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Abstract

Semiactive control strategies for vibration mitigation in adaptronic
systems equipped with magnetorheological dampers

by

Mauricio Fabián Zapateiro De la Hoz

Advisors: Dr. Ningsu Luo and Dr. Hamid Reza Karimi

February, 2009
Girona, Spain

In recent years, the protection of structures against hazardous vibration has gained special interest.
Structures such as buildings, bridges and vehicle suspension systems are subject to vibrations that may
cause malfunctioning, uncomfort or collapse. It is an extended practice to install damping devices in order
to mitigate such vibrations. Furthermore, when the dampers are controllable, the structure act as an
adaptronic system. Adaptronic systems are characterized by their ability to respond to external loading
conditions and adapt to these changes. These abilities can be exploited to solve the vibration mitigation
problems through the installation of controllable dampers and the design of appropriate control laws for an
adequate actuation. This dissertation focuses on solving the vibration mitigation problem in buildings and
vehicles. Emphasis is made on systems that make use magnetorheological (MR) dampers to accomplish
this objective. MR dampers are semiactive devices that can produce high damping forces with less
energy requirements than other devices of its class. However, MR dampers are highly nonlinear devices
whose dynamics are characterized by a hysteretic force-velocity response. Additionally, the systems where
they are installed, are characterized by parametric uncertainties, limited measurement availability and
unknown disturbances. The presence of all of these factors makes mandatory the use of complex control
techniques in order to get a reliable performance of the control system. This research is intended to
contribute with new control algorithms that incorporate these problems in their formulation, especially,
the dynamics of the damper. In order to do it, three control methodologies are explored: Backstepping,
Quantitative Feedback Theory and Mixed H2/H∞. The proposed control laws are applied to different
structures equipped with MR dampers. In particular buildings and vehicle suspension systems are studied.
Numerical simulations and experimental testing are run to evaluate the performance of the proposed
control laws.
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Notation
Unless otherwise noted, the following notation is used in this dissertation.

A, B, C, D state space matrices.
α Bouc-Wen model design parameter.
β Bouc-Wen model design parameter.
c damping coefficient.
ζ damping ratio.
C damping matrix.
d control system disturbance.
Dd, Dv seismic motion displacement and velocity bounds.
fc Coulomb element frictional force.
fmr MR damper force.
f0 MR damper nonzero force.
fg ground motion disturbance.
flin, fnonlin linear/nonlinear dynamics associated to the MR damper.
F unknown disturbance bound.
Φ frictional damper force.
G controller / compensator transfer function.
Gs MR damper location vector in a building.
γ H∞ performance bound.
h1, h2 Backstepping design parameters.
I identity matrix.
J performance index.
k stiffness.
K2∞ mixed H2/H∞ controller gain vector.
K stiffness matrix.
κ Bouc-Wen model design parameter.
Ls input disturbance vector in a building.
m mass.
M mass matrix.
P Control system plant.
r1, r2, r3, r4 Adaptive backstepping design parameters.
s Laplace variable.
S1, S2 LMI design matrices.
SF , SL MR damper force/displacement scaling factors for real time hybrid testing.
u state space model control input.
v voltage.
V Lyapunov function.
ϕ Bouc-Wen model design parameter.
w state space model disturbance.
W QFT design constraint.
x state vector.
x, ẋ, ẍ displacement, velocity, acceleration.

X1, X2, X3, X̃ LMI variables.
y state space model measured / controlled signal vector.
ya, ẏa, ÿa building base displacement, velocity and acceleration.
z Bouc-Wen model hysteresis element.
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Chapter 1

Introduction

1.1 Motivation

In the last three decades, there has been an intense research activity focused on the design of systems
able to mitigate the vibrations in civil engineering structures such as buildings, towers and bridges. Vi-
brations caused by seismic motions, strong winds and heavy traffic may not only be uncomfortable for
people but dangerous if these compromise the stability of the structure and the safety of its occupants.
Vulnerability of this kind of structures has been patent after the strong earthquakes and hurricanes that
have hit different regions around the world and have caused their collapse with the consequent loss of lives.

In order to make structures safer against these phenomena, researchers have taken advantage of the
fact that, by the principle of energy conservation, damping devices can be added to the structure as
protective systems. This first led to the design and implementation of passive dampers to partially ab-
sorb the input energy and thus protect the structure. However, a significative step ahead was made
when civil structures were considered as adaptronic systems, i.e. a system characterized by adaptability
and multifunctionality (Neumann 1999). Thus, civil structures can be made adaptive or responsive to
external loads. Active control was the first step to adaptronics in civil engineering and is an attempt to
make them behave like an aircraft or machinery (Hirsch 1999).

One fundamental and powerful concept in adaptronic structures is the control of structural impedance.
By modifying the structural impedance, the vibration behavior can be changed and hence, resistance to
damage can be increased. Large civil engineering structures can control the transmission of motion and
the flow of energy by controlling the impedance of the structure at its base. This can be achieved with
electrorheological (ER) and magnetorheological (MR) dampers (Rogers & Giurgiutiu 1999). Particularly,
MR dampers feature some interesting characteristics that make them superior than other devices of their
class: higher damping force, less power requirements, lower costs, lower size, etc. Hence the efforts that
have been devoted to their study (Dyke et al. 2005).

Despite MR damper advantages, they do have a major drawback: MR dampers are highly nonlinear
devices and this makes its mathematical treatment a challenging task. Controller design for structures
equipped with MR dampers gets more complicated if it is taken into account that the structure-damper
system is characterized by model errors, model uncertainties, unknown disturbances, actuator dynamics,
nonlinearities, time delays and measurement limitations. The existence of such problems makes impera-
tive the use of complex control methodologies to exploit the best of each device and efficiently solve the
vibration problem.

There are several works on control of structures with MR dampers (Dyke 2005). Nevertheless, none
of them addresses the problem accounting for all the system characteristics as mentioned previously. It
can be found on many of these works, that the controllers are designed as if the MR damper were an
active device. Then, a clipping algorithm is applied to approximately command the MR damper force.
Thus, these controllers ignore the MR damper nonlinearities in the formulation; others do not guarantee

1
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robustness against the uncertainties of the system; yet there are others that rely on the assumption of
the complete system state availability. Furthermore, the control laws are predominantly formulated in
the time domain, leaving aside the frequency response of the system.

This research is aimed precisely to surpass some of these issues. By applying adequate control method-
ologies, it is possible to guarantee robustness by considering the parametric uncertainties and incorporat-
ing the actuator nonlinearities in the formulation so as to get a more reliable controller. Yet it is possible
to formulate control laws in the frequency domain in order to take into account some frequency response
issues that are as important as those in the time domain. Moreover, these control laws can be formulated
in such a way that only a few measurements are required to be implemented.

1.2 Open problems

In spite of the progress achieved in the vibration control of civil structures, there are still open problems
remaining to be solved. A list of the main problems in structural control is outlined next.

1. Unknown disturbances. Civil engineering structures are to be protected from hazardous phe-
nomena like seismic motions. It is, however, not possible to predict when an earthquake is going
to take place, neither its magnitude nor duration. Unknown disturbances are of major concern
because they can excite the structure at its natural frequencies and as a consequence the structure
may be severely damaged or even collapse (Pozo et al. 2006, Acho et al. 2008, Zapateiro, Luo &
Karimi 2008).

2. Uncertain parameters. Modeling large-scale structures often lead to model errors. These may
result from the neglect of nonlinearities, very fast dynamics, very slow dynamics, coupling between
systems and devices, and dynamics of actuators and sensors; mismodeling in material and geometric
properties, damping characterization, discretization of continuous models and linear approximation
of nonlinearities. Modeling errors can be expected to decrease both the stability and performance
robustness of the controlled structure (Rodellar & Luo 2003, Wang et al. 2004, Weber et al. 2006).

3. Optimal sensor and actuator location. The selection of what variables to measure, which
ones to control and therefore, the sensors and actuators is an interdependent problem. There is a
need to know which actuators are helping and which are degrading the performance (Skelton 1996).
Besides, it must be kept in mind that it is not always possible to measure all the state variables (e.g.
displacement, velocity and acceleration) because it would imply the installation of several sensors
making this an impractical solution especially when the structure is quite large (a skyscraper, for
example). On the other hand, the control performance might be affected by the properties of the
channel transmission (latency, delay jitter, signal quantification, loss of data, etc.) and the way
that the computational resources are distributed.

4. Actuator dynamics and nonlinearities. Actuator nonlinearities can generate a high sensitiv-
ity to uncertainties in the models and the external excitations. Smart material dampers such as
piezoelectric and magnetorheological dampers have limitations associated with nonlinear and hys-
teretic behavior. They represent a challenge in developing high performance actuation responses
over a broad frequency range (Kerschen et al. 2006, Fan & Smith 2008, Kilicarslan et al. 2008).
Dampers also exhibit a time delay that must be taken into account because the disturbances oc-
cur in short periods of time. Actuator time delay must be added to the delays that exist in the
control system and that are a result of the time taken in the online data acquisition from sensors
at different locations of the system, the time taken in filtering and processing of the sensory data
for the required control force to the actuator and the time taken by the actuator to produce the
required control force. Time delay may induce complex behaviors such as oscillation, instability
and degraded performances (Karimi et al. 2008d).

5. Asymmetric structures. The asymmetric distribution of stiffness or mass can make a seismic
load cause torsional and lateral motions of the structure to be strongly coupled. This behavior
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may cause larger responses than in a symmetric structures, resulting in severe localized structural
damage. In symmetric buildings the control performance depends primarily on the floor at which
the control device is placed; the specific location within the floor is not critical because the centers
of mass and rigidity coincide. However, in asymmetric structures, the exact location of the device is
critical and larger control forces and controllers based on global responses may be needed (Yoshida
et al. 2002, Yoshida & Dyke 2003).

6. Coupling. The excitation of one structure can be induced in another one if they are coupled.
The dynamics of the exciter system may be considered unknown but bounded with no information
about its states available. These systems are usually modeled by means of two or more coupled
subsystems in which one subsystem includes the measurable dynamics, and the others are unknown
with bounded dynamics. The problem is then, to ensure that the control law takes into account
the known states and parameters while maintaining the bounds of the structural response.

7. Fault tolerance. Fault tolerance is the ability of the controlled system to maintain its control
objectives in the presence of a fault. Beyond the use of reliable devices and hardware, it is preferable
to implement fault detection systems in the structures. Failures in a control system are generally
detected by a two-component fault detection system: fault detection and identification, and fault
accommodation. To date, very few publications have focussed on fault tolerance in civil engineering
structures applications (Dyke 2005).

1.3 Objectives

The general objective of this research is to design semiactive control laws to mitigate the vibrations in
adaptronic systems, especially in civil engineering structures equipped with magnetorheological dampers.

An exhaustive theoretical and experimental study of MR dampers is to be performed. Advantages
and disadvantages of different MR damper models will be outlined. The goal is to find those models that
may be suitable for control design.

New semiactive control strategies will be developed in order to effectively deal with the complexity of
hysteretic nonlinearities, parametric uncertainties, measurement limitations and unknown disturbances,
and consequently to achieve the robust performance. The formulation of semiactive control laws will
be done by introducing, from other application fields, the useful control methodologies into the field of
vibration mitigation in adaptronic systems (some of them for the first time) or by making improvements
of other control methodologies already applied in this field.

The performance of the semiactive control laws will be validated by means of numerical simulations
and/or experimental tests on laboratory specimens.

1.4 Structure of the thesis

This dissertation is organized as follows:

• Chapter 1 is the introductory chapter. The research motivation, the problem statement and the
research objectives are outlined in this chapter.

• Chapter 2 presents the state of the art of the vibration mitigation problem using MR dampers.
It presents the MR damper technology and the control methodologies that have been proposed to
reduce vibrations in civil structures equipped with this class of dampers.

• Chapter 3 is about modeling, identification and experimental testing of an MR damper operating
in shear mode. Different models and identification techniques are presented in this chapter as well.

• Chapter 4 is dedicated to the mathematical models of the structures that will be used throughout
the remaining of the document in formulating the control laws and making the numerical and
experimental verification.
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• Chapter 5 is devoted to the formulation of controllers in the time domain. The control methodology
used is the Backstepping technique and the control laws are formulated so as to take into account
the parametric uncertainties, unknown disturbances of the system and the nonlinearities of the MR
damper.

• Chapter 6 is about control formulation in the frequency domain. The technique used is the Quanti-
tative Feedback Theory methodology. This allows to take into account the parametric uncertainties
and set constraints for robust performance. The nonlinearities of the MR damper are also taken
into account by proposing an uncertain linear representation for it.

• Chapter 7 addresses the problem of designing mixed H2/H∞ controllers. This approach allows for
reducing the systems response and control effort while maintaining the response within prescribed
intervals in the presence of external disturbances. The output feedback control laws are formulated
following an LMI procedure.

• Chapter 8 outlines the conclusions and contributions of this research as well as the future work.



Chapter 2

State of the art

In this chapter, a survey on damping systems is presented. Emphasis is made on vibration reduction of
civil structures using magnetorheological dampers. MR dampers design, applications and mathematical
models are discussed. The survey finalizes with a review of the control techniques that have been em-
ployed in this class of systems.

2.1 Background on damping vibration systems

This section is a brief survey of the vibration control systems that have been designed and implemented
so far to protect the civil structures from hazardous external loadings. Seismic protection systems may
be classified in three main categories: passive, active and semiactive. The main characteristics of them
will be outlined in what follows.

Passive damping was one of the first solutions proposed to attenuate the vibrations in civil structures.
They alleviate the energy dissipation of the main structure by absorbing part of the input energy, thereby
reducing the structural damage. Passive dampers can be used as base isolators, as shown in Figs. 2.1(a)
and 2.1(b). Base isolators must be rigid enough to support the loadings caused by strong vibrations
(Yang et al. 2002). One disadvantage is that the additional damping that base isolation systems provide
to the structure may increase the internal motion of the superstructure (Ramallo et al. 2002). Passive
dampers can also be installed on the top of a structure, like the tuned mass dampers (TMD). TMD’s are
viscous damping devices tuned to one of the natural frequencies of the vibrating systems to add damping
when in resonance. The classical concept of TMD’s is shown in Fig. 2.1(c).

Passive damping has the advantage of not requiring external source powers or other hardware to
operate. However, once tuned, they cannot adapt to varying loadings (Johnson et al. 1998). This makes
mandatory a deep knowledge of the characteristics of the structure to be protected and the soil where

(a) (b) (c)

Figure 2.1: Passive damping. (a) Non isolated structure. (b) Base isolated structure. (c) Tuned mass
damper.
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it is built on. Furthermore, passive dampers are generally highly nonlinear devices and the vibration
reduction is not optimal for a wide range of input ground motion intensities (Yoshioka et al. 2002).

Limitations of passive dampers can be surpassed by active damping systems. In this class of systems,
it is possible to determine the forces that stabilize the structure and hence, adapt it to changing loading
conditions. Active dampers have already been implemented in a number of civil structures (Housner
et al. 1997). A good example is the active mass damper (AMD), which consists of a mass, usually less
than 1% of the total mass structure, installed on the top of the structure and is connected to it by an
actuator as shown in Fig. 2.2(a). The response of the whole structure is processed by a computer which
sends the appropriate signals to the actuator to move the mass and mitigate the vibration. Fig. 2.2(b)
is a picture of AMD installed in a Japanese building.

Active control devices, unlike passive dampers, do require external power sources, typically from the
electrical network which may fail during an earthquake or hurricane. Moreover, active systems can inject
energy to the system and destabilize it in a bounded-input bounded-output sense. Furthermore, addi-
tional hardware like sensors and controllers are required (Spencer & Sain 1997).

Despite the successful implementation of passive and active damping systems, there are some con-
cerns that avoid their wide implementation: 1) the reduction of capital cost and maintenance, 2) the
elimination of reliance on external power, 3) the increase of system reliability and 4) the acceptance of
nontraditional technology (Spencer et al. 1997). These concerns, however, may be addressed by hybrid
and semiactive control strategies (Dyke et al. 1998, Jansen & Dyke 2000, Yoshida et al. 2002).

Hybrid control is basically the combination of active and passive devices like, for instance, the hybrid
mass damper. It is comprised of a tuned mass damper and an active actuator. The ability of the device to
reduce the structural response relies on the natural motion of the TMD. The control actuator is used to
improve the performance under changes in the dynamics of the structure. Fig. 2.3(a) shows the schematic
of a DUOX systems and Fig. 2.3(b) is a picture of a hybrid mass damper implementation in a Japanese
building. Hybrid control systems coupling active and passive dampers into base isolated systems can be
designed for enhancing the performance of passive devices (Baratta et al. 2008).

Semiactive control devices, on the other hand, combine the features of active and passive dampers:
their properties can be adapted in real time but they cannot inject energy to the system. They are also
known as controllable passive dampers (Yi et al. 1999, Yang et al. 2002, Yoshida & Dyke 2003). Semiac-
tive devices have shown to perform significantly better than passive devices and as well as active devices
without requiring large power sources, thus allowing for battery operation. Semiactive devices may theo-
retically be controlled in real-time using a closed loop control scheme. This enables a structure to respond
to the earthquake in a theoretical “safe-mode” of vibration via adequate energy dissipating (Spencer &
Soong. 1999, Attard et al. 2008). A number of semiactive devices have been studied lately: variable orifice
damper, the variable friction damper, the adjustable tuned liquid damper and semi-actively controllable
tuned liquid dampers, among others (Symans & Constantinou 1997, Kuruta et al. 1999, Rodellar & Luo
2003, Dyke et al. 2005, Zapateiro & Luo 2007a, Ferreira-Oliveira et al. 2008). However, the controllable

(a) (b)

Figure 2.2: Active mass dampers: (a) AMD system. (b) The AMD at the Kyobashi Seiwa building.
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(a) (b)

Figure 2.3: Hybrid mass dampers: (a) HMD schemtaic. (b) HMD at the Rainbow Tower (Japan).

fluid dampers have acquired a particular interest.

Controllable fluid dampers are devices that contain no moving parts other than the piston. They
use either an electrorheological (ER) or a magnetorheological (MR) fluid; these fluids have the ability
to change their rheological properties in the presence of an electrical (ER case) or magnetic (MR case)
field. This change is effective in a few milliseconds and they can generate high forces compared to the
other devices, with low power requirements and simple mechanical design which make them an attractive
solution for the vibration problem in the large civil structures (Charles 2002, Oh et al. 2004, Christenson
& Emmons 2005, Goncalves et al. 2006).

ER and MR fluids have already been applied in several systems to mitigate destructive vibrations.
In spite of the early invention of MR fluids (in fact, both of them were first developed in the 1940’s), it
was approximately two decades ago that researchers devoted their efforts to their study and results were
already visible. Practical implementations can be found, for instance, at the Nihon-Kagaku-Miraikan
building in Tokyo (the first building to have MR dampers) and at the Dongting Lake Bridge in Yueyang
City (China). Nonetheless, MR fluid dampers have some advantages over ER fluid dampers including
higher yield strength, lower costs of production, lower energy requirements, faster response and smaller
size among others (Yang et al. 2002, Atray & Roschke 2003, Dyke et al. 2005). For this reason, MR
dampers have attracted more interest and efforts in research.

2.2 Magnetroheological dampers

2.2.1 Magnetorheological fluids

The invention of magnetorheological fluids is credited to Jacob Rabinow in the 1940’s. MR fluids are non
colloidal suspensions of micron-sized magnetizable particles in a carrier medium and their main charac-
teristic is their ability to reversibly change their rheological properties in the presence of a magnetic field.
In other words, MR fluids can go from a liquid state to a semisolid one when there is a magnetic field
present, and this transition can be made effective in a few milliseconds. Thus, it is possible to control
the rheological transition by changing the magnitude of the magnetic field. Because of these properties,
MR fluids are called smart fluids (Charles 2002, Goncalves et al. 2006).

MR fluids are the magnetic counterpart of electrorheological (ER) fluids. However, there are some
drawbacks to the use of ER fluids. MR fluids need lower power requirements for a rheological change than
ER fluids. MR fluids are insensitive to contaminants which helps in minimizing the cost of production.
ER fluids also exhibit a high dependence on temperature changes. Moreover, MR fluids are 20 to 50 times
stronger than ER fluids. The reason that MR fluids exhibit a high dynamic yield strength compared to
that of ER fluids is due to the high magnetic energy density that can be established in the fluid. For
a typical iron-based MR fluid, the maximum energy density is 0.1 Joule/cm3 while this density in ER
fluids is only 0.001 Joule/cm3 (Yang 2001).
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(a) (b) (c)

Figure 2.4: MR damper operation modes: (a) flow or valve mode, (b) shear mode, (c) squeeze mode.

MR fluids have found potential applications in areas such as medicine and engineering. For example,
MR fluids have been proposed to treat cancer with a mechanism that blocks the blood vessels to a tumor
by injecting an MR fluid and applying a magnetic field (Flores & Liu 2002). MR fluids have been pro-
posed in rehabilitation devices for muscle strengthening and for prosthesis to surpass the disadvantages of
active and passive mechanisms used up to date in this kind of devices (Kim & Oh 2001, Dong et al. 2006).

Several applications can be found in engineering. For instance, MR fluid clutches have become an
alternative to conventional torque converters and hydraulic starting clutches which suffer from low ef-
ficiency, low robustness and uncertainties in the piston stroke (Neelakantan & Washington 2005). MR
automotive driveline center bearing have been designed to overcome the noise, vibration and harshness
problem present in common bearings (Agrawal et al. 2002). MR fluid suspension seals and MR fluid
valves have also been prototyped and tested (Yoo & Wereley 2002, Saito et al. 2006). Perhaps the most
important application of MR fluids is found in vibration suppression. Different kinds of MR fluid dampers
have been designed, prototyped and tested at different scale and for different systems such as vehicles,
industrial machinery, buildings, bridges, etc. (Jolly et al. 1999, Ahn et al. 2005, Milecki & Sedziak 2005,
Wang et al. 2006). The next two subsections are devoted to MR fluid dampers.

2.2.2 MR fluid dampers

MR fluid dampers, or simply MR dampers, are a class of controllable fluid dampers where the shear force
of the fluid is controlled by an external magnetic field. This kind of damper can be seen as controllable
Coulomb dampers where the slope of the Coulomb force trajectories depends on the oil viscosity. MR
fluids behave like rigid bodies below yield stress and start to flow above yield stress and then behave
like plastic viscous. Because of this, MR dampers exhibit a large yield strength at very small velocities
(Weber et al. 2006).

In general, MR dampers work in one of these modes: flow or valve mode, shear mode, squeeze mode
or a combination of them (Carlson 1999). Schematics of these operation modes are shown in Fig. 2.4.
Shock absorbers, servo-valves, dampers and actuators usually work in the flow mode while clutches,
brakes, dampers, chocking and locking devices work in the shear mode. Squeeze mode devices are usually
employed in low motion, high force applications such as small-amplitude vibration dampers. Dampers
for civil engineering applications are expected to develop large magnitude forces so the flow mode or a
combination of flow mode and shear mode is usually employed rather than the other modes individually
(Carlson 1999, Jolly et al. 1999, Yang 2001).

Large-scale MR dampers for civil engineering applications have already been built. For instance, a
20-ton MR damper, shown in Fig. 2.5(a), was developed by the Lord Corporation and the University of
Notre Dame (United States). It has a stroke of ±8 cm, a mass of 250 kg, is 1 m long and has 6 liters
of MR fluid of which only 90 cm3 are energized at any given instant (Yang et al. 2002). The Sanwa
Teiki Corporation in Tokyo (Japan) designed a 30-ton MR damper for testing at the National Center for
Research on Earthquake Engineering in Taipei, Taiwan. The total stroke of the damper piston is 0.24
m and its velocity is limited to 0.50 m/s. The maximum current and voltage that can be applied before
saturation is 2.0 A and 1.0 V respectively (Oh et al. 2004). The damper is shown in Fig. 2.5(b).
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(a) (b)

Figure 2.5: Large MR dampers: (a) 20-ton MR damper. (b) 30-ton MR damper.
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Figure 2.6: Typical force-displacement and force-velocity curves of an MR damper under sinusoidal
excitation and different magnetic fields (Yang 2001).

2.2.3 Mathematical models of MR dampers

MR dampers are highly nonlinear devices. Their force-velocity relationship exhibits a hysteretic behavior
which is not mathematically easy to model. Fig. 2.6 shows the typical response of an MR damper under
sinusoidal excitation at different levels of magnetic field (Yang 2001). Hysteresis can cause serious prob-
lems in controlled systems such as instability and loss of robustness. Modeling MR dampers has been
an active field during the last years and several solutions have already been proposed. In general, MR
damper models can be classified into two groups depending on the way the model is obtained: paramet-
ric and non parametric. Parametric models usually make use of physical concepts such as friction and
viscosity that help describing the dynamics of the device. On the other hand, non parametric models
make use of soft computing techniques such as neural networks and fuzzy logic to build a model based
on experimental information.

Parametric models

In this section, some extensively used parametric models are reviewed. As mentioned earlier, these mod-
els are built on the base of physical concepts. The Bingham, Bouc-Wen, Hyperbolic tangent, Dahl and
other models have been adapted to recreate the MR damper dynamics as described in what follows.

Bingham model. The Bingham model has long been used to characterize ER and MR dampers. It
is based on the Bingham plastic model which assumes that a body behaves as a solid until a minimum
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yield stress is exceeded and then exhibits a linear relationship between the stress and the rate of shear
or deformation (Shames & Cozzarelli 1992). Based on this relationship, a model was proposed for ER
dampers. This model, simply known as the Bingham model, consists of a Coulomb friction element
placed in parallel with a viscous damper, as shown in Fig. 2.7. The force fmr is given by Eq. 2.1, where
c0 is the damping coefficient, fc is the frictional force which is related to the fluid yield stress, ẋ is the
piston velocity and f0 is the nonzero mean observed in the measured force due to the presence of the
accumulator present in some devices. It is well known that the Bingham model does not reproduce the
hysteretic behavior of ER and MR dampers. Instead it describes a one-to-one relationship that may not
be suitable for control purposes (Butz & von Stryk 2002, Zapateiro, Luo, Taylor & Dyke 2008).

Figure 2.7: Bingham mechanical model.

fmr = fc · sgn(ẋ) + c0x + f0 (2.1)

Gamota & Filisko (1991) proposed an extension of the Bingham model to describe the ER behavior
in the pre-yield, the post-yield and the yield point. The model consists of the Bingham model in series
with a standard model of a linear solid (Zener element), as shown in Fig. 2.8. The force in this system
is given by Eq. 2.2, where c0 is the coefficient associated with the Bingham model and k1, k2 and c1 are
associated with the linear solid material.

Figure 2.8: Extended Bingham mechanical model.

fmr =






c0ẋ1 + fc · sgn(ẋ1) + f0

= k2(x3 − x2) + f0 |F | > fc

k1(x2 − x1) + c1 + f0ẋ2 + f0

= k2(x3 − x2) |F | ≤ fc

(2.2)

Bouc-Wen model. The hysteresis model of Bouc as modified by Wen is one of the mathematically
simplest yet effective models that can represent a large class of hysteretic behavior (Wen 1976, Sain et al.
1997). A phenomenological model based on the Bouc-Wen model was proposed by Spencer et al. (1997);
its schematic is shown in Fig. 2.9. The force of this system is given by Eqs. 2.3-2.4, where ẋ is the
piston velocity, c0 is the damping coefficient, k0 is the stiffness of the device, x0 accounts for the initial
deflection of the spring and z is an unmeasurable evolutionary variable that accounts for the hysteresis
behavior. α, β, κ, ϕ, and n are parameters that can be adjusted to control the shape of the hysteresis
loop. The force f0 is due to an accumulator present in some dampers and is incorporated in the model
as the initial deflection x0 of the spring k0.

Figure 2.9: Bouc-Wen mechanical model.

fmr = c0ẋ + k0(x − x0) + αz (2.3)

ż = −ϕ|ẋ|z|z|n−1 − βẋ|z|n + κẋ (2.4)

The Bouc-Wen model is able to predict the response of the damper well but it does not roll off in the
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region where the acceleration and velocity have opposite signs and the magnitudes of the velocities are
small. To overcome this issues, the model was modified by Spencer et al. (1997), as shown in Fig. 2.10.
The force of the new system is given by Eqs. 2.5 - 2.7, where c1 is a dashpot included to account for
the effect of the roll off and c0 is for the viscous damping observed at large velocities; k1 represents the
stiffness of the accumulator present in some MR dampers while k0 controls the stiffness at large velocities.

Figure 2.10: Bouc-Wen mechanical model.

fmr = c1ẏ + k1(x − x0) (2.5)

ẏ = 1
c0+c1

{αz + c0ẋ + k0(x − y)} (2.6)

ż = −ϕ|ẋ − ẏ|z |z|n−1 − β|z|n + κ(ẋ − ẏ)(2.7)

Hyperbolic tangent models. Gavin (2001) and Gavin et al. (2001) proposed a simplified version
of the model by Gamota & Filisko (1991) for an ER damper. The model is illustrated in Fig. 2.11. It
consists of two Voight elements connected by an inertial element that resists motion through the Coulomb
friction element. The equation of the model is given by Eqs. 2.8 - 2.11, where k1 (spring) and c1 (dash-
pot) model the pre-yield viscoelastic behavior while k0 and c0 model the post-yield behavior; m0 is the
inertia of the device and the fluid, f0 is the yield force. x0 = [x0 ẋ0]

T , x0 is the plastic deformation and
ẋ0 is its rate and they uniquely describe the state of the system. This model takes x = [x ẋ]T as the
inputs. There is only one nonlinear term, tanh, and it is separated from the dynamics of the system. The
hyperbolic tangent is used as an approximation to the signum function. The whole term f0 tanh(ẋ0/Vref )
approximates the yielding mechanism. Vref is a reference velocity which governs the sharpness of the
yield function. The system takes into account the dynamic effects of pre-yield visco-elasticity, bulk com-
pressibility and the device’s stiffness and inertia when the velocity changes sign.

Figure 2.11: Hyperbolic tangent mechanical
model by Gavin et al. (2001).

ẋ0 = Ξ1xo + Ξ2x + Ξ3fotanh(ẋ0/Vr) (2.8)

f̂mr =

[
−k1

−c1

]T

xo +

[
k1

c1

]T

x (2.9)

Ξ1 =

[
0 1

− (k0+k1)
m0

− (c0+c1)
m0

]
(2.10)

Ξ2 =

[
0 0

− k1

m0

− c1

m0

]
, Ξ3 =

[
0

− 1
m0

]
(2.11)

Guo et al. (2006) have proposed a similar model which can be considered as a generalization of the
Bingham model. In addition, all the parameters have a physical meaning. The proposed model is given
by Eq. 2.12, where ẋ is the piston velocity, A1 is the dynamic yield force of the fluid, A2 and A3 are
parameters related to the post-yield and pre-yield viscous damping coefficients respectively, V0 and X0

denote the absolute value of hysteretic critical velocity and hysteretic critical displacement respectively.
The mechanical model is shown in Fig. 2.12. Under a sinusoidal excitation (x = a sin θ, ẋ = aω cos θ,
θ = ωt + φ, θ0 = arctan(V0/ωX0)), if θ0 = 0 and A3 = ∞ Eq. 2.12 reduces to fmr = A1sgnẋ + A2x,
which is the Bingham model. In fact, θ0 = 0 when the hysteretic behavior is neglected and A3 = ∞ when
the pre-yield region of the damper is neglected.

Dahl friction model. Ikhouane & Dyke (2007) and Ikhouane & Rodellar (2007) have studied the
overparametrization of the Bouc-Wen model which means that the input-output relationship of the model
and the set of Bouc-Wen model parameters is not one-to-one, leading to a non uniqueness of the set of
parameters. They have proposed the use of a viscous + Dahl model to describe the device behavior. The
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Figure 2.12: Hyperbolic tangent mechanical model
by Guo et al. (2006).

fmr =A1tanh

(
A3

(
ẋ +

V0

X0
x

))

+ A2

(
ẋ +

V0

X0
x

) (2.12)

Dahl model is essentially a Coulomb friction element with a lag in the change of friction force when the
direction of motion is changed. The mechanical model proposed for a shear-mode MR damper (viscous +
Dahl) is shown in Fig. 2.13. The mathematical model is as in Eqs. 2.13 - 2.14, where kx and kw may be
voltage-dependent. The model has shown to characterize the MR damper behavior as accurately as the
Bouc-Wen model does. The methodology has also been successfully applied to large scale MR dampers
as can be seen in Aguirre et al. (2008).

Figure 2.13: Dahl mechanical model.

F = kx(v)ẋ(t) + kw(v)z(t) (2.13)

ż = ρ(ẋ − |ẋ|z) (2.14)

Other parametric models. Alvarez & Jiménez (2003) proposed an MR damper model based on the
LuGre model that describes friction dynamics (Canudas et al. 1995) and later presented a modification
in Jiménez & Álvarez Icaza (2005). The modified model is linear in the parameters, so it is possible to
use standard recursive identification algorithms to fit the model parameters to experimental data. Yang
& Shen (2006) proposed a three parameter bilinear hysteresis to model MR dampers. Another model is
the nonlinear bi-viscous one which utilizes two different linear slopes corresponding to the pre-yield and
the post-yield conditions, and a set of piecewise linear functions to describe the hysteresis effect. This
model is a good approximation to the actual behavior of the damper but it does not adequately account
for variations in the excitation/response conditions. The model parameters need to be updated in time
as the excitation conditions vary, which may limit the real-time tracking ability of the control algorithm
(Ma et al. 2003).

Non parametric and other models

In this section, techniques such as neural networks, fuzzy logic and polynomial models are presented.
These techniques have been widely used to model MR dampers based on experimental data.

Neural network models. Neural networks have extensively been used in many fields of research
due to their ability to model nonlinear systems. Neural networks can be trained to learn complicated
relationships between sets of inputs and outputs. Their ability to learn complicated nonlinear systems
has been exploited to model MR dampers. An important advantage of neural networks is the relative
ease to train them to learn the inverse dynamics of a damper, that is, a model that yields the output of
a control signal that makes the damper to generate the desired damping force (Zhang & Roschke 1998,
Wang & Liao 2001, Du et al. 2006, Zapateiro & Luo 2007b).

Fuzzy logic models. Fuzzy logic methodologies such as ANFIS (Adaptive Neuro-Fuzzy Inference
System) have been used to model small- and large-scale MR dampers. The structure of an ANFIS model
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is similar to that of a neural network that is functionally equivalent to a fuzzy inference system. A network
type structure can be used to map inputs through membership functions and associated parameters, and
then through output membership functions and associated parameters to outputs (Schurter & Roschke
2000, Peschel & Roschke 2001, Atray & Roschke 2003, Oh et al. 2004).

Other models. n−order polynomial equations have been used to model MR dampers. It has been
done, for instance, by dividing the force-velocity loop into two regions (positive and negative acceleration)
and then, taking into account the varying magnetic field (Choi et al. 2001). In other work, Song et al.
(2005) developed an MR damper model using polynomials. They took into account four aspects of the
damper behavior and developed a model based on them: a polynomial function describes the maximum
damping force as a function of the control current; a shape function, hyperbolic tangent based, describes
the bilinear behavior of the force-velocity curve; a first order filter creates the hysteresis loop; and an
offset function is included to take into account the effect of the accumulator of some dampers.

2.3 Semiactive control techniques for MR dampers

The development of control algorithms for MR dampers is a challenging task of the structural control
design. The nonlinear behavior of the actuators, the limited availability of measurements and the amount
of uncertainties which are characteristic of these environments must be taken into account when design-
ing the controller. Control techniques can be divided in two classes: model based control and intelligent
technology based control. Some of the most common control techniques used with MR dampers are
summarized below.

2.3.1 Model based control

Clipped optimal control. Clipped optimal control was one of the first techniques used for controlling
structures with MR dampers. Dyke et al. (1996) proposed a clipped optimal controller based on accel-
eration feedback, eliminating the need for a full state (velocity and displacement) feedback or velocity
feedback, which are measurements difficult to obtain directly. The technique consists of designing a linear
optimal controller that calculates the desired control force based on the available measurements. How-
ever, the only way to command the force of the MR damper is by varying the magnetic field controlled by
voltage or current. The following algorithm is applied to estimate the control signal: the voltage remains
the same when the damper is producing the desired force calculated by the controller. If the magnitude
of the force produced by the damper is smaller than the magnitude of the desired optimal force and the
two forces have the same sign, the voltage applied to the current driver is increased to the maximum
level; otherwise, the voltage is set to zero. The MR damper dynamics are ignored in this approach.

The algorithm was successfully applied and extended to multiple MR dampers (Yi et al. 2001) and
was also implemented to reduce the coupled lateral and torsional response of asymmetric buildings when
subjected to horizontal seismic excitations (Yoshida et al. 2002). Other works where the clipped optimal-
like algorithm technique is used are those by (Ramallo et al. 2002, Christenson & Emmons 2005, Johnson
et al. 2007).

Control based on Lyapunov’s stability theory. According to Lyapunov stability theory, if there
exists a function V (z) that is positive definite and the rate of change of such function, V̇ (z), is negative
semi-definite, the origin is stable in the sense of Lyapunov. The objective of the control design is then
to choose the control inputs so as to make V̇ (z) as negative as possible. There is not a unique func-
tion satisfying these characteristics so this results in a variety of control laws. The works by Jansen &
Dyke (2000), Yang (2001), Wang & Gordaninejad (2002), Luo et al. (2003) are about the application of
Lyapunov’s stability theory to design controllers to reduce vibrations in buildings and bridges with MR
dampers. Lyapunov control has also been applied to mitigate vibration in vehicle suspension systems
(Park & Jeon 2002).
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Bang-bang control. This control technique is useful when the performance index is the pure-
minimum time objective of the form J(t0) =

∫ tf

t0
dt = tf − t0. The solution is to apply infinite control

energy in an infinitesimal time period. A Lyapunov function is chosen and a possible strategy is to reduce
the rate at which the energy is transmitted to the structure. One of the first applications was made by
McClamroch et al. (1994) and McClamroch & Gavin (1995). The objective was to minimize the rate at
which the mechanical energy in a structure equipped with ER dampers is transmitted to the structure.
A Lyapunov function V was chosen to represent the total vibratory energy in the system. The control
voltage of the damper is then selected to minimize V̇ . The resulting control law is of bang-bang type;
decentralized, since the electrical field applied to the i-th ER damper depends only on the feedback of the
velocity across the i-th ER damper. Jansen & Dyke (2000) also tested this technique in a structure with
MR dampers. However, they chose a Lyapunov function relative to the vibratory energy in the system
(i.e., excluding the velocity of the ground in the kinetic energy term). The controller was implemented
by measuring only the velocity and the damper force.

Sliding mode control. SMC (Utkin 1992) is a robust nonlinear control technique which restricts
the state of a system to a sliding surface by switching the control structure on both sides of a sta-
ble hyperplane in the state space. The controller design consists of two steps. First, a sliding surface
defined by σ = Sx = 0 that represents the closed loop control performance is designed. The second
step is to design a nonlinear switched feedback control law; i.e., calculate the control gain that makes
the state trajectory reach the sliding surface and stay there until it gets to the origin. SMC applications
in structural control can be found in (Luo et al. 1999, 2000, 2003, Villamizar et al. 2003, Moon et al. 2003).

Backstepping control. This technique consists of selecting appropriate functions of state variables
as pseudo control inputs for lower dimension subsystems of the overall system. Each backstepping stage
is a new pseudo control design in terms of the preceding stages. In the final stage, a feedback design
for obtaining the true control input results and it achieves the original design objective by virtue of a
final Lyapunov function, which is formed by summing up the Lyapunov functions associated with each
individual design stage.

Semiactive control nonlinear devices such as hysteretic base isolators and MR dampers by means of
backstepping has been approached by Ikhouane et al. (1997), Villamizar et al. (2003), Villamizar (2005),
Luo et al. (2006, 2007) and further developed by Zapateiro, Villamizar & Luo (2008) and Zapateiro,
Karimi & Luo (2008). The backstepping strategy was applied to generate the control force of an MR
damper integrated in a hybrid control system (base isolator + MR damper) in a 10-story building. It
was later tested in a 6-story scaled structure available at the Structural Control and Earthquake Engi-
neering Laboratory (Washington University in St. Louis, U.S.A.). Robustness was improved by applying
adaptation laws to the structure uncertain parameters.

Quantitative Feedback Theory. QFT is a frequency control technique, initially thought for LTI
systems but extendible to nonlinear systems. As one of the frequency structural control strategies, this
control technique was firstly introduced by Luo et al. (2004) for the vibration reduction in linear struc-
tures and was extended to structures equipped with MR dampers by Villamizar et al. (2004). Numerical
simulations and experiments on small scale specimens showed the feasibility of applying QFT control in
larger systems. In these works, however, an algorithm similar to the clipped optimal control was followed,
i.e. the nonlinear dynamics of the MR damper were ignored. A step further was done by Zapateiro, Luo &
Karimi (2008) by proposing the inclusion of the hysteretic dynamics of MR dampers in the QFT control
design and its feasibility was proved by numerical simulations.

H2 and H∞ control. The suboptimal H∞ control problem of parameter γ consists of finding a
controller that internally stabilizes the closed loop system and the H∞ norm of the transfer function
from the exogenous inputs to the controlled outputs is less than γ. This constraint can be interpreted
as a disturbance rejection performance and may be useful to enforce robust stability. On the other hand
H2 control consists of finding a controller that minimizes the H2 norm of the transfer function from from
the inputs to the outputs and it is useful, for example, to avoid actuator saturations. Both techniques,
including mixed H2/H∞ control have been applied to active and semiactive structural control (Yang
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et al. 2003, 2004, Narasimhan & Nagarajaiah 2006, Karimi et al. 2008b).

2.3.2 Soft computing based control

Extensive literature about the use of soft computing techniques for structural control can be found.
Neural networks, fuzzy logic and genetic algorithms are an example of the methodologies most widely
applied to semiactive modeling and control of MR dampers. For instance, Kim et al. (2006) ran full-scale
experiments on a single degree of freedom mass equipped with a hybrid base isolation system comprised
of a friction pendulum system and a magnetorheological damper. The fuzzy logic controller takes the dis-
placement and acceleration readings of the structure to calculate the appropriate signals to drive the MR
damper. Both the friction pendulum system and the MR damper were modeled by ANFIS approaches.
This work was later improved by Kim and Roschke Kim & Roschke (2006); they optimized the fuzzy
models by using genetic algorithms.

Feasibility of fuzzy logic controllers to reduce the structure response has been studied by Casciati
et al. (1999), Choi et al. (2004), Dias (2005), Xu & Guo (2006), Gu & Oyadiji (2007). Applications of
neuro fuzzy controllers can be found in Faravelli & Venini (1994), Li et al. (2002), Schurter & Roschke
(2001). Neural networks and fuzzy logic have successfully been applied to semiactive control of vehicle
suspension as can be seen in Guo et al. (2004), Yu, Dong, Liao & Chen (2006), Yu, Liao, Chen & Huang
(2006), Zapateiro, Luo, Karimi & Veh́ı (2008).

In general, a conclusion that can be found in these works is that the speed of execution of these
algorithms is higher than that of model-based controllers. This is an important issue to keep in mind
since MR dampers exhibit a time delay response that combined with the time of execution of the control
signal can be problematic. Another advantage of soft-computing techniques is that the inverse model
of the damper is easier to obtain. Furthermore, these kind of controllers are robust, which is especially
desirable in structural control applications characterized by uncertainties. Finally, the implementation
of these controllers, particularly neural network controllers, is totally feasible thanks to the existence of
high speed, low cost processors such as the digital signal processors.





Chapter 3

Modeling and identification of MR

damper dynamics

This chapter presents the results of a series of experiments conducted to model a magnetorheological
damper operated in shear mode. The objective is to analyze the performance of different damper models.
The control methodologies that will be used in the subsequent chapters require an accurate model of
the damper dynamics to be included in the formulation. Moreover, it is desirable that these models are
numerically simple for practical implementation and fast execution.

The prototype MR damper consists of two parallel steel plates; a paddle covered with MR fluid coated
foam is placed between the plates. The force is generated when the paddle is in motion and the MR fluid
is reached by the magnetic field of the coil in one end of the device. Two approaches were considered
in this experiment: a parametric approach based on the Bingham, Bouc-Wen and Hyperbolic Tangent
models and a non parametric approach based on a Neural Network model. These models have been
chosen because, based on other researchers previous experiences, they can be suitable for the class of
dampers that are studied in this dissertation. Moreover, these are mathematical simple models that can
allow for practical implementation.

This chapter is organized as follows. First, the experimental setup is described. A detailed description
of the MR damper to be tested and the experimental environment is given. Then, the proposed models
are adjusted. The parameters of the Bingham, Bouc-Wen and Hyperbolic Tangent models are identified
using a constrained nonlinear optimization algorithm available in MATLAB. The objective function is
the sum of the squared errors between the predicted and the experimental force. Neural networks, on
the other hand, are trained with the neural network toolbox that is also available in MATLAB. The
simulations are performed in Simulink. Finally, the accuracy to reproduce the MR damper behavior is
compared as well as some aspects related to performance are discussed.

3.1 Experimental setup

The experiments to model the MR damper were conducted at the Structural Control and Earthquake
Engineering Laboratory (Washington University in St. Louis, Missouri, U.S.A.). The MR damper used
works in shear mode and is a prototype from the Lord Corporation (Cary, North Carolina, U.S.A.). A
schematic of the MR damper is shown in Figure 3.1(a). It consists of two steel parallel plates separated by
0.635 cm. A paddle covered with a foam saturated with MR fluid is placed between the steel plates. The
thickness of the paddle is 0.315 cm. A coil placed in the bottom of the device generates the magnetic field.
The dimensions of the device are 4.45×1.9×2.5 cm. The configuration of the damper allows it to produce
forces up to 20 N. The magnetic field is generated by the current supplied by a pulse width modulator
(PWM) circuit whose maximum output is 2 A. This device is voltage-controlled and its input-output
relationship is linear.

17
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(a) (b)

Figure 3.1: (a) Schematic of the MR damper prototype. (b) Experimental setup.

As shown in Figure 3.1(b), the MR damper is placed on the piston of a hydraulic actuator. This
actuator, 2000 lbf rated, is used to apply forces to the MR damper. A force transducer (load cell) is
placed in series with the damper and a linear variable differential transformer (LVDT) is used to measure
the displacement. The velocity is then calculated using a central differences algorithm.

The experiments are carried out as follows: the MR damper is excited with sinusoidal displacements
at frequencies between 0.5 and 5 Hz; currents between 0 and 1.6 A (control voltage between 0.6 − 4 V);
and amplitude displacements between 0.20 and 0.80 cm. Data are sampled at a rate of 256 samples/sec,
with null means and the noise is removed with a low pass filter at 80 Hz. The voltage is used as the
control signal to vary the magnitude of the magnetic field.

3.2 Numerical results and analysis

The nonlinear dynamics of the MR damper are observed in Figure 3.2. The loops correspond to the
experimental response of the damper when it is subject to a sinusoidal displacement at 4 Hz, an ampli-
tude of 0.80 cm and different levels of voltage. The force fluctuations observed in the force-displacement
loops as displacement goes from the maximum to the minimum values and viceversa is due to friction
in the hydraulic actuator. The force-velocity curve shows that at 0.6 V (∼0 A), the device operation is
approximately linear, typical of purely viscous devices. As long as the voltage increases, the force also
increases in an almost linear fashion up to a point where the fluid is magnetically saturated and it is not
possible for the device to generate higher forces. This case happens at 3 V and above; as can be seen,
the force produced at 3 V is almost the same as that at 4 V.

3.2.1 Bingham model

Bingham model parameters (Eq. 2.1) were estimated to compare its ability to predict the force response
with other models. Fig. 3.3 shows the results corresponding to the case of 4 Hz sinusoidal displacement at
3 V, in which the parameters obtained were fc = 10 N and c0 = 0.2 N·s/cm. In general, the main concern
of using the Bingham model for control analysis is that it reproduces a one-to-one relationship between
the force and velocity. However, from the experiments, it is immediately observed that the Bingham
model does not reproduce the hysteretic force-velocity loop although it makes a good estimation of the
forces at high velocities.
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Figure 3.2: Typical displacement-force (left) and force-velocity (right) curves of an MR damper.
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Figure 3.3: Predicted and experimental response using the Bingham model.

3.2.2 Bouc Wen model

The Bouc-Wen model (Eqs. 2.3 and 2.4) is able to reproduce the hysteretic force-velocity response. In
order to find a relationship between the predicted force and the magnetic field, several sets of Bouc-Wen
parameters were obtained to fit experimental data at different levels of constant voltage. It was found
that the damping coefficient (c0) and α vary linearly with the voltage. These parameters are rewritten
as:

α(v) = αa + αbv, c0(v) = c0a + cobv (3.1)

where v is the control voltage input to the PWM system. The following parameters, that fit the exper-
imental results, were obtained: c0a = 0.0055 N·sec/cm, c0b = 0.0055 N·sec/cm·V, αa = 1.8079 N/cm,
αb = 8.0802 N/cm·V, β = 46 cm−2, ϕ = 84.0253 cm−2, κ = 80.7337 and n = 1. Furthermore, k0 = 0
because this parameter accounts for the pressure inside the cylinder of dampers working in flow mode.
Fig. 3.4 shows a comparison of the predicted and experimental force responses when the damper is
subject to a 4 Hz sinusoidal displacement at 3 V, where good agreement is observed.



20 3. Modeling and identification of MR damper dynamics

−0.5 0 0.5
−15

−10

−5

0

5

10

15

displacement cm

fo
rc

e 
(N

)

 

 

0 0.05 0.1 0.15 0.2 0.25
−15

−10

−5

0

5

10

15

time (s)

fo
rc

e 
(N

)

 

 

−20 −10 0 10 20
−15

−10

−5

0

5

10

15

velocity (cm/s)

fo
rc

e 
(N

)
 

 

predicted
experimental

Figure 3.4: Predicted and experimental response using the Bouc-Wen model.

Experimental observations show that the force-velocity loop (Fig. 3.4) appears to be smooth near the
zero-velocity region, where the velocity and the acceleration have different signs. However, the predicted
response exhibits a discontinuity in slope at this point. This minor difference is not significant.

3.2.3 Hyperbolic tangent model

Using the set of experimental sinusoidal excitations to fit the hyperbolic tangent model (Eqs. 2.8 - 2.11),
it was determined that m0, Vref , and c0 are independent of the voltage. The following four parameters
tend to vary linearly with the voltage:

k0(v) = k0av + k0b

k1(v) = k1av + k1b

c1(v) = c1av + c1b

f0(v) = f0av + f0b

(3.2)

Parameters that fit the experimental results are: k0a = 0.0193 N/cm·V, k0b = 0.5383 N/cm, k1a =
148.4435 N/cm·V, k1b = −47.4474 N/cm, c0 = 0.7494 N·s/cm, c1a = 0.0385 N·s/cm·V, c1b = 0.0044
N·s/cm, f0a = 4.9328 N/V, f0b = −1.3704 N, m0 = 0.00008 N·s2/cm and Vref = 0.330 cm/s. Fig. 3.5
compares the predicted and experimental force responses when the damper is excited at 4 Hz sinusoidal
displacement at 3 V. The sharp change in the slope of the force around 0.12 cm/sec is characteristic of the
model, but the perturbation near zero-velocity region in the the force-velocity curve is due to friction in
the hydraulic actuator. The hyperbolic tangent model is accurately able to model the hysteretic behavior
of the damper.

3.2.4 Neural Networks results

In order to evaluate the feasibility of modeling the MR damper with a neural network, it was trained
with data representing different frequencies and voltages. The network takes four inputs: displacement,
velocity, voltage and force. The fourth input (force) is fed back from the output. Additionally, the
network is dynamic, and the inputs are stored in memory (tapped delay lines, TDL) for a period of time
and are updated after each output computation. The structure of the network during the training session
is shown in Fig. 3.6(a). This structure allows for fast and more reliable training. Basically, given four
inputs, the network must reproduce only the fourth one (damper force). The final model is shown in Fig.
3.6(b). Thus, training the network is a two-step procedure in which the first one is to train the network
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Figure 3.5: Predicted and experimental response using the hyperbolic tangent model.

(a) (b)

Figure 3.6: (a) Schematic of the NN for training. (b) Schematic of the NN model.

of Fig. 3.6(a) and the second one is to test the network of Fig. 3.6(b) with the same data until a desired
performance is achieved. After a trial and error process, it was found that a network with 3 layers (10
neurons in the first layer, 4 neurons in the second one and 1 neuron in the last one) and 4 units-of-time
length TDL is good enough to model the MR damper. Sigmoid tangent transfer functions are used in the
first two layers while a purely linear transfer function is used in output neuron. Following the training
procedure, the estimation of the neural model for a 4 Hz sinusoidal displacement at 3 V is shown in Fig.
3.7 where good performance can be observed.

3.2.5 Analysis of the results

A quantitative comparison is done based upon the errors between the predicted force and the measured
force as a function of time, displacement and velocity, as defined in Eq. 3.3:

Et =
εt

σF
, Ex =

εx

σF
, Eẋ =

εẋ

σF
(3.3)

where:

ε2
t =

1

T

∫ T

0

(Fexp − Fpre)
2

dt (3.4)

ε2
x =

1

T

∫ T

0

(Fexp − Fpre)
2

∣∣∣∣
dx

dt

∣∣∣∣ dt (3.5)



22 3. Modeling and identification of MR damper dynamics

−20 −10 0 10 20
−15

−10

−5

0

5

10

15

velocity (cm/s)

fo
rc

e 
(N

)
 

 

−0.5 0 0.5
−15

−10

−5

0

5

10

15

displacement (cm)

fo
rc

e 
(N

)

 

 

0 0.05 0.1 0.15 0.2 0.25
−15

−10

−5

0

5

10

15

time (s)

fo
rc

e 
(N

)

 

 

predicted
experimental

Figure 3.7: Predicted and experimental force using a neural network.

ε2
ẋ =

1

T

∫ T

0

(Fexp − Fpre)
2

∣∣∣∣
dẋ

dt

∣∣∣∣ dt (3.6)

σ2
F =

1

T

∫ T

0

(Fexp − µF )2 dt (3.7)

where Fexp is the experimental force, Fpre is the predicted force and µF is the experimental force mean.
Table 3.1 shows the error norms between the experimental and predicted responses of each model when
compared on a sinusoidal displacement at 4 Hz and 3 V basis. The error calculation is performed using
values from one cycle.

Table 3.1: Error norms of the models studied.

Model Et Ex Eẋ

Bingham 0.4734 0.3052 5.6954

Bouc-Wen 0.0586 0.1205 1.1656

Hyperbolic Tangent 0.0620 0.1166 1.1785

Neural Network 0.0188 0.0508 0.2232

As expected, the Bingham model shows the greatest error norms in all cases due to its inability to
describe the hysteresis loop, while the Bouc-Wen and the hyperbolic tangent models show a similar per-
formance. In terms of computational resources, the Bingham model is by far the most efficient. The
simulations performed in Simulink, showed that an integration step size of 10−2 is enough to solve the
equation. The Bouc-Wen model, on the other hand, requires a step size of at least 10−3 to be correctly
solved and the hyperbolic tangent model needs a step size of 10−6. In spite of the low computational
effort required to solve the Bingham model, it may not be appropriate for accurate simulation of the
device or control implementation studies because of its inability to reproduce the hysteresis loop.

Optimization convergence for the Hyperbolic Tangent model is sensitive to the parameters chosen,
but with careful selection of them, this model is able to model the hysteretic behavior of the MR damper
using fixed time steps. Similar observations about the other two models can be done but convergence is
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much faster.

For the range of frequencies studied, i.e., the low pass band up to 5 Hz, the Bouc-Wen model showed
a relative independence with respect to the input frequency. No major variations in the behavior of the
model were detected in the force-velocity loop when sinusoidal displacements of different frequencies were
tested. However, the Hyperbolic Tangent model shows slight frequency dependence. Furthermore, the
differences between the force-displacement loops at various frequencies is dependent on the parameters
identified from the experimental data.

In both the Bouc-Wen and the Hyperbolic Tangent models, a linear dependence between the voltage
and some of the parameters was assumed. However, this assumption is no longer valid near the saturation
region, which in this case begins at 3 V, and a force overestimation is perceived beyond this point.

3.3 Summary

In this chapter, four MR damper models have been studied. Three of them are based on the mechanical
dynamics of the device, namely, Bingham, Bouc-Wen and Hyperbolic Tangent models while another one
was a neural network model. These models were adapted to account for the fluctuating magnetic fields
by manipulating some parameters that vary with it.

Good agreement between the experimental and model predicted responses was found in the Bouc-Wen,
Hyperbolic Tangent and Neural Network models. The most important characteristics of these models is
that they can reproduce the hysteretic force-velocity response, which is something the Bingham model
cannot do. Neural network models can learn complicated nonlinear relationships among variables with
good prediction results. As expected, the neural network trained could reproduce the force response of
the damper to a high degree of accuracy.





Chapter 4

Simulation models and experimental

setup

This chapter is devoted to the detailed description of the numerical models and experimental platforms
that will be used throughout the remaining of this dissertation. The models correspond to a based isolated
building with MR damper; a 3-story building with an MR damper at the first floor; a 6-story building
with two MR dampers in the first and second floors; and a semiactive suspension system that makes use
of an MR damper as well.

4.1 Base-isolated building with MR damper

Base isolation systems are widely used as a means to mitigate the effects of an earthquake. This is done
by isolating the structure and its contents from potentially dangerous ground motion, especially in the
frequency range where the building is most affected. The goal is to simultaneously reduce interstory
drifts and floor accelerations to limit or avoid damage, not only to the structure but also to its contents,
in a cost-effective manner (Ramallo et al. 2002). Experience has shown that base isolation systems can
be successful in reducing the inter-story drifts and the absolute accelerations of the structure. However,
two main drawbacks are recognized: (i) isolators need to be well tuned to the expected frequency charac-
teristics of the seismic excitations, and (ii) significant absolute base displacements may occur (Luo et al.
2001). To overcome this issue, the use of passive plus active or semiactive dampers have been proposed
(Narasimhan et al. 2006).

In this section, a semiactively controlled base isolated structure is studied. It consists of a 10 story
building whose base is isolated by means of a passive damper and an MR damper. The objective is
to design a controller for the MR damper so that the structure response is reduced when subject to a
seismic motion. An important issue in considering the model used for the control formulation is the
coordinate system adopted to represent the motion. Systems can be represented in absolute coordinates
(with respect to an inertial frame), in which the seismic motion excitation only enters at the base. This
gives the chance to consider a single control force at the base level, with the purpose of reducing its
absolute motion. Systems can also been represented in relative coordinates (with respect to the ground).
In this case, the seismic excitation enters each one of the floors. This means that the ideal distribution
of the control actions over the structure is when an actuator applies a control force at each floor of the
order of the mass of the floor times the ground peak acceleration. Since this distribution does not sound
realistic, many control approaches use a reduced number of actuators, particularly, a single one at the
base level. Clearly, the control action transmitted in this case to each floor is not the ideal in the sense dis-
cussed above, but a reasonable performance can be achieved in practice (Luo et al. 2001, Pozo et al. 2006).

Consider an uncertain 10-story building whose base is isolated by means of a frictional damper and
an MR damper, as shown in Fig. 4.1. Assume that the system is perturbed by an incoming earthquake.
The system dynamics can be represented by two coupled subsystems: the main structure (Sr) and the

25
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base (Sc), through the following mathematical models:

Sr : Mẍa + Cẋa + Kxa = [c1, ..., 0]
T

ẏa + [k1, ..., 0]
T

ya (4.1)

Sc : m0ÿa + c0ẏa + k0ya + fbf = Φ + fg + fmr (4.2)

Φ = −sgn (ẏa − ẋg)
[
µmax − ∆µe−ν|ẏa−ẋg|

]
Q (4.3)

fg = −c0ẋg − k0xg (4.4)

fbf = cbf (ẋg − ẋa1) + kbf (ya − xa1) (4.5)

In Eq. (4.1), the a subindex means that the system is represented in absolute coordinates. M, C
and K ∈ R are positive definite matrices representing the mass, damping coefficients and stiffness of the
structure, respectively (Eqs. 4.6 - 4.8). The structure remains in the linear region due to the effect of
the passive frictional isolator.

M = diag (mi) , i = 1, 2, ..., n (4.6)

C =




c1 + c2 −c2 0 0
−c2 c2 + c3 −c3 0

...
...

...
...

0 0 −cn cn


 (4.7)

K =




k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 0

...
...

...
...

0 0 −kn kn


 (4.8)

xa = [xa1, xa2, ..., xan]
T
∈ R

n is the structure horizontal absolute displacement vector, ya ∈ R is the
horizontal base absolute displacement and xg is the displacement of the seismic excitation. Equation
(4.2) consists of a linear part, described by the mass m0, the damping coefficient c0 and the stiffness k0 of
the base, plus a nonlinear one, characterized by the dynamics of the frictional base isolator (Φ) and the
MR damper (fmr). Equation (4.3) describes the dynamics of the frictional base isolator. µ is the friction
coefficient, ν is a constant, Q is the force normal to the surface, µmax is the the coefficient for high sliding
velocity and ∆µ is the difference between µmax and the friction coefficient for low sliding velocity. The
term fmr in Eq. (4.2) accounts for the dynamics of the the MR damper which operates in shear mode.

Figure 4.1: Base-isolated 10-story building.
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Such dynamics are described by the Bouc-Wen model, as presented in the previous chapters, which takes
the following form:

fmr = −cmr(v)(ẏa − ẋg) − αmr(v)z (4.9)

ż = −ϕ|ẏa − ẋg|z|z|
n−1 − β(ẏa − ẋg)|z|

n + κ(ẏa − ẋg) (4.10)

αmr(v) = αmra + αmrbv; cmr(v) = cmra + cmrbv (4.11)

where z is an unmeasurable evolutionary variable, the parameters ϕ, β, κ and n are constant values that
can be used to adjust the shape of the hysteresis loop. αmr(v) is related to the hysteretic behavior of
the damper and cmr(v) is a damping coefficient; they are both voltage dependent. The voltage is the
control signal to be generated: it is the input to a pulse width modulator (PWM) system that generates
the current, which in turn creates the magnetic field used to control the MR damper.

Equation 4.4 accounts for the incoming seismic excitation. Equation (4.5) represents the linear force
caused by the coupling of the base and the main structure. This force is represented by the damping
coefficient cbf = c1, the stiffness kbf = k1 and the relative motion between the base and the first floor of
the structure.

The mass of each floor, including that of the base is mi = 6 × 105 kg. The nominal value of the
stiffness of the base is k0 = 1.184× 107 N/m. The stiffness of the structure varies linearly per story from
9 × 108 N/m to 4.5 × 108 N/m. The damping ratio of the base is ζ0 = 0.1 and that of the structure is
ζi = 0.05. The parameters of the frictional actuator placed in the base along with the MR damper are:
Q =

∑10
i=1 mi, µ = 0.1, ν = 2.0, µmax = 0.185 and ∆µ = 0.09. The parameters of the MR damper are:

ϕ = β = 3× 102 cm−1, κ = 120, n = 1, αmra = 4.5× 104 N/m, αmrb = 3.6× 104 N/m-V, cmra = 3× 102

kNs/m, cmrb = 1.8 × 102 kNs/m.

The following propositions about the intrinsic stability of the structure will be used in formulating
the control law.

Proposition 1. The unforced main structure subsystem (4.1) (i.e., with the coupling term [c1, 0, ..., 0]T ẏa

+ [k1, 0, ..., 0]T ya ≡ 0, t ≥ 0) is globally exponentially stable for any bounded initial conditions.

Proposition 2. If the coordinates (ya, ẏa) of the base and the coupling term [c1, 0, ..., 0]T ẏa +
[k1, 0, ..., 0]T ya are uniformly bounded, then the main structure subsystem is stable and the coordinates
(xa, ẋa) of the main structure are uniformly bounded for all t ≥ 0 and any bounded initial conditions.

The proofs of these propositions are detailed in Luo et al. (2000).

4.2 6 story building with 2 MR dampers

The model described in this subsection correspond to that of a 6 story building with 2 MR dampers:
one at the first floor and other at the second floor. The structure is a test specimen available at the
WUSCEEL Laboratory, at the Washington University in St. Louis (U.S.A.). The schematic of the 6-
story building with 2 MR dampers is shown in Figure 4.2. It is assumed that the control forces provided
by the control devices are suitable to keep the response of the primary structure within the linear region.

The equation of motion of the structure is given by:

Mẍr + Cẋr + Kxr = Gsfmr − MLsẍg (4.12)

where xr is the vector of relative displacements, ẍg is the incoming earthquake acceleration, fmr is the
vector of measured control forces generated by the MR dampers, Gs is a vector that determines the
location of the MR dampers in the structure and Ls is a vector of ones. M, C and K are the mass,



28 4. Simulation models and experimental setup

Figure 4.2: 6 story building with 2 MR dampers.

damping coefficient and stiffness matrices of the structure, respectively. These matrices can be written
as in Eq. 4.6, while Gs and Ls are given by:

Gs =

[
1 0 0 0 0 0
0 1 0 0 0 0

]T

(4.13)

Ls = [ 1 1 1 1 1 1 ]T (4.14)

The stiffness and mass of each floor are ki = 273 N/cm and mi = 0.227 N-s2/cm, respectively. The
vector or natural frequencies of the structure is fe = [1.29, 3.85, 6.11, 8.22, 9.64, 10.81] Hz and the vector
of corresponding damping factors is he = [1.38, 0.71, 0.64, 0.56, 0.48, 0.91] %. The MR dampers that
the structure is equipped with, are similar to the shear-mode dampers used in the experiments described
in Chapter 3. The dynamics were fitted to the Bouc-Wen model of Eqs. 4.9 - 4.11. The parameters of
these dampers are: αmra = 8.66 N/cm, αmrb = 8.66 N/cm·V, cmra = 0.0064 N-s/cm, cmrb = 0.0052
N-s/cm·V, ϕ = β = 300 cm−2, n = 2 and κ = 120.

4.3 Real time hybrid testing of a 3 story building with MR

damper

This section describes the experimental setup of a 3-story building with an MR damper at its first floor.
The experiments are performed in a real-time hybrid testing (RTHT) configuration available at the Smart
Structures Technology Laboratory, University of Illinois Urbana - Champaign (USA). First, a background
on hybrid testing is presented. Then, the configuration is described.

4.3.1 Hybrid testing background

The experimental testing of the control performance in civil engineering structures is an important issue
in structural control. It is well known that testing vibration reduction systems at large scale in structures
such as buildings or bridges is rather prohibitive because of the dimensions, the power required to do so
and the costs that such tests imply. This is why experiments are usually run at small or mid scale labo-
ratory specimens. Experiments can be performed in one of three ways: shaking table tests, quasi-static
tests and pseudodynamic or hybrid tests (Shield et al. 2001).



4.3. Real time hybrid testing of a 3 story building with MR damper 29

Shaking tables are moved by hydraulic actuators to recreate the motion of the base of the structure
in events such as earthquakes, at a correct rate. But these are not suitable for structures that are not
well represented at small scale (reinforced concrete, for instance). At smaller scales, it is difficult to
investigate structural details like bond, shear and anchorage. Furthermore, shaking tables do not allow
the representation of other type of motion such as that of strong winds (Darby et al. 2001, Shield et al.
2001).

Quasi-static testing, on the other hand, is a much simpler testing method that can be used to test
structural members at large scales, but these tests require a predefined displacement history, that can
later be difficult to relate to the seismic demands on the structure (Mosqueda et al. 2005). The predefined
inputs (displacements or forces) are applied to the structural component on an extended time scale (i.e.,
slow rates); therefore, the interaction with the structure to which it is to be attached and the dynamic
and rate-dependent behavior of the structure are not considered. Typically, this type of test is used
to investigate the hysteretic or cyclic behavior of structural materials or components under earthquake
loading (Carrion & Spencer 2007).

The limitations on the shaking tables and quasi static tests led to development of pseudo dynamic or
hybrid tests. This was initially proposed by Hakuno et al. (1969). In these tests, systems are divided into
two substructures: a numerical subsystem and a physical subsystem. The numerical subsystem usually
corresponds to that of a structure whose dynamics are well known and in general is assumed to exhibit
a linear behavior. The physical subsystem is, on the other hand, the critical component of the system
and is usually a nonlinear device such as a magnetorheological damper. In this way, large and full-scale
experiments can be performed because the main structure is reduced to a numerical model solved in a
computer or Digital Signal Processor and the critical components can be physically realized at large or
full scale provided reasonable space, energy and costs. Generally, hydraulic actuators are used to drive
the physical specimens in the experiment.

One significant advantage of hybrid simulation is that it removes a large source of epistemic uncer-
tainty compared to pure numerical simulations by replacing structural element models that are not well
understood with physical specimens on the laboratory test floor (Mosqueda et al. 2005). There are two
main drawbacks with the hybrid test method. Firstly, the method relies on the assumption that the mass
of the structure is concentrated at discrete points. Secondly, the loading is applied over a greatly ex-
panded time scale so that time-dependent non-linear behavior is not correctly reproduced in the physical
component. In hybrid testing, the displacements are imposed on an extended time-scale which typically
ranges from 100 to 1000 times the actual earthquake duration to allow for the use of larger actuators
without high hydraulic flow requirements, careful observation of the response of the structure during the
test, and the ability to pause and resume the experiment. In particular, the method cannot be applied
to the testing of highly rate-sensitive components such as visco-elastic dampers and certain active or
semi-active structural control devices (Darby et al. 2001, Jung & Shing 2006).

Real-time hybrid testing is a variation of the pseudodynamic test method in which the imposed
displacements and response analysis are executed in real time, thus allowing testing of systems with rate-
dependent components. Real-time hybrid testing makes possible the testing of a large class of structural
components associated with vibration control, including passive, semiactive, and active control devices
(e.g., base isolation and dampers), which are typically nonlinear and rate-dependent (Carrion & Spencer
2007, Nakashima & Masaoka 1999). Real-time hybrid testing is challenging because it is necessary to
perform all of the calculations, apply the displacements, and measure and feedback the forces within a
single time step (typically less than 10 msec). Because the test is conducted in real time, the dynamics of
the testing system and specimen become important. For example, when hydraulic actuators are used to
apply forces to the test specimen, they inevitably include a response delay, which is equivalent to negative
damping in a real-time hybrid experiment (Horiuchi et al. 1999).

It is the response delay one of the main research focus in real time hybrid testing. Researchers have
traditionally not differentiated between time delays and actuator lag by treating them as a constant time
delay. However, in general, they are frequency dependent; therefore, their approximation as a pure time
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delay is valid only in a limited frequency range (e.g., low frequency). The effect of the dynamic response
of hydraulic actuators on real-time hybrid experiments was initially considered by Horiuchi et al. (1996),
whose method based on polynomial extrapolation is still widely used. Other solutions to this problem
have been proposed by Horiuchi et al. (1999), Nakashima & Masaoka (1999), Darby et al. (2001) and
Jung & Shing (2006), to name a few. Carrion & Spencer (2007) proposed a method for real-time hybrid
testing that incorporates model-based compensation techniques for time delays and actuator dynamics,
and combines fast hardware and software (for high-speed computations and communication) with high
performance hydraulic equipment, allowing accurate testing of systems with larger natural frequencies
(e.g., stiff structures or multi-degree-of-freedom systems) and handling larger delays/lags, typically asso-
ciated with actuators with high force capacity.

Pseudodynamic tests have also been extended for geographically distributed applications. This allows
to run experiments with different substructures located in different places. Because the time required
for network communication is relatively large, response prediction-correction methods are required to
generate the actuator command signals at continuous or fast-rate tests. See for example the works by
Shing et al. (2004), Chang et al. (2005), Spencer et al. (2007) and Mosqueda et al. (2005).

4.3.2 RTHT system

Real-time hybrid testing is particularly suitable for testing structures with rate dependent devices. Re-
cently, special attention has been directed toward the application of this technique to evaluate the response
of structures with MR dampers. Real-time hybrid experiments of structures with MR dampers have al-
ready been proposed and/or conducted by Emmons & Christenson (2006); Wu et al. (2003), and Carrion
& Spencer (2007), among others. The system designed by Carrion & Spencer (2007) is used in this work
to implement and evaluate the performance of different semiactive controllers for vibration mitigation in
a structure with an MR damper.

The RTHT system schematic used in this work is shown in Figure 1. A fully detailed description of
this implementation can be found in (Carrion & Spencer 2007).

Figure 4.3: RTHT system schematic.

The RTHT system of Figure 4.3 consists of a computer that simulates the structure to be controlled
and generates the commanding signals (displacements and control signals); a small-scale MR damper that
is driven by a hydraulic actuator which in turn is controlled by a servo-hydraulic controller; and DSP,
A/D and D/A hardware for signal processing. Sensors available include a linear variable displacement
transformer (LVDT) for displacement measurements and a load cell to measure the MR damper force.
In Figure 1, xc is the commanded displacement, fL is the MR damper force measured by the load cell,
xmeas is the displacement measured by the LVDT and ic is the control current sent to the hydraulic
actuator.
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4.3.3 Structure model

The schematic of the 3-story building to be controlled is shown in Figure 4.4. The building can be
modeled with the second order motion equation:

Figure 4.4: Schematic of the 3-story building with MR damper.

Mẍr + Cẋr + Kxr = Gsfmr − MLsẍg (4.15)

where the matrices and vectors M, C, K, Gs and Ls are given by:

Ms =




m1 0 0
0 m2 0
0 0 m3



 =




20253 0 0

0 20253 0
0 0 20253



 kg (4.16)

Cs =




c11 c12 0
c21 c22 c23

0 c32 c33


 =




7243.2 −2070 0
−2070 4138.2 −2070

0 −2070 2070


N − s/m (4.17)

Ks =




k11 k12 0
k21 k22 k23

0 k32 k33



 =




9932 −5661 0
−5661 11338 −5661

0 −5661 5661



N/m (4.18)

Gs = [−1, 0, 0]
T

Ls = [1, 1, 1]
T

(4.19)

xr is the vector of relative displacements, i.e., with respect to the ground (the r subindex means
relative coordinates); fmr is the MR damper force and ẍg is the incoming earthquake acceleration. ẍai

is the absolute acceleration of the i − th floor. The relationship between relative and absolute displace-
ments is xr = xa − xg. The natural frequencies and the damping ratios of the structure corresponding
to the first, second and third mode are 1.09 Hz (0.31%), 3.17 Hz (0.62%) and 4.74 Hz (0.63%), respectively.

4.3.4 MR damper

The MR damper used in the experiments is the RD-1005 manufactured by the Lord Corporation, shown
in Figure 4.5. The damper is 216 mm long in its extended position, is 38.1 mm in diameter and has a
stroke of 25.4 mm. It contains 50 ml of MR fluid and can generate forces up to 3000 N approximately.
The magnetic field is generated by the current from a pulse width modulator (PWM) amplifier (the
RD-1002 Wonder Box, from Lord Corp.).
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Figure 4.5: MR damper and PWM system.

The dynamics of the damper can be modeled by the Bouc-Wen model, as shown in Eqs. 4.20 - 4.21:

f∗
mr = (cmra + cmrbvf ) ẋp + (kmra + kmrbvf )xp + (αmra + αmrbvf ) z (4.20)

ż = −ϕ|ẋp|z|z|
n−1 − βẋp|z|

n + κẋp (4.21)

where z is an evolutionary variable that describes the hysteretic behavior of the damper, xp is the piston
displacement and vf is the output of the first order filter introduced to account for the time that the MR
fluid takes to reach the rheological equilibrium:

v̇f = −η(vf − v) (4.22)

where η is a parameter obtained experimentally. The parameters of the MR damper specimen are:
αmra = 33.27 N/m, αmrb = 182.65 N/m-V, cmra = 754.41 N-s/m, cmrb = 712.73 N-s/m-V, kmra =
1137.57 N/m, kmrb = 1443.50 N/m-V, x0 = 0 m, ϕ = 4209.8 m−2, β = 4205.2 m−2, κ = 10246, n = 2,
η = 57 s−1. The following scaling factors are used to integrate the physical small-scale MR damper to
the numerical large-scale structure: the first floor relative displacement is reduced by a factor SL = 7.25
to obtain the damper piston displacement (that is, xp = x1r/SL) and the MR damper force is increased
by a factor SF = 60 to obtain the input force to the structure (that is, fmr = SF f∗

mr).

4.3.5 Hydraulic actuator dynamics

The MR damper is driven by a hydraulic actuator which receives a commanding signal from the computer
where the simulation runs to impose a displacement to it. A block diagram that shows the interaction
between the numerical model and the dynamic system is illustrated in Figure 4.6.

Figure 4.6: Numerical model and physical system interaction.

The entire physical system can be modeled by a transfer function Gxpxc
(s) whose input xc is the

commanded displacement and the output xp is the piston displacement. Modeling the system dynamics
is useful for simulating the RTHT experiments. The transfer function Gxpxc

(s) varies according to the
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MR damper input voltage. Two cases are identified corresponding to the damper operating at V0 = 0 V
(Gxpxc,V0

(s)) and Vmax = 5 V (Gxpxc,Vmax
(s)) respectively. These transfer functions are given by:

Gxpxc,V0
(s) =

1

(0.0062s + 1)(2.639× 10−5s2 + 0.059s + 1)
(4.23)

Gxpxc,Vmax
(s) =

1

(0.0094s + 1)(2.618× 10−5s2 + 0.058s + 1)
(4.24)

An algorithm was designed by Carrion and Spencer Carrion & Spencer (2007) to provide a smooth
transition from Gxpxc,V0

(s) to Gxpxc,Vmax
(s) and vice versa when the damper voltage varies during the

experiments. A block diagram of this algorithm is shown in Figure 4.7. The Laplace transform of the
model is described by:

Xd(s) = Xa(s) + Xb(s)Vt(s) (4.25)

Xa(s) = Ga(s)Xc(s) = Gxpxc,V0
(s)Xc(s) (4.26)

Xb(s) = Gb(s)Xc(s) =
(
Gxpxc,Vmax

(s) − Gxpxc,V0
(s)
)
Xc(s) (4.27)

Vt(s) = Gt(s)V (s) (4.28)

where Gt(s) is used to model the dynamics of the actuator associated with the change in the voltage of
the MR damper, providing a smooth transition between Ga(s) (Eq. 4.26) and Gb(s) (Eq. 4.27), and is
given by:

Gt(s) =
0.2

τts + 1
(4.29)

Figure 4.7: Block scheme of the actuator dynamics with bumpless transfer.

where τt = 0.0048s is the transition filter time constant. As the time constant becomes small, the
transition becomes faster, approaching a simple switching algorithm, while for large values of the time
constant the transition is slower and smoother. Due to the inherent dynamics of the physical system
(e.g. time delays), a pre-compensator Gff (s) is added to the system for compensation purposes. In this
way, the commanded displacement (xc, input to the physical system) is calculated based on the desired
displacement (xd, output from the simulations) and the inverse dynamics of the physical system. As a
result, xp ≈ xd. A schematic of the compensated system is shown in Figure 4.8.

Once again, two compensators are designed: one for the MR damper operating at V0 = 0 V (Gff,V0
(s))

and the other for the damper operating at Vmax = 5 V (Gff,Vmax
(s)). The transfer functions are given

by

Gff,V0
(s) =

(0.062s + 1)(2.639× 10−5s2 + 0.0059s + 1)

(4.129 × 10−4s + 1)(1.173 × 10−7s2 + 3.909× 10−4s + 1)
(4.30)

Gff,Vmax
(s) =

(0.0094s + 1)(2.618 × 10−5s2 + 0.0058s + 1)

(6.289 × 10−4s + 1)(1.164 × 10−7s2 + 3.857× 10−4s + 1)
(4.31)
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Figure 4.8: Diagram of the complete system with dynamics compensation.

A similar approach to that of Figure 4.7 is followed to provide a smooth transition between both
compensators. The block diagram is shown in Figure 4.9 and the model is described by:

Xc(s) = Xa(s) + Xb(s)Vt(s) (4.32)

Xa(s) = Gff,a(s)Xd(s) = Gff,V0
(s)Xd(s) (4.33)

Xb(s) = Gff,b(s)Xd(s) = (Gff,Vmax
(s) − Gff,V0

(s)) Xd(s) (4.34)

Vt(s) = Gt(s)V (s) (4.35)

where Gt(s) is the transition filter as given in Eq. 4.29.

Figure 4.9: Block scheme of the pre-compensator dynamics with bumpless transfer.

4.3.6 RTHT setup performance

The numerical models corresponding to the 3-story building, the compensator, the MR damper, the
hydraulic actuator and the controller, are implemented in Matlab/Simulink. The ordinary differential
equation solver used is the 4th order Runge-Kutta method with a time step Ts = 5 × 10−4 seconds.
Figure 4.10 shows the performance of the compensator. This figure illustrates a comparison between the
desired, the commanded and the measured piston displacements during the execution of an experiment.
The lower curve is a close-up of the upper one.

On the other hand, Figures 4.11 and 4.12 show a comparison between the experimental dynamics of
the MR damper and those predicted by the Bouc-Wen model. In the first case, the damper is subject to
a sinusoidal displacement at 5 Hz and 0.254 cm amplitude. The voltage periodically switches from 0 V to
5 V. In the second case, the damper is subject to random displacement and random voltage excitation.

Figure 4.13 compares the MR damper piston displacement as measured during an experiment with
that obtained by the model of the overall system. That is, the system of Figure 4.8 was implemented
in Simulink and simulated, and the results were compared to the experimental response. To make this
comparison, the El Centro seismic motion records and MR damper voltage were taken as inputs to the
RTHT system. The results show good accuracy of the system model.



4.4. Semiactive suspension system 35

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.1

−0.05

0

0.05

0.1

0.15

time (s)

d
is

p
la

ce
m

en
t

(c
m

)

4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5
-0.01

0

0.01

0.02

0.03

0.04

0.05

time (s)

d
is

p
la

ce
m

en
t

(c
m

)

 

 

desired commanded measured

Figure 4.10: Comparison between the desired, commanded and measured piston displacement.

4.4 Semiactive suspension system

A similar problem to that of vibration suppression in civil structures is that of the vehicle suspension
systems. The objective of these systems is to protect the vehicle chassis and improve the passengers’
comfort by reducing the vibrations caused by the imperfections of the road. MR dampers can be used
to achieve this goal. The model to be presented in this section is that of an experimental platform that
resembles the suspension system of a vehicle that makes use of an MR damper to suppress the harmful
vibrations.

Figure 4.14 shows a picture of the semiactive suspension system (SAS), manufactured by INTECO
Ltd. (Cracow, Poland) and available at the Modal Intervals and Control Engineering Laboratory (Uni-
versity of Girona, Spain). It consists of a wheel driven by a DC motor coupled to an eccentric small wheel.
The suspended car wheel rolls due to the small wheel rotation and oscillates due to the eccentricity. The
geometrical diagram of the semiactive suspension system is depicted in Figure 4.15. The variables and
parameters of the model are shown in Table 4.1.

The semiactive suspension system can be modeled by the following set of equations:

J2ω̇2 =
4∑

i=1

M2i; α̇2 = ω2 (4.36)

J1ω̇1 =

6∑

i=1

M1i; α̇1 = ω1 (4.37)

Equations 4.36 and 4.37 represent the torques of the upper and lower rocking levers, respectively. ω1

is the angular velocity of the lower rocking lever and ω2 is that of the upper rocking lever. J1 and J2 are
the moments of inertia of the lower and upper levers, respectively. The torques actuating on the upper
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Figure 4.11: Time behavior of the MR damper characteristics: force response to sinusoidal displacement
and switching voltage inputs.
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Figure 4.12: Time behavior of the MR damper characteristics: force response to random displacement
and voltage inputs.
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Figure 4.13: Comparison between the experimental and the model displacement response of the RTHT
system.

Figure 4.14: Picture of the semiactive suspension system.
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Table 4.1: SAS parameters.

Parameter Value Comments

m1 0.035 m distance damper joint - upper rocking lever line

m2 0.035 m distance damper joint - lower rocking lever line

r1 0.025 m distance spring joint - upper rocking lever line

r2 0.025 m distance spring joint - lower rocking lever line

r3 0.05 m distance wheel axis - lower rocking lever line

l1 0.125 m distance damper joint - lower rocking lever pivot

l2 0.125 m distance damper joint - upper rocking lever pivot

l3 0.2 m distance wheel axis - lower rocking lever pivot

s1 0.135 m distance spring joint - lower rocking lever pivot

s2 0.160 m distance spring joint - upper rocking lever pivot

r1f 0.1298 rad lower rotational radius of the damper suspension

r2f 0.1346 rad upper rotational radius of the damper suspension

r1s 0.1373 rad lower rotational radius of the spring suspension

r2s 0.0.1619 rad upper rotational radius of the spring suspension

R =
√

l23 + r2
3 0.2062 m rotational radius of the wheel axis

R = 1 0.2062 m length of the lower rocking lever

R = 2 0.490 m length of the upper rocking lever

Dx 0.249 m minimum eccentricity

l0 0.07 m tire thickness

r 0.06 m radius of the rim

b 0.330 m distance between the rocking lever rotational axis and the car body

α1f 0.2730 rad fixation angle of the damper with respect to the lower lever

α2f 0.2630 rad fixation angle of the damper with respect to the upper lever

α1s 0.1831 rad fixation angle of the spring with respect to the lower lever

α2s 0.1550 rad fixation angle of the damper with respect to the upper lever
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Figure 4.15: Schematic of the Semiactive Suspension System.

rocking lever are given by:

M21 = −k2ω2 (4.38)

M22 = −mugR2 cosα2 (4.39)

M23 = r2sFs sin (π − (α1 − α1s) − γs) (4.40)

M24 = r2fFf sin (π − (α2f + α2) − γf ) (4.41)

where M21 is the viscous friction damping torque, M22 is the gravitational forces torque, M23 is the
torque generated by the spring and M24 is the torque generated by the MR damper. mu is the mass of
the lever and g is the gravitational acceleration. The angles γs and γf are the slope angle of the spring
operational line and the slope angle of the MR damper operational line, respectively, and are given by:

γs = abs

(
arctan

(
−r1s sin(α1 − α1s) − r2s sin(α2 − α2s)

b − r1s cos(α1 − α1s) − r2s cos(α2 − α2s)

))
(4.42)

γf = abs

(
arctan

(
−r1s sin(α1 + α1s) − r2s sin(α2 + α2s)

b − r1s cos(α1 + α1s) − r2s cos(α2 + α2s)

))
(4.43)
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Ff and Fs are the forces generated by the MR damper and the spring, respectively, on the levers.
These forces are given by:

Ff = fmr

((
ω2r2f cos

(
−

π

2
+ α2 + α2f + γf

))
−
(
ω1r1f cos

(
−

π

2
+ α1 + α1f + γf

)))
(4.44)

Fs = Ks

(
l0s −

√
(r2s sin(α2 − α2s) + r1s sin(α1 − α1s))

2
+ (b − r1s cos(α1 − α1s) − r2s cos(α2 − α2s))

2

)

(4.45)

where fmr is the dynamics of the MR damper. On the other hand, the actuating torques on the lower
rocking lever are given by:

M11 = −k1ω1 (4.46)

M12 = mlgR1 cos(α1 + β) (4.47)

M13 = −R1 cos(α1 + β)(Kg(l0 + r + R1 sin(α1 + β) − Dx + e(t))) (4.48)

M14 = fg (ė − R1 cos(α1 + β)) (4.49)

M15 = r1sFs sin (π − (α2 − α2s) − γs) (4.50)

M16 = r1fFf sin (π − (α1f + α1) − γf ) (4.51)

where M11 is the viscous friction damping torque, M12 is the gravitational forces torque, M13 is the
actuating kinematic torque transferred through the tire, M14 is the damping torque generated by the
gum of tire, M15 is the torque generated by the spring and M16 is the damping torque generated by the
MR damper.

The SAS is equipped with a frictional MR damper, is a frictional damper from the Lord Corporation
(RD-1097-01) capable of generating forces of up to 100 N at a current of 1 A. The MR damper dynamics
fit the following hyperbolic tangent model:

fmr = fc tanh [µ(ẋp + Sd)] + cmr(ẋp + pSd) (4.52)

fc = fc1i + fc2 (4.53)

cmr = cmr1i + cmr2 (4.54)

where fc is a parameter associated to the dry friction force, cmr is the viscous damping coefficient, ẋp is
the piston velocity, i is the current that flows through the damper coils; p is a scaling parameter related
to hysteresis and µ is a scaling parameter that allows for a smooth transition from negative to positive
values. When µ → ∞, the model is reduced to the Bingham model. The value of the MR damper model
parameters are: fc1 = 62 N/A, fc2 = 1.5 N, cmr1 = 48 N-s/A-m, cmr2 = 14 N-s/m, µ = 130 s/m and
p = 1 s−1.

Figure 4.16 shows the experimental response of the semiactive suspension system. The velocity of the
eccentric wheel is continuously and linearly incremented from 2π rad/s at the beginning during 20 sec-
onds. The current to the MR damper is set to 0 A, so that it is actuating as a passive damper. The figure
shows that the resonance frequency of the SAS is at around 1.6 Hz. The goal of the platform is to re-
duce as much as possible the magnitude of the oscillations in the operational range of applied frequencies.

4.5 Summary

The mathematical models of four systems for simulation and experimentation have been fully described
in this chapter. The models correspond to those of buildings equipped with MR dampers and another
one that resembles a vehicle suspension system. The main characteristics of each of these models have
been annotated. In the remaining of this dissertation, these models will be frequently invoked for control
formulation purposes.
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Figure 4.16: SAS experimental response.





Chapter 5

Robust control in time domain:

Backstepping control approach

In this chapter, the problem of vibration mitigation in flexible structures with MR dampers is treated from
a time-domain perspective. The objective is to reduce the structural response in the presence of actuator
nonlinearities, parametric uncertainties, unknown disturbances and limited measurements. This makes
mandatory the application on nonlinear control techniques. As discussed previously in Chapter 2, this
problem has been solved mainly using methodologies such as Optimal Control (e.g. Linear Quadratic
Regulators, Linear Quadratic Gaussian, Clipped Optimal Control), Sliding Mode Control, Lyapunov
based control and Neuro-Fuzzy techniques. These solutions have proven to be effective in reducing the
response of different structures. Nonetheless, some of controllers formulated do not cover important as-
pects like actuator nonlinearities or parametric uncertainty while others may require information for the
design or implementation that may be impractical to obtain.

As a contribution to the structural control field, it is desired to formulate a controller that surpasses
these problems in a systematic and practical way. In order to do it, in this research it is proposed the
use of Backstepping control. This methodology allows the introduction of the system nonlinearities in
a systematic way because it relies on the successive construction of Lyapunov functions that guarantee
the stability of the system. Furthermore, backstepping controllers can be formulated so as to account
for the parametric uncertainties by adding adaptation laws. The problem of unknown disturbances is
approached by including bounds for the external signals. Finally, the controller is formulated for the
subsystem where the actuator is installed. This can be done by taking advantage of the fact that, under
certain conditions, stabilization of a part of the structure implies stabilization of the whole structure.
This is advantageous because only a few measurements are needed to implement the controller.

This chapter is organized as follows. Section 5.1 introduces the concept of backstepping control.
Then, the application of the backstepping methodology to different cases is presented. Thus, in Section
5.2, it is considered the case of a base-isolated 10-story building with an MR damper subject to seismic
excitations. The problems of actuator nonlinearities, parametric uncertainty, unknown disturbances and
limited measurements are studied. Section 5.3 considers the experimental testing of different backstep-
ping controllers for 3-story building with an MR damper. These experiments are executed in a novel
real-time hybrid testing platform which allows the control performance study through a combination of
experiments and simulations. Section 5.4 studies the implementation of a backstepping controller to a
semiactive suspension system and presents the experiments results as well. The chapter ends with a
summary of the obtained results.
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5.1 Background on backstepping

The general idea behind the backstepping control design relies in the following assumption (Krstic et al.
1995):

Assumption 5.1.1 Consider the system:

ẋ = f(x) + g(x)u, f(0) = 0 (5.1)

where x ∈ R is the state and u ∈ R is the control input. There exists a continuously differentiable

feedback control law u = α(x) with α(0) = 0 and a smooth, positive definite, radially unbounded function
V : R

n → R such that:

∂V

∂x
(x)[f(x) + g(x)α(x)] ≤ −W (x) ≤ 0, ∀x ∈ R

n (5.2)

where W : R
n → R is positive semidefinite.

Under this assumption, the control u = α(x) guarantees the global boundedness of x(t) and via the
LaSalle-Yoshizawa theorem,

lim
t→∞

W (x(t)) = 0 (5.3)

The following lemma states the basis for the backstepping design:

Lemma 5.1.2 Let the system of Eq. 5.1 be augmented by an integrator:

ẋ = f(x) + g(x)ξ

ξ̇ = u
(5.4)

and suppose that ẋ satisfies Assumption 1 with ξ ∈ R as its control. If W (x) is positive definite, then:

Va(x, ξ) = V (x) +
1

2
[ξ − α(x)]2 (5.5)

is a control Lyapunov function for the full system of Eq. 5.4, that is, there exists a feedback control
u = α(x, ξ) which renders x = 0, ξ = 0 the global asymptotic stable equilibrium of Eq. 5.1. If W (x) is
only positive semidefinite, then there exists a feedback control which renders Va ≤ −Wa(x, ξ) ≤ 0, such
that Wa(x, ξ) > 0 whenever W (x) > 0 or ξ 6= α(x). This guarantees global boundedness and convergence of
[x(t), ξ(t)]T to the largest invariance set Ma contained in the set Ea

{
[x, ξ]T ∈ R

n+1|W (x) = 0, ξ = α(x)
}
.

The backstepping technique introduced in this section can easily be extended by recursion to larger
order systems and more general cases.

5.2 Base-isolated 10-story building

In this section, an adaptive backstepping controller will be designed for the base-isolated 10 story building
described in Section 4.1. The control objective is to reduce the absolute response in the base level and
thus to make the base isolator work in its elastic region and also to decouple asymptotically the dynamic
motion of the main structure from the base motion. In the control design, it is taken into account the
uncertainties in the stiffness and damping coefficients of the base and main structure.
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5.2.1 Controller formulation

Recall the equations of motion of the base and main structures (Eqs. 4.1 and 4.2). The controller will be
designed for the base substructure. By Propositions 1 and 2 (Section 4.1), the controller can be designed
for the base subsystem, while guaranteeing the stability of the whole structure.

Denote y1 = ya and y2 = ẏa. In order to design the backstepping controller, Eq. 4.2 is rewritten in
state space form:

ẏ1 = y2 (5.6)

ẏ2 = −
1

m0
[c0y2 + k0y1 + fbf − Φ − fg − fmr] (5.7)

Theorem 1. Consider the system of Eqs. 4.1 - 4.5. The following control law asymptotically
attenuates the vibrations and stabilizes the main structure:

v = −
(cmra − m0h1 + c0)y2 + y1k0 + αmraz − Φ − fg

αmrbz + cmrby2

+
−cbf (y2 − ẋa1) − kbf (y1 − xa1) + m0e1 + m0h2e2

αmrbz + cmrby2

(5.8)

for all αmrbz + cmrby2 6= 0, otherwise v = 0. h1 and h2 are positive constants. In order to estimate the
uncertain structural stiffness and damping parameters c0, k0, cbf and kbf , the following adaptation laws
are proposed:

ċ0 =
r1

m0
e2y2 (5.9)

k̇0 =
r2

m0
e2y1 (5.10)

ċbf =
r3

m0
e2(y2 − ẋa1) (5.11)

k̇bf =
r4

m0
e2(y1 − xa1) (5.12)

with ri, i = 1, ..., 4 being positive constants. e1 and e2 are standard backstepping variables given by:

e1 = y1 (5.13)

e2 = y2 − α1 (5.14)

α1 = −h1e1 (5.15)

Proof Consider the following Lyapunov function candidate:

V =
1

2
e2
1 +

1

2
e2
2 +

1

2r1
c̃2
0 +

1

2r2
k̃2
0 +

1

2r3
c̃2
bf +

1

2r4
k̃2

bf (5.16)

where c̃0 = c0 − c0, k̃0 = k0 − k0, c̃bf = cbf − cbf and k̃bf = kbf − kbf . The derivative of V is given by:

V̇ = e1ė1 + e2ė2 + r−1
1 (c0 − c0)ċ0 + r−1

2 (k0 − k0)k̇0 + r−1
3 (cbf − cbf )ċbf + r−1

4 (kbf − kbf )k̇bf (5.17)

Deriving (5.13) - (5.15) and substituting (5.6) and (5.7) into the result yields:

e1ė1 = e1e2 − h1e
2
1 (5.18)

e2ė2 = −
e2

m0
[−Φ − fg + αmraz + cmray2] + h1y2e2 −

c0

m0
e2y2 −

k0

m0
e2y1

−
e2(αmrbz + cmrby2)

m0
v −

cbf

m0
e2(y2 − ẋa1) −

kbf

m0
e2(y1 − xa1)

(5.19)
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Figure 5.1: Dynamics of the base isolator in the presence of some standard earthquakes.

Substitution of (5.8) into (5.19) yields:

e2ė2 = −
1

m0
e2y2(c0 − c0) −

1

m0
e2y1(k0 − k0) − h2e

2
2 − e1e2 −

1

m0
e2(y2 − ẋa1)(cbf − cbf )

−
1

m0
e2(y1 − xa1)(kbf − kbf )

(5.20)

Substitution of (5.9) - (5.12), (5.18) and (5.20) into (5.17) yields:

V̇ = −h1e
2
1 − h2e

2
2 < 0 (5.21)

According to Lyapunov’s stability theory, e1 → 0 and e2 → 0. Consequently, y = y1 = e1 → 0 and
ẏ = y2 = e2 + h1e1 → 0. According to Propositions 1 and 2, the vibration of the base is asymptotically
attenuated and the asymptotic stability of the main structure is guaranteed.♦

The controller proposed in (5.8) contains some unmeasurable variables (z, fg, Φ). In order to address
these problems, some assumptions and approximations are made. First, it is assumed that the unknown
seismic excitation xg and ẋg are bounded by |xg | ≤ Dd and |ẋg| ≤ Dv and thus, the unknown disturbance
force fg in (4.4) is bounded by:

|fg(t)| ≤ F ∀ t ≥ 0 (5.22)

with Dd, Dv and F being known positive constants.

On the other hand, the passive control force generated by the frictional actuator can make small the
relative movements of the structure during the seismic excitation. Thus, the following relationship holds:

ν|y2 − ẋg| < 1 ⇒ |y2 − ẋg| < 1/ν (5.23)

This fact can be verified with some standard earthquakes, as shown in Figure 5.1. In order to make
the simple approximation of the exponential function in the dynamic equation (4.3) of the frictional base
isolator, the following Euler approximation is used:

e−ν|y2−ẋg| ≃
1

1 + ν|y2 − ẋg| +
ν2

2 |y2 − ẋg|2 + ν3

6 |y2 − ẋg|3
(5.24)
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By denoting |y2 − ẋg|0 as the maximum value of |y2 − ẋg|, the passive actuator force can be approxi-
mated as:

Φ ≤ ∆0 + ∆1Dv − ∆1y2 (5.25)

∆0 =

(
µmax − ∆µ

1 + ν|y2 − ẋg |0 + ν2

2 |y2 − ẋg|20 + ν3

6 |y2 − ẋg|30

)
Q (5.26)

∆1 =




µmax

[
ν + ν2

2 |y2 − ẋg|0 + ν3

6 |y2 − ẋg |
2
0

]

1 + ν|y2 − ẋg |0 + ν2

2 |y2 − ẋg|20 + ν3

6 |y2 − ẋg|30


Q (5.27)

Finally, the evolutionary variable z is estimated using the following expression:

z = ẑ + z̃, ˙̂z = −ϕ|y2|ẑ|ẑ|
n−1 − βy2|ẑ|

n + κy2 (5.28)

Now with these ideas in mind, a modified controller is presented.

Theorem 2. Consider the system of Equations 4.1 - 4.5. Let z̃ = λe2 and h2 = λαa/m0, and
consider the following characteristics of the shear-mode MR damper used: n = 1 and ϕ ≥ β > 0, the
following stabilizing control law is proposed:

v = −
(c0 + ∆1 + δa − m0h1)y2 − (∆0 + ∆1Dv + F )sgn(e2)

αmrbẑ + cmrby2 + αmrbλe2

+
−fbf − k0y1 − αmraẑ + m0e1 + m0h2e2

αmrbẑ + cmrby2 + αmrbλe2

(5.29)

provided that αmrbẑ + cmrby2 + αmrbλe2 6= 0; otherwise, v = 0.

Proof: Consider the following Lyapunov function candidate:

V =
1

2
e2
1 +

1

2
e2
2 +

1

2
z̃2 +

1

2r1
c̃2
0 +

1

2r2
k̃2
0 +

1

2r3
c̃2
bf +

1

2r4
k̃2

bf (5.30)

The derivative of V is given by:

V̇ =e1ė1 + e2ė2 + z̃ ˙̃z + r−1
1 (c0 − c0)ċ0 + r−1

2 (k0 − k0)k̇0

+ r−1
3 (cbf − cbf )ċbf + r−1

4 (kbf − kbf )k̇bf

(5.31)

In order to find the expression for e2ė2, the result in (5.19) is used. Substitution of (5.29) into such
result yields:

e2ė2 = −
e2

m0
[−Φ − fg − ∆1y2 + (c0 − c0)y2 + (k0 − k0)y1 + (cbf − cbf )(y2 − ẋa1)

+ (kbf − kbf )(y1 − xa1) + m0e1 + (∆0 + ∆1Dv + F )sgn(e2)]
(5.32)

From (4.10) and (5.28), and taking into account n = 1 and ϕ ≥ β > 0, the following expression for

z̃ ˙̃z is obtained:

z̃ ˙̃z = − z̃[ϕ|y2|(z|z|
n−1 − ẑ|ẑ|n−1) + βy2(|z|

n − |ẑ|n)

= − ϕ|y2|z̃
2 − βy2z̃(|z| − |ẑ|)

≤− (ϕ − |β|)|y2|z̃
2 ≤ 0

(5.33)

Substitution of (5.9) - (5.12), (5.18), (5.32) and (5.33) into (5.31) yields:

V̇ ≤ −
1

m0
[(Φ + ∆1y2)|e2| − (Φ + ∆1y2)e2 + F |e2| − fge2] − h1e

2
1 − (ϕ − |β|)|y2|z̃

2 ≤ 0 (5.34)

and therefore stability is ensured.♦
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5.2.2 Numerical example

The following example consists in controlling the seismically excited 10-story building. Two different
earthquake records are used for the simulations: El Centro and Taft. The mass of each floor, including
that of the base is mi = 6×105 kg. The nominal value of the stiffness of the base is k = 1.184×107 N/m.
The stiffness of the structure varies linearly per story from 9×108 N/m at the first floor to 4.5×108 N/m
at the top floor. The damping ratio of the base is ζ0 = 0.1 and that of the structure is ζi = 0.05. The
parameters of the frictional actuator placed in the base along with the MR damper are: Q =

∑10
i=1 mi,

µ = 0.1, ν = 2.0, µmax = 0.185 and ∆µ = 0.09. The parameters of the MR damper are: ϕ = β = 3× 102

cm−1, n = 1, αmra = 4.5× 104, αmrb = 3.6× 104, cmra = 3 × 102 kNs/m, cmrb = 1.8 × 102 kNs/m. The
controller parameters are: h1 = 1.5, h2 = 86.3, λ = 1, r1 = 10, r2 = 1, r3 = 10 and r4 = 1.
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Figure 5.2: El Centro and Taft earthquakes.

Figure 5.2 shows the records of the earthquakes used to excite the structure in the example. Figures
5.3 and 5.4 compare the peak absolute displacement and velocity of each floor in 3 cases: (1) without any
type of dampers (Unc.); (2) with only the passive damper (Pas.); and (3) with the hybrid scheme, i.e., the
passive damper plus the MR damper (Ad. BS ). These figures also show the reduction in displacement
and velocity response when the hybrid scheme is implemented compared to the case of no dampers
actuating on the structure. The control effort of the MR damper when subject to the El Centro and Taft
earthquakes is shown in Figure 5.5.

5.3 Real-time hybrid testing of backstepping controllers

In this section, backstepping controllers are designed for a 3-story building with an MR damper and
tested in the real-time hybrid testing setup described in Section 4.3.

5.3.1 Controller formulation

To begin with the design of the backstepping controller, the structure model of Eq. 4.15 is divided into
two subsystems accounting for the first floor dynamics, where the MR damper is attached, and the rest
of the structure i.e., the two upper floors. Thus, the building can be modeled by the following set of
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Figure 5.3: El Centro: Peak relative response and reduction percentage with respect to the uncontrolled
case.
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Figure 5.4: Taft: Peak relative response and reduction percentage with respect to the uncontrolled case.
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Figure 5.5: MR damper control effort.

equations:

Sm : M23ẍa23 + C23ẋa23 + K23xa23 = B23xa1 + Fg (5.35)

Sb : m1ẍa1 + c11ẋa1 + k11xa1 = −fmr − fc + fg (5.36)

where Sm stands for the super substructure subsystem (the two upper floors, subsystem without control)
and Sb is the first floor subsystem (controlled system). The a sub-index means absolute coordinates;
xa23 = [xa2, xa3]

T is the absolute displacement vector of the two upper floors and xa1 = [xa1, ẋa1]
T is a

vector composed of the absolute displacement and velocity of the first floor. Fg = [(c21 + c22 + c23))ẋg +
(k21 + k22 + k23))xg, 0]T ≈ [0, 0]T. The matrices M23, C23, K23 and B23 are given by:

M23 =

[
m2 0
0 m3

]
C23 =

[
c22 c23

c32 c33

]

K23 =

[
k22 k23

k32 k33

]
B23 =

[
−k21 −c21

0 0

] (5.37)

fc is the coupling force between the first floor subsystem and the superior substructure and fg is the
force due to the seismic motion:

fc = c12ẋa2 + k12xa2 (5.38)

fg = (c11 + c12) ẋg + (k11 + k12)xg (5.39)

The propositions about the intrinsic stability of the structure that were stated in Section 4.1 will be
used in formulating the control laws. These propositions are reformulated as follows:

Proposition 1. The unforced superior substructure subsystem Sm is globally exponentially stable for
any bounded initial conditions.

Proposition 2. If the coordinates (xa1, ẋa1) of the first floor and the coupling term B23xa1 are
uniformly bounded, then the superior substructure subsystem is stable and the coordinates (xa2,a3, ẋa2,a3)
of the superior substructure are uniformly bounded for all t ≥ 0 and any bounded initial conditions.
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In this way, the controller is designed for the first floor subsystem assuming that it will stabilize the
overall system. Finally, to proceed with the controller formulation, Eq. 5.36 is written in state space
form so that the backstepping technique can be applied:

ẏ1 = y2 (5.40)

ẏ2 = −
k11

m1
y1 −

c11

m1
y2 −

1

m1
(fmr + fc − fg) (5.41)

where y1 = xa1 is the first floor absolute displacement and y2 = ẋa1 is the first floor absolute velocity.

Consider the system of Eqs. 5.40 - 5.41. The following control law attenuates the vibrations and
stabilizes the main structure:

fmr = (m1 − k11 + h1h2m1) y1 + (h1m1 − c11 + h2m1) y2 − fc + fg (5.42)

where h1 and h2 are positive constants. To demonstrate it, consider the following standard backstepping
variables:

e1 = y1 e2 = y2 − α1 α1 = −h1e1 (5.43)

Now consider the following Lyapunov function candidate and its derivative:

V = 1
2e2

1 + 1
2e2

2 (5.44)

V̇ = e1ė1 + e2ė2 (5.45)

Substitution of Eqs. 5.40, 5.41 and 5.43 into Eq. 5.45 yields:

V̇ = e1ė1 + e2ė2

= e1y1 + e2(ẏ2 − α̇1) = e1y1 + e2ẏ2 + h1ė1

= e1y1 + e2

[
−

k11

m1
y1 −

c11

m1
y2 −

1

m1
(fmr + fc − fg)

]
+ h1y2

(5.46)

Substitution of Eq. 5.42 into Eq. 5.46 yields:

V̇ = −h1e
2
1 − h2e

2
2 < 0 (5.47)

According to Lyapunov’s stability theory, e1 → 0 and e2 → 0. Consequently, xa1 = y1 = e1 → 0 and
ẋa1 = y2 = e2 +h1e1 → 0. According to Propositions 1 and 2, the vibration of the base is asymptotically
attenuated and the asymptotic stability of the main structure is guaranteed.

The control law of Eq. 5.42 cannot be implemented directly because the force to the MR damper
cannot be commanded. Instead, a voltage signal must be sent to the damper to approximately generate
the desired force. Two approaches are now considered to determine the voltage to the MR damper that
can produce the damping force required to mitigate the vibrations.

The first approach is based on the Clipped Optimal Control algorithm by Dyke et al. (1996). The
algorithm is graphically depicted in Figure 5.6. The dynamics of the MR damper are ignored and the
control signal (i.e., the voltage) takes only two values, 0 V and 5 V, according to the following algorithm:

v = VmaxH {(fmr − fmeas) fmeas} (5.48)

where H{·} is the Heaviside function, fmr is the force generated by the backstepping controller and fmeas

is the actual damping force actuating on the system.
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Figure 5.6: Graphical representation of the Clipped Optimal Algorithm.

The second approach consists in using the Bouc-Wen model of the MR damper so that its nonlinear
dynamics are included in the controller design. Substituting fmr = SF f∗

mr, with f∗
mr as given in Eq.

4.20, and SF being the force scaling factor of the RTHT setup, the following control law is obtained by
solving for v:

v =
(m1 − k11 + h1h2m1) y1 + (h1m1 − c11 + h2m1) y2

SF

[
c0b

ẋr1

SL
+ kmrb

xr1

SL
+ αmrbz

]

−
+fc − fg + SF

[
cmra

ẋr1

SL
+ kmra

xr1

SL
+ αmraz

]

SF

[
cmrb

ẋr1

SL
+ kmrb

xr1

SL
+ αmrbz

]
(5.49)

provided that SF

[
cmrb

ẋr1

SL
+ kmrb

xr1

SL
+ αmrbz

]
6= 0, otherwise v = 0.

The stability of the controller of Eq. 5.49 can be proved in a similar way as that of Eq. 5.42.
Consider again the backstepping variables of Eq. 5.43 and the Lyapunov function candidate and its
derivative of Eqs. 5.44 and 5.45. Substitution of Eqs. 4.20, 5.40 - 5.43 and 5.49 into Eq. 5.45 also yields
V̇ = −h1e

2
1 − h2e

2
2 < 0, which guarantees the stability of the system.

5.3.2 Experimental results

The backstepping controllers were tested in the RTHT setup described previously. The numerical model,
i.e. the 3-story building and the controller, are implemented in Matlab/Simulink. The ordinary dif-
ferential equation solver used is the 4th order Runge-Kutta method with a time step Ts = 5 × 10−4

seconds. The structure is subject to three different earthquake records, namely, El Centro, Loma Prieta
and Northridge as shown in Figure 5.7; the scale amplitude used is 0.4. The controllers are implemented
with h1 = 1 × 10−3 and h2 = 1 × 10−6. Table 5.1 shows the performance indices used to evaluate the
controller performance.

The performance index for the different seismic excitations are shown in Table 5.2. Figures 5.8 - 5.11
show the structure response and the MR damper performance when subject to the El Centro seismic
excitation. Figures 5.8 and 5.10 show the performance of the MR damper (the actual damper, i.e. not
scaled), and particularly, a comparison of the dynamics predicted by the Bouc-Wen model and that ob-
tained experimentally.

Performance indices J1 - J4 show that both controllers have a similar performance. However, perfor-
mance indices J5 and J6 show that the control effort in the case of the controller based on the modified
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Index Description

J1 = maxi,t

(
|ẍai(t)|
ẍmax

a (t)

)
Normalized peak floor acceleration.

J2 = maxi,t

(
‖ẍai(t)‖
‖ẍmax

a ‖

)
Normed peak acceleration

J3 = max(|xr1(t)|) 1st floor peak relative displacement under control.
J4 = max(|ẍa1(t)|) 1st floor peak absolute acceleration under control.

J5 = maxt,i

(
|fmrd(t)|

W

)
Maximum control force.

J6 =
(

1
τ

∫ τ

0 [ẋm(t)]2dt
)1/2

RMS control power.

Table 5.1: Performance indices.
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Figure 5.7: Records of El Centro, Loma Prieta and Northridge earthquakes.

clipped optimal algorithm is greater than that of the controller based on the dynamics of the MR damper.
This can be explained by the fact that in the first case, the voltage is switching between two extreme
cases (no current flowing through the damper coil and maximum current flowing through the damper
coil). In the second case, the control signal changes in a smoother fashion and consequently, the control
effort is reduced. According to the performance indices and the structure response, the control objectives
were satisfactorily accomplished, i.e. a reduction in displacement and acceleration response was achieved
with both backstepping controllers.

Earthquake Controller J1 J2 J3 (cm) J4 (m/s2) J5 J6 (N)

El Centro Clipped BS. 0.55 0.28 3.11 3.40 0.12 338.71
Mod. based BS. 0.48 0.31 3.20 3.06 0.08 253.42

Loma Prieta Clipped BS. 0.58 0.34 3.19 3.27 0.12 288.58
Mod. based BS. 0.48 0.34 3.21 2.34 0.09 227.54

Northridge Clipped BS. 0.72 0.38 4.61 4.51 0.12 286.87
Mod. based BS. 0.75 0.41 5.82 3.29 0.11 231.07

Table 5.2: Controller performance indices under El Centro, Loma Prieta and Northridge earthquakes.
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Figure 5.8: Clipped Backstepping: Structure response under El Centro earthquake.
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Figure 5.9: Clipped Backstepping: MR damper response under El Centro earthquake.
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Figure 5.10: Model based Backstepping: Structure response under El Centro earthquake.
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Figure 5.11: Model based Backstepping: MR damper response under El Centro earthquake.
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5.4 Semiactive suspension system

In this section, a backstepping controller is designed for the semiactive suspension system described in
Section 4.4.

5.4.1 Controller formulation

Consider the system of equations of the upper rocking lever, repeated here for convenience:

α̇2 = ω2 (5.50)

ω̇2 = J−1
2 (M21 + M22 + Ms2) + J−1

2 r2ffmr sin(π − α2f − α2 − γf ) (5.51)

where α2 and ω2 are the angular position and angular speed of the upper lever respectively. M21, M22

and Ms2 are the viscous friction damping torque, the gravitational forces torque and the spring torque
action on the lower lever, respectively.

The objective of the semiactive control is to reduce the vibrations of the car body (the upper rocking
lever) at the natural frequency (1.6 Hz). This can be achieved by reducing the angular velocity of the
lever (ω2). Thus, the system of Eqs. 5.50 and 5.51 will be controlled assuming that the lower rocking
lever dynamics constitute the disturbances. The equilibrium point of the system is (α2equ, ω2equ) =
(0.55 rad, 0), fmr = 0. A change of coordinate is made so that the equilibrium point is set to (0, 0). Thus,
define z1 and z2 as the new coordinates according to:

(z1, z2) = (α2 − α2equ, ω2) (5.52)

In the new coordinates, the system of Eqs. 5.50 and 5.51 becomes:

ż1 = z2 (5.53)

ż2 = J−1
2 (M21 + M22 + Ms2) + J−1

2 r2fFeq sin(π − α2f − z1α2equ − γf )fmr (5.54)

Define f and g as:

f = J−1
2 (M21 + M22 + Ms2) (5.55)

g = J−1
2 r2fFeq sin(π − α2f − z1α2equ − γf ) (5.56)

The backstepping technique can now be applied to the system of Eqs. 5.53 and 5.54. First, define the
following standard backstepping variables and their derivatives:

e1 = z1 ė1 = z2

e2 = z2 − δ1 ė2 = ż2 + h1z2

δ1 = −h1e1, h1 > 0 δ̇1 = −h1z2

(5.57)

Now define the following Lyapunov function candidate:

V =
1

2
V 2

1 +
1

2
V 2

2 =
1

2
e2
1 +

1

2
e2
2 (5.58)

Deriving Eq. 5.58 and subsitution of Eqs. 5.53, 5.54 and 5.57 in the result yields:

V̇ =e1ė1 + e2ė2

=e1e2 − h1e
2
1 + e2f + e2gfmr + h1z2e2

= − h1e
2
1 − h2e

2
2 + e2 [(α2 − α2equ)(1 + h1h2) + (h1 + h2)ω2 + f + gfmr]

(5.59)
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In order to make V̇ negative, the following control law is proposed to generate the force fmr:

fmr = −
(α2 − α2equ)(1 + h1h2) + (h1 + h2)ω2 + f

g
(5.60)

Substitution of Eq. 5.60 into Eq. 5.59 yields:

V̇ = −h1e
2
1 − h2e

2
2 < 0 ∀h1, h2 > 0 (5.61)

Thus, according to the Lyapunov stability theory, the system is asymptotically stable. Therefore
e1 → 0 and e2 → 0 , and consequently α2 → α2equ and ω2 → 0.

However, since the control force fmr cannot be commanded directly, voltage or current signals are
used as the control input to approximately generate the desired damping force. Assuming the fmr is
given by Eqs. 4.52 - 4.54, the current commanding signal is derived from Eq. 5.60 as follows:

i =
−(α2 − α2equ)(1 + h1h2) − (h1 + h2)ω2f − g [fc2 tanh(µ(ẋp + Sd)) + cmr2(ẋp + pSd)]

g [fc1 tanh(µ(ẋp + Sd)) + cmr1]
(5.62)

5.4.2 Experimental results

The backstepping controller was implemented in Matlab/Simulink and different scenarios were tested.
Figures 5.12 - 5.14 show the response of the semiactive suspension system in two cases: uncontrolled, i.e.,
no current is flowing through the MR damper coils and controlled, i.e., the backstepping controller is on.
Each figure shows the angular position of the upper rocking lever with respect to the equilibrium point,
the angular velocity, the PWM control signals and the estimated MR damper force.

Figure 5.12 shows the response when the SAS is excited in a range of frequencies from 0.75 Hz to 2
Hz. At 1.6 Hz approximately, the system is in resonance. Figure 5.13 shows the response when the SAS
is being excited at 1.6 Hz, i.e., the resonance frequency. Finally, Figure 5.14 shows the response to a step
input from 1.6 Hz to 0.1 Hz. In all cases, it can be seen that the backstepping controller is able to reduce
the response of the system at the frequency of resonance. The control effort is always within the limits
of the damper (±500N).

5.5 Summary

In this chapter, new semiactive controllers based on the backstepping technique have been proposed to
reduce the vibrations in different structures equipped with MR dampers. Three backstepping controllers
were proposed. The first one is an adaptive backstepping controller that accounts for the uncertainties of
the system and the unmeasurable variables. The uncertainties that characterize the stiffness and damping
coefficients have been approached by deriving adaptive laws that estimate their values. The proposed
control law also takes into account the nonlinearities of the frictional and hysteretic dampers as well
as the unknown disturbances that the structure is subject to. The second controller is a modification
of the the clipped optimal algorithm which is characterized by switching between two control signals
and ignoring the damper dynamics. The third one is a simpler approach than the first, which does not
include adaptation laws. The controllers were tested in numerical simulations and experimental platforms.
All controllers successfully achieved the goal of reducing the system response when subject to external
vibrations.
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Figure 5.12: Backstepping controller for the SAS: chirp excitation.
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Figure 5.13: Backstepping controller for the SAS: excitation at resonance frequency.
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Figure 5.14: Backstepping controller for the SAS: step excitation.





Chapter 6

Robust control in frequency domain:

Quantitative Feedback Theory based

control

The vibration mitigation problem in flexible structures with MR dampers is covered in this chapter from
a frequency-domain perspective. It had been discussed previously in this dissertation (Chapters 2 and
5) how to approach this problem with time-domain techniques. In fact, most of semiactive structural
control strategies are based on the idea of attenuating vibrations or maintaining structural time response
within certain acceptable ranges, when external forces such as earthquakes or strong winds act on the
structures. The controller design is usually done in time-domain by considering that the system model
and its associated parameters are known or uncertain but with known upper and lower bounds. Since
the behavior of controlled structures depends not only on the magnitude of the external excitation but
also on its frequency modes, the modal frequency control is of a great interest for achieving the structural
safety and human comfort.

One of the goals of this research is to contribute with a new frequency-based methodology to mitigate
vibrations in flexible structures. It has been chosen the Quantitative Feedback Theory (QFT) control
because it is a methodology that systematically accounts for several factors such as parametric uncer-
tainties, disturbance rejection and nonlinearities. Thus, the controller can be designed so as to guarantee
stability and robustness at each frequency of interest. This is advantageous in structural control because
the controller can be formulated accounting for the natural frequencies of the system. Additionally, the
actuator nonlinearities can be incorporated in the control formulation by choosing an appropriate repre-
sentation of its dynamics. This representation is an uncertain linear system whose uncertain parameters
take the appropriate values so as to approximately describe the true dynamics of the system.

This chapter is organized as follows. Section 6.1 introduces the concept of Quantitative Feedback
Theory. Then, the application of the QFT methodology to different cases is presented. Thus, in Section
6.2, it is considered the case of a 6-story building with two MR dampers subject to seismic excitations.
The goal is to explore the QFT control application to this class of structures. Furthermore, an uncertain
linear system representation is proposed to approximate the dynamics of the MR dampers so that the
actuator nonlinearities can be incorporated in the controller formulation. Section 6.3 considers the exper-
imental testing of different QFT controllers for 3-story building with an MR damper. These experiments
are executed in the real-time hybrid testing platform used previously to test the backstepping controllers.
The chapter concludes with a summary of the obtained results.

61
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6.1 Quantitative Feedback Theory

QFT is a frequency control methodology based on the notion that feedback is only necessary when there
is uncertainty and unmeasurable disturbances actuating on the plant. The basic developments with QFT
are focused on the control design problem for uncertain Linear Time Invariant (LTI) Systems, as shown
in Figure 6.1. In this figure, R represents the command input set, P the plant set and T the transfer
function set. For each R(s) ∈ R, P (s) ∈ P, the closed loop output will be Y (s) = T (S)R(s) for some
T (s) ∈ T. For a large class of such problems, QFT is executable, i.e., a pair of controller F (s) and G(s)
can be found to guarantee that Y (s) = T (S)R(s). Suppose that the plant P (s) is an uncertain but known
member of the set P. The designer is free to choose the prefilter F (s) and the compensator G(s) in order
to ensure that the system transfer function T (s) = F (s)P (s)G(s)/(1 + P (s)G(s)) satisfies the assigned
specifications.

The uncertain plant model P (s) and its frequency and time domain specifications are represented in
the Nichols chart through the use of the Borowitz-Sidi bounds. These bounds determine the regions where
the nominal open loop transfer function L0(s) = G(s)P0(s) may lie so that all the design specifications
can be achieved.

The QFT methodology design can be summarized as follows (Houpis et al. 2006):

• Plant model, template generation and nominal plant election. The plant is represented in
the Laplace domain; each uncertain parameter is assigned a range of variation and the frequencies
of interest are chosen within the expected operation range. At each frequency of interest and for
each possible value of the uncertain parameters, the plant model P (jω) becomes a complex number
that can be represented in the Nichols chart (dB, Φ). This set of complex numbers is called the
templates.

• Design specifications. The inputs to the system of system of Figure 6.1 are R(s) (the reference),
W (s), D1(s) and D2(s) (the disturbances) and N(s) (the noise). Y (s) is the variable to be con-
trolled, E(s) is the error and U(s) is the control signal. The following transfer functions can be
obtained:

Y =
1

1 + PGH
D2 +

P

1 + PGH
D1 +

PG

1 + PGH
(W + FR) −

PGH

1 + PGH
N (6.1)

U =
G

1 + PGH
(W + FR) −

GH

1 + PGH
(N + D2 + D1) (6.2)

E = −
H

1 + PGH
D2 +

PH

1 + PGH
D1 +

PGH

1 + PGH
W +

1

1 + PGH
FR −

H

1 + PGH
N (6.3)

By limiting the transfer function magnitudes of Eqns. 6.1 - 6.3, it is possible to set the stability
and robustness specifications such as disturbance rejection, tracking and noise rejection.

Figure 6.1: Schematic of the QFT control system.
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• Bound generation. Once chosen the nominal plant, the next step is to transform the closed loop
specifications of uncertainty plants in a set of restriction curves or bounds as known as Horowitz-
Sidi bounds for each frequency of interest on the Nichols chart. This information synthesis allows
the design of the controller using only the nominal plant. For each frequency and for each design
specification there is one bound. When all these bounds are calculated, then the most restrictive
one per frequency is kept.

• Loop shaping. When the most restrictive bounds are found, the controller is synthesized by adding
a gain, poles and zeros such that the loop function L0(jω) lies in the Nichols chart in the regions
where the design specifications can be achieved. The optimal controller is the one that, having the
minimum gain, lies on the bounds at each frequency of interest. In this case, it is possible to affirm
that the controller accomplishes all the design specifications.

• Prefilter. When tracking specifications are required, the prefilter F (s) must be designed. The
prefilter synthesis is similar to that of the controller.

• Design validation. This step involves the performance evaluation of the controller and its adjust-
ment until all the design specifications are satisfied within acceptable limits.

Most of the design process can be done with the help of software packages such as the QFT toolbox
for MATLAB. The loop shaping process is left to the ability and experience of the designer.

6.2 QFT controllers for the 6-story building with 2 MR dampers

This section is devoted to explore the feasibility of the application of QFT techniques to the design of
controllers for systems with 2 MR dampers (Section 4.2).

6.2.1 Controller formulation

In order to do it, firstly recall Eq. 4.12 that represents the dynamics of the 6-story building with two
MR dampers. The equations of motions of the first and second floors are:

Sf1 : m1ẍr1 + (c1 + c2)ẋr1 − c2ẋr2 + (k1 + k2)xr1 − k2xr2 = −fmr1 − m1ẍg (6.4)

Sf2 : m2ẍr2 − c2ẋr1 + (c2 + c3)ẋr2 − c3ẋr3 − k2xr1 + (k2 + k3)xr2 − k3xr3 = −fmr2 − m2ẍg (6.5)

where mi, ci and ki are the mass, damping coefficient and stiffness of each floor, respectively; xri are the
relative displacements of each floor, fmri are the MR damper forces and ẍg is the seismic acceleration
input. Taking the Laplace transform to Eqs. 6.4 and 6.5 yields:

m1s
2Xr1(s) = −(c1 + c2)sXr1(s) + c2sXr2(s) − (k1 + k2)Xr1(s) + k2Xr2(s) − Fmr1(s) − m1Ẍg(s)

Xr1(s) =
1

m1s2 + (c1 + c2)s + k1 + k2

[
−Fmr1(s) + c2sXr2(s) + k2Xr2(s) − m1Ẍg(s)

]

(6.6)

Similarly, by taking the Laplace transform of the second floor subsystem, it is obtained:

m2s
2Xr2(s) = c2sXr1(s) − (c2 + c3)sXr2(s) + c3sXr3(s) + k2Xr1(s) − (k2 + k3)Xr2(s) + k3Xr3(s)

− Fmr2(s) − m2Ẍg(s)

Xr2(s) =
1

m2s2 + (c2 + c3)s + k2 + k3
[−Fmr2(s) + c2sXr1(s) + c3sXr3(s) + k2Xr1(s) + k3Xr3(s)]

−
1

m2s2 + (c2 + c3)s + k2 + k3
m2Ẍg(s)

(6.7)

Evidently, the terms Fmr1(s) and Fmr2(s) from Eqs. 6.6 and 6.7 cannot be computed because these
are the nonlinear dynamics of the MR damper. To overcome this problem, it is proposed a simple
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Figure 6.2: Left: MR damper hysteretic dynamics. Right: Bouc-Wen model and linear approximation
comparison.

representation of the MR damper dynamics as an uncertain linear system. In order to do it, consider the
Bouc-Wen model of the MR dampers installed in the structure (Eqs. 4.9 - 4.11). It can be decomposed
into two parts: one linear and another nonlinear. Thus, the force fmri of each MR damper can be
represented as:

flin = (cmra + cmrbv) ẋri = a1ẋri (6.8)

fnonlin = (αmra + αmrbv) z0 = udz0 (6.9)

fmri = flin + fnonlin (6.10)

From Eq. 6.8, it is observed that the parameter a1 varies only with the input voltage (v). The second
parameter, z0 in Eq. 6.9 (left hand), is a bounded parameter. At high velocities, z is approximately
constant and thus, z0 could take either the maximum or the minimum value depending on the signs
of velocity, as can be seen in Figure 6.2. In this way, Eqs. 6.8 and 6.9 can be seen as a plant with 2
uncertain parameters namely, a1 and z0 that describe the dynamics of the damper. In this way, the
damper dynamics appear to follow the Bingham model. Figure 6.2 (right hand) illustrates this approach
with a sinusoidal displacement excitation at 3 levels of voltage.

The uncertain linear plant representation of the MR damper can now be incorporated into Eqs. 6.6
and 6.7. The Laplace transform of Eq. 6.10 is given by:

Fmri(s) = a1sXri(s) + zoUd(s) (6.11)

Replacing Eq. 6.11 into Eqs. 6.6 and 6.7 yields:

Xr1(s) =
z0

m1s2 + (c1 + c2 + a1)s + k1 + k2

[
−Ud1(s) +

1

z0

(
c2sXr2(s) + k2Xr2(s) − m1Ẍg(s)

)]
(6.12)

Xr2(s) =
z0

m2s2 + (c2 + c3 + a1)s + k2 + k3

[
−Ud2(s) +

1

z0
(c2sXr1(s) + c3sXr3(s))

]

+
z0

m2s2 + (c2 + c3 + a1)s + k2 + k3

[
1

z0

(
k2Xr1(s) + k3Xr3(s) − m2Ẍg(s)

)] (6.13)
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From Eqs. 6.12 and 6.13, and following the notation of Figure 6.1, the plants P1(s) and P2(s), the
control inputs U1(s) and U2(s), and the disturbances to plant D1,1(s) and D1,2(s) are obtained as follows,
respectively:

P1(s) =
z0

m1s2 + (c1 + c2 + a1)s + k1 + k2
(6.14)

U1(s) = −Ud1(s) + c2sXr2(s) + k2Xr2(s) (6.15)

D1,1(s) = −m1Ẍg(s) (6.16)

P2(s) =
z0

m2s2 + (c2 + c3)s + k2 + k3
(6.17)

U2(s) = −Ud2(s) + c2sXr1(s) + c3sXr3(s) + k2Xr1(s) + k3Xr3(s) (6.18)

D1,2(s) = −m2Ẍg(s) (6.19)

The uncertain parameters and QFT controller specifications are: a1 = [0.0064, 0.0324] N-s/cm, and
z0 = {−0.448, 0.448} cm. The stiffness and damping coefficients of the structure vary in ±10 %. The
frequencies of interest are the natural frequencies of the system, i.e., 1.29 Hz, 3.85 Hz, 6.11 Hz, 8.22
Hz, 9.64 Hz and 10.81 Hz. The controller performance should accomplish the following bounds: robust
performance Ws1 = 1.2 and disturbance rejection Ws3 = 3.4 × 10−4.

Figures 6.3 - 6.5 depict different stages of the controllers design: templates and initial approach
(G1(s) = 0) and final loop. Figure 6.6 shows the analysis of the closed loop response for the robust
performance and disturbance rejection problems for the range of frequencies studied. The final controller
of the first floor, G1(s), with a displacement input measured in centimeters and output Ud1(s) (measured
in Newton-centimeter), is given by:

G1(s) = 7735.14
1.44 × 10−6s3 + 0.0011s2 + 0.192s + 1

3.887× 10−7s3 + 2.3762× 10−4s2 + 0.405s + 1
(6.20)

The controller of the second floor is designed in a similar way, with the same parameters and design
constraints. The resulting controller is:

G2(s) = 6574
7.05 × 10−6s3 + 7.16 × 10−4s2 + 0.0320s + 1

2.045× 10−6s3 + 5.225× 10−4s2 + 0.044s + 1
(6.21)

6.2.2 Numerical results

In order to verify the performance of the controllers, simulations were performed using scaled versions of
the El Centro, Loma Prieta and Northridge earthquakes. Figures 6.7 and 6.8 show the response of the
MR damper in the case of El Centro seismic excitation. These figures show the displacement response
of the first and the second floor in the case there is not any damper on the structure and the case when
the controllers are active. Additionally, Table 6.1 lists the performance index discussed outlined in Table
5.1. Indices J3 - J6 were calculated for the first and second floors where the MR dampers are installed.
The performance indices show a clear reduction in absolute acceleration and relative displacements with
a reasonable control effort, within the damper capabilities.

6.3 Real-time hybrid testing of QFT controllers

In this section, QFT controllers will be formulated for the real-time hybrid testing of 3-story building
structure with an MR damper (Section 4.3).



66 6. Robust control in frequency domain: Quantitative Feedback Theory based control

−360 −315 −270 −225 −180 −135 −90 −45 0

−65

−60

−55

−50

−45

−40

8.1053

24.1903

38.3903

51.6478

60.5699

67.9212

Open-Loop Phase (deg)

O
p

en
-L

o
o
p

G
a
in

(d
B

)

 

 

8.105
24.19
38.39
51.65
60.57
67.92

Figure 6.3: Templates for the first floor controller.
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Figure 6.4: First floor QFT controller initial loop.
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Figure 6.5: First floor QFT controller final loop.
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Figure 6.7: First floor MR damper response.
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Index El Centro Loma Prieta Northridge

J1 0.8185 0.6268 0.8244
J2 0.4657 0.4131 0.4371
J3,1 (cm) 2.1810 2.8493 2.8053
J3,2 (cm) 4.1162 5.4729 5.3824
J4,1 (cm/s2) 352.6457 427.5446 643.4298
J4,2 (cm/s2) 518.1071 658.9434 863.4917
J5,1 0.0183 0.0185 0.0187
J5,2 0.0187 0.0191 0.0194
J6,1 (N) 14.8913 14.7541 13.1978
J6,2 (N) 16.0763 15.6517 15.3756

Table 6.1: Controller performance indices under El Centro, Loma Prieta and Northridge earthquakes.

6.3.1 Controller formulation

To begin with the design of the controllers, recall the system of Eqs. 5.35 and 5.36 in Section 5.3.1 where
it was also discussed that the controller can be designed for the first floor while guaranteeing the stability
of the whole structure. Now consider Eq. 5.36, repeated here for convenience:

Sb : m1ẍa1 + c11ẋa1 + k11xa1 = −fmr − fc + fg (6.22)

This equation written in relative coordinates becomes:

m1ẍr1 + c11ẋr1 − c12ẋr2 + k11xr1 − k12xr2 = −fmr − m1ẍg (6.23)

Taking the Laplace transform of Eq. 6.23 yields:

m1s
2Xr1(s) + c11sXr1(s) − c12sXr2(s) + k11Xr1(s) − k12Xr2(s) = −Fmr(s) − m1Ẍg(s) (6.24)

Rearranging terms from Eq. 6.24 yields:

Xr1(s) =
1

m1s2 + c11s + k11

[
−Fmr(s) + c12sXr2(s) + k12Xr2(s) − m1Ẍg(s)

]
(6.25)

From Eq. 6.25, and following the notation of Figure 6.1, it can be deduced that the plant P1(s), the
input to the plant U1(s) and the input disturbance D1(s) are, respectively:

P1(s) =
1

m1s2 + c11s + k11
(6.26)

U1(s) = −Fmr(s) + c12sXr2(s) + k12Xr2(s) (6.27)

D1(s) = m1Ẍg(s) (6.28)

The force to the MR damper cannot be directly commanded. Instead, a voltage signal must be sent
to the damper to approximately generate the desired force. Two approaches are now considered to de-
termine the voltage to the MR damper that can produce the damping force required to mitigate the
vibrations.

The first approach is based on the Clipped Optimal Control algorithm by Dyke et al. (1996) as dis-
cussed in Section 5.3.1. Following this approach, the controller is designed with these specifications:
c11 = 7243.2±5% N-s/m, k11 = 9932±5% N/m; the frequencies of interest are the natural frequencies of
the system, i.e., 1.09 Hz, 3.17 Hz and 4.74 Hz. The controller performance should achieve the following
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bounds: robust performance Ws1 = 2 and disturbance rejection Ws3 = 3 × 10−2.

Figure 6.9 - 6.11 show different stages of the QFT controller design: the templates, the initial and
final loops. Figure 6.12 shows the analysis of the closed loop response for the robust performance and
disturbance rejection problems for the range of frequencies studied. The final controller, with input
Xr1(s) (the displacement, measured in meters) and output U1(s), (force, measured in Newtons) is given
by:

G1(s) =
27541034(0.002s+ 1)(0.068s + 1)(1.960s + 1)

(0.151s + 1)(0.188s + 1)2
(6.29)
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Figure 6.9: Templates of the system of Eq. 6.26.
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Figure 6.10: QFT controller initial loop: G1(s) = 1.

The second approach consists of replacing the term Fmr(s) with a Laplace representation of the
damper dynamics, as it was done in Section 6.2. Consider again the Bouc-Wen model of the MR damper
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Figure 6.11: QFT controller final loop.
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Figure 6.12: QFT controller closed loop analysis. Upper: robust performance. Lower: Disturbance
rejection.
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of Eq. 4.20. It can be decomposed into two parts: one linear and another nonlinear. Thus:

flin = (cmra + cmrbv) ẋr1 + (kmra + kmrbv)xr1 = a1ẋr1 + a2xr1 (6.30)

fnonlin = (αmra + αmrbv) z0 = z0ud (6.31)

fmr = flin + fnonlin (6.32)

Eqns. 6.30 and 6.31 can be seen as a plant with 3 uncertain parameters namely, a1, a2 and z0 that
describe the dynamics of the damper. Figure 6.13 illustrates this approach with a sinusoidal displacement
excitation at 3 levels of voltage.

−10 −5 0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5
MR damper hysteresis dynamics

velocity (cm/s)

z
(m

)

-10 -5 0 5 10
-1500

-1000

-500

0

500

1000

1500

velocity (cm/s)

fo
rc

e
(N

)

Bouc-Wen model and linear sysem comparison

 

 

BW − 1V

Lin. 1V

BW − 3V

Lin. 3V

BW − 5V

Lin. 5V

Figure 6.13: Left: MR damper hysteretic dynamics. Right: Bouc-Wen model and linear approximation
comparison.

The representation of the MR damper as an uncertain linear plant can now be incorporated into Eq.
6.24. The Laplace transform of Eqns. 6.30 - 6.32 yields:

Fmr(s) =
a1SF

SL
sXr1(s) +

a2SF

SL
Xr1(s) + SF z0Ud(s) (6.33)

Substitution of Eq. 6.33 into Eq. 6.24 yields:

Xr1(s) =
−SF z0Ud(s) + c12sXr2(s) + k12Xr2(s) − m1Ẍg(s)

m1s2 + (c11 + a1SF

SL
)s + (k11 + a2SF

SL
)

(6.34)

The plant P2(s) is now given by:

P2(s) =
SF z0

m1s2 + (c11 + a1SF /SL)s + (k11 + a2SF /SL)
(6.35)

and the voltage can be estimated by manipulating the following equation:

U2(s) = −Ud(s) +
1

SF z0
(c12sXr2(s) + k12Xr2(s)) (6.36)

The uncertain parameters and QFT controller specifications are: a1 = [754.41, 4318.06] N-s/m,
a2 = [1137.57, 6855.07] N/m and z0 = {−1.11, 1.11} m. The frequencies of interest are the natural
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frequencies of the system, i.e., 1.09 Hz, 3.17 Hz and 4.74 Hz. The controller performance should accom-
plish the following bounds: robust performance Ws1 = 2 and disturbance rejection Ws3 = 3 × 10−2.

Figures 6.14 - 6.16 depict different stages of the controllers design: templates and initial approach
(G2(s) = 1) and final loop. Figure 6.17 shows the analysis of the closed loop response for the robust
performance and disturbance rejection problems for the range of frequencies studied. The final controller
G2(s) with a displacement input measured in meters and output Ui(s) (measured in Newton-meter), is
given by:

G2(s) =
298(0.016s2 + 0.073s + 1)(7.3 × 10−4s2 + 0.051s + 1)(4.7 × 10−3s2 + 2.15 × 10−3s + 1)

(0.017s + 1)(0.033s + 1)(0.015s2 + 0.095s + 1)(4.65 × 10−3s2 + 0.060s + 1)
(6.37)
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Figure 6.14: Templates of the system of Eq. 6.35.

6.3.2 Experimental results

The QFT controllers are now tested in the RTHT setup described previously. The numerical model, i.e.
the 3-story building and the controller, are implemented in Matlab/Simulink. The ordinary differential
equation solver used is the 4th order Runge-Kutta method with a time step Ts = 5 × 10−4 seconds. The
structure is subject to three different earthquake records, namely, El Centro, Loma Prieta and Northridge
with a scale amplitude of 0.4.

The performance indices used to evaluate the controller performance are those of Table 5.1. The
resulting indices for the different seismic excitations are shown in Table 6.2. Figures 6.18 - 6.21 show the
structure response and the MR damper performance when subject to the Loma Prieta seismic excitation.
Figures 6.19 and 6.21 show the performance of the MR damper (the actual damper, i.e. not scaled),
and particularly, a comparison of the dynamics predicted by the Bouc-Wen model and that obtained
experimentally.

Performance indices J1 - J4 show that both controllers have a similar performance and in most of cases,
the QFT controllers based on the MR damper dynamics is better than the other. However, performance
indices J5 and J6 show that for this controller to perform better in reducing the structure response, it
makes use of a greater control effort. According to the performance indices and the structure response,
the control objectives were satisfactorily accomplished, i.e. a reduction in displacement and acceleration
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Figure 6.15: QFT controller initial loop: G2(s) = 1.
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Figure 6.16: QFT controller final loop.
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Figure 6.17: QFT controller closed loop analysis. Upper: robust performance. Lower: Disturbance
rejection.

Earthquake Controller J1 J2 J3 (cm) J4 (m/s2) J5 J6 (N)

El Centro Clipped QFT 0.67 0.40 3.36 3.77 0.12 259.64
Model based QFT 0.62 0.30 2.31 3.92 0.11 346.05

Loma Prieta Clipped QFT 0.92 0.47 3.38 5.25 0.11 178.04
Model based QFT 0.92 0.41 3.64 5.47 0.11 283.86

Northridge Clipped QFT 0.73 0.52 6.27 5.94 0.11 202.37
Model based QFT 0.64 0.42 4.76 5.06 0.11 302.42

Table 6.2: Controller performance indices under El Centro, Loma Prieta and Northridge earthquakes.

response was achieved with both QFT controllers.

6.4 Summary

This chapter has presented a novel QFT controller for vibration reduction in buildings equipped with MR
dampers. A simple characterization of the nonlinear hysteretic cycle was proposed to represent the whole
plant in the Nichols chart that contains the uncertainty template, by using the bounded LTI systems
based on the LTI nominal one. The advantage of using QFT in structural control is that the design is
made in the frequency domain, which is a very important issue, taking into account that disturbances
are unknown and vibrations can excite the structure at its natural frequencies. The QFT based control
design has taken into account these considerations. The applicability and effectiveness of the technique
was demonstrated by means of both numerical simulations and experimental tests.
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Figure 6.18: Clipped QFT: Structure response under Loma Prieta earthquake.
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Figure 6.19: Clipped QFT: MR damper response under Loma Prieta earthquake.
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Figure 6.20: Model based QFT: Structure response under Loma Prieta earthquake.
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Figure 6.21: Model based QFT: MR damper response under Loma Prieta earthquake.





Chapter 7

Mixed H2/H∞ control

In this chapter, the vibration problem is considered from a mixed time-frequency domain perspective. It
is desirable that the vibration mitigation problem can be solved not only by reducing the time response
but the frequency response as well. This can be approached by the mixed H2/H∞ control methodology.
The objective is to find an H∞ controller that achieves the robust performance of the system by mini-
mizing its controlled output response against the external disturbances within the frequency range, while
combing it with the H2 control approach in order to reduce the structural time response and control effort.

H2 and H∞ controllers (and hence the mixed controllers) can be formulated feeding back either the
state or the output. Despite the simplicity of the state feedback design, it may not be a good option
when dealing with large systems with several (and possibly inaccessible) states. Thus, the output feed-
back seems to be a better option for this class of systems. In this dissertation, the output feedback
option was chosen. In this way, the controller accounts for the limited measurements and the external
disturbances. Based on the Lyapunov theory, some required sufficient conditions are established in terms
of linear matrix inequalities (LMIs) for the stability and stabilization of the considered system using some
free matrices. The desired robust mixed H2/H∞ output feedback control is derived based on a convex
optimization method such that the resulting closed-loop system is asymptotically stable and satisfies
H2 performance with a guaranteed cost and a prescribed level of H∞ performance, simultaneously. An
algorithm is also proposed to include the dynamics of the actuator in order to estimate the control signal.

This chapter is organized as follows. The problem of mixed H2/H∞ control is described in Section 7.1.
Section 7.2 is devoted to the details of the formulation of the output feedback mixed H2/H∞ controller.
LMIs for the H2 and H∞ performances are developed. These LMIs form the set that solves the problem
of the mixed constraints. Then, in Section 7.3 the results of the experimental validation of the controllers
are presented. The controllers are designed for the 3-story building with an MR damper of the real-time
hybrid testing setup. Finally, the conclusions are outlined at the of the chapter.

7.1 Problem definition

Consider the state space model representation of a system:

ẋ = Ax + B1u + B2w (7.1)

yc = C1x + D11u + D12w (7.2)

yo = C2x + D21u (7.3)

where x is the state vector, u is the input vector, w is the exogenous input vector, yc is the vector of
controlled outputs and yo is the vector of measured outputs. The H2 performance measure of the systems
7.1 - 7.3 is defined as:

JH2
=

∫ ∞

0

(
xTS1x + uTS2u

)
dt (7.4)
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where w = 0 and the constant matrices S1 and S2 are given. On the other hand, the H∞ performance
measure is defined as:

J∞ =

∫ ∞

0

(
yT
c yc − γ2wTw

)
dt (7.5)

where γ is a given positive scalar. Then, the mixed H2/H∞ performance measure is defined as:

Min {J0|J∞ < 0 and JH2
≤ J0} (7.6)

which is equivalent to minimize the upper bound JH2
(J0 > 0) subject to J∞ < 0. The minimization of

JH2
will result in the reduction of the system response and control effort while the achieving J∞ < 0 will

keep the system response within prescribed intervals in the presence of external disturbances.

7.2 LMI formulation of the output feedback controller

Recall the state space model of Eqs. 7.1 - 7.3. Suppose that the aim is to design the following static
output controller:

u = K2∞yo (7.7)

where K2∞ is the controller gain. Then, the system of Eqs. 7.1 - 7.3 can be rewritten as follows:

ẋ = Āx + B2w (7.8)

yc = C̄x + D12w (7.9)

yo = (I − D21K2∞)−1C2x (7.10)

where Ā = A + B1K2∞(I − D21K2∞)−1C2 and C̄ = C1 + D11K2∞(I − D21K2∞)−1C2. Now, repre-
sent the system of Eqs. 7.8 - 7.10 in a model descriptor form as follows:

ẋ = ηd (7.11)

0 = −ηd + Āx + B2w (7.12)

Define the following Lyapunov functional:

V = xTP1x :=
[

xT ηd
T
]
TP

[
x
ηd

]
(7.13)

where T = diag{I,0}, P1 = PT
1 > 0 and P =

[
P1 0
P3 P2

]
, such that P2 and P3 are some free matrices.

Differentiating V along the system trajectories (Eq. 7.8) yields:

V̇ = 2[ xT ηd
T ]PT

{[
0 I
Ā I

] [
x
ηd

]
+

[
0
B2

]
w

}
(7.14)

Before proceeding with the controller formulation, a lemma that will be further used is stated next.

Lemma 1 (Ho & Lu 2003). For a given M ∈ R
p×n with rank(M) = p < n, assume that Z ∈ R

n×n

is a symmetric matrix, then there exists a matrix Ẑ ∈ R
p×p such that MZ = ẐM if and only if

Z = V

[
Z1 0
0 Z2

]
VT (7.15)

Ẑ = UM̂Z1M̂
−1UT (7.16)

where Z1 ∈ R
p×p, Z2 ∈ R

(n−p)×(n−p) and the singular value decomposition of the matrix M is represented
as M = U

[
M̂ 0

]
VT with the unitary matrices U ∈ R

p×p, V ∈ R
n×n and a diagonal matrix

M̂ ∈ R
p×p with positive diagonal elements in decreasing order.
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H∞ performance

Under zero initial conditions, the H∞ performance measure can be written as:

J∞ ≤

∫ ∞

0

[
yc

Tyc − γ2wTw
]
dt − V|t=0 + V|t=∞

=

∫ ∞

0

[
yT
c yc − γ2wTw + V̇

]
dt

(7.17)

Substituting Eq. 7.2 into Eq. 7.17 yields the inequality J∞ ≤
∫∞

0 νT Π∞ν ds where:

ν =
[

x ηd w
]T

(7.18)

Π∞ :=




sym

(
PT

[
0 I
Ā −I

])
+

[
C̄T

0

] [
C̄T

0

]T
PT

[
0
B1

]
+

[
C̄TD12

0

]

⋆ D12
TD12 − γ2I


 (7.19)

where sym(x) = x + xT. Applying the Schur complement lemma on the matrix Π∞ of Eq. 7.19 yields:




sym

(
PT

[
0 I
Ā −I

])
PT

[
0
B1

] [
C̄T

0

]

⋆ −γ2I D12
T

⋆ ⋆ −I




< 0 (7.20)

Let X = P−1 =

[
X1 0
X3 X2

]
and a congruence transformation ξ = diag(X, I,X1). Pre- and post-

multiplying ξ to the inequality 7.20 yields:




sym

([
0 I
Ā −I

]
X

) [
0
B2

]
X

[
C̄T

0

]

⋆ −γ2I D12
T

⋆ ⋆ −I




< 0 (7.21)

Consider the equality constraint C2X1 = X̂1C2 from Lemma 1, with X̂1 as a new LMI variable. Let
X̃1 = K2∞(I − D21K2∞)−1X̂1. Then, the inequality 7.21 is represented in the following LMI form :




sym

([
X3 X2

AX1 + B1X̃1C2 − X3 −X2

]) [
0
B2

] [
(C1X1 + D11X̃1C2)T

0

]

⋆ −γ2I D12
T

⋆ ⋆ −I




< 0 (7.22)

H2 performance

Recall the Lyapunov function of Eq. 7.13. Under zero initial conditions and with w = 0, the H2 perfor-
mance can be written as:

JH2
≤

∫ ∞

0

[
xTS1x + uTS2u + V̇

]
dt =

∫ ∞

0

νTΠ2ν dt (7.23)
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where the vector ν and the matrix Π2 are given by:

ν =
[

x ηd

]T
(7.24)

Π2 = sym

(
PT

[
0 I
Ā −I

])
+

[
S1 + (K2∞(I − D21K2∞)−1C2)TS2(K2∞(I − D21K2∞)−1C2) 0

0 0

]
< 0

(7.25)

Let a congruence transformation ξ = diag{X, I}. Applying the Schur complement lemma to the
inequality 7.25 and then, pre- and post-multiplying ξ to the result yields:

Π2 =




sym

([
0 I
Ā −I

]
X

)
+ XT

[
S1 0
0 0

]
X XT

[
(K2∞(I − D21K2∞)−1C2)TS2

0

]

⋆ −S2


 (7.26)

Let again X̃1 = K2∞(I − D21K2∞)−1X̂1. Then, after substitution of X =

[
X1 0
X3 X2

]
into Eq.

7.26 and application of the Schur complement to the result, the following inequality is obtained:



sym

([
X3 X2

AX1 + B1X̃1C2 − X3 −X2

]) [
(X̃1C2)TS2

0

] [
X1

TS1

0

]

⋆ −S2 0

⋆ ⋆ −S1




< 0 (7.27)

The controller gain K2∞ can be obtained from the solution of the LMIs 7.22 and 7.27 as follows:

K2∞ = (I + X̃1X̂
−1
1 D21)−1X̃1X̂

−1
1 (7.28)

7.3 Experimental results

In this section, a mixed H2/H∞ controller for the 3-story building equipped with an MR damper is
experimentally tested. Recall Eqs. 4.15, 4.20 - 4.21 that represent the dynamics of the structure and the
MR damper. Let F2∞ be the control force estimated by the mixed H2/H∞ controller of Eq. 7.7. Then,
the voltage signal to the MR damper is estimated with the following equation:

v =
F2∞/SF − (cmraẋp + kmraxp + αmraz)

cmrbẋp + kmrbxp + αmrbz
(7.29)

The vector of controlled signals is composed of the absolute accelerations and relative velocities of
each floor. These signals are weighted by some weighting factors. The vector of controlled outputs was

chosen as yc =
[

(Λ1xr)
T (Λ2xa)T

]T
, where xr is the vector of relative displacements, xa is the vector

of absolute accelerations and Λ1 = diag{500, 500, 500} and Λ2 = diag{500, 150, 1000} are the weighting
matrices. The available measurements are the absolute accelerations of each floor. Thus, the matrices
used to design the controller are:

A =

[
0 I

−M−1K −M−1C

]
B1 =

[
0

M−1Gs

]
B2 =

[
0

−Ls

]

C1 =

[
0 Λ1I

−Λ2M
−1K −Λ2M

−1C

]
D11 =

[
0

Λ2M
−1Gs

]
D12 = 0

C2 =
[
−M−1K −M−1C

]
D21 = M−1Gs D22 = 0

S1 = I S2 = I

(7.30)
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A solution of the set of LMIs 7.22 and 7.27 was found with γ = 131. The resulting control gain is:

K2∞ =
[

493.90 −4.20 −95.95
]

(7.31)

The controller performance is evaluated by simulating the RTHT setup described in Section 4.3.
The models of the 3-story building, the hydraulic actuator and the controller are implemented in Mat-
lab/Simulink. The ordinary differential equation solver used is the 4th order Runge-Kutta method with a
time step Ts = 5× 10−4 seconds. The structure is subject to the El Centro, Loma Prieta and Northridge
seismic motion records; the scale amplitude used is 0.4. For comparison purposes, a controller based on
the clipped optimal algorithm is implemented.

The H∞ performance, measured as
√
||yc||/

√
||w|| is shown in Table 7.1 for the different seismic

motions and control cases. The performance bound (γ = 131) is satisfied by both controllers under the
three seismic motions. In comparison, in the case of no MR damper actuating, the performance is higher
than the bound. Furthermore, the H2 performance was measured in all cases. For initial conditions

x(0) =
[

0.005 in 0.008 in 0.01 in 0.5 in/s 0.8 in/s 1 in/s
]T

, the bound J0 = x(0)TX−1
1 x(0) =

1.02×109 is greater than the JH2
value achieved by the controllers in all cases, as can be seen in Table 7.2.

Uncontrolled H2/H∞ (with MRD dyn.) H2/H∞ (Mod. Clipped Opt.)

El Centro 207.15 120.14 112.53
Loma Prieta 188.11 103.88 98.41
Northridge 182.42 113.08 110.92

Table 7.1: H∞ performance indices under El Centro, Loma Prieta and Northridge earthquakes.

H2/H∞ (with MRD dyn.) H2/H∞ (Mod. Clipped Opt.)

El Centro 7.29 × 108 4.00 × 108

Loma Prieta 4.24 × 108 2.68 × 108

Northridge 5.43 × 108 2.78 × 108

Table 7.2: H2 performance indices under El Centro, Loma Prieta and Northridge earthquakes.

The performance indices used to evaluate the controller performance are those of Table 5.1. The
resulting indices for the different seismic excitations are shown in Table 7.3. Figures 7.2 - 7.4 show the
structure response and the MR damper performance when the structures is subject to the El Centro
seismic excitation. Figures 7.2 and 7.4 show the performance of the MR damper (the actual damper, i.e.
not scaled). Additionally, Figures 7.5 and 7.6 show the power spectral density of the acceleration and
displacement of each floor.

From Figures 7.2 and 7.4 it can be seen that both controllers are able to reduce the displacement
response of the structure. The first floor acceleration of the structure is, in general, reduced with both
controllers as well. However, the reduction achieved by the controller based on the damper model is not
as significant as that achieved by the modified clipped optimal controller. This facts are numerically con-
firmed by performance indices J1 - J4. Indices J5 and J6 show that the controller based on the modified
version of he clipped optimal algorithm, makes use of less control effort to achieve the results. This can
also be observed in Figures 7.2 and 7.4. In the first case, the control signal, i.e. the voltage, remains
mostly at low level values while in the second case, it remains at high values. Figure 7.5 shows that the
first floor acceleration power spectral density is increased with the addition of the controllers while that
of the second and third floors present no significant differences. In the case of the power spectral density,
it can be seen in Figure 7.6 that it is decreased with both controllers.
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Figure 7.1: H2/H∞ (with MRD dynamics): Structure response under El Centro earthquake.
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Figure 7.2: Mixed H2/H∞ (with MRD dynamics): MR damper response under El Centro earthquake.
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Figure 7.3: Mixed H2/H∞ (Mod. Clipped Optimal algorithm): Structure response under El Centro
earthquake.
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Figure 7.4: Mixed H2/H∞ (Mod. Clipped Optimal algorithm): MR damper response under El Centro
earthquake.
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Figure 7.5: Acceleration power spectral density under El Centro earthquake.
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Figure 7.6: Displacement power spectral density under El Centro earthquake.
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Earthquake Controller J1 J2 J3 (cm) J4 (m/s2) J5 J6 (N)

El Centro H2/H∞ (Mod. Clipped Opt.) 0.53 0.34 3.17 3.08 0.10 253.31
H2/H∞ (with MRD dyn.) 1.14 0.38 2.64 7.23 0.12 361.22

Loma Prieta H2/H∞ (Mod. Clipped Opt.) 0.58 0.27 3.25 3.07 0.11 227.40
H2/H∞ (with MRD dyn.) 0.85 0.37 2.21 5.33 0.11 277.50

Northridge H2/H∞ (Mod. Clipped Opt.) 0.73 0.34 4.95 5.53 0.13 241.30
H2/H∞ (with MRD dyn.) 0.85 0.40 3.70 6.87 0.13 301.32

Table 7.3: Controller performance indices under El Centro, Loma Prieta and Northridge earthquakes.

7.4 Summary

In this chapter, an output feedback mixed H2/H∞ controller was formulated to reduce the vibrations
of a 3-story building with MR damper when subject to seismic motions. The controller was designed
following an LMI approach so that both H2 and H∞ performances could be achieved simultaneously.
To generate the control signal, two algorithms were proposed: one based on a modified version of the
clipped optimal algorithm and another based on the Bouc-Wen model of the damper. As a result, the
experiments show a reduction in both acceleration and displacement responses. Furthermore, the power
spectral density of the displacement of each floor decreased with both controllers. It was also found that
the structure response decreased with the controller based on the modified clipped optimal algorithm
making use of less control effort.





Chapter 8

Conclusions and future work

The main goal of this dissertation was to design semiactive controllers for magnetorheological dampers
in order to mitigate vibrations in adaptronic systems. This problem is characterized by the existence of
different factors such as nonlinear dynamics, parametric uncertainties, unknown disturbances and limited
measurements. As discussed in Chapter 1, most of the existing solutions to this problem are based on
time domain control techniques and others ignore the nonlinear dynamics of the MR damper.

The main contribution of this dissertation is, thus, the development of different semiactive control
approaches that are capable of dealing with the nonlinearities, uncertainties, unknown disturbances and
limited measurements of the system. Furthermore, control algorithms are developed in time (Backstep-
ping), frequency (QFT) and time/frequency (H2/H∞) domains. Specifically, the contributions of the
dissertation can be summarized as follows:

• In Chapters 1 - 4, an exhaustive study on the vibration mitigation problem in flexible structures
was carried out. The search was focused on the solutions provided by the use of MR dampers.
In consequence, a detailed study of this device was also presented and emphasis was made on
the mathematical modeling of the damper. Comparison between parametric and non-parametric
models was made. As a result, the Bouc-Wen model was chosen as a good system to represent
the damper dynamics due to its numerical simplicity and accuracy. Moreover, this model suits
well for control formulation as proposed in this dissertation. Finally, all the structure models used
throughout the dissertation and the innovative experimental platform for validation were described
in detail.

• In Chapter 5, control algorithms based on the Backstepping technique were proposed. This is a
time domain technique based on the Lyapunov stability theory and it allows working with nonlinear
systems. Thanks to this control technique, the nonlinear dynamics of the MR damper could be in-
troduced in the controller formulation in a natural way. Furthermore, the parametric uncertainties
of the structure were considered by adding adaptation terms. Unknown disturbances were also taken
into account by adding some constraints during the controller formulation. Finally, the controller
could be implemented with the need of a few measurements. For comparison purposes, two back-
stepping controllers were designed: one incorporating the dynamics of the MR damper; the other
one based on the clipped optimal algorithm which does not take into account the damper dynamics.

The backstepping controllers were designed and tested for different systems, namely, a base iso-
lated 10-story building (numerically tested), a 3-story building with one MR damper (experimen-
tally tested) and a vehicle semiactive suspension system (experimentally tested). As a result, a
significant mitigation of vibrations was achieved through the reduction of the structure response in
displacements and accelerations. Furthermore, the backstepping controller designed by incorporat-
ing the damper dynamics in the formulation performed, in general, better than the other with a
reduction in the control effort.

• In Chapter 6, control algorithms based on Quantitative Feedback Theory (QFT) were proposed.
This is an important contribution of this research since, as discussed in the initial chapters, little
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work has been done to solve the vibration problem using frequency domain techniques. The QFT
methodology allows to incorporate different constraints in the control formulation, particularly, but
not limited to, frequency domain constraints. In this research, the controllers were formulated in
such a way that all the design constraints were accomplished at the natural frequencies of the sys-
tem. The controllers were designed for two structures: a 6-story building with two MR dampers
(numerically tested) and a 3-story building with one MR damper (experimentally tested).

The key point of this controller formulation was the inclusion of the damper dynamics. QFT tech-
niques were initially developed for LTI systems but it is possible to extend it to nonlinear systems.
In order to apply this methodology to the problem in question, a particular model for the MR
damper was proposed. It was modeled as an uncertain linear system whose dynamics approxi-
mately reproduce the actual dynamics of the damper. Two controllers were designed, like in the
backstepping case: one based on the damper dynamics, and another one based on a modification
of the clipped optimal algorithm.

The controllers were tested numerically and experimentally, and as a result, it was found that
the structure response was reduced in comparison to the cases where no damping devices were
actuating. Moreover, the controller formulated including the damper dynamics presented a similar
performance to the other one but making use of less control effort.

• In Chapter 7, an output feedback mixed H2/H∞ controller was proposed and experimentally tested.
This technique combines time domain specifications (H2 control) and frequency domain specifica-
tions (H∞ control). Through linear matrix inequalities (LMIs) formulation, it is possible to set
constraints in such a way that both specifications are accomplished simultaneously. One important
point to highlight here is that the technique allows to design the controller with a few output mea-
surements.

The controller was designed for the 3-story building and only acceleration measurements were
considered. An algorithm was proposed to include the damper dynamics in the final control law.
Experimental results showed a reduction in the structure response.

The controllers developed during this research accomplished the main objective, that is, reduced the
displacement response of the structure (improving safety conditions) and the acceleration response (im-
proving comfort). The controllers achieved a good degree of performance in comparison to two extreme
cases: when there are no damping devices in the structure and when the damping devices are actuating
at their maximum rate constantly (acting as purely passive devices). In comparison to uncontrolled
cases, there is a significant reduction in both displacement and acceleration responses. In comparison
to the passive cases, semiactive controllers improve, in general, the acceleration response while keeping
a similar displacement response. This trade-off between acceleration and displacement response reduc-
tion is achieved thanks to the management of the energy resources provided by the semiactive controllers.

Among all of the controllers developed, the backstepping ones performed better, achieving higher
structural responses than others. This can be caused by the fact that the backstepping methodology
allows to include the nonlinear dynamics of the damper directly into the controller formulation. In the
case of the QFT methodology, it is necessary to make an approximation of the nonlinear dynamics of the
damper so that the controller can be formulated. The conservativeness of this approach may decrease the
overall performance in comparison to the backstepping controllers. The same happens in the case of the
H2/H∞ methodology; the fact that the dynamics of the damper are not accounted for directly during the
controller formulation may lead to an average performance in comparison to the other controllers. The
different degrees of performance obtained is something that should be expected and it has to be pointed
out that each methodology offers diverse options that better suit to particular problems than others.

Based on the research progress of the thesis, the research activities are being carried out recently in
two fields.
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First, some alternative approaches for modeling and parameter identification of nonlinear dynamics
are being investigated (Karimi, Zapateiro & Luo 2009c, 2008c). As a novelty, wavelets analysis is used for
handling the nonlinear hysteretic terms. By using Haar wavelets, the properties of integral operational
matrix and product operational matrix are introduced and utilized to find an algebraic representation
form instead of the differential equations of the dynamical system. Consequently, parameter estimation
is reduced to the solution of some algebraic equations which is simpler than solving systems of differential
equations.

On the other hand, different studies are being done to handle the time delays in networked adaptronic
systems in order to guarantee the stability and robustness of the controlled systems. An efficient ap-
proach has been developed for robust mixed H2/H∞ delayed state feedback control problem of uncertain
neutral systems with discrete and distributed time-varying delays. New required sufficient conditions
are established in terms of delay-range-dependent LMIs combined with the Lyapunov-Krasovskii method
for the existence of the desired robust mixed H2/H∞ control such that the resulting closed-loop system
is asymptotically stable and satisfies both H2 performance with a guaranteed cost and a H∞ level of
performance (Karimi, Zapateiro & Luo 2008d). Also, new stability criteria for the stability analysis of
the neutral systems with nonlinear parameter perturbations based on a descriptor model transformation
have been developed (Karimi, Zapateiro & Luo 2009b,a). As an application study, delay-dependent state-
and output feedback aspects of H∞ control for vehicle engine-body vibration systems with a time-varying
actuator delay have been developed (Karimi, Zapateiro & Luo 2008a).

Furthermore, the following research topics will be investigated in future:

• Extension of the obtained results to systems with other types of nonlinearities (friction, backlash,
etc).

• Application to the vibration control of high rise buildings and long span bridges, and other mecha-
tronic systems like aeronautic structures.

• Development of decentralized control schemes to enhance the reliability of the adaptronic systems.

• Development of autonomous damage and vibration control systems capable of making simultaneous
damping of structural vibrations and detection of damage.
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