p)− d̃s1(p)|+ |d̃s0(p)− ds1(p)| ≤

≤ 3εd̃s0(p) + 3εd̃s1(p) = 6εd̃s0(p).

2

6.3.3 Shortest path computation

After computing the distance function for a source s, we can obtain the shortest path

from s to an arbitrary point q on a face f of P. It suffices to use a backtracing technique

and store, during the Bushwhack algorithm, in each node v a pointer to the previous node

in the path that goes from s to v. Once the distance function is computed, the path is

obtained by first determining the node v of f providing the minimum distance at q. From

144 Chapter 6. Weighted distances on polyhedral surfaces

node v we go back to node v′ stored in the pointer associated to v. We keep jumping until

we arrive at source s. The shortest path can be obtained in O(m +n) time where n is the

number of segments defining the path. To obtain the path we store the pointers to the

nodes.

When a set of sources S is considered, the shortest path to the closest site can be

obtained by using the same strategy by using the distance field instead of the distance

function.

6.4 Conclusions

We presented an algorithm to compute (1+ε)-approximate shortest paths from generalized

sources (point, segment, polygonal line and polygon sources) on triangulated weighted

polyhedral surfaces with generalized obstacles. First, a way to build a discrete graph on

P taking into account a generalized source is proposed. By using this graph and the

Bushwack strategy we obtain the (1 + ε)-approximate distance from the source to the

graph nodes in O(nm log(nm)) time and O(nm) space with m ∈ O(1
ε log 1

ε).

The algorithm is extended to the case of several generalized sources when their implicit

distance field is obtained, with the same time and space complexity whenever each edge

is intersected a constant number of times by the set of sites. The output of the algorithm

is a codification of the distance function or distance field on the discrete graph.

From the distances to the graph nodes a (1 + ε)-approximate distance from any point

on P to the source and the actual shortest path can be obtained in O(m + n) time, where

n is the number of faces the path goes through. We can also obtain the shortest path

distance and the actual shortest path to the closest site of a set S in in O(log m+n) time.

Chapter 7

Discrete distance function and

applications

In this chapter we provide a method to obtain an explicit discrete representation of the

distance function of generalized sources on a polyhedral surface with obstacles (Section

7.2), by using graphics hardware. During the discretization process we use distance vectors

(Section 7.1), a planar parameterization of P (Section 2.3.2), and the implicit distance

functions obtained with the algorithms described in Chapter 5 and Chapter 6. We also

provide four different applications of this discretization. The first one uses the distance

field of a set of sites S (see Figure 7.1), while the rest use the distance functions of each site

of S (see Figure 7.2). They consist of the following four algorithms to compute discrete:

1. Closest Voronoi diagrams from the implicit distance field (Section 7.3).

Figure 7.1: Closest Voronoi diagram computation from the distance field de-

fined by the sites.

2. Closest and furthest Voronoi diagrams from the distance functions (Section 7.4.1);

3. Any order-k Voronoi diagrams from the distance functions (Section 7.4);

145

146 Chapter 7. Discrete distance function and applications

Figure 7.2: Voronoi diagrams, 1-Center and 1-Median computation from the set of distance

functions of the sites.

4. An approximate 1-Center (Section 7.6) and 1-Median from the distance functions

(Section 7.7).

We present experimental results (Section 7.8) and end with some conclusions (Sec-

tion 7.9).

7.1 Distance vectors

The distance vector
−→
dq of a point q with respect to a virtual source Is (a point or a

segment) is the vector joining the closest point to q of Is with q.

Distance vectors are useful to compute distances due to the fact that d(Is, q) = |−→dq |.
Consequently, if we consider an interval I and a point q ∈ RI , distance dI(q) is given by

ds(Is) + |−→dq | in the non-weighted case, and ds(Is) + w|−→dq |, in the weighted case, where w

is the weight of the face containing RI .

Next, we provide some properties that allow us to compute distance vectors from Is

to points on RI by using distance vectors from the vertices of RI to Is when RI has been

triangulated.

7.1.1 Punctual source

Consider a triangulation of RI and assume that the triangle containing q has vertices

p1, p2, p3. Denote
−→
d1,

−→
d2,

−→
d3 the distance vectors of p1, p2, p3 associated to a punctual

virtual source Is. Point q can be univocally expressed as q = α1p1 + α2p2 + α3p3, with

7.2. Discrete distance function computation 147

α1 + α2 + α3 = 1 and α1, α2, α3 ≥ 0. Consequently
−→
dq = Isq = q − Is. Since q − Is =

α1p1+α2p2+α3p3−(α1+α2+α3)Is the following equality is fulfilled
−→
dq = α1

−→
d1+α2

−→
d2+α3

−→
d3

(See Figure 7.3a). Thus the distance vector
−→
dq can be obtained by using linear interpolation

from
−→
d1,

−→
d2, and

−→
d3. This is summarized in the following lemma.

Lemma 7.1.1 The distance vector from a punctual source to a point q in the influence

region RI can be obtained by using linear interpolation from the distance vectors associated

to the vertices of RI . 2

7.1.2 Segment source

Assume that RI has been triangulated and that p1, p2, p3 are the vertices of the triangle

containing the point q of RI . Denote
−→
d1,

−→
d1,

−→
d3 the distance vectors of p1, p2, p3 relative

to a segment virtual source Is, which are parallel and orthogonal to Is. As before point

q can be univocally expressed as q = α1p1 + α2p2 + α3p3, with α1 + α2 + α3 = 1 and

α1, α2, α3 ≥ 0. We want to prove that
−→
dq = α1

−→
d1 + α2

−→
d2 + α3

−→
d3 (See Figure 7.3b).

Let us first consider the case where one αi is equal to 0, for example α3 = 0. Then,

the vector α1
−→
d1 + α2

−→
d2 is the vector perpendicular to Is obtained by joining the point q

to α1p
′
1 +α2p

′
2 where p′1 and p′2 are the points of Is defining

−→
d1 and

−→
d2 respectively. When

αi 6= 0, i = 1, 2, 3, we can consider a line joining q and p3, and determine the point q′

on the segment for which the parameter α3 = 0. The distance vector
−→
dq′ can be obtained

from
−→
d1 and

−→
d2 as explained for the first case and, finally,

−→
dq can be similarly obtained

from
−→
dq′ and

−→
d3. This is summarized in the following lemma.

Lemma 7.1.2 The distance vector from a segment source to a point q in the influence

region RI of an interval can be obtained by using linear interpolation from the distance

vectors associated to the vertices of RI . 2

7.2 Discrete distance function computation

In this section we provide a way to obtain a discrete representation of the distance func-

tion by using the methods given to obtain implicit distance functions (Chapter 5 and

Chapter 6).

148 Chapter 7. Discrete distance function and applications

a) b)

Figure 7.3: The distance vectors associated to the vertices of a convex polygon when dealing

with: a) a point source; b) a segment source. In both figures the distance vector to point q can be

obtained by the distance vectors shown.

We use a planar parameterization (Section 2.3.2) that maps P to a bounded planar

regionR on the xy-plane. For the special case of a polyhedral terrain, which is a polyhedral

surface such that its intersection with any vertical line is either empty or a point, we can

alternatively use the terrain projection on the xy-plane as a planar parameterization. We

represent the axis-parallel rectangular region bounding the terrain projection on the xy-

plane by R. In this case the shape of the projected triangles do not correspond with its

shape on the polyhedral terrain.

We discretize the rectangular region R of the xy-plane as a rectangular grid of size

W × H that induces a discretization on the triangles of P. This discretization and the

planar parameterization is used to obtain a discrete representation on R of the distance

function defined by shortest paths on P. This is achieved by keeping track of the explicit

representation of the distance function while it is propagated along the surface P with the

presented algorithms (Chapter 5, Chapter 6).

For each interval I we compute the distance it defines to the grid points contained in its

influence region(s) RI . In the non-weighted case we also have to consider influence regions

Rv defined by pseudosources and compute the distance defined by v in Rv. In Section 7.2.1

we explain how these distances are obtained by using a planar parameterization of the

polyhedral surface, distance vectors and graphics hardware. Notice that grid points may

be contained in the influence region of different intervals, thus, during the process we may

obtain several distances for the same grid point. Since we are interested in the shortest

path distance, only the minimal one is stored.

The planar parameterization maps the points on P to points on the rectangular region

R of the xy-plane. The OpenGL pipeline triangulates input polygons, processes the tri-

7.2. Discrete distance function computation 149

angle vertices and rasterizes the triangles into fragments by using interpolation. Within

the rasterization step all the parameters associated to vertices such as texture coordinates,

colour, normal vectors, etc. are also interpolated from those associated to the triangle ver-

tices. Consequently, the value obtained in these channels in a fragment is the interpolation

of the values associated to the triangulated polygon vertices. Then the fragment shader

computes the distance defined by the current interval or pseudosource at each point. It

also sets this distance normalized into [0,1] as the depth value of the rasterized fragments.

Finally, the depth test is used to keep the minimum distance obtained at each position

stored in the depth buffer.

7.2.1 Discrete distance function computation

To compute the discrete distance function we represent the rectangular region R by a grid

of W ×H pixels, using the depth buffer.

The discrete representation of the distance function is obtained during the distance

function propagation process. In the initialization process of the propagation method

used to compute the implicit distance function, we initialize the depth buffer to the max-

imal depth value (1). When an interval I is propagated(/created) or a pseudo-source is

found, in the non-weighted(/weighted) case, we compute its distance function in it(/s)

influence region(/s) RI . This is done by mapping RI into the plane by using the planar

parameterization obtaining PRI . Next, the planar region PRI representing RI is painted

and the distances to the pixels it covers are computed by using a fragment shader. The

non-weighted(/weighted) distance given by I in a point q ∈ RI is obtained by adding the

distance from q to the virtual source Is and the distance from s to Is. The distances to

these points are computed and stored in the depth value of the fragments. The depth

buffer is updated whenever we still have not obtained a smaller distance value. At the

end of the process the value stored in the depth buffer is the minimum depth (distance)

defined by all the processed fragments.

The previous process correctly computes the distance values: a) observations related

to the influence regions given in Section 5.3.1 and Section 6.3.1 show that we will con-

sider the actual shortest path. b) its length or cost is correctly computed according to

Lemma 7.1.1 and Lemma 7.1.2. c) the minimum distance value is stored in the depth

buffer. Consequently, the shortest path distance function is correctly computed and the

algorithm is correct. These observations are summarized in the following Observation.

150 Chapter 7. Discrete distance function and applications

Observation 7.2.1 The discrete representation of the distance function can be exactly

obtained by using graphics hardware and the algorithms to compute the distance function

from a generalized source presented in Chapter 5 and Chapter 6.

a) b) c)

Figure 7.4: Examples of influence regions and distance vectors of: a) a p-interval; b) a s-interval;

c) the vertex pseudosource obtained in b).

Lemma 7.2.1 The distance field defined by an interval I in its influence region RI can

be computed in O(number of pixels in RI)

Proof. To compute the distance in RI , we compute the distance vectors from the virtual

source Is to the vertices of RI . Posteriorly the polygon PRI is painted by using OpenGL.

We associate to the polygon, in texture coordinate channels, the distance from the virtual

source to the initial source and, in the weighted case, the weight of the face where it

is contained. We also associate to each vertex of PRI its distance vector using another

texture coordinate channel. In the non-weighted case we have to consider, and handle in

the same way, the influence regions Pv of pseudosources. At the end of the process, we

have in the depth buffer the distance function defined by the source. 2

Therefore, a discretization of the distance function is obtained by painting all the

influence regions, one after the other and storing the minimal distance value at each pixel.

Theorem 7.2.1 A discrete representation of the distance function of a generalized source

s is obtained in O(n2 log n + nHW) time in the non-weighted case and O(mn log(mn) +

mHW) in the weighted case, which represents an extra time of O(nHW) and O(mHW),

respectively.

Proof. The previously explained process to obtain the discrete representation of the dis-

tance field does not increase the time of the Continuous Dijkstra nor the Bushwack algo-

rithm used for the non-weighted and weighted case, respectively. In fact, for each interval

7.3. Discrete closest Voronoi diagrams 151

I we have to compute the influence regions and the distance vectors from the virtual source

Is to the influence region vertices, which can be done in constant time.

Since each influence region RI is contained in a face f , the extra time needed to paint

the influence regions can be bounded as follows. In the non-weighted case, we have at

most n intervals per edge and each face is painted, at most, O(n) times. The extra time

needed to paint all the influence regions in the non-weighted case is O(nHW) time. In

the weighted case we have an interval for each node and we have at most m nodes per

edge, consequently, each face can be painted O(m) times providing a time complexity of

O(mHW). 2

7.3 Discrete closest Voronoi diagrams

In this Section we propose a way to compute the discrete closest Voronoi diagram for a set

of generalized sources S on the polyhedral surface P with obstacles. Although in Section

7.4 a general procedure to compute order-k Voronoi diagrams is given, for the special case

of the closest Voronoi diagram (k = 1) this process is much more efficient, in both, time

and space complexity. In this section a discrete Voronoi diagram is obtained by using

graphics hardware and the algorithms to compute the distance field of a set of generalized

sources (Chapter 5, Chapter 6).

To obtain the closest Voronoi diagram, we discretize the generalized distance field of a

set of generalized sources S, and properly determine the Voronoi regions. The discretiza-

tion of the distance field is obtained by slightly modifying the algorithm to compute the

discrete distance functions described in Sections 7.2. We keep on using a planar parame-

terization of the triangulated polyhedral surface P that maps P to R, and the depth and

color buffers to discretize R. In this case we use the depth buffer to store distances and the

color buffer to obtain the Voronoi diagram regions painted in different colors. We now use

the algorithm to compute the implicit distance field. Again, the discrete representation

of the distance field is obtained by painting the corresponding influence regions, but now

they are painted in different colors. We associate a different color to each source in S

and the influence regions are colored with the color of the generalized source where the

interval originates from. To identify this source, each interval stores an extra parameter

that gives the index of the source in S where is originated. When a fragment is processed,

the color of the color buffer is updated if and only if the depth value is updated. At the

end of the process, the values stored in the depth buffer are the values of the distance field

152 Chapter 7. Discrete distance function and applications

and the obtained image in the color buffer is the discrete closest Voronoi diagram. This

is summarized in the following Observation:

Observation 7.3.1 The process to obtain a discrete representation of the distance func-

tion can be adapted to obtain a discrete Voronoi diagram of a set of sites S.

We want to mention that there may exist one or two dimensional regions equidistant

to two different sites. One dimensional regions are easily detected as being the boundary

separating points of different color. Two dimensional regions are, somehow, lost and will

be painted in one or the other colors depending on the behavior of the used method to

propagate the distance field and the order in which the regions are painted.

Theorem 7.3.1 A discrete Voronoi diagram can be obtained from the implicit distance

field in extra O((n+ r)HW) in the non-weighted case and O(mHW) in the weighted case.

Proof. The extra time needed to obtain the closest Voronoi diagram while using the

algorithm to implicitly obtain the distance field is the time spent by painting influence

regions. Each influence region is painted in constant time. Therefore, the time complexity

in the non weighted case is O((n + r)HW) because each edge contains at most O(n + r)

intervals and each face is painted, in the worst case, O(n + r) times. In the weighted case

the extra time is O(mHW). Each face contains at most O(m) time and consequently each

face is painted at most O(m) time. 2

7.4 Discrete high order Voronoi diagrams

In this section we describe how the discrete order-k Voronoi diagrams, k = 1 . . . r−1, for a

set of r generalized sources S on the polyhedral surface P can be obtained. Since obtaining

the distance function of a source is expensive, we assume that we have pre-computed and

stored the discrete distance function of each source. The time needed to compute the r

discrete distance function in the non-weighted case is O(r(n2 log n + HW)) and in the

weighted case it is in O(r((mn+m′n′) log(mn+m′n′)+HW)) time. Previously computed

discrete distance functions can be stored by rendering the depth buffer in a depth texture

or stored in the CPU.

7.4. Discrete high order Voronoi diagrams 153

7.4.1 Closest Voronoi diagram

The closest Voronoi diagram can be obtained by associating to each site of S a color and

rendering, one after the other, each distance function in the appropriate color.

To obtain the closest Voronoi diagram the r discrete distance functions are transferred

to a texture one after the other. Once a distance function is active in the fragment shader,

a rectangular region covering R is painted in the color of the site. The distance of the

distance function is stored as the depth of the fragments and the depth test is used to

store the smallest depth value. Consequently, when the r distance functions are painted

their lower envelope is computed and the pixel is painted in the color of the closest site.

Finally, the Voronoi diagram is obtained in the color buffer and the distance field in the

depth buffer. The time needed to compute this lower envelope is O(rHW). Thus we can

provide the following Proposition.

Proposition 7.4.1 The closest Voronoi diagram of r discrete distance functions can be

computed in extra O(rHW) time from the previously computed discrete distance functions.

2

7.4.2 Furthest Voronoi diagram

The furthest Voronoi diagram is obtained as the upper envelope of the distance functions,

consequently it is obtained by using a process similar to the one provided to obtain the

closest Voronoi diagram.

The furthest Voronoi diagram is computed by rendering, one after the other, each

distance function in their corresponding colors and storing the distance values as the

depth of the fragments. The depth test is used to store, in each pixel, the maximum depth

value. Each point is accordingly painted with the color of the fragment with maximal

depth value, which is the color associated to the furthest site to each point. The furthest

Voronoi diagram is obtained in the color buffer and the furthest distances in the depth

buffer. The complexity analysis is the same as the one given for the closest Voronoi

diagram. Consequently, the time complexity is O(rHW).

Proposition 7.4.2 The furthest Voronoi diagram of r discrete distance functions can

be computed in extra O(rHW) time by using the previously computed discrete distance

functions. 2

154 Chapter 7. Discrete distance function and applications

7.4.3 order-k Voronoi diagram

The algorithm to compute discrete order-k Voronoi diagrams uses a depth peeling tech-

nique similar to the one described on (Section 2.3.3.2) to compute order-k Voronoi di-

agrams of a set of points in the plane. It is a multi-pass algorithm that, at every pass,

”peels” off one level of the arrangement of distance functions. At each pass all the distance

functions are painted in their corresponding colors and the minimal depth value is stored

in the depth buffer. In the first pass the closest Voronoi diagram is obtained. The depth

buffer is then transferred to a texture and sent to the fragment shader. In the second pass

all the distance functions are again painted. The distance function that is being painted

is compared in the fragment shader with the distance obtained in the previous pass at the

current fragment. Only the fragments with distance bigger than the distance obtained in

the previous pass are painted. The others are discarded. Therefore, the values stored in

the depth buffer in the second step are the second minimal distance. When this process is

repeated k times, the kth-nearest diagram is obtained. The order-k Voronoi diagram can

be obtained by overlaying the ith-nearest diagrams, i = 1 . . . k, with transparency 1/k.

Proposition 7.4.3 A order-k Voronoi diagram can can be computed in extra O(krHW)

time by using the previously computed discrete distance functions.

Proof. To obtain the order-k Voronoi diagram of the r already computed discrete distance

we need k-steps. For each of the k peeling passes, the depth buffer is copied on a texture

and the r distance functions are painted. Therefore, the algorithm time complexity is

O(krHW) 2

7.5 Visualization on the polyhedral surface

Once we have obtained a discrete representation of any of the mentioned Voronoi diagrams

in the color buffer, we can transfer the values of this buffer to a texture. The texture is an

explicit discrete representation of the Voronoi diagram and by using texturing methods,

with the already used planar parameterization, the Voronoi diagram can be visualized on

the polyhedral surface.

Distance functions can also be visualized on the polyhedral surface by transferring the

values of the depth buffer to a depth texture. Since distances vary from 0 to 1 they can

be used to weight the color of the pixels. If the white color is used, pixels are painted in

7.6. Approximating the 1-Center 155

a grey gradation from black (distance 0) to withe (distance 1) according to the distance

function values. In Figure 7.5 we have used a green gradation to represent the distance

function of a site Figure 7.5 a) or the distance field of a set of sites Figure 7.5 b), black

points are closer to the sites, and green points further from them.

a) b)

Figure 7.5: a) The distance function defined by a segment source s. b) The distance field defined

by a set of four generalized sites.

7.6 Approximating the 1-Center

The 1-Center of a set of r sites S is the point C that minimizes the maximum distance

to the sites. Consequently it is the center of the minimum enclosing disc defined by the

shortest path distance. Thus we have to find the point q ∈ P where the min maxs∈S ds(q)

is achieved. Notice that the value maxs∈S ds(q) is the distance given by the furthest

Voronoi diagram.

The algorithm given in Section 7.4.2 provides the furthest Voronoi diagram in the color

buffer, and in the depth buffer maxs∈S ds(q) has been stored in each pixel. To obtain the

1-Center we first obtain the furthest Voronoi diagram and next compute the point where

the minimum value of the depth buffer is achieved.

The point where the minimum depth value is achieved can be obtained by using a

”reduction-type” algorithm. We start by transferring the values stored in the depth buffer

to a texture t of size H × W which is used in a fragment shader. At the first step we

paint a rectangle on a rendering texture of size H
2 × W

2 . When the fragment corresponding

to pixel (i, j) is processed, we use a fragment shader to find the position (i0, j0) where

the minimum of the values {t(2i, 2j), t(2i + 1, 2j), t(2i, 2j + 1), t(2i + 1, 2j + 1)} is

156 Chapter 7. Discrete distance function and applications

achieved and, t(l,m) is the value stored in texture t at the position (l,m). Coordinates

(i0, j0) are codified in the color of the pixel (i, j) which is stored in the rendering texture.

Next, the color texture is transferred to the fragment shader to be used in the second

rendering step. In the second step we have texture t, which has not changed, and a new

texture c0 of size H
2 × W

2 , where c0(i, j) encodes (i0, j0). Now, we paint a rectangle of

size H
4 × W

4 and at fragment (i, j) and we find the position (i1, j1) where the minimum of

{t(c0(2i, 2j)), t(c0(2i, 2j + 1)), t(c0(2i + 1, 2j)), t(c0(2i + 1, 2j + 1))} is achieved. Again

we codify (i1, j1) in the color values of fragment (i, j). We keep on doing the same, at step

k we use t and ck−1 of size H
2k−1 × W

2k−1 , we paint a rectangle of size H
2k × W

2k and find the

position (ik, jk) where the minimum of {t(ck−1(2i, 2j)), t(ck−1(2i + 1, 2j)), t(ck−1(2i +

1, 2j + 1)), t(ck−1(2i, 2j + 1))} is achieved. This process computes the position where

the minimum depth value is achieved. The algorithm ends in O(log HW) steps, the pixel

where the minimum is achieved is obtained by reading the value stored in the color of a

pixel. This position gives an approximate 1-Center on R. To obtain a point on P the

planar parameterization is used.

The total number of pixels painted during the O(log HW) is given by HW + HW
4 +

HW
42 +· · ·+ HW

4log HW =
∑i=log(HW)

i=0
HW
4i which is a geometric series of factor 1

4 . Consequently

it gives a total number of painted pixels of 1
3HW . This result is summarized in the next

Proposition.

Proposition 7.6.1 The 1-Center and the distance value can be obtained from the furthest

Voronoi diagram by using graphics hardware in extra O((r + 1)WH) time. 2

Consequently, we take as an approximate 1-Center of S the point of P corresponding

to the position of the depth buffer with minimal value. This value is the radius of the

minimum enclosing disc.

7.7 Approximating the 1-Median

The 1-Median of a set of r sites S is the point M that minimizes
∑

s∈S ds(q). We first

obtain
∑

s∈S ds(q) and approximate the 1-Median by determining the pixel where the

minimum value is achieved.

To obtain
∑

s∈S ds(q) we use r rendering steps and we transfer at each step the infor-

mation stored in the buffer to the fragment shader. After initializing the depth buffer to

7.8. Experimental results 157

0, at the first step we paint ds0 and store its values in the depth buffer. In the second

step we transfer the depth buffer to a texture t0, paint ds1 and store, in the depth buffer,

the sum of ds1 with the value stored in t0. In the ith step we transfer the depth buffer to

a texture ti−1, we paint dsi and store in the depth buffer the sum of dsi with the value

stored in ti−1. We repeat the process until dsr is considered. At the end of the process, we

have the desired
∑

s∈S ds(q), in the depth buffer. To obtain the pixel where the minimum

is achieved we use the process explained in 7.6.1. This result is summarized in the next

Proposition.

Proposition 7.7.1 The 1-Median and the distance value in it can be obtained by using

graphics hardware in extra O((r + log(HW))WH) time. 2

The results obtained in this chapter are approximated, and two different types of error

can be seen. One is the discretization error, which depends on the discretization size.

It can be reduced using the fact that the bigger the grid size W × H, the smaller the

error produced. The other is due to floating errors, which are specially related to the

depth buffer and depth texture precision. The 32-bit precision is sufficient to store the

normalized distances which take values in the interval [0, 1]. This can be specially seen

when computing order-k Voronoi diagrams, where many distances have to be compared.

In the rest of the applications it is not visible.

7.8 Experimental results

We have implemented the proposed methods using C++ and OpenGL for the special case

of polyhedral terrains. All the images have been carried out on a Intel(R) Pentium(R) D

at 3GHz with 1GB of RAM and a GeForce 7800 GTX/PCI-e/SSE2 graphics board.

In Table 7.1 we present some experimental results, obtained by considering terrains

without obstacles, a set S of six sites (one point, two segments, two polygonal lines and

one polygon), ε = 0.5 and a grid to discretize the domain of size 500 × 500. We present

execution times for non-weighted and weighted terrains with weights randomly generated

between one and five. In the table we specify the number of terrain faces, n, and the

number of faces intersected by the sites n′. Concerning non-weighted terrains we have used

the Continuous Dijkstra strategy. We provide the time needed to compute the distance

field and to obtain the explicit Voronoi diagram of S, and finally the time needed to

compute and store the six distance functions. When considering weighted terrains, we

158 Chapter 7. Discrete distance function and applications

provide the total number of Steiner points. Next, we give the time needed to compute

the distance field using the Bushwack strategy and finally the time needed to compute

the six distance functions. Notice that in both cases the time needed to obtain the six

distance functions is about six times that needed to obtain the distance field. The extra

time needed to obtain, from the already computed distance fields, the closest or furthest

Voronoi diagram is 0.08(s), the 4th nearest site to each point is 0.3(s) and the 5th nearest

site is 0.35(s). Finally, in 0.1(s) we obtain an approximate 1-Center when r = 6 and in

0.12(s) an approximation of the 1-Median. Notice that the time needed to compute the

distance fields are execution times of the algorithms provided in Chapter 5 and Chapter 6.

Non-weighted terrain Weighted terrain

n D. Field D. Functions n′ N. Steiner Points D. Field D. Functions

800 0.3 (s) 2.3 (s) 73 24449 5.6 (s) 30 (s)

5000 2.3 (s) 14 (s) 145 135670 28 (s) 147 (s)

10000 5.8 (s) 39 (s) 221 260599 54 (s) 281 (s)

20000 13 (s) 96 (s) 271 533677 102 (s) 582 (s)

45000 29 (s) 184 (s) 240 1228163 268 (s) 1408 (s)

Table 7.1: Implicit distance computation.

Notice that a non-weighted surface can be seen as a weighted terrain with weights

equal to 1. Thus we could use the Bushwack strategy proposed for weighted terrains to

obtain approximate shortest paths on non-weighted terrains. However, according to the

time performance of the algorithms, it is better to use the Continuous Dijkstra strategy

to compute exact shortest paths on non-weighed terrains because it is much faster. Even

though the implementation of the Bushwack strategy is more expensive and provides

(1+ε)-approximate distances, it is much more robust than that of the Continuous Dijkstra.

Figures 7.6 to 7.12 show some examples of Voronoi diagrams for generalized sources on

polyhedral terrains with n =800 faces obtained with our implementation. The generalized

sources, except for the polygon sources interior, are painted on the terrain surface and the

remaining points of the surface are colored according to the Voronoi region they belong to.

Figures 7.6 to 7.9 show Voronoi diagrams on non-weighted polyhedral terrains obtained

by using the Continuous Dijkstra strategy. We have considered a set S of ten sites: four

points, two segments, two polygonal chains and two polygon sources, and a terrain with

n =800 faces. In Figure 7.6 we show the closest Voronoi diagram of S; in Figure 7.7 each

point is painted in the color of the 7th nearest site, we do not show the 7th order Voronoi

7.8. Experimental results 159

because the image is not easy to understand due to the merged colors. In Figure 7.8 the

furthest Voronoi diagram is shown and Figure 7.9 shows the closest Voronoi diagram of S

when obstacles (two polygonal chains and a polygonal region), which are painted black,

are considered.

Figure 7.6: A non-weighted terrain, ten gen-

eralize sites and their Closest Voronoi diagram.

Figure 7.7: A non-weighted terrain, ten gen-

eralize sites and their 7th-nearest diagram (see

site colors in Figure 7.6).

Figure 7.8: A non-weighted terrain, ten gen-

eralize sites and their furthest Voronoi diagram

(see site colors in Figure 7.6).

Figure 7.9: A non-weighted terrain with ob-

stacles (in black), ten generalized sites and

their closest site Voronoi diagram.

Figures 7.10 to 7.12 show some examples of Voronoi diagrams on weighted polyhedral

terrains for a set S of eight sites: three points, two segments, two polygonal chains and

one polygon. Figure 7.10 shows the closest Voronoi diagram of S, in Figure 7.11 each

point is painted in the color of its 6th-nearest site. In Figure 7.12 the furthest Voronoi

diagram is shown with the 1-Center and 1-Median of S, the 1-Center is represented by a

circle and the 1-Median by a square.

160 Chapter 7. Discrete distance function and applications

Figure 7.10: A weighted terrain, eight gener-

alize sites and their closest Voronoi diagram.

Figure 7.11: A weighted terrain, eight gener-

alized sites and their 6th-nearest diagram (see

site colors in Figure 7.10).

a)

Figure 7.12: A weighted terrain, eight gener-

alized sites, their furthest Voronoi diagram, 1-

Center and 1-Median. See site colors in Fig-

ure 7.10.

7.9. Conclusions 161

The error produced by the 32-bit precision of the depth buffer can be seen in Figure 7.7

and Figure 7.10. Isolated pixels are painted in the color of the regions adjacent to the

region they belong to.

7.9 Conclusions

We have presented a way to obtain a discrete representation of the distance function or

distance field from their implicit representation obtained in Chapter 5 and Chapter 6.

As applications we provide a way to directly obtain a discrete Voronoi diagram from the

implicit distance field, and a more general technique, which from the distance functions of

all the sources in S the closest, furthest or any k−order Voronoi diagram can be obtained.

We have also approximately solved the 1-Center and 1-Median facility location problems.

Finally some experimental results obtained with our implementation that works for

polyhedral terrains with generalized sources and obstacles are presented.

162 Chapter 7. Discrete distance function and applications

Chapter 8

Conclusions, further comments

and future work

8.1 Conclusions

In this thesis we solved visibility and proximity problems concerning generalized elements

(points, segments, polygonal lines and polygons).

Visibility problems

Visibility problems are solved on triangulated terrains, we give a way to exactly com-

pute the visible parts of a segment from a generalized view element considering weak or

strong visibility. It is the first algorithm that computes an approximation of a multi-

visibility map on a terrain domain when considering generalized view elements and con-

cerning strong or weak visibility. The algorithm is expensive both in time and storage and

is difficult to turn into a practical algorithm. Bearing these problems in mind, another

approach based on graphics hardware capabilities is developed from a practical point of

view.

Next, we present a method to visualize multi-visibility maps of a triangulated terrain

containing an heterogeneous set of view elements for weak and strong visibility. We,

by repeatedly using graphics hardware, compute approximated visibility information in

a pre-processing stage and then from this information visualize any multi-visibility map

on the screen with a zoom option. We also answer point and polygonal region multi-

visibility queries. The results obtained with our implementation show that our approach

163

164 Chapter 8. Conclusions, further comments and future work

is practical, robust and efficient.

Proximity problems

Proximity problems are solved on a triangulated polyhedral surface where generalized

obstacles are allowed. To solve proximity problems we compute shortest path distances

from generalized elements. We tackle both the non-weighted and the weighted problems

in an exact and approximated fashion, respectively.

We first present an algorithm to compute exact shortest paths from generalized sources

(point, segment, polygonal line and polygon sources) on triangulated polyhedral surfaces

with several generalized obstacles in O(n(n + r̃) log(n + r̃)) time and O(n(n + r̃)) space,

where r̃ is the number of segments conforming the generalized source. The algorithm

is extended to the case of several generalized sites when their implicit distance field is

obtained in O(n(n + r̃S) log(n + r̃S)) time and O(n(n + r̃S)) space where ñS is the total

number of segments conforming the generalized sites. The output of the algorithm is a

codification of the distance function or distance field. From this codification the distance

from a point on P to the site and the actual shortest path is obtained in O(n + r̃ + n)

time, where n is the number of faces the path goes through. We also obtain the shortest

path distance and the actual shortest path to the closest site of a set S in O(n + r̃S + n)

time.

We present an algorithm to compute (1+ε)-approximate weighted shortest paths from

generalized sources. First we propose a way to build a discrete graph on P taking into

account a generalized source. By using this graph and the Bushwack strategy we obtain

the (1 + ε)-approximate distance from the source to the graph nodes in O(nm log(nm))

time and O(nm) space with m ∈ O(1
ε log 1

ε). The algorithm is extended to the case of

several generalized sources when their implicit distance field is obtained, with the same

time and space complexity whenever each edge is intersected a constant number of times

by the set of sites. The output of the algorithm is a codification of the distance function

or distance field on the discrete graph. From the distances to the graph nodes a (1 + ε)-

approximate distance from any point on P to the source and the actual shortest path are

obtained in O(m + n) time, where n is the number of faces the path goes through. We

computed the shortest path distance and the actual shortest path to the closest site of a

set S in in O(log m + n) time.

In order to provide some applications we present a way to obtain discrete representa-

tions of these functions. The discrete representations are then used to directly obtain a

8.2. Further comments 165

discrete Voronoi diagram by using the distance field. With a more general technique the

closest, furthest or any k−order Voronoi diagram are obtained from the distance functions

of all the sources contained in the set of sources. We approximately solve some facility

location problems, the 1-Center and 1-Median. We also present some experimental results

obtained with our implementation that works for polyhedral terrains with generalized

sources and obstacles.

Finally we provide a theoretical study of high-order Voronoi diagrams of a set of

generalized sources a polyhedral surface P. We generalized some basic properties of order-

k Voronoi diagrams such as that a k-cell cannot contain a (k+1)-cell, or that a k-vertex has

at least degree three. We prove that the furthest Voronoi diagram has O(r) path connected

cells. We also present some pathologies of order-k Voronoi diagrams, for instances: two

bisectors may cross more than twice, there exist up to O(r) k-cells without vertices, and

k-cells are not necessarily path-connected. We also study the complexity of the order-

k Voronoi diagrams by using a probabilistic proof which was O(k2n2 + k2r + krn) and

Ω(krn + rk2). Finally, we give some bounds and properties of shortest paths and Voronoi

diagrams of arbitrary orders on realistic terrains which can be considered as a special case

of triangulated polyhedral surfaces.

8.2 Further comments

We want to emphasize that we provide the implementation of most of our algorithms. A

very important share of the time spent during the research work described in this thesis

is dedicated to the implementation of the algorithms. In this section we present the

general methodology used as well as the most salient specific problems encountered in the

implementation of our algorithms.

The use of adequate programming languages is a very important issue in the imple-

mentation of any application. We decide to use the C++ programming language, as it is

a broadly used, general purpose, object oriented and numerically proficient programming

language. An extra asset is that C++ also provides tools such as QT for user interface,

the OpenGL library for 2D and 3D visualization, CGAL for Computational Geometry

tools and CG for programming hardware graphics.

From the point of view of application design, a PhD. Thesis is a difficult setting as the

requirements change from day to day following the development of the algorithms, often

166 Chapter 8. Conclusions, further comments and future work

after they have been implemented (and sometimes because of it). We have always tried to

keep our code as ”open” as possible in order to be able to process changes easily, although

in some cases we have not been able to avoid introducing major changes to already finished

parts of the code.

The last step of the implementation test is the testing of the code. This is a long,

complex and very important process as badly tested code makes experimentation difficult

if not impossible. We have tested all our methods separately. After this was done we

performed integration tests. All this tests have a first manual step that is carried with

small examples whose execution is followed to the last instruction. Then more complicated

and bigger examples are used to obtain some results. Once the implementation is tested

some terrain models with generalized sites are considered to obtain some experimental

results.

8.3 Future work

We present some future work we are interested in:

Visibility problems

- Generalize the method to compute multi-visibility maps in general scenes in R3.

- Provide a parallelized implementation of the proposed algorithm which would really

improve the running time.

Proximity problems

- Obtain a tight upper-bound on the complexity of the generalized order-k Voronoi

diagrams.

- Study the theoretical complexity of the weighted Voronoi diagrams. It is difficult to

study because weighed shortest paths have a complicate behavior.

Further applications

- Compute Voronoi diagrams of visible sites, a point q is in the region of site si if si

is the closest visible site to q.

8.3. Future work 167

- Compute visibility restricted to shortest path distances: a point is not visible ac-

cording to distances if it is not visible in the usual sense, or it is too far from the

site.

168 Chapter 8. Conclusions, further comments and future work

Bibliography

[1] L. A. M. L. A., Maheshwari, and J.-R. Sack. An ε - approximation algorithm for weighted

shortest paths on polyhedral surfaces. In SWAT’98, pages 11–22, 1998.

[2] P. K. Agarwal. Intersection and decomposition algorithms for planar arrangements. Uni-

versity Press, Cambridge, 1991.

[3] P. K. Agarwal, B. Aronov, and M. Sharir. On levels in arrangements of lines, segments,

planes, and triangles. In SCG ’97: Proceedings of the thirteenth annual symposium on

Computational geometry, pages 30–38, New York, NY, USA, 1997. ACM.

[4] P. K. Agarwal, S. Har-Peled, M. Sharir, and K. R. Varadarajan. Approximating shortest

paths on a convex polytope in three dimensions. J. ACM, 44(4):567–584, 1997.

[5] P. K. Agarwal, S. Krishnan, N. Mustafa, and S. Venkatasubramanian. Streaming geometric

optimization using graphics hardware. In 11th European Symp. on Algorithms, pages 544–

555, 2003.

[6] P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for clustering.

Algorithmica, 33(2):201–226, 2002.

[7] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Approximation algorithms for geometric

shortest path problems. In STOC ’00: Proceedings of the thirty-second annual ACM sym-

posium on Theory of computing, pages 286–295, New York, NY, USA, 2000. ACM Press.

[8] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Determining approximate shortest paths

on weighted polyhedral surfaces. J. ACM, 52(1):25–53, 2005.

[9] M. A. Anile, P. Furno, G. Gallo, and A. Massolo. A fuzzy approach to visibility maps

creation over digital terrains. Fuzzy Sets Syst., 135(1):63–80, 2003.

[10] B. Aronov, M. J. van Kreveld, R. van Oostrum, and K. R. Varadarajan. Facility location

on terrains. In ISAAC ’98: Proceedings of the 9th International Symposium on Algorithms

and Computation, volume 1533, pages 19–28, London, UK, 1998. Springer-Verlag.

[11] B. Aronov, M. J. van Kreveld, R. van Oostrum, and K. R. Varadarajan. Facility location

on a polyhedral surface. Discrete & Computational Geometry, 30(3):357–372, 2003.

[12] F. Aurenhammer. Voronoi diagrams: a survey of a fundamental geometric data structure.

ACM Comput. Surv., 23(3):345–405, 1991.

[13] F. Aurenhammer and R.Klein. Handbook of Computational Geometry, chapter Voronoi

diagrams, pages 201–290. Elsevier, 2000.

169

170 Bibliography

[14] Bern and Eppstein. Mesh generation and optimal triangulation. In D.-Z. Du and F. Hwang,

editors, Computing in Euclidean Geometry, Edited by , World Scientific, Lecture Notes

Series on Computing, volume 1. 1992.
[15] M. W. Bern, D. P. Dobkin, D. Eppstein, and R. L. Grossman. Visibility with a moving

point of view. Algorithmica, 11(4):360–378, Apr 1994.
[16] G. E. Blelloch. Vector models for data-parallel computing. MIT Press, Cambridge, MA,

USA, 1990.
[17] I. Boada, N. Coll, N. Madern, and J. A. Sellarès. Approximations of 3D generalized voronoi

diagrams. In 21st European Workshop on Computational Geometry, pages 163–166, 2005.
[18] I. Boada, N. Coll, and J. Sellarès. Adaptive approximations of 2D and 3D generalized voronoi

diagrams. International Journal of Computer Mathematics, -(-):–, 2008.
[19] P. Bose, A. Maheshwari, and P. Morin. Fast approximations for sums of distances, clustering

and the fermat–weber problem. Comput. Geom. Theory Appl., 24(3):135–146, 2003.
[20] P. Bose and P. Morin. An improved algorithm for subdivision traversal without extra stor-

age. In ISAAC ’00: Proceedings of the 11th International Conference on Algorithms and

Computation, pages 444–455, London, UK, 2000. Springer-Verlag.
[21] R. Bose and S. Chowla. Theorems in the additive theory of numbers. Comment. Math.

Helv., 37:141–147, 1962-63.
[22] A. Bowyer. Computing dirichlet tessellations. Comput. J., 24(2):162–166, 1981.
[23] N. Carr, J. Hart, and J. Maillot. The solid map: Methods for generating a 2-d texture map

for solid texturing. In Proc. Western Computer Graphics Symposium, pages 179–190, 2000.
[24] Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. GE-

OMETRY: Discrete and Computational Geometry, 16, 1996.
[25] T. M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries.

In SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete

algorithm, pages 1196–1202, New York, NY, USA, 2006. ACM.
[26] R. Chandrasekaran and A. Tamir. Algebraic optimization: the fermat-weber location prob-

lem. Math. Program., 46(2):219–224, 1990.
[27] B. Chazelle, D. Liu, and A. Magen. Sublinear geometric algorithms. In 35th ACM Symposium

of Thory of Computing, pages 531–540, 2003.
[28] J. Chen and Y. Han. Shortest paths on a polyhedron; part i: computing shortest paths. In

Inernational Journal of Computational Geomtry & Applications.
[29] W. Chen and K. Wada. On computing the upper envelope of segments in parallel. IEEE

Trans. Parallel Distrib. Syst., 13(1):5–13, 2002.
[30] K. Clarkson and P. Shor. Application of random sampling in computational geometry ii.

Discrete and Computational Geometry, 4:387–421, 1989.
[31] D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. Conservative visibility and strong

occlusion for viewspace partitioning of densely occluded scenes. Computer Graphics Forum,

17(3):243–254, 1998.
[32] N. Coll. Approximation and Visualization Methods for Bidimensional Geometric Objects.

PhD thesis, Universitat Politècnica de Catalunya., 2004.

Bibliography 171

[33] N. Coll, F. Hurtado, and J. A. Sellarès. Approximating planar subdivisions and general-

ized vornoi diagrams from random sections. In 19th European Workshop on Computational

Geometry, pages 27–30, 2003.
[34] S. Coorg and S. Teller. Real-time occlusion culling for models with large occluders. In SI3D

’97: Proceedings of the 1997 symposium on Interactive 3D graphics, pages 83–ff., New York,

NY, USA, 1997. ACM Press.
[35] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:

Algorithms and Applications. Springer-Verlag, Heidelberg, 1997.
[36] M. de Berg, M. J. van Kreveld, R. van Oostrum, and M. H. Overmars. Simple traversal

of a subdivision without extra storage. International Journal of Geographical Information

Science, 11(4):359–373, 1997.
[37] O. Devillers. Improved incremental randomized delaunay triangulation. In SCG ’98: Pro-

ceedings of the fourteenth annual symposium on Computational geometry, pages 106–115,

New York, NY, USA, 1998. ACM Press.
[38] Z. Drezner and H. W. Hamacher. Facility Location: applications and theory. Springer–

Verlah, 2002.
[39] A. Dumitrescu and C. D. Tóth. On the number of tetrahedra with minimum, unit, and

distinct volumes in three-space. In SODA ’07: Proceedings of the eighteenth annual ACM-

SIAM symposium on Discrete algorithms, pages 1114–1123, Philadelphia, PA, USA, 2007.

Society for Industrial and Applied Mathematics.
[40] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conservative visibility preprocessing

using extended projections. In SIGGRAPH ’00: Proceedings of the 27th annual conference

on Computer graphics and interactive techniques, pages 239–248, New York, NY, USA, 2000.

ACM Press/Addison-Wesley Publishing Co.
[41] H. Edelsbrunner. Algorithms in combinatorial geometry. Springer-Verlag New York, Inc.,

New York, NY, USA, 1987.
[42] C. Everitt. Interactive order-independent transparency, 2001.
[43] Q. Fan, A. Efrat, V. Koltun, S. Krishnan, and S. Venkatasubramanian. Hardware assisted

natural neighbour interpolation. In Proc. 7th Workshop on Algorithm Engineering and

Experiments (ALENEX), 2005.
[44] G. Farin. Curves and Surfaces for Computer-Aided Geometric Design — A Practical Guide.

The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan

Kaufmann Publishers (Academic Press), 5th edition, 2002. 499 pages.
[45] I. Fisher and C. Gotsman. Fast approximation of high order voronoi diagrams and distance

transforms on the GPU. Journal of Graphics Tools, 11(4):39–60, 2006.
[46] P. Fisher. Stretching the viewshed. In Sixth International Symposium on Spatial Data

Handling, pages 725–738, 1994.
[47] P. Fisher. Extending the applicability of viewsheds in landscape planning. Photogrammetric

engineering and remote sensing (Photogramm. eng. remote sensing), 62(11):1243–1306, 1996.
[48] P. F. Fisher. Algorithm and implementation uncertainty in viewshed analysis. International

Journal of Geographical Information Science, 7(4):331–347, July 1993.

172 Bibliography

[49] P. F. Fisher. Reconsideration of the viewshed function in terrain modeling. Geographical

Systems, 3:33–58, 1996.

[50] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In N. A.

Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in multiresolution for geometric

modelling, pages 157–186. Springer Verlag, 2005.

[51] L. D. Floriani, B. Falcidieno, G. Nagy, and C. Pienovi. Polyhedral terrain description using

visibility criteria. Technical Report 17, nstitute for Applied Mathematics, National Resemvh

Council, 1989.

[52] L. D. Floriani, B. Falcidieno, G. Nagy, and C. Pienovi. On sorting triangles in a delaunay

tessellation. Algorithmica, 6(4):522–532, 1991.

[53] L. D. Floriani and P. Magillo. Visibility algorithms on triangulated digital terrain models.

International Journal of Geographical Information Systems, 8(1):13–41, 1994.

[54] L. D. Floriani and P. Magillo. Algorithms for visibility computation on terrains: a survey.

Environment and Planning B: Planning and Design, 30(5):709–728, 2003.

[55] L. D. Floriani, E. Puppo, and P. Magillo. Handbook of Computational Geometry, chapter

Ch. 7, Applications of Computational Geometry to Geographic Information Systems, pages

333–388. Elsevier Science, 1999.

[56] J. D. Foley, A. van Dam, and J. F. Hughes. Computer Graphics, Principles and Practice.

Addison-Wesley, 1990.

[57] W. R. Franklin and C. K. Ray. Higher isn’t necessarily better: Visibility algorithms and

experiments. In Sixth International Symposium on Spatial Data Handling, volume 2, pages

751–763, Edinburgh, Scotland, 1994.

[58] W. R. Franklin and C. Vogt. Efficient multiple observer siting on large terrain cells. In

GIScience 2004 Third International Conference on Geographic Information Science, 2004.

[59] W. R. Franklin and C. Vogt. Multiple observer siting on terrain with intervisibility or lo-res

data. In XXth Congress, International Society for Photogrammetry and Remote Sensing,

pages 12–23, 2004.

[60] D. Gddeke. GPGPU::Reduction Tutorial.

[61] P.-L. George and H. Borouchaki. Delaunay Triangulation and Meshing: Applications to

Finite Elements. Editions Hermes, 1998.

[62] S. Ghali. Computation and maintenance of visibility and shadows in the plane. In Proc. 6th

Int. Conf. Computer Graphics & Visualization, pages 117–124, Feb 1998.

[63] S. Ghali and A. J. Stewart. Incremental update of the visibility map as seen by a moving

viewpoint in two dimensions. In Proceedings of the Eurographics workshop on Computer

animation and simulation ’96, pages 3–13, New York, NY, USA, 1996. Springer-Verlag New

York, Inc.

[64] S. Ghali and A. J. Stewart. Maintenance of the set of segments visible from a moving

viewpoint in two dimensions. In SCG ’96: Proceedings of the twelfth annual symposium on

Computational geometry, pages 503–504, New York, NY, USA, 1996. ACM Press.

Bibliography 173

[65] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility. In SIGGRAPH ’93:

Proceedings of the 20th annual conference on Computer graphics and interactive techniques,

pages 231–238, New York, NY, USA, 1993. ACM Press.

[66] J. Gudmundsson, M. H. Hammar, and M. J. van Kreveld. Higher order delaunaytriangula-

tions. Computational Geometry Theory & Applications, 23(1):85–98, Jul 2002.

[67] H. W. Guesgen, J. Hertzberg, R. Lobb, and A. Mantler. First steps towards buffering fuzzy

maps with graphics hardware. In FOIS Workshop on Spatial Vagueness, Uncertainty and

Granularity, FOIS Workshop on Spatial Vagueness, Uncertainty and Granularity, 2001.

[68] N. Gupta and S. Sen. An efficient output-size sensitive parallel algorithm for hidden-surface

removal for terrains. Algorithmica, 31(2):179–207, 2001.

[69] S. Har-Peled. Approximate shortest paths and geodesic diameter on a convex polytope in

three dimensions. Discrete & Computational Geometry, 21(2):217–231, 1999.

[70] S. Har-Peled. Constructing approximate shortest path maps in three dimensions. SIAM J.

Comput., 28(4):1182–1197, 1999.

[71] S. Hart and M. Sharir. Nonlinearity of davenport-schinzel sequences and of generalized path

compressions schemes. Combinatorica, 6, 1986.

[72] J. Hershberger. Finding the upper envelope of n line segments in o(n log n) time. Inf.

Process. Lett., 33(4):169–174, 1989.

[73] J. Hershberger and S. Suri. Practical methods for approximating shortest paths on a convex

polytope in R3. In SODA ’95: Proceedings of the sixth annual ACM-SIAM symposium on

Discrete algorithms, pages 447–456, Philadelphia, PA, USA, 1995. Society for Industrial and

Applied Mathematics.

[74] S. Hertel, M. Mntyl, K. Mehlhorn1, and J. Nievergelt. Space sweep solves intersection of

convex polyhedra. Acta Informatica.

[75] M. Hesse and M. L.Gavrilova. An efficient algorithm for real-time 3D terrain walkthrough.

International Journal of CAD/CAM, 3(2):111–117, 2003.

[76] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver. Fast computation of general-

ized Voronoi diagrams using graphics hardware. Computer Graphics, 33(Annual Conference

Series):277–286, 1999.

[77] T. C. Hudson, D. Manocha, J. D. Cohen, M. C. Lin, K. E. H. III, and H. Zhang. Accelerated

occlusion culling using shadow frusta. In Symposium on Computational Geometry, pages 1–

10, 1997.

[78] J. W. Jaromczyk and M. Kowaluk. Skewed projections with an application to line stabbing

in r3. In Symposium on Computational Geometry, pages 362–370, 1988.

[79] B. Kaneva and J. O’Rourke. An implementation of Chen and Han’s shortest paths algorithm.

In Proceedings of the 12th Canadian Conference on Computational Geometry, pages 139–146,

2000.

[80] S. Kapoor. Efficient computation of geodesic shortest paths. In STOC ’99: Proceedings of

the thirty-first annual ACM symposium on Theory of computing, pages 770–779, 1999.

174 Bibliography

[81] S. Kapoor. Efficient computation of geodesic shortest paths. In STOC ’99: Proceedings of

the thirty-first annual ACM symposium on Theory of computing, pages 770–779, New York,

NY, USA, 1999. ACM Press.

[82] S. Kim and C. Shin. Computing the optimal bridge between two polygons. Technical Report

Research Report TSCS-99-14, HKUST, 1999.

[83] Y.-H. Kim, S. Ranab, and S. Wise. Exploring multiple viewshed analysis using terrain

features and optimisation techniques. Computers and Geosciences, 30(9–10):1019–1032,

2004.

[84] R. Kimmel and J. Sethian. Computing geodesic paths on manifolds. In Proceedings of

National Academy of Sciences, volume 95.

[85] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J.

Comput., 15(1):287–299, 1986.

[86] V. Koltun, Y. Chrysanthou, and D. Cohen-Or. Hardware-accelerated from-region visibility

using a dual ray space. In Proceedings of the 12th Eurographics Workshop on Rendering

Techniques, pages 205–216, London, UK, 2001. Springer-Verlag.

[87] S. Krishnan, N. H. Mustafa, and S. Venkatasubramanian. Hardware-assisted computation of

depth contours. In SODA ’02: Proceedings of the thirteenth annual ACM-SIAM symposium

on Discrete algorithms, pages 558–567, Philadelphia, PA, USA, 2002. Society for Industrial

and Applied Mathematics.

[88] C. Kumsap, F. Borne, and D. Moss. The technique of distance decayed visibility for for-

est landscape visualization. International Journal of Geographical Information Science,

19(6):723–744, July 2005.

[89] M. Lanthier, A. Maheshwari, and J.-R. Sack. Approximating shortest paths on weighted

polyhedral surfaces. Algorithmica, 30(4):527–562, 2001.

[90] M. Lanthier, D. Nussbaum, and J.-R. Sack. Parallel implementation of geometric shortest

path algorithms. Parallel Comput., 29(10):1445–1479, 2003.

[91] M. A. Lanthier, D. Nussbaum, and T.-J. Wang. Calculating the meeting point of scat-

tered robots on weighted terrain surfaces. In M. Atkinson and F. Dehne, editors, Eleventh

Computing: The Australasian Theory Symposium (CATS2005), volume 41 of CRPIT, pages

107–118, Newcastle, Australia, 2005. ACS.

[92] D. T. Lee. O k-nearest neighbor voronoi diagrams in the plane. IEEE Trans. Comput.,

31:478–487, 1982.

[93] J. Lee. Analyses of visibility sites on topographic surfaces. International Journal of Geo-

graphical Information Systems, 5:413–429, 1991.

[94] B. Liu, L.-Y. Wei, and Y.-Q. Xu. Multi-layer depth peeling via fragment sort. Microsoft

Research, (MSR-TR-2006-81):4, June 2006.

[95] Y.-J. Liu, Q.-Y. Zhou, and S.-M. Hu. Handling degenerate cases in exact geodesic compu-

tation on triangle meshes. The Visual Computer, 23(9-11):661–668, 2007.

[96] M. Llobera. Extending gis-based visual analysis: The concept of visualscapes. International

Journal of Geographic Information Science, 17(1):25–48, 2003.

Bibliography 175

[97] Z. Luo, H. Liu, Z. Yang, and X. Wu. Self-organizing maps computing on graphic process

unit. In ESANN, pages 557–562, 2005.
[98] D. Martinez, L. Velho, and P. C. Carvalho. Geodesic paths on triangular meshes. In SIB-

GRAPI ’04: Proceedings of the Computer Graphics and Image Processing, XVII Brazilian

Symposium on (SIBGRAPI’04), pages 210–217, 2004.
[99] J. Matoušek. Lectures on Discrete Geometry. Number 212 in Graduate Texts in Mathemat-

ics. Springer-Verlag, 2002.
[100] M. McKenna. Worst-case optimal hidden-surface removal. ACM Trans. Graph., 6(1):19–28,

1987.
[101] N. Megiddo. Linear-time algorithms for linear programming in R3 and related problems.

SIAM Journal on Computing, 12(4):759–776, 1983.
[102] J. Miheli and B. Robi. Facility location and covering problems. In Proc. of the 7th Interna-

tional Multiconference Information Society, 2004.
[103] K. Mills, G. Fox, and R. Heimbach. Implementing an intervisibility analysis model on a

parallel computing system. Comput. Geosci., 18(8):1047–1054, 1992.
[104] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic problem.

SIAM J. Comput., 16(4):647–668, 1987.
[105] J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem: finding shortest

paths through a weighted planar subdivision. J. ACM, 38(1):18–73, 1991.
[106] E. Moet, C. Knauer, and M. van Kreveld. Visibility of segments and triangles in 3D. In

Visibility of Segments and Triangles in 3D, volume 1, 2006.
[107] E. Moet, M. van Kreveld, and A. F. van der Stappen. On realistic terrains. In SCG ’06:

Proceedings of the twenty-second annual symposium on Computational geometry, pages 177–

186, New York, NY, USA, 2006. ACM Press.
[108] E. Moet, M. van Kreveld, and R. van Oostrum. Region intervisibility in terrains. Interna-

tional Journal of Computational Geometry, 17(4):331–347, 2007.
[109] D. Mould and M. Horsch. An hierarchical terrain representation for approximately shortest

paths. In PRICAI, pages 104–113, 2004.
[110] D. M. Mount. Voronoi diagrams on the surface of a polyhedron. Technical report, University

of Maryland, 1985.
[111] N. H. Mustafa, S. Krishnan, G. Varadhan, and S. Venkatasubramanian. Dynamic simplifi-

cation and visualization of large maps. International Journal of Geographical Information

Science, 20(3):273–302, 2006.
[112] Z. Nagy and R. Klein. Depth-peeling for texture-based volume rendering. In 11th Pacific

Conference on Computer Graphics and Applications (PG), volume 00, pages 429–433, Los

Alamitos, CA, USA, 2003. IEEE Computer Society.
[113] K. Nechv́ıle and P. Tobola. Local approach to dynamic visibility in the plane. In Proc. 7th

Int. Conf. Computer Graphics, Visualization and Interactive Digital Media (WSCG ’99).
[114] M. Novotni and R. Klein. Computing geodesic distances on triangular meshes. In Proc.

10th International Conference in Central Europe on Compute Graphics, Visualization and

Computer Vision, pages 341–347, 2002.

176 Bibliography

[115] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellation: Concepts and

Application of Voronoi Diagrams. John Wiley and Sons, 2000.
[116] A. Okabe, B. Boots, and K. Suihara. Nearest neighbourhood operations with generalized

voronoi diagrams: a review. International Journal of Geographical Information Science,

8(1):43–71, 1994.
[117] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E. Lefohn, and T. J. Purcell.

A survey of general-purpose computation on graphics hardware. Computer Graphics Forum,

26(1):80–113, 2007.
[118] M. Pocchiola and G. Veger. The visibility complex. International Journal of Computer

geometry and applications, 6(3):279–308, 1996.
[119] F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three

dimensions. Commun. ACM, 20(2):87–93, 1977.
[120] F. P. Preparata and M. I. Shamos. Computational geometry: an introduction. Springer-

Verlag New York, Inc., New York, NY, USA, 1985.
[121] E. Puppo and P. Marzano. Discrete visibility problems and graph algorithms. International

Journal of Geographical Information Science, 11(2):139–161, 1997.
[122] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray tracing on programmable

graphics hardware. ACM Transactions on Graphics, 21(3):703–712, July 2002. ISSN 0730-

0301 (Proceedings of ACM SIGGRAPH 2002).
[123] P. J. Rallings, J. A. Ware, and D. B. Kidner. Parallel distributed viewshed analysis. In

Proc. ACMGIS’98, pages 151–156, 1998.
[124] J. Reif and Z. Sun. An efficient approximation algorithm for weighted region shortest

path problem. In Proc. of the 4th Workshop on Algorithmic Foundations of Robotincs

(WAFR2000), pages 191–203, 2000.
[125] S. Rivière. Dynamic visibility in polygonal scenes with the visibility complex. In 3th Annual

ACM Symposium on Computational Geometry, pages 421–423, 1997.
[126] J. Robert and G. Toussaint. Computational geometry and facility location. In International

Conference on Operations Research and Management Science, pages 1–19, 1990.
[127] A. Saalfeld. Delaunay triangulations and stereographic projections. Cartography and Geo-

graphic Information Science, 26(4):289–296, October 1999.
[128] J.-R. Sack and J. Urrutia. Handbook of computational geometry. North-Holland Publishing

Co., Amsterdam, The Netherlands, The Netherlands, 2000.
[129] G. Schaufler, J. Dorsey, X. Decoret, and F. X. Sillion. Conservative volumetric visibility

with occluder fusion. In Proceedings of SIGGRAPH 2000, pages 229–238, 2000.
[130] D. Schmitt and J.-C. Spehner. Order-k voronoi diagrams, k-secions, and k-sets. In

JCDCG’98, pages 290–304, 2000.
[131] Y. Schreiber and M. Sharir. An optimal-time algorithm for shortest paths on a convex poly-

tope in three dimensions. In SCG ’06: Proceedings of the twenty-second Annual Symposium

on Computational Geometry, pages 30–39, New York, NY, USA, 2006. ACM Press.
[132] M. Segal and K. Akeley. The OpenGL Graphics System: A Specification.

http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf., 2004.

Bibliography 177

[133] A. Shapria. Visibility and terrain labelling. Master’s thesis, NY, Rensselaer Polytechnic

Institute, NY, Rensselaer Polytechnic Institute.
[134] M. Sharir. Arrangements in higher dimensions: Voronoi diagrams, motion planning, and

other applications. In WADS, pages 109–121, 1995.
[135] M. Sharir. The clarkson-shor technique revisited and extended. Combinatorics, Probability

& Computing, 12(2):191–201, 2003.
[136] M. Sharir(and A. Schorr. On shortest paths in polyhedral spaces. In STOC ’84: Proceedings

of the sixteenth annual ACM symposium on Theory of computing, pages 144–153, New York,

NY, USA, 1984. ACM Press.
[137] B. Sharp. Optimizing curved surface geometry. Game Developer.
[138] C. Sigg, R. Peikert, and M. Gross. Signed distance transform using graphics hardware. In

VIS ’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), pages 83–90, 2003.
[139] J. Snoeyink and M. J. van Kreveld. Linear-time reconstruction of delaunay triangulations

with applications. In ESA ’97: Proceedings of the 5th Annual European Symposium on

Algorithms, pages 459–471, London, UK, 1997. Springer-Verlag.
[140] P. Sorensen and D. Lanter. Two algorithms for determining partial visibility and reducing

data structure induced error in viewshed analysis. Photogrammetric Engineering and Remote

Sensing, 59(3):1129–1132, 1993.
[141] A. J. Stewart. Fast horizon computation at all points of a terrain with visibility and shadow

applications. IEEE Transactions on Visualization and Computer Graphics, 2(1):82–93, 1993.
[142] A. Sud, M. Otaduy, and D. Manocha. DiFi: Fast 3D distance field computation using

graphics hardware. In Eurographics, volume 23, pages 557–566, 2004.
[143] Z. Sun and J. Reif. On finding approximate optimal paths in weighted regions. Journal of

Algorithms, 58(1):1–32, 2006.
[144] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H. Hoppe. Fast exact and

approximate geodesics on meshes. ACM Trans. Graph., 24(3):553–560, 2005.
[145] M. Teillaud. Towards dynamic randomized algorithm in computational geometry. Technical

Report 1727, Unit de Recherche Inria-Sophia Antipolis, 1992.
[146] Y. Teng, D. D. Menthon, and L. Davis. Region-to-region visibility analysis using data

parallel machines. Concurrency: Practice and Experience, 5:379–406, 1993.
[147] D. T.Lee and B. Schachter. Two algorithms for constructing delaunay triangulations. In-

ternational Journal of Computer Information Sciences, 9(3):219–242, 1980.
[148] K. N. P. Tobola. Dynamic visibility in the plane. In 15th Spring Conf. Computer Graphics,

f1999.
[149] M. J. van Kreveld. Variations on sweep algorithms: efficient computation of extended view-

sheds and clas intervals. International Journal of Computational Geometry an dApplications,

7(1-2):82–93, 1996.
[150] M. J. van Kreveld. Digital elevation models and tin algorithms. In Algorithmic Foundations

of Geographic Information Systems, this book originated from the CISM Advanced School on

the Algorithmic Foundations of Geographic Information Systems, pages 37–78, London, UK,

1997. Springer-Verlag.

178 Bibliography

[151] K. R. Varadarajan and P. K. Agarwal. Approximating shortest paths on a nonconvex

polyhedron. SIAM J. Comput., 30(4):1321–1340, 2000.

[152] C. A. Wang and B. Zhu. Three-dimensional weak visibility: Complexity and applications.

Theor. Comput. Sci., 234(1-2):219–232, 2000.

[153] E. Weiszfeld. Sur le point pour lequel la somme des distances de n points donnes est

minimum. Tohoku Mathematical Journal, 43:355–386, 1936.

[154] E. Welzl. Smallest enclosing disks (balls and ellipsoids). New Results and New Trends in

Computer Science, 555:359–370, 1991.

[155] P. Wonka and D. Schmalstieg. Occluder shadows for fast walkthroughs of urban environ-

ments. Computer Graphics Forum, 18(3):51–60, 1999.

[156] C.-K. Yap. An o (n log n) algorithm for the voronoi diagram of a set of simple curve

segments. Discrete & Computational Geometry, 2:365–393, 1987.

[157] Z. Youbing, Z. Ji, S. Jiaoying, and P. Zhigeng. A fast algorithm for large scale terrain

walkthrough. In CAD/Graphics2001, 2001.

[158] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility culling using hierarchical occlusion

maps. In Proceedings of SIGGRAPH 97, pages 77–88, 1997.

[159] J. Zhang, D. Papadias, K. Mouratidis, and Z. Manli. Query processing in spatial

databases containing obstacles. International Journal of Geographical Information Science,

19(10):1091–1111, November 2005.

	Abstract
	Resum
	Resumen
	Published work
	Acknowledgements
	Contents
	1. Introduction
	2. Basic concepts and previous work
	3. Multi-visibility on terrains
	4. Multi-visibility on terrains by using graphics hardware
	5. Distances on polyhedral surfaces
	6. Weighted distances on polyhedral surfaces
	7. Discrete distance function and applications
	8. Conclusions, further comments and future work
	Bibliography

