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Narćıs Madern Leandro

2010

Programa de Doctorat de Software

PhD supervisors:

Dr. Joan Antoni Sellarès Chiva
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Abstract

In this thesis we design, implement and discuss algorithms that run in the graphics

hardware for solving visibility and good-visibility problems. In particular, we compute a

discretization of the multi-visibility and good-visibility maps from a set of view objects

(points or segments) and a set of obstacles. This computation is carried out for two-

dimensional and three-dimensional spaces and even over terrains, which in computational

geometry are defined as a 2.5D space.

First, we thoroughly review the graphics hardware capabilities and how the graphics

processing units (known as GPUs) work. We also describe the key concepts and the most

important computational geometry tools needed by the computation of multi-visibility and

good-visibility maps. Afterwards, we study in a detailed manner the visibility problem

and we propose new methods to compute visibility and multi-visibility maps from a set

of view objects and a set of obstacles in 2D, 2.5D and 3D using the GPU. Moreover, we

present some variations of the visibility to be able to deal with more realistic situations.

For instance, we add restrictions in the angle or range to the visibility of viewpoints or

we deal with objects emitting other kinds of signals which can cross a certain number of

obstacles.

Once the multi-visibility computation is explained in detail, we use it together with the

depth contours concept to present good-visibility in the two-dimensional case. We propose

algorithms running in the GPU to obtain a discretization of the 2D good-visibility map

from a set of view objects and a set of obstacles. Related to the view objects, we present

two alternatives: viewpoints and view segments. In the case of the obstacles we also expose

two variants: a set of segment obstacles or an image where the color of a pixel indicates if

it contains an obstacle or not. Then we show how the variations in the visibility change

the good-visibility map accordingly. The good-visibility map over a terrain is explained

as a variation of the 2D version, since we can first compute it in the plane by using a

projection and then re-project again the solution to the faces of the terrain.

We finally propose a method that using the graphics hardware capabilities computes

the depth contours in a three-dimensional space in a fast and efficient manner. Afterwards,

a set of triangle obstacles is added to the previously mentionned set of (view) points in

order to compute a discretization of the good-visibility map in the three-dimensional space.
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Resum

Aquesta tesi tracta del disseny, implementació i discussió d’algoritmes per resoldre

problemes de visibilitat i bona-visibilitat utilitzant el hardware gràfic de l’ordinador. Conc-

retament, s’obté una discretització dels mapes de multi-visibilitat i bona-visibilitat a par-

tir d’un conjunt d’objectes de visió i un conjunt d’obstacles. Aquests algoritmes són útils

tant per fer càlculs en dues dimensions com en tres dimensions. Fins i tot ens permeten

calcular-los sobre terrenys.

Primer de tot s’expliquen detalladament les capacitats i funcionament de les unitats

de processament gràfic (GPUs) i els conceptes i eines clau de la geometria computacional

necessaris per calcular mapes de bona-visibilitat. Tot seguit s’estudia detalladament el

problema de la visibilitat i es proposen nous mètodes que funcionen dins la GPU per

obtenir mapes de visibilitat i multi-visibilitat a partir d’un conjunt d’objectes de visió i

un conjunt d’obstacles, tant en 2D i 3D com sobre terrenys. A més a més es presenten

algunes variacions de la visibilitat i aix́ı ser capaços de tractar situacions més reals. Per

exemple, afegim restriccions en l’angle o el rang de la visibilitat dels punts de visió. Fins

i tot es mostren formes de canviar el tipus de senyal que emeten els objectes, que pot

atravessar un cert nombre d’obstacles abans de desaparèixer.

Una vegada s’ha explicat amb detall com calcular els mapes de visibilitat, podem

utilitzar-ho juntament amb els mapes de profunditat per presentar la bona-visibilitat en el

pla. Es proposen alguns algoritmes que s’executen dins el hardware gràfic per obtenir una

discretització del mapa de bona-visibilitat en el pla a partir d’un conjunt d’objectes de visió

i un conjunt d’obstacles. Pel que fa els objectes de visió, es presenten dues alternatives:

punts de visió i segments de visió. En el cas dels obstacles també es proposen dues variants:

un simple conjunt de segments o una imatge binària on el color de cada ṕıxel indica si hi ha

obstacle o no. Més endavant es mostra com les variacions en la visibilitat canvien també

el mapa de bona-visibilitat. Els mapes de bona-visibilitat sobre terrenys s’expliquen com

una variació de la versió en el pla, ja que podem calcular-ho en el pla i tot seguit projectar

la solució de nou sobre els poĺıgons del terreny.

No es té constància de cap algoritme que calculi mapes de profunditat a l’espai, per tant

es proposa un mètode que, utilitzant la GPU, obté mapes de profunditat a l’espai d’una

manera ràpida i eficaç. Finalment, s’afegeix un conjunt d’obstacles per poder calcular una

discretització dels mapes de bona-visibilitat a l’espai.
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continuar veient-nos i fent coses junts durant molt de temps.

Finalment, vull dedicar aquesta tesi especialment a la Śılvia. Estic segur que sense
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Chapter 1

Introduction

In this thesis, we solve visibility and good-visibility problems by using Computational

Geometry and Graphics Hardware techniques.

Computational Geometry is a relatively new discipline which aims to investigate effi-

cient algorithms to solve geometric-based problems. Consequently, it is essential to identify

and study concepts, properties and techniques to ensure that new algorithms are efficient

in terms of time and space. For instance, the complexity of algorithms and the study of

geometric data structures are important concepts to consider. Computational Geometry

problems can be applied to a wide range of disciplines such as astronomy, geographic

information systems, data mining, phisics, chemistry, statistics, etc.

One of the most important and studied research topics in computational geometry is

visibility which, from a geometric point of view, is equivalent to illumination. Regarding

this illumination or visibility concept, some questions naturally arise, for instance (1)

which zones of the space are visible from a set of points taking into account the obstacles?

(2) are all these visible zones connected or are all the interior points of a certain object

visible from a known point of observation? In addition, one can even ask questions related

to the inverse problem, for example how many points are needed to directly view all the

zones of a building and where they have to be placed. An increasing number of studies

related to visibility in computer graphics and other fields have been published, including

its problems and their solutions. Extensive surveys on visibility can be found in [Dur00]

and [COCSD03].

In practice, when dealing with an environmental space of viewpoints and obstacles, it

is some times not sufficient to have regions simultaneously visible from several viewpoints

but it is necessary that these regions are well-visible, i.e. that they are surrounded by

1
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viewpoints. This concept, known as good-illumination or good-visibility, was described

for the first time in the PhD Thesis of S. Canales in 2004 [Can04]. It can be seen as

a combination of two well studied problems in computational geometry: visibility and

location depth [KSP+03, MRR+03]. Let V be a set of points in the plane or space, the

location depth of a point p indicates how deep p is with respect to V . The depth map of

V shows how deep is every point of the space with respect to V . Intuitively, we can say

that the more interior a region is with respect to V , the more depth it has. Thus points

inside a more deeper region have more points of V surrounding it (see Figure 1.1).

Figure 1.1: Example of a depth map from a set of points V . The lighter the gray of a region is,

the deeper it is situated with respect to V .

Good-visibility is based on the same intuitive idea of location depth with the addition

of obstacles which can block the visibility in certain zones. Taking this into account,

good-visibility can be treated as a generalization of the location depth concept by adding

visibility information from the set V . A point p is well visible if the main part of the

viewpoints in V are well distributed around p and visible from there. Otherwise it is not

well visible if the main part of the viewpoints visible from p are grouped on the same side

of p. Figure 1.2 contains a scheme showing this intuitive idea. A scene with five viewpoints

and two segment obstacles is depicted in (a). It is important to remark that every point

in the plane is visible from at least one viewpoint. Nevertheless, when a convex object is

placed in the scene it acts as a barrier and it is possible that some points on its boundary

become invisible to every viewpoint (b). Of course, this effect can be avoided if the object

is placed at a better position (c).

Abellanas, Canales and coworkers published some other relevant work about good-

visibility, providing its exact calculation in concrete cases [ACH04, ABM07b], and even

some variations were also published [ABHM05, ABM07a]. However, to the best of our
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(a) (b) (c)

Figure 1.2: Good-visibility concept illustration.

knowledge a generic solution to compute good-visibility from any set of viewpoints and

any set of obstacles has still not been found.

The good-visibility map is defined as the subdivision of the plane in regions with dif-

ferent good-visibility depth. Good-visibility maps and their extensions can have many

applications in a wide variety of fields, i.e. in construction and architecture, the position

of lights in buildings and wireless points or antenna distribution over a terrain or inside an

office. In particular, they are useful in the design of the position, orientation and number

of lights inside an art gallery in order to obtain the best quality of light to all exposed pieces

(see Figure 1.3). Another practical application is for deciding where a set of WiFi access

points have to be placed to obtain a good signal in the main part of a building taking also

into account the number of walls that their signal can cross [YW08, DC08, AFMFP+09]

(see Figure 1.4). They also have many applications in 2.5D (also known as terrains) and

3D cases. For instance, a good-visibility map over a terrain can be useful to place a set

of antennas in order to obtain the largest number of zones with good signal, or to ensure

that a particular region of the terrain will have a good enough signal.

Problems related to visibility and good-visibility have a high computational complex-

ity in terms of time and space. Thus, computing a discretization of the solution might

still bring accurate solutions to the problem with the advantage of having a substantial

reduction of the resources needed. Moreover, if a discretized solution is sufficient, it is also

possible to compute each part of this discrete solution in a parallel way. it is exactly at

this point where graphics hardware comes into play. Graphics Processing Units (GPUs)

are specialized processors which use a highly parallel structure that makes them perfect

for solving problems that can be partitioned into independent and smaller parts.

GPUs have evolved tremendously in the last years, mainly due to the decreasing prices

of the electronic parts and the increasing demand for real-time graphical effects in video-
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Figure 1.3: The two images show the good-visibility map from two distinct set of viewpoints.

The red lines represent the plant of an art gallery while the blue points represent light focus.

The good-visibility map is painted in a gray gradiation: the darker the gray is, the higher

the level of that point is.

Figure 1.4: The two images show the good-visibility map from two distinct set of wireless

access points. The red lines represent walls and the blue points represent the wireless access

points. The number associated to each point indicates its power of emission (the number

of walls that its signal can cross before disappearing).

games. In a few years the GPU has evolved from a non-modifiable black box capable

of doing fast computations related to computer graphics to flexible and programmable

units able to execute algorithms and solve problems belonging to a large variety of fields.

Currently, the use of GPUs has now been extended to a wide range of disciplines.
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1.1 Objectives

It is important to remark that the first and probably the most important aspect to consider

when one wants to use graphics hardware capabilities is based on how the GPU might be

programmed. Thus it is also important to know its limitations. This is usually a hard

learning process if one tries to solve problems not related to computer graphics by using

graphics hardware. This is the case of computational geometry problems which usually

use sequential algorithms for solving them.

Since good-visibility computation needs to compute the visibility as part of the whole

process, the first goal of this PhD thesis is to develop and implement an algorithm for

computing the discretization of a multi-visibility map from a set of view objects and a set

of obstacles using the graphics hardware capabilities. A visibility map is a subdivision of

the space in visibility regions from a viewpoint p, where visible and non-visible regions

from p can be identified. A multi-visibility map is a combination of two or more visibility

maps that are obtained from two or more different viewpoints. Using the multi-visibility

map we can obtain different information about the visibility according to the problem we

are dealing with. We present algorithms for computing multi-visibility maps in the plane,

in the space and even on a terrain.

Once we know how the multi-visibility map can be obtained, the second objective of

this thesis is the design of an algorithm capable of computing the two-dimensional good-

visibility map from a set of viewpoints and a set of segment obstacles running in the GPU

and taking advantage of its parallel processing capabilities. We also present a solution to

compute good-visibility maps on a terrain from a set of viewpoints, where its faces take

on the role of obstacles.

Of course, improvements to the latter algorithm can also be introduced. Therefore,

as a third goal we want to compute the good-visibility map from another kind of input,

for example segments or polygons instead of viewpoints and more complex obstacles, even

non-geometric ones like images where the obstacles are represented by the color of their

pixels.

Once the good-visibility map in the two-dimensional space and on terrains is presented,

we want, as a fourth objective, to obtain good-visibility and some of its variations in R3.

Since no implementations exist for the visualization of the depth contours from a set of

viewpoints in a three-dimensional space, we also want to compute it with the help of the

GPU.
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1.2 Structure of this thesis

With the aim of making this thesis self-contained, all necessary geometric concepts and a

detailed explanation of the graphics hardware are thoroughly described in Chapter 2.

Chapter 3 is dedicated to the visibility and multi-visibility map computation using the

GPU. First of all we introduce the previous work on this topic and afterwards we present

our own algorithms for computing the discretized 2D, 2.5D and 3D multi-visibility map

from a set of viewpoints. We also present some variations on the visibility, some of them

related to the shape of the view objects (viewpoints or view segments) and others related

to the obstacles. Moreover we present restrictions on the visibility as well as view objects

and obstacles with attributes affecting the multi-visibility map. Finally a running time

analysis for some of the exposed cases is given.

Once the computation of the visibility has been presented, we can focus on the prob-

lem of good-visibility. In Chapter 4 we expose our proposed methods to compute the

good-visibility map from a set of viewpoints and a set of segment obstacles in the plane.

Moreover we describe how good-visibility is affected by the variations applied to the visi-

bility and how they can be obtained. This chapter also contains how the two-dimensional

good-visibility computation can be adapted to obtain the good-visibility map over a ter-

rain. Some examples, images and running time analysis to complete the study are also

included.

Chapter 5 is focused on the computation of depth contours and good-visibility in a

three-dimensional space. First of all a detailed explanation of how the depth contours can

be computed from a set of 3D points is given, and in the second part of the chapter an

extension of the algorithms is presented in order to deal with scenes containing viewpoints

and also obstacles and to be able to finally compute volumetric good-visibility maps.

The last chapter included in this thesis draws the most important conclusions, some

final remarks and the related future work.

Let us finally mention that several results from this thesis have been published in

journals and conference proceedings [CFMS07a, CFMS07b, CMS08a, CMS08b, CMS10].

Moreover, the article entitled Parallel computation of 3D Depth Contours using CUDA

has been submitted to Journal of Computational and Graphical Statistics and a paper

about the computation of 3D good-visibility maps is in preparation.



Chapter 2

Background

In this chapter a detailed explanation of the existent Graphics Hardware programming

paradigms is explained. In addition to this, the most important geometric concepts used

in the computation of the good-visibility are thoroughly described.

2.1 The Graphics Hardware

This thesis could not be carried out without the knowledge of the principles and capabilities

of current GPUs, since the main idea is to make use of the GPU not only to solve unsolved

geometric problems but also to program faster algorithms to the problems which already

have a CPU implementation.

Graphics Processing Units (GPU) have long been used to accelerate gaming and 3D

graphics applications. In the past, the structure of the GPU programming was always the

same: the programmer sent basic primitives like polygons, points or segments as a set of

vertices and set the lights position and the perspective desired by using a graphic envi-

ronment (i.e OpenGL). The graphics card was responsible for rendering all this primitives

taking into account the parameters chosen previously. In fact, the GPU could be seen as

a black box with some basic controls providing an input for the geometry and an output

for its visualization. A few years later, the GPUs incorporated some programmable parts

in this still inflexible graphic pipeline. With these slightly modifiable parts, called vertex

shaders and pixels shaders, the programmers were able to look into the black box and

change a little the path followed by the geometry before it is rendered. At present there

are a lot of researchers interested in using the tremendous performance of the GPUs to do

computations not necessarily connected with computer graphics topics. There is already

7
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work related to mathematics, physics, chemistry and other disciplines which used GPUs

as a parallel general purpose computer. These GPGPU (General-Purpose computation

on GPUs) systems produced some impressive results, although there are many limitations

and difficulties in doing generic calculations by using programming languages oriented to

computer graphics, like OpenGL and Cg. To overcome these kinds of problems, NVIDIA

developed the CUDA programming model. In the following sections the basics of these

two programming paradigms are explained.

Since the GPUs are in constant evolution, every new graphics card that hits the market

is more powerful than previous ones, thus the running time for algorithms using the

graphics hardware can be reduced a lot every time a new generation of GPUs appear.

Their price and parallel computation possibilities makes them a fantastic tool for improving

running times in a lot of fields.

It is important to remark that, probably, the most difficult part in programming the

graphics hardware relies on learning the philosophy of the GPU programming: i.e. what

are the problems that can be solved using GPU? When is it better to use GPU instead of

CPU? Is it always better to use CUDA instead of Cg for implementing GPGPU algorithms?

Then in those cases where it is necessary to use Cg, how a geometric problem can be

transformed into an image-space based one in order to exploit the power of the GPU?

2.1.1 Graphics Pipeline and Cg language

In this section, a general explanation about graphics pipeline is presented. [FK03] is a

good reference to learn about graphics hardware capabilities and how to properly use it.

First of all, the geometry and raster pipelines are described, their input and output

items, and the capabilities of each one. The main part of these texts has been obtained

from [Den03] and [FK03]. The tutorial included in [Kil99] gives a thorough description of

an important part of the raster pipeline: the stencil test and its applications.

By using a graphics API (for example OpenGL) it is possible to define objects us-

ing different primitives: points, segments, polygons, polygon strips, etc. This API also

allows for the modification of the state variables, which control how the geometry and

the fragments inside the geometry and raster pipelines are affected, respectively. All the

geometric objects defined by the CPU enter the graphics engine at the geometry pipeline,

one at a time. The geometry pipeline is responsible for transforming and cutting the input

geometry taking into account the user-defined state variables as projection and clipping

planes, and finally subdividing the geometric objects into fragments, which are the input
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for the raster pipeline. There, four tests are applied to the fragments and the ones that

pass all of them are transformed to pixels, losing their depth information.

Finally, if two fragments coincide into the same pixel, the final color of the pixel can

be determined using distinct strategies: the color of the fragments can be blended, they

can be logically combined, or simply the last fragment gives its color to the pixel.

The current contents of the color and stencil buffers can be read back into the main

memory of CPU.

In Figure 2.1 there is a diagram of the general graphics pipeline.

Figure 2.1: Graphics pipeline. The unique programmable parts of the graphics hardware

are the vertex and pixel (also called fragment) shaders. It is only allowed to modify all the

other parts by changing some global attributes from the API (OpenGL, Direct3D, etc), for

example the depth function to evaluate in the depth test, the activation of any test, etc.

Geometry pipeline

The geometry pipeline is responsible for applying the projection determined by a state

variable to the input geometric objects. Apart from that, the geometry pipeline has the

ability to change the input objects by modifying their vertices. Nowadays it is also possible

to add or delete vertices to change completely the input geometry.

Then, the clipping planes defined in the CPU cut and discard the parts of the objects

that are, typically, outside the field of view determined by the projection.

At the end of the geometry pipeline any remaining portion of the object is discretized

in a grid producing a set of fragments. Each of these fragments corresponds to a pixel of
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the screen in the xy plane, however they also have depth information.

Raster pipeline

In contrast to the geometry pipeline, the input of the raster pipeline is a set of fragments.

The fragments from the input set are pushed through the pipeline, separately and indepen-

dently of each other. This processing of fragments can be compared to a parallel processor

field with a rather simple processor residing on each pixel. According to the x and y values

of a fragment, it is attached to the appropriate pixel. Based on the position, depth, and

color values, a fragment has to undergo four tests until the buffers of the associated pixel

are eventually altered.

When a fragment fails either of the first two tests, it is rejected from the pipeline

without any further side effect. The values and parameters of the per fragment tests

define the state of the raster pipeline and they are valid for the entire set of fragments. A

change of parameters can only be caused by a new set of fragments.

The four tests are:

1. Scissor test

This is the first test to pass. It is possible to define a rectangular portion of the

active window containing the picture. If a fragment resides inside this area, it passes

the scissor test. Otherwise, the fragment is rejected without any side effects on the

pixel buffers.

2. Alpha test

The alpha value of a fragment is compared to the value of the corresponding state

variable. The allowed comparison functions are smaller than, bigger than, equal,

smaller or equal, bigger or equal and different. Additionally it is possible to always

accept or reject a fragment. Again, if the fragment does not pass this test, it is

discarded from the pipeline without any further side effects.

3. Stencil test

In contrast to the other tests, this test is applied to the pixel attached to the frag-

ment. The stencil value of the fragment is compared to a reference value, determined

by a state variable. Any result of the comparison causes a side effect on the stencil

value of the fragment. A negative outcome of the test will erase the fragment. It
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is possible to execute a predefined action on the stencil test, depending on whether

the stencil and depth tests are passed or not

• The fragment fails the stencil test.

• It passes this test but fails the subsequent depth test.

• It passes both tests.

For each possible result one of the following actions can be executed:

• Keep the current value of the stencil buffer.

• Replace the stencil buffer value with 0.

• Replace the stencil buffer value with a reference value.

• Increment or decrement the stencil buffer by 1.

• Invert the value of the buffer.

4. Depth test

It is divided in two consecutive depth units. The depth test is declared to be passed if

and only if both test units are successfully passed by the fragment. An unsuccessful

test will cause the fragment to be vanished. The first depth unit operates on the

z-buffer of the fragment, and the second one on the z’-buffer.

Similar to the stencil test, the allowed compare function might be smaller than,

bigger than, equal, smaller or equal, bigger or equal and different. Again it is also

possible to always accept or reject a fragment.

The depth test corresponds to the only test in which data from the fragment is

directly compared to data belonging to the pixel. If any incoming fragment passes

the depth test, the z-buffer value of the pixel is replaced by the fragment’s value.

Any fragment which passed all the per-fragment tests is finally displayed on the screen,

which means that red, green, blue and alpha buffers of the corresponding pixel are updated.

The simplest method to accomplish an update is to overwrite the existing values with

the incoming ones. Apart from that, there are two other methods:

• The values can be combined using logical operations.

• The fragment data can be blended with pixel data.

Some examples of the available operations are: Clear buffers (all 0’s ), AND, XOR,

Set buffers (all 1’s).
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Programming the GPU: the Cg language

As a result of the technical advancements in graphics cards, some areas of 3D graphics

programming have become quite complex. To simplify the process, new features were

added to graphics cards, including the ability to modify their rendering pipelines using

vertex and pixel shaders.

In the beginning, vertex and pixel shaders were programmed at a very low level with

only the assembly language of the graphics processing unit. Although using the assembly

language gave the programmer complete control over code and flexibility, it was pretty hard

to use. In this context, a portable, higher level language for programming the GPU was

needed, thus Cg was created to overcome these problems and make shader development

easier.

Some of the benefits of using Cg over assembly are:

• High level code is easier to learn, program, read, and understand than assembly

code.

• Cg code is portable to a wide range of hardware and platforms, in contrast with

assembly code, which usually depends on hardware and the platforms it is written

for.

• The Cg compiler can optimize code and do lower level tasks automatically.

Cg programs are merely vertex and pixel (or fragment) shaders, and they need sup-

porting programs that handle the rest of the rendering process. Cg can be used with

different graphical APIs, for instance OpenGL or DirectX. However each one has its own

set of Cg functions to communicate with the Cg program.

In addition to being able to compile Cg source to assembly code, the Cg runtime also

has the ability to compile shaders during the execution of the supporting program. This

allows the shader to be compiled using the latest available optimizations. However this

technique also permits the user of the program to access the shader source code, since it

needs to be present in order to be compiled, which can be problematic if the author of the

code does not want to share it.

Related to this, the concept of profiles was developed to avoid exposing the source code

of the shader, and still maintain some of the hardware specific optimizations. Shaders can

be compiled to suit different graphics hardware platforms (according to profiles). When

the supporting program is executed, the best optimized shader is loaded according to its
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profile. For instance there might be a profile for graphics cards that support complex pixel

shaders, and another one for those supporting only minimal pixel shaders. By creating

a pixel shader for each of these profiles, a supporting program enlarges the number of

supported hardware platforms without sacrificing picture quality on powerful systems.

All tools and utilities commented before have been designed for working with graphics.

However, a problem can be transformed to an image-based algorithm (if it is possible and

if one finds the way) and solved (usually an approximated solution is mostly obtained)

using the GPU capabilities. Thanks to the use of Cg we are able to test and program our

image-based algorithms in a simple and faster way. Moreover, all these algorithms can be

implemented in a transparent way with respect to the GPU hardware and low-level calls.

2.1.2 General-Purpose computation on GPU and CUDA

CUDA is a minimal extension of the C and C++ programming languages. The program-

mer writes a serial program that execute parallel kernels, which may be simple functions

or full programs. The execution in CUDA is structured in blocks. All the blocks of a

single execution form a grid and every block is subdivided in threads that are executed in

a parallel fashion. The GPU has a finite number of concurrent multiprocessors and every

processor inside them is responsible for executing a single thread. Thus we can imagine

that all these processors are executing threads at the same time. Normally, each of these

threads computes a small portion of the problem, independent to all the other ones. Apart

from the parallelism in the execution, we can also access to the GPU memory concurrently

in order to increment the efficiency. There are different kinds of memory classified by their

access speed and physical distance to the concurrent processors. Independently from the

kind of memory used, it is important to remark that the access to stored data in the GPU

memory has to be done carefully if we want an optimum implementation. In this section,

the CUDA language will be described based on [NBGS08], an introductory document

downloadable from the NVIDIA website that explains the basics of the Graphical Pro-

cessing Units and more specifically the advantages of CUDA. Moreover it has information

about how to access efficiently the GPU memory.

Architecture advantages over Cg

An obvious advantage of CUDA over Cg is that it is a GPGPU (General-Purpose com-

putation on GPU) programming language, which implies that the GPU can be used to

program general purpose problems not necessarily related to the computer graphics field.
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Therefore, one does not have to worry about graphics primitives or how to discretize the

problem in pixels and render them in the right way in order to obtain a non-graphical

solution. However, there are some other important advantages.

In Cg or other GPU languages which use the graphics pipeline, a pixel is not allowed

to write any position of the graphics memory. The pixel x, y in screen coordinates can

only write at position x, y on a color or depth buffer. This is because the architecture

can not handle conflicts between writting operations from different pixels, due to the fact

that all pixels are completely independent to each other. They can not communicate with

other pixels executed at the same time in any way. Cg only permits a pixel in position x, y

to read from any position of a texture and to read or write the position x, y of the color

and depth buffers. If it is needed to read and write values in the same memory space, two

or more rasterization steps using a ping-pong technique are often employed.

CUDA architecture permits a thread (the pixel in Cg can be seen as equivalent to the

thread in CUDA) to read or write any position on the graphics memory space. There is

an exception with shared memory that can be found in Section 2.1.2. However, the latter

exception is the key to another advantage of CUDA over Cg. Threads can communicate

with some others using the shared memory, which represents a great advantage in solving

a wide range of problems.

It is important to remark that CUDA has a much more flexible computation architec-

ture which substantially reduces the limitations of the graphics oriented paradigms.

The execution model

First of all, some definitions are needed to understand the following paragraphs. When

using CUDA, two environments exist: the host and the device. The host corresponds to

the CPU computation part, from where the device functions, called kernels, partition the

problem in small portions called threads which are executed in a parallel way inside the

GPU.

All threads executed by a kernel are organized in blocks and all these blocks are grouped

in a single grid. Therefore each grid of threads defined in the host is always executed by

a unique kernel inside the device (see Figure 2.2).

Every block is logically divided in warps. All warps have the same fixed size depending

on the model of GPU. Usually, a warp contains 32 threads belonging to the same block.

All threads of a warp always execute exactly the same instructions and have restrictions

on the access to shared memory (see Section 2.1.2), therefore this warp size must be taken



2.1. The Graphics Hardware 15

Figure 2.2: The left image shows the CUDA execution process. The right one shows that

every block inside the grid is composed by an arbitrary number of concurrent threads.

Image taken from [NBGS08].
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into account especially when current kernel has control flow instructions or uses per block

shared memory.

All the threads within the same block can cooperate by sharing data and synchro-

nizing their execution in order to access shared memory efficiently. When a synchronize

instruction is put in a point in the code, the threads reaching this point wait until all

other threads in their same blocks reach it. Then all the threads within a block continue

the parallel execution. Since the shared memory is only available at a block level, threads

of different blocks cannot synchronize or share information (examples can be found in the

following sections).

There are strong limitations in the number of threads per block, but a kernel can be

executed using a grid with a lot of blocks. This gives us the possibility to have a very

large number of threads being executed at the same kernel. In addition to this, the thread

cooperation is reduced because the main part of them are actually in distinct blocks.

This model allows kernels to run without recompilation on different devices with differ-

ent hardware capbilities. If the device has very few parallel capabilities it can run all the

blocks sequentially. On the other hand, if the device has large parallel capabilities, it will

run a lot of them in a parallel fashion. The advantage here is that all these facts are almost

totally transparent to the programmer, therefore he can focus his work on improving the

algorithms.

Memory model

A thread only has access to the device memory, and this space memory is divided into

some different memory spaces (see Figure 2.3). The most important ones are explained as

follows.

Global memory occupies the main part of the device memory space. It can can be

accessed by all the threads within the grid and is not cached (it is the slowest one).

The advantage is that it has a lot of space, therefore it might be useful when data

is too big to fit in any other kind of memory. All global space memory is accessible

from any thread within the grid, thus all the threads of the grid can read or write

any position there.

Constant memory is a cached small portion (usually 64Kb) of the GPU memory that

cannot be modified during the CUDA kernel processing and it is accessible by all

the threads. The constant memory is very useful when we have relatively small data
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Figure 2.3: Memory model of CUDA architecture.

that has to be accessed many times by the main part of the threads, because its

cache increases the access speed. As its name indicates, we can only read from this

space memory. All threads within the grid have access to all the constant space

memory.

Registers are used by the local variables of each thread. It is a small memory space and

a variable located here is only accessible by its thread. On the other hand it is the

fastest one. It is important to be careful with this kind of memory because when a

thread has occupied all its registers, the next declared variables will be located in

the local memory, a portion of memory inside the global memory (the slowest kind

of memory inside the GPU).

Shared memory is, probably, the most important memory type in CUDA. If the data

needed for the CUDA computation must be accessed by distinct threads and a lot

of times, the use of shared memory is highly recommended. Shared variables are

visible for all the threads within a certain block, thus all data has to be structured in

a good way to take advantage of its cache. In fact, the shared memory is the fastest

memory space in the GPU.
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The global and constant spaces can be set by the host before or after the kernel

execution inside the device. This mechanism is useful for transfering data to the device

before the kernel is launched or to host in order to get the results of a previously executed

CUDA kernel.

A multiprocessor takes 4 clock cycles to issue one memory instruction for a warp.

When accessing global memory, there are, in addition, 400 to 600 clock cycles of memory

latency.

Much of this global memory latency can be hidden by the thread scheduler if there

are sufficient independent arithmetic instructions, which can be issued while the global

memory access is being complete.

Since global memory is of much higher latency and lower bandwidth than shared

memory, global memory accesses should be minimized. A typical programming pattern is

to stage data coming from global memory into shared memory; in other words, to have

each thread of a block:

• Load data from device memory to shared memory,

• Synchronize with all the other threads of the block so that each thread can safely

read shared memory locations that were written by different threads,

• Process the data in shared memory,

• Synchronize again if necessary to make sure that shared memory has been updated

with the results,

• Write the results back to device memory.

The CUDA language

The CUDA programming interface provides a relatively simple group of primitives for users

familiar with the C programming language to program algorithms that can be executed

inside the GPU (device).

It has extensions to the C language that allow the programmer to target portions of the

source code for execution on the device. It also supplies a runtime library composed by:

(1) a host component that provides functions to control and access one or more compute

devices from the host; (2) a device component providing device-specific functions; (3) a

common component with built-in vector types and a subset of the C standard library that

are supported in both host and device code.
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It is important to remark that only the functions provided by the common runtime

component from the C standard library are supported by the device.

The following paragraphs describe the basic extensions needed to understand and

program CUDA algorithms .

Function type qualifiers are the first extension. There are three of them:

• A function declared using the __device__ qualifier is always executed on the

device and it can only be called from other functions inside it.

• The __global__ qualifier is used to create a function that acts as a kernel.

A kernel is the main program of a parallel computation running in CUDA.

Therefore it can only be executed inside the device and it is always called by

the host.

• If a function has the __host__ qualifier it is executed on the host and of course,

it can only be called from there. It is the default function qualifier. It can be

used together with __device__ in order to compile the function for the device

and the host and be carried out from both at the same time.

Variable type qualifiers are used to specify the memory location of a variable on the

device. There are three of them:

• The __device__ qualifier declares a variable that resides on the device. The

memory space that a variable belongs to, is defined using this qualifier together

with the constant and shared ones (see next paragraphs). If none of them is

present, then the variable is located in the global memory space, it has the

same lifetime as the application and is accessible from all the threads within

the grid (from the device) and from the host through the runtime library.

• __constant__ qualifier declares a variable that resides in the constant memory

space. As with the __device__ qualifier, it has the lifetime of an application

and is accessible from all the threads within the grid and from the host through

the runtime library.

• Finally, __shared__ qualifier declares a variable that resides in the shared mem-

ory space of a thread block. It has the lifetime of the block and is only accessible

from all the threads within the block. Shared variables are guaranteed to be

visible by other threads only after the execution of __syncthreads().

These variable qualifiers are not allowed on struct and union members, on formal

parameters and on local variables within a function that is executed on the host.
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Variables defined using __shared__ or __constant__ qualifier can not have dynamic

storage. __device__ and __constant__ variables are only allowed at file scope.

They can not be defined inside a function. As its name says, a __constant__

variable cannot be modified from the device, only from the host through host runtime

functions. They are actually constant to the device.

Generally a variable declared in device code without any of these qualifiers is auto-

matically put in a register. However in some cases the compiler must choose to place

it in local memory (much more slower). This is often the case for large structures or

arrays that might consume too much register space or when the register space for a

thread is already full. This is also the case of arrays for which the compiler cannot

determine if they are indexed with constant quantities.

A new directive to specify how a __global__ function or kernel is executed on the

device from the host is needed.

This directive specifies the execution configuration for the kernel and it defines, ba-

sically, the dimension of the grid and blocks that will be used to execute the function

on the device. It is specified by inserting an expression of the form <<< Dg, Db >>>

between the function name and the argument list, where:

• Dg is of type dim3 and specifies the dimension and size of the grid, such that

Dg.x ∗Dg.y equals the number of blocks being launched; Dg.z is unused or it

is always 1.

• Db is also of type dim3 and specifies the dimension and size of each block, such

that Db.x ∗Db.y ∗Db.z equals the number of threads per block.

Four built-in variables that specify the grid and block dimensions and the block and

thread indices.

• gridDim and blockDim are of type dim3 and contain the dimensions of the grid

and block respectively.

• blockIdx and threadIdx are of type uint3 and contain the block index within

the grid and thread index within the block respectively.

• warpSize is a variable of type int and contains the warp size in threads.

It is not allowed to take the address or assign values to any of them.

Each source file containing these extensions must be compiled with the CUDA compiler

nvcc that will give an error or a warning on some violations of these restrictions. However,
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in most cases the errors or warnings cannot be automatically detected, thus we must take

special care when programming CUDA algorithms.

2.2 Computational geometry concepts

In this section the geometric concepts and algorithms mainly used in our visibility and

good-visibility maps computation are briefly described. One of the most importants topics

needed to compute good-visibility maps is the so-called depth contours problem, which

treats the problem of how deep a region of the plane or space is with respect to a set

of points. The depth contours are based on the convexity and its properties, thus the

first subsection describes this concept. In order to compute multi-visibility maps, i.e. an

overlay of distinct visibility maps, a little explanation of how the overlay of two or more

planar subdivisions can be computed is necessary. Finally, some comments related to the

definition and creation of terrains is given.

2.2.1 Convexity

Let a region R and two points p and q inside R in Rd, with d > 0, R is a convex region if

all points belonging to the segment pq are interior to R. If two points p and q exist inside

R generating a segment which is partially outside R, then R is not convex. Let a set of

points S in Rd, its convex hull CH(S) is defined as the minimal convex region containing

every point of S. Basically, the computation of CH(S) consists of finding all the exterior

points of S. We say that s ∈ S is not exterior with respect to S if a triangle (p, q, r) exists

where p, q, r ∈ S, p, q, r ̸= s and s is inside (p, q, r). Another useful property says that s is

exterior to S if and only if a line containing s that leaves all the other points in S at one

side exists.

If the extremal points of S are known and ordered clockwise, CH(S) can be easily

computed as the intersection of the halfplanes defined by the oriented lines constructed

from every consecutive pair of points. This is possible because an important property of

the halfplanes (hyperplanes when considering any number of dimensions) states that an

intersection of any of them always results in a convex region.

From 1972, a lot of algorithms to efficiently compute the convex hull of a set of points

has been reported. Graham [Gra72] proposed the first convex hull algorithm running on

the plane with a O(n log n) worst-case running time. Later, Shamos proved in his Ph.D.

thesis [Sha78] that the convex hull problem can be reduced to the sorting one, which
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has a lower bound of Ω(n log n). After the Graham’s algorithm was published, a lot of

others algorithms for computing the convex hull from a set of points in a two-dimensional

space were reported, as H. Bronnimann and coworkers expose in [BIK+04]. There are

also algorithms to compute the convex hull of a set of points in three-dimenional spaces

(T. Chan briefly describe some of them in [Cha03]) or even in any dimension using the

QuickHull algorithm presented by C.B.Barber et al. in [BDH96].

2.2.2 Overlay of planar subdivisions

A planar subdivision, also known as planar map, divides the plane using vertices, edges

and faces induced by a set of line segments. Overlaying two planar subdivisions produces a

new planar subdivision. Since a planar subdivision is configured by a set of line segments,

if we want to obtain the overlay of two planar maps M1 and M2 it is necessary to intersect

every pair of segments, one for each planar map. It can be useful in a wide range of fields,

including for Geographic Information Systems (GIS) or for finding multi-visibility maps

from a set of view objects.

The overlay of two planar maps can be seen as a specialized version of the two-

dimensional line intersection problem. This problem has been studied for over twenty-five

years. Bentley and Ottmann [BO79] developed the first solution to the line intersec-

tion problem in 1979, using a plane sweep algorithm with a computational complexity of

O(n log n + k log n) time, where k is the number of intersections found and n the number

of segments. This algorithm is not optimal because the lower bound has been proved to

be Ω(n log n + k). Later, Chazelle et al. [CE92] presented the first algorithm running in

optimal time complexity, however it required O(n + k) space. The first optimal algorithm

in both time and space was reported by Balaban in [Bal95], which runs in O(n log n + k)

time and requires O(n) space.

For the case of the map overlay problem, the intersection problem is actually easier

than the general case. This is because we assume that a map is a planar subdivision,

so every intersection will be between one segment from the first map and one segment

from the second map. This problem was solved in O(n log n + k) time and O(n) space

by Mairson and Stolfi [MS87] before the general problem was solved optimally. Moreover,

if we assume that planar maps are connected subdivisions, Finke and Hinrichs [FH95]

showed in 1995 that the problem can be solved in O(n + k) time.
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2.2.3 Depth contours

In this section the depth contour concept is presented. Hereafter its formal definition and

some algorithms to compute it on the plane are summarized. Afterwards some implemen-

tations using graphics hardware techniques are reported and finally compared with our

implementation.

Definition

Let P be a set of n points. The location depth of an arbitrary point q relative to P ,

denoted by ldP (q), is the minimum number of points of P lying in any closed halfplane

defined by a line through q. The k-th depth region of P , represented by drP (k), is the

set of all points q with ldP (q) = k. For k ≥ 1, the external boundary dcP (k) of drP (k)

is the k-th depth contour of P . The depth map of P , denoted dm(P ), is the set of all

depth regions of P (see Figure 2.4) whose complexity is O(n2). When all points of P are

in convex position we achieve the latter complexity, thus this bound is tight.

Figure 2.4: Representation of the depth contours of a set of 23 points.

Depth Contours computation in the plane

Miller et al. [MRR+03] presented an algorithm for computing the depth contours for a

set of points that makes an extensive use of duality, and proceeds as follows: given a set

P of points, the algorithm maps all points of P to their dual arrangement of lines. Then,

a topological sweep is applied to find the planar graph of the arrangement whose vertices

are labeled with their respective levels, i.e. the number of dual lines above them. The

depth of a vertex can be computed using min(level(v), n − level(v) + 1). Finally, for a
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given k, dcP (k) is computed by finding the lower and upper convex hulls of the vertices

at depth k. Each of these vertices corresponds to a halfplane in the primal plane. dcP (k)

is the boundary of the intersection of the previously mentionned halfplanes. dcP (k) does

not exist if this intersection is empty. The complexity of the algorithm is O(n2) in time

and space, which has been shown to be optimal.

Since for large n the running time of Miller et al. algorithm might be too large, in

the following section some algorithms are presented that solve the latter problem by using

graphics hardware capabilities (i.e. an image of the depth contours is drawn where the

color of a pixel represents its depth value).

Graphics Hardware solutions

Depth contours have a natural characterization in terms of the arrangement in the dual

plane induced by the set P of n points.

The mapping from the primal plane Π to the dual plane Π′ is denoted by the operator

D(·). D(p) is the line in plane Π′ dual to the point p, similarly D(l) is the point in plane

Π′ dual to the line l. We denote the inverse operator by P (·), i.e. P (q) is the line in plane

Π primal to the point q in the dual plane Π′. Each point p ∈ P in the primal plane is

mapped to a line l = D(p) in the dual plane (see Figure 2.5). We can also define the

dual of a set of points P as D(P ) = ∪p∈P D(p). The set of lines D(P ) define the dual

arrangement of P . In this dual arrangement the level of a point x is computed as the

number of lines of D(P ) that satisfy the following criteria: they either contain or stricly

lie below x (see Figure 2.6). The depth contour of depth k is related to the convex hull of

the k and (n− k) levels of the dual arrangement.

Krishnan and coworkers [KMV02] and Fisher et al. [FG06] developed algorithms that

draw a discretization of the depth contours from a set of points using graphics hardware

capabilities. Both algorithms are based on the dual concept. In the first step, the input

point set P is converted to a set of lines in the dual plane. The algorithm runs on two

bounded duals instead of one, due to the finite size of the dual plane. In that way it is

guaranteed that all intersection points between the dual lines lie in one of the two latter

dual regions. Since each dual plane is discrete, it is possible to compute the level of each

pixel by drawing the region situated above every dual line of P , by incrementing by one

the stencil value of the pixels located inside each of these regions. In the second step the

two images generated in this fashion are analyzed. For each pixel q located on a dual line,

its corresponding primal line P (q) is rendered with the appropriate depth and color as a

graphics primitive using the depth test (z-buffer). The complexity in time of the algorithm
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Figure 2.5: Representation of the dual transformation. The dual transformation for points

is depicted in the upper images whereas the dual transformation for lines is shown in the

lower ones.
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Figure 2.6: Representation of a set of points in the primal plane (left image) and its

arrangement with a level map in the dual plane (right image). The level of each zone is

represented with numbers.

is O(nPW + PW 3 + AW 2 + nCPW 2/512), where W denotes the number of pixels of each

column and row of the color buffer, C is the cost of a single readback to the CPU, and Ax

and Py correspond to the time needed to access x pixels of a texture and render y pixels,

respectively.

Mustafa et al. [MKV06] developed an algorithm to compute depth contours that has a

time complexity of O(n2A1PW 2 +nCPW 2/512). It improves the running time for relatively

small sets of points. In this other case, the algorithm constructs a line ℓ for every pair of

points of P , then it uses its dual point ℓ∗ to determine its level in the dual plane images.

Finally it paints the two halfplanes ℓ+ and ℓ− with depths level(ℓ) and n− level(ℓ) (n is

the number of points in P ), respectively, using the depth test.

One of the main problems of the latter implementations is to decide the number of

points used to discretize each dual line. If few discretization points are employed, the

final result might be of very bad quality. However if a large number of discretization

points is used, then the same pixel might be processed several times (due to the fact that

the rasterization of different lines can lead to the same pixels). In order to avoid this

problem, a slightly different algorithm can be implemented, which directly searches for

the intersection points between the lines and paints the dual of the segments defined by

the previous intersections. The dual transformation of a segment is, in fact, the same

region obtained when painting the dual line of every point contained in the segment.

Krishnan et al. [SKV06] have recently developed a new method to compute depth

contours. It has a superior algorithmic complexity but with relatively small sets of points
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the running time is substantially decreased. As in Mustafa et al. algorithm [MKV06], a

line ℓ for every two points of V is constructed. Afterwards, for each line ℓ, its dual point

ℓ∗ is used to know the level of ℓ in the dual planes images. The two halfplanes ℓ+ and

ℓ− are painted with depth equal to level(ℓ) and n− level(ℓ), respectively, using the depth

test.

Our own implementation of the depth contours (explained in Chapter 4) is based on

Mustafa and coworkers approach [MKV06]. Depth contours are necessary to compute the

2D, 2.5D and 3D good-visibility maps. .

2.2.4 Terrains

A terrain is a two dimensional surface in three dimensional space with a special property:

every vertical line intersects it only at one point, if it intersects it at all [dBvKvOO97]. As

a more formal definition, it is the graph of a function f : A ⊂ R→ R that assigns a height

f(p) to every point p in the domain, A, of a terrain. Measures of height of real terrains

is carried out through sampling. Then, our knowledge about the f is restricted to a finite

set P ⊂ A corresponding to a sample points.

There are several models to represent heights, namely, Regular Square Grid (GRID),

Contour Line, Triangulated Irregular Network (TIN) and Hierarchical [vKNRW97b]. These

models are named Digital Elevation Models (DEM) and they are a finite representation of

an elevation model. This terminology arises in the field of Geographic Information System

(GIS) where these DEM are mainly used. Sea height is the elevation model which is best

known, which is why the term terrain or Digital Terrain Model (DTM) are frequently

used.

Figure 2.7: A schema of a terrain.
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Digital Elevation Models

In this section we give a brief explanation of the existing DEMs, and extend, in the

following sections, the two main models used in this thesis, GRIDs and TINs.

A GRID is a structure that specifies values in a regular square division of the domain.

In a computer it is stored in a bi-dimensional array. For each square or array entry a height

value is exactly specified. There are different interpretations of a grid. The first, the stored

height can be thought of as the elevation for all points in the square. In this case, the

DEM is not a continuous function. The second, the stored elevation might represent the

height correspondent to the central point of the square or the average elevation of the

square. Here an interpolation method is necessary in order to obtain a DEM that specifies

the elevation for each point.

Triangulated Irregular Network (TIN) TIN arises from any set of data points in

the plane for which an elevation is given. The set of points which join its elevation are

stored, and a planar triangulation is created over these points. Often, the triangulation

of choice is the Delaunay triangulation because of its natural properties. The elevation of

any intermediate point is given by linear interpolation on the elevations of three original

points that form a triangle that contains the intermediate point. The TIN can be stored

in a DCEL or in a quadedge. Another possibility is a net structure: for each triangle,

edge, and vertex there is a record. The record of a triangle has three pointer fields. These

pointers are directed to the record of each of its incident edges. The record of an edge has

four pointer fields, two of them addressed to its adjacent triangles, and the other two to

the incident vertices. Vertex record contains vertex coordinates x and y, and the elevation.

This structure allow us to find the vertex elevation, adjacent triangles to a given triangle

and much more, in constant time. The TIN model is attractive because of its simplicity

and economy and is a significant alternative to the regular raster of the GRID model.

Now a formal definition which will be useful in posterior chapters. A TIN, (T ,F), is

formed by a triangulation T = {T1, . . . , Tn} of the domain D (in the xy plane), and by

a family F = {f1, . . . , fn} of linear functions such that: a) function fi ∈ F is defined on

triangle Ti, i = 1 . . . n; b) for any pair of adjacent triangles Ti and Tj , fi and fj coincide

in Ti
∩

Tj . For any triangle Ti ∈ T , fi(Ti) is a triangle in space called a face of the terrain,

and the restriction of fi to an edge or a vertex of Ti is called an edge or a vertex of the

terrain.



Chapter 3

Multi-visibility maps computation

using the GPU

In this chapter we first introduce the previous work in visibility and multi-visibility maps

computation and afterwards we present a detailed explanation of the algorithms we use to

compute them using the GPU. For the two-dimensional and terrain cases the algorithms

are implemented using pixel shaders in Cg and OpenGL. However, the three-dimensional

case is designed and implemented using CUDA, the new GPGPU language designed by

NVIDIA.

The multi-visibility maps will be used in all the next chapters as a fundamental part

of the good-visibility map computation.

3.1 Introduction

Visibility gathers combinatory theory, computational geometry and computer science and

its results have applications in a wide variety of fields ranging from robotics to path finding,

computer vision, graphics, CAD, etc. The basic visibility problem of determining the

visible portions of the scene primitives from a viewpoint is now believed to be mostly solved

by applying the Z-buffer technique. However, visibility has recently regained attention in

numerous applications ranging from planning the placement of communication towers or

watchtowers, to planning buildings and roads so that they have a good view, to finding

routes on which you can travel while seeing a lot, or without being seen. One related

subject of study is the problem called Art galleries, presented for the first time by Victor

Klee in 1973: the problem is to determine the minimum number of polygon vertices

29
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necessary to view all the rest. Klee made a conjecture that ⌊n/3⌋ was the number of

guards always sufficient and sometimes necessary to illuminate a polygon with n vertices.

However, it was Chvátal who gave the first proof of this in 1975 [Chv75]. This result

is known as the Art galleries theorem. More details can be found in [She92]. The Art

gallery problems can be applied to a wide range of real worldwide industrial applications

related in any way to illumination or visibility: street or building illumination, vigilance

of spaces, etc. Of course, in the major part of the practical cases the real physical objects

are substantially different from the theoretical points and segments used. Therefore the

introduction of more sophisticated view elements and obstacles is needed to describe more

realistic situations. Moreover, one idea that one can come up with is the fact that light

emitted by a focus loses intensity as the distance to this focus increases. Therefore, when

an object is situated sufficiently away from a focus, it can be considered that this object is

not illuminated at all by it. This limitation was defined for the first time in Computational

Geometry by Ntafos in 1992 [Nta92] who introduced the concept of range limited visibility.

Given a viewpoint v, the visibility map of v is the partition of the scene into the visible

and invisible parts from v. The calculation of visibility maps from a set of viewpoints

is a tool needed in a wide range of these kinds of applications, and the combination of

these visibility maps in only one structure, which is usually called multi-visibility map.

From a multi-visibility map a great variety of visibility queries can be efficiently answered:

portions of the scene visible from at least one viewpoint, portions of the scene visible from

all viewpoints, portions of the scene visible from a specific subset of viewpoints, portions

of the scene visible that see a specific number of viewpoints, etc.

Since the exact computation of multi-visibility maps cannot be directly solved except

for trivial cases, we propose to approximate them using the GPU considering different

kinds of view elements, different kinds of obstacles and different kinds of visibility.

3.2 Definitions and previous work

In a scene defined by a set of objects S, called obstacles, two points p and q are visible if

the line segment from p to q intersects none of the given obstacles. The visibility region

or viewshed Vv(S) of v is the set of points of the scene that are visible from v. The

complement of Vv(S) is called the shadow region of v. Then, the visibility map of v is the

partition of the scene into the visibility and the shadow region.
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3.2.1 2D visibility

When the input set of obstacles defines a simple polygon P , we are interested in determin-

ing the interior region of P visible from some distinguished interior viewpoint v. El Gindy

and Avis [GA81] developed an algorithm for determining the visibility from a point inside

a polygon. Their algorithm runs in optimal Θ(n) time and space, where n is the number

of vertices of the given polygon. However, the main disadvantage is that the method does

not work for polygons with holes.

Suri et al. [SO86] reported a solution to the problem of computing visibility inside

a polygon P presenting holes. The resulting algorithm runs in O(n log n) time, which is

proved to be optimal by reduction to the problem of sorting n positive integers (Asano

et al. [AAG+85] obtained the same result independently). They consider a more general

problem for computing visibility in polygons in the presence of a set of line segments

S = {s1, s2, ..., sn}, where two line segments si, sj ∈ S do not intersect except at their

endpoints. The algorithm performs an angular plane sweep, and can be implemented in

O(n log n) time in a straightforward manner. However, it is proved to be optimal time in

the worst case.

The above methods are not easily generalized to the case of having input segments

that do not form a simple polygon and, possibly, even might intersect. In this case it

is more natural to consider the construction of the visibility region from a point v to be

an upper envelope problem. In this general framework a collection F = {f1, f2, ..., fn} of

functions from R to R is employed. The upper envelope of F is defined as the function

f(x) = maxfi∈F {fi(x)}

In geometric settings it is quite common for the functions in F to possess a crossing

property which is based on the fact that any two such functions cross at most k times.

Then it is appropriate to study the question of how a representation of the upper envelope

function f can be efficiently constructed, as well as how large the latter representation

must be. The most standard way of representing this function is as a list of intervals of R
together with the indices of the functions in F that fulfil the maximum in each interval.

The crossing property previously defined gives rise to the so-called Davenport-Schinzel

sequences. Such a sequence is defined using two parameters: n and k, where n is the

number of characters and k is the maximum number of alternations that can occur between

any two characters. Letting λk(n) denote the maximum length of a Davenport-Schinzel

sequence with parameters n and k, it is one of the most interesting results of combinatorics

that, for any fixed value of k ≥ 3, λk(n) is O(n log∗ n). This parameter is linear for smaller
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values of k.

By a simple mergesort-like divide-and-conquer algorithm, we can construct the upper

envelope of F in O(λk(n) log n) time. For instance, computing the upper envelope of a

collection of functions defined by line segments in the plane can be done in O(n log n) time

[Her89]. Equivalently, the region of the plane visible from a point can also be computed

in this time.

Visibility can be computed not only from viewpoints, but also from view segments.

Related previous studies indicate that two variants of the visibility can be computed when

dealing with view segments: the so-called strong and weak visibility (see Figure 3.1). A

point p has strong visibility from a view segment v if and only if all the points of v are

visible from p. In contrast, p is weakly visible from v if any of the points of v is visible

from p.

Figure 3.1: Scenes in R2 where the visible parts are marked in blue when considering a:

a) view point; b) view segment and weak visibility; c) view segment and strong visibility.

Exact algorithms that provide the visible parts of the scene from a view segment v are

sweep algorithms [GS96a, GS96b, NT]. A moving point p is placed on the view segment

and is moved along v keeping track of the critical points. The latter are those points

where the visible scene in both directions of any of its neighborhoods in s is different. A

topological or visibility change occur in a critical point. This moving point approach can

be generalized to handle free trajectories of the moving point. The weakly or strongly

visible parts of the scene from a view segment can be obtained by placing a linear light

source on the view segment [Gha98]. After the critical points are found by using the

moving point strategy, the amount of light received by each part of the scene is computed.

On the basis of the amount of light received, a part of the scene is classified as weakly or

strongly visible, or not visible.



3.2. Definitions and previous work 33

3.2.2 Visibility on terrains

Let T be a 3D triangulation representing a terrain (i.e., there is a height, the z-coordinate,

associated to each triangle vertex). A point p on T is visible from v if and only if the line

segment pv lies above T . The combinatorial complexity of the visibility region of v might

be Ω(n2), where n is the number of vertices of the triangulation.

The problem of computing the visibility region of a point arises as a subproblem in

numerous applications, and, as such, has been studied extensively. For example, the

coverage area of an antenna for which the line of sight is required, may be approximated

by clipping the region that is visible from its tip with an appropriate disk centered at the

antenna.

In [FM94] an algorithm for computing the visibility map from a point on a terrain

modelled by a TIN is described (more details about TINs and other terrain representations

can be found in references [vKNRW97a, FM94] and in Section 2.2.4). It is based on the

determination of the lower envelope of a set of triangles and thus it can be applied to

TINs. The worst case time complexity for this algorithm is O(n2) where n is the number

of triangles in the terrain.

It is also desirable to have fast approximation algorithms, i.e. algorithms that compute

an approximation of a visibility map. Moreover, a good approximation of the visible region

is often sufficient, especially when the triangulation itself is only a rough approximation

of the underlying terrain. CPU radial sweep based algorithms are presented in references

[BMCK08, HTZ09, FHT09] for computing an approximation of a visibility region. There

are other approximations for visibility region computation, for instance in [CFMS06],

however, they are based on other types of viewing objects, such as segments.

3.2.3 3D visibility

3D visibility is studied in computer graphics, architecture, computational geometry, com-

puter vision, robotics, telecommunications, and other research areas. Computer graphics

aims to synthesize images of virtual scenes by simulating the propagation of light. Visi-

bility is a crucial phenomenon that is an integral part of the interaction of light with the

environment. The first visibility algorithms aimed to determine which lines or surfaces

are visible in a synthesized image of a 3D scene. These problems are either known as

visible line and visible surface determination or as hidden line and hidden surface removal.

The classical visible line and visible surface algorithms were developed in the early days

of computer graphics in the late 60s and the beginning of the 70s (Sutherland et al.,
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1974 [SSS74]). These techniques were mostly designed for vector displays. Later, with

the increasing availability of raster devices, the traditional techniques were replaced by

the z-buffer algorithm (Catmull, 1975 [Cat75]). Nowadays, we can identify two widely

spread visibility algorithms: the z-buffer for visible surface determination and ray shoot-

ing [PMS+99, WS01, WSBW01, IWW01] for computing visibility along a single ray. The

z-buffer and its modifications dominate the area of real-time rendering whereas ray shoot-

ing is commonly used in the scope of global illumination methods. Recently, an increasing

interest on 3D visibility has been awakened due to the advances in graphics hardware and

video games. Therefore, the algorithms implemented in this field are basically designed

to run inside graphics hardware [BW03].

We can distinguish three different classes of visibility. The exact visibility set: This is

the set of all polygons that are partly or completely visible; the approximate visibility set:

This set includes most of the visible polygons, but also some hidden ones. the conservative

visibility set: This set includes all visible polygons, and may contain some hidden ones

too.

Determining the exact visibility is very intensive in terms of computational power.

Furthermore, it is difficult to design a fast algorithm to be exact and still robust. Most of

the methods described in the literature are conservative, which use simplifications in some

areas. Some methods can also be modified to calculate the approximate visibility set,

which can lead to enormous speedups. This occurs especially in the case of video games,

where frame rate is often more important than accuracy, thus a less detailed visibility

computation is admissible.

There are two main different methods to approach visibility problems in computer

graphics, depending on the type of geometrical data present: visibility from a region and

visibility from a point.

Two different categories of methods exist when it comes to point-visibility. Calculations

in image-space and those in object space. Current methods have started to use the best

of both worlds.

More detailed information about the state of the art on 3D visibility can be found in

many published surveys, as the ones presented by F. Durand and coworkers in [COCSD03]

or [Dur00].
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3.3 Two-dimensional multi-visibility maps using the GPU

In this section we present our algorithms which compute multi-visibility maps in a two-

dimensional environment using the GPU with the help of the OpenGL computer graphics

language.

The algorithms, explained in the following sections, basically consist of obtaining a

representation of the the multi-visibility map of a set V of view elements in a texture

denoted by MV M . Since we assign a bit of the RGBA channel to each viewpoint in V ,

the number of viewpoints is limited by the number of available bits per RGBA texture

pixel (up to 128 with nowadays GPUs). In practice this is not a limitation because this

maximum number of viewpoints is sufficient for most (if not all) applications.

First we describe the basic visibility algorithm from viewpoints and some of its vari-

ations, and later the version of the algorithm to compute visibility from view segments

taking into account both weak and strong visibility. At the end of each section a brief

description of the running time of the presented algorithms is given.

3.3.1 Multi-visibility maps from viewpoints

We consider two cases depending on the type of obstacles: segments or general objects.

This is because the shadow region of obstacle with respect to a viewpoint can be easily

computed only if the obstacle is a segment.

Segment obstacles

The texture MV M encoding the multi-visibility map is created by a simple image based

algorithm. The shadow region of a viewpoint v with respect to the segment obstacle s,

denoted by sr(v, s), is the zone of the plane not visible from v if s were the only obstacle

present. Let ss and sf be the endpoints of s. The region sr(v, s) can be expressed as the

intersection of three half-planes h0, h1 and h2. h0 does not contain v and its boundary

is the supporting line of s, h1 contains ss and its boundary is the supporting line of vsf ,

h2 contains sf and its boundary is the supporting line of vss. Then, for each viewpoint

vi the union
∪

s∈S sr(vi, s) is painted with the RGBA color whose bit in position i is the

only one equal to 1, where s is a segment belonging to the set of segment obstacles S.

Each union is rendered using the OpenGL logic operation OR for combining the colors.

By doing this, we ensure that the bits of the RGBA channel of a pixel p represent the

viewpoints of V visible from p. A 1 in the bit in position i of a pixel p indicates that the
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viewpoint vi is not visible from p. Otherwise vi is visible from p. Since n unions of m

triangles are created and painted, texture MV M is created in time O(nm+nPW 2) where

PW 2 is the time spent in rendering a texture of W 2 pixels.

Figure 3.2 shows the scene from which the multi-visibility map is computed, the texture

MV M with the combination of all shadow regions and finally the obtained visibility is

also represented. In this and all subsequent figures, the multi-visibility map indicates from

how many viewpoints a pixel is visible using a black to white gradation (black means that

a pixel is not visible from any viewpoint). On the other hand, the shadow regions are

painted using red, green and blue for every viewpoint, respectively (for the examples we

only use three viewpoints to make the visualization easier), and the combinations.

Figure 3.2: Visibility map (center image) and visibility (right image) computed using the

GPU from the scene in the left image.

Generic obstacles

The set S of generic obstacles is represented by a binary image placed in a texture OBS.

A black pixel corresponds to a part of an obstacle whereas a white one to the free space.

The screen coordinates of the viewpoints of V are stored in the texture called V Pos.

Figure 3.3 shows a scheme of the algorithm explained in the following paragraphs and

the result of applying it to every pixel of the screen in a parallel fashion using the GPU.

The texture MV M encoding the multi-visibility map is created by rendering to the

texture a screen-aligned quad using a pixel shader that requires the textures V Pos and

OBS as parameters. The shader computes the visibility of a pixel p from each viewpoint

vi and stores this information into the i bit of the RGBA channel of MV M [p]. The process

runs as follows. If OBS[p] is black then p is not visible from vi because p is a part of an

obstacle. Otherwise, the pixels t intersecting the segment pvi are tested in an incremental
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Figure 3.3: The left image shows how the algorithm works. For every pixel p (yellow) the

algorithm performs a double loop looking for obstacles between p and all viewpoints vi. If

the segment connecting p and vi contains an obstacle pixel, then vi is not visible from p

and this information is stored in the position of p in the color buffer (right image).

way. If a pixel t satisfying that OBS[t] is black is found, then p is not visible from vi (pvi

intersects an obstacle stored in OBS) and therefore the process is stopped. Otherwise p

is visible from vi. Since the per-pixel cost is O(nAW ), the texture MV M is created in

O(nAW PW 2) time, AW being the time spent to access W pixels of OBS and Pn the time

needed to render n pixels.

Figure 3.4 shows an example of scene from which the visibility is computed, the texture

MV M with the combination of all shadow regions and finally the obtained visibility.

Figure 3.4: The left image shows the scene before the computation while the center and

right images show the shadow regions and the multi-visibility map, respectively.
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Running time analysis

Figure 3.5 shows three plots with the running time when the number of viewpoints is

incremented for a screen size of 200x200, 500x500 and 650x650 pixels, respectively. Each

of these plots contains six data series, five of them correspond to five distinct number

of segment obstacles and the last one represents the time spent by the generic obstacles

version of the algorithm. We can observer that, obviously, running time is incremented

when the number of segment obstacles increases and also when the screen size becomes

larger. Notice that the computation of the visibility using generic obstacles is much less

dependent on the size of screen than using segment obstacles. Moreover, it is always faster

than using 5000, 10000 or more segment obstacles. This indicates that when S has more

than 1000 segments, it is probably a good idea to change the set of segment obstacles by

an image of them and use them as generic obstacles. We can also observe that the larger

the screen size, the more profit we get if the set of segment obstacles is transformed to

generic obstacles.

3.3.2 Multi-visibility map of viewpoints with restricted visibility

A point v has restricted visibility when its visibility region is constrained within an angular

region or/and with limited range [ABHM05]. As in the unrestricted case, we want to obtain

the texture MV M . However, we must consider now the restriction in distance and angle

for each viewpoint vi.

Again we can consider two different possibilities. The restricted visibility can be stud-

ied considering either segment obstacles or generic obstacles stored in a binary image.

Segment obstacles

For every viewpoint v we must paint the union of the shadow regions related to v using its

associated bit of color. Once this has been achieved, we must also paint, using the same

color, the exterior part of the restriction visibility zone of v in order to finally obtain the

visibility map for v.

The algorithm proceeds as in the unrestricted case (see previous section), thus doing

this process for every vi we obtain the texture MV M .

Figure 3.6 contains an example of restricted visibility computation using the GPU.
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Figure 3.5: Plots from top-left to bottom-right show the running time for the visibility

computation with screen size of 200x200, 500x500 and 650x650 pixels, respectively, when

viewpoints are considered.
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Figure 3.6: The left image shows the scene before the computation while the center and

right images show the shadow regions and the multi-visibility map, respectively. The empty

blue regions indicate the restriction of the viewpoints.

Generic obstacles

In this case, the pixel shader receives two additional parameters related to current view-

point vi: its range in pixels rangevi and two points r1 and r2 in image coordinates. vi has

visibility in the angular region defined by the rays vir1, vir2 and at a maximum distance

of rangevi .

Before running the algorithm explained in Section 3.3.1 we first test if the current pixel

p is inside the visible range of vi. If not, p is not visible from vi and the process stops.

See an example in Figure 3.7.

Figure 3.7: The left image shows the scene before the computation while the center and

right images show the shadow regions and the multi-visibility map, respectively. The empty

blue regions indicate the restriction of the viewpoints.
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3.3.3 Multi-visibility map of viewpoints with power of emission

In some applications, for example WiFi routers placement, the signal of a viewpoint v can

cross a certain number Pv of segment obstacles . This number Pv represent the power of

emission of v. In what follows, we explain how we compute the visibility map for the two

cases of obstacles.

Segment obstacles

If the signal of a point v can cross at most Pv segment obstacles, its shadow regions

have to be computed by taking into account this information. We use the stencil buffer.

To compute the shadow regions of v, we construct the shadow region for each segment

obstacle si sr(v, si) and the stencil buffer is incremented by one. We only paint the pixels

having a stencil value greater than Pv in order to obtain a shadow only in points where

the signal emitted by v has crossed at least Pv + 1 obstacles.

In Figure 3.8 we can see how the visibility map changes when the power of emission

of the viewpoints is incremented.

Figure 3.8: From left to right, the power of emission of the viewpoints is incremented

gradually, and the visibility map changes accordingly.

Generic obstacles

In this case, the pixel shader receives the power of emission Pvi as a number of pixel units

for the current viewpoint vi as an additional integer parameter.

Some tests have to be included in the algorithm explained in Section 3.3.1 to check

if the current pixel p is visible from vi. Another variable called obstacle pixels is used

(it is initialized to 0 before the loop begins). When a pixel t of the segment is over an

obstacle pixel, obstacle pixels is incremented by one and when obstacle pixels > Pvi , p is

not visible from vi.

In Figure 3.9 we can see how the visibility map changes when the power of emission
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of the viewpoints is incremented.

Figure 3.9: From left to right, the power of emission of the viewpoints is incremented in a

gradual manner, and the visibility map changes accordingly.

Adding opacity to generic obstacles

Instead of incrementing the variable obstacle pixels by one every time an obstacle pixel is

reached by the segment pvi, it could be interesting to increment it by a factor determined

by the actual opacity or resistance of the current obstacle pixel.

Following this idea, the opacity of each obstacle pixel is saved in the red and green

channels of the color buffer. By using this new approach, every time a pixel p is tested,

obstacle pixels is incremented by its opacity Then, as in the case of obstacles without

opacity value, when obstacle pixels > Pvi the signal emitted by vi is not visible from the

current pixel p.

Figure 3.10 shows an example containing an obstacle image with color gradation. An

obstacle pixel is less transparent to the signal emitted by the viewpoints when it presents

a higher content of red component on its color. A red pixel has the maximum permitted

opacity.

3.3.4 Multi-visibility map from view segments

In this section, the computation of multi-visibility maps from view segments is described

for the two variants of visibility: the so-called strong and weak. As in the case of view-

points, we can have two kinds of obstacles: a set S of segment obstacles or an image

representing more generic obstacles. The visibility computation taking into account view

segments together with generic obstacles at the same time will be studied and implemented

as future work.
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Figure 3.10: From left to right, the power of emission of the viewpoints are incremented

gradually, and the visibility map changes accordingly. The color of the obstacle indicate

its opacity with respect to the signal emitted by viewpoints: green is used for totally trans-

parent objects while red indicates the maximum opacity.

Let V be a set of n view segments and S be the set of m segment obstacles. A view

segment vi and an obstacle segment sj are composed by two endpoints vis , vif and sjs ,

sjf
, respectively. There are four distinct lines ℓ connecting one endpoint of v with one

endpoint of s. For any of the lines ℓ we define ℓO as one of the two halfplanes defined

by ℓ containing the object O and ℓ∼O the one not containing O. The line containing the

obstacle s is defined as ℓs.

In order to compute the shadow region defined by the view segment v and the segment

obstacle s taking into account strong visibility one can do the following. The four distinct

lines connecting v and s are computed. We only use two of the lines ℓ which contain one

endpoint not belonging to ℓ at each side. Once the two useful lines ℓ1 and ℓ2 are known, we

obtain the expected shadow region by making an intersection between the three halfplanes

ℓs
1, ℓs

2 and ℓ∼v
s (see Figure 3.11).

Otherwise, if we want to compute the shadow region from v and s by using weak

visibility, the useful lines ℓ1 and ℓ2 are the two not selected for the strong visibility, and

the shadow region is computed as the intersection between the halfplanes ℓs
1, ℓs

2 and ℓ∼v
s .

In the special case of s and v forming a triangle instead of a quadrilateral being s inside

this triangle, all points of the plane are weakly visible from v. (see Figure 3.12).

The only restriction in both cases is that v can not touch or intersect s, and v and s

can not be aligned.

Therefore, in order to compute the visibility map from a view segment v and a set of

segment obstacles S we only have to construct the union of all shadow regions obtained

before, taking into account that the two useful lines ℓ are selected depending on the type

of visibility wanted.



44 Chapter 3. Multi-visibility maps computation using the GPU

Figure 3.11: The filled regions represent the not visible points from v when strong visibility

is considered. Points outside the dark region see the whole segment v. The algorithm

works properly without bothering about the relative position of v with respect to s.
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Figure 3.12: The filled regions represent the not visible points from v when weak visibility

is considered. The points outside the dark region see at least one point of segment v. The

algorithm works properly without bothering about the relative position of v with respect to

s.
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Implementation

The algorithm, implemented using the Cg language on the GPU together with the OpenGL

API, is very similar to the one explained for the case of viewpoints and segment obstacles

in Section 3.3.1.

The texture MV M encoding the multi-visibility map is created using a simple image

based algorithm too. For each view segment vi the union
∪

s∈S sr(vi, s) is painted with the

RGBA color whose bit in the position i is the only one equal to 1, where s is a segment

belonging to the set of segment obstacles S and sr(vi, s) is the zone of the plane not

visible from vi (its shadow region). The discretized shadow region sr(vi, s) is computed

by intersecting the three halfplanes mentioned before (therefore there is a previous step to

obtain the two useful lines ℓ). This intersection is reached by using the stencil buffer. When

we paint each of the halfplanes, all pixels belonging to the current halfplane increment

their stencil value by one. The only pixels actually painted are those whose stencil value

is three after the three halfplanes are painted. This process is repeated for every segment

obstacle and their shadow regions created by vi are joined simply by painting them on the

same color buffer.

All the previously described unions are rendered using the OpenGL logic operation

OR for combining their colors. This ensures that the different activated bits of the RGBA

channel of a pixel p represent the distinct view segments of V non-visible from p. Each

shadow region can draw up to three times the whole screen due to the intersection of the

halfplanes and there are n × m shadow regions, thus texture MV M is created in time

O(3nmPW 2) where PW 2 is the time spent in rendering a texture of W 2 pixels.

Figure 3.13 contains some examples of weak and strong multi-visibility maps obtained

with our implementation. As we can see in Figure 3.14 the implementation also allows us

to mix viewpoints and view segments in the same set V . It is even possible to compute

the visibility from a set of view segments, some of them using weak visibility and others

using strong visibility (see Figure 3.15).

Running time analysis

Figure 3.16 shows three plots with the running time when the number of view segments is

incremented for a screen size of 200x200, 500x500 and 650x650 pixels, respectively. Each

plot depicts three data series for every kind of considered visibility: strong and weak.

These data series are used to show the running time for scenes with 1000, 5000 and 10000

segment obstacles, respectively.
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Figure 3.13: From left to right, the images show the scene, the shadow regions and the

visibility computation, respectively. The upper images are computed by using weak visibility

while the lower ones use strong visibility.

Figure 3.14: From left to right, the images show the scene, the shadow regions and the

visibility computation, respectively. The set V is now a mix of points and segments.
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Figure 3.15: From left to right, the images show the scene, the shadow regions and the

visibility computation, respectively. The set V is now a mix of segments with strong (S)

and weak (W) visibility.

3.4 Multi-visibility on terrains using the GPU

We consider that the projection T ∗ of the terrain T is approximated by a rectangular grid

of size W ×W , the grid coordinates of the viewpoint projections are stored in a texture

V Pos of 1 × n pixels, and the heights of the viewpoints are stored in a texture V H of

1 × n pixels. In this way we can solve the problem by using a similar approach to the

two-dimensional case explained in Section 3.3.1.

First, the algorithm, by applying two different pixel shaders, renders the terrain twice

using an orthographic projection and a bird’s-eye view. The first pixel shader obtains a

texture H of size W ×W where the RGBA value of each pixel p∗ stores the height of its

corresponding point p on T . The second one obtains a texture F of the same size, where

the RGBA value of each p∗ stores the index of its corresponding face on T .

Next, a quad of size W × W and aligned with the rectangular grid approximating

the terrain is rendered to the texture MV M by using another pixel shader. The shader

requires the textures H, F , V Pos and V H as parameters. For each pixel p∗, the pixel

shader determines if its corresponding point p on T is visible from each viewpoint vi

and stores this information into the bit i of the RGBA channel of the texture MV M .

The process runs as follows. The pixels t∗ intersecting the segment of endpoints p∗ and

V POS[i] are visited in an incremental way. Given a pixel t∗, the height h′(t∗) of its

corresponding point on pvi is computed by a linear interpolation of the heights H[p∗] and

V H[i]. When a pixel t∗ satisfying F [t∗] ̸= F [p∗] (a face can not be occluded by itself)

and H[t∗] > h′
t∗ is found, it means that p is not visible from vi (pvi intersects T ) and the

process is stopped. Otherwise, p is visible from v. In this way the texture MV M is created
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Figure 3.16: Plots from top-left to bottom-right show the running time for the visibility

computation with screen size of 200x200, 500x500 and 650x650 pixels, respectively, when

view segments and segment obstacles are considered. Both strong and weak visibility are

used.
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in O(nAW PW 2) time. Consequently, the overall complexity of computing a multi-visibility

map on a terrain is the same as in the planar case with generic obstacles.

We can obtain the multi-visibility map on the terrain T by projecting the texture

MV M to T using texture mapping (see Figure 3.17).

As in the planar case, we can also consider viewpoints with restricted visibility range

(a sphere of a determined radius with center at v and/or angle (visibility cone with vertex

v). We only need to modify the visibility criterion applied in the algorithm explained in

the previous section to take into account whether point p on T is inside the visibility range

of v.

3.5 Three-dimensional multi-visibility maps using CUDA

Our purpose is to develop a method which computes the visibility information from a

set of viewpoints and a set of triangle obstacles placed on a R3 space. Our proposed

algorithms have been implemented using CUDA, the new GPGPU language designed by

NVIDIA. The main reason for the use of CUDA is that Cg deals always with image-based

solutions that can be hard to apply to a three-dimensional environment involving volumes.

In contrast, CUDA has direct support to easily manage volumetric spaces and is a more

generic platform useful for computing solutions without the need of using a computer

graphics API.

3.5.1 CUDA implementation

As in the two-dimensional approach, our goal is not to obtain an exact solution for the

visibility on the space, but only a discretization of the solution. For this purpose we

subdivide the wanted portion of the space into a uniform grid of voxels of side W , and the

visibility of every one of these voxels is computed by a thread of our CUDA kernel in a

parallel fashion. Obviously, if we want to obtain a more precise approximation, W has to

be larger. The larger that W is, the more threads the kernel has to process and the more

time the whole process needs.

To the best of our knowledge, no algorithm for computing the discretization of the

multi-visibility map from a set of viewpoints exists. However, our work is closely related

to ray tracing algorithms using the GPU [PBMH02, STK08, ZH10], from which we have

borrowed some techniques.

The pseudocode shown on Algorithm 1 is the kernel responsible for computing the
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Figure 3.17: The two first images show the visibility map from two different viewpoints.

The right one shows the multi-visibility map.
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multi-visibility of every voxel. The visibility of a single voxel is computed by a single

CUDA thread and all such threads are executed in a parallel fashion. The result is stored

in the array MV M containing as many elements as the number of threads and voxels of

the discretization. Every element encodes the visible points of V from its corresponding

voxel, taking into account the set of triangle obstacles.

In a brute force algorithm we would need to compute the intersection between n

segments with m triangles, for each of the voxels present in the discretization, where n

is the number of viewpoints and m is the number of triangle obstacles. Therefore n×m

intersection tests would be performed inside every thread of the kernel, although most of

these intersection tests are going to be negative.

In order to avoid this huge number of unnecessary intersections, a voxelization of the

triangles can be used. There are many possible acceleration data structures to choose from:

bounding volume hierarchies [WBS07, Mah05], bsp-trees [HKBv97, SS92, CF89], kd-trees

[PGSS07, HSHH07], octrees [SVNB99], uniform grids [NO97, AW87, KS09], adaptive grids

[KS97], etc. We chose uniform grids for two reasons. First, many experiments have been

performed using different acceleration data structures on different scenes (for an excellent

recent study see [ZH10]). From these studies no single acceleration data structure appears

to be the most efficient; they all appear to be within a factor less than two of each other.

Second, uniform grids are particularly simple for hardware implementations since accesses

to grid data structures require constant time, and the code for implementing the grid

traversal algorithm in a uniform grid is straightforward.

Our method is similar to the one proposed in [KS09] and it tries to obtain an efficient

(both in time and space) data structure which stores the triangles that intersect every

voxel of the uniform grid. Basically, we need to create an array which consequtively stores

the triangles intersecting the voxels (actually, it contains references to the triangles, not

the triangles themself). The list of triangles intersecting the voxel in position i are put

exactly after the triangles intersecting the voxel in position i− 1 (see Figure 3.18). Thus

this array will contain the triangles voxelization and is denoted as TV .

Since CUDA is not capable of managing dynamic memory, we first have to count the

number of triangle references that we will need to store in order to allocate the exact

quantity of memory needed by TV . Moreover, without the possibility of using dynamic

memory, the list of triangles of each voxel would have to be of the same size. However, a

much better option for saving space is to have another array where each element represents

a voxel vox and contains one index adressing where the list of triangles intersecting vox

start in the array TV . Therefore, this new array contains the triangles voxelization indices
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and it is represented by TV I. Using these two arrays together, we can determine if the

voxel vox in the array position i intersects any of the triangles of the scene. If TV I[i−1] <

TV I[i] then there are triangles intersecting vox (in the special case of i = 0, the test is 0 <

TV I[0]). The number of triangles intersecting the voxel in position i is TV I[i]−TV I[i−1]

and their references start at position TV I[i− 1] in the array TV .

The proposed algorithm needs an additional input parameter, H, which is the side of

the voxelization used to store the triangles of T (not necessarily H = W ). It is explained

in detail in the next paragraphs, and is executed only once before Algorithm 1 begins, as

a pre-process step.

First of all, the list of triangles is uploaded to the array triangles in the CUDA global

memory.

The first CUDA kernel is responsible for counting the number of triangles that inter-

sect every voxel vox and it stores this information in the array TV C of size H×H×H.

Every distinct thread computes the voxels that intersect a different triangle t, thus

the triangles are treated in parallel. When all the voxels that intersects t are found,

the kernel calculates their indices and increments by one the array TV C at their

positions.

The second kernel implements a parallel prefix sum algorithm for obtaining the array

TV I of size H×H×H where the element i contains the sum
∑i

j=0 TV C[j]. Using the

array TV I we can determine how many triangle references we will have (TV I[m−1])

and the number of triangle references we have to store for every voxel. Before the

third kernel is executed, the array TV of size TV I[m− 1] is allocated in the CUDA

global memory.

The last CUDA kernel implements the method that fills the array TV where the ele-

ment i, representing the voxel vox, will contain the list of references to the triangles

that intersect vox. The kernel receives the arrays triangles and TV I as input pa-

rameters and each thread (representing a triangle t) is responsible for finding (again)

all the voxels that intersect t and store its references in the correct position of TV .

Figure 3.18 shows an example of how all these arrays and kernels work. The exam-

ple uses a two-dimensional space for simplicity purpose. The translation to the three-

dimensional version is straightforward.

We would save time if we could store the arrays triangles, TV C, TV I and TV in the

constant or shared memory, however this is not possible because the size of a normal scene



54 Chapter 3. Multi-visibility maps computation using the GPU

Figure 3.18: The scheme of the voxelization of the triangles. The upper images show the

obstacles, the voxels forming the uniform grid and the index of every voxel. The green

squares indicate the voxel we are interested in and where we can find the triangles it

intersects. The green circles indicate the index of the voxel of interest.
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exceeds the (small) space dedicated to constant memory. Moreover, neighbor threads do

not necessarily access neighbor elements of TV I or TV , which enormously difficult to put

the results in the shared memory. However, we can upload the triangles to the CUDA

global memory using a float3 array instead of a float array. This saves a significant amount

of time when accessing the triangles list and later, when the information stored in TV and

TV I is used to compute the visibility.

Although the running time of our method is longer than the algorithm proposed by

J. Kalojanov and P. Slusallek in [KS09], the implementation is easier and the running

times keep on beeing very reasonable taking into account that this is only a pre-process

step, as we can see in Figure 3.19. The number of triangles of the used scenes goes from

1000 of our columns scene to 10 millions of the Thai Statue. Observe that the time is not

linear dependent with the number of triangle obstacles. Moreover, it depends on how the

triangles are located and distributed inside the scene.

An important part of the total time is spent in performing two atomic operations

that are totally necessary to compute the voxelization of the obstacles in this way. These

atomic increments avoid writing conflicts when two or more threads try to update the

same position in the result arrays. This fact makes the code easier to understand and,

moreover, it avoids the necessity to implement a parallel sorting algorithm in CUDA, as

in [KS09].

For a fast computation of the voxel-triangle intersection test, the algorithm proposed

by Akenine-Moller in [AM01] can be used. Eventually we realized that a complete triangle-

box intersection test is not really necessary, as J. Kalojanov and P. Slusallek suggest in

[KS09]. Therefore, a simplified and conservative intersection is used. By doing this, more

triangles than the ones actually intersecting the voxel can be found. However, the time

spent in storing and accessing these useless triangles in the visibility computation is less

than the time wasted in computing an exact intersection test.

Once the voxelization of the triangles has been obtained, the algorithm for computing

the multi-visibility map from the set of triangles and the set of viewpoints can be executed

(see Algorithm 1).

The method works as follows. For the current voxel vox (with its central point p), it

constructs a segment pvi for every vi ∈ V . Each of these segments traverse the voxeliza-

tion represented by the array TV I in an incremental way using the fast voxel traversal

algorithm presented by J. Amanatides and A. Woo in [AW87]. If the segment pvi reaches

a voxel of TV I which contains triangles, then an exact intersection test with all present

triangles must be done. As soon as any one of these intersection tests is positive, then we
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Algorithm 1: 3DPointVisibility CUDA kernel
Input: Set of viewpoints V , Number of points n, set of triangles T , Number of

triangles m, array TV I, array TV , grid side H

Output: Multi-visibility map MV M .

index← voxelIndex(threadPosition,BlockSize,GridSize) ;

p← voxelPosition;

visiblePoints← 0;

for i = 0 to n do
v ← V [i];

vp← segment(v, p);

TV Iv ← voxelPosition(H, v);

visible← true;

while visible and voxelInSegment(TV Iv, vp) do
triangleList← references from TV [TV Iv − 1] to TV [TV Iv];

if nonEmpty(triangleList) then

for every j in triangleList do
triangle← T [j];

if intersection(vp,triangle) then
visible← false;

end

end

end

TV Iv ← nextV oxel(H, vp);
end

if visible then
visiblePoints← visiblePoints + (1 << i);

end

end

MV M [index]← visiblePoints;

return MV M ;
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Figure 3.19: The image shows the running time spent in the voxelization of the obstacles

for some distinct scenes. The number of triangles of each scene is indicated next to its

name.

can conclude that vi is not visible from p and the traversal of the segment pvi is finished.

If the process continues and the segment does not intersect any triangle on a non-empty

voxel of TV I or it does not reach any non-empty voxel, then vi is visible from p. Figure

3.20 contains a 2D example of the algorithm. The extension to the three-dimensional case

is straightforward. The visibility information is stored in the array MV M using the single

bit located in the position i of the visiblePoints variable. We choosed visiblePoints as an

unsigned integer variable in order to make the modification of its single bits easier. Un-

signed integers variables are normally composed by 32 bits, thus the algorithm is restricted

to compute the multi-visibility of at most 32 viewpoints. This can be avoided by using a

number of unsigned integers equal to ceil(n/32) and modifying the algorithm accordingly.

For every element of the array MV M , we would have to allocate a number of unsigned

integers equal to ceil(n/32) and carefully control which integer has to be modified in every

step of the loop.

3.5.2 Restricted visibility

In order to take into account range restriction in the visibility of the viewpoints we have

to slightly change the previously presented algorithm. Now, apart from set V , we also
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Figure 3.20: The two-dimensional version of the incremental algorithm for finding the

visibility of p from v. The voxels painted are the visited ones by the incremental algorithm.

Green is used to represent voxels which do not contain intersections, while yellow denotes

those voxels containing triangles that have to be tested. Finally, red voxels contain one or

more triangles for which the test is positive (p is not visible from v). Notice that triangles

t4, t5 and t6 are never tested since they do not intersect any voxel in the segment pv.

need an array containing the range restriction for the visibility of every viewpoint of V .

We will define this array as V R, and V R[i] will contain the distance from which the

viewpoint vi is not visible. The only special test that we have to include in the algorithm

is to check, before testing the intersection between pvi and any of the triangles of T , if

distance(p, vi) < V R[i]. If this is the case, the algorithm continues normally, otherwise p

is not visible from vi and the process can be stopped immediately.

3.5.3 Results

Finally, we present some images showing the computation of the visibility from a few

viewpoints using two different scenes. Moreover, some figures showing the running times

of the algorithm with distinct grid resolution and number of triangle obstacles are given.

The tests are done on a computer equipped with a Intel Pentium 4 CPU at 3.20 GHz

and a graphics card using a GeForce GTX 280 GPU. The results of every test are the

mean running time of ten executions. For every one of these executions the viewpoints

are randomly generated.

Figure 3.21 show an example of the visibility computed from one viewpoint and a scene

with approximately 450 triangles. The scene used in Figure 3.22 has over 2000 triangles
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and the visibility is computed from two different viewpoints. The right image on this

figure shows the shadow regions from both viewpoints.

Figure 3.21: The top left image shows only the scene (composed by 450 triangles) and the

only present viewpoint (blue sphere) while the other ones show, from top left to bottom

right, the visibility map every time with more detail.

In Figure 3.23 we can see two different images containing the running times using

200 and 1000 triangle obstacles, respectively. Notice that by doubling the side of the

voxelization, the time is increased by eight times approximately, which is the expected

behaviour because the number of voxels is incremented by eight times too.
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Figure 3.22: From top left to bottom right, the images show the scene, the shadow re-

gions from viewpoint 1 and viewpoint 2, and the shadow regions from both viewpoints,

respectively.



3.5. Three-dimensional multi-visibility maps using CUDA 61

Figure 3.23: The images show the running time for the 3D visibility computation using

the explained CUDA method. Times on the top image are taken from a scene with 1000

triangles while times on the bottom image are based on the same scene with 100000 trian-

gles.
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Chapter 4

2D and 2.5D good-visibility maps

computation using the GPU

This chapter is structured as follows. First, our exact algorithm to compute good-visibility

maps and its theoretical complexity are proved. Then a new algorithm for computing the

depth map from a set of points using the GPU is described. Afterwards the design and

implementation of our method to calculate a discretization of the good-visibility map from

a set of viewpoints and a set of obstacles are presented. Finally, we expose variations on

the visibility applied to the good-visibility map as well as some representative examples

and a detailed running time analysis.

4.1 Introduction

A variation of the illumination or visibility problem is the so-called good-illumination, de-

scribed for the first time in the PhD Thesis of S. Canales in 2004 [Can04]. The basic idea

is that a point p is well visible if all the viewpoints are well distributed around p. Therefore

it is not well visible if most of the viewpoints visible from p are grouped in the same side

of p. Abellanas, Canales and coworkers published some other relevant work about good-

visibility, providing its exact calculation in some concrete cases [ACH04, ABM07b]. They

also published some variations on the good-visibility [ABHM05, ABM07a], for example for

taking into account the restriction in the visibility or illumination of the viewpoints. In

contrast to Abellanas, Canales and the coworkers research, we focus our work on the com-

putation of a generic and discrete solution for good-visibility using the graphics hardware,

while they try to find an exact solution to the problem.

63
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For the computation of the good-visibility map we use two geometric concepts: the

visibility and the depth contours. Both concepts will be used to compute 2D and 2.5D

good-visibility maps.

4.2 Exact algorithm

Let V be a set of n viewpoints and S a set of m obstacles in the plane. We assume that

no point in V is interior to an obstacle in S. The location depth of an arbitrary point

q relative to V , denoted by ldV (q), is the minimum number of points of V lying in any

closed halfplane defined by a line through q. The k-th depth region of V , represented by

drV (k), is the set of all points q with ldV (q) = k.

The free space FS relative to S is the complement of S. Given two points q ∈ FS

and v ∈ V , we say that a viewpoint v is visible from q if the interior of the segment with

endpoints v and q remains completely inside FS . A point q is t-well-visible in relation to

V and S if and only if every closed halfplane defined by a line through q contains at least

t viewpoints of V visible from q (see Figure 4.1). The good-visibility depth of q relative to

V and S, denoted by gvdV,S(q), is the maximum t such that q is t-well-visible in relation

to V and S.

(a) (b)

Figure 4.1: (a) To obtain gvdV,S(q), we consider the set of lines through q and we choose

the line that leaves less visible viewpoints on any side. (b) By doing this for every point

we obtain the good-visibility map of V and S.

Let Hq be the set of halfplanes whose boundary line contains q and denote NV (q, h)

the number of viewpoints of V visible from q contained in any halfplane h. Since by

definition:

gvdV,S(q) = min
h∈Hq

NV (q, h) ,

it directly follows Lemma 1, which expresses the relationship between the good-visibility
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depth and the location depth of a point.

Lemma 1 If Vq denotes the subset of points of V visible from q, then gvdV,S(q) = ldVq(q).

The k-th good-visibility region relative to V and S, denoted by gvrV,S(k), is the set of

all points q with gvdV,S(q) = k. Observe that gvrV,S(k) can be non connected (see Figure

4.2).

Lemma 2 If S is empty or is external to the convex hull of V , CH(V ), then gvrV,S(k) =

drV (k).

Proof. We will highlight two cases depending on the position of a point q relative to

CH(V ). If q /∈ CH(V ), a halfplane h ∈ Hq exists that does not contain any viewpoint of

V and then gvdV,S(q) = ldV (q) = 0. If q ∈ CH(V ), it holds Vq = V because S is external

to CH(V ) and, by using Lemma 1, we have gvdV,S(q) = ldVq(q) = ldV (q). Thus, for all q

we have gvdV,S(q) = ldV (q) and consequently gvrV,S(k) = drV (k).

�

We call the set of all good-visibility regions relative to V and S the good-visibility map

of V and S and denote it with gvm(V, S). Also we denote with gvmr(V, S) the restriction

of gvm(V, S) to region r.

(a) (b)

Figure 4.2: (a) Good-visibility map of a set of three points. (b) When an obstacle is added

the 1 good-visibility region becomes smaller and disconnected in some polygons.

From now on we will focus on the non trivial case in which we have n ≥ 3 viewpoints

and m ≥ 1 segment obstacles intersecting CH(V ).

Lemma 1 induces a way to compute gvm(V, S). First we decompose the free space

FS into visibility regions so that all points in a single connected region are visible exactly
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from the same points in V . Then, in each visibility region we compute the depth map of

its visible points.

Given a point v ∈ V and a segment s ∈ S, the shadow region of s with respect to

v, denoted by sr(v, s), is the set of points that are invisible to v when we consider the

segment s as an obstacle. Denoted by s0, s1 the endpoints of s. If v /∈ s, sr(v, s) is the

region delimited by the segment s, the ray of origin s0 and direction −→vs0 and the ray of

origin s1 and direction −→vs1. When v is an endpoint of s, for example s0, the shadow region

sr(v, s) is the ray of origin v and direction −→vs1. From the collection of all the shadow

regions sr(v, s), s ∈ S, we can determine the visibility map Mv(S) of v, the subdivision of

the plane into visible and invisible maximal connected components with respect to v and

S.

Let O be the overlay determined by the family of all the visibility maps Mv(S) for

v ∈ V , or equivalently of all the shadow regions sr(v, s) for v ∈ V and s ∈ S, interior to

CH(V ). All cells in O are convex and all points in a cell c of O are seen from exactly the

same subset Vc of points of V . Observe that two cells c ̸= c′ that are seen from the same

subset of points of V may exist, it is to say with Vc = Vc′ .

Theorem 3 The overlay O consist of O(n2m2) cells and each cell has O(n) visible points.

Proof. Since each shadow region is bounded at most by two rays and one segment, and

the convex hull CH(V ) has O(n) edges, there are O(nm) elements (segments and rays)

defining O. Consequently, O has O((nm)2) cells. Figure 4.2 shows that this upper bound

is tight. In a) we can see a segment placed in the diameter of a circle and n/2 viewpoints

vi placed on the circle and above the segment. The point vi is placed in a way that one ray

of its shadow region intersects i− 1 rays of all other shadow regions inside the circle and

the free space. Then, the number of cells of the line overlay is Ω(
∑n/2

i=1(i − 1)) = Ω(n2).

In b) the segment is split in m segments. Since we have the same properties of a) for each

one of the m segments, the new line overlay has Ω((nm)2) cells. In c) we have placed n/2

light points on the circle and under the segments. This placement ensures that there are

Ω((nm)2) cells interior to CH(V ) that see a minimum of n/2 viewpoints. Consequently

O(n2m2) is a tight upper bound of O, and O(n) a tight upper bound of the points visible

from each cell.

�

For each cell c of O with the visible set of viewpoints Vc, Lemma 1 states that

gvmc(V, S) can be computed as dmc(Vc), the depth map of the set Vc restricted to c.
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m segments

n/2 points

c) O(n2m2) regions seeing O(n) points

n/2 points

p3

p2

m segments

n/2 points

p1

n/2 points

a) O(n2) regions b) O(n2m2) regions

Figure 4.3: Example showing a worst case O configuration.

Then, we have:

gvm(V, S)) =
∪
c∈O

dmc(Vc) .

Theorem 4 The good-visibility map of V and S can be computed in O(n4m2) time.

Proof. Given a set of n segments, there is an optimal algorithm (see [Bal95]) that finds

the k′ ∈ O(n2) intersections between the n segments in O(n log n+k′) time and O(n) space

(O(n + k′) space if the intersections are stored). Consequently the cells of the overlay O
can be computed in O(n2m2) time and space. By traversing O, the collection of sets Vc

associated to the cells c of O can be computed in O(n3m2) time. Next, for each cell c we

compute dmc(Vc) by intersecting the convex cell c with the depth contours determined by

dm(Vc). This spends O(n2) time per cell (see section 2.2.3). Thus, the time needed to

compute gvm(V, S) is O((nm)2n2) = O(n4m2). �

Observe that any good-visibility region gvrV,S(k) can be composed by one or more

convex or non-convex polygons.

4.3 Our algorithm for computing depth maps

As can be seen in Section 2.2.3, all known algorithms to compute depth maps using the

GPU have to create and make use of dual planes in order to compute the depth of the points

in the plane. Due to the way the latter dual planes are dealt with, some discretization

errors are introduced which could be avoided if the process runs without looking for those

points situated inside the dual planes using image-based algorithms. That is why we

have designed and implemented a new algorithm to compute Depth Maps using the GPU

which avoids the use of dual planes. This algorithm is implemented using the Cg language
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together with the OpenGL primitives like all the other explained algorithms included in

this chapter.

The algorithm is based on the more recent Krishnan et al. contribution, commented

on at the end of Section 2.2.3. The main difference relies on the computation of the level

of each line ℓ. Instead of using the dual planes, we use a method that computes in the

primal plane the side of ℓ where each point of V is placed. We use a pixel shader that

receives a texture PT containing the viewpoints coordinates, and a texture LT containing

the indices of the two points for every ℓ. Then we send n(n − 1) × n pixels through this

pixel shader (number of lines multiplied by number of points that we have to test for each

one). Finally, inside the pixel shader, for each pixel we use its position to determine the

line ℓ which we have to access in LT and the point p of PT we have to test. The position

of LT contains the two points p1, p2 of PT that determines ℓ. Now we only have to test,

using a simple computation, if p is at the left or at the right of p2 − p1. When we know

the level of each line ℓ, the algorithm proceeds in the same way.

The running time of this algorithm is approximately the same as the Krishnan one, but

it has two important advantages. The levels of the lines are computed in a parallel way.

Moreover, it is a more accurate method because it does not use a pixel based algorithm,

but an exact algorithm taking into account the real coordinates of the points. The second

advantage is that it avoids the use of dual planes which simplifies the whole process a lot

and minimizes the errors due to the dual discretization.

4.4 Visualizing good-visibility maps

Lemma 1 induces a relatively easy way to compute the good-visibility map. The method,

based on that idea, proceeds in two steps.

First step. We start drawing CH(P ) on a black screen and we store the result in a

texture. Next we rasterize in white the boundary, interior to CH(P ), of all shadow

regions sr(p, s), p ∈ P, s ∈ S and we transfer the frame buffer to an array in the

CPU so that each element represents a pixel. Then we find all the cells of A(P, S)

using a CPU based growing method as follows. We take any black pixel of the array

and we choose an unused color. Then we visit its four surrounding pixels and we

paint each pixel with the current color. If the visited pixel is white (belonging to the

boundary) we store it in a waiting list and we continue visiting and painting pixels

until we have visited an entire cell. While there are pixels in the waiting list we take

the first waiting pixel and we repeat the process from this position. In this way we
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paint each cell with a different color. During the process we store an interior pixel

of each cell and its color. Finally, for each cell c we determine the set Pc of points of

P illuminating c. To this end, we take the interior pixel of c and we draw in white,

on a black screen, the shadow regions defined by the pixel and the m segments of

S. By doing this, a point p illuminates the cell c if its corresponding pixel is black.

We use the readPixels function to obtain the set Pc by checking if the corresponding

pixel of each of the n points of P is colored in black. Moreover, we assign a distinct

color to each different subset Pc so that all cells illuminated by Pc will have the same

color. In this way we ensure that we paint the same depth map at most once in the

second step.

Second step. For each cell c ∈ A(P, S) we draw dmc(Pc) using the algorithm described

in Section 2.1 that draws depth contours. In order to paint only the pixels inside

c we use a fragment shader. Its input parameters are a texture containing the

arrangement A(P, S) and the color assigned to Pc. The fragment shader only paints

a pixel (x, y) if the color in the position (x, y) of the texture representing A(P, S) is

equal to the color of c, since in this case the pixel is inside cell c.

This algorithm was published in the proceedings of the 23th European Workshop on

Computational Geometry [CMS08a].

4.5 A better solution

Theorem 4 highlights the fact that computing good-visibility maps in that way is expensive

even in real situations, in which the number n of viewpoints is low but the number m of

obstacles is high. This motivates us to explore an alternative GPU-based algorithm for

visualizing them faster.

The main drawback of the previously described algorithm, based on the fact that

gvm(V, S)) =
∪

c∈O dmc(Vc), is the huge quantity of depth maps, one for each of the

O(n2m2) cells of O, that need to be computed. In order to overcome this drawback

we proposed a new more efficient algorithm. The first step of the algorithm consists of

obtaining a representation of the overlay O of all the visibility maps Mv(S), v ∈ V . We

use a texture, denoted by MV M , to represent this overlay. The second step efficiently

approximates gvm(V, S). In the following we consider that the screen where gvm(V, S)

has to be visualized has a size of W ×W pixels, n < W , and the screen coordinates of the

viewpoints are stored in a texture V Pos of 1× n pixels.
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4.5.1 Obtaining the texture MV M

In the first part of the algorithm we have to compute the multi-visibility map representing

the overlay O of the shadow regions. Chapter 3 contains all the algorithms created for

computing this overlay, stored in the texture MV M , for this case and all the variations

of the visibility proposed in next sections. Section 3.3.1 contains the explanation of the

two algorithms for computing the visibility map for this simple case depending on if we

consider segment or generic obstacles.

4.5.2 Approximating gvm(V, S)

Once the texture MV M containing the visibility information is computed, we can focus

on the computation of the good-visibility map. We have designed an efficient algorithm for

computing the good-visibility map that needs to calculate a depth map only once during

the whole process (see Algorithm 2).

First, for each oriented line ℓij passing through two different viewpoints vi and vj

the side of ℓij where each viewpoint is placed is computed using a pixel shader. The

shader renders a quad of n×n pixels to the texture V Pℓ where the pixel in position (i, j)

represents the oriented line ℓij . The k bit of the RGBA channel of V Pℓ[i, j] stores 1 if

viewpoint vk is placed at the left of the oriented line passing through the viewpoints vi

and vj . This pixel shader needs the texture V Pos as parameter.

Second, for each oriented line ℓij the half-plane ℓ+
ij is rendered on-screen using another

pixel shader (Algorithm 3). The shader that renders ℓ+
ij receives MV M and V Pℓ textures,

and n as global parameters, and computes for a pixel p the number nvp of bits equal to

0 in MV M [p], i.e. the number of viewpoints visible from p, and the number nvpl+ of

bits equal to 0 in MV M [p] and 1 in V Pℓ[i, j] (the number of viewpoints contained in ℓ+
ij

visible from p). The depth of p returned by the pixel shader is min{nvpl+, nvp− nvpl+}
and the grey-scale color of p is chosen proportionally to its depth.

After doing this process for every oriented line and having the depth test activated

with the LESS function we obtain the good-visibility map gvm(V, S).

Since the cost per pixel is O(n) time, we get a cost per line of O(nPn2 + nPW 2) time,

where Pn2 is the time for rendering n2 pixels, and the cost of approximating gvm(V, S)

is O(n3PW 2) time. Consequently, the overall complexity of visualizing gvm(V, S) is

O(nm + n3PW 2) or O(nAW PW 2 + n3PW 2) time depending on the kind of the obstacles

(AW represents the time needed for accessing W pixels of a texture).
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Algorithm 2: 2D good-visibility map
Input: Set of viewpoints V , Texture MV M .

Output: gvm(V, S).

Activate Depth Test using LESS function;

for i = 0 to n do

for j = i + 1 to n do
ℓ← vivj ;

hV ← pointsInHalfplane(ℓ+, V );

hn ← numberOfBitsActivated(hV );

activate pixelShaderGV M(MV M, hV , hn);

paint(ℓ+);

hV ←!hV ; // Bit to bit negation

hn ← numberOfBitsActivated(hV );

activate pixelShaderGV M(MV M, hV , hn);

paint(ℓ−);
end

end

Algorithm 3: pixelShaderGVM
Input: Pixel position x, y, Texture MV M , points in halfplane hV , number of

points in halfplane hn.

Output: color and depth of current pixel.

visibility value←MV M [x, y];

coincidences← 0;

for i = 0 to numberOfBits(hV ) do

if visibility value.bit(i) ==0 AND hV .bit(i) == 1 then
coincidences + +;

end

end

level← min(coincidences, hn);

color, depth← level;

return(color, depth);
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Comparing the O(n4m2) complexity of the exact algorithm with the complexity of

the GPU-based algorithm, one can observe that the running time is drastically reduced.

Figure 4.4 shows the comparison between the running times of both algorithms, the first

method proposed and the improved algorithm. In the top image the number of segments

is fixed to 3 and the number of viewpoints is increased. In contrast, in the bottom picture

the number of viewpoints is fixed to 24 and we increase the number of segments. We can

observe that the running times of our new algorithm are always much smaller, which is a

direct consequence of the reduction of the theoretical complexity.

Figure 4.4: Running time comparison between the two proposed algorithms to compute

gvm. In the top image the number of segments is fixed to 3 and in the bottom one the

number of viewpoints is fixed to 24.
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Figure 4.5 shows the differences between the multi-visibility map computed in the

first step of the algorithm and the good-visibility map. The huge differences between

these images show that good-visibility maps provide a totally new way to understand the

visibility concept and how they can be useful for taking into account the relative position

between the viewpoints and the rest of the plane.

Figure 4.5: The left images show two examples of visibility map and the right ones have

the good-visibility map computed from the same scenes. In the visibility map, black means

invisible to all viewpoints while in the good-visibility maps, white represents this.

4.6 Results

We have implemented the proposed methods using C++ and OpenGL for the main appli-

cation and Cg language for the pixel shaders executed inside the GPU. All tests and images

have been carried out on a laptop equipped with an Intel Core 2 Duo P8400 at 2.26GHz,

4GB of RAM and a GeForce 9600M GT graphics card supporting texels of 128 RGBA

bits and using a screen resolution of 500x500 pixels for the GPU-based computations (in

Figure 4.10 we also used other screen resolutions to compute the times).
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4.6.1 Good-visibility maps in the plane

Figure 4.6(a) shows two depth maps corresponding to two different sets of viewpoints,

while Figure 4.6(b) shows the good-visibility maps of the same sets of viewpoints mixed

with segment obstacles. All maps have been obtained with our implementation, and their

good-visibility regions are colored in a grey gradation according to their depth (black

corresponds to level one) except the level zero region which is colored in pure white.

(a) (b)

Figure 4.6: (a) Depth maps of the points. (b) Good-visibility maps of the points and the

segments.

Figure 4.7 shows a detailed example of a good-visibility map (last image) when generic

obstacles represented by a binary image are considered. The first five images correspond

to the regions of level greater or equal to k, k = 1 . . . 5.

In order to corroborate the predicted computational cost of our algorithm, we have

tested it with several configurations of viewpoints placed randomly in a square box mixed

with segment obstacles or generic obstacles represented by a binary image.

Figure 4.8 shows the cubic relation between the running time and the increment of

viewpoints. Observe that when the number of viewpoints and segments obstacles is high

enough, for a fixed number of viewpoints the running time corresponding to segment ob-

stacles is greater than the running time corresponding to generic obstacles. This is because

the computational cost for generic obstacles only depends on the number of viewpoints

and the screen size.
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Figure 4.7: The walls of a church are represented by a binary image. The first five images

show the five good-visibility regions of the good-visibility map. The last image shows the

good-visibility map.
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Figure 4.8: Relation between the running time and the number of viewpoints for different

number of segments and generic obstacles.
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Figure 4.9 indicates the linear relation between the running time and the number of

segment obstacles.

Figure 4.9: Running time depending on the number of viewpoints and the number of seg-

ment obstacles.

Figure 4.10 shows how the running time increases depending on the number of view-

points and the screen size used to render the good-visibility map for a fixed number of

segment obstacles (10) or generic obstacles.
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Figure 4.10: Running time depending on number of viewpoints and screen size.

4.7 Variations

A lot of variations to the problem can be included to solve different types of problems or

to model more realistic scenes with a variety of real situations. Some of these variations

are about the properties of the visibility of viewpoints (restricted visibility in range or

angle or power of emission) or even the shape of the view objects (we can consider view

segments instead of viewpoints) as in Figure 4.11.

All the implemented variations consist of changing the computation of the MV M

texture that stores the multi-visibility map. Since all the visibility algorithms implemented

are explained in Chapter 3, here we only show images of the results and the comparison

between the visibility map and the good-visibility map for the same scene.
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Figure 4.11: Shadow regions with signal crossing segment obstacles. Point p has sufficient

power to cross one segment obstacle.

4.7.1 Viewpoints with Restricted Visibility

As Abellanas et. al state in [ABHM05], a point v has restricted visibility when it is

restricted within an angular region or/and with limited range. It is necessary to distinguish

two cases due to the different implementation for the calculation of the MV M texture for

segment obstacles and generic obstacles (see Section 3.3.2 for a more detailed explanation).

Once the modified texture MV M is obtained, the algorithm can continue in the same

way as described in previous sections in order to draw good-visibility maps with restricted

visibility points. Figure 4.12 compares the visibility map and the good-visibility map for

a simple scene.

In Figure 4.13 we can see two good-visibility maps computed from a set V containing

some viewpoints with restricted visibility and a set S of segment obstacles. Moreover,

Figure 4.14 shows an example of a good-visibility map using viewpoints with restricted

visibility and a binary image representing generic obstacles.

4.7.2 Viewpoints with power of emission

The viewpoints are now treated as points emitting another kind of signal. In this extension

we have added the emission power to the points and it is represented by the number of

segment obstacles or pixels that the signal emitted by a viewpoint can cross.

As in the case of restricted visibility, we can implement the emission power by changing

the computation of the texture MV M . Figure 4.15 shows the comparison between visibil-
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Figure 4.12: Visibility (upper images) and good-visibility (lower images) for a simple scene

using segment and generic obstacles and restricted visibility.
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Figure 4.13: Good-visibility maps for restricted viewpoints.

Figure 4.14: The red pixels represent the obstacles and blue regions indicate the restriction

in the visibility of the viewpoints. The left image does not take into account the visibility

restriction while the good-visibility map on the right one is computed with it.
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ity and good-visibility in the three cases implemented, when the obstacles are segments,

when they are represented by a binary image, and when this image uses a color gradiation

to codify the opacity or resistance to the emitted signal of each pixel belonging to the

obstacles.

Figure 4.15: Visibility (upper images) and good-visibility (lower images) for a simple scene

using segment and generic obstacles and power of emission.

In Figure 4.16 there is an example of three viewpoints with variable power of emission

in a scene with some segment obstacles.

In Figure 4.17 we can see an example scene with five viewpoints, where the number on

each vi indicates its power of emission Pvi . In these images (especially in the second one)

some artifacts on the good-visibility map can be observed due to the power of emission

and obstacles discretization.
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Figure 4.16: Scene composed by some segment obstacles and three viewpoints where the

number indicates their power, which is incremented gradually from top left to bottom right

and the good-visibility map grows consequently.
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Figure 4.17: Red pixels represent the obstacles and blue numbers indicate the power of

emission of the viewpoints. From top left to bottom right, the power of emission of the

distinct viewpoints is incremented gradually, thus the good-visibility regions becomes larger

in every image of the sequence.
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Figure 4.18 shows some examples of adding Opacity in generic obstacles using the color

of its pixels. In the upper images there is a portion of the obstacle bar which is totally

green. This means that this part of the obstacle has no resistance, thus 100% of the signal

crosses as it might do if there were no obstacles present in the scene.

Figure 4.18: Blue numbers indicate the power of emission of viewpoints. Upper images

show how the change in the opacity (color of the obstacle) modify the good-visibility. In the

lower images we can see how the good-visibility changes with variable obstacle thickness.

4.7.3 View segments instead of viewpoints

Now we want to have a set of view segments instead of viewpoints or even the possibility

of having a set of view objects, including both points and segments.

The fact that visibility from a segment can have two different interpretations (see

Section 3.3.4) means that we also have to change the concept of location depth to take

into account two distinct types of good-visibility when dealing with view segments: weak

and strong.

The location depth of a point p with respect to a set of viewpoints V and a set of

segment obstacles S is defined as the minimum number of viewpoints visible from p that
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the halfplane defined by any line passing through p contains.

It seems logical to think that for strong good-visibility, if some of the elements of V are

view segments, they are counted for this minimum only if the whole segment is included

in the halfplane. It can be easily computed taking into account only the two end points of

the segment. On the other hand, considering weak good-visibility, a segment is counted

if any of its interior points belong to the considered halfplane. This is true when one or

both of its end points are inside the halfplane (see Figure 4.19 for a conceptual scheme

and Figure 4.20 for a practical example).

Figure 4.19: Left image shows how the location depth works when V is a set of viewpoints.

In the middle and right images, strong and weak location depth can be seen respectively,

when V is a set of view segments.

Figure 4.20: Left and right images show the depth contours from a set of three view

segments with strong and weak visibility, respectively.

Thereafter, the depth map and the good-visibility map implementations using the

GPU will be described.

Computing the depth map using the GPU

First of all we give a solution for the problem without obstacles. In order to compute

depth contours from a set of view segments with strong or weak visiblity the algorithm
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(explained at the beginning of this same Chapter 4) has to be slightly updated. The first

part is equal for both strong and weak location depth and it works as follows. The two end

points vis and vif of every view segment vi are connected to form oriented lines with both

end points of all the other view segments, in the same way each viewpoint is connected

to each other in the viewpoints version. In this process, a level must be assigned to every

one of these oriented lines l.

If we consider the case of strong visibility, the level of ℓ is computed as the number

of full view segments at the left of ℓ, without taking into account the end points of the

segments generating ℓ. On the other hand, the level of a line ℓ generated from vis and vjs

for weak visibility is computed by counting all the fully or partially view segments placed

to the left of ℓ. A segment is considered partially inside a halfplane if one of its end points

is inside it (we do not take into account the points vif and vjf
).

Finally, for every line ℓ, its left halfplane is painted with depth and color equal to

the level found before and its right halfplane is painted with depth and color equal to

n− level − 2, where n is the number of view segments in V . If this process is done with

the depth test activated and using the LESS function, as in the case of viewpoints, the

depth contours of V are correctly computed.

In Figure 4.21 some examples of the computation of the depth contours from a set of

view segments are shown.

Figure 4.21: From left to right images show the computation of the depth map from a

set of view segments using strong visibility (S), weak visibility (W) and a mix of them,

respectively.

Good-visibility map computation

Once we know how to compute the multi-visibility map from a set of view segments and

a set of segment obstacles (explained in Section 3.3.4) and we know how the location

depth of a point p is affected by the strong or weak visibility, we are ready to compute
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the good-visibility map from view segments or even from a mix of viewpoints and view

segments, any of them having strong or weak visibility.

Since the texture MV M containing the visibility information has been already ob-

tained (see Section 3.3.4), now we can compute the good-visibility map. The algorithm is

very similar to the one used for computing the good-visibility map from a set of viewpoints,

described in Section 4.5.

We need to construct a line ℓ for every pair of endpoints that generates the set of view

segments V and count how many view segments are located on the left and on the right

of ℓ. The way a segment is counted or not is determined by the kind of visibility it has

associated (see previous section). When considering viewpoints, the set V has n points,

however in the case of view segments V is composed by 2 × n endpoints. The line ℓij

connects the endpoints i and j. For every oriented line ℓij , the number of view segments

situated at its right or at its left is counted using a pixel shader. The shader renders a

quad of 2n× 2n pixels to the texture V Pℓ where the pixel in position (i, j) represents the

oriented line ℓij . The k bit of the RGBA channel of V Pℓ[i, j] stores 1 if the view segment

vk is placed at the left of ℓij . This pixel shader uses an input texture, denoted by V Pos,

which contains the position of every endpoint of the view segments (see Algorithm 4).

Second, for each oriented line ℓij the half-plane ℓ+
ij is rendered on-screen using another

pixel shader (Algorithm 5). The shader that renders ℓ+
ij receives MV M , V Pℓ and n as

global parameters. As in the viewpoints version, explained in Section 4.5.2, it computes

for a pixel p the number nvp of bits equal to 1 in MV M [p] and the number nvpl+ of bits

equal to 1 simultaneously in MV M [p] and V Pℓ[i, j]. The depth of p returned by the pixel

shader is min{nvpl+, nvp− nvpl+} and the gray-scale color of p is chosen proportionally

to its depth.

After doing this process for every oriented line with the depth test activated using the

LESS function, the good-visibility map gvm(V, S) is obtained.

This algorithm can also be used to compute the good-visibility map from a set V of

mixed viewpoints and view segments. It is necessary to slightly modify the previously

detailed code in order to take into account when a point vi is a viewpoint or a endpoint

of a view segment.

Results and running time Figures 4.22 and 4.23 contain examples of good-visibility

maps computed using the latter algorithm. Some images show good-visibility maps from

sets V containing only view segments with a fixed type of visibility while others depict a

good-visibility map from a set of view segments with mixed visibility or even from a set
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Algorithm 4: 2D GVM viewSegments
Input: Set of view segments V , Texture MV M .

Output: gvm(V, S).

Activate Depth Test using LESS function;

for i = 0 to 2n do

for j = i + 1 to 2n do
ℓ← vivj ;

hV ← segmentsInHalfplane(ℓ+, V );

hn ← numberOfBitsActivated(hV );

activate pixelShaderGV MviewSegments(MV M, hV , hn);

paint(ℓ+);

hV ←!hV ; // Bit to bit negation

hn ← numberOfBitsActivated(hV );

activate pixelShaderGV MviewSegments(MV M, hV , hn);

paint(ℓ−);
end

end

Algorithm 5: pixelShaderGVM viewSegments
Input: Pixel position x, y, Texture MV M , segments in halfplane hV , number of

segments in halfplane hn.

Output: color and depth of current pixel.

visibility value←MV M [x, y];

coincidences← 0;

for i = 0 to numberOfBits(hV ) do

if visibility value.bit(i) ==1 AND hV .bit(i) == 1 then
coincidences + +;

end

end

level← min(coincidences, hn);

color, depth← level;

return(color, depth);
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V containing both viewpoints and view segments.

Figure 4.22: The images show the good-visibility map from a set of 11 view segments with

strong visibility and from a set of 8 view segments with weak visibility, respectively.

Figure 4.23: The image on the left show the good-visibility map computed from a set of

view segments with mixed visibility while the right image contains the good-visibility map

calculated from a set of mixed viewpoints and view segments.
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4.8 Good-visibility on a terrain

An adaptation of the two-dimensional good-visibility computation can be introduced con-

sidering that it is computed on a terrain, where its faces play the role of obstacles.

Let T be a polyhedral terrain composed of m triangular faces and V a set of n view-

points on or over T . A point q on T is t-well-visible in relation to V if and only if every

closed halfspace defined by a vertical plane through q contains at least t points of V vis-

ible from q (see Figure 4.24). The good-visibility depth of q relative to V , denoted by

gvdV (q), is the maximum t such that q is t-well-visible in relation to V . The k-th good-

visibility region relative to V , denoted by gvrV (k), is the set of all points q on T such that

gvdV (q) = k. Observe that gvrV (k) can be formed by several connected components of

T . The good-visibility map of T relative to V , denoted by gvm(V ), is the subdivision of

T determined by the set of all k-th good-visibility regions gvrV (k).

Figure 4.24: Intuitive idea of good-visibility over a terrain.

Let Vq be the subset of points of V that are visible from a point q on T . We denote

by q∗, V ∗ and V ∗
q the orthogonal projection of q, V and Vq onto the domain T ∗ of T ,

respectively. We also denote by gvrV (k)∗ the orthogonal projection of the k-th good-

visibility region gvrV (k) onto T ∗. Finally, we denote by gvm(V )∗ the subdivision of T ∗

determined by the set of all regions gvrV (k)∗, and gvmr(V )∗ the restriction of gvm(V )∗

to a region r of T ∗.

We will first compute gvm(V )∗ on the domain T ∗ of T and next we will lift up gvm(V )∗

to T to obtain gvm(V ). Our algorithm to compute gvm(V )∗ is based on Lemma 5, similar

to the Lemma 1 for the two-dimensional case.

Lemma 5 For any q ∈ T , gvdV (q) = ldV ∗
q
(q∗).
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The algorithm starts with the computation of the visible region Tv of T for each of the

n points v ∈ V and its orthogonal projection T ∗
v onto the domain T ∗. This can be done,

by using the algorithm of Katz et al. [KOS92], in O(n((mα(m) + k) log m)) time, where

k ∈ O(m2) is the maximal combinatorial complexity among the n visibility maps Tv. The

overall combinatorial complexity of the n visibility maps Tv, and consequently of their n

projections T ∗
v , is O(nm2).

Next, the algorithm computes the overlay O of the n planar subdivisions T ∗
v . All points

in a cell c of O are seen from exactly the same subset Vc of points of V . Observe that two

cells c ̸= c′ of O may exist, so that Vc = Vc′ , that is the same as saying that the points in

c and c′ are seen from the same subset of points of V . The overlay O can be computed

by using an algorithm to find segments intersections like the one in [Bal95], in O(n2m4)

time and space.

Finally, for each cell c of O whose points are seen from the subset Vc of V , Lemma 5

states that gvmc(V ∗
c ) can be computed as dmc(V ∗

c ), the depth map of the set V ∗
c restricted

to c. Then, we have:

gvm(V )∗ =
∪
c∈O

dmc(V ∗
c ) .

We compute dmc(V ∗
c ) by intersecting cell c with the depth contours determined by

dm(V ∗
c ). Assuming that on average the complexity of the cell c is constant (however, the

complexity of a single cell can be superlinear in the worst case) and since |V ∗
c | ∈ O(n),

this can be done in O(n2) time.

To summarize, we conclude with the following theorem.

Theorem 6 The set gvm(V )∗, and consequently the good-visibility map gvm(V ), can be

computed in O(n4m4) time.

4.8.1 Visualizing good-visibility maps on Terrains

Lemma 5 states that the visibility depth of a terrain point q is the location depth of

its projection q∗ relative to the projections of the visible viewpoints of q. Consequently,

a good-visibility map on a terrain T can be approximated by applying the algorithm

described in Section 4.5.2 to the domain T ∗, storing the result in a texture and reprojecting

this texture to T using texture mapping. However, we have to redesign the process

of computing the texture MV M representing the overlay O of the collection of planar
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subdivisions T ∗
v , v ∈ V . In order to obtain the texture MV M containing the multi-

visibility map the algorithm explained in Section 3.4 in the visibility chapter is used.

There can also be found the little changes that have to be done in the computation of

MV M to take into account restricted visibility, as in the two-dimensional case.

4.8.2 Results

In this section, some examples and running time tests generated using our implementation

are presented. All tests and images have been carried out on a laptop equipped with an

Intel Core 2 Duo P8400 at 2.26GHz, 4GB of RAM and a GeForce 9600M GT.

We have tested our implementation with different sets of view points on two different

terrains, the Mount Kilimanjaro modelled with 100.000 faces and the Mont Blanc mountain

modelled with 40.000 faces.

Figure 4.25 shows a good-visibility map on the Mount Kilimanjaro. The good-visibility

regions are colored in a grey gradation according to their depth.

Figure 4.25: Good-visibility map on the Kilimanjaro Mount.

Figure 4.26 shows the good-visibility map (last image) of the Mont Blanc mountain

for 17 viewpoints. The first six images correspond to the regions of level greater or equal

to k, k = 1 . . . 6.

Figure 4.27 shows an example where some viewpoints have restricted visibility range.

Figure 4.28 shows how the running time increases depending on the number of view-



94 Chapter 4. 2D and 2.5D good-visibility maps computation using the GPU

Figure 4.26: The six first images show each of the six good-visibility levels present in the

good-visibility map. The last image shows the good-visibility map on the terrain.
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Figure 4.27: The left image shows the good-visibility map obtained without restricted view-

point while in the right one we can see the good-visibility map obtained when two viewpoints

have restricted visibility.

points. Observe that its behavior is the same as in the 2D case for generic obstacles.

Figure 4.28: Running time when the number of viewpoints increases.
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Chapter 5

3D good-visibility map

computation using CUDA

In this chapter we present a new algorithm that runs in the graphics hardware for comput-

ing the depth contours. Moreover, an algorithm for computing three-dimensional good-

visibility maps using CUDA is presented, as well as the results obtained, which are thor-

oughly described.

5.1 Introduction

After developing new algorithms for computing good-visibility maps from 2D scenes and

on terrains using the GPU, the following and final step of our work is based on the three-

dimensional space. 3D good-visibility maps might have potential applications in diverse

areas such as architecture, building illumination or vigilance of spaces.

To the best of our knowledge, there is no algorithm capable of computing and visualiz-

ing depth contours from a set of points in a three-dimensional space, thus an algorithm for

computing them is presented. The algorithm runs in the GPU and is implemented using

the CUDA language provided by NVIDIA. The QHull program is then used to visualize

one or more depth contours.

Afterwards a scene composed by triangle obstacles is added to the latter algorithm

and it is accordingly modified to be able to compute 3D good-visibility maps using a

voxelization of the space.

97
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5.2 Computation of 3D Depth Contours

As far as we know, there is no efficient and implementable algorithm for computing Depth

Contours [RS04] in three dimensions. In this Section, by working towards practical solu-

tions, we describe a CUDA implementation for computing the Depth-k Contours of a set

V of points in R3. We also present an algorithm for computing the bagplot. Finally, we

provide experimental results obtained with the implementation, using real and synthetic

data sets that show the effectiveness and efficiency of our approach.

5.2.1 Half-space Depth, Depth Regions and Depth Contours

Depth Contours and Depth Regions in Rd are defined similarly as in the two-dimensional

case.

Given a set V of points in Rd, the Half-space Depth of a point p ∈ Rd relative to V ,

denoted by dV (p), is the minimum number of points of V lying in any closed half-space

whose bounding hyperplane passes through p. The more centrally located is p, the higher

its Half-space Depth. For a set V of n ≥ d + 1 points, the Half-space Depth dV (p) is an

integer in the range 0, .., n. It is 0 when p lies outside the Convex Hull CH(V ) of V and

n when all points of V coincide with p. For sets V in general position, meaning that no

d + 1 points lie in a common hyperplane, the Half-space Depth dV (p) is bounded above

by ⌊n/2⌋. The latter occurs when V is symmetric about p.

The Depth-k Region of V , represented by Dk(V ), is the set of all points p ∈ Rd with

dV (p) ≥ k. If k ≤ ⌈n/(d + 1)⌉, the region Dk(V ) is nonempty [Rad46]. Points of depth at

least ⌈n/(d + 1)⌉ are called center points of V , and the nonempty region D⌈n/(d+1)⌉(V ),

denoted by C(V ), is the Center of V . For any set V of n ≥ d+1 points in general position

and any positive integer j ≤ n, we have

Dk(V ) =
∩

h∈H≥n−k+1(V )

h ,

where H≥x(V ) is the set of all closed half-spaces that contain x points of V and have

d points of V in its boundary [ASW08]. The Depth Regions form a nested sequence:

Dk+1(V ) ⊆ Dk(V ). The outermost Depth Region D1(V ) is the Convex Hull of S: D1(V ) =

CH(V ). For any k, the Depth Region Dk(V ) is a convex polytope (not necessarily of full

dimension), because it is an intersection of a finite number of half-spaces bounded by

CH(V ).

The Depth-k Contour of V , denoted by Ck(V ), is the boundary of Dk(V ). Note that

the vertices of Ck(V ) are either points from the original set V or new points from the
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intersection of hyperplanes through d points of V . The collection of all Ck(V ) determines

the subdivision of Rd in regions whose points have the same Half-space Depth relative to

V and it provides a comprehensive view of some shape characteristics of V (see Figure

5.1).

Figure 5.1: Examples of Depth Contours for sets of points in R2 and R3.

The Half-space Median, T ∗, of the set V is the center of gravity of the deepest Depth-k

Contour. The bag is the region B surrounding T ∗ containing the n/2 points of V with

largest Half-space Depth. The fence F is obtained by inflating B, relative to T ∗, by a

factor of 3.

From [ASW08] we know that in R3, the Depth-k Contour Ck(V ) has O(n2) complexity

and it can be obtained in O(n2+ϵ) time, for any ϵ > 0, computing the upper convex hull

of the (k− 1)-level and the lower convex hull of the (n− k)-level of the arrangement dual

to V of n planes. Consequently, all the Depth Contours of V can be computed in O(n3+ϵ)

time and O(n3) space. The Half-space Median and the bag can be also computed in the

same time.

5.2.2 Computing Depth Contours using CUDA

The algorithm described in [KMV02, FG06] to compute Depth Contours in R2 using a

GPU is difficult to export to R3 because in this case the dual spaces are more difficult to

construct and their treatment is not straightforward. Moreover, instead of analyzing a set

of pixels in R2 we need to analyze and maintain a set of voxels in R3, which is even more

difficult. Because of all of these reasons we have designed a more basic algorithm that is

affordable by the todays GPUs hardware.

Our R3 approach is based on the R2 algorithm proposed by Mustafa et al. in [SKV06]

and on our algorithm explained in Section 4.5.
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The definition of the problem states that the depth map of V can be obtained by

computing the Half-space Depth of each point in the space inside the convex hull of V .

Since we have an infinite number of such points, we can discretize the latter space into

voxels forming a d-dimensional grid of side W and computing the Half-space Depth for

each of these voxels.

Thus in a first implementation, the algorithm was designed in two steps as follows.

1. For each plane h determined by every three different points of V , the number of points

of V that are located on its left and right, denoted hl(V ) and hr(V ) respectively, are

counted. Then, the level of h is computed as min(hl(V ), hr(V )).

2. The space is discretized into voxels and every one of these voxels v is tested to

determine its Half-space Depth with respect to V . With the information computed

in the last step, for every plane h generated by V we test if v is on its left or on its

right and the new level of v, denoted dV (v), is computed as min(dV (v), hl(V )) or

min(dV (v), hr(V )), respectively.

The following sections are dedicated to explaining in more detail these two steps.

Computing the level of the planes

Since the generation of a plane through three different points of V and the computation

of its level is independent from the others, the process of generating all such planes and

computing their level can be parallelized by using a single thread for every plane.

Let n be the number of points of V . The simplest way to have all the planes generated

by V would be to create a three-dimensional array H where the tuple of the three indices

(i1, i2, i3) of each element would codify the three points Vi1 , Vi2 , Vi3 generating a plane.

Then, each CUDA thread of the kernel would be responsible for computing the level of a

single plane.

However, we are not interested in all the possible tuples of three points of V , but only in

the distinct planes (
(
n
3

)
elements instead of n3). By using this first approach we might lose

computation power and waste memory space. For this reason we use a one-dimensional

array H of size
(
n
3

)
in which each element corresponds to a unique plane generated by

three points of V . By doing this we execute the CUDA kernel with the exact number of

useful threads.

We use the function IndicesComputation (see Algorithm 6) inside the CUDA kernel



5.2. Computation of 3D Depth Contours 101

to compute the indices of the three points generating a plane from the current thread

index. IndicesComputation is an injective function that for each index 0 ≤ index <
(
n
3

)
of H returns three indices i1, i2 and i3 satisfying 0 ≤ i1 < i2 < i3 < n. This function

takes O(n) time for every plane computation. Consequently, the time complexity of the

algorithm is not affected by this linear process and the three indices can be obtained inside

the parallel computation.

Algorithm 6: IndicesComputation
Input: thread index index, Number of points n.

Output: i1, i2, i3.

i1 ← −1 ;

c← 0;

nx ← n ;

repeat
i1 ← i1 + 1;

nx ← nx − 1;

c← c + nx∗(nx−1)
2 ;

until c ≤ index ;

c← c− nx∗(nx−1)
2 ;

nx ← nx + 1;

i2 ← i1;

repeat
i2 ← i2 + 1;

nx ← nx − 1;

c← c + (nx − 1);
until c ≤ index ;

c← c− (nx − 1);

i3 ← (index− c) + i2 + 1;

return(i1, i2, i3) ;

In order to compute the plane levels, we assign a CUDA thread of the kernel to each

index of the final array H. The three indices i1, i2, i3 are obtained from index by using the

IndicesComputation function. They determine the points vi1 , vi2 , vi3 which generate the

current plane. All these threads are treated in a parallel way by CUDA and are executed

in blocks (see Algorithm 7).

Since we have a loop visiting all the points used by each thread it is recommended to

use the shared memory to store V . In order to do this we can use the 32 first threads of

each block to copy one point per thread from the input array of points to a shared array.
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Algorithm 7: PlanesLevel CUDA kernel
Input: Set of points V , Number of points n.

Output: unsorted H.

index← threadPosition.x ;

i1, i2, i3 ← IndicesComputation(index) ;

h(i1, i2, i3)← plane determined by the points V [i1], V [i2] and V [i3] ;

shared float3 *points=new float3[n] ;

left← 0 ;

for part = 0 to n/32 do

if index < 32 then
points[index]← S[part ∗ 32 + index] ;

end

syncthreads();

for r = 0 to 32 do
read← part ∗ 32 + r ;

if read ̸= i1 AND read ̸= i2 AND read ̸= i3 then
p← points[r];

if p is at left of h(i1, i2, i3) then
left← left + 1;

end

end

end

end

level← left ;

H[index]← (level, i1, i2, i3) ;

return H;
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Afterwards, we need to synchronize all the threads to avoid accessing a shared point which

has not been stored yet. When all the threads have been synchronized, it can be tested to

see if the 32 previously stored points are on the left or on the right of the current plane.

By repeating this procedure until all the points of V are tested we ensure that H will

contain the level of every plane Π and the indices of points of V generating Π. For every

plane, its relative position to every point of V has to be tested, thus the algorithm takes

O(n4/MP ) time, where MP is the number of total parallel processors that the GPU has.

Computing Depth Contours

Once H has been calculated, then the level for every voxel of the space dicretization can

be computed. The kernel shown in the Algorithm 8 is responsible for computing it. Every

voxel of the discretization is represented by a thread, and all such threads are executed by

this kernel in a parallel fashion. The kernel receives H, V , the number of points n and the

number of total planes in H, defined as pn, as input parameters and it stores the result

in the output array DM .

The kernel first initializes to infinite the output of the current voxel, denoted by

DM [index], and then performs a loop in order to check the level of all the planes stored in

H. Inside this loop it is tested to see if the current voxel v is on the left or on the right of h,

and depending on the side it is located, min(DM [index], h) or min(DM [index], n−h−3)

is assigned to the ouput DM [index], respectively.

Visualization

Using the information of the level of every discretized voxel of the space, it is easy to

draw all the voxels inside a certain level Depth-k Contour Ck(V ). Obviously, the more

voxels the space is discretized in, the more precise will be the depth contours visualization

(Figure 5.2 contains some examples computed using this approach).

5.2.3 A better approach

At some point we realized that the latter presented algorithm is redundant because we do

not actually need to discretize the space in voxels and give a discretized solution. When

we compute the level of each distinct plane in the first step of the algorithm, in fact we

already have all the information needed to compute a certain Depth-k Contour Ck(V ).

At this point we only have to do an intersection between the halfspaces determined by all
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Figure 5.2: The top-left image shows how the 10 points in the space are placed. The

other pictures show the C1(V ) discretized in a space of side 32, 64, 128 and 256 voxels,

respectively.



5.2. Computation of 3D Depth Contours 105

Algorithm 8: 3DDepthMap CUDA kernel
Input: Set of points V , Number of points n, Array H, Number of planes np

Output: DM .

index← voxelIndex(threadPosition,BlockSize,GridSize) ;

v ← voxelPosition;

DM [index]←∞ ;

for i = 0 to np do
level← H[i ∗ 4];

i1, i2, i3 ← H[i ∗ 4 + 1],H[i ∗ 4 + 2],H[i ∗ 4 + 3];

h← plane determined by the points V [i1], V [i2] and V [i3] ;

if v is at left of h then
DM [index]← min(DM [index], level) ;

end

else
DM [index]← min(DM [index], n− level − 3) ;

end

end

return DM ;

the planes with level k.

Therefore this new and better algorithm runs in two steps, where the first one is exactly

the same as before except for the sorting we apply to the array H containing the level of

all planes.

The two steps, that are explained in detail in the following Sections, are:

1. Computing the level of the planes: for each plane h determined by every three

different points of V , the number of points of V that are located on its left and

right, denoted hl(V ) and hr(V ) respectively, are counted. Then, the level of h is

computed as min(hl(V ), hr(V )) and the set of all planes is sorted according to this

level.

2. For a given k, the Depth-k Contour Ck(V ) is computed as the boundary of the

intersection between the halfspaces defined by all the planes of level k. Repeating

this process for different k values, distinct Depth-k Contours can be obtained.

The direct finding of the intersection between all the planes with level k gives us

two important advantages: the computational time is reduced by avoiding some costly

computations (even performed in a parallel fashion) and the visualization of the solution
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is easier and much better because now we have to paint a well defined surface instead of

a volume composed by voxels. Figure 5.3 shows a comparison between the final result of

both methods.

Figure 5.3: The top-left image shows C1(V ), C2(V ) and C3(V ) at the same time using the

new approach while the three other images show only one distinct Ck(V ) each using our

first proposed algorithm.

Computing the level of the planes

Since the output for this step is the same as for the initially proposed algorithm, the first

part of the method for this new approach is exactly the same as before. However, taking

into account the second step in the following section, we need to sort the planes by their

level as we need to access as fast as we can all the planes with a particular level. For
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this reason, we use a sorting CUDA kernel to sort the one-dimensional array H. This

kernel is responsible for sorting the elements of H (where each element has three point

indices and a level) from lower to higher level (see [SA08] and [CT08] for sorting algorithms

implemented in CUDA). This process is executed only once and it takes O(n3 log n
MP ) time.

It simplifies the search and the access time of planes of a certain level, which is executed

every time a new Depth-k Contour is wanted. Thus, the whole algorithm to compute H

takes O(n4+n3 log n
MP ) time.

By doing this procedure, the array H contains the list of planes ordered by its level,

therefore we can obtain the first plane of level k in O(log n) time. Moreover, we can access

all planes of level k in O(n2) time, instead of the required O(n3) time if the unsorted H

is used.

Computing Depth Contours

This part of the algorithm that finds the intersection between all halfspaces of level k

is more difficult to solve with a parallel algorithm because for every distinct k we can

have many planes involved. A possible way to solve the problem could be to assign

one CUDA thread to compute one single Depth-k Contour. However, it is not a good

solution because of the huge amount of planes with level k that would be processed in

a sequential way by every parallel thread. For this reason we decided to use the QHull

[Web] software for computing the Depth-k Contour as the intersection of all halfspaces of

level k. QHull provides robust and fast computation of the convex hull of a set of points

and the intersection of a set of halfspaces in R3.

From the output provided by QHull we can easily visualize the Depth-k Contour.

Taking into account that there are O(n2) planes with level k and that they are accessed

in O(n2) time, the Depth-k Contour can be computed in O(n2 log n) time.

The huge amount of memory needed to compute and store all distinct planes generated

from the set V might be a problem. There are
(
n
3

)
distinct planes stored in H and every

one of these planes h is stored using 4 integer values, three of them for indexing the 3

points of S that generates it and the last one to store its level. Thus the space needed

is
(
n
3

)
∗ 4 ∗ sizeof(integer). In order to reduce this amount of memory and to be able

to compute Depth-k Regions from larger sets of points, we could compute the Depth-k

Contours one by one and store only the planes of level k. Obviously, this solution takes

more time than the proposed approach if more than one Depth Contour is computed.
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5.2.4 The Bagplot

The bagplot depicts the set of points V , the Half-space Median T ∗, the bag B and the

fence F .

The Half-space Median T ∗ is the center of gravity of the deepest non-empty Depth-k

Contour. In order to compute T ∗ we do a binary search over all possible Depth-k Contours

(0 6 k 6 n/2) to test if a certain Contour is empty or not. Deciding whether or not an

intersection of halfspaces is empty can be solved in linear time in the number of halfspaces

by linear programming [Meg83]. This search is stopped when we find a k∗ such that

Ck∗+1(V ) is empty and Ck∗(V ) is non-empty.

The bag B can be constructed using the information stored in H together with T ∗.

For every k (0 ≤ k ≤ k∗), let dk be the number of points of V inside the Depth-k Contour

Ck(V ), that is to say, the number of points inside the intersection between all the halfspaces

of level k. In order to compute which points of V are contained in Ck(V ) we use another

CUDA kernel. The input of the kernel is the set V and the array H. The kernel tests

in a parallel way if each point of V is on the same side of all the planes of level k with

respect Half-space Median T ∗. If the point vi is on the same side for all the planes then

vi is interior to Ck(V ). The output of this kernel is a list of boolean values, one for each

one of the points vi in V , indicating if any point of V is inside or outside of Ck(V ). The

sum of the elements of this list outputs dk. Since there are, at the most, O(n2) planes of

level k generating Ck(V ), the algorithm has a time cost of O(n3/MP ). Then, we use a

binary search algorithm to determine the value of k satisfying dk ≤ ⌊n/2⌋ ≤ dk−1. Finally

we have to linearly interpolate between Ck−1(V ) and Ck(V ), relative to the Half-space

Median T ∗, to obtain B. The bagplot B is obtained by QHull by computing the convex

hull of the interpolated points found before. Since we have O(n) Depth-k Contours and

the time needed to compute the points of V inside Dk(V ) is O(n3/MP ), the binary search

is done in O(n3 log n
MP ) time.

The fence F of V is also a convex polyhedron and it can be computed by inflating 3

times the bag B (see Figure 5.5) relative to the Half-space Median T ∗. The points of V

external to the fence are considered outliers.

Observe that by using a similar process we can find a convex polyhedron containing

any desired percentage of points of V , not only 50% as in the case of the bag.
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5.2.5 Results

All images and tests have been carried out on a PC equipped with an Intel Core 2 Quad

Q9550 at 2.83GHz, 4GB of RAM and a graphics card NVIDIA GeForce GTX 280 which

has 240 parallel cores or processors, thus in this case we have MP = 240. The version of

the CUDA compilator used is the release 2.1.

In our implementation, for every one of
(
n
3

)
planes we need 8 bytes to store 3 short

integers which are the indices to the three points generating it and 1 short storing its level.

Consequently, we need approximately
(
n
3

)
∗8 bytes of memory to store them. A present day

non-professional GPU with 1GB of graphics memory would permit us to compute Depth

Contours for a set of about n = 900 points, which is sufficient in most of the cases. In our

experiments we have used random data points in R3 following a uniform distribution as

well as points from real data. For the running time calculations we have used the average

of 10 repetitions for each single value shown in the images, every one with a new set V .

Figure 5.4 shows a set of 100 random data points from which some nested Depth

Contours are visualized. In Figure 5.5 we can see a real data set of 100 points, each one

represented by three variables: the height and width of the head and the neck perimeter

of a person. The figure also shows the bag and fence of the set visualized from different

points of view. The bagplot helps to detect a significant correlation between the three

variables, since the thinner the bag is, the more correlation the data set has. Figure 5.6

shows a set of 300 random data points and polyhedra containing distinct percentages of

the points.

All running times present in the next images are based on a set V of points following

a uniform random distribution. In Figure 5.7 we can see a plot that relates the number

of points of a random set V and the time needed for the computation of the level of all

the planes determined by three points of V . The increment of the total number of planes

when n increases is also shown. We can observe that the running time for the parallel

computation of H using CUDA is almost linearly dependent on the total number of planes

generated by V . This computation is a pre-process step and, consequently, it is computed

only once. The time taken by the computation of different Depth Contours and the bag

for different sets of random points, when H has been already obtained, can be seen in

Figure 5.8. For example, visualizing the bag of 900 points following a uniform distribution

takes aproximately 9 seconds. Also observe that the running time to compute the Depth

Contour for a fixed level k increases when n becomes larger. The reason is that a bigger

n implies also a bigger number of planes at level k (see Figure 5.9). Moreover, computing

deeper contours of a set takes more time due to a similar reason: they are determined by
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Figure 5.4: Depth Contours C0(V ),C5(V ) and C15(V ) of a set V with 50 points.
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Figure 5.5: Data set and its bag and fence visualized from different points of view. We

can observe one outlier point.

Figure 5.6: Set of points and polyhedra containing 5%, 10%, 25%, 50% (bag) and 75% of

the points.
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a much larger number of planes.

Figure 5.7: Line and bar charts showing the time needed to compute H and the total

number of planes generated when n increases.

Figure 5.8: Running time for the computation of some Depth-k Contours and Bag taking

the data from H and using the QHull software when n increases.

The running time for computing a certain level k is linearly dependent with n due to

the increment of the number of planes of level k which is also linear with n, as can be

observed in Figure 5.9.

Figure 5.10 shows the number of planes when the number of viewpoints increases.
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Figure 5.9: The number of planes when n increases for some distinct levels is represented.

Figure 5.10: Number of planes when k increases for some distinct n values.
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5.3 3D Good-visibility maps

In order to compute good-visibility maps in a three-dimensional space we need to add

obstacles to the previously studied 3D depth contours. The simplest obstacles to deal

with in R3 are triangles, thus our scenes will be composed by a set of viewpoints V and a

set of triangles S playing the role of obstacles.

5.3.1 Definitions

Similarly to the 2D definition in Section 4.2 and extending the idea of the three-dimensional

depth contours explained in the latter section, we can define the problem as follows.

Let V be a set of n viewpoints and S a set of m triangle obstacles in the space. We

assume that no point of V is interior to an obstacle in S. The location depth of an

arbitrary point q relative to V , denoted by ldV (q), is the minimum number of points of V

lying in any closed halfspace defined by a plane through q. The k-th depth region of V ,

represented by drV (k), is the set of all points q with ldV (q) = k.

The free space FS relative to S is the complement of S. Given two points q ∈ FS

and v ∈ V , we say that a viewpoint v is visible from q if the interior of the segment with

endpoints v and q remains completely inside FS . A point q is t-well visible in relation to

V and S if and only if every closed halfspace defined by a plane through q contains at

least t viewpoints of V visible from q (Figure 4.1 shows the idea on the plane, which is

equivalent). The good-visibility depth of q relative to V and S, denoted by gvdV,S(q), is

the maximum t such that q is t-well visible in relation to V and S.

Let Hq be the set of halfspaces whose boundary plane contains q and NS(q, h) the

number of viewpoints of V visible from q contained in any halfspace h. Since by definition:

gvdV,S(q) = min
h∈Hq

NS(q, h) ,

it directly follows Lemma 7 which expresses the relationship between the good-visibility

depth and the location depth of a point.

Lemma 7 If Vq denotes the subset of points of V visible from q, then gvdV,S(q) = ldVq(q).
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The k-th good-visibility region relative to V and S, denoted by gvrV,S(k), is the set

of all points q with gvdV,S(q) = k. Observe that gvrV,S(k) can be composed by some non

connected components (see Figure 5.11).

Figure 5.11: Upper images show some views of the good-visibility map of a set of four points

(equivalent to the Depth Contours because there are no obstacles). In the lower ones a

triangle obstacle is added and the 1 good-visibility region becomes smaller and disconnected

in some convex polyhedra.

Lemma 8 If S is empty or is external to the convex hull of V , CH(V ), then gvrV,S(k) =

drV (k).

The proof for the latter lemma is the same as the one used in the explanation of the

exact algorithm for computing good-visibility maps in the plane (see Section 4.2).
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We call the set of all good-visibility regions relative to V and S the good-visibility map

of V and S and denote it with gvm(V, S).

From now on we will focus on the non trivial case in which we have n ≥ 4 viewpoints

and m ≥ 1 triangle obstacles intersecting CH(V ).

5.3.2 Computing good-visibility maps with CUDA

In this section we explain how our CUDA algorithm for computing good-visibility maps in

a three-dimensional space works and its results are discused. Moreover, we present some

considerations or improvements that can be dealt with as future work. The algorithm is

based on the 2D approach detailed in Section 4.5.

We have presented two different versions of the 3D depth contours CUDA implemen-

tation. In this case we must base this new algorithm on the first (and worst) one because,

unfortunately, when adding obstacles to the good-visibility map, its good-visibility regions

can be composed by more than one polyhedra, thus a region of the good-visibility map

can be non-convex or even composed by some convex or non-convex portions. For this

reason we cannot use the QHull software in the case of visualizing the good-visibility re-

gions. Therefore we must use the version which discretizes the space into voxels in order

to compute the good-visibility map. The process works as follows.

1. Computing the information of the planes: for each plane h determined by every

three different points of V , the number of points of V that are located on its left,

denoted hl(V ), are counted and it is stored as the level of h. Apart from counting

the number of points lying on its left, we also store which are these points.

2. The space is discretized into voxels. For every one of these voxels v the set of points

of V visible from v is computed, taking into account the set of triangles S. Then

the algorithm performs a loop over all the planes generated by V . Each step of this

loop tests if v is situated on the left or on the right of a plane h. If v is on its left,

then the level assigned to v is computed as the number of points of V visible from

v which are, at the same time, located on the left of h (which is computed in the

previous step). Otherwise the level of v is the number of points visible from v and

located on the right of h. The final level of v, denoted gvdV S(v), is the minimum

level found in the latter loop.

Using the information of the level of every discretized voxel of the space, it is easy to

draw all the voxels inside a certain good-visibility region gvrV,S(k). Obviously, the more
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voxels the space is discretized in, the more precision the good-visibility map computation

will have.

In the next sections, the details of this CUDA algorithm for computing good-visibility

maps are presented.

Computing the information of the planes

This step is very similar to the one that computes the level of the planes in the 3D depth

contours computation, in Section 5.2.2.

Every thread of the CUDA Grid represents a distinct plane generated by V and all of

them reach the CUDA kernel in a parallel fashion.

In addition to counting the number of points of V on the left of each distinct plane h,

it is also needed to store which are these points. In order to reach this goal, we can use

one single bit to store the information about every point vi in V . The bit in position i will

contain a one when vi is on the left of h, and a zero otherwise. Obviously, for every plane

h, we need to store n bits, where n is the number of points in V . By using an unsigned

integer we can store information for 32 points, but this limit can be easily incremented by

using more unsigned integers to store this information.

Algorithm 9 shows how this first step works. We can observe that the algorithm is an

extension of the one used in the three-dimensional depth contours computation.

Note that in order to activate a bit we use the shift operator. Moreover, this algorithm

only works if pointsAtLeft and PH[index] are variables of a data type composed by, at

least, n bits. If they are declared as unsigned integers, V will contain 32 points at most.

However this limit can be easily avoided by using more memory space.

The time complexity of the algorithm is the same as in the case of computing depth

maps. The algorithm takes O(n) time for every distinct plane generated by V . The

number of such planes is
(
n
3

)
, thus the the time to compute H and PH is O(n4/MP ). The

space needed is greater since we must also store the array PH. Both arrays contain n
3

elements, and one element in H needs 4 short integers while each element of PH occupies

one unsigned integer for every pack of 32 points of V . Therefore the total space required

is
(
n
3

)
∗ 4 ∗ 2bytes and

(
n
3

)
∗ ceil(n/32) ∗ 4bytes for storing H and PH, respectively. This

O(n4) space complexity indicates that n cannot be incremented as in the depth contours

computation.



118 Chapter 5. 3D good-visibility map computation using CUDA

Algorithm 9: PointsAtLeft CUDA kernel
Input: Set of points V , Number of points n.

Output: level of planes H, Points at the left of every plane PH.

index← threadPosition.x ;

i1, i2, i3 ← IndicesComputation(index) ;

h(i1, i2, i3)← plane determined by the points V [i1], V [i2] and V [i3] ;

shared float3 *points=new float3[n] ;

left← 0 ;

pointsAtLeft← 0;

for part = 0 to n/32 do

if index < 32 then
points[index]← S[part ∗ 32 + index] ;

end

syncthreads();

for r = 0 to 32 do
read← part ∗ 32 + r ;

if read ̸= i1 AND read ̸= i2 AND read ̸= i3 then
p← points[r];

if p is at left of h(i1, i2, i3) then
left← left + 1;

pointsAtLeft← pointsAtLeft + (1 << read) ;
end

end

end

end

H[index]← (left, i1, i2, i3) ;

PH[index]← pointsAtLeft ;

return H,PH;
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Computing the good-visibility map

Once H and PH have been computed, then the level for every voxel of the space dicretiza-

tion can be computed. The CUDA kernel shown in the Algorithm 11 is responsible for

doing this. Similarly to the computation of the depth maps in the previous section, every

voxel is represented by a thread of the CUDA execution. The kernel receives the array

PH, the list of triangle obstacles S, the number of obstacles, the two arrays TV and TV I,

and WTV I , apart from all other input parameters explained before. The arrays TV and

TV I are computed as a pre-process step and represent a voxelization of the space where

each of these voxels contains the list of triangles of S intersecting it. WTV I is simply the

side, in voxels, of the obstacles voxelization. In Section 3.5.1 a more detailed explanation

of these two arrays and how they are computed can be found. Using this structure we can

compute the visibility of every voxel in a fast way (see Algorithm 10 for more details).

The ouput is also an array GV M where each element contains the good-visibility level of

a voxel of the discretization.

Every thread representing a voxel v executes the kernel once and the first step consists

of testing which points of V are visible from v, taking into account the obstacles in S.

See Section 3.5 for a detailed explanation of the visibility algorithm implemented also in

CUDA (Algorithm 1). The visibility information for every vi in V is stored using the bit

i of an unsigned integer called visiblePoints. If the bit in the position i of visiblePoints

contains a 1, then vi is visible from v, otherwise it is not visible.

Then the algorithm performs a loop testing all the planes. For every plane h, the

level of v is updated. If v is located to the left of h, then a bit-to-bit AND operation is

performed between PH[index] and visiblePoints, and the result contains which points

are visible from v and, at the same time, are to the left of h. The level of v is computed by

counting the number of activated bits on this result. On the other hand, if v is located to

the right of h, we obtain the bit-to-bit complement of PH[index] and moreover we assign

a zero on its bits i, j, and k, corresponding to the points vi, vj and vk generating h. Then

the same process between this new PH[index] and visiblePoints is done.

At the end of a loop step, the level of v, denoted by GV M [index], is computed as

min(GV M [index], level). This process ensures that, at the end of the loop, the voxel v

will obtain its actual good-visibility level.

This step is performed by all the voxels the space is discretized on. This means that the

time complexity is dependent on the number of points n, the number of triangle obstacles

m and also on the number of voxels used to discretize and compute the good-visibility
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Algorithm 10: 3DPointVisibility
Input: Point p, Set of viewpoints V , Number of points n, set of triangles S,

Number of triangles m, array TV I, array TV , grid side H

Output: visiblePoints.

visiblePoints← 0;

for i = 0 to n do
v ← V [i];

vp← segment(v, p);

TV Iv ← voxelPosition(H, v);

visible← true;

while visible and voxelInSegment(TV Iv, vp) do
triangleList← references from TV [TV Iv − 1] to TV [TV Iv];

if nonEmpty(triangleList) then

for every j in triangleList do
triangle← T [j];

if intersection(vp,triangle) then
visible← false;

end

end

end

TV Iv ← nextV oxel(H, vp);
end

if visible then
visiblePoints← visiblePoints + (1 << i);

end

end

return visiblePoints;
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Algorithm 11: 3DGVM CUDA kernel
Input: Set of points V , Number of points n, set of triangles S, Number of triangles

m, Array H, Array PH, Number of planes np, array TV I, array TV , grid

side WTV I

Output: GV M .

index← voxelIndex(threadPosition,BlockSize,GridSize) ;

v ← voxelPosition;

visiblePoints← 3DPointV isibility(v, V, n, S,m, TV I, TV,WTV I) ;

GV M [index]←∞ ;

for i = 0 to np do
pointsAtLeft← PH[i];

i1, i2, i3 ← H[i ∗ 4 + 1],H[i ∗ 4 + 2],H[i ∗ 4 + 3];

h← plane determined by the points V [i1], V [i2] and V [i3] ;

if v is at left of h then
resultPoints← pointsAtLeft&visiblePoints ;

end

else
max← 0;

for j = 0 to n do
max← max + (1 << j);

end

pointsAtLeft← pointsAtLeft−max− (1 << i1)− (1 << i2)− (1 << i3);

resultPoints← pointsAtLeft&visiblePoints ;
end

level← numberOfBitsActivated(resultPoints);

GV M [index]← min(GV M [index], level) ;
end

return GV M ;
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map. If we suppose that the grid of voxels is a cube with the three sides of the same size

W , the time complexity is O(
W 3∗(nm+(n

3))
MP ).

Therefore the whole algorithm (taking into account the two steps) runs in a total time

of O(
n4+W 3∗(nm+(n

3))
MP ).

Once the second kernel is executed and the array GV M is obtained, H, PH, TV I

and TV can be destroyed, thus the space occupied at the end of the whole process is

W 3 ∗ 2bytes, which is the space needed to store the good-visibility depth or level of every

voxel.

5.3.3 Visualization of good-visibility regions

Since the final result obtained by our algorithm is a discretization of the solution, where

each voxel contains the level corresponding to its central point, we can visualize them by

applying different techniques often used in the volume rendering field. An easy-to-program

visualization is the one used in Figures 5.12 and 5.13, where each voxel is represented as

a cube of side 1/W . However, a marching cubes technique can also be used. In the latter

Figure a slightly transparent effect is added to the voxels.

5.3.4 Results

Figure 5.14 shows the running times for computing the good-visibility map from the scene

shown in Figure 5.12 (using 1000 and 100000 triangles to represent it, respectively) when

the number of viewpoints is incremented. We can observe that, obviously, the running time

is larger when the discretization of the grid is larger too. These running times have been

carried out on a computer equipped with an Intel Pentium 4 at 3.2GHz, 4GB of RAM and

a graphics card NVIDIA GeForce GTX 280, the same as in the case of three-dimensional

depth contours, explained in Section 5.2.5.

Restricted range visibility

In order to calculate good-visibility maps taking into account restricted visibility, we must

only change the way the visibility is computed. In Section 3.5.2 there is an explanation of

how this process is affected.

Figure 5.15 shows a good-visibility map computed from a set V composed by some

viewpoints with unrestricted visibility, one point using restricted visibilty, and a scene

composed by a set S of triangles.
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Figure 5.12: 3D good-visibility map computed from a set of 7 viewpoints and the scene rep-

resented by the red triangles. Top-left image shows only the scene and the set of viewpoints

while the other pictures show gvrV,S(1) and gvrV,S(2), respectively.
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Figure 5.13: The top-left image contains the scene from which the good-visibility map is

computed. The other three images show, one by one the good-visibility regions gvrV,S(1),

gvrV,S(2) and gvrV,S(3), respectively. Notice that a slightly transparent effect is applied to

the visualization.
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Figure 5.14: Running times for the computation of the 3D good-visibility map when the

number of viewpoints and grid size increase. These plots compare the times for the same

scene using 1000 and 100000 triangles to represent it, respectively.
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Figure 5.15: The top-left image shows the scene from which the good-visibility map is

computed. Notice that one of the viewpoints uses restricted visibility. The result is shown

using different points of view in the other images.
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Conclusions and final remarks

In this thesis we solved multi-visibility and good-visibility problems using the graphics

hardware.

We first presented the design and algorithms needed to compute visibility and multi-

visibility maps in the plane, on a terrain and even in the space. For the three-dimensional

visibility we used the CUDA language provided by NVIDIA as a general purpose program-

ming language for the GPU. In contrast, for the two-dimensional case and for computing

multi-visibility maps on a terrain we proposed methods running also in the GPU, but

we used Cg language and a computer graphics API to run the calculations. The multi-

visibility map computation is presented for some different cases using visiblity variations:

from a simple set of view points and a set of segment obstacles in the plane, to view points

using restricted visibility on a terrain. We also thoroughly described how to compute the

multi-visibility map from a set of view segments in the plane instead of view points or how

the multi-visibility map is affected by using a binary image instead of a set of obstacles.

Multi-visibility computation is an essential step for computing the good-visibility map

from a set of view objects and a set of obstacles. The good-visibility map can be obtained

by combining the multi-visibility map together with the location depth and depth map

concepts. We first provided an exact algorithm for computing the good-visibility map from

a set of view objects and a set of segment obstacles in the plane. In addition, we presented

a theoretical study where we give proof of its computational cost in time. Afterwards, we

presented an algorithm for calculating a discretization of the good-visibility map which

runs in the GPU and has the same complexity as the exact algorithm. By adding some

variations to the latter method we obtained another algorithm, which also runs in the

GPU, that significantly reduces the time complexity and provides a great reduction of the

actual running time. The good-visibility map computation on a terrain is based on the

127
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previously mentioned method. In this particular case, the terrain faces play the role of

obstacles. The algorithm for obtaining good-visibility maps on terrains is very similar to

the two-dimensional version. It is necessary to first compute the multi-visibility map in the

terrain space and store it in a texture where each pixel codifies the visibility information

of the corresponding projected point on the terrain. Afterwards, the view points (located

over the terrain) must be projected to a two-dimensional plane by removing their height

information. It is in this two-dimensional plane where the good-visibility map is computed

taking into account the multi-visibility information obtained before. Finally the solution

is re-projected to the faces of the terrain to visualize the good-visibility map.

Since there do not exist any algorithms for computing and visualizing depth contours

from a set of points in a three-dimensional space, we provided a method that computes and

visualizes them in an efficient way using a parallel algorithm implemented using CUDA

that runs in the GPU. Basically, the method computes, as a pre-process step, the level of

every plane generated by all the points in the set of view points. Then the depth contour of

level k can be visualized by intersecting the halfspaces generated by the planes with level

k. In order to compute and visualize a depth contour in a robust and fast way, we use the

free tool QHull, which computes the intersection of a set of halfspaces in any dimension

using the quick-hull method. We also showed how to use the latter algorithm to compute

and visualize the bagplot from a set of points.

Finally, we presented an algorithm for computing the good-visibility map in a three-

dimensional space from a set of view points and a set of triangle obstacles. As in the

previously explained method for obtaining the depth contours, it first executes a pre-

process step to compute the level of every plane generated by the set of view points.

Afterwards, the space where we want to compute the good-visibility map is discretized

into small portions, and a CUDA-based algorithm is responsible for computing the good-

visibility depth of all such portions in a parallel fashion. Inside this parallel process, the

multi-visibility information is also computed in order to finally obtain the good-visibility

map. In contrast to the depth contours solution, an intersection of halfspaces to visualize

a good-visibility region cannot be used. This is mainly due to the fact that good-visibility

regions can be composed by non-convex polyhedra. In order to avoid this problem, we

used the voxelization of the space for visualizing a good-visibility region as the boundary

of a volume.
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6.1 Final remarks

Our experimental results demonstrate that, although all the presented algorithms have a

high time complexity, the fact of using the GPU to accelerate the calculations reduces the

time in a constant value MP , depending on the number of multiprocessors and processors

of the used GPU. Since this constant reduction is significant enough we have taken it into

consideration in the time complexity formulas we presented. Depending on the number

of concurrent threads involved in the computation with respect to the size of the whole

problem, it is possible that this time reduction has a linear behaviour.

As a final remark, we have to say that since the GPUs are in constant evolution, every

new graphics card that hits the market is more powerful than previous ones, thus the

running time is reduced a lot every time a new generation of GPUs appears. Their price

and parallel computation possibilities makes them a fantastic tool for improving running

times for a lot of algorithms, including the ones presented in this thesis.
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