
 
 
 
 
 
 

KNOWLEDGE-BASED MODELLING AND 
SIMULATION OF OPERATIONAL PROBLEMS OF 
MICROBIOLOGICAL ORIGIN IN WASTEWATER 

TREATMENT PLANTS 
 
 

Jordi DALMAU SOLÉ  
 
 
 

Dipòsit legal: GI-1060-2011 
                                           http://hdl.handle.net/10803/33690 
 
 
 
ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX ha estat autoritzada pels titulars dels 
drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i 
docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a 
disposició des d’un lloc aliè al servei TDX. No s’autoritza la presentació del seu contingut en una 
finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la 
tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la 
persona autora. 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR ha sido autorizada por los 
titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en 
actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su 
difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su 
contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al 
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis 
es obligado indicar el nombre de la persona autora. 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  Spreading 
this thesis by the TDX service has been authorized by the titular of the intellectual property rights only 
for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not 
authorized neither its spreading and availability from a site foreign to the TDX service. Introducing its 
content in a window or frame foreign to the TDX service is not authorized (framing). This rights affect 
to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of 
the thesis it’s obliged to indicate the name of the author. 

 



 

 

 

 

 

 

 

Knowledge-based modelling and simulation of 
operational problems of microbiological origin in 

wastewater treatment plants 

 

 

 

Jordi Dalmau Solé 

 

 

 

 

 

 

 

 

Thesis submitted in fulfilment of the requirements for the degree of Doctor (PhD) in Environmental 
Sciences (Physics and Environmental Technology) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis was financially supported by Spanish Ministry of Education and Science 

projects (MYCT-DPI2006-15707-C02-01) and  NOVEDAR_Consolider-CSD2007-

00055 and a mobility grant from the University of Girona under the Catalan DRAC 

program. 

 



IGNASI RODRÍGUEZ-RODA i JOAQUIM COMAS MATAS 

Professors del Departament d’Enginyeria Química, Agrària i Tecnologia 
Agroalimentària de la Universitat de Girona. 

 

 

 

 

Certifiquen 

Que el llicenciat en Química Jordi Dalmau Solé ha realitzat, sota la seva direcció, el 
treball que amb el títol ”Knowledge-based modelling and simulation of operational 
problems of microbiological origin in wastewater treatment plants”, es presenta en 
aquesta memòria la qual constitueix la seva Tesi per optar al Grau de Doctor en Medi 
Ambient per la Universitat de Girona. 

I perquè en prengueu coneixement i tingui els efectes que corresponguin, presentem 
davant la Facultat de Ciències de la Universitat de Girona l’esmentada Tesi, signant 
aquesta certificació a 

 

 

Girona, 9 de Setembre de 2009 

 

 

 

 

 

 

 

 

 

Ignasi Rodríguez-Roda    Joaquim Comas Matas 

 



AGRAÏMENTS_________________________________ 

Voldria expressar la meva més sincera gratitud a tothom en general pel vostre suport 
durant aquests anys.  

En primer lloc vull agrair molt sincerament als meus directors, Quim i Ignasi, tot el 
suport i el recolzament que m’heu donat durant tots aquests anys. Per les hores que 
m’heu dedicat, pels consells, per les correccions, per les idees, per la paciència, per tot. I 
també per tot allò que no apareix en aquest document.  

Secondly, I want to express my gratitude to the people that have collaborated directly or 
indirectly in the development of this thesis and the related work, they have supported 
me both professionally and personally, so, many thanks to Jean-Philippe, Eric, Gurkan, 
Kris, Ivan, Krishna, to the benchmarkers in general and to the people from LBE. 

També vull agrair el suport de tot el LEQUIA durant aquests anys, altra vegada 
professional i personalment. He de donar les gràcies al munt de lequians amb qui hem 
compartit incomptables bones estones, tant dins com fora de la feina, de les que 
guardaré un record molt especial. 

De la mateixa manera, vull donar les gràcies a la colla de Cassà i a la gent de Granollers 
dels que tant se’m sent parlar doncs ells també m’han ajudat a passar les males estones i 
a gaudir més de les bones. 

Finalment, donar les gràcies, pel recolzament que m’han donat durant tots aquests anys, 
a la meva mare, al meu pare i a l’Eduard. També vull agrair especialment a la Miriam el 
seu suport i la paciència que ha tingut durant aquest temps, especialment en el tram final 
de la tesis. 

 



ABSTRACT____________________________________ 

The activated sludge (AS) and anaerobic digestion (AD) systems are the most 
frequently used systems included in wastewater treatment plants (WWTPs) either 
separately or together. In any case, the biological nature of the wastewater treatment 
entails a microbiological complexity which is sometimes difficult to handle. This 
microbiological complexity is potentially the main cause of operational problems in 
world-wide WWTPs. When the balance among microbiological populations within 
these biological systems becomes perturbed by operational conditions or by the 
changing influent characteristics, severe problems may appear with their related 
economical and environmental consequences. 

The main biological degradation processes (AS and AD) have been successfully 
modelled in a mechanistic way resulting in widely spread models. Nevertheless, these 
models still have some limitations when describing operational problems of 
microbiological origin (for example, filamentous bacteria proliferation). These 
limitations become especially important when evaluating simulation results since 
conditions that would promote the growth of undesirable species have no effect in the 
model. Simulation results performing well from an economical and environmental point 
of view could, when confronted with reality, result in suitable conditions for severe 
operational problems of microbiological origin. 

Artificial intelligence techniques have shown to be useful when dealing with complex 
environmental problems. Therefore, this sort of techniques represents a suitable 
complement to the mechanistic modelling of operational problems of microbiological 
origin. 

The main objective of this thesis is to develop a knowledge-based model, which 
integrates mathematical modelling and qualitative aspects, to simulate risk of plant-wide 
operational problems of microbiological origin. The main operational problems of 
microbiological origin have to be included. The most relevant variables for each 
operational problem of microbiological origin have to be identified. The risk model has 
to provide new criteria for simulation performance evaluation and has to be platform 
independent to be applied to a wide variety of simulation platforms. 

Firstly, the development of the risk model is presented divided basically between the 
AS and the AD risk model. For each one, a different development procedure has been 
performed taking into account the availability of real data. In the case of the AS risk 
model, heuristic knowledge from experts and literature has been translated into decision 
trees. These trees have been afterwards implemented in a fuzzy logic rule-based system 
to infer a risk index for the main operational problems of microbiological origin (i.e. 
filamentous bulking, biological foaming and rising sludge). Next, the system has been 
extended with the risk of deflocculation and the effect of temperature on Microthrix 

parvicella. With regard to the AD risk model, real data from a pilot plant provided the 
basis for the development of the model. A data mining technique based on artificial 
neural networks is applied to select the most relevant variables. This method is first 
applied to the acidogenic states, a well-known operational problem of the AD. Then, the 
same method is applied to biological foaming of the AD. This finally shows the relevant 
variables related to biological foaming which, combined with some knowledge from the 
literature, results in the input variables for the AD risk model. Latterly, the extracted 



 

 

knowledge is implemented in a fuzzy logic rule-based system to be integrated with the 
AS risk model. 

The final risk model is applied and evaluated in the Benchmark Simulation Models 
(BSMs). BSM1 provides an example of how the AS risk model responds to changes in 
operational parameters and a first example of control strategies comparison in different 
weather influent scenarios. In terms of BSM1_LT the AS risk model filter and 
temperature effect is evaluated. The analysis of four different time constants shows that 
the 3-day provided a more feasible interpretation of the risk model results. The profiles 
of the risks show that the filter is valuable when taking into account the slow dynamics 
related to some of the operational problems of microbiological origin. The inclusion of 
temperature to represent the seasonal dynamics in BSM1_LT allows to test the 
extension of the AS risk model with temperature applied to Microthrix parvicella 

related risks. The results show that the AS risks related to Microthrix parvicella were 
increased during winter periods and decreased during summer showing a behaviour 
according to what is stated in the literature. BSM2 allows to test the whole risk model 
focusing in the AD part. Firstly, general results are presented in an open-loop case study 
showing the profile for the risk of foaming in AD. Secondly, variation of the main 
operational parameters show the influence of both external recycle and waste sludge 
flow rates in the FAD risk. Next, two control strategies affecting the AD organic 
loading rates are tested. The results illustrate that a control strategy with a control of the 
TSS in the biological reactors causes a higher variation in the AD loading rates 
increasing the risk of foaming in the AD. Following, the results in a plant-wide basis are 
presented comparing the open-loop case with four different control strategies showing 
the influence of the external carbon sources on the risk of foaming in the AD. 

Discussion is also provided about the risk model advantages, limitations and 
considerations related to its validation and future research. The final conclusions drawn 
from this thesis are stated at the end immediately followed by the references. Finally, 
the MATLAB® files to apply the risk model to the different BSM layouts are provided. 

 

 



 

 

RESUM________________________________________ 

Els sistemes de fangs activats i de digestió anaeròbia són els més freqüentment utilitzats 
inclosos a les EDAR, ja sigui conjuntament o per separat. En qualsevol cas, la 
naturalesa biològica del tractament d’aigües residuals implica una complexitat 
microbiològica difícil de gestionar. Aquesta complexitat microbiològica és la principal 
causa dels problemes operacionals a les EDAR de tot el món. Quan l’equilibri entre les 
poblacions de microorganismes dins d’aquests sistemes resulta pertorbat per les 
condicions d’operació o per les canviants característiques de l’afluent, greus problemes 
operacionals poden aparèixer amb les seves respectives conseqüències econòmiques i 
ambientals. 

Els principals processos de degradació biològica (fangs activats i digestió anaeròbia) 
han estat modelats mecanísticament amb èxit en uns models àmpliament acceptats. No 
obstant, el modelat mecanístic del tractament biològic de les aigües residuals encara té 
algunes limitacions quan es modelen problemes operacionals d’origen microbiològic (p. 
ex. proliferació de bacteris filamentosos). Aquesta limitació esdevé especialment 
important quan s’avaluen resultats de simulació donat que les condicions que promouen 
el creixement d’espècies no desitjades no tenen un efecte en el model. Uns bons 
resultats de simulació des d’un punt de vista econòmic i ambiental en ser confrontats 
amb la realitat podrien resultar en unes condicions adequades pel desenvolupament de 
problemes operacionals greus d’origen microbiològic.  

Les tècniques de la intel·ligència artificial han demostrat ser útils quan es tracta amb 
problemes ambientals complexes. Per tant, aquest tipus de tècniques representen una 
alternativa fiable al modelat mecanístic dels problemes operacionals d’origen 
microbiològic. 

El principal objectiu de la present tesis és desenvolupar un model basat en el 
coneixement que integri aspectes numèrics i qualitatius per simular el risc de problemes 
operacionals d’origen microbiològic en planta completa. Els principals problemes 
operacionals d’origen microbiològic han de ser inclosos. Les variables més importants 
per a cadascun dels problemes operacionals d’origen microbiològic han de ser 
identificades. El model de risc ha de proporcionar nous criteris per a l’avaluació dels 
resultats de simulació i ha de ser independent de la plataforma utilitzada per poder ser 
aplicat a diferents plataformes de simulació. 

Primerament, es presenta el desenvolupament del model de risc dividit bàsicament entre 
els models de risc dels fangs actius i de la digestió anaeròbia. Cadascun d’ells s’ha 
desenvolupat de diferent manera tenint en compte la disponibilitat de dades reals. En el 
cas del model de risc per als fangs activats només coneixement empíric d’experts i de la 
bibliografia ha estat transformat en arbres de decisió. Després, ha estat implementat en 
un sistema en lògica difusa basat en regles per inferir un índex de risc per als principals 
problemes operacionals d’origen microbiològic, és a dir, esponjament del fang 
filamentós, escumes biològiques i desnitrificació incontrolada. A continuació, el sistema 
s’ha ampliat amb el risc de desflocul·lació i l’efecte de la temperatura sobre la 
Microthrix parvicella. Pel que fa al model de risc de la digestió anaeròbia, dades reals 
obtingudes d’una planta pilot han estat la base per al desenvolupament del model. Una 
tècnica de mineria de dades basada en xarxes neuronals va ser aplicada per seleccionar 
les variables més importants. Aquest mètode va ser primerament aplicat al problema 



 

 

dels estats acidogènics, un problema operacional ben conegut de la digestió anaeròbia. 
Aleshores, el mateix mètode és aplicat a les escumes biològiques de la digestió 
anaeròbia. Finalment, això proporciona unes variables importants relacionades amb les 
escumes biològiques que, més tard combinades amb coneixement de la bibliografia 
resulta en les variables d’entrada per al model de risc de la digestió anaeròbia. Més tard, 
aquest coneixement extret és implementat en un sistema expert basat en lògica difusa 
per a ser integrat amb el model de risc dels fangs activats. 

El model de risc final és aplicat i avaluat amb els Benchmark Simulation Models 
(BSMs). El BSM1 proporciona un exemple de com el model de risc de fangs activats 
respon als canvis en els paràmetres operacionals i un primer exemple de comparació 
d’estratègies de control amb diferents escenaris. Pel que fa al BSM1_LT s’avaluen el 
filtre del model de risc dels fangs actius i l’efecte de la temperatura. L’anàlisi de quatre 
constants mostra que la constant de 3 dies proporciona una adequada interpretació dels 
resultats del model de risc. Els perfils dels riscos mostren que el filtre és indicat per 
tenir en compte les lentes dinàmiques relacionades amb els problemes operacionals 
d’origen microbiològic. La inclusió de la temperatura per representar les dinàmiques 
estacionals en el BSM1_LT permet comprovar l’extensió del model de risc dels fangs 
actius amb la temperatura aplicada als riscos relacionats amb la Microthrix parvicella. 

Els resultats mostren que els riscos dels fangs actius relacionats amb la Microthrix 

parvicella s’incrementen durant els períodes d’hivern i disminueixen durant l’estiu 
mostrant un comportament d’acord amb els que apareix a la bibliografia. El BSM2 
permet comprovar tot el model de risc centrant-se en la part de la digestió anaeròbia. 
Primerament, es presenten els resultats generals en un cas d’estudi amb llaç obert 
mostrant el perfil del risc d’escumes biològiques en digestió anaeròbia. En segon lloc, la 
variació dels principals paràmetres operacionals mostra la influència del cabal de 
recirculació externa i del cabal de purga en el risc d’escumes biològiques en el digestor. 
A continuació, es mostren els resultats de dues estratègies de control que afecten la 
càrrega orgànica en el digestor anaerobi. Els resultats mostren com demostren que una 
estratègia de control dels sòlids en els reactors biològics causa una variació més alta de 
les càrregues orgàniques incrementant el risc d’escumes biològiques en el digestor. 
Després, els resultats des d’un punt de vista de planta completa es presenten comparant 
el cas de llaç obert amb quatre estratègies de control diferents mostrant la influència de 
la font externa de carboni en el risc d’escumes biològiques en el digestor. 

També es presenta una discussió sobre els avantatges, validació, treball futur, 
limitacions i consideracions relacionades amb l’implementació en d’altres 
configuracions del Model de Risc. Les conclusions finals extretes de la present tesis 
s’exposen al final, seguides per les referències i finalment es proporciona el codi per 
implementar el model de risc en MATLAB®. 
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CHAPTER 1 

INTRODUCTION 

 





Introduction 

1 

1. Introduction 

1.1 Problem statement 

Mathematical modelling of biological systems has become a powerful tool for design, 
optimization and control of wastewater treatment plants (WWTPs). Indeed, both the 
activated sludge (AS) and the anaerobic digestion (AD) systems have been already 
described in widely accepted mechanistic models (ASM family – Henze et al., 2000- 
and ADM1 –Batstone et al., 2002- ) and even integrated in plant-wide models. Models 
have a wide range of applications, from the objective evaluation of control strategies to 
statistical analysis, such as uncertainty analysis (Ma et al., 2006; Flores-Alsina et al., 
2009a). 

Although AS and AD systems can be modelled, the biological nature of the wastewater 
treatment entails a microbiological complexity which is sometimes difficult to handle. 
This microbiological complexity can be the origin of operational problems in many real 
WWTPs. When the balance among microbiological populations within these biological 
systems becomes perturbed by operational conditions or by the changing influent 
characteristics, severe operational problems may appear with their related economical 
and environmental consequences. Despite this microbiological complexity, the systems 
must be controlled in order to achieve efficient pollution removal in order to fulfil the 
legal discharge requirements with minimum costs and minimal sludge production (Copp, 
2002). 

In any case, effluent violations and economical loss due to the appearance of operational 
problems of microbiological origin may occur. These may produce a biased evaluation 
of simulated WWTP performances, since operational problems of microbiological 
origin cannot be taken into account in the current mechanistic models. There have been 
some attempts to mechanistically model the mechanisms for the development of 
filamentous microorganisms, but there is not a general and validated model yet and 
none of the proposed models are able to predict sludge settling characteristics (Martins 
et al., 2004). Despite the lack of knowledge on the specific mechanisms of the 
filamentous bacteria that causes operational problems of microbiological origin, there 
are a lot of experiences and sometimes even real data related to this sort of imbalances. 

1.2 Hypothesis 

Although there is a lack of knowledge on the specific dynamics and kinetics to model 
the development of operational problems of microbiological origin (filamentous bulking, 
AS and AD foaming, deflocculation and rising sludge), a lot of experiences and case 
studies exist in real WWTPs. Therefore, there is enough empiric knowledge to define 
the different conditions that can cause these operational problems of microbiological 
origin and their effects on the WWTP performance. 

Some of the conditions that can lead to operational problems of microbiological origin 
are related to variables that can be modelled or estimated in the standard AS and AD 
models.  

The qualitative cause-effect relationships for the development of operational problems 
of microbiological origin are not enough to build a general deterministic model. 



Chapter 1 

2 

However, these relationships and heuristic knowledge can be used to build a qualitative 
model, based on AI techniques, to assess the favourable conditions leading to 
microbiology-related operational problems. The performance of such a knowledge-
based model can be evaluated within a simulation platform. 

Besides when real data are available, some AI (soft computing) techniques can be of 
high interest to find relevant information about the relationship between a given 
operational problem of microbiological origin and its related variables.  

Finally, we state that operational units of the WWTPs do not act as independent units, 
i.e. AS systems interact with AD systems. Therefore they form integrated systems 
implying that (control) actions taken in one part may have an impact in others. A plant-
wide control perspective should be taken into account. Likewise, simulation of 
operational problems of microbiological origin should also be considered at a plant-
wide scale i.e. some problems appearing in one system may affect others. 

1.3 Contributions 

The main contribution of this thesis is a simulation complement to the still limited 
mechanistic modelling of filamentous bacteria. This alternative consists of a 
knowledge-based risk model developed to alert of operational problems of 
microbiological origin that cause imbalances during the simulation results evaluation 
within the current AS and AD models. Such a system, based on heuristic knowledge, 
provides a risk index that includes the four main operational problems of 
microbiological origin in the AS systems: (i) filamentous bulking, (ii) foaming, (iii) 
rising sludge and (iv) deflocculation. A risk model is also presented for the AD which 
considers the main operational problem of microbiological origin within the AD system, 
biological foaming. 

The knowledge related to the main operational problems of microbiological origin 
embodied in the AS risk model is provided. The fuzzy logic features to build the AS 
risk model are also provided; meaning membership function (MF) ranges and rules to 
be applied to assess each risk. For the development of the AD risk model, a 
methodology to select the most related variables for AD biological foaming is presented, 
which has shown to be of interest for the study of microbiology related imbalances. The 
information extracted from data is afterwards combined with the existing knowledge in 
the literature to finally integrate both approaches. 

The full implementation and application (including the fuzzy implementation of MFs 
and rules) of the risk model to the BSM (Copp, 2002) is presented for use in any of the 
BSM simulation platforms (i.e. MATLABTM & SimulinkTM, FORTRAN, WEST®, 
GPS-XTM). The risk model is afterwards implemented and applied to the different BSM 
layouts (i.e. BSM1, BSM1_LT and BSM2). 

When evaluating simulation results within the BSM, the risk model offers a third 
dimension to be added to the environmental and economical performance. 

My contribution on the whole work starts on  the extension of the AS risk model and 
continues with the whole development of the AD risk model, knowledge acquisition, 
selection of relevant variables for foaming in AD, implementation in fuzzy logic. The 
implementation ofin the Benchmark Simulation Model and the different applications for 
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evaluation of the different risk models through simulations presented in this thesis were 
also part of my work. Last, I performed the first approach for validation of the AD risk 
model with real data. The whole work presented in this thesis has been published in 
seven journal papers and in four international conferences. Among these publications, 
the contributions pointed above appear in Dalmau et al. (2009a), Dalmau et al. (2009b), 
Dalmau et al. (2009c) Dalmau et al. (2008), Dalmau et al. (2007). 

1.4 Outline 

The structure of the present thesis is divided as follows: 

In Chapter 2, a literature review is provided with a description of the main biological 
systems (AS and AD) in WWTPs. Following that, there is a section devoted to the main 
operational problems of microbiological origin in both AS and AD systems. They are 
all described with their causes, development and effects on the WWTP. Afterwards, a 
brief review of mathematical modelling is presented from AS and AD to plant-wide 
models. Last but not least, the attempts to mechanistically model filamentous bacteria 
are presented with its related limitations to finally present possible alternatives to the 
mathematical modelling of operational problems of microbiological origin. In Chapter 
3 the objectives of this thesis are presented. 

Chapter 4 describes the different methods used in this thesis. This includes the ASM1, 
ADM1 and the BSM family (BSM1, BSM1_LT and BSM2). This chapter also 
introduces a full description to implement a fuzzy logic rule-based system and 
description of the artificial neural networks (ANNs) used. 

The results of this thesis are comprised by Chapters 5 and 6. In Chapter 5, the 
development of the AS risk model is presented with its implementation in fuzzy logic 
and the outcomes the model provides. The AS risk model extensions are explained to 
include the deflocculation and the effect of temperature. The AD risk model 
development is explained together with its implementation and outcomes. In Chapter 6, 
the implementation showing the model variables used to calculate the inputs of the risk 
model in the different BSMs layouts is presented. Then, the performance of the risk 
model is evaluated in open-loop scenarios, changing operational parameters and finally, 
in closed-loop scenarios. At the end, in Chapter 7 a general discussion presenting 
implications, possibilities and future work on the risk model is provided. 

Chapter 8 presents the conclusions drawn from the results of the thesis. Chapter 9 
provides the references and finally an Annex is provided with the MATLABTM scripts 
for direct implementation of the risk model in the BSM. 
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2. State-of-the-art 

2.1 Wastewater Treatment Plants 

WWTPs became important questions at the beginning of the 20th century and are 
nowadays a key factor in issues to deal with water quality. In an early stage the 
wastewater treatment was centred in the secondary treatment by means of the AS 
system. Over time, the variety of pollutants and the different requirements in water 
quality caused the system to evolve through different technologies and configurations. 
Besides, the need to treat the sludge produced in WWTPs caused the inclusion of AD 
systems in new or sometimes existing facilities creating the concept of plant-wide 
WWTP. As complex biological systems, AS and AD systems are subject to specific 
problems related to the microbiological community. These operational problems of 
microbiological origin have large economical and environmental consequences for the 
WWTP. 

The increasing complexity inherent to the evolution of the WWTP presented new 
challenges to the research community and soon, the need of mathematical models to 
design, assess, predict and control the different systems arose. Thus, just as WWTPs did, 
mathematical modelling evolved to represent the AS processes first and, AD processes 
recently. As a last step on the mathematical modelling of wastewater treatment, 
mathematical models have been integrated to represent the plant-wide WWTP and 
nowadays the evolution is moving towards complete catchments models. The 
mathematical modelling research has also paid attention to the operational problems of 
microbiological origin and some attempts to model these matters were performed. Still, 
there is a long way to go in which AI can provide tools to overcome the obstacles. 

In this chapter, the main wastewater and sludge treatment systems are explained 
together with the related operational problems of microbiological origin. Following that 
there is a brief description of the evolution of the respective mathematical models for 
both the systems and the above mentioned problems. At the end, a description of useful 
tools to tackle the modelling of this sort of problems is given. 

2.1.1 Activated Sludge system 

The combined efforts of engineers, chemists and biologists to improve existing 
wastewater treatment bore fruit in 1914, at a time that coincided with the end of the 
industrial revolution, when Ardern and Lockett developed the first AS system. 
Nowadays, among all the available wastewater treatment systems, the AS system is the 
most common and represents the most important system in a WWTP. 

2.1.1.1 System description 

An AS system is a complex biological system in which organic matter and nutrients 
(nitrogen - N - and phosphorous - P -) are removed from the wastewater. The basic 
system for organic matter removal consists of a biological reactor where O2 is 
selectively supplied and used by the microbial consortia (i.e. biomass, solids, mixed 
liquor suspended solids - MLSS - and/or sludge) to enable it to grow and reproduce by 
consuming the substrate (i.e. pollutants) present in the wastewater. The treated water is 
subsequently separated from the biomass in the secondary settler. The secondary settler 
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has another significant function, consisting of compacting the sludge at the bottom so 
that it can be efficiently returned to the biological reactor and maintaining the biomass 
in the reactor at a constant level (return activated sludge - RAS -; Figure 2.1). A 
fraction from the RAS is removed from the system to avoid the excess production of 
biomass; this is the waste activated sludge (WAS).  

BIOLOGICAL
REACTOR

SECONDARY
SETTLER

Influent Effluent

WAS
RAS

BIOLOGICAL
REACTOR

SECONDARY
SETTLER

Influent Effluent

WAS
RAS  

Figure 2.1. An aerobic AS layout. 

In an aerobic system, influent wastewater is mixed in the biological reactor through 
stirring (mechanically or with O2 that is supplied). In this way, the biomass uses the 
supplied O2 to oxidise organic matter and remove it from the wastewater. From this 
organic matter oxidation, microorganisms obtain the necessary energy to develop their 
vital functions, including reproduction (WEF, 1996). Moreover, they can extract energy 
by means of endogenous respiration. The essential process can be summarised in terms 
of three reactions (Metcalf and Eddy, 2003). 

Oxidation: 

CHONS (organic matter) + O2 + bacteria → CO2 + H2O + NH3 + 
products
end
other

+ energy 

Synthesis: 

CHONS (organic matter) + O2 + bacteria + energy → C5H7NO2 (new cells) 

Endogenous respiration: 

C5H7NO2 (cells) + 5O2 → 5CO2 + NH3 + 2H2O 

Nitrogen removal in AS facilities is performed in a two-phase biological process: 
nitrification and denitrification. In nitrification, ammonium is converted aerobically to 
nitrate in two steps: first to nitrite, then to nitrate. In denitrification, nitrate produced in 
the previous phase, together with the nitrate contained in the wastewater, are converted 
in an anoxic process to N2.  

Nitrification: 

+−+ ++→+ H2OHNOO
2

3
NH 2224  

−− →+ 322 NOO
2

1
NO  
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Denitrification: 

−− ++++→+ OH10NHOH3CO10N5NO10NOHC 3222331910  

Phosphorous removal is achieved in WWTPs in two stages by phosphate accumulating 
organisms (PAOs). In the first, anaerobic stage, the PAOs assimilate organic matter by 
accumulating storage products, and phosphate is released. In the second, aerobic/anoxic 
stage, storage products are consumed for cell growth using the energy from the storage 
products’ oxidation to form polyphosphates, which take phosphate from the media. The 
final result is that more P is taken up than released and thus it ends up inside the PAOs. 
When the sludge is removed from the system through the WAS, P is as well. 

2.1.1.2 Operational parameters 

Because optimal nutrient removal in the AS system depends on living microorganisms, 
it is influenced by the environmental changes affecting such microorganisms. A 
successful operation can be achieved only if operators are able to recognise system 
changes and trends and make the proper decisions to successfully counteract potentially 
harmful changes. 

AS system control consists of reviewing present and historical operating data and 
laboratory test results so that the proper operational parameters that provide the best 
performance at the lowest cost can be selected. For secondary treatment, the most 
important of these include DO, RAS, WAS and sludge retention time (SRT; WEF, 
1996). 

Dissolved oxygen (DO): DO is particularly important in the aerobic treatment of 
wastewater. It must be dissolved in sufficient quantities to keep the organisms active 
and, when required, the mixture in the biological reactor must be stirred enough for the 
solids in it to be suspended. Typically, if there is sufficient O2 to oxidise the organic 
matter, the mixing requirements will be met too. Depending on the process, more or less 
DO will be required, but a typical reference value is 2 mg O2·L

-1. For anaerobic and 
anoxic processes it has to be as close to 0 mg O2·L

-1 as possible. 

When the DO is limited, undesired microorganisms (see Section 2.2.1. Activated 
sludge) may predominate, thereby affecting the sludge quality and the settling process. 
On the other hand, over-aeration, apart from being a pointless waste of energy, can 
result in the break up of the flocs that are formed and consequently bad settling 
properties.  

Food to Microorganisms ratio (F/M): This is an operational parameter commonly used 
to characterise process design and operating conditions. It expresses the ratio between 
incoming BOD and the amount of biomass (Equation 2.1). It is expressed in g substrate 
(BOD) · g biomass-1 · d-1. Typical F/M values range from 0.04 to 1.0 g · g-1 · d-1. A good 
F/M ratio will ensure that the microorganisms use most of the substrate supply in the 
wastewater. 

MLVSS·V

BOD
M/F in

=   (Eq. 2.1) 

where 
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BODin = Biochemical oxygen demand in the inflow (g·d-1); 
V = Volume of the reactor (m3); 
MLVSS = Mixed liquor volatile suspended solids in the reactor (g·m-3). 

Return Activated Sludge (RAS): In a properly operated AS system the settling is an 
essential part since RAS control aims to maintain the optimal concentration of MLSS in 
the reactor. The settling solids form a sludge blanket on the bottom of the secondary 
settler and allow the return of a more concentrated flow, thus reducing pumping costs. 
The blanket depth increases as the biomass entering is higher than the biomass removed 
through the WAS. There are three ways of working with RAS according to WEF (1996): 

 At a constant rate. This results in varying MLSS concentration in the reactor. 
During peaks of inflow rates (Qin) the sludge can accumulate in the secondary 
settler and act as an MLSS reservoir. On the other hand, when the Qin is low, 
MLSS will accumulate in the biological reactor. This is not a good option for 
WWTPs with high Qin variability. 

 At a constant percentage of the Qin. This tends to provide more or less constant 
sludge blanket and MLSS concentration levels in the biological reactor. RAS 
can be kept directly proportional to the Qin to maintain the MLSS concentration 
level constant in the reactor. This means that when the Qin peaks there is a risk 
of losing MLSS through the effluent. Otherwise, the RAS can be kept inversely 
proportional to the Qin, with the aim of keeping the hydraulic load on the 
secondary settler constant.  

 At a varying rate to optimise the secondary settler conditions. Two options are 
available here. The objective of the first is to keep the sludge blanket level as 
low as possible so as to have a high MLSS concentration in the reactor. The 
second option is suitable for optimising the concentration and retention time in 
the secondary settler. In order to set the proper Qr value, there are different 
alternatives depending on sludge blanket level, sludge quality, mass balance in 
the secondary settler, mass balance in the reactor, etc. 

It is worth highlighting that RAS will influence another important parameter, F/M, since 
it allows the MLVSS in the reactor to increase or decrease. 

Waste activated sludge (WAS): WAS is used to control the solids inventory in the 
system. According to WEF (1996) WAS mainly affects effluent quality, the growth rate 
and the type of the microorganisms, O2 consumption and settleability. As is made clear, 
there is a close relationship between the WAS and F/M ratio given that the 
microorganisms consume the biochemical oxygen demand (BOD) and chemical oxygen 
demand (COD). The amount of biomass increase in one day is the net growth rate. The 
WAS is the manipulated variable when the objective is to control solids retention time 
(SRT, see below) and/or F/M. However, this steady-state is only approximative given 
the variable nature of the influent wastewater BOD and of the microorganism 
population.  

Solids retention time (SRT): This represents the average period of time that the biomass 
remains in the system before it is wasted either intentionally or unintentionally 
(Equation 2.2). SRT affects treatment performance, biological reactor volume, SP and 
O2 requirements. SRT is calculated as the relationship between the biomass present in 
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the reactor and the amount of biomass which is wasted and/or lost through the effluent. 
SRT is defined by Metcalf and Eddy (2003) as follows: 

wweffeff MLVSS·QMLVSS·Q

MLVSS·V
SRT

+
=  (Eq. 2.2) 

where 
V = reactor volume (m3); 
MLVSS = concentration of biomass in the reactor (g MLVSS· m-3); 
Qeff = effluent flow rate (m3·d-1); 
MLVSSeff = concentration of biomass in the effluent (g VSS· m-3); 
Qw = WAS flow rate (m3·d-1); 
MLVSSw = concentration of WAS (g VSS· m-3). 

From the SRT equation it is easy to see how WAS influences SRT and, as stated above, 
its influence on the type and growth rate of microorganisms. Only those 
microorganisms with growth rates lower than that of the SRT are selected. Increasing 
WAS will lower the SRT (i.e. microorganisms will spend less time in the system), and 
vice versa. It is important to note that the SRT also decreases as a result of less MLVSS 
(MLVSS in Equation 2.2) being present in the system. For instance, increasing WAS is 
also a way to increase the F/M ratio when the incoming BOD load is low. 

Internal recycle flow rate (Qintr): Depending on the system configuration, internal 
recycle streams are needed to provide required nutrients at certain stages of the system. 
For instance, in nutrient removal processes organic matter and nitrate are required for 
denitrification. Thus, when designing an AS system for nitrogen removal the anoxic 
part is usually placed first, before the aerobic one, since otherwise there might not be 
enough organic matter available for denitrification because most of it would have been 
consumed beforehand. This way, nitrate is removed after getting the benefit of the 
incoming organic matter, while the ammonium remains unchanged. Later, in the aerobic 
phase, the ammonium is nitrified to nitrate while the nitrate remains unchanged. The 
Qintr stream serves as the mean to bring the nitrate back to the anoxic zone to be 
denitrified. 

2.1.1.3 Configurations 

Simultaneously with the nutrient removal requirements, new configurations of AS 
systems were developed. Depending on the nutrient to be removed, various different 
configurations can be chosen for optimal wastewater treatment. As will be seen, aerobic 
treatment is suitable for carbon removal whereas for N and/or P removal anoxic and/or 
anaerobic conditions are required. Several examples of typical configurations for N 
and/or P removal follow below. 

Oxidation ditches: These have to be large enough for there to be anoxic and aerobic 
zones in the same reactor. There are different ditches (carrousel of alternate phases), 
that work in anaerobic or anoxic conditions depending on the requirements, in which 
feeding is changed from one ditch to another after certain periods of time. The most 
common design is the Biodenitro, which operates with four alternate phases, where the 
feeding is variable and there are anoxic and aerobic conditions in each ditch. 
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Whurmann: This consists of a single step with an aerobic zone followed by an anoxic 
zone, so that nitrification takes place before denitrification. Nevertheless, it is necessary 
to bypass some of the feeding to the anoxic biological reactor and/or add an external 
carbon source (EC) to be able to denitrify in the anoxic biological reactor. 

Ludzack-Ettinger: This inverts the order of the biological reactor to avoid the use of an 
EC: first the anoxic zone and then the aerobic. Since nitrate is produced in the aerobic 
zone, it is necessary to return nitrates to the anoxic zone so that they can be denitrified; 
this flow rate is the internal recycle of a modified Ludzack-Ettinger. 

Bardenpho: This consists of four biological reactors in a single step. The first two 
reactors (anoxic-aerobic +   internal recycle) are equivalent to a modified Ludzack-Ettinger. 
With the aim of completely removing all the nitrate, the third biological reactor (anoxic) 
removes nitrate that has not been recycled to the first biological reactor, using 
endogenous respiration to get the organic matter to complete the denitrification. Finally 
the last biological reactor can remove any remaining organic matter as well as help the 
P accumulation that takes place in aerobic conditions. No P is removed with the classic 
Bardenpho configuration but the five-stage Bardenpho includes an anaerobic biological 
reactor ahead of the first anoxic reactor. 

A/O: The main feature of this is the use of multiple-stage anaerobic and aerobic reactors. 
In this system there is no nitrification, and the anaerobic retention time needed to 
provide the selective conditions for biological phosphorus removal is 30 minutes to one 
hour. 

A
2
/O: This is a modification of the A/O system and provides an anoxic zone for 

denitrification with an internal recycle from the aerobic to the anoxic stage. 

UCT (University of Cape Town): The UCT system is similar to the A2/O system with 
two exceptions. The RAS is recycled to the anoxic stage instead of the aeration stage, 
and the internal recycle is from the anoxic stage to the anaerobic stage, in order to avoid 
any negative effects on the initial phosphorus removal efficiency from the nitrate 
present in the RAS.  

SBR (Sequencing Batch Reactor): This is a fill-and-draw AS system. Whereas in 
conventional AS systems the process is carried out in a spatial dimension, in an SBR it 
is carried out in a time dimension (i.e. all the steps take place in the same biological 
reactor). As currently designed, all SBR systems have several steps in common: fill, 
react, settle and draw. During settle and draw sludge wasting takes place. This system is 
versatile, so that depending on the conditions provided for the biological reactor in the 
react phase, one or more nutrients will be treated. In other words, for C removal or 
nitrification, the reaction step has to include an aerobic phase, for denitrification an 
anoxic phase, and for P removal an anaerobic phase. 

Membrane bio-reactors: The relevant feature of this technology is that it uses 
membranes with small pores. These allow ultra-filtration obtaining effluents with a high 
quality regarding the solids discharge limits. Its main advantage is that they are very 
compact systems. On the other hand, they have high operational costs. One of the 
consequences of this technology is the membrane fouling which requires periodical 
backwashes and additional maintenance. 
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SHARON: This is a continuous process in which a partial oxidation of ammonium takes 
place in a continuous stirred tank reactor (CSTR). Its operation requires high 
temperatures (35-37ºC) and a relatively low hydraulic retention times (HRT). These 
operational conditions promote the growth of ammonium-oxidizing bacteria, while the 
lower growth rate of the nitrite-oxidizing bacteria leads to its wash-out.   

Microbial fuel cell (MFC): This technology also known as biological fuel cell, converts 
chemical energy, available in a bio-convertible substrate such as wastewater pollutants, 
directly. As the bacteria consume the pollutants, they shed electrons, which flow 
through a circuit and generate electricity. In the process, pollutants are broken down, 
resulting in clean water. 

2.1.2 Anaerobic Digestion system 

AD involves the breakdown of organic matter by the concerted action of a wide range 
of microorganisms in the absence of O2. AD is a set of natural processes that take place 
in a variety of anaerobic environments, such as the intestinal tract of animals, marine 
and fresh water sediment, sewage sludge, paddy fields, water logged soils and in the 
region of volcanic hot springs and deep sea hydrothermal vents. To date, the biogas 
process has been widely applied in the field of waste and wastewater treatment, often 
coupled with energy recovery. Currently, AD also represents one of the most common 
alternatives for sludge treatment. 

The system consists of a complex series of reactions, the sum of these being a 
fermentation which converts a wide array of substrate materials with carbon atoms at 
various oxidation/reduction states to one-carbon molecules in the most oxidised (CO2) 
and the most reduced (CH4) states. Minor quantities of (N2), hydrogen (H2), ammonia 
(NH3) and hydrogen sulphide (H2S; usually less than 1% of the total gas volume) are 
also generated. 

The interest in the process is mainly due to the following reasons: 

 The production of biogas can be used to generate different forms of energy (heat 
and electricity). 

 Compared to aerobic systems less energy is required since aeration is not needed. 

 Higher volumetric loadings are accepted in AD systems; therefore, smaller 
reactor volumes and less space may be required for treatment. 

However, there are a number of disadvantages linked to AD systems: 

 Longer start-up time (months) to obtain the necessary biomass inventory 
compared with the AS system (days). 

 Biological N and P removal is not possible. Hence, further treatment processes 
are required in these cases. 

 Reaction rates are more sensitive to low temperatures.  

 AD may require alkalinity addition, thereby decreasing the net energy benefit. 
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 It is more susceptible to upsets due to toxic substances. 

2.1.2.1 Process description 

The general model for the degradation of organic material (polymeric substances like 
carbohydrates, protein, and fats) under anaerobic conditions operates principally with 
three main groups of bacteria which together convert the organic material to methane 
(CH4), CO2 and water. The AD process involves three main steps (Figure 2.2): (i) 
hydrolysis; (ii) fermentation; (iii) methanogenesis (Stafford et al., 1980). 

Hydrolysis: The most important components in sludge/manure are polymeric 
compounds such as carbohydrates, protein and fats. Hydrolysis of these compounds into 
smaller units is the first step of the AD process. Different groups of fermentative 
bacteria (Group I) can degrade complex polymeric compounds in the waste into 
oligomers and monomers by excreting extracellular enzymes. Proteolytic bacteria 
produce proteases that catalyse the hydrolysis of proteins into amino acids, the cellulytic 
and xylanolytic bacteria degrade cellulose and xylan (both carbohydrates) to glucose 
and xylose, and finally the lipolytic bacteria degrade lipids to glycerol and long-chain 
fatty acids. 

Fermentation (acidogenesis): Next, the hydrolysis products are absorbed by the 
fermentative bacteria (Group I). The fermentation products are smaller compounds such 
as acetate and other fatty acids, alcohols and H2. 

Short-chain fatty acids longer than acetate and alcohols are oxidised by the hydrogen- 
producing acetogenic bacteria (Group II), resulting in the formation of H2, acetate, 
formate and CO2. 

In an AD system that is functioning well, most of the organic material will be 
transformed directly by the fermentative bacteria into methanogenic substrates (H2, CO2 
and acetate). However, a significant part (approximately 30%) will be transformed into 
other lower fatty acids and alcohols. This part will be larger if the system is out of 
balance, i.e. if the H2 formed is not consumed fast enough. 
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Figure 2.2. AD process diagram. 
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Methanogenesis: The end products of the metabolism of the fermentative and 
acetogenic bacteria – acetate, formate and H2 – are transformed into CH4 by the 
methanogenic bacteria (Group III). The most important CH4 precursor is acetate (70%), 
while the remaining 30% is formed from H2/CO2 or formate. The methanogenic bacteria 
are divided into two main groups: aceticlastic methane bacteria, degrading acetate, 
belonging to the genera Methanosarcina and Methanosaeta (formerly Methanothrix), 
and the hydrogen-consuming methanogens of which an array of genera exists. A 
number of Methanosarcina species can transform H2 as well as acetate. Substrates of 
less quantitative importance for methanogens are methanol, methylsulfides, 
methylamines and some higher alcohols. 

This three-step model showing the anaerobic transformation of organic material can be 
used to provide an overall view, but it does simplify things. A more complete model 
must take into account the other groups of bacteria which can play a major role under 
certain conditions. 

Homoacetogenic bacteria (Group IV) degrade a large spectrum of substances, e.g. 
glucose and H2/CO2, and produce acetate as the only fermentation end-product. 

A special subgroup of homoacetogenic organisms is Group V. These perform the 
opposite reaction by oxidising acetate to H2 and CO2. 

2.1.2.2 Operational parameters 

Temperature: Choice of temperature and its control are of crucial significance for AD. 
Temperature is one of the main environmental factors affecting bacterial growth. 
Anaerobic and aerobic bacteria are affected in the same way. Growth rates increase to a 
certain limit with temperature, and from this point (the limit for bacteria survival) they 
start to decrease. But in addition, temperature affects other physical parameters such as 
viscosity, mass transfer properties, etc. (Whitmore et al., 1985). Most experiments with 
AD have been performed in the mesophilic (30-40ºC) and in the thermophilic (50-60ºC) 
temperature ranges (Figure 2.3). 

Operating in thermophilic as opposed to mesophilic conditions provides a number of 
advantages: 

 Faster digestion rates, reduction of retention time in the plant. 

 Smaller volumes required for the same amount of waste. 

 Good destruction of pathogenic organisms. 

 Greater possibility of separation of solid matter from the liquid phase. 

 Better degradation of long-chain fatty acids. 

 Less biomass formation compared with the product formation. 

 Improved solubility and availability of substrates. 
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Figure 2.3. Relative growth rate of methanogenic bacteria versus temperature. 

Essential disadvantages are: 

 Larger degree of instability. 

 Demand for larger amount of system energy. 

 Greater risk of ammonia inhibition. 

The effect of temperature on growth rates can only be seen when the loadings rates are 
high or retention times are reduced. De La Rubia et al. (2006) show how in 
thermophilic conditions good performances are achieved in spite of reduced SRT. 

pH: CH4 formation is limited to a relatively narrow pH interval, from 5.5 to 8.5 
approximately. Most methanogens have an optimum pH of between 7 and 8 while acid-
forming bacteria often have a lower optimum level. Apart from the influence of the pH 
on the growth of the microorganisms, pH can affect other factors such as dissociation of 
important compounds (ammonia, sulphide, organic acids) of importance for the AD 
process. 

The optimal pH for mesophilic biogas reactors is between 6.5 and 8, and the process is 
severely inhibited if pH is below 6 or above 8.3. The actual pH value in thermophilic 
biogas reactors is generally higher than in mesophilic plants, as dissolved CO2 forms 
carbonic acid by reaction with water. No specific investigations of the significance of 
this phenomenon exist. The pH in anaerobic reactors is mainly controlled by the 
bicarbonate buffer system. Therefore, pH in biogas plants depends on the partial 
pressure of CO2 and the concentration of alkaline and acid components in the liquid 
phase. Ammonia produced during degradation of proteins, or ammonia in the feed 
stream, for example, can result in an increase in pH. 

Organic loading rate (OLR): The OLR can be varied by changing the influent 
concentration and the flow rate (Equation 2.3). Changing the flow rate entails changing 
the HRT. 

HRT

COD

V

COD·Q
OLR a,in

==   (Eq. 2.3) 
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where 
OLR = organic loading rate (kg COD·m-3

 ·d-1); 
COD = chemical oxygen demand (kg COD·m-3); 
Qin,a = AD inflow rate (m3·d-1); 
V = reactor volume (m3); 
HRT = hydraulic retention time (d). 

When the anaerobic digester feed is sludge, VS concentration can be used instead of 
COD concentration to express OLR. Typical loading rates can be from 1.6 to 4.8 kg 
VS · m-3·d-1. OLR does not usually control the process but organic overloads can occur 
if feeding exceeds the consumption rate. 

2.1.2.3 Configurations 

There are several different configurations for anaerobic treatment (Metcalf and Eddy, 
2003).  

Continuous stirred tank reactor (CSTR): The CSTR is a continuously or frequently 
mixed reactor, where the fresh substrate is totally mixed with the active reactor content. 
In- and out-flow of the substrate is on a continuous or semi-continuous basis. One 
important limitation of these reactors is their retention time. Since the SRT is equal to 
the HRT, if the HRT exceeds the growth rate of the slowest-growing bacteria the 
stability of the system can be lost. To solve the problem of biomass retention, other 
anaerobic systems were developed. 

Anaerobic contact process: This consists of a CSTR reactor with a separation recycling 
stage. The separation unit can be a settler, a filter or a centrifuge. It is essential to keep 
the particulate matter of the effluent in the reactor. The SRT is kept high to achieve a 
good degree of degradation while helping to ensure adequate populations of slow- 
growing bacteria. The problem with this system is the practical separation and 
concentration of the sludge. It is solved with chemical flocculation, vacuum filter design 
and system modifications such as degasification, centrifugation, etc. 

Fixed bed reactors: Active biomass is immobilised as a film on inert support material 
(e.g. porous ceramic materials, plastic packings, etc.). The extra-cellular polymers that 
the micro-organisms produce are the binding that holds the micro-organisms together.  
The support material affects the growth of bacteria and, therefore, system performance. 

Fluidised and expanded bed systems: These are a modified version of the previous 
configuration. Here, carrier particles are included to retain the biomass. Sand was 
previously used as a common carrier but it has now been substituted for plastic and 
other low density particles. The particles, together with the attached biofilm, are 
fluidised by high influent and recirculation flow rates.  

Upflow anaerobic sludge blanket (UASB): Influent is distributed at the bottom of the 
UASB reactor and travels in an upflow mode through the sludge blanket without any 
inert carrier. The biomass forms dense aggregates which are retained in the reactor due 
to their relatively high density. Some UASB reactors have a secondary settler after the 
anaerobic treatment. The main advantage of UASB reactors is the high volumetric COD 
loadings compared with other anaerobic systems that they are able to treat, thanks to the 
development of a dense granular sludge. This immobilisation can be achieved by means 
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of partial control of the inflow and gas production rates. A UASB consists of a sludge 
bed, a sludge blanket, a gas-solids separation trap and a settling compartment. The 
sludge bed is a layer of granulated biomass settled on the bottom. The sludge blanket is 
a suspension of sludge particles mixed with the gas produced in the process. In the gas-
solids separation trap, the gas that is produced is separated from the liquid by the gas-
solids separator. A gas-free secondary settling zone is created in the top compartment, 
where most of the sludge particles that have entered this zone (carried from the bed by 
gas convection) settle back in the reactor, while the rest, i.e. the smallest, are washed out 
with the effluent. The UASB system is able to retain a high concentration of biomass 
with high specific activity and handle high organic loading rates (OLRs) with good 
COD removal. 

Expanded granular sludge bed reactors (EGSB): This type of reactor is characterised 
by an expanded form of granular sludge, obtained as a result of ultra high flows through 
the reactor. These reactors are relatively insensitive to suspended solids given the low 
settling velocity of these solids compared to the superficial liquid velocity of the reactor. 
The suspended solids do not become hydrolysed to any significant degree due to their 
short retention time in the reactor. These reactors are efficient at removing soluble 
organic matter because of the good contact between the influent organic matter and the 
granular biomass, and they also seem to be effective for low strength wastewaters and at 
low temperatures. 

2.2 Operational problems of microbiological origin 

Operational problems of microbiological origin is the general term or classification 
given to a group of problems occurring within a WWTP. These problems represent one 
of the most complex issues for efficient operation of a WWTP. Since biological 
processes involve a wide variety of microorganisms, the inherent complexity of these 
populations hampers the control of their dynamics. When the equilibrium between 
populations is broken operational problems can appear. The physical and 
microbiological causes of each of these problems have been described in several studies 
and publications (Jenkins et al., 2003; Casey et al., 1995; Wanner, 1994). In a WWTP, 
operational problems of microbiological origin appear mainly in the biological systems 
of the facility (i.e. AS and AD).  

2.2.1 Activated Sludge 

In AS systems, operational problems of microbiological origin are linked to the 
secondary settling process and result in a drastic decrease in the efficiency of the 
process, especially regarding TSS. To fully understand some of the AS operational 
problems of microbiological origin, it is important first to comment on floc formation. 

Floc formation: In order to achieve good separation between the biomass and the 
treated water, the biomass must form compact and dense flocs. Floc-forming bacteria 
are able to compact to some extent but in order to be dense enough to settle properly 
they need filamentous microorganisms which can link several flocs together to provide 
enough weight to ease the gravity settling.  

There are two main components in the AS sludge flocs: (i) a mixture of biological 
components (i.e. bacteria, protozoa, fungi and metazoa) and (ii) a non-biological 
component, comprising of particles and extracellular polymeric substances which are 
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the key to floc formation. Flocs are composed of a combination of bacteria belonging to 
different genera: Pseudomonas, Achromobacter, Flavobacterium, Alcaligenes, 

Arthrobacter, Citromonas and Zoogloea (Jenkins et al., 2003). These and other bacteria 
can create extracellular polymeric substances. As long as it is an organic polymer, water 
viscosity increases and the individual cells stick to each other or to solid surfaces, 
thereby creating large aggregates that can settle easier due to their increased weight. 

The structure of an AS floc can be explained by the filamentous backbone theory, which 
assumes two levels: 

 Microstructure: a result of microbial adhesion. This is the basis for a floc to form 
thanks to extracellular polymeric substances (EPS). The flocs are usually small, 
spherical and compact but mechanically rather weak. 

 Macrostructure: this is provided by filamentous microorganisms. When an AS 
culture contains filamentous organisms, large floc sizes are possible because the 
filamentous microorganisms form a backbone within the floc, to which the floc-
formers are firmly attached by their EPS. This backbone provides the floc with 
enough strength not to be break up in the turbulent environment of the biological 
reactor.  

Operational problems of microbiological origin in the AS can be divided into four 
categories: (i) filamentous bulking, (ii) biological foaming, (iii) deflocculation and (iv) 
viscous bulking. A fifth category – rising sludge – is not included among them because 
it is not caused by an imbalance in population dynamics and/or poor floc formation. 
Nevertheless, it shares the same effects (loss of TSS) as the others and will therefore be 
presented here as well. 

2.2.1.1 Bulking 

Filamentous bulking (Figure 2.4) is probably the most frequent operational problem of 
microbiological origin around the world. The sludge’s density tends to decrease as a 
consequence of the overabundance of filamentous microorganisms. Whenever the 
settling velocities of the sludge are within a range sufficient for efficient separation in 
secondary settlers, the effluent will not be affected, since all the microflocs can be 
enmeshed and trapped in the filamentous network, resulting in a clear effluent. However, 
when the filamentous bulking is severe, and the sedimentation zone of the secondary 
settler is full of poorly compacted sludge, an overflow of the sludge blanket may occur 
(Wanner, 1994).  

This bulking sludge is due to the proliferation of filamentous microorganisms. 
Depending on the environmental conditions, these have growth kinetics that are higher 
than those of floc-forming bacteria. According to Martínez (2006) different operational 
parameters and wastewater features have an effect on the growth of filamentous 
microorganisms.  

SRT: The correlation between SRT and filamentous microorganisms is based on the 
backbone theory, since generally a high sludge age is associated with the growth of 
filaments more than a low sludge age. Nevertheless some species can grow in low SRT 
as well.  
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Figure 2.4. Filamentous bulking. 

F/M: This is usually inversely related to SRT. At low F/M (i.e. low substrate 
concentrations) the non-filamentous, floc-forming microorganisms have a high µmax but 
a low affinity for the substrate (high KS), whereas the filamentous forms are slow-
growing organisms that have a low µmax but a high affinity for the substrate (low KS - 
see Figure 2.5-). Morphologically, filamentous microorganisms have a bigger surface 
area than floc-forming microorganisms, which makes the substrate more available to 
them at low substrate concentrations. 
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Figure 2.5. Relative growth rates of floc-forming and filamentous bacteria in relation to substrate 
concentration. (Martínez, 2006) 
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DO: The growth of some filamentous microorganisms is favoured at low DO levels in 
the biological reactor. Taking into account that the higher the F/M, the higher the DO 
that is required, a safe DO concentration, i.e. one high enough to prevent filamentous 
bulking, will be dependant on the F/M ratio (Palm et al., 1980). Although the correct 
DO set-point may seem enough to avoid bulking, dead zones in the biological reactors, 
failures in probes and similar problems can cause filamentous microorganisms to 
proliferate. 

Biological reactor configuration:  Despite many filamentous microorganisms being 
favoured in uniformly aerated, completely mixed, continuously fed biological reactors, 
the growth of others is favoured in different configurations. For instance, low F/M 
microorganisms find a suitable environment to proliferate in configurations which 
alternate anoxic-aerobic conditions (Musvoto et al., 1999). Moreover, in biological 
reactors with a “selector” effect, i.e. an initial high F/M feed zone (especially if it is 
anoxic or aerobic), the growth of filamentous microorganisms can be suppressed. The 
same effect is seen in an SBR with a non-aerated feed with an initial reaction period 
(Jenkins et al., 2003). 

Nutrient deficiency: Among the macronutrients required by the microorganisms (i.e. C, 
H, N, O, S and P), N and P are usually the growth limiting ones. In general, a C/N/P 
ratio of 100/5/1 is required for complete BOD removal (Grau, 1991). The growth of 
certain filamentous microorganisms is related to the low F/M theory. As explained 
above, in a low nutrient concentration, filamentous microorganisms have a higher 
affinity for these nutrients than floc-forming microorganisms due to their low half-
velocity constant (KS). 

Nature of organic substrate: Rapidly biodegradable organic matter can favour the 
growth of some filamentous microorganisms (e.g. S. Natans, Thiothrix spp., H hydrossis, 
etc.). On the other hand, slowly biodegradable substrates favour other filamentous 
microorganisms, such as M. parvicella and Type 0041 (Jenkins et al., 2003). 

Temperature: Generally speaking, filamentous microorganisms grow faster as 
temperature increases in the range between 8º and 25 ºC. However, M. parvicella is an 
exception showing growth in temperatures below 12-15 ºC (Knoop and Kunst, 1998; 
Rossetti et al., 2005). The explanation for this phenomenon could be the low level of 
solubility of lipids and fats at low temperatures, which makes them more available for 
M. parvicella than for the floc-forming microorganisms (Eikelboom et al., 1998; 
Rossetti et al., 2005). 

The consequence of bulking sludge is the loss of solids through the effluent. This has 
many implications for the receiving media: the ecosystem is polluted with high COD 
content, creating problems of oxygen depletion or future contamination due to the long 
term release of N, P and organic matter due to degradation; bacterial contamination; 
process efficiency is affected given that part of the sludge that should have been used in 
the treatment process is removed; and finally, RAS and WAS concentrations get very 
low, hampering, for example, the control of SRT. 

2.2.1.2 Biological foaming 

Biological foaming (Figure 2.6) represents one of the most common problems in AS 
systems. It is a variant of filamentous bulking in which the excessive growth of certain 
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species causes foam to appear in the biological reactor and on secondary settler surfaces. 
Although other types of foaming can appear, both biological and non-biological, only 
biological foaming will be considered here. Compared to filamentous bulking, the 
number of microorganisms that cause biological foaming is limited. The most common 
are nocardioforms (the name given to those actinomycetes similar to Nocardia sp.), M. 

parvicella and Type 1863 (Jenkins et al., 2003; Richard, 1989). The main feature of 
foam-causing microorganisms is their hydrophobicity, which causes the floc to float 
when they are in contact with air bubbles. Foam-forming filamentous microorganisms 
also produce hydrophobic extracellular substances (e.g. lipids, lipopeptides, proteins, 
etc.) which act as surface-active agents (Wanner, 1994). The final result is a stable, 
viscous foam layer that covers the secondary settler; in the worst cases even the 
biological reactor can end up covered by foam. As pointed out by Eikelboom (1994), 
when foaming caused by M. parvicella or nocardioforms appears, there will probably 
also be bulking caused by these same species. 

 

Figure 2.6. Biological foaming in a biological reactor. 

In general, the growth of bacteria responsible for foaming is associated to: temperature, 
lipids or oils present in the treated water, high SRT and high readily biological organic 
matter concentration (HRBOM). Specifically, the causes for foaming are linked to each 
foam-forming species. 

Nocardioforms: Their growth is associated with high temperatures, grease, oil and fat 
present in wastewater. It takes more than 9 days for nocardioforms to grow in the 
system, but once present they can develop in 2 days. Nocardioforms tend to consume 
easily degradable substrates but they can grow in a wide range of F/M ratios (Jenkins et 

al., 2003). 
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M. parvicella: This filamentous bacterium can cause both foaming and bulking. 
However, its growth is favoured in low F/M conditions or long SRT and it is also 
capable of growing below 12ºC. The temperature influence is linked to the higher 
availability of lipids and fats at low temperatures due to their low solubility. The 
substrate storage capacity of M. parvicella allows it to survive under stress conditions 
imposed by long anaerobic periods; what is more, it has a strong competitive advantage 
over floc-forming microorganisms which are not able to take up and store substrates 
anaerobically. Their storage compounds make it possible for M. parvicella to survive 
starvation periods inherent in domestic WWTPs (Rossetti et al., 2005). 

Type 1863: This bacterium is not common in AS systems and as a result it has not been 
thoroughly studied. It can be found under low DO conditions (Scruggs and Randall, 
1998) and in high F/M ratios when the SRT is low.  

According to Martínez (2006), the main consequences of foaming are:  

 Foam lost through the effluent, thereby increasing discharges of TSS and 
BOD/COD and violating the permitted limits. 

 If the foam layer is deep it can overflow onto walkways and surrounding areas, 
creating hazardous slippery areas. 

 Electricity consumption can increase since foam can cause problems for surface 
aeration equipment. 

 Solids trapped in the foam layer make it very difficult to keep track of MLSS for 
control purposes and are not taken into account in calculations of SRT, see for 
example Richard (1989). If the trapped solids are not taken into account, and if 
WAS is maintained, the biomass retention time can be greatly reduced.   

 During cold periods foam can even freeze, thus hampering its removal. On the 
other hand, during hot periods foaming can start to decompose and cause odour. 

 Some of the organisms in the foam can be pathogenic. The aerosols derived 
from foam-producing organisms are considered a potential health hazard 
(Blackall et al., 1988). 

 Foaming sludge fed to an anaerobic digester can also cause the digester to foam 
(see below). 

2.2.1.3 Rising sludge 

Although this operational problem is not caused by a population imbalance, its 
consequences are similar to those previously presented. Rising sludge is an uncontrolled 
denitrification; nitrite and nitrate present in the wastewater are converted to N2 in the 
secondary settler instead in the reactor. 

Conditions in the secondary settler which make it possible for this phenomenon to occur 
include:  

Nitrate present: Usually more than 5 mg/L. 
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Organic matter: Usually more than 10 mg/L. 

Low DO conditions: Less than 0.5 mg/L within the secondary settler. This can be a 
result of slow removal of the sludge.  

Denitrifying bacteria: Without their presence denitrification is impossible. 

Regarding the causes of rising sludge, it has to be taken into account that in plants that 
usually remove N, rising sludge can be a result of incomplete denitrification within the 
reactors due to problems with setting the appropriate anoxic conditions (for example 
low denitrification time, insufficient organic matter, etc.). In plants that have no 
nitrification/denitrification processes, there are a number of possible causes for rising 
sludge whenever nitrification is carried out intentionally or unintentionally, and 
denitrification is not complete in the reactor: 

Long SRT in secondary settler: Too long time with the same sludge at the bottom of the 
secondary settler can have two consequences: (i) denitrifying bacteria have enough time 
to grow and (ii) the sludge becomes anoxic due to the activity of the microorganisms 
which consume the remaining DO. 

High temperatures: High temperatures cause the process to nitrify at a higher F/M ratio 
due to an increase in the activity of microorganisms. The same phenomenon will cause 
the DO to be consumed faster in the bottom of the secondary settler. 

Denitrifying bacteria consumes the BOD, nitrite and nitrate to produce N2. As the N2 
bubbles start to form they end up trapped in the sludge blanket. After a short period of 
accumulation the sludge blanket becomes buoyant and floats towards the surface. There, 
the solids are lost through the effluent with consequences similar to those described for 
other operational problems of microbiological origin.  

2.2.1.4 Deflocculation 

Deflocculation refers to an operational problem of microbiological origin characterised 
by the formation of a very small sludge floc, or the absence of floc formation. Two 
types of deflocculation problems can be distinguished: pin-point flocs and dispersed 
growth, but no distinction will be made here. According to Martínez (2006), the 
phenomenon has several causes:  

Extreme values of SRT: Either very low or very high SRT can cause deflocculation. 
Very high values imply an over-oxidation of sludge and the exposure of flocs to low 
concentrations of exogenous substrates (low F/M). In these conditions the only 
available substrates are extracellular polymeric substances (endogenous metabolism) 
which lead to the destruction of the polymeric matrices of AS flocs (Wanner, 1994). On 
the other hand, low SRT can lead to deflocculation because filaments do not have 
enough time to develop and form the macrostructure of the sludge. This cause is typical 
during start-up conditions. 

Extreme values of DO: Excessive aeration can result in excessive shearing in the 
biological reactor, which can break the macrostructure of the floc. In the case of limited 
DO, under anaerobic conditions the growth of aerobic floc-forming microorganisms and 
the production of EPS can be inhibited (Eikelboom and van Buijsen, 1983; Starkey and 
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Karr, 1984). However, the opposite effect is sometimes seen during low DO conditions, 
so further research is required here. 

The improper formation of AS flocs causes poor separation between the 
microorganisms and the treated water, which results in effluent turbidity and, 
consequently, lower clarifier efficiency (Comas et al., 2003).  

2.2.1.5 Viscous bulking 

Apart from filamentous bulking, there is another microbiological problem in AS 
systems that can transform suspended solids into a bulky solution and hinder their 
ability to settle well in clarifiers. This problem is known as viscous bulking and it is 
caused by the excessive production of extracellular polymers that may or may not be 
associated with the growth of a group of floc-forming bacteria: Zooglea spp. (Jenkins et 

al., 2003). This excessive growth can cause an increase in slime production that may 
affect the compaction and settleability of the sludge in several ways. The slime 
produced is insoluble in and less dense than water. The microbial cells become 
surrounded by large amounts of water-retentive polymers which produce a viscous 
sludge that settles and becomes compact only with difficulty. The slime can also entrap 
air bubbles and become more buoyant, thereby generating foam on the surface due to 
aeration and mixing (Gerardi, 2002). 

The main causes of viscous bulking are: 

Nutrient deficiency: Specially related to N and P. Bacteria inside the floc particles 
cannot degrade some of the soluble COD and this is stored within the floc. 

High F/M or HRBOM: High concentrations of easily degradable carbohydrates, volatile 
fatty acids (VFAs) or readily biodegradable COD in wastewater can cause viscous 
bulking. It is common to find viscous bulking in those AS systems designed to improve 
settling properties by using a concentration gradient (e.g. systems with selectors or 
plug-flow) due to the high F/M in the first compartments. 

The effects of viscous bulking are similar to those of filamentous bulking: low effluent 
quality due to an increase in suspended solids and BOD in the effluent, and the dilution 
of RAS and WAS.  

2.2.2 Anaerobic Digestion 

A couple of operational problems of microbiological origin are distinguished here: (i) 
acidogenic states that can be caused by different conditions (i.e. hydraulic and organic 
overloads, toxicity and underloads) and, (ii) biological foaming.  

2.2.2.1 Acidogenic states 

Many AD disturbances can end up in acidogenic states that entail high VFA 
concentrations associated with a decrease in pH and methanogenic inhibition (Guiot, 
1991) with a related decrease in methane production (MP). For example, toxicants can 
cause VFAs to accumulate via methanogenic bacteria inhibition (Hickey et al., 1987) as 
well as inhibition due to accumulation of long chain fatty acids (LCFA), which also 
leads to acids accumulating (Lalman and Bagley, 2001). However, acidogenic states are 
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not only related to the build-up of VFAs and are sometimes difficult to detect (Dupla et 

al., 2004). 

Some of the operational problems that can cause acidogenic states are listed below. 

Underload: The incoming COD is totally degraded but the steady state reached has a 
low biomass concentration. Due to low biomass concentration, the anaerobic digester 
can become sensitive to a loading peak causing an organic overload. During underload, 
the organic loading rate is low and there is a decrease in biogas production (Lardon, 
2004). 

Organic overload: Incoming COD is higher than the digester’s treatment capacity. 
There is an accumulation of organic matter inside the digester and a risk of system 
washout. The point at which the overload happens will depend on the digester. When it 
does, the increasing COD causes the increased growth of bacteria until the slowest 
processes act as bottle necks and substrates (soluble COD, TOC and VFA) are 
accumulated (Dupla et al., 2004). 

Consequences of organic overloads are multiple (Marchaim and Krause, 1993; Dupla et 

al., 2004; Müller et al., 1997; Lardon, 2004): 

 Risk of biomass wash out, decreasing biomass concentration. 

 Decreasing MP and increased CO2 and H2 contents in the biogas. 

 Increased gas flow rate. 

 Acidogenic states. 

Hydraulic overload: The loading applied corresponds to the digester’s treatment 
capacity but the dilution is high and causes digester washout. In practice, any efficient 
volume reduction can cause a hydraulic overload, due to bad stirring or a sudden 
increase in the volume of substrate pumped to the digester (combined hydraulic and 
organic overload). The most relevant bacteria do not have enough time to grow properly 
and can be easily washed out of the digester. This affects especially acetate and 
propionate degraders which have low growth rates.  

The hydraulic overload effects includes (Lardon, 2004; Carrasco et al., 2004): 

 Accumulation of VFA in the digester that leads to acidogenic states. 

 Biogas production medium or weak. 

 Accumulation of substrate and intermediate products. 

Toxicity: An inhibitory source other than VFA diminishes the microorganisms’ growth 
rate. As in the organic overload case, it is followed by fatty acids accumulation, pH and 
alkalinity ratio decrease. For instance, the heavy metals in wastewater can accumulate in 
sludge as a result of physical, chemical or biological treatment and have a negative 
effect when the sludge is digested anaerobically (Lin, 1992). Two examples of AD 
inhibition sources are: 
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 Ammonia: Inhibition of anaerobic fermentation with ammonia ( +

43 NH/NH ) is a 

well-known phenomenon. Methanogenic bacteria are especially sensitive to 
ammonia inhibition. This inhibition is higher under thermophilic than under 
mesophilic conditions. The reason for this is that the active component 
responsible for ammonia inhibition is the unionised form of ammonia. Free 
ammonia, NH3, is thought to be the fraction of ammonia which actually causes 
this phenomenon (Hansen et al., 1998). 

 Substrate inhibition: Apart from specific toxic compounds in the waste, certain 
relatively easily degradable compounds can also inhibit the anaerobic digestion 
process. Especially lipids and protein in the feed stream to biogas plants must be 
especially carefully controlled. A sudden addition of lipids to a biogas plant can 
cause inhibition of anaerobic degradation, since hydrolytic, acidogenic and 
methanogenic bacteria can be inhibited by accumulation of LCFA produced 
during hydrolysis of the lipids. The toxicity of lipids therefore depends on how 
fast hydrolysis proceeds in relation to further fermentation. When a biogas plant 
is adapted to degrade high concentrations of lipids, a higher gas yield can be 
obtained. Lipids have high energy content and can be nearly completely 
degraded to biogas in suitably adapted biogas plants (Cirne et al., 2007). The 
degradation of proteins will result in the formation of ammonia, which in turn 
can inhibit anaerobic fermentation. A long adaptation period may be required 
when a large quantity of proteins is added to a biogas reactor not adapted to 
ammonia. 

2.2.2.2 Biological foaming 

Among the various operating problems of microbiological origin that affect AD in 
WWTPs, foaming is one of the most extensive and consequential (Figure 2.7). Digester 
foam is formed by fine gas bubbles trapped in a semi-liquid matrix. Further gas bubbles 
generated below are trapped in the sludge layer as they form.  

 

Figure 2.7. Biological foaming in an anaerobic digester (Massart et al., 2006). 

There is not yet complete agreement on the causes of biological foaming in AD. Many 
are put forward, but there are some that are commonly stated in the literature.  
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WAS: Biological foaming in AD is reported to be caused by the presence of filamentous 
microorganisms in the WAS, mainly Nocardioforms (Pagilla et al., 1997; Lemmer and 
Baumann, 1988) and M. parvicella (Barjenbruch and Kopplow, 2003; Westlund et al., 
1998). Thus, any cause of biological foaming in the AS system can cause foaming in the 
anaerobic digester. 

Loading rates: There are many examples that show a relationship between loading rates 
and foaming. Most of them show that inconsistent or high rates cause foaming in 
anaerobic digesters. For instance, in Massart et al. (2006) examples are given of 
foaming in WWTPs as a result of inconsistent loading rates. In Murto et al. (2004) 
foaming appears when the loading rate is increased beyond a certain value. Barber 
(2005) shows that overloading can cause a sudden increase in biogas production which 
can exacerbate foaming. 

Mixing: Pagilla et al. (1997) showed that gas-mixed anaerobic digesters can promote 
more foaming than mechanically-mixed digesters. Massart et al. (2006) state that if the 
sludge in the digester is not properly mixed, a scum layer may accumulate on its surface 
and adhere to the gas bubbles, forming a foam layer. The biogas generated will not be 
completely stripped off the digesting solids. Consequently, the gas bubbles can adhere 
to the solids, reducing their density and propelling them to the surface. Mixing can also 
have an adverse effect by increasing the entrapment of gas bubbles in the liquid, thereby 
generating foam. It is clear, that inefficient mixing in the anaerobic digester can have a 
negative effect on the digester’s performance. The reasons may be related to the 
presence of hydrophobic substances in the wastewater which, as noted before, act as 
surface-active agents that create the foam layer. 

 According to Pagilla et al. (1997), the consequences of foaming are numerous:  

 Blockage of gas mixing devices. 

 Inversion of digester solids profiles. 

 Foam binding of recirculation pumps. 

 Fouling of gas collection pipes (due to entrapped foam solids). 

 Foam penetration between floating covers and digester walls. 

 Decrease in digestion efficiency. 

2.3 Modelling 

A model is a description of the processes occurring in a system, and is used to 
understand and predict certain aspects of reality (Meijer, 2004). As in many other 
systems in nature, the biological treatment of wastewater can be modelled, i.e. 
simplified and expressed in equations.  

2.3.1 Activated sludge 

It was the need to understand and predict the biological treatment of wastewater that led 
to the development of activated sludge models. In 1982, the International Association 
on Water Pollution Research and Control established a Task Group on Mathematical 
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Modelling for Design and Operation of Activated Sludge Processes. At that time models 
were little used due to several different factors including lack of confidence in them, 
computational limitations, and the fact they were usually written in a complicated way. 
In 1987, the Activated Sludge Model No1 (ASM1; see Section 4.1 Activated Sludge 
Model No1) was presented. It aimed to review and reach a consensus among already 
existing models (Henze et al., 1987). ASM1 has acted as a common platform for 
modelling biological wastewater treatment. Currently, ASM1 is widely used but seldom 
alone. It has almost always acted as a basis for other models. After ASM1, which 
includes COD, N removal and still remains the core model, extensions and 
improvements aimed at overcoming some of its limitations were developed. These 
extensions include: (i) ASM2, which includes biological P removal; (ii) ASM2d, which 
includes the denitrification capacity of the PAOs and (iii) ASM3, which recognises the 
importance of storage polymers and changing the growth-decay-growth concept for the 
decay-endogenous respiration model (Henze et al., 2000). Detailed information on 
modelling of activated sludge systems can be found in Gernaey et al. (2004). Many 
examples of models based on the ASM family exist. For example, in Van Veldhuizen et 

al. (1999) and Brdjanovic et al. (2000) a modified version of ASM2 is used to model 
the COD, N and P removal of a full scale plant. Other modifications are the inclusion of 
pH calculation in ASM1 (Magrí et al., 2005) and in ASM2d (Serralta et al., 2004).  

2.3.2 Anaerobic digestion 

An increasing interest in the use of models applied to another important process of 
many WWTPs -AD- also appeared. At first, a lack of specific knowledge about AD 
mechanisms caused the models to be developed with very specific purposes. This was 
the case with the model demonstrated in Vavilin et al. (1995) in which changes in H2 
pressure as a result of bacteria competition were modelled. The lack of a general model 
for the whole AD system was the motivation behind the Anaerobic Digestion Model 
No1 (ADM1; see Section 4.2 Anaerobic Digestion Model No1), whose focus was a 
more complete and versatile model, based on the first AD models (Batstone et al., 2002). 
ADM1 is now widely used in AD research (Batstone et al., 2005). Some examples of 
this research include an adaptation of ADM1 to model a two-stage pilot plant 
(Blumensaat and Keller, 2005) and a full-scale industrial application based on an 
ADM1 modification to simulate the dynamic behaviour of an anaerobic digester treating 
corn processing wastewaters (Ersahin et al., 2007). Bernard et al. (2001) proposed a 
two-step model that can be easily used for closed loop control and optimisation of AD 
systems. Other studies have focused on sulphate reduction in AD (Knobel and Lewis, 
2002). 

2.3.3 Plant-wide modelling 

The release of ADM1 as a more standardised model of AD, along with different AS 
models, has led to the development of plant-wide models. These have provided 
researchers with greater knowledge of systems as they can consider the interactions 
between the different units that constitute the system. This has meant that the 
consequences of changes in one part of the system can be studied in other parts. 

According to the paper by Grau et al. (2009) there are two main approaches to plant-
wide modelling. The first one, the Interfaces approach, relies on interfaces to integrate 
established models making possible to communicate each model with the others despite 
their different units. One example of this methodology is the IWA Simulation 
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Benchmark No 2 (Jeppsson et al., 2007; see Section 4.3.3 Benchmark Simulation 
Model No2) which will be referred to later since it is the model used in the case studies 
of the present thesis. In this case, the ASM1 is integrated with the ADM1 by a series of 
interfaces (Nopens et al., 2009) which transform the variables of one model into the 
variables of the other, and vice-versa. 

The second approach is to model the whole plant based on a common components 
vector. This makes all the transformations active in all the units and streams. Despite 
they may be zero; they are still taken into account. Components and transformations are 
in common in every unit of the model so the problem of designing appropriate 
interfaces is avoided. However, it is difficult to incorporate new processes in this 
approach, and the size of the model increases as it is adapted to new processes. This 
second approach is divided in the Standard Supermodel and the Tailored Supermodel. 

The Standard Supermodel approach is based on the use of a set of standard supermodels 
that describe the most relevant processes within the whole WWTP. This way, the model 
state variables are consistent eliminating the need for interfaces. On the other hand, new 
processes would require the development of new supermodels. The Tailored 

Supermodel is based on the construction of a specific model for a given plant including 
only the most relevant processes. From a list of the compatible transformation the user 
would select the transformations that take place in the plant under study. The flexibility 
of this approach can be a limitation if there is not a procedure to select the most suitable 
transformations in each case. To cope with this, Grau (2007) presented a methodology 
to construct Tailored Supermodels. 

2.3.4 Modelling of operational problems of microbiological origin 

There are several models that aim to describe filamentous bacteria mechanistically. 
According to Martins et al. (2004) two general types of models dealing with the 
development of filamentous bacteria exist: (i) those based on kinetic selection theory 
and (ii) those which consider both kinetic selection theory and the micromorphology of 
filamentous bacteria. 

Within the first group there is the Kappeler and Gujer model for bulking due to low DO 
(Kappeler and Gujer, 1994a) which they afterwards validated in pilot and full-scale 
plants (Kappeler and Gujer, 1994b). This model assumed two kinds of substrates: 
readily biodegradable and slowly biodegradable chemical oxygen demand (RBCOD and 
SBCOD, respectively). The final result of both works is a model able to predict the 
behaviour of AS in the case of aerobic bulking. More recently, Hug et al. (2006) 
modelled the seasonal dynamics of M. parvicella but concluded that the model would 
have to be applied to new data to find the significant mechanisms in the competition 
between M. parvicella and floc formers in AS. Makinia et al. (2006) developed a model 
to explain the rapid substrate removal in selectors and finally concluded that the 
relationship between the kinetics of absorption and storage may be a potential factor 
affecting the growth of different heterotrophic bacteria, such as filamentous bacteria. 

The most recent studies on the mechanistic modelling of operational problems of 
microbiological origin are centred on M. parvicella. The promising work by Spering et 

al. (2009) is based on the previous studies by Andreasen and Nielsen (2000) and the 
above mentioned Hug et al. (2006). In their study, Spering et al. developed a conceptual 
model of the growth of M. parvicella. This conceptual model allowed to build a 
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mechanistic model to complement the ASM3 with the dynamics of M. parvicella. Apart 
from the general mechanistic model for M. parvicella, they also proposed a calibration 
approach; however, they concluded that the method was not suitable or maybe there was 
an incomplete model structure. 

In the second category of models, Lau et al. (1984) developed a diffusion and 
consumption model of DO and soluble organic substrate of a floc with S.Natans and a 
floc-forming microorganism before experimental determination of the kinetic 
parameters (i.e. half saturation constant and maximum growth rate). They studied the 
influence of parameters like floc shapes and sizes to predict the growth rate of 
filamentous and floc-forming bacteria. This model is able to predict resistance to 
substrate diffusion related to the floc structure. However, results cannot represent other 
kinds of filamentous bacteria because the kinetic parameters are limited to S.Natans. 
There is also the model by Takács and Fleit (1995) which focuses on the diffusivity of 
the substrate through the flocs, and thus also considers whether its micromorphology is 
able to simulate the directional growth of filamentous microorganisms. The model was 
tested in low substrate scenarios: normal, low DO and low F/M, and showed promising 
results since it can provide a better understanding of the relationship between different 
parameters of the process, such as influent conditions, plant operation and settling 
characteristics of the AS. Later, in a study by Cenens et al. (2000a) it was stated that the 
generic coexistence of the two species cannot be predicted with a simple model 
describing a biological reactor modelled according to kinetic selection. In a second part 
of this paper, Cenens et al. (2000b) develop a model based on both the kinetic selection 
theory and the backbone theory, but it was not validated. 

As a general conclusion, further research is required to mechanistically model 
filamentous microorganism dynamics. Although the models mentioned above take into 
account the micromorphology of filamentous microorganisms, they are not able to 
predict sludge settling characteristics. Despite all the attempts to explain the 
development of filamentous microorganisms by means of mathematical modelling, 
none has led to a general and experimentally validated model (Martins et al., 2004). 

In terms of AD, none of the models are able to overcome the limitations of modelling to 
properly describe the dynamics of feed characteristics responsible for operational 
imbalances (i.e. the presence of foam caused by filamentous microorganisms), which is 
highly practical when evaluating simulation results. However, there are a few promising 
studies on modelling of microbial diversity. Previous to the ADM1, the model by 
Merkel et al. (1999) addressed the role of substrate composition and SRT in population 
dynamics. Later, ADM1 assigned one kind of biomass to each process. Still later, the 
work by Ramirez and Steyer (2008) addressed the significance of the role of microbial 
diversity regarding modelling and control of AD systems. Their study showed how 
microbial diversity dampens the effect of a toxic. Nevertheless, these studies neither 
deal with the modelling of filamentous species nor provide a comprehensive model of 
the mechanisms involved in biological foaming development. Other approaches, 
therefore, have to be studied.  

2.3.5 Alternatives to mechanistic modelling of operational problems of microbiological 

origin 

As shown, although there are a few models for certain operational problems of 
microbiological origin, depending on the AS or AD model used, some variables 
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required for the mechanistic modelling of filamentous microorganisms may not be 
available. For instance, biological foaming caused by M. parvicella cannot be 
mechanistically modelled using, a related feature as the polymer storage capacity, in 
ASM1 since this model does not take it into account (whereas ASM3 does). 

The impossibility of modelling some of the mechanisms of filamentous microorganisms 
confirms the need for other approaches to consider filamentous bacteria related 
problems, specifically, those approaches that do not need a comprehensive 
understanding of the mechanisms but are more based on either heuristic knowledge (e.g. 
KBSs) or on input-output relationships (black box models). 

2.3.5.1 Black box models 

Black box models try to estimate both the functional form of relationships between 
variables and the numerical parameters in a given function in order to adapt it to the 
behaviour of the data. Using a priori information a black box model can end up, for 
example, with a set of functions that can describe the system adequately. An often-used 
approach for black box models is neural networks (see Section 4.4 Artificial neural 
networks), which usually do not make assumptions about incoming data. The problem 
with using a large set of functions to describe a system is that estimating the parameters 
becomes increasingly difficult when the number of parameters (and different types of 
functions) increases. 

Black box models have provided good results in applications in which there is only a 
little knowledge but a lot of data. In WWTP modelling there are some examples of 
black box model applications (e.g. Ráduly et al., 2007) in which artificial neural 
networks are used to decrease the simulation time. For instance, in Moral et al. (2008) 
an artificial neural network is used to model a hypothetical and a real WWTP with good 
results. However, the main limitation of such models is that their performance is closely 
related to the amount and range of available data. More specifically, when focusing on 
operational problems of microbiological origin, it is difficult to find a reliable variable 
which allows us to directly quantify the problem (i.e. bulking, foaming, etc.). This 
explains why only a few examples of these applications can be found, such as the work 
by Belanche et al. (2000) in which the occurrence of bulking is modelled through ANNs. 
Often, other relationships have to be proposed to quantify the extent of a given 
operational problem of microbiological origin, as in the study by Smets et al. (2006) 
which focused on relating sludge volume index (SVI) tests to organic matter and the 
image detection of filaments and flocs. Results were promising, but validation failed 
and the authors concluded that further experimentation was required.  

2.3.5.2 Knowledge-Based Systems  

Knowledge-based systems (KBSs) use heuristic knowledge and human experience to 
apply reasoning to the problems that can affect a system. As an alternative to 
mechanistic and black box models, the complexity involved in the description of 
operational problems of microbiological origin can be tackled by KBSs. Examples can 
be found in the literature of the application of knowledge-based tools (e.g. expert 
systems and case-based systems) to AS. For example, in Yong et al. (2006), a fuzzy 
(see Section 4.5 Fuzzy logic rule-based systems for more detail) controller is used to 
optimise aeration and external carbon flow rate (Qcarb), thereby improving effluent 
quality. Likewise, Fiter et al. (2005) demonstrate that an energy saving of more than 
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10% is possible by using fuzzy logic controllers. In Poch et al. (2004), two successful 
examples of KBS applications are given, one for WWTP supervision and another for 
WWTP building planning. 

In the specific case of operational problems of microbiological origin, the work by 
Rodríguez-Roda et al. (2002) presents a hybrid support system based on expert and 
case-based systems that is developed and implemented successfully in a real plant. The 
system also includes a classical mathematical model to simulate off-line possible 
scenarios with different conditions. Already in this paper, the authors think of using the 
model by Belanche et al. (2000) to be able to simulate bulking effects in their 
mathematical model. After its implementation, the results showed good performance 
demonstrating that the system is able to recognize the 80% of the process situation. 

In addition, in Comas et al. (2003) the deflocculation problem is tackled by a KBS for 
diagnosis and solution. It also establishes a methodology to be applied to any 
microbiology related problem. The rule-based system developed was validated resulting 
in more than 89% accuracy when detecting deflocculation situations. The work also 
highlights the relevance of the experts’ opinion in the development of the system. 

Martínez et al. (2006) is another example of how to face many operational problems of 
microbiological origin in the AS system by means of a case-based system. The paper 
points out the relevance of the day-to-day experience of plant operators which is often 
the unique knowledge on which to base their decisions when facing operational 
problems of microbiological origin. Anchored in case-based reasoning the system 
retrieves past experiences to help operators to make decisions.  

There are applications to the AD system as well. For example, Lardon et al. (2005) 
applied a modular fuzzy inference system based on rules to diagnose the state of the 
system (i.e. normal, hydraulic overload, organic overload…). The system is especially 
useful when resolving conflicting situations since the evidence theory embodied in the 
system can reliably deal with the uncertainties of the system. 

In Puñal et al. (2003), a KBS is applied to the monitoring and diagnosis of an AD plant. 
The system is able to identify the current state of the process; it can also predict its trend, 
failures in the instrumentation and propose actuations. The validation shows that the 
system can present valuable solutions that end up in recovering the normal operation of 
the process. 

To sum up, these techniques can be useful to represent the knowledge to detect, via 
simulation, that the process is moving towards a situation of risk of operational 
problems of microbiological origin.  
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3. Objectives 

The main objective of this thesis is to develop a knowledge-based risk model that 
integrates numerical modelling and qualitative aspects to simulate risk of plant-wide 
operational problems of microbiological origin. The achievement of this main objective 
requires defining the following sub-objectives: 

 The risk model has to be developed to include the assessment of the most 
common operational problems of microbiological origin for both AS and AD 
(i.e. filamentous bulking, activated sludge foaming, rising sludge and 
anaerobic sludge foaming). 

 The most relevant variables to each operational problem of microbiological 
origin have to be identified using either heuristic knowledge and/or data 
mining techniques. 

 The risk model has to provide a suitable output to allow the evaluation of 
simulated results using criteria related to the risk of microbiological 
operational problems, in addition to any other performance criteria related to 
environmental and economical aspects.  

 The risk model has to be standardized enough to complement any of the 
existing wastewater treatment models during plant-wide simulations. This 
also implies that the implementation of the risk assessment model has to be 
software and platform independent. 

 The performance and usefulness of the risk model will be evaluated using a 
benchmark simulation platform for objective comparison of control 
strategies and with different case studies (with different influent conditions, 
different control strategies, different operational conditions, etc.). 
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4. Methods 

This chapter is dedicated to the different models used along the thesis. The ASM1, 
which is the basis of the BSM, is explained first. Secondly, the ADM1 is detailed since 
it also features in the BSM2. Finally, descriptions of how to implement fuzzy logic and 
ANNs are given. The aim of the chapter is principally to prepare the reader for the 
implementation of the risk models that will be detailed later (in Chapters 5 and 6) with 
their own simulation platform. 

The different models have already been explained in a general terms in the state-of-the-
art. Here, their main features are described. For further details on stoichiometric 
parameters, suggested parameter values etc., see the references given in Section 2.3 
Modelling. 

4.1 Activated Sludge Model No1 

The processes explained below are summarized in Figure 4.1. Table 4.1 summarizes all 
the related components with their units. In Table 4.2 all the processes and components 
of the Petersen matrix are summarised. 

Table 4.1. State variables of the ASM1. 
STATE VARIABLE Symbol Units 

Soluble inert organic matter SI g COD · m-3 
Readily biodegradable substrate SS g COD · m-3 
Particulate inert organic matter XI g COD · m-3 
Slowly biodegradable substrate XS g COD · m-3 
Active heterotrophic biomass XB,H g COD · m-3 
Active autotrophic biomass XB,A g COD · m-3 
Particulate products arising from biomass decay XP g COD · m-3 
Oxygen SO g COD · m-3 
Nitrate and nitrite nitrogen SNO g N · m-3 
NH4

+ + NH3 nitrogen SNH g N · m-3 
Soluble biodegradable organic nitrogen SND g N · m-3 
Particulate biodegradable organic nitrogen XND g N · m-3 
Alkalinity SALK mol · L-1 
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Figure 4.1. ASM1 processes and components diagram. 
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Non-biodegradable organic matter is biologically inert and passes through the system 
unchanged. Two fractions - inert soluble organic matter (SI) and inert particulate 
organic matter (XI) - have to be distinguished. SI leaves the model in the same 
concentration while XI is partially removed through the WAS. Biodegradable organic 
matter is divided into the readily and slowly biodegradable, which are treated as soluble 
(SS) and particulate (XS) material, respectively. Heterotrophic biomass (XB,H) grows in 
either aerobic (SO as DO) or anoxic conditions but is assumed to stop growing under 
anaerobic conditions. The decayed biomass is transformed into XS and XP, of which the 
latter is inert to biological degradation. 

With regard to N, the non-biodegradable particulate N as part of XI, XP and SI is not 
modelled, and the soluble portion is too small to be considered in the model. The 
biodegradable fraction is divided into: 

SNH: Free ammonia and its salts. 

SND: Soluble organic N linked to SS. 

XND: Particulate organic N which can be hydrolysed to SND linked to XS. 

SND is converted to ammonia nitrogen by (XB,H); SNH serves as the N supply for the 
synthesis of heterotrophic biomass and for autotrophic nitrifying bacteria (XB,A) growth. 
Conversion of ammonia nitrogen to nitrate (SNO) is considered in a single step needing 
aerobic conditions. Conversion of SNO to N2 is performed by XB,H under anoxic 
conditions. The decay of both biomasses (XB,H and XB,A) releases XND (as part of XS). 

SALK is included in the model but it is not essential. However, it can provide information 
on changes in pH which is constant and near neutrality. Some processes which would 
involve pH changes affect SALK. 
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Table 4.2. Matrix representation of the ASM1 from Henze et al. (2000). 
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Stoichiometric parameters: 
Heterotrophic yield: YH 
Autotrophic yield: YA 

Fraction of biomass yielding particulate products: fP 

Mass N/Mass COD in biomass: iXB 

Mass N/Mass COD: iXP 

Kinetic parameters: 
Heterotrophic growth and decay: µmH, KS, KOH, KNO, bH 

Autotrophic growth and decay:  µmA, KNH, KOA, bA 
Correction factor for anoxic growth of heterotrophs: ηg 

Ammonification: kA 
Hydrolysis: kH, KX 

Correction factor for anoxic 
hydrolysis: ηH 
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4.2 Anaerobic Digestion Model No1 

Biochemical and physical-chemical transformations are considered in the ADM1. 
Certain transformations and components for specific applications of AD have been 
excluded from the model to avoid excessive complexity. The Petersen matrix for both 
the soluble and particulate components of the ADM1 is given in Tables 4.4 and 4.5. 
Figure 4.2 depicts the state variables of the model except for cations and anions (Scat 
and San, respectively) and soluble inorganic carbon and nitrogen (SIC and SIN, 
respectively).  
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Figure 4.2. Schematic view of the ADM1 (Grau, 2007). 

In Table 4.3 the state variables of the ADM1 are listed with their respective units and 
description. 

Processes are also included in Figure 4.2 except for the decay of the different kinds of 
biomass (Xsu, Xfa, Xpro, Xac, Xaa, Xc4, Xh2), which all end up as complex composite 
particulate (Xc). Xc disintegrates into carbohydrate, protein and lipid particulate 
substrate (Xch, Xpr and Xli) and soluble and inert particulate matter (SI and XI). Xch, Xpr 
and Xli are then hydrolysed to soluble sugar, amino acids and fatty acid substrates (Ssu, 
Saa and Sfa, respectively). These are taken up by their specific biomass (Xsu, Xaa and Xfa) 
to ferment: (i) Ssu into acetate (Sac), propionate (Spro), butyrate (Sbu) and soluble 
hydrogen (Sh2); (ii) Saa into Spro, valerate (Sva), Sbu and Sh2; and (iii) Sfa into Sac and Sh2. 
Propionate degraders (Xpro) convert Spro into Sac and Sh2. Valerate and butyrate 
degraders (Xc4) transform Sva into Spro, Sac and Sh2, whereas Sbu degrades to Sac and Sh2. 
Finally, hydrogen and acetate degraders (Xh2 and Xac) produce soluble methane (Sch4), 
soluble carbon dioxide (Sco2) and soluble Sh2, which are all in equilibrium with their gas 
components (Gch4, Gh2, Gco2). 
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Table 4.4. Biochemical rate coefficients and kinetic rate equations for soluble components of the ADM1. 
Component → i 1 2 3 4 5 6 7 8 9 10 11 12 

Rate (ρj, kg COD·m3·d-1) 
j Process ↓ Ssu Saa Sfa Sva Sbu Spro Sac Sh2 Sch4 SIC SIN SI 
1 Disintegration            fsI,xc kdis · Xc 

2 
Hydrolysis 
Carbohydrates 1            khyd,ch · Xch 

3 Hydrolysis of Proteins  1           khyd,pr · Xpr 
4 Hydrolysis of Lipids 1-ffa,li  ffa,li           khyd,li · Xli 

5 Uptake of Sugars -1    (1-Ysu) fbu,su (1-Ysu) fpro,su (1-Ysu) fac,su (1-Ysu) fh2,su  ∑
−−=

ν−
2411,91i

5,iiC  
-(Ysu) Nbac  km,su 

suS

su

SK

S

+
 Xsu I1 

6 
Uptake of Amino 
Acids 

 -1  (1-Yaa) fva,aa (1-Yaa) fbu,su (1-Yaa) fpro,su (1-Yaa) fac,su (1-Yaa) fh2,aa  ∑
−−=

ν−
2411,91i

6,iiC  
Naa-(Yaa)Nbac  km,aa 

aaS

aa

SK

S

+
 Xaa I1 

7 Uptake of LCFA   -1    (1-Yfa) 0.7 (1-Yfa) 0.3   -(Yfa)Nbac  km,fa 

faS

fa

SK

S

+
 Xfa I2 

8 Uptake of Valerate    -1  (1-Yc4) 0.54 (1-Yc4) 0.31 (1-Yc4) 0.15   -(Yc4)Nbac  km,c4 

vaS

va

SK

S

+
 Xc4  

vabu SS1

1

+

 I2 

9 Uptake of Butyrate     -1  (1-Yc4) 0.8 (1-Yc4) 0.2   -(Yc4)Nbac  km,c4 

buS

bu

SK

S

+
 Xc4 

buva SS1

1

+

 I2 

10 
Uptake of 
Propionate 

     -1 (1-Ypro) 0.57 (1-Ypro) 0.43  ∑
−−=

ν−
2411,91i

10,iiC  
-(Ypro)Nbac  

km,pr 

proS

pro

SK

S

+

 Xpro I2 

11 Uptake of Acetate       -1  (1-Yac) ∑
−−=

ν−
2411,91i

11,iiC  
-(Yac)Nbac  km,ac 

acS

ac

SK

S

+
 Xac I3 

12 
Uptake of 
Hydrogen 

       -1 (1-Yh2) ∑
−−=

ν−
2411,91i

12,iiC  
-(Yh2)Nbac  km,h2 

2hS

2h

SK

S

+
 Xh2 I1 

13 Decay of Xsu             kdec,Xsu · Xsu 
14 Decay of Xaa             kdec,Xaa · Xaa 
15 Decay of Xfa             kdec,Xfa · Xfa 
16 Decay of XC4             kdec,Xc4 · Xc4 
17 Decay of Xpro             kdec,Xpro · Xpro 
18 Decay of Xac             kdec,Xac · Xac 
19 Decay of Xh2             kdec,Xh2 · Xh2 
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Table 4.5. Biochemical rate coefficients and kinetic rate equations for particulate components of the 
ADM1. 

Component → i 13 14 15 16 17 18 19 20 21 22 23 24 
Rate (ρj, kg COD·m3·d-1) 

j Process ↓ Xc Xch Xpr Xli Xsu Xaa Xfa Xc4 Xpro Xac Xh2 XI 
1 Disintegration -1 fch,xc fpr,xc fli,xc        fxI,xc kdis · Xc 

2 Hydrolysis Carbohydrates  -1           khyd,ch · Xch 

3 Hydrolysis of Proteins   -1          khyd,pr · Xpr 
4 Hydrolysis of Lipids    -1         khyd,li · Xli 

5 Uptake of Sugars     Ysu        km,su 

suS

su

SK

S

+
 Xsu I1 

6 Uptake of Amino Acids      Yaa       km,aa 

aaS

aa

SK

S

+
 Xaa I1 

7 Uptake of LCFA       Yfa      km,fa 

faS

fa

SK

S

+
 Xfa I2 

8 Uptake of Valerate        Yc4     km,c4 

vaS

va

SK

S

+
 Xc4  

vabu SS1

1

+

 I2 

9 Uptake of Butyrate        Yc4     km,c4 

buS

bu

SK

S

+
 Xc4 

buva SS1

1

+
 I2 

10 Uptake of Propionate         Ypro    
km,pr 

proS

pro

SK

S

+

 Xpro I2 

11 Uptake of Acetate          Yac   km,ac 

acS

ac

SK

S

+
 Xac I3 

12 Uptake of Hydrogen           Yh2  km,h2 

2hS

2h

SK

S

+
 Xh2 I1 

13 Decay of Xsu 1    -1        kdec,Xsu · Xsu 
14 Decay of Xaa 1     -1       kdec,Xaa · Xaa 
15 Decay of Xfa 1      -1      kdec,Xfa · Xfa 
16 Decay of XC4 1       -1     kdec,Xc4 · Xc4 
17 Decay of Xpro 1        -1    kdec,Xpro · Xpro 
18 Decay of Xac 1         -1   kdec,Xac · Xac 
19 Decay of Xh2 1          -1  kdec,Xh2 · Xh2 
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Table 4.3. Dynamic state variables of ADM1 (Batstone et al., 2002). 
STATE VARIABLE Symbol Units 
Composite Xc kg COD · m-3 
Carbohydrates Xch kg COD · m-3 
Proteins Xpr kg COD · m-3 
Lipids Xli kg COD · m-3 
Particulate inerts XI kg COD · m-3 
Soluble inerts SI kg COD · m-3 
Monosaccharides Ssu kg COD · m-3 
Amino acids Saa kg COD · m-3 
Total long chain fatty acids Sfa kg COD · m-3 
Total valerate Sva kg COD · m-3 
Total butyrate Sbu kg COD · m-3 
Total propionate Spro kg COD · m-3 
Total acetate Sac kg COD · m-3 
Hydrogen Sh2 kg COD · m-3 
Methane Sch4 kg COD · m-3 
Inorganic carbon SIC M 
Inorganic nitrogen SIN M 
Monosaccharides degraders Xsu kg COD · m-3 
Amino acids degraders Xaa kg COD · m-3 
Long chain fatty acids degraders Xfa kg COD · m-3 
Butyrate and valerate degraders Xc4 kg COD · m-3 
Propionate degraders Xpro kg COD · m-3 
Acetate degraders Xac kg COD · m-3 
Hydrogen degraders Xh2 kg COD · m-3 
Cations Scat M 
Anions San M 

4.3 Benchmark Simulation Model 

The main features of the IWA/COST simulation benchmark are described here as a 
reference; for further details on each BSM the reader should refer to Copp (2002), 
Rosen et al. (2004), Jeppsson et al. (2007) and Nopens et al. (2008). The main aim of 
Benchmark Simulation Models (BSMs) is to provide a protocol to objectively compare 
different CSs. However, the protocol used in the evaluation is critical and must be 
defined in such a way as to ensure unbiased comparisons. To make unbiased 
comparisons, each CS must be evaluated under the same conditions. Furthermore, the 
effect of the CS must be compared to a fully defined and suitable reference output. Only 
then is it possible to accurately evaluate a CS and compare it with another strategy. The 
simulation benchmark defines such a protocol and provides a suitable reference output. 

4.3.1 Benchmark Simulation Model No1 

The description of the BSM1 is structured as follows: first the plant layout is presented, 
then comes process models, a description of influent files, a simulation protocol, 
performance indices and finally default controllers. 

4.3.1.1 Plant layout 

The simulation benchmark plant design is comprised of five reactors in series with a 
secondary settler. Figure 4.3 shows a schematic representation of the layout. 

The layout is fully defined and has the following characteristic features: 

 Five biological reactors in series with a secondary settler and a total biological 
volume of 6000 m3

 (biological reactors 1 & 2 are each 1000 m3
 and biological 

reactors 3, 4 & 5 are each 1333 m3). 
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 Biological reactors 1 & 2 unaerated, but fully mixed. 

 Aeration of biological reactors 3, 4 & 5 achieved using a maximum oxygen 
transfer coefficient (KLa) of 360 d-1. 

 Default KLa of 240 d-1
 in biological reactors 3 & 4 and 84 d-1

 in biological 
reactor 5. 

 DO saturation of 8 gO2 m-3 in biological reactors 3, 4 & 5. 

 A non-reactive secondary settler with a volume of 6000 m3
 (area of 1500 m2 and 

a depth of 4 m) subdivided into 10 layers. 

 A feed point to the secondary settler at 2.2 m from the bottom (i.e. feed enters 
the secondary settler in the middle of the sixth layer). 

 Two internal recycles: 

o A nitrate Qintr from the 5th to the 1st biological reactor at 55338 m3·d-1. 

o A RAS from the underflow of the secondary settler to the front end of 
the plant at a default flow rate of 18446 m3·d-1

 (as there is no biological 
reaction in the secondary settler, the O2 concentration in the recycle is 
the same as in the fifth biological reactor). 

 WAS is pumped continuously from the secondary settler underflow at a default 
rate of 385 m3·d-1. 

INTERNAL RECYCLE

ASU1 ASU2 ASU3 ASU4 ASU5

EXTERNAL RECYCLE WASTE ACTIVATED SLUDGE

INFLUENT EFFLUENT

INTERNAL RECYCLE

ASU1 ASU2 ASU3 ASU4 ASU5

EXTERNAL RECYCLE WASTE ACTIVATED SLUDGE

INFLUENT EFFLUENT

 

Figure 4.3. Schematic representation of the ‘simulation benchmark’ configuration.  

The physical attributes of the biological reactors and the secondary settler are listed in 
Table 4.6 and there is a selection of system variables listed in Table 4.7. 

Table 4.6. Physical attributes of the biological reactors and the secondary settler for the IWA/COST 
simulation benchmark system configuration. 

 Physical configuration Units 

Volume - Biological reactor 1 1000 m3 
Volume - Biological reactor 2 1000 m3 
Volume - Biological reactor 3 1333 m3 
Volume - Biological reactor 4 1333 m3 
Volume - Biological reactor 5 1333 m3 
Depth – Secondary settler 4 m 
Area – Secondary settler 1500 m2 
Volume – Secondary settler 6000 m3 
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Table 4.7. System variables. 
 Default system flow rates Units 
Inflow rate 18446 m3·day-1 
Recycle flow rate 18446 m3·day-1 
Internal recycle flow rate 55338 m3·day-1 
Waste sludge flow rate 385 m3·day-1 
KLa – Biological reactor 1 n/a - 
KLa – Biological reactor 2 n/a - 
KLa – Biological reactor 3 10 hr-1 
KLa – Biological reactor 4 10 hr-1 
KLa – Biological reactor 5 3.5 hr-1 

4.3.1.2 Process models 

As explained above, the biological processes are modelled using the ASM1. Table 4.8 
shows the stoichiometric and kinetic parameters, at approximately 15ºC, used in the 
BSM1 adaptation of the ASM1. 
The secondary settler is modelled as a 10-layer non-reactive unit (i.e. with no biological 
reaction). The 6th layer (counting from bottom to top) is the feed layer. The secondary 
settler has an area (A) of 1500 m2. The height of each layer m (zm) is 0.4 m, making a total 
height of 4 m. The secondary settler’s volume, therefore, is 6,000 m3. The parameter 
values for the settling velocity function are given in Table 4.9. 

Table 4.8. Stoichiometric and kinetic parameter values for the ASM1 in the BSM1. 

PARAMETER DESCRIPTION 
Parameter 

symbol 
Value Units 

Autotrophic yield YA 0.24 g XB,A COD formed (g N utilised)-1 
Heterotrophic yield YH 0.67 g XB,H COD formed (g COD utilised)-1 
Fraction of biomass to particulate products fP 0.08 Dimensionless 
Nitrogen fraction in biomass iXB 0.08 g N (g COD)-1 in biomass (XB,A & XB,H) 
Nitrogen fraction in particulate products iXP 0.06 g N (g COD)-1 in XP 
Maximum heterotrophic growth rate µmH 4.0 day-1 
Half-saturation (hetero, growth) KS 10.0 g COD · m-3 
Half-saturation (hetero, oxygen) KOH 0.2 g O2 · m

-3 
Half-saturation (nitrate) KNO 0.5 g NO3 · m

-3 
Heterotrophic decay rate bH 0.3 day-1 
Anoxic growth rate correction factor ηg 0.8 dimensionless 
Anoxic hydrolysis rate correction factor ηh 0.8 dimensionless 
Maximum specific hydrolysis rate Kh 3.0 g XS (g XB,H COD · day)-1 
Half-saturation (hydrolysis) KX 0.1 g XS (g XB,H COD)-1 
Maximum autotrophic growth rate µmA 0.5 day-1 
Half-saturation (auto. growth) KNH 1.0 g NH3-N · m-3 
Autotrophic decay rate bA 0.05 day-1 
Half-saturation (auto. oxygen) KOA 0.4 g O2 · m

-3 
Ammonification rate Ka 0.05 m3 (g COD · day)-1 

 
The solid flux due to gravity is Js=vs(X)·X where X is the total sludge concentration. A 
double-exponential settling velocity function (Takács et al., 1991) has been selected 
(Equations 4.1): 
 

( ) ( )( )( )( )minpminh
XXrXXr

00s eev,'vmin,0max)X(v
−−−−

−=  (Eq. 4.1) 

 
where 

Xmin=fns·Xf  (Eq. 4.2) 

Table 4.9. Secondary settler model parameters and default values. 
 Parameter Units Value 

Maximum settling velocity v0’ m·day-1 250 
Maximum Vesilind settling velocity  vo m·day-1 474 
Hindered zone settling parameter rh m3·(g SS)-1 0.000576 
Flocculant zone settling parameter rp m3·(g SS)-1 0.00286 
Non-settleable fraction fns dimensionless 0.00228 
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4.3.1.3 Influent file design 

To achieve a complete and unbiased evaluation, it is important that each CS be 
subjected to a series of defined disturbances. To this end, several dynamic influent files 
have been defined in the simulation benchmark description (Copp, 1999; Vanhooren 
and Nguyen, 1996). In total, there are three influent descriptions and each is meant to be 
representative of a different weather condition. Each file contains 14 days of influent 
data at 15-minute intervals. The data included in the files are listed in the following 
order: time, SI, SS, XI, XS, XB,H, XB,A, XP, SO, SNO, SNH, SND, XND, SALK, Q0, assuming 
SO, XB,A, XP and SNO to be 0, and SALK = 7 mol·m-3. In general, these files depict 
expected daily variations in Qin, COD and N. In addition, expected trends in weekly 
data have been incorporated, which means that much lower peak flows are depicted in 
the “weekend” data, which is consistent with normal load behaviour at a municipal 
treatment facility. 

The files are representative of three disturbances: dry weather, a storm event and a rain 
event. The first file depicts what is considered to be normal daily variations in flow 
rates and COD and N loads. The second file is a variation on the first with the 
incorporation of two storm events. The first storm event in this file is of high intensity 
and short duration and is expected to flush the sewer of particulate material. The 
resuspension of these particles is reflected in the data through a significant increase in 
inert and biodegradable suspended solids. The second storm event assumes the sewers 
were cleared of particulate matter during the first storm event; hence, only a modest 
increase in COD load is noted during the second storm. This result occurs even though 
the peak flow for both storms is the same and the peak flow of the second storm is 
maintained over a longer period of time. The third file is meant to represent a long rain 
event. The influent flow during this event does not reach the level attained during the 
storm events, but the increased flow is sustained for a much longer period of time. 
Unlike the storm events, there is no increase in COD load to the plant. The flow-
weighted average concentrations of the influent components for the three files are 
shown in Table 4.10. 

Table 4.10. Flow weighted average influent composition in the influent files. 
COMPONENT Dry weather Storm event Rain event Units 

SS 69.50 64.93 60.13 g COD·m-3 
XB,H 28.17 27.25 24.37 g COD·m-3 
XS 202.32 193.32 175.05 g COD·m-3 
XI 51.20 51.92 44.30 g COD·m-3 
SNH 31.56 29.48 27.30 g N·m-3 
SI 30.00 28.03 25.96 g COD·m-3 
SND 6.95 6.49 6.01 g N·m-3 
XND 10.59 10.24 9.16 g N·m-3 
Q 18446 19745 21320 m3·day-1 

4.3.1.4 Simulation procedure 

The simulation procedure involves two steps: steady state and dynamic simulation. In 
the first, the system is simulated with a constant influent flow rate and composition. 
One hundred days of simulation using the flow-weighted average dry weather influent 
is used to ensure a consistent starting point and eliminate the influence of the starting 
conditions. 

The dynamic simulation starts by simulating the system for 14 days with the dynamic 
dry weather influent. After this, the state variables are saved and used as the starting 
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conditions for the last 14 days of simulation in the desired weather conditions (i.e. dry 
weather, storm event or rain event). 

Only the last 7 days of simulation are used for performance evaluation purposes (i.e. 
from day 22 to day 28). In total, data for all variables are stored every 15 min during the 
7 days of evaluation.  

4.3.1.5 Performance indices 

The flow-weighted average values of the effluent concentrations over the three 
evaluation periods (dry, rain and storm weather: 7 days for each) should obey the limits 
given in Table 4.11. Total N (Ntot) is calculated as the sum of SNO,e and SNKj,e, where SNKj 

is the Kjeldahl N concentration. 

Table 4.11. Concentration limits for pollutants in the effluent. 
VARIABLE VALUE 
Ntot < 18 g N·m-3 
CODt < 100 g COD·m-3 
SNH < 4 g N·m-3 
TSS < 30 g SS·m-3 
BOD5 < 10 g BOD·m-3 

As performance indices the percentage of time in violation (%TIV) of the limits in 
Table 4.11 is given. The performance assessment also includes the effluent quality 
(EQI; Equation 4.3). The EQI (kg pollution unit.d-1) is averaged over the period of 
observation T (d) (i.e. the second week or last 7 days of each  weather file), based on a 
weighting of the effluent loads of compounds that have a major influence on the quality 
of the receiving water and that are usually included in regional legislation.  

EQI is defined as: 

∫
=

=









+
+++

=

days14t

days7t
e5BODe,NONO

e,NkjNkjeCODeSS dt)·t(Q·)t(BOD·B)t(S·B
)t(S·B)t(COD·B)t(SS·B

1000·T

1
EQI    (Eq. 4.3) 

where 

( ) XPe,A,Be,H,BXBe,NDe,NDe,NHNkj,e iXXiXSSS +++++=  (Eq. 4.4) 

( )e,Pe,A,Be,H,Be,Ie,Se XXXXX·75.0SS ++++=     (Eq. 4.5) 

( )( )( )e,A,Be,H,BPe,Se,Se,5 XX·f1XS·25.0BOD +−++=     (Eq. 4.6) 

( )e,Pe,A,Be,H,Be,Ie,Se,Ie,Se XXXXXSSCOD ++++++=   (Eq. 4.7) 

and the Bi are weighting factors that convert the different types of pollution (Equation 
4.8) into pollution units (Table 4.12). The concentrations will be expressed in g.m-3. 
The values for Bi have been deduced from Vanrolleghem et al. (1996).  

Likewise, an influent quality index (IQI) can be calculated: 

∫
=

=









++
+++

=

days14t

days7t

0
05BOD0,NONO

0,NkjNkj0COD0SS )t(Q·)t(BOD·B)t(S·B
)t(S·B)t(COD·B)t(SS·B

1000·T

1
IQI   (Eq. 4.8) 
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where 
( ) ( )0,i0,PXP0,A,B0,H,BXB0,ND0,ND0,NH0Nkj, XXiXXiXSSS ++++++= (Eq. 4.9) 

( )0,P0,A,B0,H,B0,I0,S0 XXXXX·75.0SS ++++=           (Eq. 4.10) 

( )( )( )0,A,B0,H,BP0,S0,S0,5 XX·f1XS·65.0BOD +−++=         (Eq. 4.11) 

( )0,P0,A,B0,H,B0,I0,S0,I0,S0 XXXXXSSCOD ++++++=    (Eq. 4.12) 

Table 4.12. Bi values 
FACTOR BSS BCOD BNkj BNO BBOD5 

Value (g pollutions units·g-1) 2 1 30 10 2 

Ninety-fifth percentiles of the effluent ammonia (SNH,95), effluent total N (Ntot,95)  and 
total suspended solids (TSS95) have to be shown as well. These percentiles represent the 
SNH, Ntot,95 and TSS effluent concentrations that are exceeded 5% of the time. 

Performance assessment also includes operational costs. Operational costs include 
several elements: 

 Sludge production (SP; kg·d-1) to be disposed of. This is the sum of the WAS 
and the solids that have accumulated in the system. The amount of TSS in the 
biological reactor at time t can be expressed as follows (Equation 4.13): 

)t(TSS)t(TSS)t(TSS sa +=  (Eq. 4.13) 

where TSSa is the total suspended solids in the biological reactor, 
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TSSS is the total suspended solids in the secondary settler, 
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A·z)·XXXXX(·75.0)t(TSS
mj

1j
jj,Pj,A,Bj,H,Bj,Ij,SS

=

++++= ∑
=

=

(Eq. 4.15) 

 Total SP, which takes into account the sludge to be disposed of and the sludge 
lost at the weir (Equation 4.16): 

∑
=

=

+++++=
days14t

days7t
ee,Pe,A,Be,H,Be,Ie,Stotal dt)·t(Q)·XXXXX(·

T

75.0
SPSP   (Eq. 4.16) 
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 Pumping energy (PE; kWh·d-1) and aeration energy (AE; kWh·d-1) are also 
included in the operational costs (Equations 4.18 and 4.19, respectively). 
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where 
flow rates are in m3·d-1 

AE should take into account the type of diffuser, bubble size, etc., and is 
calculated from the KLa according to Equation 4.19, valid for Degrémont DP230 
porous disks at an immersion depth of 4 m. 
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where KLa is in d-1and i refers to the compartment. 

 Consumption of external carbon source (EC; kg COD·d-1). This can be added to 
improve denitrification (Equation 4.20). 
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where  

CODEC = 400000 gCOD·m-3 

 Mixing energy (ME; kWh·d-1) as a function of the compartment’s volume 
(Equation 4.21). 
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The weighted sum of Equations 4.17, 4.18, 4.19, 4.20, 4.21 represents the operational 
cost index (OCI; Equation 4.22). 

MEEC·3SP·5PEAEOCI ++++=  (Eq. 4.22) 

4.3.1.6 Default controllers 

A number of default controllers were developed and implemented in the BSM1 to test the 
evaluation criteria in closed-loop scenarios. Two proportional integral (PI) controllers 
were implemented, the first to maintain the nitrate concentration in the second biological 
reactor at 1 g·m-3 by manipulating the internal recycle from the fifth to the first biological 
reactor, and the second to maintain the DO at 2 g (-COD) · m-3 manipulating KLa in the 
fifth biological reactor. In addition, specific evaluation criteria for the control handles is 
available by maximal deviation from set points and by error variance. 

The default controllers have the following features: 

 The DO: DO sensor ranges from 0 to 10 g(-COD)·m-3 with a noise of 0.25 g(-
COD)·m-3. KLa in the fifth biological reactor is constrained between 0 and 360 d-1. 
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 The Qintr ranges from 0 to 5 times the Qin,0 (18446 m3·d-1). The nitrate sensor has a 
10 minutes delay, a measurement noise of 0.5 gN·m-3 and the measurement range 
is between 0 to 20 gN·m-3.  

4.3.2 Long-term Benchmark Simulation Model No1 

The BSM1_LT is a natural evolution development of the BSM1. The BSM1_LT was 
developed to address certain BSM1 limitations. The main changes (Rosen et al., 2004) 
are: evaluation time period, addition of temperature changes, temperature dependency, 
toxicity, inhibition for kinetic reactions and the influent file design. Within the BSM1_LT, 
new control handles that made no sense in the BSM1 are possible mainly for monitoring. 
For instance, the consequences of WAS flow rate manipulation might not be seen in a 
seven-day evaluation period, but they will in a 365-day period. 

4.3.2.1 Evaluation time period 

It is well known that seasonal effects have a significant influence on WWTP performance, 
and that some probe failures only occur a few times a year. Therefore, a seven-day 
evaluation period of the BSM1 would not be sufficient to evaluate the long-term influence 
of seasonal effects on CSs. For this reason, the simulation period was extended to 609 
days, with performance being evaluated over the last 365 days. The first 63 days are 
simulated with dynamic influent to reach a ‘pseudo’ steady state, and are followed by 18 
months’ simulation. From this period the first 6 months can be used for the training of 
monitoring strategies and control algorithms, while the last 12 months (starting the 1st 
July) are used for evaluation purposes. In general terms, the extended evaluation period 
makes the BSM1_LT more realistic. 

4.3.2.2 Temperature changes 

The temperature has been modelled as a sinusoidal function (Equation 4.23): 
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The function represents the roughly sinusoidal behaviour of the temperature during the 
year, at its maximum at the beginning of autumn and its minimum in February. Also, the 
diurnal effect is included with a sine wave with a period of 1 day and amplitude of 0.5ºC. 

4.3.2.3 Temperature dependency 

As a consequence, the values of the temperature dependent kinetic parameters in the 
ASM1 model vary during the evaluation period. In Henze et al. (1987), kinetic parameter 
values are given for 10 and 20°C and intermediate values can be calculated according to 
an Arrhenius function. The BSM1 parameter values are defined at 15°C, but rounded to 
one or two decimal points. Since it is desirable that the BSM1 and BSM1_LT have 
exactly the same parameter values at 15°C, the Arrhenius function should be based on 
values at 10 and 15°C, using the BSM1 values for 15°C. At 20°C, this gives slightly 
different values to those of Henze et al. (1987). 

It should be noted that the saturation concentration for DO is temperature dependent. This 
has an impact on the mass transfer rate of O2, since it is modelled as KLa (SO,sat–SO). KLa is 
also temperature dependent. In BSM1, and also in the proposed BSM1_LT, the O2 mass 
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transfer rate is expressed as KLa. This means that no temperature compensation is 
required for KLa. However, as soon as KLa is to be expressed in terms of energy (an 
important evaluation criterion), the temperature dependency is crucial (Rosen et al., 2004). 

4.3.2.4 Influent file design 

The design of the influent file is based on the BSM2 influent file (see Section 4.3.3.2 
Influent file design). However, there is a difference: since the influent file of BSM2 is 
defined as the influent to the plant, whereas the influent file in BSM1 is defined as the 
influent to the biological treatment, there is a need to modify the BSM2 influent file for 
use in the BSM1_LT. This is done by simply letting the influent file of BSM2 be 
applied to the same type of primary clarifier used in BSM2 and the output of the 
clarifier becomes the influent file of BSM1_LT (IWA Task Group on Benchmarking of 
Control Strategies for WWTPs, 2009). 

4.3.3 Benchmark Simulation Model No2 

None of the BSMs provides a model suitable for simulation on a plant-wide basis. This 
is the limitation that the BSM2 overcomes, principally by including the sludge line with 
the ADM1. Only the main features of the BSM2 are commented on here; for further 
details the reader can refer to Jeppsson et al. (2006) and Nopens et al. (2008). 

4.3.3.1 Plant layout 

Specifically, the BSM2 contains seven components (Figure 4.4): (i) a primary clarifier 
based on the description of Otterpohl and Freund (1992) and Otterpohl et al. (1994); (ii) 
five-reactor (two anoxic plus three aerobic) N removal AS configuration based on the 
ASM1 (Henze et al., 1987); (iii) a secondary clarifier based on the double exponential 
model of Takács et al. (1991); (iv) an ideal gravity thickening unit; (v) AD based on the 
ADM1 (Batstone et al., 2002); (vi) an ideal dewatering unit and, (vii) a storage tank 
between the dewatering unit and the primary clarifier.  

ASU1 ASU2 ASU3 ASU4 ASU5

Anaerobic digester

Dewatering

Primary
clarifier

Secondary
clarifier

Thickener

Storage tank

ASU1 ASU2 ASU3 ASU4 ASU5

Anaerobic digester

Dewatering

Primary
clarifier

Secondary
clarifier

Thickener

Storage tank  

Figure 4.4. BSM2 layout used for AD risk model simulations. 



Chapter 4 

56 

Compared to BSM1 and BSM1_LT the volumes of the five biological reactor reactors 
were increased due to the high N-loads caused by the reject water (Table 4.13).  

Table 4.13. New biological reactor volumes for BSM2. 
 Physical configuration Units 
Volume - Biological reactor 1 1500 m3 
Volume - Biological reactor 2 1500 m3 
Volume - Biological reactor 3 3000 m3 
Volume - Biological reactor 4 3000 m3 
Volume - Biological reactor 5 3000 m3 

The changes in volumes also resulted in more changes in flow rates in order to maintain 
a reasonable HRT. Table 4.14 summarises the changes in flow rates, HRTs, sludge 
loadings and digester SRT.  

Table 4.14. BSM2 plant specifications. 
 Default system values Units 

Inflow rate 20648 m3·day-1 
Recycle flow rate 20648 m3·day-1 
Internal recycle flow rate 61944 m3·day-1 
Waste sludge flow rate 300 m3·day-1 
KLa – Biological reactor 1 n/a - 
KLa – Biological reactor 2 n/a - 
KLa – Biological reactor 3 120 d-1 
KLa – Biological reactor 4 120 d-1 
KLa – Biological reactor 5 60 d-1 
HRT-Primary clarifier 1 h 
HRT-Overall biological reactor 14 h 
Sludge loading – Secondary settler 0.6 m·h-1 
Anaerobic digester SRT 19 d 

4.3.3.2 Influent file design 

The influent file for BSM2 has been generated with the dynamic disturbance model 
presented in Gernaey et al. (2006). The influent model includes the diurnal flow rate 
and concentration variations, rain events, a holiday effect which lasts for several weeks 
with reduced wastewater flow rate and pollutants fluxes. The seasonal effect on the 
inflow rate is also present represented by a high infiltration rate during the winter period 
and low infiltration during summer. Variation of temperature is also included as 
explained in Section 4.3.2.2 Temperature changes. 

4.3.3.3 Simulation procedure 

The BSM2 simulation is run for a total of 809 days. The initial 200 days are used to 
reach a steady state with constant input data, while of the remaining 609 days, 245 are 
used to reach a quasi-steady state for dynamic input data and to provide adaptive 
controllers with enough time to estimate parameters. This means that only the last 364 
days are to be used for evaluation purposes. 

4.3.3.4 Performance indices 

The main changes in the evaluation criteria that the BSM2 encompass are related to 
OCI (dimensionless). This includes the BSM1 costs (Equation 4.10) accrued from PE, 
aeration, ME, sludge disposal, EC and, in addition (Equation 4.24), the costs related to 
the AD system such as methane production (MP) and heating energy (HE): 

)HE,0(maxMP·6MEEC·3SP·3PEAEOCI net+−++++=   (Eq. 4.24) 
in which 
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HEnet is the net needed energy to heat the anaerobic digester (Eq. 4.25). 
 

MP·7HEHEnet −=   (Eq. 4.25) 

4.3.3.5 Anaerobic Digestion Model No1 implementation in the Benchmark Simulation 

Model No2 

The models included in the BSM2 have already been presented; however, some changes 
had to be made in order to integrate the ADM1 and ASM1 in the BSM2. A list of the 
main features adapted appears in more detail in Rosen et al. (2006). They describe how 
the problem of the wide range of the time constants (the stiffness problem) is solved. 
There is also an explanation of the adaptations made to the interfaces created by Copp et 

al. (2003) for implementation in the BSM2, as well as a discussion about algebraic 
solvers for pH and other troublesome variables. Recently, Nopens et al. (2009) 
identified the drawbacks and modified the interface by Copp et al. (2003) resulting in a 
more general and applicable interface. 

4.4 Artificial Neural Networks 

ANNs have the capacity to find the solution to a problem from a set of examples. A 
feed-forward ANN is a mathematical function that transforms a set of input variables 
into a set of output variables. The exact form in which this is done is regulated by a set 
of parameters called weights, which act as coefficients of the mathematical function. 
The values of these parameters are determined during a process called training. During 
this process, a set of real input and output data is presented to the ANN. Different weight 
values are generated to obtain a function which should represent the output variables 
presented to the ANN. An error is calculated for each set of weights. The weights that 
generate the function with the lowest error at the end are selected (Bishop, 1994). The 
exact architecture of the ANN is determined by the number of neurons and layers they 
have: the more neurons and layers, the more complex the ANN structure will be. 
Therefore, it is better to have simpler structures given that the more complex ones entail 
higher training and computation times. Figure 4.5 presents a general view of an ANN. 
The white circles represent the nodes (i.e. neurons) of the hidden layers while the grey 
circles represent the input and output layers (i.e. yi and xi, respectively). The lines 
represent the interconnections between the nodes (i.e. the weights). 

 

Figure 4.5. A general ANN. 
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The main advantage of ANNs is their high processing speed and to avoid the need to 
develop a first-principles model of the process, sometimes difficult or even impossible. 
On the other hand, the principal disadvantage of an ANN is that a sufficient amount of 
reliable data is required to provide enough information with which to both train and 
validate it, with the guarantee that sensor failures and/or data loss will not affect the 
training process. On top of this, severe problems may arise when extrapolating an ANN to 
new data outside the range of the data used during the training process. 

A feed-forward neural network toolbox for static models for use in MATLAB 5.3 or 
higher was used in this thesis. Three layers were chosen in all the ANN architectures: an 
input layer, a hidden layer of neurones with sigmoid transfer functions, and an output 
layer with linear transfer functions for outputs. Initialisation was performed using the 
Nguyen-Widrow algorithm, which initialises the weights with random values, later 
selecting their probability distributions to make all neurones active for the expected data 
ranges (Nguyen and Widrow, 1990). It also provides automatic data scaling and weights 
conversion. Bayesian regularisation is used to prevent over-fitting. 

4.5 Fuzzy rule-based systems 

Fuzzy rules are linguistic IF-THEN constructions that have the general form "IF A 
THEN B" where A and B are (collections of) propositions containing linguistic 
variables. A is called the premise and B is the consequence of the rule. In effect, the use 
of linguistic variables and fuzzy IF-THEN rules exploits the tolerance for imprecision 
and uncertainty. In this respect, fuzzy logic mimics the crucial ability of the human 
mind to summarize data and focus on decision-relevant information. 

Rule-based systems have two main parts: 

 Knowledge base: The knowledge base includes a set of decision trees (see, for 
example, Figure 5.1) or decision matrices (see, for example, Table 5.2) which 
contain the overall knowledge of the process. 

 The inference engine: The inference engine is the software that controls the 
reasoning operation by scanning the knowledge in the knowledge base. 

In this work, the description of heuristic and empirical knowledge is tackled using the 
principles of fuzzy decision theory (Bellmann and Zadeh, 1970; Pedrycz, 1995). It was 
L.A. Zadeh who expanded Boolean logic to real numbers. In Boolean logic 1 represents 
“true” and 0 “false”. In fuzzy logic, all the values between 0 and 1 are included, in order 
that a partial truth can also be represented. 

The use of fuzzy logic has increased due to the need to quantify rule-based systems. 
Basically, it allows us to assign degrees of truth, between 0 and 1, by quantifying 
numeric variables with linguistic tags such as often, never, approximately, some, very, a 

few, high, very high, etc. This allows fuzzy logic to provide data interpretations which, 
in the case of existing well-defined limits, would not be possible. For instance, SVI 
values higher than 150 mg·L-1 are typically considered high. With fuzzy logic, values 
higher than 150 mg·L-1 could be considered 100% high, whereas a value of 145 mg·L-1 
could be considered 90% high and 10% medium. With Boolean logic, a value of 145 
mg·L-1 would be considered as normal despite being very close to the value defined as 
high.  
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4.5.1 Fuzzification 

For each input and output variable selected, at least two membership functions (MFs) 
has to be defined - normally three and sometimes more. A qualitative category is 
defined for each of them: for example, ‘low’, ‘normal’ or ‘high’. The shapes of these 
functions are diverse but the usual is to work with triangles and trapezoids (in fact, 
usually pseudo-trapezoids) (see Figure 4.6). For this reason at least three (for triangles) 
or four (for trapezoids) points are required to define one MF of one variable. 

Example: If x is taken as a variable and ‘low’, ‘normal’ and ‘high’ as trapezoidal, 
triangle and trapezoidal MFs, respectively (Figure 4.6),  

 the ‘low’ MF will in fact be defined by three points: (x1, x2, x3) since x1 will 
always be 0. However, in order to define a real trapezoid a fourth point to the 
left of x1 (any negative one, e.g. x0) has to be defined.  

 the ‘high’ MF, following the same reasoning, has to be defined by four points: 
(x3, x4, x5, x6) (x6 any positive > x5). Despite this, any x value higher than x5 will 
have a degree of membership to the ‘high’ MF of 1, even though the degree of 
membership decreases beyond x5. 

 the ‘normal’ MF (like any other triangular MF) will be defined by three points: 
(x2, x3, x4). 

If the MFs are trapezoids (or pseudo-trapezoids, i.e. ‘low’ and ‘high’), they can be 
defined as (Equations 4.26 and 4.27): 
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If the MFs are triangles (in this case ‘normal’), they can be defined as (Equation 4.28): 
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It is important to emphasise that the computation of all the functions/equations for all 
the MFs of all variables has to be done every time the shape and interval of the MFs is 
changed (conversely, once computed the first time, the computations do not have to be 
done again if the MFs are not changed).  
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4.5.1.1 How the fuzzification step works 

The next question to be solved is how to fuzzify all the real values of the variable x. 
First, for a given value of x, for example xn, which can belong to one or more MFs, the 
y value is calculated for each of the MFs which xn belongs to. This y value has to be 
between 0 and 1. Consider, for example, three MFs: ‘low’, ‘normal’ and ‘high’ and a 
given value of xn. The degrees of membership to each MF (y values) for xn could be, for 
example: 0.6 for the ‘low’ MF and 0.4 for the ‘normal’ MF (see Figure 4.6). Likewise, 
all the values of any variable can be fuzzyfied. Any of the values will belong to at least 
one MF with a certain degree of membership. 
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Low High
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x6x2x0
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1
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Low High

x4 x5
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0.6

 

Figure 4.6. Example of the three MF for a given input. 

4.5.2 Rule base (decision matrix) definition 

Once the input and output variables and the MF are defined, the next step is to design 
the rule base (or decision matrix of the fuzzy knowledge base) composed of expert IF 
<antecedents> THEN <conclusions> rules. These rules transform the input variables 
into an output that will tell us the risk of operational problems (this output variable, the 
risk of a problem, also has to be defined with the MF, which will usually be ‘low’, 
‘normal’ or ‘high’ risk). Depending on the number of MFs for the input and output 
variables, a greater or lesser number of potential rules can be defined. The easiest case 
will be a rule base with only one input and one output variable.  

Example: For a given variable x involved in the development of a problem, the 
following “theoretical” rule can be stated:  

IF x is ‘normal’ THEN risk of problem is ‘medium’.  

The more variables there are present, the more rules can be defined in order to make the 
inference reliable.  

Once realistic rules based on expert knowledge have been defined, they will become the 
knowledge base of each of the problems considered in the risk model. It needs to be 
pointed out that not all the knowledge necessarily has to be translated into rules; 
sometimes some of the rules will be redundant. Let us demonstrate by a decision matrix 
(Table 4.15) that contains the expert knowledge to detect the risk of a problem from 
inputs X and Y: 
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Table 4.15.  Example of MFs for each variable considered. 

 Input Y 

 LOW NORMAL HIGH VERY HIGH 
In

p
u

t 
X

 
LOW low high high high 

NORMAL low low medium medium 

HIGH low low low low 

VERY HIGH low low low low 

4.5.2.1 How the rule base works 

The next issue is to compute the degree of membership to the MF (‘low’, ‘normal’ or 
‘high’) of the output (the risk of the problem). As explained in the fuzzification section, 
once a variable is fuzzified it takes a value between 0 and 1 indicating degree of 
membership to a given MF of that specific variable. The degrees of membership of the 
input variables have to be combined to get the degree of membership of the output 
variable.  

Example 4: For a given variable x involved in the cause of a problem (the risk-output 
has its own MF, ‘low’, ‘normal’ or ‘high’ risk), a rule base can be described by “saying”, 
for example, that:  

IF x is ‘low’ THEN risk of problem is ‘low’.  

IF x is ‘normal’ THEN risk of problem is ‘medium’.  

IF x is ‘high’ THEN risk of problem is ‘high’.  

According to these rules, if the degree of membership for x is supposed to be 0.6 to the 
‘low’ MF, then the risk of the problem will be ‘low’ 0.6, too.  

In a case where more than one input variable is present (which in fact is the usual case), 
the degree of membership for the output value will be the minimum value of the degree 
of membership for the different inputs.   

Example 5: Looking at Figure 3, let us suppose that for a set of 9 rules resulting from 
the decision matrix (see Table 4.15 above) Input X = 0.55 has a membership degree of 
0.8 to the ‘normal’ MF (rules 4, 6 and 7), and a membership degree of 0.2 to the ‘high’ 
MF (rule 8). On the other hand, Input Y = 6.5 has a membership degree of 0.2 to the 
‘high’ MF (rules 1 and 7) and a membership degree of 0.9 to the ‘normal’ MF (rules 3 
and 4). When a rule is totally satisfied (the antecedent is satisfied, those with (1) in 
Figure 4.7, rules: 4, 7 and 8), it will have an output with a certain membership degree to 
an output MF. These rules are satisfied in this example:  

IF Input X is ‘normal’ (degree of 0.8) and Input Y is ‘normal’ (degree of 0.9) THEN 
Risk of problem is ‘low’ (degree of 0.8) (Rule 4)  

IF Input X is ‘normal’ (degree of 0.8) and Input Y is ‘high’ (degree of 0.2) THEN Risk 
of problem is ‘medium’ (degree of 0.2) (Rule 7)  

IF Input X is ‘high’ (degree of 0.2) THEN Risk of problem is ‘low’ (degree of 0.2) 
(Rule 8)  
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The MF of the output will have a degree of membership equal to the lowest of the 
inputs. 

 

Figure 4.7. Example of the rules for the determination of a hypothetic risk of problem (detected by the 
rules in Table 1). 

From here, only the satisfied rules (4, 7 and 8) are taken into account. The resulting 
figure for output (2) has a ‘low’ MF due to rules 4 and 8 and a ‘normal’ MF due to rule 
7. To sum up, the final output figure (2) is the integration (sum) of the MF from the 
satisfied rules (1). Among the satisfied rules, the membership degree of each output MF 
will be the highest from among the rules that have as a result that MF. This means that 
the degree of membership of the ‘normal’ MF (0.2) (in (2)) is due to rule 7 and that the 
degree of membership of the ‘low’ MF (0.8) (in (2)) is due to the higher of rules 4 and 8 
(those that have as a conclusion that the MF is ‘low’).   

4.5.3 Defuzzification 

In this thesis the MFs of the output always have the same shape and configuration and 
the risk of any problem has the same rank: ‘low’, ‘normal’ or ‘high’. There is never any 
overlapping and the range of the output is from -0.2 to 1.2. Figure 4.8 shows the shape 
of each MF of the output variable. 
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Figure 4.8. Output MFs.  
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The equations of the straight lines of each output MF have to be calculated. The 
calculations for each of the MFs are presented next:  

For ‘low’ MF:   

5)2.00/()01(m

5)02.0/()01(m

nxmy

nxmy

2

1

222
low

2

111
low

1

−=−−=

=−−=

+⋅=

+⋅=

(Eq. 4.29 and 4.30) 

To find n, the point (0, 1) is substituted on both straight lines to obtain the two equations: 

1x5y
1x5y

low
2

low
1

+⋅−=
+⋅=

 

A similar calculation is performed for ‘medium’ (or ‘normal’; Equations 4.31 and 4.32) 
and ‘high’ MFs (Equations 4.33 and 4.34), to finally obtain: 

665.2x
3.0

1
y

665.0x
3.0

1
y

medium
2

medium
1

+⋅−=

−⋅=
 (Eq. 4.31 and 4.32) 

 
6x5y

4x5y
high
2

high
1

+⋅−=
−⋅=

 (Eq. 4.33 and 4.34) 

The value of each MF between each letter (i.e. between a and b, c and d, and e and f) 
corresponds to the value of the degree of membership for that function. 

To calculate a, b, c, d, e and f, the degree of membership has to be substituted in the y of 
the corresponding function, while x will be the corresponding letter (i.e. a, b, c, d, e or f). 

Example 6: From Example 5 two output MFs were obtained, ‘low’ and ‘medium’, with 
a degree of membership of 0.8 and 0.2, respectively. Thus, to find points a and b, 0.8 
has to be substituted in Equations 4.29 and 4.30: 





+⋅−=
+⋅=

1b5y
1a5y

low
2

low
1  

where the degree of membership is 0.8 as in: 





+⋅−=

+⋅=

1b58.0

1a58.0
 

And finally, 





=

−=

04.0b

04.0a
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The same is true for the ‘medium’ MF (Equations 4.31 and 4.32), 

{ 7395.0d
2595.0c

665.2d
3.0

1
2.0

665.0c
3.0

1
2.0

665.2d
3.0

1
y

665.0c
3.0

1
y

medium
2

medium
1

=
=









+⋅−=

−⋅=









+⋅−=

−⋅=

 

4.5.3.1 How the defuzzification step works 

The next step involves calculating the area of the resulting figures for each MF, taking 
into account that these areas will not be triangles in all cases (most of the time they will 
be triangles or trapezoids).  

The basic idea is to evaluate each output activated MF at intervals of 0.014. Those 
output MFs that have not been activated by the rules in Step 1.2 of the rule base take the 
full range of 0 as their value (see Example 7). 

It will be necessary to store each pair (x, y) for later calculation of the centroid. 

So, ‘low’ MF should be as shown in Table 4.16. 

Table 4.16. Intervals to be evaluated in steps of 0.014 for low output MF. Letters refer to Figure 4.8. 

From -0.2 to a 1x5y low
1 +⋅=  

From a to b The value in this interval is the degree of membership of the resulting MF of Section 4.5.2 – Rule base 

From b to 0.192 1x5y low
1 +⋅−=  

The same is true for the remaining MFs with their respective functions (Tables 4.17 and 
4.18). 

Table 4.17. Intervals to be evaluated in steps of 0.014 for medium output MF. Letters refer to Figure 4.8. 

From 0.206 to c 665.0x3.01ymedium
1 −⋅=  

From c to d The value in this interval is the degree of membership of the resulting MF of Section 4.5.2 – Rule base 

From d to 0.794 665.2x3.01ymedium
2 +⋅−=  

Table 4.18. Intervals to be evaluated in steps of 0.014 for high output MF. Letters refer to Figure 4.8. 

From 0.808 to e 4x5yhigh
1 −⋅=  

From e to f The value in this interval is the degree of membership of the resulting MF of Section 4.5.2 – Rule base 

From f to 1.2 6x5yhigh
2 +⋅−=  

As stated above, if any of these three MFs have not been activated by the rules, they 
will take the evaluation range 0 as their value. 

The final result of all these calculations will be 101 (x, y) pairs, with x ranging from -
0.2 to 1.2 in steps of 0.014. To calculate the final output of the risk model, the centroid 
has to be calculated as follows (Equation 4.35): 
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∑

∑
=

=

=

=

⋅

=
101i

1i
i

101i

1i
ii

c

y

yx
x  (Eq. 4.35) 

Example 7: From Example 6 a, b, c and d are known. By evaluating the MF as stated 
above, Table 4.19 is obtained. 

Table 4.19. Example of centroid calculation. 
I x y 

1 -0.2  (-0.2 �a) 0  ( 1x5y low
1 +⋅= ) 

… … … 
17 0.024 (a�b) 0.8 (degree of membership ‘low’) 
… … … 

28 0.178 (b�0.192) 0.11 ( 1x5y low
1 +⋅−= ) 

… … … 

31 0.22 (0.206�c) 0.068 ( 665.0x3.01ymedium
1 −⋅= ) 

… … … 
44 0.402 (c�d) 0.2 (degree of membership ‘medium’) 
… … … 

71 0.78 (d�0.794) 0.065 ( 665.2x3.01y medium
2 +⋅−= ) 

… … … 
73����101 (0.808�1.2) 0 (The ‘high’ MF is not active for this example) 

 ∑
=

=

101i

1i
iy  21.47 

 ∑
=

=

⋅
101i

1i
ii yx  3.87 

By applying the centroid equation to the 101 (x, y) pairs the centroid can be calculated 
as follows: 

18.0x
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y

yx
x

c

c

101i

1i
i
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1i
ii

c

=

=

⋅

=

∑

∑
=

=
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=

 

4.6 Concluding remarks 

This chapter has firstly presented the two standardized models for AS and AD: ASM1 
which is the basis for the BSMs, and ADM1, which together with ASM1 allows the 
evaluation of BSM2 plant-wide control strategies. Next, BSM1 for short term has been 
detailed presenting the layout and the different specifications, simulation procedure and 
evaluation criteria. Afterwards the modifications (i.e. temperature changes and effects, 
influent files, etc.) to BSM1 for long-term simulation (BSM1_LT) are described to 
finally detail BSM2 main features.  

The ANNs section presents the description of the ANN used in this thesis in the risk 
model development. The detailed description for a fuzzy logic system implementation 
using standard modelling description and equations was presented. The aim is to help 
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the benchmark developers to implement the risk model on their BSMs regardless of the 
simulation platform with the details that will appear in the following chapters. 
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5. Risk Model development 

As discussed in Section 2.3.5 Alternatives to mechanistic modelling of operational 
problems of microbiological origin, two alternative approaches can be used when 
mechanistic modelling cannot be applied: a knowledge-based approach linked to the 
heuristic knowledge and a black-box approach. The approach selected will depend on 
the sort of information available. 

The following section (5.1 AS risk model) is devoted to the development of the risk 
model for operational problems of microbiological origin which uses only information 
available in the simulation outputs, either directly or after simple data processing. For 
the AS risk model plenty of heuristic and bibliographic information was available. 
Hence, the risk model makes use of a KBS based on decision trees and fuzzy logic. This 
section details the following: the knowledge included in each operational problem of 
microbiological origin, its implementation in fuzzy logic, the range and shape of each 
MF, the outcomes of the model with the response surfaces for each operational problem 
of microbiological origin, and finally two extensions to the original AS risk model: (i) 
the inclusion of the deflocculation risk, and (ii) the effect of temperature on the risks 
associated with bulking and foaming caused by M. parvicella. 

The second section (5.2 AD risk model) is devoted to the AD risk model. The inclusion 
of the ADM1 in the BSM2 was the main motivation behind the development of the AD 
risk model. Section 2.2.2 Anaerobic Digestion presented a possible classification of 
different operational problems of microbiological origin. Among them, the AD risk 
model needs to consider biological foaming since the other problems can be modelled in 
the ADM1. For example, organic overloads cause VFA accumulation and pH inhibition, 
which have already been taken into account of in the ADM1. Acidogenic states have 
been considered as well, since they are characterised by the above-mentioned VFA 
accumulation and pH inhibition. Only biological foaming cannot be modelled 
mechanistically, and therefore this was the operational problem of microbiological 
origin considered in ADM1. The fact that real data from a pilot plant was available 
enabled the use a different approach in the development of the AD risk model. 

Section 5.2 AD risk model is divided in three main parts: (i) development, divided in a 
black-box approach and a knowledge-based approach; (ii) implementation of the 
developed AD risk model and finally, (iii) model outcomes, showing the response of the 
AD risk model. The first step to develop the AD risk model was a black box approach 
(Section 5.2.1.1 Black box approach); given that real data from a pilot plant was 
available it was decided to use a wrapper approach (Kohavi and John, 1997). It was 
implemented using ANN in order to objectively select the most important variables 
related to biological foaming. Afterwards, a literature research (Section 5.2.1.2 
Knowledge-based approach) about biological FAD was performed. In Section 5.2.1.3 
conclusions are drawn on both approaches. Next the implementation of the AD risk 
model is presented. 

5.1 Activated sludge risk model 

The operational problems considered in this approach are those system situations caused 
by imbalances of microorganisms (filamentous bulking and activated sludge foaming) 
and undesirable operating conditions (rising sludge in clarifiers). The core of the risk 
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assessment approach is a knowledge base composed of heuristic and empirical 
knowledge acquired from the literature and domain experts (i.e. information that can not 
be adequately represented by mechanistic models). Interestingly though, a significant 
part of this knowledge can be captured by means of equations, graphs, relationships, etc. 
that are based on numerical data which are directly related to state variables or 
parameters of the mechanistic models. The central idea is to select and interpret those 
process variables that could be available in real-time in a simulation (e.g. readily 
biodegradable substrate concentration (SS), ammonium nitrogen (NH4

+-N), nitrate 
nitrogen (NO3

--N), etc.) and which, albeit following human expert-like processing, 
would allow meaningful patterns relating to operational risks to be obtained. Note that 
due to a lack of affordable and reliable sensors only a minority of the simulated state 
variables used as inputs to the AS risk model presented here are monitored on-line in 
full-scale WWTPs. Instead, most variables are only available sporadically and after 
some delay following sampling and off-line analysis. This section is divided in three 
main subsections: development, knowledge formalisation and model outcomes. 

5.1.1 Development 

A review of the state-of-the-art understanding of filamentous bulking, foaming and 
rising sludge has led to the identification of symptoms, relationships and inference 
methods. This knowledge, founded on data used by experts in their reasoning strategies, 
has been organized and formalised by means of three decision trees or knowledge-based 
flow diagrams (Comas et al., 2003). It was not possible to create a data-driven risk 
assessment model in this case because large input-output data sets were required. Such 
experimental data sets relating to the risk of settling process disturbances are not usually 
available, while expert knowledge is. In a simulation the decision trees explore a set of 
process state variables relating to water and sludge quality at different sampling points 
(e.g. SS, heterotrophic biomass concentration (XB,H), BOD or TSS) together with the 
operational parameters in the AS system (e.g. the Qw or the Qr) and a set of calculated 
parameters like the food-to-microorganism ratio (F/M) or the SRT. These diagrams 
consist of hierarchical, top-down descriptions of the linkages and interactions between 
pieces of knowledge used for problem solving. Their representation in decision trees has 
allowed an easy interpretation and verification of the available knowledge by a panel of 
internationally recognised wastewater treatment experts. As a result of that evaluation 
and of the suggestions received during and after the 2nd IWA conference on 
Instrumentation, Control and Automation, where the decision trees were first introduced 
(Comas et al., 2006 and Comas et al., 2008), the original decision trees and the resulting 
knowledge base have been updated to the version presented here. 

5.1.1.1 Filamentous bulking decision tree 

The knowledge relating to risk of filamentous bulking proliferation was synthesised into 
a decision tree with three branches (Figure 5.1). Each branch of the tree evaluates one 
of the three main causes: low DO concentration (left), nutrient deficiency (middle) and 
low F/M ratio or substrate limiting conditions (right). The other common causes of 
filamentous bulking (septic conditions or low pH in the influent) were not considered 
within the current approach since standard mechanistic models include neither sulphur 
(S) nor pH modelling. 
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Figure 5.1. Decision tree developed to evaluate the risk of filamentous bulking. 

According to the substrate-diffusion and the kinetic selection theories (Martins et al., 
2004) the growth of filaments is favoured during conditions of low DO concentration. 
The left branch of the tree illustrates that the level of occurrence of limiting DO 
conditions in the biological reactors is related to the current F/M ratio in a non-linear 
way (Grady et al., 1999). So, although DO control is considered standard for most 
plants, favourable conditions for low DO caused bulking might arise if the DO set-point 
is not high enough when the WWTP experiences a high F/M ratio. The branch in the 
middle evaluates whether or not there are N and/or P limiting conditions. Finally, 
promoting conditions for the growth of low F/M filamentous microorganisms can be 
caused by both readily biodegradable substrate limiting conditions (SS) in the bioreactor 
and by a low or oscillating influent OLR. Thus, up to seven variables can be used by the 
knowledge-based decision trees as indicators to assess risk of filamentous bulking: SRT 
(measured as biomass present in the system per biomass removed from the system per 
day), DO, F/M_removed (measured as kg of COD removed per kg of biomass per day), 
F/M_fed (measured as kg of BOD5 supplied per kg of biomass per day), BOD5/N, 
BOD5/P and SS. 

5.1.1.2 Foaming decision tree 

The set of indicators that were found to be the most useful in detecting favourable 
conditions for filamentous foaming included F/M_fed, SRT, DO and the ratio between 
SS and slowly biodegradable substrate (XS) (Figure 5.2). Two main branches allow for 
investigation of the operational conditions enhancing the growth of different 
filamentous microorganisms that would cause biological foaming problems. 

Nocardioforms and M. parvicella, the most common filamentous organisms causing 
foaming (Wanner, 1994; Jenkins et al., 2003; Rossetti et al., 2005), experience better 
conditions for growth than floc-forming bacteria when the AS system experiences low 
F/M ratios or significant oscillations of F/M ratios combined with high SRT. In the case 
of M. parvicella, which also causes sludge bulking, foam formation is favoured by the 
two former conditions together with low DO concentrations in the aerobic reactors. The 
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development of biological foams due to growth of type 1863, although less frequent, is 
also probable if the F/M ratio fed to the bioreactor is very high (or the SRT is very low) 
and the influent contains a high fraction of HRBOM (a high SS/XS ratio). 
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Figure 5.2. Decision tree developed to evaluate the risk of foaming. 

5.1.1.3 Rising sludge decision tree 

Figure 5.3 illustrates the decision tree developed to estimate the risk of rising sludge in 
AS systems.  
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Figure 5.3. Decision tree developed to evaluate the risk of rising sludge. 
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According to Henze et al. (1993), rising sludge becomes a problem when the nitrate 
concentration in the secondary clarifier influent is higher than the critical nitrate 
concentration (8 mg NO3

--N L-1 at 15ºC). In this situation, the time required for nitrogen 
gas production (NGPT) is calculated (based on the denitrification rate and the time 
delay caused by removal of the remaining O2 at the bottom of the clarifier), and 
compared to the sludge retention time in the clarifier (estimated as the amount of sludge 
in the sludge blanket divided by the Qr). The denitrification rate is calculated as for the 
ASM1, but using the active heterotrophic biomass concentration at the bottom of the 
clarifier. Whenever the nitrate concentration is higher than critical and the NGPT is 
lower than or equal to the sludge retention time in the secondary settler, then favourable 
conditions for denitrification are inferred, and consequently the risk of occurrence of 
solids separation problems due to rising sludge increases. Fast DO consumption is 
assumed in the secondary settler and therefore the denitrification rate is always 
computed assuming no O2 inhibition (DO = 0 mg O2·L

-1). Hence, the variables used as 
indicators for rising sludge are NO3

--N, Qr, sludge blanket depth and denitrification rate. 

5.1.2 Knowledge formalisation 

The model estimates the risk of occurrence of microbiology-related solids separation 
problems by processing the data used by the mechanistic model (not only simulation 
outputs but also influent data and operational parameters; see Figure 5.4). 
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Figure 5.4. Relationship between the mechanistic model and the fuzzy knowledge base to estimate risk of 
microbiology-related solids separation problems. 

Risk estimation involves three main steps: 

5.1.2.1 Fuzzification 

The crisp values of numerical data are converted into linguistic/qualitative descriptors 
or input fuzzy sets (i.e. low, high, etc.) by means of corresponding MFs. MFs are 
defined for each variable used as a risk assessment indicator or symptom in the 
decision trees: F/M_removed (F/M 1) ratio, F/M_fed (F/M 2) ratio, DO, SRT, 
BOD5/N ratio, SS, and SS/XS. Triangular or pseudo-trapezoidal functions are used to 
define the MFs. Figure 5.5 illustrates an example of the MFs used in this approach. 



Chapter 5 

74 

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

FtoM_fed (kg BOD supplied•kg MLVSS-1•d-1)

D
e
g
re

e
o
f
m

e
m

b
e
rs

h
ip

L N H VH

Input variables

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

SRT (d)

D
e
g
re

e
o
f
m

e
m

b
e
rs

h
ip

VL N HL VH

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Risk of Foaming due to low F/M ratio

D
e
g
re

e
o
f
m

e
m

b
e
rs

h
ip

Low Medium High

Output variable

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

FtoM_fed (kg BOD supplied•kg MLVSS-1•d-1)

D
e
g
re

e
o
f
m

e
m

b
e
rs

h
ip

L N H VH

Input variables

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

SRT (d)

D
e
g
re

e
o
f
m

e
m

b
e
rs

h
ip

VL N HL VH

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Risk of Foaming due to low F/M ratio

D
e
g
re

e
o
f
m

e
m

b
e
rs

h
ip

Low Medium High

Output variable

 

Figure 5.5. Example of MFs for the input and output variables for risk of foaming due to low F/M ratio. 

Table 5.1 summarises the number of MFs and the ranks and shapes for each of the input 
and output fuzzy sets considered in the AS risk model. The limits of these MFs as well 
as their degree of overlapping, can be customised by the user according to the 
configuration and characteristics of the AS plant simulated. 

Table 5.1. MFs for each variable considered in the AS risk model. 
Variable\Modality  Very low Low Normal High Very high 

F/M 1 

Shape - Trapezoidal Triangular Triangular Trapezoidal 

Range - 
[-0.1429 -

0.1429 0.25 
0.5] 

[0.25 0.5 
0.75] 

[0.5 0.75 1] [0.75 1 4.027 4.187] 

F/M 2 

Shape  Trapezoidal Triangular Triangular Trapezoidal 

Range - 
[-0.0536 -

0.0536 0.25 
0.5] 

[0.25 0.5 
0.75] 

[0.5 0.75 1] [0.75 1 1.51 1.57] 

DO 
Shape Trapezoidal Triangular Triangular Triangular Trapezoidal 

Range 
[-0.4488 -

0.1164 0 1] 
[0 1 2] [1 2 3] [2 3.5 5] [3.5 5 8.021 8.261] 

SRT 
Shape Trapezoidal Triangular Triangular Triangular Trapezoidal 
Range [-7.2 -0.8 1 3] [0 3 6] [3 6 9] [6 9 12] [9 12 20.29 23.4] 

BOD5/N in the 
influent 

Shape - Trapezoidal Triangular Trapezoidal - 

Range - 
[-7.145 -7.145 

10 20] 
[10 20 
33.33] 

[20 33.3 201.3 
209.3] 

- 

BOD5/P in the 
influent 

Shape - Trapezoidal Triangular Trapezoidal - 

Range - [-10 -1 0 10] [10 50 100] 
[50 100 200 

210] 
- 

SS in biological 
reactor 1 

Shape - Trapezoidal Triangular Trapezoidal - 

Range - 
[-4.645 -4.645 

4 14] 
[9 20 34] 

[29 40 131.6 
143] 

- 

SS/XS in the 
influent 

Shape - Trapezoidal Triangular Trapezoidal - 

Range - 
[-0.08415 -
0.02183 0.1 

0.2] 

[0.15 0.25 
0.35] 

[0.3 0.45 1.55 
1.56] 

- 

SNO in biological 
reactor 5 

Shape - Trapezoidal Triangular Trapezoidal - 

Range - 
[-1.429 -1.429 

2 5] 
[2 5 8] 

[5 8 40.27 
41.87] 

- 

NGPT 

Shape - Trapezoidal Triangular Trapezoidal - 

Range - 
[-0.135 -0.0437 
0.046 0.056]* 

[0.046 
0.056 

0.066]* 

[0.056 0.066 
2.205 2.272]* 

- 

Risk of filamentous 
bulking 

Shape - Triangular Triangular Triangular - 
Range - [-0.2 0 0.2] [0.2 0.5 0.8] [0.8 1 1.2] - 

Risk of foaming 
Shape - Triangular Triangular Triangular - 
Range - [-0.2 0 0.2] [0.2 0.5 0.8] [0.8 1 1.2] - 

Risk of rising 
sludge 

Shape - Triangular Triangular Triangular - 
Range - [-0.2 0 0.2] [0.2 0.5 0.8] [0.8 1 1.2] - 

*These limits may vary in every simulation time step since they are a function  of the amount of sludge in the clarifier and the 
sludge recycle flow rate (i.e. of the sludge residence time in clarifier; Equations 5.1-5.3). 

5.1.2.2 Fuzzy inference  

 
The inference of the risk is provided by the Mamdani approach, to generate a fuzzy 
output from the corresponding input fuzzy sets based on implications contained in the 



Risk model development 

75 

fuzzy rule base. All the fuzzy rules in the model are derived from a review of the 
literature and based on the existing empirical knowledge of the cause-effect 
relationships of microbiology-related solids separation problems in the AS system. The 
decision trees shown in the previous section (Figures 5.1, 5.2 and 5.3) only represent 
those IF-THEN production rules leading to high risk of each particular microbiology-
related separation problem, while the rule base of the AS risk model is shown in Tables 
5.2 to 5.7. The Max-Min Mamdani fuzzy inference method (Mamdani and Assilan, 
1975) was proposed as the mechanism with which to concatenate the set of IF-THEN 
rules. 
 

02.01Limit3Limit

01.01Limit2Limit

1Q

ClarifierinVolumeSludge
1Limit

r

+=

+=

+
=

 (Eq. 5.1-5.3) 

where 
sludge volume in clarifier calculation is shown in Section 6.1.6 Rising sludge. 

Tables 5.2 to 5.7 present the rules extracted from each decision tree which combined 
with the MFs limits of Table 5.1 produce the surfaces presented in Figure 5.6 to 
Figure 5.14. Whenever surfaces are presented the high risks are indicated by the red 
zone while the blue zones denote the low risks. 

Figure 5.6 shows the profile of the risk of bulking due to nutrient deficiency caused by 
nitrogen. Likewise, Figure 5.7 shows the profile of the risk of bulking caused by P 
deficiency. In the first case the profile shows that ratios higher than 20 increase the risk 
of bulking. For the second case, the P deficiency risk of bulking become high with a 
BOD5/P ratio from 90 to 100. 

Table 5.2. Knowledge base of the risk of bulking due to nutrient deficiency (L: low, N: normal, H: high). 
Bulking due to nutrient deficiency 
Input variables MFs Risk 

BOD5/N or BOD5/P 

L Low 
N Low 
H High 
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Figure 5.6. Risk of bulking due to N deficiency. 
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BOD5 to P ratio
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Figure 5.7. Risk of bulking due to P deficiency. 

The surface in Figure 5.8 shows the risk of bulking due to low DO. The red zone is 
roughly delimited by F/M 1 ratios above 0.5 and DO lower than 2 mg·l-1. 

Table 5.3. Knowledge base of the risk of bulking due to low DO (VL: Very low; L: low, N: normal, H: 
high; VH: Very high). 

Bulking due to low DO 
 
 

DO (mg/L-1) 
VL L N H VH 

F/M 1 

L Low Low Low Low Low 
N High Medium Low Low Low 
H High High Medium Low Low 

VH High High High Medium Low 
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Figure 5.8. Risk of filamentous bulking due to low DO. 
(F/M ratio –g COD removed·(g biomass)-1·d-1- vs. DO –g·m-3-). 

Figures 5.9 and 5.10 show the risk of bulking due to limited substrate. In the first case, 
the high risk zone is enclosed above approximately 0.3 F/M 1 and over 9 days for SRT. 
In the second case, the zone with the maximum risk is much narrower, in accordance 
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with the MFs defined. Figure 5.11 has the same response surface as Figure 5.9, since 
both risks are related to M. parvicella.  

Table 5.4. Knowledge base of the risk of bulking due to low organic loading (VL: Very low; L: low, N: 
normal, H: high; VH: Very high). 

Bulking due to low organic loading 

 
SRT 

VL L N H VH 

Ss 
L Low Low Medium High High 
N Low Low Low Low Low 
H Low Low Low Low Low 

F/M 2 

L Low Low High High High 
N Low Low Low Medium Medium 
H Low Low Low Low Low 

VH Low Low Low Low Low 
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Figure 5.9. Risk of bulking due to low F/M 2.  

(F/M ratio -g BOD5 supplied·(g biomass)-1·d-1- vs. SRT –d-). 

0,0

0,2

0,4

0,6

0,8

1,0

10
20

30
40

50

60
0

5

10

15

20

25

30

R
is

k 
of

 b
u

lk
in

g 
d

u
e 

to
 lo

w
 F

/M

Ss (kg COD·m -3
)

SRT (d
)

0,0

0,2

0,4

0,6

0,8

1,0

10
20

30
40

50

60
0

5

10

15

20

25

30

R
is

k 
of

 b
u

lk
in

g 
d

u
e 

to
 lo

w
 F

/M

Ss (kg COD·m -3
)

SRT (d
)

 
Figure 5.10. Risk of bulking due to low organic loading. 

(readily biodegradable substrate, Ss –kg COD·m-3- vs. SRT -d-). 
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Table 5.5. Knowledge base of the risk of foaming due to low organic loading (VL: Very low; L: low, N: 
normal, H: high; VH: Very high). 

Foaming due to low F/M ratio 

 
F/M 2 

L N H VH 

SRT 

VL Low Low Low Low 
L Low Low Low Low 
N Moderate Low Low Low 
H High Moderate Low Low 

VH High Moderate Low Low 
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Figure 5.11. Risk of foaming due to low F/M 2. 
(F/M ratio -g BOD5 supplied·(g biomass)-1·d-1- vs. SRT -d-). 

Figures 5.12 and 5.13 explain the risk of foaming due to HRBOM. The first surface 
shows an increasing risk of foaming from 0.5 F/M 2. On the other hand, when the 
HRBOM (Ss/Xs) ratio is considered the risk of foaming suddenly increases from 0.2 
approximately. Figure 5.13 presents the same behaviour from the Ss/Xs perspective, 
where the SRT has to be very low (less than 2-3 days approximately). 

Table 5.6. Knowledge base of the risk of foaming due to HRBOM (VL: Very low; L: low, N: normal, H: 
high; VH: Very high). 

Foaming due to HRBOM fraction 

 
Ss/Xs 

L N H 

SRT 

VL Low Medium High 
L Low Low Medium 
N Low Low Low 
H Low Low Low 

VH Low Low Low 

F/M 2 

L Low Low Low 
N Low Low Low 
H Low Medium Medium 

VH Low Medium High 
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Figure 5.12. Risk of foaming due to HRBOM (SS/XS) fraction. 
(SS/XS vs. F/M ratio -g BOD5 supplied·(g biomass)-1·d-1-) 
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Figure 5.13. Risk of foaming due to HRBOM (SS/XS) fraction. 
(SRT –d- vs. SS/XS). 

The response surface for the risk of rising sludge shows high risk progressively 
increasing from 2 g N·m-3 (Figure 5.14). NGPT below approximately 2 hours cause a 
high risk of rising sludge. 

Table 5.7. Knowledge base of the risk of rising sludge (L: low, N: normal, H: high). 
Rising sludge 

 
NGPT 

L N H 

NO3 
L Low Low Low 
N Medium Low Low 
H High Medium Low 
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Figure 5.14. Risk of rising sludge. 
(NGPT-d- vs. SNO concentration –g N·m-3-). 

5.1.2.3 Defuzzification 

The linguistic fuzzy output has to be translated into a numerical value as the outcome of 
the risk assessment (again, MFs were defined for the three output variables of the 
module: ‘risk of filamentous bulking’, ‘risk of foaming’ and ‘risk of rising sludge’) by 
means of the Centre of Gravity (COG) method (Fiter et al., 2005). 

The knowledge used to develop the fuzzy rules is empirical and based on qualitative 
assumptions to determine cause-effect relationships of operational problems of 
microbiological origin in AS systems (e.g. if SRT is high and DO is low, the risk of 
foaming is high). This is an empirical assumption included in the model by means of a 
fuzzy rule but the model uses deterministic values, for example, of SRT and DO, to 
infer a deterministic risk of foaming.  

The estimation of the risk of filamentous bulking, foaming and/or rising sludge is 
performed continuously during the simulated time period, yielding to a new value at 
every time step, when a new set of simulation output data becomes available. It should 
be noted that whenever the output results of the risk model indicate that conditions for a 
specific problem (filamentous bulking, foaming or rising sludge) are satisfied for more 
than one cause (branch), the highest value of the risk will be selected for this problem.  

Risk filtering 

The appearance of one of these microbiology-related solids separation problems in an 
activated sludge system requires a high risk for a long and sustained period of time. 
Therefore for long simulation periods the results of the risk assessment model are 
smoothed by means of an exponential filter (Equation 5.4) that takes this issue into 
account. The exponential filter has a time constant related to the dynamics of each 
specific problem and to the SRT (2 hours for rising sludge and 3 days for filamentous 
bulking, foaming problems and SRT). In case more than one cause (branch) is satisfied 
for each individual risk, this filter is applied after the maximum value has been selected 
at each time step. 
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The filter can be written as: 

)()·1()1(·)( tytyty filteredfiltered αα −+−=  (Eq. 5.4) 

where 
yfiltered represents the filtered data; 
y is the raw data; 
α is calculated according to, 

snT ⋅
−=

1
1α   (Eq. 5.5) 

where 
T represents the time constant in days; 
ns is the number of output samples per day in the simulation (here ns = 96). 

An exponential filter also facilitates the visualisation and interpretation of results. At the 
time of application of the risk model the user can choose his own time constant 
depending on his interests. For example, in Section 6.3.1.1 Filter time constant 
variation there is a study of the effect of the time constant variation on the effect of the 
filter (Figure 6.17). 

The AS risk model has been implemented independently of the existing AS models. 
Although the MATLAB 6.5 Fuzzy Toolbox (Mathworks, Inc.) was initially used to 
develop the MFs and build the rule base, the proposed risk assessment procedure has been 
developed so as to be software independent. 

5.1.3 Model outcome 

The AS risk model provides new plant performance criteria relating to the risk of 
occurrence of operational problems of microbiological origin in AS systems. It provides 
six different vectors corresponding to time series signals for the risks of the following 
problems: filamentous bulking due to low DO, filamentous bulking due to nutrient 
deficiency, filamentous bulking due to low organic loading, foaming due to low F/M ratio, 
foaming due to HRBOM fraction and rising sludge.  

The risk indices for filamentous bulking, foaming and rising sludge can be integrated into 
a single overall risk index. To achieve that, an integrated index for filamentous bulking 
must first be obtained as the maximum value, at each time step, among the smoothed time 
series signals of the three risk indices of filamentous bulking problems (caused by low 
DO concentrations, low F/M ratios or nutrient deficiencies). At the same time, the 
maximum value at each time step of the smoothed signals of the risks of foaming due to 
low F/M ratio on the one hand and due to HRBOM fraction on the other hand provides 
the integrated foaming index. The final aggregation simply consists of taking the 
maximum value at every time step from among the integrated risk for bulking, the 
integrated risk for foaming and the risk for rising sludge, in order to produce the overall 
risk index. For a specific AS system, these integrated values give an idea of the overall 
risk of occurrence of solids separation problems as well as indicating which problem to 
address first. 
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The results from the risk assessment are reported and quantified in four different ways for 
each of the operational problems of microbiological origin, for the integrated risks of 
bulking and foaming and for the overall risk index: (i) a time series plot (or data) showing 
the evolution of the risk occurrence for a specific settling problem (or for one of the 
integrated indices) during the evaluation period. In this plot 0 means no risk while 1 
indicates the highest possible risk; (ii) the percentage of time in violation (%TIV) during 
which the plant is experiencing severe risk (an arbitrary but customisable ≥ 0.8 limit value 
of risk is used for defining a severe problem) of operational problems of microbiological 
origin; (iii) the most dangerous situation during the evaluation period, computed as the 
longest time interval during which the plant is exposed to an uninterrupted severe risk of 
experiencing a specific settling problem, and (iv) the average (AV) risk. 

These new settling criteria complement traditional plant performance criteria such as 
operating costs, EQI and controller performance which are traditionally used for 
comparing the performance based on economical and environmental criteria, of different 
CSs in a simulation environment (see Copp, 2002). 

5.1.4 Extension of the activated sludge risk model 

Two extensions have been added to the existing AS risk model: (i) the deflocculation 
problem and (ii) the temperature effect. Deflocculation was considered for inclusion 
because it is one of the most common operational problems of microbiological origin. 
Temperature, as will be shown in Section 5.1.4.2 Temperature influence, has been 
widely reported to have an influence on operational problems of microbiological origin. 
Its effect has been included to some extent by taking into account the existing 
bibliography and the microbiological species already considered in the AS risk model. 

5.1.4.1 Deflocculation 

For the correct diagnosis of deflocculation problems it is usually necessary to examine 
the activity of microorganisms in the AS under the microscope. Since this cannot be 
done in the BSM, the main operational causes according to the existing literature have 
been taken into account in quantifying the risk. DO is one the most important variables 
involved in this diagnosis. The knowledge is summarised in Figure 5.15. Very low DO 
is insufficient and causes old sludge (Wilén and Balmér, 1999), and too much aeration 
can break the floc (Comas et al., 2003). If the sludge age also influences, if it is too low, 
it can cause deflocculation (Barbusiński and Kościelniak, 1995; Wilén et al., 2000). 

 

Figure 5.15. Flow diagram developed to evaluate the risk of deflocculation. 
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The flow diagram shown in Figure 5.15 can be turned into the decision matrix 
presented in Table 5.3. The range of the input variables is the same as that presented in 
Table 5.1. 

Table 5.8. Decision matrix for the risk of deflocculation. 

 
SRT (d) 

Very low Low Normal High Very high 

DO (mg 
O2·L

-1) 

Very low High Medium Medium Medium High 
Low High Medium Low Medium High 

Normal Medium Low Low Low Medium 
High High Medium Low Medium High 

Very high High High High High High 

The response surface from the decision matrix above is presented in Figure 5.16. The 
general principle is that at extreme values of DO and SRT the risk of deflocculation is 
high (red areas). While DO and SRT values are around normal, the risk of 
deflocculation is low (blue areas). 

When the overall integrated risk is calculated in addition to the integrated risk of 
bulking, the integrated risk of foaming and the risk of rising, the risk of deflocculation 
will be added as well. 
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Figure 5.16. Risk of deflocculation.  
(SRT -d- vs. DO –mgO2·l

-1-) 

5.1.4.2 Temperature influence 

The temperature effect in the AS risk model is only considered in the case of rising sludge. 
For this specific operational problem of microbiological origin temperature affects the 
critical nitrate concentration for rising sludge to appear. The higher temperature is the 
lower critical concentration of nitrate. Apart from rising sludge temperature effect was not 
considered in the rest of operational problems of microbiological origin. For this reason, 
the AS risk model was extended to include temperature in other risks. 
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A review of the literature revealed that most of the studies regarding the effect of 
temperature on settling properties were linked to Microthrix parvicella which presents the 
best documented cases.  

Eikelboom et al. (1998) state that bulking and foaming problems due to the abundance of 
Microthrix parvicella follow a typical seasonal pattern, with growth favoured during 
winter and early spring. According to Rossetti et al. (2005), Microthrix parvicella have 
different growth rates at different temperatures: Its optimum growth is at 25º C, there is 
some growth around 8ºC, very poor growth around 35º C and no growth above 35º C. 
They also report some examples of bulking caused by Microthrix parvicella (due to low 
F/M and high SRT) in WWTPs at temperatures between 12-15ºC as well as bulking in 
Danish WWTPs during the winter.  

In order to include the temperature effect in the AS risk model, two of the individual risks, 
those related to M. parvicella (risk of foaming due to low F/M ratio, the left part of 
Figure 5.2, Section 5.1.1.2 Foaming decision tree and risk of bulking due to low organic 
loading, the right part of Figure 5.1, Section 5.1.1.1 Filamentous bulking decision tree), 
are multiplied by an empirical factor provided by Equation 5.6 (see also Figure 5.17): 

( )
625

25

2.1

−−

⋅=

T

eRiskFactor  (Eq. 5.6) 

where 
T is the temperature in ºC. 

(in the case of risk of bulking due to low organic loading – a decision tree with two 
branches - the temperature effect is included after the maximum value of the two branches 
has been selected, for each time step, i.e. at each time step the maximum value of the risks 
calculated from the two branches of this decision tree is chosen and then the T factor risk 
is applied). 

This Gaussian function decreases the risk above 15ºC considering that although 
Microthrix Parvicella has its optimum growth at 25ºC, other species present in the 
mixed liquor also increase their activity and thus, there is no population imbalance. On 
the other hand, for temperatures below 15ºC the risk increases and even though 
Microthrix parvicella shows less activity it is still appreciable (Rossetti et al., 2005) in 
front of other species in the mixed liquor which also decrease or even stop their activity 
creating a population imbalance. Thus, in a general way, the idea behind this function is 
to represent the relative activity of Microthrix parvicella in front of the rest of the 
species. Note that this idea does not mean that for low temperature the risk is high and 
vice versa. It means that when operational conditions are favourable for foaming or 
bulking development, low temperatures will increase the risk while high temperatures 
will decrease it. 

Once the T effect factor is applied, the risk obtained is limited to 1, i.e. all the values 
above 1.0 must be set to 1.0. 

Example: Supposing a risk of 0.18 of low F/M foaming, a temperature of 20ºC and 
application of the empirical factor of Equation 5.6, the risk becomes: 
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Figure 5.17. Variation of the factor risk with temperature (at T=15ºC -BSM1 conditions- Factor=1.0). 

5.2 Anaerobic digestion risk model 

The section is divided into three main parts: (i) development, divided between a black-
box approach and a knowledge-based approach; (ii) implementation of the AD risk model 
developed, and finally (iii) model outcomes, showing the response of the AD risk model. 

5.2.1 Development 

The first step in the development of the AD risk model was a black box approach 
(Section 5.2.1.1 Black box approach). Given that real data from a pilot plant was 
available it was decided to use a wrapper approach (Kohavi and John, 1997). An ANN 
was used so that the most important variables related to biological foaming could be 
selected objectively. Afterwards, a search of the literature (Section 5.2.1.2 Knowledge-
based approach) concerning biological FAD was performed. At the end of this section 
conclusions are drawn on these two approaches to the implementation of the AD risk 
model. 

5.2.1.1 Black box approach 

The methodology is a feature (i.e. variable) selection method based on a wrapper 
approach which employs the leave-one-out search method. This method, in each step, 
evaluates the accuracy of the learning algorithm at each step when one of the features is 
left out, and then removes the feature yielding the least reduction in accuracy - for 
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instance, an error value (Ng et al., 2008). ANNs are used as learning algorithms to select 
a subset of features and the Root Mean Square Error (RMSE) are used as evaluation 
criteria. Figure 5.18 depicts the flow chart of the methodology. 
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Figure 5.18. Flow chart of the methodology used to choose the most relevant variables. 

The procedure starts with the training of the Reference ANN ten times with all the 
variables. The average RMSE is calculated and stored as the Reference Error. 

Next, one input variable is removed and a new ANN (ANN 1 in Figure 5.18) is trained 
ten times without it. This step is repeated for each input variable, resulting in an ANN 1 
for each input variable removed, with a related average RMSE1.  Whenever a relevant 
variable is removed, the average RMSE 1 of the related ANN 1 will increase with respect 
to the average Reference Error. However, whenever a non-relevant variable is removed 
the RMSE 1 of the related ANN 1 will decrease. Therefore, the variables with an RMSE 1 
higher than the Reference Error are selected as relevant variables. 

Among the relevant variables, the one with the highest RMSE 1 is selected first and a new 
ANN (this time ANN 2) is again trained ten times, using it as the only input. If the related 
average RMSE (RMSE 2) is higher than the average Reference Error it means no 
improvement has been found, so the variable with the second highest average RMSE 1 is 
selected and a new ANN 2 is trained (once again ten times) using both variables. Again, 
its average RMSE 2 is compared with the Reference Error. This iterative process is 
repeated until an average RMSE 2 lower than the average Reference RMSE is obtained. 

Acidogenic states 

An example of this methodology was tested on a well-documented operational problem: 
acidogenic states (described in Section 2.2.2.1 Acidogenic states). Experimental data 
were obtained from a 1 m3 pilot plant upflow fixed bed digester from INRA, France. This 
AD system is fully instrumented with on-line sensors in both the liquid phase (pH, flow 
rates, VFA, TOC and COD concentrations) and in the gas phase (i.e. CO2, CH4, H2) and 
has been in operation for more than ten years. Since bicarbonate alkalinity was high and 
quite constant during these experiments, it was not considered in the following. For 
further details about the pilot plant’s features and instrumentation, see Steyer et al. (2002). 
Table 5.9 shows the input and output variables involved in this part of the study. 
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Outputs (i.e. occurrences of acidogenic states) were provided by a fuzzy modular expert 
system presented in Lardon et al. (2005). In this fuzzy system, several of the system states 
were diagnosed (i.e. normal, acidogenic, underload, organic overload, hydraulic overload 
and toxics) using the same input variables shown in Table 5.9. 

Table 5.9. Input variables. 

Inflow 
rate (l·h-1) 

pH in the 
digester 

Gas flow 
rate (l·h-1) 

% of H2 in 
the gas 
phase 

% of CH4 in 
the gas phase 

VFA concentration 
in digester (mg·l-1) 

COD in 
digester (mg 

COD·l-1) 
qIn phDig  qGas  h2Gas ch4Gas vfaDig codtDig  

Reference ANN and ANNs 1: Table 5.10 shows the main features of the Reference ANN. 
When the standard deviation error of the residuals falls between the maximum and 
minimum values, which are set a priori, the ANN can be considered to be correctly 
trained. Values of the standard deviation error equal to the minimum boundary indicate 
over-fitting, i.e. higher than necessary precision has been obtained at the expense of good 
generalisation ability. 

Table 5.10. Main Reference ANN features. 

Hidden 
neurons 

Maximum standard 
deviation error of the 

residuals 

Minimum standard 
deviation error of the 

residuals 

Standard 
deviation error of 

the residuals 
Reference Error 

1 0.15 0.01 0.0545 0.1294 

However, when the standard deviation error of the residuals is equal to the maximum 
boundary, poor precision has been obtained. 

The next step was to train the different ANNs 1. Figure 5.19 shows the resulting average 
RMSE 1 for each training session, in which each label indicates the ANN trained without 
the variable shown. 

The highest difference is for the ANN trained and validated without the codtDig 
variable. This indicates that this variable is the most important for ANN performance. In 
order of decreasing relevance the variables are: qIn, vfaDig and phDig. 

ANNs 2: The input variable with the highest validation error was first used to train 
ANN2 (i.e. the ANN with the selected variables). To find out the input variable 
combination with the minimum RMSE 2, the variable which had the highest validation 
error among the remaining variables was added to the first ANN2 as an input (i.e. the 
first ANN with codtDig, the second with qIn, the third with vfaDig and the last with 
phDig). The results are provided in Table 5.11. 
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Figure 5.19. Average RMSE minus average Reference RMSE for each input variable removed. 

Table 5.11. RMSE 2 for acidogenic states using the selected variables in relevance order. 

ANN input variables codtDig codtDig; qIn 
codtDig; qIn; 

vfaDig 
codtDig; qIn; vfaDig; 

phDig 

RMSE 2 0.1856 0.13106 0.13175 0.10952 

Because codtDig is the most relevant, the training of ANNs 2 starts with this variable. 
However, it alone is not enough to diagnose acidogenic states with better precision than 
the Reference ANN (Reference Error 0.1294). Nor is it able to reproduce the precision 
of the Reference ANN together with qIn. When vfaDig is added, even though the 
RSME 2 increases compared to the previous combination, better precision is still not 
obtained. The best result is obtained when the four variables are used together (codtDig, 
qIn, vfaDig and phDig). These results, at least for phDig, vfaDig and codtDig, are 
widely recognised as key variables when diagnosing acidogenic states. But it is 
important to recognise that in addition to codtDig, vfaDig and phDig, other variables 
somehow not directly related to acidogenic states could be chosen, of which qIn is the 
most appropriate. 

Foaming 

Experimental data were obtained from the same pilot plant to detect foam forming. 
From among all the variables, a first selection was made based on the common variables 
which are available in real plants. Some others were not selected, for instance 
temperature since this is usually constant and it would be difficult to extract information 
from its profile. Table 5.12 gives the input variables involved in this study. 

Table 5.12. Input variables. 

Inflow 
rate 

VFA 
concentration 

in digester 

TOC in 
digester 

pH in 
the 

inflow 
rate 

pH in 
the 

digester 

CO2 
percentage in 
the gas phase 

CH4 percentage in 
the gas phase 

qIn vfaDig tocsDig phIn phDig co2Gas ch4Gas 

Foaming appearance in the digester was used as output, based on heuristic knowledge 
provided by the experts. It was noticed that when foaming appeared in the digester high 
variations in the gas flow rate and pressure appeared, due to the sudden release of gas 
bubbles trapped inside the foam. Hence, in order to get a suitable foaming index 
between 0 and 1, a fuzzy system was used. Table 5.13 presents the decision matrix to 
determine the intensity of the gas flow rate and pressure variations. 

Table 5.13. Decision matrix to estimate the real risk of foaming. 

 
Gas flow rate variation (%) 

Low Medium High 

Total Gas pressure variation (%) 
Low Low Low Normal 

Medium Low Normal High 
High Normal High High 

The limits for the different membership functions (all chosen to be triangular except for 
the high membership function which is trapezoidal) were also set according to the 
experts’ knowledge. They realised that for variations above 20% of both total gas 
pressure and gas flow rate the risk of foaming was high and variations around 10% 
should be treated as normal. According to this, the limits of the membership functions 
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were set as shown in Table 5.15. Variations were calculated taking the percentage of a 
given input in a time t with respect to the time t-1. 

Table 5.15. Membership function limits for the Gas pressure and flow rate variation. 

 
Gas flow rate variation (%) 

Low Medium High 
Total Gas pressure variation (%) [-1,0,5] [0,10,30] [15,25,100,101] 

Gas flow rate variation (%) [-1,0,5] [0,10,30] [15,25,100,101] 

It is important to point that even though foaming can be estimated this way; this is an 
approach to study variables influence or relation. 

Reference ANN and ANNs 1: The average RMSE for the Reference ANN and the seven 
ANNs 1 are presented in Table 5.14. 

Table 5.14. Reference ANN and ANNs 1 average RMSE 
Reference qIn vfaDig tocsDig phIn phDig co2Gas ch4Gas 
0.11700 0.11934 0.11377 0.12764 0.12654 0.11328 0.11796 0.12179 

Figure 5.20 shows the differences between the RMSE of each variable and the 
Reference RMSE. As depicted, five variables have an RMSE higher than the Reference 
RMSE. The variables selected as relevant were qIn; tocsDig; phIn; co2Gas and ch4Gas. 
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Figure 5.20. Average RMSE minus average Reference RMSE for each variable. 

ANNs 2: To train ANNs 2 first tocsDig was selected first. Because its average RMSE 2 
was higher than the average Reference RMSE the second most relevant variable was 
added and ANN 2 was trained again. Table 5.16 summarises the average RMSE 2 for 
each ANN. 

Table 5.16. Average RMSE 2 for the relevant variables. 

 tocsDig 
tocsDig; 
phIn 

tocsDig; 
phIn;ch4Gas 

tocsDig;phIn; 
ch4Gas;qIn 

tocsDig;phIn; 
ch4Gas;qIn; 
co2Gas 

RMSE 2 0.12666 0.12256 0.12141 0.12138 0.11944 

In all cases the RMSE 2 was higher than the Reference Error. However, a t-test 
comparing the averages between each RMSE 2 and the RMSE of the Reference ANN 
revealed that in the last ANN 2 (last column in Table 5.16), the average RMSE 2 was 
not significantly different from the Reference RMSE. This means that even though the 
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average RMSE 2 is not lower than the Reference RMSE, by removing two variables 
from the whole input, similar results can be obtained.  

The significance of gas-related variables (i.e. co2Gas and ch4Gas) is probably due to 
the approach taken to determine foaming (i.e. the fuzzy system used). However, the 
addition of co2Gas to the relevant variables reduces RMSE 2, and according to Zhao 
and Viraraghavan (2004) high CO2 production is indicative of poor digestion but not 
linked to a specific problem. What it is more important to highlight is the other 
variables’ relevance, especially that of tocsDig and qIn which are related to OLR.  

5.2.1.2 Knowledge-based approach 

Two main factors structure existing knowledge about biological foaming: (i) the 
microbiology of the process and (ii) the key operational characteristics of the digester. 

As stated in 2. State-of-the-art, it is important not to forget that from a microbiological 
point of view biological foaming is an operational problem of microbiological origin 
and mostly related to M. parvicella in particular. Therefore, the presence of filamentous 
microorganisms in WAS plays an important role when treating secondary sludge. 

The relationship between foaming and OLR from an operational point of view has 
already been explained in 2. State-of-the-art. Metcalf and Eddy (2003) provide more 
details and state that proper OLRs for anaerobic digesters are between 1.6 and 4.8 kg 
VS·m-3·d-1. Similarly, the operation manual of the Water Environment Federation (WEF, 
1996) suggests an OLR of between 1.6 and 6.2 kg VS·m-3d-1. However, when foaming 
occurs the range is much narrower. Ross and Ellis (1992) show in their study that 
increasing Organic Loading Rates (OLR) and retention times can cause foaming. In 
addition, Massart et al. (2006) say that inconsistent feeding in the digester is one of the 
causes of biological foaming. They state, for instance, that to prevent biological FAD, 
the OLR should be maintained between 1.6 and 2.4 kg VS·m-3·d-1 with a recommended 
daily variation of 5 to 10%. Murto et al. (2004) found that an OLR higher than 2.6 kg 
VS·m-3·d-1 can also produce excessive foaming.  

5.2.1.3 Conclusions 

In the black box approach a set of relevant variables relating to biological foaming in 
anaerobic digesters have been selected. Of the seven variables, two have shown 
themselves to be non-relevant in relation to foaming. This is an indication of the 
inherently complex interrelationships between all the variables in this operational 
problem of microbiological origin. As stated above, the relevance of the gas related 
variables is probably due to the approach taken to estimate the risk of foaming. From an 
operational point of view, the wrapper approach results indicate that foaming is related 
to Qin,a and the total organic carbon (TOC) present. 

However, the review of the literature has revealed it is necessary to take into account the 
role of filamentous bacteria in AD biological foaming, and a consistent feeding rate. 
Given that the pilot plant was not treating secondary sludge, it was not possible to 
consider the effect of filamentous bacteria in the black box approach. The need to add 
the effect of the filamentous bacteria made it more feasible to use the results from the 
AS risk model. To obtain a compact risk assessment model, it is easier to integrate two 
knowledge-based models rather than a knowledge-based model and a black box one. 
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In addition, the knowledge-based approaches are less specific to a particular domain 
(the BSM2 in our case) since they rely more on general knowledge. In other words, a 
KBS overcomes the limitation of using a black box system trained with data from a 
given plant, which would have hampered implementation of the black box model in a 
BSM given that the ranges of the variables involved in the ANN training are not the 
same. For this reason it was decided in the end to implement the AD risk model in a 
fuzzy logic rule based system using the variables found with the wrapper approach and 
the knowledge from the literature. 

5.2.2 Knowledge formalisation 

To obtain the risk of presence of filamentous bacteria in the digester’s feed, results from 
the AS risk model concerning risk of foaming due to a low F/M in the AS system were 
used. Specifically, the foaming in AS (FAS) risk, related to the growth of M. parvicella 
and nocardioforms was selected as one input for the AD risk model. This means that the 
AD risk model is applicable for anaerobic digesters fed with WAS or mixed sludge 
containing both WAS and primary sludge. 

As pointed out in Section 5.2.1.1 Black box approach, the role of OLR is important in 
relation to biological foaming. Therefore, the OLR, the percentage of the daily average 
organic loading rate variation (OLRvar), and the presence of filamentous 
microorganisms in the feed were all considered relevant parameters in terms of AD 
biological foaming. The combination of FAS risk, OLR and OLRvar, according to 
expert knowledge, leads to three different decision matrices, which form the knowledge 
base of the AD risk model. Each decision is made up of the decision rules referring to a 
different degree of FAS risk (low, medium and high; right axis of Figure 5.21). The 
rules for each decision matrix are obtained by combining different degrees of OLR (left 
axis of Figure 5.21) and OLRvar (bottom axis of Figure 5.21) for each value of FAS 
risk. For a given FAS risk (i.e. low, medium or high) the figure shows that the FAD risk 
increases as OLR and OLRvar increase. For a given OLR and OLRvar the FAD risk 
rises as FAS risk increases.  
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Figure 5.21. Decision matrices of the AD risk model. Degree of FAD risk indicated by colours: white 
boxes indicate low FAD risk, grey boxes are for medium FAD risk and black boxes represent high FAD 

risk. 
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Table 5.17. MF features of the AD risk model.  
Variable  Very Low Low Medium High Very High 

OLR  
(kg VS·m-3·d-1) 

Shape Trapezoidal Triangular Triangular Triangular Trapezoidal 
Range [-0.1,0,1,1.8] [1.2,1.8,2.4] [1.8,2.6,3.4] [2.4,3.4,4.4] [3.4,4.4,5,10] 

OLRvar 
(%) 

Shape - Trapezoidal Triangular Trapezoidal - 
Range - [-0.1,0,10,15] [10,15,20] [15,20,30,100] - 

FAS risk 
(from 0 to 1) 

Shape - Trapezoidal Triangular Trapezoidal - 
Range - [-0.1,0,0.3,0.5] [0.2,0.6,0.8] [0.6,0.8,1] - 

FAD risk 
(from 0 to 1) 

Shape - Triangular Triangular Triangular - 
Range - [-0.2,0,0.2] [0.2,0.5,0.8] [0.8,1,1.2] - 

The AD risk model has been implemented by means of the MATLAB® fuzzy toolbox 
(MathWorks Inc.). The Mamdani method has been selected as the fuzzy inference 
method (Mamdani and Assilian, 1975). The shape of the MFs of different input and 
output variables (OLR, OLRvar, FAS risk and FAD risk) are trapezoidal or triangular 
and have different ranges (see Table 5.17). 

5.2.3 Model outcome 

The output of the model, FAD risk, indicates the potential for the development of 
foaming in the anaerobic digester. The FAD risk value provided by the model ranges 
from 0 (very unlikely) to 1 (most likely). The AD risk model outputs are (i) FAD risk 
profile vs. time; (ii) the %TIV at high (>0.8) FAD risk; (iii) the worst situation in the 
simulation period and, (iv) the average (AV) FAD risk. Figure 5.22 shows the response 
surfaces for FAD risk depending on OLR and OLRvar for each FAS risk MF (i.e. 
Figure 5.22a for low, Figure 5.22b for medium and Figure 5.22c for high FAS risk). 
Figure 5.22 also illustrates how the high FAD risk zone (in red) of the surfaces 
becomes wider as FAS risk increases from low to high. The inverse effect is shown for 
the low FAD risk zone (in blue). 
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Figure 5.22. Response surfaces for FAD risk for each FAS risk MF value: (a) Low; (b) Medium and (c) 
High FAS risk.  

To consider the low dynamics of foaming development, the outcome risk is filtered by 
means of the exponential filter presented in Section 5.1.3 Model outcome with a time 
constant of three days, although this can be customised by the user of the AD risk model. 
This filter also prevents sudden, unrealistic changes from very high to very low values 
for FAD risk in time steps that are too short. 

5.3 Concluding remarks 

In this chapter the AS and AD risk model development have been presented. The 
availability of data has driven the development. For the AS risk model decision trees 
have been developed containing heuristic knowledge from experts and literature. The 
decision trees have been afterwards implemented in a fuzzy logic rule-based system to 
infer a risk index for the main operational problems of microbiological origin (i.e. 
filamentous bulking, biological foaming and rising sludge). Response surfaces for each 
risk of operational problems of microbiological origin depending on its inputs have 
been shown. An extension of the risk model has been performed to include the risk of 
deflocculation and the temperature effect on risks related to Microthrix parvicella. 

The final AD risk model is a mixture of two approaches. In one hand, a wrapper 
approach based on ANN is first tested on acidogenic states providing relevant variables 
proving to be a useful tool for feature selection. Afterwards has been applied to estimate 
the real risk from gas flow rate and pressure variations. The wrapper approach has 
allowed to identify the main variables related to foaming (mainly related to OLR). On 
the other hand, the literature research on AD foaming suggested including factors as the 
OLR variation and the presence of filamentous bacteria in the feed. Finally, variables 
from the data mining and from those suggested by the literature have been used as 
inputs for the final implementation of the AD risk model in a fuzzy-logic rule-based 
system to be integrated with the existing AS risk model. 
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6. Risk model implementation and application in benchmark 
simulation models 

In this chapter, implementation into the BSM platforms is presented followed by the 
BSM1, BSM1_LT and BSM2 applications of the AS risk model and the AD risk model 
(only in the BSM2 case) evaluated using different scenarios. Evaluation first comprises an 
open-loop case, variation in operational parameters and two CSs for the BSM1. The 
performance of the AS risk model in the BSM1_LT is then evaluated using a filter with 
different time constants and including the effect of temperature. Finally, the AD risk 
model is evaluated within the BSM2. 

6.1 Benchmark simulation model implementation 

This section describes how the different input variables for each of the individual fuzzy 
risks are obtained or calculated from the simulation outputs for any BSM platform. This is 
important in order to implement the AS and AD risk models in any BSM platform (i.e. 
MATLABTM & SimulinkTM, FORTRAN, WEST®, GPS-XTM, SIMBA). In the Annex the 
reader will find the detailed code for the MATLAB implementation of both AS (BSM1 
and BSM1_LT) and AD (BSM2) risk models. The current MATLAB implementation of 
the risk model is also available from the benchmark website (www.benchmarkwwtp.org). 

6.1.1 Bulking due to nutrient deficiency 

The risk of bulking due to nutrient deficiency is calculated using just one input. The BOD 
to nutrient (either N or P) ratio. Note that since the BSMs use ASM1 P is not considered. 
Hence, although the parameters for BOD/P are presented in Table 5.1, its calculation is 
not performed in the BSM implementation of the risk model. For nitrogen, calculations 
are as follows: 

 BOD5toN: The BOD5/N ratio is evaluated for the influent wastewater (BOD5,in / 
Ntot, in; Equation 6.1). 

in,tot

in,5
5 N

BOD
NtoBOD =  (Eq. 6.1) 

where 
           Ntot,in = SNO,in + SNH,i + SND,i + XND,i + iXB · (XB,H,i+XB,A,i) + iXP · (XP,i+XI,i)  (Eq. 6.3) 

BOD5,in = 0.65·(SS +SS,EC+ XS + (1-fp) · (XB,H+XB,A))  (Eq. 6.2) 
where 
SS,EC: SS from an EC source. 

6.1.2 Bulking due to low dissolved oxygen 

Input variables for the risk of bulking due to low DO are the DO itself and the F/M ratio 
as explained below. 

 Dissolved oxygen (DO): The DO concentration is obtained from biological 
reactor 3 (1st aerobic, SO,3).  
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 The F/M ratio is calculated in two different ways within the AS risk model even 
though the MFs are the same. While F/M 1 (F/M removed) is calculated on the 
basis of the daily mass flow rate of COD removed from the whole plant per unit of 
biomass, F/M 2 (F/M fed) aims to detect low organic loading (daily mass flow 
rate of supplied BOD per unit of biomass; Eq. 6.11). 

F/M 1 or process loading factor (F/M removed; Equation 6.4) (Grady et al., 1999) 

( )
Biomass

CODeffCODin
1M/F

−
=  (Eq. 6.4) 

where 

CODin = (SS + SI +SS,EC+ XS + XB,H + XB,A + XP + XI) · Qin  (Eq. 6.5) 
  
SS,EC: SS from an EC source. 

CODeff = (SS + SI + XS + XB,H + XB,A + XP + XI) · Qeff  (Eq. 6.6) 

Biomass = ))(·(75.0
5

1
,,,,,,,∑

=

=

⋅+
n

n

nasnasABnasHB VXX  (Eq. 6.7) 

6.1.3 Bulking due to low organic loading 

The risk of bulking due to low organic loading is depending on the SS and SRT calculated 
as follows: 

 Readily biodegradable organic matter (SS): The readily biodegradable organic 
matter (SS) concentration is evaluated in reactor 1. If there is an EC from an 
additional Qcarb stream, SS from this stream should be included, i.e. SS,EC. 

 SRT: The SRT is calculated as the total mass of TSS within the five reactors 
divided by the daily mass of TSS removed from the plant via the WAS and the 
effluent (Grady et al., 1999; Equation 6.8). 

effw

i,asi,as

5

1i

TSSTSS

)V·TSS(
SRT

+
=

∑
=   (Eq. 6.8) 

where 

TSSas,i is the concentration in each biological reactor, 

Vas,i is the volume of each biological reactor, 

TSSeff = (0.75 · (XS,e + XB,H,e + XB,A,e + XP,e + XI,e))·Qeff  (Eq. 6.9) 

TSSw= (0.75 · (XS,w + XB,H,w + XB,A,w + XP,w + XI,w))·Qw  (Eq. 6.10) 

As it has been commented in Section 5.1.2.3 Defuzzyfication, the SRT is filtered 
according to the already presented Equations 5.4 and 5.5: 

)t(SRT)·1()1t(SRT·filteredSRT α−+−α=  (Eq. 5.4) 
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where 









τ

−=α

15

1440
·

1
1  (Eq. 5.2) 

τ = time constant in days (usually 3 days). 

 F/M 2 (F/M fed; WEF, 1996; Equation 6.11): 

Biomass

vecBOD
2M/F in,5

=  (Eq. 6.11) 

where 

BOD5,invec = BOD5,in·Qin  (Eq. 6.12) 

As explained before if there is an EC from an additional Qcarb stream, BOD5 (only 
SS) from this stream should be included as SS,EC. 

6.1.4 Foaming due to low food to microorganisms ratio 

The inputs for foaming due to low F/M ratio are F/M 2 and SRTvec, which have already 
been explained. 

6.1.5 Foaming due to high readily biodegradable organic matter fraction 

The input F/M 2 for foaming due to HRBOM has already been explained.  

 SS/XS: The readily biodegradable organic matter (SS) to slowly biodegradable 
organic matter (XS) ratio is evaluated for the influent wastewater (SS,in/XS,in). If 
there is an additional Qcarb stream, SS from this stream should be included as SS,EC. 

6.1.6 Rising sludge 

Inputs for rising sludge are the nitrate concentration from reactor 5 and the NGPT 
calculated as follows: 

 Nitrate concentration (SNO): The nitrate concentration is obtained from reactor 5. 

 NGPT (Henze et al., 1993; Equation 6.13): 

delay
tNGPT +=

Rdn

HighLimitSNO  (Eq. 6.13) 

where 
SNOHighLimit is equal to 8 g N·m-3 at 15ºC (in the BSM1) and a function of 
temperature in the BSM1_LT and the BSM2: 

( ) T·020295.0
NO e·003972.11LimitHighS −=   (Eq. 6.14) 
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gBH
NONO

NO

SS

S
H

H

H ·larifierOutBottomCX·
5acReOutSK

5acReOutS
·

5acReOutSK

5acReOutS
··

Y·86.2

Y1
Rdn η









+








+
µ







 −
=  

(Eq. 6.15) 

where 

))15T(·5)(log(4/3)/(
H e·4 −

=µ   (Eq. 6.16) 

fractionnitrifiers

Rdn·86.2
S

t O
delay =   (Eq. 6.17) 

Nitrifiers fraction = 1 

 Sludge Volume in Clarifier (see Section 5.1.2 Knowledge formalisation): 

10

10i

1i
ii

TSS

V·TSS
ClarifierinVolumeSludge

∑
=

==   (Eq. 6.18) 

 where 
 i= number of the secondary settler layer, 
 V=volume of the secondary settler layer (m-3), 
 TSS= concentration of solids in the ith secondary settler layer (kg·m-3). 

6.1.7 Deflocculation 

The inputs for deflocculation are DO and SRTvec which have already been explained. 

6.1.8 Anaerobic digestion biological foaming 

The risk of foaming in the anaerobic digester is calculated as follows: 

 Inputs for the AD risk model are calculated as follows (Equation 6.19). At the 
end, the FAD risk is filtered with a 3-day exponential filter. 

HRT

VS
OLR =  (Eq. 6.19) 

where 
VS = 0.75 · (Xch+Xpr+Xli+Xi) 
VS are calculated after the ASM1/ADM1 interface and before the anaerobic 
digester. 
HRT is calculated as in Equation 6.20. 

      
a,in

liq

Q

V
HRT =   (Eq. 6.20) 

where 
Vliq is the volume of the anaerobic digester liquid phase, 
Qin,a is the anaerobic digester’s inflow rate. 
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 OLR daily variation (Equation 6.21): 
 

100·
)t(OLR

)1t(OLR)t(OLR
varOLR

−−
=  (Eq. 6.21) 

where 

OLR  is the daily mean of OLR; (t) is the current day; (t-1) previous day. 
 

 FAS risk is equal to the filtered LowFtoMFoaming2 of the AS risk model. 

6.2 Benchmark Simulation Model No1 application 

In this section the results for each of the AS risk model operational problems of 
microbiological origin are shown for the open-loop scenario. Next, the risk model’s 
performance is shown when three different operational parameters are modified: Qr, Qw 
and KLa. The last section evaluates the AS risk model’s performance in different 
scenarios: open-loop and two CSs. In all cases, the AS risk model is applied to the 
results of the BSM1. 

6.2.1 Open-loop 

Open-loop in dry weather has been chosen as a reference scenario to show the AS risk 
model’s performance. The specifications used for the BSM1 simulation are the showed 
in Table 6.1. 

Table 6.1. Specifications used for the BSM1 dry weather open-loop simulation. 
KLa3 (d-1) KLa4 (d-1) KLa5 (d-1) QW  (m

3·d-1) Qintr (m
3·d-1) Qr (m

3·d-1) Qcarb (m3·d-1) Bypass 
240 240 84 385 55338 18446 0 No 

In Figures 6.1 - 6.13 each risk of a different operational problems of microbiological 
origin is shown, together with its related inputs for a 7-day open-loop simulation. 
Nutrient deficiency risk is close to 0 for the whole evaluation period (Figure 6.1). Since 
this risk depends on the influent characteristics, in normal operational conditions, it will 
be low. 
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Figure 6.1. Risk of bulking due to nutrient deficiency. 
Red line: risk; Black line: BOD/N ratio. 
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The risk of bulking due to low DO (Figure 6.2) follows the removed COD daily profile. 
Whenever F/M is high there is an increase in the COD removed, which is linked to DO 
consumption. Since DO is not controlled, as it becomes limited the risk of bulking 
increases. Whenever F/M is low, the opposite effect is seen. Low COD removal causes 
the DO to accumulate more easily (peaks in DO), which decreases the risk of bulking. 
Low loadings occur during the weekend, which decreases the risk of bulking even more. 
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Figure 6.2. Risk of bulking due to low DO. 
Red-line: risk; blue line: F/M1 ratio; black line: DO. 

In Figure 6.3, since the SRT is almost constant, the risk of bulking due to low F/M is 
affected mainly by SS. It is clearly noticeable that when the SS concentration is high the 
risk of bulking decreases, whereas the opposite effect is seen when low SS 
concentrations are found.  

Time (d)

0 2 4 6

R
is

k

0,0

0,2

0,4

0,6

0,8

1,0

S
s 

(g
 C

O
D

·m
-3

)

0

2

4

6

8

10

S
R

T
 (

d)

0

2

4

6

8

101.0

0.8

0.6

0.4

0.2

0.0

Time (d)

0 2 4 6

R
is

k

0,0

0,2

0,4

0,6

0,8

1,0

S
s 

(g
 C

O
D

·m
-3

)

0

2

4

6

8

10

S
R

T
 (

d)

0

2

4

6

8

101.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

 

Figure 6.3. Risk of bulking due to low F/M. 
Red line: risk; black line: soluble substrate; blue line: SRT. 

As in Figure 6.3, the SRT remains fairly constant throughout the week in Figure 6.4, 
which means the risk profile is driven by the F/M 2 ratio. High F/M in relation to the 
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morning influent lowers the risk of bulking, while low nocturnal F/M increases it. Again, 
during the weekend loadings are lower so the risk of bulking increases. At this point it is 
important to highlight that despite the fact there are two different causes of bulking due 
to low organic loading (as explained in Section 5.1.1.2 Foaming decision tree), only 
the highest risk value between both branches will be used for evaluation purposes (see 
Section 5.1.2.3 Defuzzyfication). 

Time (d)

0 2 4 6

R
is

k

0,0

0,2

0,4

0,6

0,8

1,0

F/
M

 2
 r

at
io

 (
kg

 B
O

D
·k

g 
M

L
V

SS
-1

·d
-1

)

0,0

0,5

1,0

1,5

2,0

S
R

T
 (

d)

0

2

4

6

8

101.0 

0.8 

0.6 

0.4 

0.2 

0.0 

2.0

1.5

1.0

0.5

0.0

Time (d)

0 2 4 6

R
is

k

0,0

0,2

0,4

0,6

0,8

1,0

F/
M

 2
 r

at
io

 (
kg

 B
O

D
·k

g 
M

L
V

SS
-1

·d
-1

)

0,0

0,5

1,0

1,5

2,0

S
R

T
 (

d)

0

2

4

6

8

101.0 

0.8 

0.6 

0.4 

0.2 

0.0 

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

 

Figure 6.4. Risk of bulking due to low F/M 2. 
Red line: risk; black line: F/M 2 ratio; blue line: SRT. 

In Figure 6.5 risk of foaming increases with low F/M 2 ratios and vice-versa. SRT is 
fairly constant for the seven days of evaluation. F/M 2 has a profile that has already 
been shown, decreasing at night and increasing in the morning and afternoon. 
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Figure 6.5. Risk of foaming due to low F/M.  
Red line: risk; black line: F/M; blue line: SRT. 
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Figure 6.6 shows peaks of risk of foaming in the morning, when F/M 2 and SS/XS ratios 
are high. However, in no case do they reach 0.6. The rest of the day and at weekends the 
risk remains almost 0. 

Time (d)
0 2 4 6

R
is

k

0,0

0,2

0,4

0,6

0,8

1,0

S
s 

/ X
s

0,0

0,2

0,4

0,6

0,8

1,0

F
/M

_2
 r

at
io

 (
kg

 C
O

D
·k

g 
M

L
V

S
S

-1
·d

-1
)

0,0

0,5

1,0

1,5

2,01.0

0.8

0.6

0.4

0.2

0.0

2.0

1.5

1.0

0.5

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Time (d)
0 2 4 6

R
is

k

0,0

0,2

0,4

0,6

0,8

1,0

S
s 

/ X
s

0,0

0,2

0,4

0,6

0,8

1,0

F
/M

_2
 r

at
io

 (
kg

 C
O

D
·k

g 
M

L
V

S
S

-1
·d

-1
)

0,0

0,5

1,0

1,5

2,01.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

 

Figure 6.6. Risk of foaming due to HRBOM (1). 
Red line: risk; black line: SS/XS ratio; blue line: F/M 2 ratio. 

For the given SRT (Figure 6.7), the risk of foaming is almost 0 for the whole evaluation 
period despite the daily peaks in the SS/XS ratio. As was done for the risk of bulking due 
to low F/M (see Figures 6.3 and 6.4), the same integration of the two causes of the risk 
of foaming due to HRBOM is performed for evaluation purposes. 

Time (d)
0 2 4 6

R
is

k

0,0

0,2

0,4

0,6

0,8

1,0

S
s 

/ X
s

0,0

0,2

0,4

0,6

0,8

1,0
SR

T
 (

d)

0

2

4

6

8

101.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Time (d)
0 2 4 6

R
is

k

0,0

0,2

0,4

0,6

0,8

1,0

S
s 

/ X
s

0,0

0,2

0,4

0,6

0,8

1,0
SR

T
 (

d)

0

2

4

6

8

101.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

 

Figure 6.7. Risk of foaming due to HRBOM (2). 
Red line: risk; black line: SS/XS ratio; blue line: SRT. 

Figure 6.8 shows how the rising sludge risk increases during mornings and afternoons 
and decreases at night. This behaviour is due to the ammonium present in the influent, 
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which is higher in the morning and afternoon than at night. There is an increase in the 
SNO during the weekend (days 6 and 7), which is due to the lower F/M hampering the 
denitrification process and resulting in an increased concentration and a prolonged risk 
of rising sludge. 

In Figure 6.9 the risk of deflocculation is in general quite low since both SRT and DO 
values are within a normal range. The risk changes accordingly when DO reaches its 
highest or lowest values. As F/M is lower during the weekend, the lowest values of DO 
are slightly higher than during the week; this is the cause of the low risk of 
deflocculation during the weekend. 
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Figure 6.8. Risk of rising sludge. 
Red Line: risk; black line: nitrate concentration in the effluent of the 5th biological 

reactor; blue line: NGPT. 
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Figure 6.9. Risk of deflocculation. 
Red line: risk; black line: DO; blue line: SRT. 
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Figure 6.10 clearly shows that nutrient deficiency has no effect on the global bulking 
risk. Low F/M bulking has a greater effect than low DO bulking throughout the week. 
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Figure 6.10. Integrated bulking risk. 
Top plot in red: integrated risk of bulking; bottom plot: risk of bulking 
due to nutrient deficiency (blue), low DO (black) and low F/M (green). 

In Figure 6.11 the same risk integration is performed for the risk of foaming. In this 
case, the risk of foaming due to low F/M is clearly drives the integrated risk of foaming. 
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Figure 6.11. Integrated foaming risk. 
Top plot in red: integrated risk of foaming; bottom plot: risk of foaming 

due to HRBOM (black) and low F/M (blue). 
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Last is the overall integrated risk which takes the maximum value of each integrated 
risk. Figure 6.12 shows a one-day zoom (from days 1 to 2) of the evaluation week for 
the easier identification of each risk. In Figure 6.13 overall risk is shown for the whole 
week. It can be seen that in the open-loop dry weather case the bulking risk is the main 
contributor to high values of overall risk. However, risk of rising sludge is also shows a 
contribution, although at lower values of overall risk. 
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Figure 6.12. Integrated overall risk index for day 2 of evaluation. 
Top plot in red: integrated overall risk; bottom plot: integrated risks of foaming (black), bulking (blue), 

rising (green) and deflocculation (pink). 
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Figure 6.13.  Integrated overall risk for the seven-day evaluation period. 
Top plot in red: integrated overall risk; bottom plot: integrated risks of foaming (black), bulking (blue), 

rising (green) and deflocculation (pink). 
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The variation of the risk profiles highlights the need for a filter given that the daily 
variations will be reflected in long-term simulations (see Section 6.3 Long-term 
Benchmark Simulation Model No1).  

6.2.2 Operational parameters influence 

The objective of this section is not finding the best operational conditions (i.e. 
conditions with the lowest risks) but to evaluate the performance of the risk model. To 
achieve this, the effect of the main operational parameters on the different risks in the 
open-loop dry weather scenario has been used. The specifications for the simulations 
are the same as those in Section 6.2.1 Open-loop. In total, seven simulations have been 
performed. For Qr, 18446 m3·d-1 x0.5 and x1.5 are considered. For Qw the simulations 
are 385 m3·d-1 x0.5 and x1.5 (the Qw used in Section 6.2.1 Open-loop). Finally, 240 d-1 
x0.5, x1 (open-loop case) and x1.5 for biological reactors 3 and 4 and 84 d-1 x0.5, x1 
and x1.5 for biological reactor 5 (the same KLas used in Section 6.2.1 Open-loop) are 
considered for DO (KLa). Table 6.2 summarises the simulations which have been 
performed using the standard protocol for BSM1 (150 days steady-state simulation with 
constant influent followed by 28 days with dynamic dry weather influent). 

Table 6.2. Specifications used for the BSM1 dry weather open-loop simulations with operational 
parameters changes. 

Simulation KLa3 (d-1) KLa4 (d-1) KLa5 (d-1) Qr (m
3·d-1) Qw (m

3·d-1) 
KLa x0.5 120 120 42 18446 385 

KLa x1 (Open-loop) 240 240 84 18446 385 
KLa x1.5 360 360 168 18446 385 
Qr x1.5 240 240 84 28416 385 
Qr x0.5 240 240 84 9472 385 
Qw x0.5 240 240 84 18446 192 
Qw x1.5 240 240 84 18446 573 

The results (AV risk and %TIV) of the AS risk model for each simulation are presented 
in Table 6.3. The highest AV and %TIV for each operational problem of 
microbiological origin have been shadowed. It can be seen that risk of bulking due to 
nutrient deficiency and risk of foaming due to HRBOM is almost 0 for all the 
simulations. Risk of bulking due to low DO is high for the KLa x0.5 simulation. With 
regard to risk of bulking due to low F/M, this reaches relatively high values which are, 
in some cases, at high risk close to 50% of %TIV and AVs above 0.7 or 0.8. However, 
the highest values in terms of %TIV and AV are for Qw x0.5 since the high MLVSS 
concentration lowers the F/M ratio and increases the risk of bulking for low F/M 
accordingly. Likewise, this explains the high %TIV and AV risk of foaming due to low 
F/M in the Qw x0.5 simulation. For these conditions, F/M is low, which causes an 
increased risk. For Qr x1.5 the risks of bulking and foaming due to low F/M are 
relatively high for the same reason; the increased Qr causes an increase in the MLVSS 
in the biological reactors which lowers the F/M ratio, thereby increasing the risk. The 
risk of foaming due to HRBOM is very low for all the simulations. Regarding the risk 
of rising sludge, Qw x0.5, Qr x0.5 and KLa x1.5 have a high AV and %TIV. In the Qw 
case, the low flow rate accumulates biomass in the whole AS system. The less Qw there 
is, the more heterotrophic biomass accumulates in the secondary settler increasing its 
residence time and consequently, the risk of rising sludge. This reduces the NGPT, 
which increases the risk of rising sludge. In the case of KLa, DO is directly related to the 
nitrification process, so the higher the DO the more nitrate will be present in the effluent 
of the 5th biological reactor, thereby increasing the risk of rising sludge. Finally, the 
high rising sludge risk for the Qr x0.5 simulation is directly related to the retention time 
at the bottom of the secondary settler. The risk of deflocculation is high in the Qw x0.5 
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simulation due to the high SRT. Integrated risks are useful for showing clearly which 
operational problems of microbiological origin are the most relevant for each simulation. 
The KLa x0.5 simulation has the highest %TIV for integrated bulking followed by the 
Qw x0.5 simulation. The highest risk of integrated foaming in terms of risk AV 
and %TIV is for the Qw x0.5 simulation. The worst scenarios for rising sludge are Qw 
x0.5, Qr x0.5 and KLa x1.5 simulations. AVs for overall risk are slightly higher for KLa 
x1.5 than for KLa x0.5 and Qw x0.5 simulations. %TIV for the overall risk are high in all 
cases but especially so in the KLa x0.5, x1.5 and Qw x0.5 simulations. 

Table 6.3. Evaluation criteria for different simulation conditions. 
Operational parameter Qr Qw KLa 

Risk related criteria x0.5 x1 (OL) x1.5 x0.5 x1 (OL) x1.5 x0.5 x1 (OL) x1.5 
Nutrient 
deficiency 
Bulking 

TIV(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

AV ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00 

Low DO Bulking 
TIV(%) 9.82 8.18 7.29 11.31 8.18 10.86 58.18 8.18 0.00 

AV 0.30 0.32 0.34 0.36 0.32 0.31 0.64 0.32 0.06 
Low F/M 
Bulking 

TIV(%) 0.00 42.41 49.26 65.03 42.41 0.00 36.46 42.41 42.86 
AV 0.48 0.75 0.82 0.87 0.75 0.48 0.63 0.75 0.75 

Low F/M 
Foaming 

TIV(%) 0.00 0.00 44.94 58.93 0.00 0.00 0.00 0.00 0.00 
AV 0.24 0.54 0.67 0.80 0.54 0.24 0.50 0.54 0.54 

HRBOM 
Foaming  

TIV(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
AV 0.18 0.03 0.02 0.01 0.03 0.18 0.04 0.03 0.02 

Rising sludge 
TIV(%) 52.08 34.08 4.31 55.80 34.08 10.71 0.00 34.08 60.27 

AV 0.81 0.68 0.41 0.86 0.68 0.52 ≈0.00 0.68 0.71 

Deflocculation 
TIV(%) 0.00 0.00 0.00 60.12 0.00 0.00 0.00 0.00 0.00 

AV 0.21 0.22 0.29 0.82 0.22 0.19 0.41 0.22 0.32 

Integrated 
Bulking 

TIV(%) 9.82 50.59 56.55 76.34 50.59 10.86 94.64 50.59 42.86 
AV 0.61 0.81 0.86 0.91 0.81 0.61 0.94 0.81 0.76 

Integrated 
Foaming 

TIV(%) 0.00 0.00 44.94 58.93 0.00 0.00 0.00 0.00 0.00 
AV 0.31 0.55 0.68 0.80 0.55 0.31 0.52 0.55 0.55 

Overall Risk 
TIV (%) 61.31 65.33 56.99 89.14 65.33 20.09 94.64 65.33 94.64 

AV 0.85 0.89 0.87 0.94 0.89 0.70 0.94 0.89 0.98 
Plant performance criteria          

OCI 17040 16148 15782 14880 16148 17210 14475 16148 17852 
EQI (kg pollutants·d-1) 8467 6690 6294 6145 6690 7858 21828 6690 6170 

When comparing each simulation it is noticeable that Qw x0.5 simulation has, in many 
cases, the highest values of AVs and %TIV except for risk of bulking due to low DO 
and risk of rising sludge. On the other hand, Qr x0.5 and Qw x1.5 simulations have the 
lowest %TIV and AVs (except for rising sludge in the first case). Hence, it could be 
concluded that, in general, low MLVSS and normal DO in the biological reactors 
provide proper conditions for controlling the risk of operational problems of 
microbiological origin. However, when the relevant criteria of the BSM1 are taken into 
account, it can be seen that these simulations are not the best option from an 
environmental and/or economic perspective. Low DO (KLa x0.5) has the worst EQI due 
to low efficiency. In terms of economic criteria the worst value corresponds to the KLa 

x1.5 simulation due to high aeration costs. Note that the best options correspond to 
those conditions in which the risk of operational problems is relatively high: KLa x0.5 
simulation (from an economical perspective) and Qw x0.5, due to low aeration costs and 
low SP, respectively. 

6.2.3 Closed-loop 

Two CSs are compared together with the open-loop for different weather influents using 
the BSM1. CS1 consists of two control loops which control the DO level (2 mg O2·L

-1) 
in the last aerated reactor and the nitrate concentration (1 mg N·L-1) in the second 
anoxic reactor by manipulating the KLa of the last aerated biological reactor and the Qintr, 
respectively. CS2 is equivalent to strategy-1 except that the Qr is not constant (18446 
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m3·d-1) but proportional to the Qin with a gain of 2. Figure 6.14 illustrates the time 
series plots obtained for risk of bulking due to low DO and low F/M, risk of foaming 
due to low F/M ratio, and rising sludge for both CSs using the rain influent scenario of 
the BSM1. 
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Figure 6.14. Risk of operational problems of microbiological origin during rain influent conditions: risk 
of bulking due to low DO (top left), risk of bulking due to low F/M (top right), risk of foaming due to low 

F/M ratio (bottom left) and rising sludge (bottom right). In each, the black line indicates CS1 while the 
red line represents CS2. 

Figure 6.14 shows that different CSs yield different estimates of the risk of the system 
experiencing operational problems of microbiological origin. The figure illustrates that 
there is not much difference between the two CSs with regard to the risk of aerobic 
bulking (Figure 6.14 - top left), just a slight difference during the weekend. The risk of 
this problem occurring is low for almost all of the time since the existing DO controller 
maintains an adequate set point based on the F/M ratio experienced by the plant. In 
contrast, operational conditions imposed by CS2 lead to higher risks for low F/M 
bulking and even more for foaming (M. parvicella and Nocardioforms) during rainy 
influent conditions (Figure 6.14 - top right and bottom left, respectively). For both 
problems, the higher Qr of CS2 causes higher biomass concentrations in the biological 
reactors, and thus contributes to very low substrate concentrations. On the other hand, 
this CS drastically reduces the risk of experiencing rising sludge problems because the 
sludge retention time in the clarifier decreases (Figure 6.14 - bottom right). 
Filamentous bulking caused by nutrient deficiency is not plotted as the risk of 
occurrence of this type of problem is never high because the nitrogen load is high 
throughout the simulation. Note that phosphorus is not considered in the ASM1 model. 
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Similarly, foaming caused by a HRBOM fraction is never experienced because 
conditions favouring this type of foaming do not occur. 

Table 6.4 shows the values of the settling quality criteria together with the plant 
performance evaluation criteria in relation to EQI and OCI for both CSs, and an open-
loop CS with constant actuator settings exposed to all three influent scenarios (i.e. dry, 
rain and storm). 

Table 6.4. Plant performance obtained using three CSs for different influent scenarios. 
RISK RELATED CRITERIA Dry influent Rain influent Storm influent 

Bulking due to 
nutrient deficiency 

TIV(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
AV ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00 

Bulking due to low 
DO 

TIV(%) 8.18 7.29 11.61 10.56 6.99 10.42 12.05 10.42 13.39 

AV 0.32 0.33 0.38 0.30 0.30 0.35 0.32 0.33 0.37 

Bulking due to low 
F/M ratio 

TIV(%) 42.41 41.81 63.24 40.18 40.77 58.93 42.26 42.71 64.14 
AV 0.75 0.74 0.86 0.68 0.72 0.85 0.73 0.74 0.86 

Foaming due to 
low F/M ratio 

TIV(%) 0.00 0.00 55.21 0.00 0.00 50.59 0.00 0.00 55.06 
AV 0.54 0.54 0.78 0.42 0.50 0.74 0.50 0.53 0.77 

Foaming due to 
HRBOM fraction 

TIV(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
AV 0.03 0.02 0.01 0.05 0.03 0.01 0.03 0.02 0.01 

Rising sludge 
TIV(%) 34.08 77.23 0.00 23.81 52.23 0.00 28.42 70.54 1.49 
AV 0.68 0.86 0.13 0.60 0.70 0.07 0.64 0.82 0.16 

Deflocculation 
TIV(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
AV 0.22 0.24 0.45 0.13 0.19 0.37 0.19 0.22 0.41 

Integrated bulking 
TIV(%) 50.59 49.11 74.85 50.74 47.77 69.34 54.31 53.12 77.38 
AV 0.81 0.81 0.91 0.79 0.79 0.89 0.82 0.82 0.91 

Integrated foaming 
TIV(%) 0.00 0.00 55.21 0.00 0.00 50.59 0.00 0.00 55.06 
AV 0.55 0.55 0.78 0.45 0.51 0.74 0.52 0.53 0.78 

Overall risk 
TIV(%) 65.33 86.90 74.85 63.69 70.68 69.34 66.52 87.94 77.97 
AV 0.89 0.95 0.91 0.85 0.88 0.89 0.88 0.95 0.91 

PERFOMANCE CRITERIA          

OCI  16148a 16424b 15607c 15732a 15764b 14927c 16966a 17171b 16344c 
EQI (kg·d-1)  6690 6038 5574 8935 7816 7326 8022 7042 6547 

a Open-loop (constant actuator settings; KLa3=KLa4=240, KLa5=84;Qr=Qin avg.; Qintr.=3·Qin avg.) 
b CS1 
c CS2 

From the results in Table 6.4 it can be concluded that both closed-loop CSs improve 
plant performance compared to the open-loop strategy, when only traditional plant 
performance evaluation criteria regarding EQI for the three weather influent scenarios 
(dry, rain and storm) are considered. In terms of economic criteria, CS1 is a worse 
option than open-loop, while CS2 presents a more economic alternative. 

With regard to the settling quality criteria, the %TIV and the AV risk of bulking due to 
nutrient deficiency values are almost 0 in all cases. In terms of risk of bulking due to 
low DO, the same behaviour is observed in both CSs. CS1 has a lower risk than open-
loop due to the DO controller. However, CS2 has a slightly higher risk than CS1 due to 
the increased Qr. The higher the Qr, the higher the MLVSS concentration is in the 
biological reactor, and hence, some low DO conditions can occur in CS2 despite the DO 
control. This last fact explains the behaviour of the risks of bulking and foaming due to 
low DO. For open-loop and CS1 only small differences appear. For CS2 the increased 
MLVSS concentration in the biological reactors can cause more low F/M conditions.  

In terms of risk of rising sludge, CS2 has the lowest values of %TIV and AV risk given 
that it has the lowest SNO and the highest NGPT due to the nitrate control. With regard 
to CS1 and open-loop, although CS1 %TIV is higher than that of open-loop, its AV 
value is quite high as well. The basic difference between CS1 and open-loop is that 
despite the SNO controller, the fact that Qr is proportional to the Qin means that when the 
Qin is low, Qr is low as well, thereby increasing the retention time at the bottom of the 
secondary settler which in turn increases the risk of rising sludge. For the open-loop, 
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since Qr is constant the retention time at the bottom of the secondary settler is constant 
as well, thereby reducing the possibility of causing rising sludge. 

For CS2, the risk of deflocculation is higher than for CS1 and open-loop due to the 
higher MLVSS concentration caused by the increased Qr. Nevertheless, the risk of 
deflocculation is not severe in any of the cases. 

The integrated risk of bulking and foaming follows the same behaviour as that of the 
individual risks. However, the overall risk is influenced by the risk of rising sludge (i.e. 
CS1 has the highest risk, and CS2 the lowest). 

6.3 Long-term Benchmark Simulation Model No1 application 

The first part of this section is devoted to the filtering of the results of an open-loop 
simulation obtained after applying the AS risk model. There is also a discussion of the 
effect of different time constants of the filter. In the second part, the temperature effect 
on Microthrix parvicella is shown. Finally, an example of the AS risk model 
performance for a 3 DO CS is discussed. 

6.3.1 Open-loop 

In this section the filter effect on the results of a BSM1_LT open-loop case are 
evaluated. The specifications for the simulation are shown in Table 6.5 (based on 
Vrecko et al., 2006). The simulation is based on the influent files by Gernaey et al. 
(2006) for BSM1_LT (BSM2 influent files after the primary clarifier). It should be 
pointed that the evaluation periods for all the simulations in BSM1_LT start on July 1st. 
Hence, the initial period corresponds to summer. The middle of the evaluation period is 
in winter and the end is the beginning of summer. 

Table 6.5. Specifications used for the BSM1_LT simulation. 
KLa3 (d-1) KLa4 (d-1) KLa5 (d-1) Qw  (m

3·d-1) Qintr (m
3·d-1) Qr (m

3·d-1) Qcarb (m3·d-1) Bypass 
240 240 240 300 55338 18446 0 No 

The filter has already been described in Section 5.1.2 Knowledge formalisation. This 
exponential filter should be applied for long simulation runs i.e. for simulation runs 
longer than 1 month. Therefore, for the case of BSM1_LT and BSM2, this filter has 
been applied to the following individual risks: bulking due to low DO values, bulking 
due to low organic loading, bulking due to nutrient deficiency, foaming due to low F/M 
ratio, foaming due to HRBOM fraction, rising sludge and deflocculation. For BSM1 the 
filter is not used.  

In the BSM1_LT, the filter is applied with a time constant of 3 days for foaming, 
bulking and deflocculation risk and 2 hours for rising sludge. Figure 6.15 depicts the 
effect of the filter on the risk of bulking due to low DO. It is difficult to interpret the 
risk without the filter because the daily dynamics appear too close (in black). However, 
when the 3-day filter is applied the seasonal effect on the risk of filamentous bulking (in 
red) becomes noticeable. There is a first period (summer, days 0-100 approx.) with a 
relatively high risk of bulking due to low DO followed by a period (winter, days 150-
270) with a lower risk. These seasonal changes are due to the change in the F/M ratio, 
which during the summer is low. The opposite effect occurs during the winter.  
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Figure 6.15.  Filter effect on risk of bulking due to low DO. 
Black line: without filter; Red line: with filter. 

Figure 6.16 depicts a zoom from Figure 6.15 of days 98 to 105. Higher risks are 
present during the weekdays due to higher F/M than during the weekend (lower F/M). 
For the filtered risk there is similar behaviour, increasing during the day with the higher 
F/M and dropping during the night due to low F/M. At the weekend the risk decreases 
as well. 
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Figure 6.16.  One-week (days 98 to 105) zoom from Figure 6.15. 
Black line: without filter; red line: with filter. 
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6.3.1.1 Filter time constant variation 

Figure 6.17 represents the effect of changing the time constant in the filter. The risk 
shown is that related to bulking due to low DO. There is a significant change from the 
1-day to the 3-days time constant. The 1-day time constant is not yet smooth enough. 
On the other hand, the change from a 3-day to a 7-day time constant is not as significant. 
Thus, the 3-day time constant was selected. It allows to represent the slow dynamics 
behaviour making the interpretation of the results more feasible. As in Figure 6.16, the 
weekly behaviour is represented by the small peaks in the 3-day filtered risk. The 
behaviour of the risk and its causes are the same as those explained in relation to Figure 
6.16. 
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Figure 6.17.  Risk of bulking due to low DO. 
Black line: 1-day; red line: 3-day; blue line: 5-day; green line: 7-day. 

6.3.2 Temperature influence 

The open-loop case with a filter time-constant of 3 days has been used to evaluate the 
effect of temperature on one of the operational problems of microbiological origin, 
namely the risk of foaming due to low F/M which is caused by M. parvicella (see 
Section 5.1.4.2 Temperature influence). 

Figure 6.18 depicts the temperature effect on the risk of foaming due to low F/M (black 
line: with temperature effect; Red line: without temperature effect). If we look at the 
seasonal effect, the risk decreases during summer. On the other hand, without the 
temperature effect only a few peaks go above 0.8 during the winter. The temperature 
effect raises the risk above 0.8 for longer time periods during the winter, thereby 
increasing the %TIV of foaming. The AV risk of foaming due to low F/M remains the 
same (0.61) but the %TIV of foaming due to low F/M increases from 10% without the 
temperature effect to 28% with the temperature effect. Apart from the rise in the %TIV, 
the high risks of foaming due to low F/M are now centred on the winter period which is 
indeed more realistic. 
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Figure 6.18.  Risk of foaming due to low F/M caused by M.Parvicella. 
Black line: risk with T effect; red line: risk without temperature effect. 
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Figure 6.19. Risk of bulking due to low F/M caused by M.Parvicella. 

Black line: risk with T effect; red line: risk without temperature effect. 

The risk of bulking due to low F/M affected by the temperature correction is shown in 
Figure 6.19 (black line: with temperature effect; red line: without temperature effect). 
During the summer period the temperature effect decreases the risk of bulking due to 
low F/M. On the other hand, the risk of bulking due to low F/M during winter is even 
more increased. Globally, the AV risk with and without the T effect is 0.77 while 
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the %TIV in high risk is 44% without the T effect and 46% with it. With regard to the 
risk of bulking due to low F/M, note that the risk model investigates two different risks 
and then the maximum between them is selected at each time step. This can have a 
smoothing effect on the profiles when comparing Figures 6.18 and 6.19.  

6.3.3 Closed-loop 

The CS tested is based on identical DO control loops in the three aerobic reactors of the 
BSM1 plant, where DO is controlled at a constant set point (2 mgO2·L

-1) by 
manipulating KLa (3DO CS). The rest of specifications are as stated for the open-loop 
case. 

Several conclusions can be drawn from Table 6.6. One is that aerobic filamentous 
bulking, foaming due to HRBOM fraction, bulking due to nutrient deficiency and 
deflocculation are not really a problem at any time of the year for this CS. The 
low %TIV and AV risk values for these problems are due to the continuous high DO 
level in the aerobic biological reactors (set point values of 2 mgO2·L

-1), the 
predominance of low values for the SS/XS ratio and the absence of shortage of nitrogen. 
On the other hand, the risk of experiencing rising sludge is severe for almost the entire 
evaluation period (315 days, 86% of the time). Indeed, due to the high nitrification 
capacity as a result of applying the selected DO CS and the low biodegradable substrate 
concentration in the influent, the plant experiences incomplete denitrification. 

Table 6.6 provides the results for the risk criteria for the 3DO CS and the open-loop 
case. For the specific case of risk of bulking due to low DO, the risk is lower for the CS 
since DO is controlled. On the other hand, problems related to rising sludge are higher, 
given that the DO controller allows more nitrification. This nitrate is the cause of the 
higher risk of rising sludge. The integrated values for filamentous bulking, foaming and 
rising sludge are given. The higher %TIV of rising sludge compared to the risks of 
bulking and foaming (89.67% versus 47.29% and 27.33%, respectively) shows the 
former problem to be the riskier one for the 3DO CS, and thus the one to be tackled first. 
Table 6.6 also shows the overall risk value of experiencing operational problems of 
microbiological origin for this CS.  

Table 6.6. Settling quality criteria for the 3DO CS applied to the BSM1_LT. 
RISK RELATED CRITERIA CS Open-loop 
 TIV (%) AV TIV (%) AV 

Bulking due to nutrient deficiency 0.00 ≈ 0.00 0.00 ≈ 0.00 
Bulking due to low DO 0.00 0.24 18.05 0.38 
Bulking due to low F/M 47.28 0.77 47.46 0.79 
Foaming due to low F/M ratio 27.33 0.61 27.60 0.61 
Foaming due to HRBOM fraction 0.00 0.03 0.00 ≈ 0.00 
Rising sludge 89.67 0.94 86.44 0.92 
Deflocculation 0.00 ≈ 0.00 0.00 ≈ 0.00 
Integrated bulking 47.29 0.79 47.46 0.79 
Integrated foaming 27.33 0.61 27.60 0.61 
Overall risk 95.67 0.97 89.59 0.95 
PERFORMANCE CRITERIA     
OCI 14590 16660 
EQI 9315 9244 

Finally, EQI and OCI show similar results. OCI is lower for CS than for open-loop due 
to the DO controller since aeration is more optimized. However, EQI is slightly higher 
for CS than for open-loop due to the fact that the DO controller might not provide 
enough DO for nitrification. On the other hand, in the open-loop case the aerobic 
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reactors are over-aerated (as high OCI indicates) so more nitrification can be possible so 
less ammonia is lost through the effluent. 

6.4 Benchmark Simulation Model No2 application 

This section is devoted to the application in BSM2. Since the principal addition is the 
anaerobic digester the results are centred on the AD risk model. The section is 
composed of four parts: open-loop which will show the general results of the AD risk 
model; influence of operational parameters (Qw and Qr) on the evaluation results; 
closed-loop, which includes the evaluation of two different CSs; and finally an 
evaluation from a plant-wide perspective including the results of the AS and AD risk 
model is presented. 

6.4.1 Open-loop 

An open-loop case study with constant values for the main plant-wide WWTP 
operational parameters has been simulated to illustrate the performance of the AD risk 
model. Table 6.7 shows the specifications of the open-loop BSM2 simulation. Influent 
files used are the ones presented in Gernaey et al. (2006) for BSM2. 

Table 6.7. Specifications used for the open-loop BSM2 simulation. 
KLa3 (d-1) KLa4 (d-1) KLa5 (d-1) Qw  (m

3·d-1) Qintr (m
3·d-1) Qr (m

3·d-1) Qcarb (m3·d-1) Bypass 
120 120 60 300 61944 20648 2 No 

In terms of operational parameters related to the FAD risk, Qw was fixed at 300 m3·d-1 
and Qr was equal to Qin,0. Figure 6.20 presents the FAD risk profile as a function of 
time together with OLR, OLRvar, and FAS risk profiles. 
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Figure 6.20.  Simulated results of the AD risk model for the open-loop case for one-year simulation 
(from July 1st). OLR (black line); OLRvar (blue line); FAS risk (green line); FAD risk (red line).  

In general terms, the FAD risk trend is similar to that of the FAS risk. However, at the 
end of the summer (days 30-50, approximately), there is a divergence in the FAD risk 
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with respect to the FAS risk due to a higher decrease in both OLR and OLRvar, which 
compensates for the increase in FAS risk over the same days. From approximately day 
170 until the onset of summer (day 310), FAD risk stabilises well at around 0.7. In this 
period the FAD risk reaches the highest values possible with low OLR (1.2-2.4 kgVS·m-

3·d-1) and between low and medium OLRvar (5-20%). In other words, FAD risk no 
longer increases (unlike FAS risk) because it has reached the maximum value possible 
with the current values of OLR and OLRvar. FAD risk would only increase, at these 
levels of FAS risk, due to higher OLR and/or OLRvar. FAD risk drops considerably for 
a few days (around day 185) in line with OLRvar values, although the FAS risk is 
relatively high during these days. The drop is consequence of quite constant VS 
concentration in the inflow for a few days. From day 270, FAD risk shows a decreasing 
trend that follows the FAS risk, and a sharper drop around day 320 due to another sharp 
decrease in OLRvar values around the same day. 

6.4.2 Operational parameters influence 

Among the main control handles in a WWTP (DO, Qr and Qw), two main operational 
parameters may influence the FAD risk: Qw and Qr. Qw influences the amount of solids 
going to the anaerobic digester, changing OLR accordingly. Even though it is also 
possible to control the primary sludge flow rate to the anaerobic digester the purpose 
here is to test the effect of the main control handles on the FAD risk. Qr has a direct 
effect on the amount of solids in the biological reactors, which is directly related to the 
F/M ratio on which the FAS risk depends, i.e. low Qr maintains a low solids 
concentration in the aerated biological reactors so F/M is increased and the FAS risk 
lowered, and vice versa. 

For both Qr and Qw simulations the previously presented open-loop case is used. For 
each Qr simulation Qw has been kept at 300 m3·d-1. Also, for each Qw simulation Qr has 
been kept at Qin x1. Qw has been varied from 100 to 700 m3·d-1 in 100 m3·d-1 steps, 
while Qr has been tested from x0.25 to x1.5 Qin in 0.25 steps. 

6.4.2.1 Return activated sludge flow rate 

Table 6.8 summarises the AV FAD risk, FAS risk, OLR and OLRvar for each Qr. 

Table 6.8. AV FAD risk, FAS risk, OLR and OLRvar for each Qr. 
Qr (m

3·d-1) Qin x0.25 Qin x0.5 Qin x0.75 Qin x1 Qin x1.25 Qin x1.5 
AV FAD risk 0.412 0.545 0.565 0.571 0.574 0.574 
AV FAS risk 0.438 0.655 0.701 0.725 0.739 0.748 

AV OLR (kgVS·m-3·d-1) 1.85 1.76 1.72 1.69 1.67 1.66 
AV OLRvar (%) 7.14 7.40 7.49 7.53 7.55 7.58 

Table 6.8 shows how AV FAD risk increases from 0.412 for Qin x0.25 to 0.571 for Qin 

x1. From this point on, AV FAD risk remains constant at 0.574. As noted above, at low 
Qr, FAS risk is low as well as FAD risk. At higher Qr, the inverse effect is seen, with 
increased AV FAS and FAD risk. AV OLRvar increases at the same time as the AV 
OLR decreases as Qr increases. This trend is explained by the higher relative variation 
of OLR whereby lower values of OLR and similar values of OLR increments will give a 
higher percentage of OLRvar. Figure 6.21 shows the profile of FAD risk for Qr 
equivalent to Qin x0.25, x1 and x1.5.  
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Figure 6.21. Profiles of FAD risk for Qr equivalent to Qin x0.25 (black line), Qin x1 (green line) and Qin 
x1.5 (blue line). 

From the profile it can be seen that the differences in the AVs appear in the winter and 
spring periods, when the FAD risk is significantly lower for Qr equal to the Qin x0.25 
case. During the winter FAD risk is higher for Qr equal to Qin x1 and x1.5 cases, given 
that FAS risk tends to increase in this period. On the other hand, this effect does not 
appear for the lowest Qr (Qin x0.25) because of the low FAS risk associated with low Qr 
(0.438 on AV). In late summer (days 0-50) there are only slight differences between the 
different FAD risks due to the fact that the FAS risk is low. FAD risks are relatively low 
(around 0.4 for days 0-30) and later, when OLR decreases (effect shown in Figure 6.20), 
the FAD risks drops to its minimum (around 0.2) as a consequence. 

6.4.2.2 Waste activated sludge flow rate 

Table 6.9 shows the AV FAD risk, FAS risk, OLR and OLRvar for each Qw. When Qw 
increases, AV FAD also increases slightly at first from 0.548 to 0.572, but then 
descends to 0.432. The increase in AV OLR explains the rise in AV FAD risk for Qw 
from 100 to 200 m3·d-1. It then descends to 0.432 (for Qw equal to 700 m3·d-1), given 
that FAS risk decreases drastically from 0.766 to 0.475 with the increase in Qw (from 
200 to 700 m3·d-1). From Qw equal to 200 m3·d-1, OLR does not increase enough to 
become relevant compared to the FAS risk. AV OLRvar decreases with the increasing 
AV OLR as in the previous case (i.e. Qr study), although this time the effect is increased 
for the Qw of 100 m3·d-1 given the low AV OLR. Thus, for a given daily OLR 
oscillation it is important not to have too low OLR since OLRvar could increase the 
FAD risk. 

Table 6.9. AV FAD risk, FAS risk, OLR and OLRvar for each Qw. 
Qw (m3·d-1) 100 200 300 400 500 600 700 

AV FAD risk 0.548 0.572 0.571 0.559 0.534 0.496 0.432 
AV FAS risk 0.779 0.766 0.725 0.679 0.633 0.581 0.475 

AV OLR 
(kgVS·m-3·d-1) 

1.39 1.61 1.69 1.74 1.79 1.82 1.85 

AV OLRvar 9.01 7.76 7.53 7.52 7.55 7.53 7.51 
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Figure 6.22 depicts the profiles of the FAD risk for three different Qw: 100, 300 and 
700 m3·d-1. During the summer period not many differences are appreciable between 
each Qw. The low FAD risks during this period are due to the low FAS risks, 
characteristic for summer periods. During the winter period FAD risk increases, and the 
increase is more significant for low Qw values (100 to 300 m3·d-1) than for values equal to 
700 m3·d-1. This is due to the fact that for high Qw the increase in OLR is not as 
significant as the decrease in FAS risk, as the FAD risk profile shows. 
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Figure 6.22. Profiles of FAD risk for 100 (black line), 300 (green line) and 700 (blue line) m3·d-1 Qw. 

6.4.3 Closed-loop 

In order to test its performance, two closed-loop cases with automatic controllers 
involving manipulation of variables related to the AD risk model inputs were used to 
test its performance. 

The first CS (CS1) involves the BSM2 default DO controller (Nopens et al., 2008) 
which consists of a PI DO controller with a set point of 2 g O2·m

-3 in tank reactor 4 by 
manipulating the KLa. For tanks reactors 3 and 5 the same KLa is applied with a gain of 
1 and 0.5, respectively. CS1 also includes a TSS controller in the last aerated tank with 
a setpoint of 4400 gTSS·m-3 (3400 gTSS·m-3 if T<15ºC) which manipulates Qw (for 
further details of this controller see Vrecko et al., 2006). This CS shows the effect of 
controlling the solids inventory in the AS system. The variability of Qw is also reflected 
in the OLRvar value. 

The second CS (CS2) involves the same DO controller plus an ideal proportional-integral 
OLR controller which manipulates Qw with an OLR setpoint of 1.75 kgVS·m-3·d-1. 

6.4.3.1 Dissolved oxygen and mixed liquor suspended solids 

Figure 6.23 shows the simulated results for CS1. The OLR range is for almost the 
entire simulation time in the same range as in the open-loop case. During the winter 
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period the general FAD risk trend is similar to the open-loop case, although this time 
the manipulation of Qw causes more peaks in OLRvar, which is also reflected in peaks 
appearing in the FAD risk profile. Likewise, noticeable changes in the OLR profile are 
reflected in FAD risk as well. For instance, during the summer period the same effect as 
was presented in Figure 6.20 is present here (i.e. the decrease in FAD risk linked to the 
decrease in OLR and OLRvar). As a result, keeping the solids inventory constant in the 
biological reactors can causes more instability in the anaerobic digester in relation to 
FAD risk. 
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Figure 6.23.  AD risk model CS1 results for one-year simulation (from July 1st ). 
OLR (black line); OLRvar (blue line); FAS risk (green line); FAD risk (red line).  

6.4.3.2 Dissolved oxygen and organic loading rate 

Figure 6.24 shows the profile of the AD risk model input variables for CS2 together 
with the FAD risk. It can be clearly seen how the OLR controller drastically reduces 
OLRvar, the effect of which can also be appreciated in the OLR since oscillations have 
almost disappeared. This low OLRvar causes the FAD risk to stabilise around 0.45 even 
though FAS risk is high, especially during the winter and early spring periods. The only 
exception to this almost constant FAD risk is during the summer period, a result of the 
low solids concentration associated with this season, which is also the reason for low 
FAS risk. 

Table 6.10 shows the benchmark evaluation criteria (EQI and OCI) together with %TIV 
of FAD and AV FAD risk for the three cases presented (open-loop, CS1 and CS2). 

Table 6.10. AV FAD risk, %TIV at high FAD risk and benchmark evaluation criteria for open-loop, CS1 
and CS2. 

 Open-loop CS1 CS2 
AV FAD risk 0.57 0.54 0.45 

TIV (%) 0.00 0.34 0.00 
EQI (kg pollutant units·d-1) 5657 6499 6677 

OCI 9208 6812 6735 
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Figure 6.24.  AD risk model CS2 results for one-year simulation (from July the 1st ). OLR (black line); 
OLRvar (blue line); FAS risk (green line); FAD risk (red line). 

The highest FAD risk corresponds to the open-loop case and the lowest FAD risk 
corresponds to the CS2 case, since the OLR controller regulates the OLR to a safe 
setpoint (1.75 kg VS·m-3·d-1). The %TIV of FAD is higher for CS1 due to the control of 
the TSS concentration in the AS. For example, whenever TSS is high the automatic 
controller increases the Qw, which increases the OLR in the anaerobic digester. EQI is 
worse for CS2 than for open-loop and CS1, given the fact that the OLR control is 
performed regardless of the TSS in the AS. Thus TSS concentration in the AS 
biological reactors could be lower than the concentration required to achieve optimal 
removal efficiency. The operational cost is lower for CS2 due to the low OLRvar linked 
to low Qw variations, as can be seen from the OLRvar profiles in Figures 6.23 and 6.24. 
Moreover, OLR is slightly higher in CS2 than CS1, leading to higher methane 
production (MP) and, therefore, a decrease in costs. As is evident, there is a trade-off 
between the optimal performance in the AS and the anaerobic digester regarding EQI 
and OCI. The results of the risk model emphasise the need for plant-wide supervisory 
CSs to minimise poor trade-off effects, while at the same time aiming for sustainable 
sludge and wastewater treatment. 

6.4.4 Plant-wide application 

In this part four CSs and the open-loop case are compared within the BSM2, using all 
the new evaluation criteria together with the standard ones. Table 6.11 presents the 
control loops and indicates which is used in each CS simulated. 

After simulation, the one-year simulation results were evaluated (Table 6.12) using 
standard evaluation criteria and the new criteria generated by the risk model. The 
highest values among CSs are in red and the lowest in green. Taking into account 
environmental criteria (EQI) the best CS is the No4, closely followed by CS2. The 
worst strategy in relation to EQI is CS1 due to its total N %TIV, given that nitrogen is 
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highly weighted in EQI calculation. Although CS4 would be the best option 
environmentally, it does not have the lowest values in effluent AV total N, COD, BOD 
or TSS but neither does it have the highest. On the other hand, CSs that have the lowest 
values in some of the effluent AVs (CS1, CS2 and CS3), they have the highest values in 
others.  

Table 6.11. AS and AD CSs implemented. 
FEATURES 3 DO Qintr Qcarb TSS OLR 

Measured 
variables 

SO in biological 
reactors 3, 4 and 5 

SNO in 
biological 
reactor 2 

SNO in 
biological 
reactor 2 

TSS in biological 
reactor 5 

TSS in AD 
inflow 

Controlled 
variables 

SO in biological 
reactors 3, 4 and 5 

SNO in 
biological 
reactor 2 

SNO in 
biological 
reactor 2 

TSS in biological 
reactor 5 

OLR 

Setpoint 

2 mg O2·l
-1 in 

biological reactors 3 
and 4 and 1 mg O2 in 
biological reactor 5. 

1 g N·m-3 1 g N·m-3 

4400 g TSS·m-3 
(T<15ºC) 

3400 g TSS·m-3 
(T>15ºC) 

1.75 kg VS·m3·d-1 

Manipulated 
variable 

KLa Qintr Qcarb Qw Qw 

Control algorithm PI PI PI Cascaded PI Cascaded PI 

Applied to 
CS1, CS2, CS3 and 

CS4 
CS1 

CS2, CS3 and 
CS4 

CS3 CS4 

In contrast to the situation with EQI, the best option regarding OCI would be CS1 given 
the absence of an external carbon source (EC=0). CS2, CS3 and CS4 have the highest 
OCI compared to CS1 and OL given that CS2, CS3 and CS4 have high SP for disposal 
caused by the EC addition. Despite this, the highest MP for CS3 compensates its higher 
PE and SP costs compared to CS2 and CS4. This shows that while strategies with an EC 
are generally the most expensive ones they are environmentally favourable.  

With regard to AV AE is the highest for CS2 since the EC increases the TSS. Despite 
the DO control, O2 requirements can sometimes be difficult to meet unless there is a 
TSS controller (CS3). OL has the lowest AV AE since the DO provided is constant, 
which is also the cause of the high AV Kjeldahl nitrogen concentration in its effluent. 
The digester’s MP is the highest in CS3 since this strategy wastes more sludge than CS4 
to maintain the TSS concentration in the biological reactors, a fact reflected in the PE 
and the higher SP for disposal for CS3. However, the higher MP compensated the 
higher SP and results in a lower OCI for CS3 than for CS4. The low total Kjeldahl 
nitrogen of CS1, together with the highest effluent total nitrogen AV concentration, 
indicate that, despite the internal recycle, there is not enough organic matter (no EC is 
added in this CS) to denitrify. This is the reason for the greatest %TIV of total N for 
CS1. %TIV of COD is very low for all the CSs as well as for TSS and BOD5. 

With regard to the new criteria most of the highest risks are present in CS2 while CS3 
has the lowest. The highest risk of bulking due to low DO is for OL in which the DO is 
not controlled. Since CS2 incorporates an EC, which has the effect of increasing 
MLVSS, the risks related to low F/M are high. The risk of rising sludge for CS2 is the 
highest given that the EC increases the MLSS, as commented. This increase means that 
more biomass is present in the system and the solids retention time in the secondary 
settler is probably higher. 

Hence, uncontrolled denitrification is more likely to take place. In contrast, for CS3 the 
AV risk of rising sludge is lower thanks to the TSS controller. The risk of 
deflocculation is only relevant in the OL case. The uncontrolled TSS causes high SRTs, 
which are the main reason for the high risk. As a consequence, the integrated risks 
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reflect what is explained above with CS3 having low integrated risks and CS2 the 
highest. With regard to the anaerobic digester, the lowest risk is for CS4, which includes 
the OLR controller. However, the AV FAD risk is low for CS3 as well. The highest AV 
FAD risk is for CS2, which includes an EC that causes higher OLR. At the same time, 
CS2 has the highest risk of foaming due to low F/M, which also negatively influences 
the FAD risk in the anaerobic digester. 

Table 6.12. Evaluation criteria for the open-loop and the four simulated CSs. 
STANDARD CRITERIA Units OL CS1 CS2 CS3 CS4 

EQI 
kg 

poll.units·d-1 
5657.5 6523.3 5184.3 5402.2 5147.5 

OCI - 9208.2 6927.7 12403 12377 12449 

Effluent total Kjeldahl N AV 
conc. 

g N·m-3 3.7294 2.2419 2.5209 3.0576 2.5411 

Effluent total N AV conc. g N·m-3 11.204 18.638 11.048 11.992 11.078 

Effluent COD AV conc. g COD·m-3 50.056 49.193 51.000 47.189 49.994 

Effluent BOD5 AV conc. g BOD·m-3 2.6742 2.4802 2.8407 2.8639 2.8652 

Effluent TSS AV conc. g·m-3 15.897 15.365 16.663 13.733 15.895 

SP AV kg SS·d-1 8940.9 8602.8 9270.6 9764.4 9392.7 

AE AV kWh·d-1 4000.0 4478.9 4857.5 4420.6 4761.6 

PE AV kWh·d-1 441.54 236.17 441.68 458.87 446.41 

EC addition AV kg COD·d-1 2400.0 0.0000 4578.3 5013.3 4705.2 

ME AV kWh·d-1 768.00 780.23 768.56 769.11 769.74 

HE AV  kWh·d-1 0.00000 0.00000 0.00000 0.00000 0.00000 

MP AV kg CH4·d
-1 6357.0 6219.0 6480.1 7198.2 6641.4 

Total N %TIV % 0.10874 62.760 0.21463 3.3682 0.20318 

COD %TIV % 0.06010 0.06582 0.16312 0.05151 0.13450 

Ammonia %TIV % 8.2704 0.16598 0.22035 4.9823 0.31479 

TSS %TIV % 0.39492 0.27759 0.88713 0.25183 0.64675 

BOD5 %TIV % 0.12019 0.11447 0.23466 0.14309 0.21177 

NEW CRITERIA       

Nutrient deficiency AV - 0.0001178 0.0001176 0.0001521 0.0001773 0.0001936 

Nutrient deficiency %TIV % 0.00000 0.00000 0.00000 0.00000 0.00000 

Bulking due to low DO AV - 0.59284 0.34227 0.28257 0.44744 0.31948 

Bulking due to low DO %TIV % 0.00000 0.00000 0.00000 0.00000 0.00000 

Bulking due to low F/M AV - 0.73643 0.79179 0.77267 0.62252 0.74944 

Bulking due to low F/M %TIV % 42.462 51.874 46.162 16.638 43.129 

Foaming due to low F/M AV - 0.63752 0.63821 0.63903 0.47900 0.60925 

Foaming due to low F/M %TIV % 14.372 12.031 18.029 0.00000 13.047 

HRBOM foaming AV - 0.05011 0.03460 0.04067 0.13444 0.05970 

HRBOM foaming %TIV % 0.00000 0.00000 0.00000 0.00000 0.00000 

Rising sludge AV - 0.35977 0.26669 0.65952 0.15169 0.54887 

Rising sludge %TIV % 0.0000 9.4408 51.242 2.3781 36.372 

Deflocculation AV - 0.92690 0.53440 0.53390 0.27310 0.5196 

Deflocculation %TIV % 81.880 0.00000 0.00000 0.00000 0.00000 

Integrated bulking AV - 0.78160 0.79187 0.77274 0.68013 0.75754 

Integrated bulking %TIV % 42.462 51.874 46.162 16.638 43.129 

Integrated foaming AV - 0.63752 0.63821 0.63903 0.48015 0.60958 

Integrated foaming %TIV % 14.372 12.031 18.029 0.0000 13.047 

Overall risk AV - 0.78160 0.80822 0.86078 0.68745 0.81634 

Overall risk %TIV % 42.462 57.489 71.803 19.013 59.884 

FAD AV - 0.57132 0.59163 0.61364 0.51486 0.51142 

FAD %TIV % 0.00000 0.00000 0.00000 0.00000 0.00000 
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To sum up, Table 6.12 shows that there is a trade-off between environmental and 
economic criteria. CSs that reach low EQI are more expensive and vice versa. 
Nevertheless, there are some CSs which do not have the lowest OCI and neither the 
lowest EQI that can also be considered as good control options.  

6.5 Comparison of results for different platform implementations 

A ring test to compare the results of the BSM implementations in different platforms 
has been performed by the benchmarkers. The simulation results have been put together 
(in Excel files) to compare the performance of each BSM platform with the others. At 
the benchmark website (IWA Task Group on Benchmarking of Control Strategies for 
WWTPs, 2009) the results of the ring test are available. Likewise, a ring test has been 
initiated in the final step in the risk model’s implementation.  

An example is given in this section of the table for the BSM1 ring test showing the 
standard evaluation criteria. The results presented here include dry weather influent 
open-loop with the specifications detailed in Section 6.2.1 Open-loop. Although, only 
one scenario is presented, the ring test includes many of these specifications (i.e. steady-
state; open-loop dry, rain and storm weather, and two closed-loop scenarios with dry, 
rain and storm weather, with and without ideal sensors and actuators). 

Table 6.13 presents the ring testing effluent AV results for the BSM1 related to all the 
evaluation criteria. These are the current results, up-to-date and despite the fact that in a 
few cases relative errors reach 1%, in absolute terms the differences are really small. 
For the AV loads Table 6.13 shows the values for the same simulation platforms. A few 
differences can be found in the AV loads, but again, the variations are quite small. The 
quality indexes have higher differences in absolute terms but they are low in relative 
terms. The same is true for the energy related variables and OCIs, they have high values 
so the relative errors are low. With regard to the effluent violations, GPS-X still has a 
significant error related to the ammonia violation. 

The results of the AS risk model implementation in FORTRAN are presented and 
compared with the MATLAB implementation in Table 6.13. As it can be seen from 
Table 6.13, results for the risks are very close. The highest difference (relative error: 
3.8%) is for AV low F/M foaming risk, but the absolute error (0.02045) is quite low. 
This error is then spread to the integrated foaming risk, but nevertheless the absolute 
error is still low (0.02005). 
 
Table 6.13. Ring testing of results for open-loop dry weather influent. 

EFFLUENT AV WEST FORTRAN MATLAB SIMBA 5.0 GPS-X 
Flow rate (m3·d-1) 18061.89318 18055.20000 18061.3325 18061.37998 18061.33185 
SI conc. (g COD·m-3) 30 30 30 30 30 
SS conc. (g COD·m-3) 0.972399074 0.97260 0.97352 0.971510068 0.967547301 
XI conc. (g COD·m-3) 4.581212966 4.58000 4.5794 4.579374757 4.583419008 
XS conc. (g COD·m-3) 0.221970527 0.22320 0.22285 0.222179916 0.223590033 
XBH conc. (g COD·m-3) 10.21139358 10.22000 10.2208 10.2196214 10.20701106 
XBA conc. (g COD·m-3) 0.542090406 0.54200 0.54217 0.543215499 0.540758698 
XP conc. (g COD·m-3) 1.7561667 1.75700 1.7572 1.758148745 1.757690504 
SO conc. (g -COD·m-3) 0.746397075 0.74530 0.74639 0.745912774 0.806677254 
SNO conc. (g N·m-3) 8.839813428 8.79700 8.8238 8.841852803 8.859889068 
SNH conc. (g N·m-3) 4.738039059 4.79800 4.7589 4.706617978 4.820471892 
SND conc. (g N·m-3) 0.728480117 0.73090 0.72901 0.728040444 0.724824368 
XND conc. (g N·m-3) 0.01563669 0.01571 0.015691 0.015649163 0.015741476 



Chapter 6 

126 

SALK conc. (mol HCO3
-·m-3) 4.453274063 4.46100 4.4562 4.451157017 4.475732412 

TSS conc. (g·m-3) 12.98462563 12.99000 12.9917 12.99190524 12.96854347 
Kjeldahl N conc. (g N·m-3) 6.722677364 6.78600 6.7448 6.691585946 6.801325888 
EFFLUENT AV WEST FORTRAN MATLAB SIMBA 5.0 GPS-X 
Total N conc. (g N·m-3) 15.56249079 15.58000 15.5686 15.53343875 15.66121496 
Total COD conc. (gCOD·m-3) 48.28523325 48.30000 48.2958 48.29405038 48.2800166 
BOD5 conc. (g·m-3) 2.771893717 2.77500 2.7746 2.773874982 2.769771378 
EFFLUENT AV LOAD WEST FORTRAN MATLAB SIMBA 5.0 GPS-X 
SI (kg COD·d-1) 541.8567953 541.65600 541.84 541.8413993 541.8399554 
SS (kg COD·d-1) 17.5633682 17.56049 17.583 17.54681249 17.47519288 
XI (kg COD·d-1) 82.74537921 82.69282 82.7093 82.70982754 82.78265169 
XS (kg COD·d-1) 4.009207954 4.02992 4.025 4.012875894 4.03833379 
XBH (kg COD·d-1) 184.4371 184.52414 184.6007 184.5804653 184.3522139 
XBA (kg COD·d-1) 9.791179002 9.78592 9.7924 9.811221543 9.766822301 
XP (kg COD·d-1) 31.71969534 31.72299 31.7369 31.75459254 31.74623147 
SO (kg COD·d-1) 13.48134424 13.45654 13.4807 13.47221404 14.56966558 
SNO (kg N·d-1) 159.6637658 158.83159 159.3704 159.6960632 160.0213966 
SNH (kg N·d-1) 85.57795534 86.62885 85.9513 85.0080157 87.0641425 
SND (kg N·d-1) 13.15773005 13.19655 13.1668 13.1494151 13.09129345 
XND (kg N·d-1) 0.282428222 0.28365 0.28341 0.282645475 0.284312027 
SALK (kmol HCO3

-·d-1) 80.43456041 80.54425 80.4845 80.39403823 80.83768835 
TSS (kg·d-1) 234.5269211 234.53705 234.6482 234.6517371 234.2291672 
Kjeldahl N (kg N·d-1) 121.4242804 122.52259 121.8197 120.8592764 122.8410039 
Total N (kg N·d-1) 281.0880462 281.30002 281.1902 280.5553396 282.8624004 
Total COD (kg COD·d-1) 872.1227249 872.06616 872.2873 872.2571945 872.0014014 
BOD5 (kg·d-1) 50.0656482 50.10318 50.1124 50.10001006 50.02575999 
QUALITY INDEXES WEST FORTRAN MATLAB SIMBA 5.0 GPS-X 

IQI (kg poll.units·d-1) 52079.74047 52100 52100 52081.35708 52081.39492 
EQI (kg poll.units·d-1) 6680.673934 6700 6690.1049 6664.499613 6725.955334 
Daily AV SP (kg SS·d-1) 2675.297029 2669 2670.3382 2671.732382 2672.554704 
ENERGY RELATED VARIABLES WEST FORTRAN MATLAB SIMBA 5.0 GPS-X 

AV AE (kWh·d-1) 3341.386667 3341 3341.3867 3341.386667 3341.386667 
AV PE (kWh·d-1) 388.17 388.2 388.17 388.17 388.17 
AV carbon source dosage (kgCOD·d-1) 0 0 0 0 0 
AV ME (kWh·d-1) 240 240 240 240 240 
OPERATIONAL COST INDEXES WEST FORTRAN MATLAB SIMBA 5.0 GPS-X 

SP cost 12203.85054 12180 12178.4499 12185.40322 12191.62768 
AE cost 3341.386667 3341 3341.3867 3341.386667 3341.386667 
PE cost  388.17 388.2 388.17 388.17 388.17 
Carbon source dosage cost 0 0 0 0 0 
ME cost  240 240 240 240 240 
OCI 16173.40721 16150 16148.0067 16154.95989 16161.18435 
EFFLUENT VIOLATIONS (TIV) WEST FORTRAN MATLAB SIMBA 5.0 GPS-X 
Total N (%) 8.029365819 8.23 8.1845 7.589285714 0.892857143 
Total COD (%) 0 0 0 0 0 
Ammonia (%) 62.44441035 62.9 62.5 62.05357143 57.58928571 
TSS (%) 0 0 0 0 0 
BOD5 (%) 0 0 0 0 0 
INDIVIDUAL AS RISKS WEST FORTRAN MATLAB SIMBA 5.0 GPS-X 

Nutrient deficiency bulking (AV) - 0 0.00011765 - - 
Nutrient deficiency bulking (TIV - % -) - 0 0 - - 
Low DO bulking (AV) - 0.324 0.32341 - - 
Low DO bulking (TIV - % -) - 8.06 8.1845 - - 
Low F/M bulking (AV) - 0.728 0.74557 - - 
Low F/M bulking (TIV - % -) - 42.5 42.4107 - - 
Low F/M foaming (AV) - 0.559 0.53855 - - 
Low F/M foaming (TIV - % -) - 0 0 - - 
HRBOM foaming (AV) - 0.026 0.025602 - - 
HRBOM foaming (TIV - % -) - 0 0 - - 
Rising sludge (AV) - 0.682 0.68191 - - 
Rising sludge (TIV - % -) - 33.9 34.0774 - - 
INTEGRATED RISKS -   - - 
Bulking (AV) - 0.803 0.81015 - - 
Bulking (TIV - % -) - 50.6 50.5952 - - 
Foaming (AV) - 0.567 0.54695 - - 
Foaming (TIV - % -) - 0 0 - - 
Rising (average) - 0.682 0.68191 - - 
Rising (TIV - % -) - 33.9 34.0774 - - 
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6.6 Concluding remarks 

In this chapter the detailed implementation of the risk model in BSMs has been 
presented showing how the inputs for the risk model are calculated from the simulation 
results. This is relevant for the implementation of the risk model in BSM regardless the 
simulation platform used (i.e. MATLABTM & SIMULINKTM, WEST®, GPS-XTM, etc.).  

BSM1 has provided an example of how the AS risk model responds to changes in 
operational parameters and a first example of control strategies comparison in different 
weather influent scenarios. In terms of BSM1_LT the AS risk model filter and 
temperature effect have been evaluated. The analysis of four different time constants 
has shown that the 3-day provided a more feasible interpretation of the risk model 
results. The profiles of the risks show that the filter is valuable when taking into account 
the slow dynamics related to some of the operational problems of microbiological origin. 
The inclusion of temperature to represent the seasonal dynamics in BSM1_LT has 
allowed to test the extension of the AS risk model with temperature applied to 
Microthrix parvicella related risks. The results have shown that the AS risks related to 
Microthrix parvicella were increased during winter periods and decreased during 
summer showing a behaviour according to what is stated in the literature. BSM2 has 
allowed to test the whole risk model focusing in the AD part. Firstly, general results 
have been presented in an open-loop case study showing the profile for the risk of 
foaming in AD. Secondly, variation of the main operational parameters has shown the 
influence of both external recycle and waste sludge flow rates in the FAD risk. Next, 
two control strategies affecting the AD organic loading rates have been tested. The 
results have shown that a control strategy with a control of the TSS in the biological 
reactors causes a higher variation in the AD loading rates increasing the risk of foaming 
in the AD. Following, the results in a plant-wide basis have been presented comparing 
the open-loop case with four different control strategies showing the influence of the 
external carbon sources on the risk of foaming in the AD. 

It is also important to highlight that BSM in its different layouts have shown to be a 
really useful and versatile tool in which to implement to test and evaluate each part and 
the whole risk model. 
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7. General discussion and future work 

The intention of this chapter is to point out some aspects on the general results (not the 
specific results of each simulation which have already been discussed previously), 
validation, adaptation and possibilities related to the risk model as well as the current 
and future work. 

7.1 Mechanistic approaches 

The main factor that limits the development of general mechanistic models of 
filamentous bacteria is that they require detailed information on kinetics, morphology, 
specific substrates or processes related to some of the populations causing operational 
problems of microbiological origin. There are still species to identify or others the role 
of which it is not clear and is to be determined. There is also a lack of information on 
certain influent and process characteristics that can affect the populations balance. 
Current mechanistic models can represent specific species or they can consider only 
certain substrates or characteristics, but they fail when applied to other conditions or 
plants since model parameters cannot be determined or validated. In fact, 
mechanistically modelling provides indeed valuable knowledge for future development 
of a general deterministic model of the filamentous bacteria related to operational 
problems of microbiological origin. Hence, a mechanistic model of the filamentous 
bacteria would really valuable from the perspective of understanding the complex 
mechanisms of filamentous bacteria development. However, a general or validated 
model is not yet available. Within this framework, the risk model presented in this 
thesis represents a general approach to estimate the risk of operational problems of 
microbiological origin, which do not have a mechanistic model yet. 

7.2 Validation 

One of the limitations of the mechanistic models for operational problems of 
microbiological origin is the lack of a validated model. This is still an open question 
since validation is still difficult even in the case of the risk model. A validation of the 
risk model based on real data from a pilot plant or a full-scale WWTP is very difficult 
due to the fact that the risk model is giving the risk of a particular operational problem 
of microbiological origin but this risk is often not registered in real plants. Most of 
times episodes of operational problems of microbiological origin are not registered or 
microbiological observations are not performed when the problem appears. It is also 
important to highlight that the aim of the risk model is not to diagnose operational 
problems of microbiological origin with absolute certainty but to quantify whether the 
simulated conditions bring about a severe risk for leading the system towards a 
favourable situation with operational problem of microbiological origin. Moreover, the 
risk model was not developed to be applied in full-scale facilities but to complement 
dynamic simulations when comparing operational procedures and CSs (and thus, for 
example, the model uses variables not available in typical full-scale databases, such as 
SS and XS). The availability and reliability of data sets is the limiting factor. Even in the 
case of available real data to validate the risk model, it will only be validated on its 
boundaries (0 and 1 risks). Validating the intermediate values of the risk model is 
almost impossible, since they indicate that favourable conditions to develop operational 
problems of microbiological origin are met. 
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The knowledge embodied in the AS risk model is obtained from an extensive 
bibliography research and heuristic knowledge. The experiences of operational 
problems of microbiological origin are very well documented and discussed. This is the 
reason of the wide agreement and consensus on causes related to AS operational 
problems of microbiological origin present in the bibliography and in the day-to-day 
WWTP operation. From my point of view AS risk model provides a reliable tool for 
risk assessment during the evaluation of simulation results. In terms of the risk of 
foaming in AD still lacks of a consensus on the key factors that favour its development. 
Many publications point to different causes ending up in a more diffuse knowledge 
difficult to gather, causing the selection of the key variables more difficult.  

Preliminary AD risk model validation 

A preliminary validation of the AD risk model is presented here. It is difficult to adapt 
the real data to the data used by the model. Also several approximations and 
assumptions had to be made to calculate AD risk model input variables from real data. 
Below the approximations made to adapt the data are shown. Firstly, OLR for the AD 
risk model is calculated as shown in Equation 6.19 and taking HRT from Equation 
6.20. 

Since AD risk model OLR calculation is based on VS but calculated as TSS from 
simulation results, it was necessary to transform the measured TOC (tocsDig) into VS 
(TSS in fact). According to Metcalf and Eddy (2003), for untreated wastewater, the 
BOD to TOC ratio (BOD/TOC) is between 1.2 and 2.0 (1.6 was taken as the average). 
There is also a relation between BOD and COD ranging from 0.3 to 0.8 (0.55 was taken 
as the average). Therefore, putting together both ratios, COD can be expressed as a 
function of TOC (Equation 7.2). 

tocsDig*9.2COD =   (Eq. 7.2)     

where, 

tocsDig: TOC in the digester (mg·L-1) 

COD in mg COD · L-1. 

In Copp (2002) it is pointed out that there is a relation between TSS and particulate 
compounds (Equation 7.3). 

pCOD·75.0TSS =  (Eq. 7.3)     

where, 

CODp in mg COD · L-1. 

Since the pilot plant had influent wastewater from a winery and not from an AS system 
the FAS risk was set to 0 to represent the absence of Microthrix parvicella in the 
influent.  

A last assumption is made in order to simplify the conversion supposing that all the TSS 
can be accounted as VS. This way, we consider that all the COD measured in the pilot 
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plant can be degraded as it was VS. Thus, from Equations 7.2 and 7.3 we get Equation 
7.4. 

1000

tocsDig·175.2
VS =  (Eq. 7.4)     

where 

VS in kg·L-1. 

To obtain the real risk of biological foaming in the AD, the same approach as used in 
Section 5.2.1.1 Black box approach (within foaming part) was used here. 

Data gathered during approximately three months was used to validate the AD risk 
model. Figure 7.1 shows the profiles for the simulated biological foaming risk (SFR) 
from the AD risk model and the foaming index estimated from real data (FR). 

From Figure 7.1 some aspects can be pointed out. First of all, reasonable good fitting is 
achieved (RMSE=0.06). Secondly, it becomes clear that there are two differentiated 
periods, approximately the first month and the last two months. The first period is 
characterized by the stability of the system with a good coincidence between SFR and 
FR (both showing low foaming risk), whereas the second shows much more oscillations 
and peaks revealing a probably more unstable period. In this last period, at some 
specific points (i.e. around days 33, 43 and 58) there are some divergences where the 
model shows a relatively high foaming risk when the real data show high risk of 
foaming. It is important to note that the inherent uncertainty of the mechanisms of 
foaming, that hinders the development of mechanistic models, cannot be included in the 
AD risk model. This can be the main reason behind the main differences in the 
validation results. Although the results can be evaluated in absolute terms, the general 
trends of the instability are indeed detected by the AD risk model allowing it to assess 
operational conditions of the anaerobic digester that can favour biological foaming. 
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Figure 7.1. Evaluation of the validation. 
Simulated FAD risk in black. Real FAD risk in grey. 



Chapter 7 

134 

As commented above, the most important limitation to be able to validate the risk model 
is to measure or to estimate the key variables when the foaming episodes are not 
registered. Hence, the approximations made to calculate the AD risk model inputs are 
indeed another cause of the divergences in the validation process. Even though it is 
difficult to take into account the effect of filamentous bacteria in the AD influent, 
further validation with real data from an anaerobic digester treating sludge from an AS 
system would be of interest. Another reason for the deviations in the validation can be 
the fact that we are comparing here the potential FAD risk (from the AD risk model) 
with the estimation of a real risk. In other words, foaming might be present in a real 
plant, however, when evaluating the operational conditions with the AD risk model its 
results could indicate that there is a low risk and vice versa.  

7.3 Adaptation 

By adaptation we mean the implementation of mainly the AS risk model to other 
configurations (SBR, oxidation ditch, etc.). Changes are certainly required, e.g. the 
calculation of SRT and F/M ratio must be adequately re-defined and the sampling point 
for estimating the readily biodegradable substrate or DO level properly located, 
although the underlying mechanisms for evaluating the risk of occurrence of operational 
problems of microbiological origin are the same. In the case of the AD risk model its 
application to other configurations (UASB, EGSB, etc.) is more straightforward and the 
modifications are more linked to changes of the ranges of the OLR and HRT rather than 
the sampling point. It is worth to highlight that each risk model can be used 
independently. In the case of the AD risk model, if it is applied to an anaerobic digester 
which is not treating secondary sludge, the FAS risk used as input should be set to 0. 

Finally, a comment related to the customization of the risk model. As a compromise, the 
limits of the fuzzy MFs of the AD risk model were initially chosen from among the 
normal values, as described in Sections 5.1.2 and 5.2.2 Knowledge formalisation. 
However, it is worth remembering that the user can change these limits according to 
their own configuration. Likewise, the customization can include changes in the 
threshold to determine the severe risk index. 
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Figure 7.2. (a)Response surface for FAD risk for low FAS risk MF. (b) Adapted surface 
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Figure 7.2 illustrates an example showing how the response surface for low FAS risk 
would change, according to Massart et al. (2006), using the OLR normal values 
(between 1.6 and 2.4 kg VS·m-3·d-1). It becomes clear that the narrower range of the 
OLR causes an increase in the red zone of high FAD risk for values of OLR at 2.5 kg 
VS·m-3·d-1 or higher. 

7.4 Further possibilities and future work 

The usefulness of the approach has been demonstrated for objective comparison of CSs. 
However, this risk model can also be helpful when using WWTP modelling and 
simulation for other purposes, such as design optimisation, scenario testing, trouble 
shooting, learning tool or operational improvement. 

For example, the risk model offers the possibility to improve models of the sludge 
settling characteristics by using the risk index to change the settleability parameters, as 
presented in the work of Flores-Alsina et al. (2009b). In this work, in order to simulate 
the effects of filamentous bulking sludge, the settling parameters of the Takács 
secondary clarifier model (Takács et al., 1991) are changed during the simulation. The 
effects of bulking are reflected on the performance causing poor sludge compaction and 
consequently low RAS and WAS concentrations. It is shown that including the effects 
of bulking sludge leads to a more realistic process performance prediction. This 
approach allowed the authors study the effects of filamentous bulking sludge for 
different CSs in the work by Flores-Alsina et al. (2009c). Some strategies that showed 
good performance would be dismissed when the effects of filamentous bulking are 
represented in the secondary settler. This will also allow investigating the use of a high 
and sustained risk signal in a feedback loop to adapt the set points of simulated CSs. By 
including the risk assessment in the control loop, the identification of unsafe operational 
conditions would allow avoiding the system being led towards a serious destabilization 
and restoring it back to normal operation. 

Another example of the application of the risk model is the case presented by Sin et al. 
(2006). In their work a model-assisted optimization of the operation of an SBR is 
performed. The best strategy found when confronted with reality became unstable and 
bulking appeared. They probably would not have chosen the strategy if they could have 
applied the risk model which would have shown at least higher risks for that strategy. 

Another possibility of the risk model could be its further expansion to other WWTP 
processes (SHARON, anammox, microbial fuel cells, biofouling of membrane bio-
reactors, etc.), to viscous bulking or modifications to consider non-microbiological 
problems such as surfactants in the feed (either wastewater or sludge), surface active 
polymers added during thickening, physicochemical conditions in the digesters leading 
to surface active conditions, etc. 

A sensitivity analysis of the risk assessment model will be of high interest as future 
work not only to understand and analyse the knowledge embodied in the decision trees, 
but also to highlight the relevance and linearity of the variables (both for operation – e.g. 
SRT – and design – e.g. volume) and the accuracy of the measurements. Also, 
parameters related to the fuzzy approach (number/shape of the MFs, overlapping, etc.) 
should be analysed. The sensitivity analysis can also enhance the customization of the 
risk model offering the possibility to identify the most sensible variables. Afterwards, a 
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calibration process based on those variables could provide a more reliable risk model 
for adaptation to a specific model. 

In spite of the difficulties to validate the risk model, the risk model will be confronted 
with full-scale reliable data. Although the risk of a problem is not registered in full scale 
plants, we will look for possible correlations between the simulated risk and some 
operational parameters related to bulking or foaming such as e.g. SVI. 
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8. Conclusions 

The conclusions of this thesis have been divided into two parts. The first one is devoted 
to the risk model and the second one to its implementation and application to the BSM. 

8.1 Risk model 

This thesis explains the development a knowledge-based risk model that integrates 
numerical modelling and qualitative aspects to simulate plant-wide operational 
problems of microbiological origin. The risk model includes the most common 
operational problems of microbiological origin in the WWTPs: Filamentous bulking, 
activated sludge biological foaming, rising sludge, deflocculation and anaerobic 
digestion biological foaming. The development of the activated sludge risk model and 
the anaerobic digestion risk model has been linked to the availability of real data. 

 The activated sludge risk model has been developed from heuristic 
knowledge from experts and literature, identifying the key knowledge related 
to each operational problem of microbiological origin. This knowledge has 
been formalized in several decision matrices and implemented in fuzzy logic, 
defining the membership functions and rules for all the decision matrices.  

 The anaerobic digestion risk model has been developed using available real 
data from a pilot plant. A wrapper approach with a hill-climbing elimination 
strategy implemented in artificial neural networks as induction algorithm has 
been used to select the most relevant variables related to anaerobic digestion 
biological foaming and later integrated with knowledge from literature.  

Both risk models have been finally implemented using fuzzy logic by defining each of 
the membership functions for all the inputs and outputs as well as the rules for the 
decision matrices.  

Regarding the outcomes of the risk model, two risk indices (percentage of time in 
violation and average) have been defined to allow their use as evaluation criteria for 
simulation results. As a result, plant performance evaluation criteria based on plant 
operational cost and effluent quality indexes, typically calculated when comparing 
control strategies by simulation, can now be complemented with a risk assessment for 
the occurrence of operational problems of microbiological origin. Hence the risk model 
provides an overall approach for plant-wide evaluation of operational problems of 
microbiological origin, allowing model users to have a complete set of criteria and 
thereby avoid biased evaluations of the simulation results. Adding an additional 
criterion to classical evaluation criteria is important when benchmarking control 
strategies and can lead to different conclusions with respect to a specific control scheme. 
Thus control approaches with an increased risk for suffering from endemic operational 
problems of microbiological origin can be avoided. This way, some simulated control 
strategies which can have a positive impact in terms of environmental and/or 
economical criteria may prove to be not suitable when anaerobic digester performance 
is evaluated, meaning that new conclusions can be drawn from the simulation 
evaluation process when risk of microbiology-related problems are considered. 
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8.2 Benchmark Simulation Model implementation and application 

The risk model has been implemented and applied to the BSM by adapting it to the 
BSM1, BSM1_LT and BSM2. In each BSM configuration the risk model has been 
adapted bearing in mind the characteristics of each specific configuration. 

 For the BSM1 only the activated sludge risk model has been applied, that is to 
say, the filamentous bulking, biological foaming, rising sludge and 
deflocculation. 

 For the BSM1_LT the temperature effect has been added to the operational 
problems of microbiological origin related to M. parvicella (i.e. Bulking due to 
low F/M and foaming due to low F/M). 

 For the BSM2 apart from the temperature effect, the anaerobic digestion risk 
model for biological foaming has been applied. 

Simulations with all the BSMs have been performed to evaluate the results of the 
activated sludge and anaerobic digestion risk models. In each BSM configuration at 
least the open-loop and a closed-loop case have been simulated to study the effects of 
the variation of different parameters on the risk model performance. 

 BSM1 open-loop results in general revealed a daily behaviour related to the 
incoming loadings. The operational parameters variation have shown that low 
values of WAS and extreme values of DO cause a major effect on the activated 
sludge risk model results.  

 In the BSM1_LT the temperature effect has been evaluated. It has been shown 
how the risks of bulking and foaming due to M. parvicella have decreased 
during summer and increased during winter. Besides, the effect of the 
exponential filter has been evaluated using a time constant between 1 and 7 days. 
A large decrease of the noise was achieved and it facilitates taking into account 
the slow dynamics of the development of operational problems of 
microbiological origin. Finally, a control strategy based on the DO in the three 
aerated biological reactors has decreased drastically the risk of filamentous 
bulking. 

 The anaerobic digestion risk model for biological foaming has been incorporated 
in the BSM2. The performance of the anaerobic digestion risk model has been 
evaluated based on an open-loop scenario to show the influence of the input 
variables on the risk of biological foaming. There exists a relevant influence of 
the foaming in activated sludge risk although this effect is diminished by 
changes in the organic loading rate and its daily variation. The effect of the 
operational parameters related to the foaming in anaerobic digestion risk has 
been studied. Results have shown that increments of the values of return 
activated sludge and waste activated sludge flow rates have a higher effect on 
the results of the anaerobic digestion risk model than lower values. Finally, two 
control strategies have been used to evaluate the anaerobic digestion risk model. 
They have shown how a control strategy based on the organic loading rate is 
able to maintain relatively low levels of foaming in anaerobic digestion risk 
whereas a control strategy based on total suspended solids control can 
destabilize the anaerobic digester by increasing the organic loading rate variation. 
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 BSMs apart from being a suitable tool to test and compare control strategies 
have proved to be really useful tools to test the risk model enhancing the 
evaluation of the results and allowing to show them in a understandable way. 

Regarding the plant-wide comparison of control strategies, the results have shown that 
there is a trade-off between economically and environmentally save options. However, 
some intermediate control strategies can also be good control options. The risk model 
has shown that some of the intermediate options can become interesting when the risk 
of operational problems of microbiological origin is considered. Otherwise, without the 
risk model’s third dimension these options would have been discarded. 
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ACTIVATED SLUDGE RISK MODEL SCRIPT FOR BENCHMARK 
SIMULATION MODELS IN MATLAB/SIMULINK 

Note that this script is for the BSM1, code within a box is different, as noted, for either 
BSM1_LT or BSM2. 
 
% RISK MODEL 
% Implementation of Expert rules to detect suitable conditions for settling problems with biological 
origin  
 
% Some limit values according to literature 
% SRT limit 
SRTReasonableLimit=20; 
  
% Settler SNO limit (rising sludge) 
SNOHighLimit=8; 
  
% Influent organic matter and nitrogen loading 
BOD5invec1 = BOD5in.*inpart(:,15); 
CODinvec1 = CODin.*inpart(:,15); 
S_sinvec1 = inpart(:,2).*inpart(:,15); 
TNin1 = (SNKjin+SNOin); 
TNinvec1 =inpart(:,15).*TNin1; 
  
% Influent organic matter(from the chemical addition) 
BOD5invec2= CARBONSOURCECONC.*Qcarbonvec; 
CODinvec2 = CARBONSOURCECONC.*Qcarbonvec; 
S_sinvec2 = CARBONSOURCECONC.*Qcarbonvec; 
 
%total Influent organic matter and nitrogen loading (sewer+ chemical addition) 
BOD5invec3=BOD5invec1 + BOD5invec2; %total influent BOD5 (AS + external carbon) 
CODinvec3= CODinvec1 + CODinvec2; %total influent COD (AS + external carbon) 
S_sinvec3 = S_sinvec1 + S_sinvec2; % total influent Ss (AS+ external carbon) 
 
BOD5in3 = BOD5invec3./(inpart(:,15)+ Qcarbonvec); 
CODin3 = CODinvec3./(inpart(:,15)+ Qcarbonvec); 
S_sin3 = S_sinvec3./(inpart(:,15)+ Qcarbonvec); 
 
% Effluent organic matter and nitrogen loading 
CODevec=settlerpart(:,31).*CODe; 
 
For BSM2: 
 
% Effluent organic matter and nitrogen loading 
CODevec=settlerpart(:,37).*CODe; 
 
% determining Biomass in activated sludge biological reactors  
Biomassvec=0.75*(reac1part(:,5)*VOL1+reac1part(:,6)*VOL1+reac2part(:,5)*VOL2+reac2part(:,6)*VO
L2+reac3part(:,5)*VOL3+reac3part(:,6)*VOL3+reac4part(:,5)*VOL4+reac4part(:,6)*VOL4+reac5part(:,
5)*VOL5+reac5part(:,6)*VOL5); %XBH + XBA in aerated biological reactors only, in TSS units 
TSSvecreactor=reac1part(:,14)*VOL1+reac2part(:,14)*VOL2+reac3part(:,14)*VOL3+reac4part(:,14)*V
OL4+reac5part(:,14)*VOL5; %TSS in aerated tanks 
 
% determining FtoM_1 (kg COD removed/kg MLVSS·d) Only biomass in activated sludge biological 
reactors considered 
FtoM_1vec = (CODinvec3 - CODevec)./Biomassvec; 
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% determining FtoM_2 (kg BOD5/kg MLVSS·d) 
FtoM_2vec = BOD5invec3./Biomassvec; 
 
% determining SRT 
%Waste sludge production 
Qwasteflow = settlerpart(:,16); 
TSSwasteconc = settlerpart(:,41); 
TSSuvec2 =TSSwasteconc.*Qwasteflow; 
TSSevec2=settlerpart(:,30).*settlerpart(:,31); %TSS in the effluent, in g/d  

For BSM2: 
 
% determining SRT 
TSSwasteconc = settlerpart(:,53); % solids concentration at the lower layer of the settler 
TSSuvec2 = TSSwasteconc.*Qwflow; % solids flow in the waste 
TSSuvec3 = settlerpart(:,36).*settlerpart(:,37); % solids flow in the effluent 
 
% SRT for sludge in aeration biological reactors, settler not considered 
SRTvec =TSSvecreactor./(TSSuvec2+TSSevec2); % TSS in reactor / TSS removed from the system 
SRTvec = smoothing_data(SRTvec,3)'; % SRTvec filtering using 3 days data 
 for i=1:length(SRTvec) %To replace SRTvec values >SRTReasonableLimit for SRTReasonableLimit 
    if SRTvec(i)>SRTReasonableLimit 
       SRTvec(i)=SRTReasonableLimit; 
     else 
       SRTvec(i)=SRTvec(i);      
    end      
end 
 
% Determining possible bulking conditions due to nutrient deficiency 
% Check for nitrogen deficiency Bulking (check for BOD5/N ratio) 
BOD5toN = BOD5in3./TNin1; 
NDefBulking1=zeros(1,length(BOD5toN)); 
Nfis=readfis('Deficiency'); %to load the N Deficiency fuzzy inference system developed with the Matlab 
fuzzy toolbox 
NDefBulking1=evalfis([BOD5toN], Nfis); %To evaluate the output of the Nfis fuzzy system for a given 
input 
NDefBulking1 = NDefBulking1; 
NDefBulking1_smoothed = smoothing_data(NDefBulking1,3)'; 
NofNDefBulking1 = find (NDefBulking1> 0.8); %To find the values higher than 0.8 
NofDif0NDefBulking1 = find (NDefBulking1 > 0.0001); %To find the values higher than 0.0001 
        % to find the worst situation: the most dangerous situation during the evaluation period, computed as 
the largest  
        % time interval that the plant is in uninterrupted severe risk of NDef bulking problem. 
LengthNDefBulking=zeros(1,length(NofNDefBulking1)); % all indexes with NDefBulking > 0.8 
for i=1:length(NofNDefBulking1) 
   j=i; 
   k=1; 
   if j~=length(NofNDefBulking1) 
      while isequal(NofNDefBulking1(j)+1,NofNDefBulking1(j+1)) 
         k=k+1; 
         j=j+1; 
         if j==length(NofNDefBulking1) break 
         end 
      end 
      LengthNDefBulking(i)=k; 
   end 
   LengthNDefBulking(length(NofNDefBulking1))=1; 
end 
MaxLengthNDefBulking=max(LengthNDefBulking); 
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MaxLengthNDefBulkingIndex=find(LengthNDefBulking==MaxLengthNDefBulking); 
 
%Display N deficiency Bulking problems 
disp('Qualitative criteria for settling problems') 
disp('------------------------------------------') 
 if not(isempty(NofNDefBulking1)) 
   disp('The plant has experienced high (>0.8) risk for the development of filamentous bulking due to N 
deficiency') 
   disp(['during ',num2str(min(totalt,length(NofNDefBulking1)*sampletime)),' days, i.e. ', 
num2str(min(100,length(NofNDefBulking1)*sampletime/totalt*100)),'% of the operating time.']) 
   disp(['AV  risk ',num2str(sum(NDefBulking1*sampletime)/totalt),'']) 
   disp(['The most dangerous situation was between days ', 
num2str(min(totalt,NofNDefBulking1(MaxLengthNDefBulkingIndex(1))*sampletime)+starttime),' and ', 
num2str(min(totalt,(NofNDefBulking1(MaxLengthNDefBulkingIndex(1))+MaxLengthNDefBulking)*sa
mpletime)+starttime),]) 
   disp(' ') 
else 
   disp('The plant has experienced high (>0.8) risk for the development of filamentous bulking due to N 
deficiency') 
   disp(['during ',num2str(min(totalt,length(NofNDefBulking1)*sampletime)),' days, i.e. ', 
num2str(min(100,length(NofNDefBulking1)*sampletime/totalt*100)),'% of the operating time.']) 
   disp(['AV  risk ',num2str(sum(NDefBulking1*sampletime)/totalt),'']) 
   disp(' ') 
end 
 
% Determining possible aerobic bulking conditions 
bulkingfis=readfis('LowDOBulking'); %to load the Low DO Bulking fuzzy inference system developed 
with the Matlab fuzzy toolbox 
LowDOBulking1=evalfis([FtoM_1vec reac3part(:,8)], bulkingfis); %To evaluate the output of the 
bulkingfis fuzzy system for a given input 
LowDOBulking1 = LowDOBulking1; 
LowDOBulking1_smoothed = smoothing_data(LowDOBulking1,3)'; 
NofLowDOBulking1 = find (LowDOBulking1 > 0.8); %To find the values higher than 0.8 
NofDif0LowDOBulking1 = find (LowDOBulking1 > 0.0001); %To find the values higher than 0.0001 
  
% to find the worst situation: the most dangerous situation during the evaluation period, computed as the 
largest time interval that the plant is in uninterrupted severe risk of Low DO bulking problem. 
LengthLowDOBulking=zeros(1,length(NofLowDOBulking1)); 
for i=1:length(NofLowDOBulking1) 
   j=i; 
   k=1; 
   if j~=length(NofLowDOBulking1) 
      while isequal(NofLowDOBulking1(j)+1,NofLowDOBulking1(j+1)) 
         k=k+1; 
         j=j+1; 
         if j==length(NofLowDOBulking1) break 
         end 
      end 
      LengthLowDOBulking(i)=k; 
   end 
   LengthLowDOBulking(length(NofLowDOBulking1))=1; 
end 
MaxLengthLowDOBulking=max(LengthLowDOBulking); 
MaxLengthLowDOBulkingIndex=find(LengthLowDOBulking==MaxLengthLowDOBulking); 
 
%Display Low DO Bulking problems 
if not(isempty(NofLowDOBulking1)) 
   disp('The plant has experienced high (>0.8) risk for the development of aerobic (low DO) filamentous 
bulking') 
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   disp(['during ',num2str(min(totalt,length(NofLowDOBulking1)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofLowDOBulking1)*sampletime/totalt*100)),'% of the operating time.']) 
   disp(['AV  risk ',num2str(sum(LowDOBulking1*sampletime)/totalt),'']) 
   disp(['The most dangerous situation was between days ', 
num2str(min(totalt,(NofLowDOBulking1(MaxLengthLowDOBulkingIndex(1)))*sampletime)+starttime),
' and ', 
num2str(min(totalt,(NofLowDOBulking1(MaxLengthLowDOBulkingIndex(1))+MaxLengthLowDOBulk
ing)*sampletime)+starttime),]) 
   disp(' ') 
else 
   disp('The plant has experienced high (>0.8) risk for the development of aerobic (low DO) filamentous 
bulking') 
   disp(['during ',num2str(min(totalt,length(NofLowDOBulking1)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofLowDOBulking1)*sampletime/totalt*100)),'% of the operating time.']) 
      disp(['AV  risk ',num2str(sum(LowDOBulking1*sampletime)/totalt),'']) 
   disp(' ') 
end 
 
%Determining conditions for Low F/M bulking 
bulkingfis=readfis('FtoMBulking_1');%to load the Low F/M Bulking fuzzy inference system developed 
with the Matlab fuzzy toolbox 
%To evaluate the output of the bulkingfis fuzzy system (low F/M bulking) for a given input; inpart 
(:,2)=influent SS 
LowFtoMBulking1=evalfis([reac1part(:,2) SRTvec], bulkingfis); %react(:,2)=reactor SS 
    
bulkingfis=readfis('FtoMBulking_2');%to load the Low F/M Bulking_2 fuzzy inference system developed 
with the Matlab fuzzy toolbox 
%To evaluate the output of the bulkingfis fuzzy system (low F/M bulking) for a given input; inpart 
(:,2)=influent SS 
LowFtoMBulking2=evalfis([FtoM_2vec SRTvec], bulkingfis);%F/M_2 food to microorganisms ratio 
  
[Fil,Col]=size(LowFtoMBulking1); 
if Fil==1 
LowFtoMBulking1 = LowFtoMBulking1'; 
end 
  
[Fil,Col]=size(LowFtoMBulking2); 
if Fil==1 
LowFtoMBulking2 = LowFtoMBulking2'; 
end 
  
LowFtoMBulking=max(LowFtoMBulking1,LowFtoMBulking2); 
  
% Temperature factor correction of risk due to Microthrix parvicella (Only for BSM2) 
  
Factor=1.2*exp(-((reac5part(:,16)-5).^2/625)); 
LowFtoMBulking=LowFtoMBulking.*Factor; 
  
for i=1:length(LowFtoMBulking); 
if LowFtoMBulking(i)>1; 
    LowFtoMBulking(i)=1; 
else 
    LowFtoMBulking(i)=LowFtoMBulking(i); 
end 
end 
  
LowFtoMBulking_smoothed = smoothing_data(LowFtoMBulking,3)'; 
NofLowFtoMBulking=find (LowFtoMBulking> 0.8);         
NofDif0LowFtoMBulking = find (LowFtoMBulking > 0.0001);% to find the worst situation: the most 
dangerous situation during the evaluation period, computed as the largest  
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        % time interval that the plant is in uninterrupted severe risk of 
        % Low F/M bulking problem 
if not(isempty(NofLowFtoMBulking)) 
      LengthLowFtoMBulking=zeros(1,length(NofLowFtoMBulking)); 
      for i=1:length(NofLowFtoMBulking)   
         j=i; 
         k=1; 
         if j~=length(NofLowFtoMBulking) 
            while isequal(NofLowFtoMBulking(j)+1,NofLowFtoMBulking(j+1)) 
               k=k+1; 
               j=j+1; 
               if j==length(NofLowFtoMBulking) break 
               end 
            end 
            LengthLowFtoMBulking(i)=k; 
         end 
         LengthLowFtoMBulking(length(NofLowFtoMBulking))=1; 
      end 
      MaxLengthLowFtoMBulking=max(LengthLowFtoMBulking); 
      MaxLengthLowFtoMBulkingIndex=find(LengthLowFtoMBulking==MaxLengthLowFtoMBulking);   
       
%Display Low F/M Bulking problems     
      disp('The plant has experienced severe (>0.8) risk for the development of low F/M filamentous 
bulking') 
      disp(['during ',num2str(min(totalt,length(NofLowFtoMBulking)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofLowFtoMBulking)*sampletime/totalt*100)),'% of the operating time.']) 
      disp(['AV  risk ',num2str(sum(LowFtoMBulking*sampletime)/totalt),'']) 
      disp(['The most dangerous situation was between days ', 
num2str(min(totalt,NofLowFtoMBulking(MaxLengthLowFtoMBulkingIndex(1))*sampletime)+starttime
),' and ', 
num2str(min(totalt,(NofLowFtoMBulking(MaxLengthLowFtoMBulkingIndex(1))+MaxLengthLowFtoM
Bulking)*sampletime)+starttime),]) 
      disp(' ') 
 else % LowFtoMBulking is empty 
    disp('The plant has experienced severe (>0.8) risk for the development of low F/M filamentous bulking') 
    disp(['during ',num2str(min(totalt,length(NofLowFtoMBulking)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofLowFtoMBulking)*sampletime/totalt*100)),'% of the operating time.']) 
    disp(['AV  risk ',num2str(sum(LowFtoMBulking*sampletime)/totalt),'']) 
    disp(' ') 
end 
 
% Determining possible foaming conditions due to limited substrate (lowFtoM Foaming) 
foamingfis=readfis('FoamingNocMic'); %to load the Low F/M Foaming fuzzy inference system 
developed with the Matlab fuzzy toolbox 
%To evaluate the output of the foamingfis fuzzy system (low F/M foaming) for a given input  
LowFtoMFoaming2=evalfis([FtoM_2vec SRTvec], foamingfis); 
   
% Temperature factor correction of risk due to Microthrix parvicella (Only BSM2) 
  
Factor=1.2*exp(-((reac5part(:,16)-5).^2/625)); 
LowFtoMFoaming2=LowFtoMFoaming2.*Factor;   
  
for i=1:length(LowFtoMFoaming2); 
if LowFtoMFoaming2(i)>1; 
    LowFtoMFoaming2(i)=1; 
else 
    LowFtoMFoaming2(i)=LowFtoMFoaming2(i); 
end 
end 
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LowFtoMFoaming2_smoothed = smoothing_data(LowFtoMFoaming2,3)'; 
NofLowFtoMFoaming2 = find (LowFtoMFoaming2 > 0.8); 
NofDif0LowFtoMFoaming2 = find (LowFtoMFoaming2 > 0.0001); %To find the values higher than 
0.0001 
  
% to find the worst situation: the most dangerous situation during the evaluation period, computed as the 
largest  
        % time interval that the plant is in uninterrupted severe risk of  
        % Low F/M Foaming problem.         
if not(isempty(NofLowFtoMFoaming2)) 
      LengthLowFtoMFoaming=zeros(1,length(NofLowFtoMFoaming2)); 
      for i=1:length(NofLowFtoMFoaming2)    
         j=i; 
         k=1; 
         if j~=length(NofLowFtoMFoaming2) 
            while isequal(NofLowFtoMFoaming2(j)+1,NofLowFtoMFoaming2(j+1)) 
               k=k+1; 
               j=j+1; 
               if j==length(NofLowFtoMFoaming2) break 
               end 
            end 
            LengthLowFtoMFoaming(i)=k; 
         end 
         LengthLowFtoMFoaming(length(NofLowFtoMFoaming2))=1; 
      end 
      MaxLengthLowFtoMFoaming=max(LengthLowFtoMFoaming); 
      
MaxLengthLowFtoMFoamingIndex=find(LengthLowFtoMFoaming==MaxLengthLowFtoMFoaming); 
       
%Display Low F/M Foaming problems      
      disp('The plant has experienced high (>0.8) risk for the development of low F/M foaming') 
      disp(['during ',num2str(min(totalt,length(NofLowFtoMFoaming2)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofLowFtoMFoaming2)*sampletime/totalt*100)),'% of the operating time.']) 
      disp(['AV  risk ',num2str(sum(LowFtoMFoaming2*sampletime)/totalt),''])  
      disp(['The most dangerous situation was between days ', 
num2str(min(totalt,NofLowFtoMFoaming2(MaxLengthLowFtoMFoamingIndex(1))*sampletime)+startti
me),' and ', 
num2str(min(totalt,(NofLowFtoMFoaming2(MaxLengthLowFtoMFoamingIndex(1))+MaxLengthLowFt
oMFoaming)*sampletime)+starttime),]) 
      disp(' ') 
else 
      disp('The plant has experienced high (>0.8) risk for the development of low F/M foaming') 
      disp(['during ',num2str(min(totalt,length(NofLowFtoMFoaming2)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofLowFtoMFoaming2)*sampletime/totalt*100)),'% of the operating time.']) 
      disp(['...and risk for the development of low F/M foaming ', 
num2str(min(100,length(NofDif0LowFtoMFoaming2)*sampletime/totalt*100)),'% of the operating 
time.']) 
      disp(['AV  risk ',num2str(sum(LowFtoMFoaming2*sampletime)/totalt),'']) 
      disp(' ') 
end 
 
% Determining possible foaming conditions due to high readily biodegradable organic matter fraction 
foamingfis=readfis('Foaming1863_1');%to load the HRBOM fraction foaming fuzzy inference system 
developed with the Matlab fuzzy toolbox 
HighRBOMfractionFoaming1=evalfis([FtoM_2vec (S_sin3./inpart(:,4))], foamingfis); 
  
HighRBOMfractionFoaming2 = []; 
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foamingfis=readfis('Foaming1863_2');%to load the HRBOM fraction foaming_2 fuzzy inference system 
developed with the Matlab fuzzy toolbox 
%To evaluate the output of the foamingfis fuzzy system (due to high readily biodegradable organic matter 
fraction) for a given input, in another way 
HighRBOMfractionFoaming2=evalfis([SRTvec (S_sin3./inpart(:,4))], foamingfis);% SS/XS ratio 
    
[Fil,Col]=size(HighRBOMfractionFoaming1); 
if Fil==1 
   HighRBOMfractionFoaming1=HighRBOMfractionFoaming1'; 
end 
[Fil,Col]=size(HighRBOMfractionFoaming2); 
if Fil==1 
   HighRBOMfractionFoaming2=HighRBOMfractionFoaming2'; 
end 
  
HighRBOMfractionFoaming=max(HighRBOMfractionFoaming1,HighRBOMfractionFoaming2); 
HighRBOMfractionFoaming= HighRBOMfractionFoaming;  
  
HighRBOMfractionFoaming_smoothed=smoothing_data(HighRBOMfractionFoaming,3)'; 
NofHighRBOMfractionFoaming=find(HighRBOMfractionFoaming> 0.8); 
NofDif0HighRBOMfractionFoaming = find(HighRBOMfractionFoaming > 0.0001); %To find the values 
higher than 0.0001 
  
 if not(isempty(NofHighRBOMfractionFoaming)) 
      LengthHighRBOMfractionFoaming=zeros(1,length(NofHighRBOMfractionFoaming)); 
      for i=1:length(NofHighRBOMfractionFoaming)    
         j=i; 
         k=1; 
         if j~=length(NofHighRBOMfractionFoaming) 
            while isequal(NofHighRBOMfractionFoaming(j)+1,NofHighRBOMfractionFoaming(j+1)) 
               k=k+1; 
               j=j+1; 
               if j==length(NofHighRBOMfractionFoaming) break 
               end 
            end 
            LengthHighRBOMfractionFoaming(i)=k; 
         end 
         LengthHighRBOMfractionFoaming(length(NofHighRBOMfractionFoaming))=1; 
      end 
MaxLengthHighRBOMfractionFoaming=max(LengthHighRBOMfractionFoaming); 
MaxLengthHighRBOMfractionFoamingIndex=find(LengthHighRBOMfractionFoaming==MaxLengthHi
ghRBOMfractionFoaming);  
  
%Display Low SsXs foaming problems       
disp('The plant has experienced high (>0.8) risk for the development of foaming due to high Ss/Xs 
fraction') 
disp(['during ',num2str(min(totalt,length(NofHighRBOMfractionFoaming)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofHighRBOMfractionFoaming)*sampletime/totalt*100)),'% of the operating 
time.']) 
disp(['AV  risk ',num2str(sum(HighRBOMfractionFoaming*sampletime)/totalt),'']) 
disp(['The most dangerous situation was between days ', 
num2str(min(totalt,NofHighRBOMfractionFoaming(MaxLengthHighRBOMfractionFoamingIndex(1))*s
ampletime)+starttime),' and ', 
num2str(min(totalt,(NofHighRBOMfractionFoaming(MaxLengthHighRBOMfractionFoamingIndex(1))+
MaxLengthHighRBOMfractionFoaming)*sampletime)+starttime),]) 
disp(' ') 
else % HighRBOMfractionFoaming is empty 
disp('The plant has experienced high (>0.8) risk for the development of foaming due to high Ss/Xs 
fraction') 
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disp(['during ',num2str(min(totalt,length(NofHighRBOMfractionFoaming)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofHighRBOMfractionFoaming)*sampletime/totalt*100)),'% of the operating 
time.']) 
disp(['AV  risk ',num2str(sum(HighRBOMfractionFoaming*sampletime)/totalt),'']) 
disp(' ') 
end 
 
%Determining possible suitable conditions for Rising sludge 
i=0; 
SsOutReac5=reac5part(:,2); 
SNOOutReac5=reac5part(:,9); 
SoOutReac5=reac5part(:,8); 
Rising1=zeros(1,length(SNOOutReac5)); 
XBHOutReac5= reac5part(:,5); 
XBHOutBottomClarifier= settlerpart(:,5); 
 
SludgeVolumeInClarifier=(settlerpart(:,32).*600+settlerpart(:,33).*600+settlerpart(:,34).*600+settlerpart(
:,35).*600+settlerpart(:,36).*600+settlerpart(:,37).*600+settlerpart(:,38).*600+settlerpart(:,39).*600+settl
erpart(:,40).*600+settlerpart(:,41).*600)./settlerpart(:,41);%%changed in BSM2* 
 
nitrifiers_fraction=1; 
 
Rdn2=((1-
Y_H)./(2.86.*Y_H)).*(mu_H*(SsOutReac5./(K_S+SsOutReac5))).*(SNOOutReac5./(K_NO+SNOOutR
eac5)).*XBHOutBottomClarifier.*ny_g; 
t_delay=(SoOutReac5./(2.86*Rdn2/nitrifiers_fraction)); 
 
For BSM2: 
 
SNOHighLimit= 11.003972.*(exp(-0.020295*reac5part(:,16))); 
mu_H= 4*exp((log(4/3)/5)*(reac5part(:,16)- 15)); 
Rdn2=((1-
Y_H)./(2.86.*Y_H)).*(mu_H.*(SsOutReac5./(K_S+SsOutReac5))).*(SNOOutReac5./(K_NO+SNOOutR
eac5)).*XBHOutBottomClarifier.*ny_g; %considering DO=0 mgO2/L 
t_delay=(SoOutReac5./(2.86*Rdn2/nitrifiers_fraction)); 
 
 
Limit1=SludgeVolumeInClarifier./(Qrflow+1); 
Limit2=(SludgeVolumeInClarifier./(Qrflow+1))+0.01; 
Limit3=(SludgeVolumeInClarifier./(Qrflow+1))+0.02; 
 
for i=1:length(SNOOutReac5) 
Risingfis = newfis('Rising'); 
%%%definition of the inputs 
Risingfis = addvar(Risingfis,'input','Sno',[0 40]); 
Risingfis = addmf(Risingfis,'input',1,'L','trapmf',[-1.429 -1.429 2 5]); 
Risingfis = addmf(Risingfis,'input',1,'N','trimf',[2 5 8]); 
Risingfis = addmf(Risingfis,'input',1,'H','trapmf',[5 8 40.27 41.87]); 
Risingfis = addvar(Risingfis,'input','ratiodn',[0 2.2]); 
Risingfis = addmf(Risingfis,'input',2,'H','trapmf',[Limit2(i) Limit3(i) 2.205 2.272]); 
Risingfis = addmf(Risingfis,'input',2,'L','trapmf',[-0.135 -0.0437 Limit1(i) Limit2(i)]); 
Risingfis = addmf(Risingfis,'input',2,'N','trimf',[Limit1(i) Limit2(i) Limit3(i)]); 
%%%definition of the outputs 
Risingfis = addvar(Risingfis, 'output','Rising',[-0.2 1.2]); 
Risingfis = addmf(Risingfis,'output',1,'Low','trimf',[-0.2 0 0.2]); 
Risingfis = addmf(Risingfis,'output',1,'Medium','trimf',[0.2 0.5 0.8]); 
Risingfis = addmf(Risingfis,'output',1,'High','trimf',[0.8 1 1.2]); 
%%%definition of the rules 
rulelist =[ 
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3 1 1 1 1 
2 1 1 1 1 
2 3 1 1 1 
2 2 2 1 1 
1 1 1 1 1 
1 2 1 1 1 
1 3 1 1 1 
3 3 2 1 1 
3 2 3 1 1 
]; 
Risingfis = addrule(Risingfis, rulelist); 
%writefis(Risingfis,'Risingfis'); 
Rising1(i)=evalfis([SNOOutReac5(i) ((SNOHighLimit./Rdn2(i))+t_delay(i))], Risingfis); 
AAA(i)=((SNOHighLimit./Rdn2(i))+t_delay(i)); 
end 
 
Rising1=Rising1; 
NofRising1 = find (Rising1 > 0.8);%To find the values higher than 0.8 
NofDif0Rising1 = find (Rising1 > 0.0001); %To find the values higher than 0.0001 
Rising1_smoothed=smoothing_data(Rising1,0.0833)'; % risk filtering with 2 hours time constant; in 
BSM1 only to be used for plotting purposes 
% to find the worst situation and display results: the most dangerous situation during the evaluation 
period, 
% computed as the largest time interval that the plant is in uninterrupted severe risk of Rising problem. 
LengthNofRising=zeros(1,length(NofRising1)); 
for i=1:length(NofRising1) 
j=i; 
k=1; 
if j~=length(NofRising1) 
while isequal(NofRising1(j)+1,NofRising1(j+1)) 
k=k+1; 
j=j+1; 
if j==length(NofRising1) break 
end 
end 
LengthNofRising(i)=k; 
end 
LengthNofRising(length(NofRising1))=1; 
end 
MaxLengthRising=max(LengthNofRising); 
MaxLengthRisingIndex=find(LengthNofRising==MaxLengthRising); 
 
if not(isempty(NofRising1)) 
disp('The plant has experienced high (>0.8) risk for the development of rising sludge') 
disp(['during ',num2str(min(totalt,length(NofRising1)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofRising1)*sampletime/totalt*100)),'% of the operating time.']) 
disp(['AV  risk ',num2str(sum(Rising1*sampletime)/totalt),'']) 
disp(['The most dangerous situation was between days ', 
num2str(min(totalt,NofRising1(MaxLengthRisingIndex(1))*sampletime)+starttime),' and ', 
num2str(min(totalt,(NofRising1(MaxLengthRisingIndex(1))+MaxLengthRising)*sampletime)+starttime),
]) 
disp(' ') 
else 
disp('The plant has experienced high (>0.8) risk for the development of rising sludge') 
disp(['during ',num2str(min(totalt,length(NofRising1)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofRising1)*sampletime/totalt*100)),'% of the operating time.']) 
disp(['AV  risk ',num2str(sum(Rising1*sampletime)/totalt),'']) 
end 
 
%Determining possible suitable conditions for Deflocculation 
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 deflocculationfis=readfis('HighSRTDeflocculationConditions'); %to load the Low DO Bulking fuzzy 
inference system developed with the Matlab fuzzy toolbox 
  
Deflocculation_risk=evalfis([SRTvec reac3part(:,8)], deflocculationfis); %To evaluate the output of the 
bulkingfis fuzzy system for a given input 
  
Deflocculation_smoothed=smoothing_data(Deflocculation_risk,3)'; 
  
NofDeflocculation_risk = find (Deflocculation_risk > 0.8);%To find the values higher than 0.8 
LengthDeflocculation_risk=zeros(1,length(NofDeflocculation_risk)); 
  
for i=1:length(NofDeflocculation_risk) 
   j=i; 
   k=1; 
if j~=length(NofDeflocculation_risk) 
      while isequal(NofDeflocculation_risk(j)+1,NofDeflocculation_risk(j+1)) 
         k=k+1; 
         j=j+1; 
         if j==length(NofDeflocculation_risk) break 
         end 
         end 
      LengthDeflocculation(i)=k; 
   end 
   LengthDeflocculation_risk(length(NofDeflocculation_risk))=1; 
end 
    
MaxLengthDeflocculation_risk=max(LengthDeflocculation_risk); 
MaxLengthDeflocculation_riskIndex=find(LengthDeflocculation_risk==MaxLengthDeflocculation_risk);    
  
if not(isempty(NofDeflocculation_risk)) 
   disp(' ') 
   disp('The plant has experienced high (>0.8) risk for the development of deflocculation') 
   disp(['during ',num2str(min(totalt,length(NofDeflocculation_risk)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofDeflocculation_risk)*sampletime/totalt*100)),'% of the operating time.']) 
   disp(['The most dangerous situation was between days ', 
num2str(min(totalt,NofDeflocculation_risk(MaxLengthDeflocculation_riskIndex(1))*sampletime)+7),' 
and ', 
num2str(min(totalt,(NofDeflocculation_risk(MaxLengthDeflocculation_riskIndex(1))+MaxLengthDefloc
culation_risk)*sampletime)+7),]) 
   disp(['AV  risk ',num2str(sum(Deflocculation_risk*sampletime)/totalt),'']) 
end 
  
if isempty(NofDeflocculation_risk) 
    disp(' ') 
    disp('The plant has not experienced high (>0.8) risk for the development of deflocculation') 
end 
 
% Calculating the overall risk (taking the max at every time step) 
disp('Overall risk') 
disp('------------') 
[Fil,Col]=size(NDefBulking1); 
if Fil==1 
NDefBulking1 = NDefBulking1'; 
end 
  
[Fil,Col]=size(LowDOBulking1); 
if Fil==1 
LowDOBulking1 = LowDOBulking1'; 
end 
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[Fil,Col]=size(LowFtoMBulking); 
if Fil==1 
LowFtoMBulking = LowFtoMBulking1'; 
end 
  
%selects the maximum bulking period between NDef Bulking and LowDO bulking 
Bulking1=max(NDefBulking1, LowDOBulking1); 
%selects the maximum bulking period between the previous Bulking and LowFM bulking 
Bulking=max(Bulking1, LowFtoMBulking); 
  
NofBulking = find (Bulking > 0.8);%To find the values higher than 0.8 
NofDif0Bulking = find (Bulking > 0.0001); %To find the values higher than 0.0001 
   disp('The plant has experienced severe (>0.8) risk for (integrated) BULKING') 
   disp(['during ',num2str(min(totalt,length(NofBulking)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofBulking)*sampletime/totalt*100)),'% of the operating time.']) 
   disp(['AV  risk ',num2str(sum(Bulking*sampletime)/totalt),'']) 
% time interval that the plant is in uninterrupted severe risk of (integrated) Bulking problem. 
LengthBulking=zeros(1,length(NofBulking)); 
for i=1:length(NofBulking) 
   j=i; 
   k=1; 
   if j~=length(NofBulking) 
      while isequal(NofBulking(j)+1,NofBulking(j+1)) 
         k=k+1; 
         j=j+1; 
         if j==length(NofBulking) break 
         end 
      end 
      LengthBulking(i)=k; 
   end 
   LengthBulking(length(NofBulking))=1; 
end 
MaxLengthBulking=max(LengthBulking); 
MaxLengthBulkingIndex=find(LengthBulking==MaxLengthBulking); 
if not(isempty(NofBulking)) 
    disp(['The most dangerous situation was between days ', 
num2str(min(totalt,NofBulking(MaxLengthBulkingIndex(1))*sampletime)+starttime),' and ', 
num2str(min(totalt,(NofBulking(MaxLengthBulkingIndex(1))+MaxLengthBulking)*sampletime)+startti
me),]) 
end 
disp(' ') 
  
[Fil,Col]=size(LowFtoMFoaming2); 
if Fil==1 
LowFtoMFoaming2 = LowFtoMFoaming2'; 
end 
  
[Fil,Col]=size(HighRBOMfractionFoaming); 
if Fil==1 
HighRBOMfractionFoaming = HighRBOMfractionFoaming'; 
end 
  
%selects the maximum foaming period between SsXs and Low FM foaming 
Foaming=max(LowFtoMFoaming2,HighRBOMfractionFoaming); 
  
NofFoaming=find (Foaming > 0.8);%To find the values higher than 0.8 
NofDif0Foaming = find (Foaming > 0.0001); %To find the values higher than 0.0001 
   disp('The plant has experienced severe (>0.8) risk for (integrated) FOAMING') 
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   disp(['during ',num2str(min(totalt,length(NofFoaming)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofFoaming)*sampletime/totalt*100)),'% of the operating time.']) 
   disp(['AV  risk ',num2str(sum(Foaming*sampletime)/totalt),'']) 
   disp(' ') 
 
% time interval that the plant is in uninterrupted severe risk of (integrated) Foaming problem. 
LengthFoaming=zeros(1,length(NofFoaming)); 
for i=1:length(NofFoaming) 
   j=i; 
   k=1; 
   if j~=length(NofFoaming) 
      while isequal(NofFoaming(j)+1,NofFoaming(j+1)) 
         k=k+1; 
         j=j+1; 
         if j==length(NofFoaming) break 
         end 
      end 
      LengthFoaming(i)=k; 
   end 
   LengthFoaming(length(NofFoaming))=1; 
end 
MaxLengthFoaming=max(LengthFoaming); 
MaxLengthFoamingIndex=find(LengthFoaming==MaxLengthFoaming); 
if not(isempty(NofFoaming)) 
   disp(['The most dangerous situation was between days ', 
num2str(min(totalt,NofFoaming(MaxLengthFoamingIndex(1))*sampletime)+starttime),' and ', 
num2str(min(totalt,(NofFoaming(MaxLengthFoamingIndex(1))+MaxLengthFoaming)*sampletime)+start
time),]) 
end 
  
[Fil,Col]=size(Rising1); 
if Fil==1 
Rising1 = Rising1'; 
end 
  
%%%% Deflocculation 
[Fil,Col]=size(Deflocculation_risk); 
if Fil==1 
Deflocculation_risk = Deflocculation_risk'; 
end 
 
%%%%selects the maximum period between bulking and foaming 
OR1 = max(Bulking,Foaming); 
%%%%selects the maximum period between bulking,foaming and rising 
OR2 = max(OR1,Rising1); 
%%%%selects the maximum period between bulking,foaming, rising and deflocculation 
OR = max(OR2,Deflocculation_risk); 
  
NofOR = find (OR > 0.8);%To find the values higher than 0.8 
NofDif0OR = find (OR > 0.0001); %To find the values higher than 0.0001 
   disp('The plant has experienced OVERALL severe (>0.8) risk for OVERALL SETTLING 
PROBLEMS') 
   disp(['during ',num2str(min(totalt,length(NofOR)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofOR)*sampletime/totalt*100)),'% of the operating time.']) 
   disp(['AV  risk ',num2str(sum(OR*sampletime)/totalt),'']) 
% time interval that the plant is in uninterrupted OVERALL severe risk of SETTLING PROBLEMS. 
LengthOR=zeros(1,length(NofOR)); 
for i=1:length(NofOR) 
   j=i; 
   k=1; 
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   if j~=length(NofOR) 
      while isequal(NofOR(j)+1,NofOR(j+1)) 
         k=k+1; 
         j=j+1; 
         if j==length(NofOR) break 
         end 
      end 
      LengthOR(i)=k; 
   end 
   LengthOR(length(NofOR))=1; 
end 
MaxLengthOR=max(LengthOR); 
MaxLengthORindex=find(LengthOR==MaxLengthOR); 
disp(['The most dangerous situation was between days ', 
num2str(min(totalt,NofOR(MaxLengthOR(1))*sampletime)+starttime),' and ', 
num2str(min(totalt,(NofOR(MaxLengthORindex(1))+MaxLengthOR)*sampletime)+starttime),]) 
disp(' ') 
 





Anaerobic digestion risk model script for benchmark simulation models in MATLAB/SIMULINK 

173 

ANAEROBIC DIGESTION RISK MODEL SCRIPT FOR BSM IN 
MATLAB/SIMULINK 
 
%% Variable calculation 
  
% Inflow VS calculation, as Xch+Xpr+Xli+Xi 
  
VS=0.75*(digesterinpart(:,14)+digesterinpart(:,15)+digesterinpart(:,16)+digesterinpart(:,24)); 
  
% HRT as volume of the liquid phase/inflow rate 
  
HRT=V_liq./digesterinpart(:,27); 
  
% OLR 
  
OLR=VS./HRT; 
  
% %% OLR daily AV variation. 
  
% OLR daily average. 
  
k=96; 
for b=1:364; 
    OLRmean(b)=mean(OLR(k*b-95:k*b)); 
end 
  
% Variation of the daily average OLR 
  
for b=2:364; 
    OLRmeanvar(b)=(abs(OLRmean(b)-OLRmean(b-1))/OLRmean(b-1))*100; 
    OLRmeanvar(1)=mean(OLRmeanvar); 
end 
  
% To set the same variation for a whole day 
  
for b=1:364; 
     OLRvar(k*b-95:k*b)=OLRmeanvar(b); 
end 
  
%% Launch the fuzzy toolbox 
  
LowFtoMFoaming2_smoothed =smoothing_data(LowFtoMFoaming2,3); 
FADfis=readfis('prova'); 
FAD_risk=evalfis([OLR OLRvar' LowFtoMFoaming2_smoothed '],FADfis); 
FAD_risk_smoothed=smoothing_data(FAD_risk,3); 
av=mean(FAD_risk_smoothed) 
  
%% Display the results 
 
NofFAD_risk = find (FAD_risk_smoothed> 0.8); 
LengthFAD_risk=zeros(1,length(NofFAD_risk)); 
  
for i=1:length(NofFAD_risk) 
j=i; 
   k=1; 
   if j~=length(NofFAD_risk) 
       while isequal(NofFAD_risk(j)+1,NofFAD_risk(j+1)) 
         k=k+1; 
         j=j+1; 
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if j==length(NofFAD_risk) break 
             end 
      end 
      LengthFAD_risk(i)=k; 
   end 
LengthFAD_risk(length(NofFAD_risk))=1; 
end 
MaxLengthFAD_risk=max(LengthFAD_risk); 
MaxLengthFAD_riskIndex=find(LengthFAD_risk==MaxLengthFAD_risk); 
  
disp(' ') 
disp('Results of the AD Risk Model') 
disp('---------------------------------------------') 
  
if not(isempty(NofFAD_risk)) 
   disp(' ') 
   disp('The anaerobic digester has experienced high (>0.8) risk for the development of foaming') 
   disp(['during ',num2str(min(totalt,length(NofFAD_risk)*sampletime)),' days, i.e. 
',num2str(min(100,length(NofFAD_risk)*sampletime/totalt*100)),'% of the operating time.']) 
   disp(['AV  risk 'av'']) 
   disp(['The most dangerous situation was between days ', 
num2str(min(totalt,(NofFAD_risk(MaxLengthFAD_riskIndex(1)))*sampletime)+7),' and ', 
num2str(min(totalt,(NofFAD_risk(MaxLengthFAD_riskIndex(1))+MaxLengthFAD_risk)*sampletime)+
7),]) 
end  
  
if isempty(NofFAD_risk) 
   disp(' ') 
   disp('The anaerobic digester has NOT experienced high (>0.8) risk for the development of foaming') 
   disp(['AV  risk 'av'']) 
end 
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EXPONENTIAL FILTER SCRIPT FOR MATLAB/SIMULINK 
 
function [smoothed_data]=smoothing_data(dataset,timeconstant) 
 
T=timeconstant; %time constant, days 
 
samplingtime=15; 
 
alpha=1-1/(T*(1440/samplingtime)); 
 
smoothed_data(1)=dataset(1); 
  
for i=2:length(dataset) 
 
smoothed_data(i)=alpha*smoothed_data(i-1)+(1-alpha)*dataset(i); 
 
end 
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ACRONYMS 
 
AD   anaerobic digestion 
ADM1   anaerobic digestion model no.1 
AE   aeration energy 
AI   artificial intelligence 
ANN   artificial neural network 
AS   activated sludge 
ASM1   activated sludge model no1 
ASM2   activated sludge model no2 
ASM2d  activated sludge model no2d 
ASM3   activated sludge model no3 
AV   average 
BOD   biochemical oxygen demand 
BSM1   benchmark simulation model no1 
BSM1_LT  benchmark simulation model no1 long term 
BSM2   benchmark simulation model no2 
C   carbon 
COD   chemical oxygen demand 
COST   Cooperation in Science and Technology 
CS   control strategy 
DO   dissolved oxygen 
EC   external carbon source 
EQI   effluent quality index 
FAD   foaming in anaerobic digestion 
FAS   foaming in activated sludge 
F/M   food to microorganisms ratio 
H   hydrogen 
HE   heating energy 
HRBOM  high readily biodegradable organic matter 
HRT   hydraulic retention time 
IQI   influent quality index 
IWA   International Water Association 
KBS   knowledge-based system 
KLa   oxygen transfer coefficient 
KS   half-velocity constant 
LCFA   long chain fatty acids 
ME   mixing energy 
MF   membership function 
MLSS   mixed liquor suspended solids 
MLVSS  mixed liquor volatile suspended solids 
N   nitrogen 
NGPT   nitrogen gas production time 
O   oxygen 
OCI   operational cost index 
OL   Open-loop 
OLR   organic loading rate 
OLRvar  percentage of the daily average organic loading rate variation 
P   phosphorous 
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PAO   phosphate accumulating organism 
PE   pumping energy 
PI   proportional integral controller 
Qcarb   external carbon flow rate 
Qeff   effluent flow rate 
Qin   influent flow rate 
Qin,a   anaerobic digester’s inflow rate 
Qintr   internal recycle flow rate 
Qr   external recycle flow rate 
QW   waste sludge flow rate  
RAS   return activated sludge 
RMSE   root mean square error 
S   sulphur 
SBR   sequencing batch reactor 
SP   sludge production 
SRT   solids retention time 
SVI   sludge volume index 
TIV   time in violation 
TOC   total organic carbon 
TSS   total suspended solids 
V   volume 
VFA   volatile fatty acids 
VS   volatile solids 
WAS   waste activated sludge 
WEF   Water Environment Federation 
WWTP  wastewater treatment plant 
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