

ROBUSTNESS ON RESOURCE ALLOCATION
PROBLEMS

Víctor MUÑOZ SOLÀ

ISBN: 978-84-694-2594-7
Dipòsit legal: GI-372-2011
http://hdl.handle.net/10803/7753

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX ha estat autoritzada pels titulars dels
drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i
docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a
disposició des d’un lloc aliè al servei TDX. No s’autoritza la presentació del seu contingut en una
finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la
tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la
persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR sido autorizada por los
titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en
actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su
difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su
contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis
es obligado indicar el nombre de la persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions: Spreading
this thesis by the TDX service has been authorized by the titular of the intellectual property rights only
for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading and availability from a site foreign to the TDX service. Introducing its
content in a window or frame foreign to the TDX service is not authorized (framing). This rights affect
to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of
the thesis it’s obliged to indicate the name of the author.

http://www.tdx.cat/TDX-xxxxxxxxxx/
http://www.tesisenxarxa.net/
http://www.tesisenred.net/
http://www.tesisenxarxa.net/

UNIVERSITAT DE GIRONA

ESCOLA POLITÈCNICA SUPERIOR

PhD Thesis

Robustness in Resource Allocation

Problems
by

Vı́ctor Mu ñoz i Sol̀a

Advisors

Dr. Dı́dac Busquets i Font

Thesis submitted in partial fulfillment of the requirementsfor the degree of Doctor of Philosophy (Major

subject: Computer Science) at the University of Girona

2010

i

Robustness in Resource Allocation

Problems

A thesis submitted in partial fulfilment of the requirementsfor the degree of Doctor of Philosophy

at the Universitat de Girona

Author:

Vı́ctor Muñoz i Solà

Advisor:

Dr. Dı́dac Busquets i Font

Programa de Doctorat: Tecnologies de la Informació

Departament d’Electrònica, Informàtica i Automàtica

iii

Contents

Abstract vii

Resum ix

Acknowledgements xi

List of Figures xiv

List of Tables xv

List of Acronyms and Abbreviations xvii

1 Introduction 1

1.1 Motivations .. . 1

1.2 The Topic of this Research 2

1.3 Objectives .. . 4

1.4 Statement of the Thesis 5

1.5 Publications 5

1.5.1 Journals . 6

1.5.2 Articles in conferences 6

1.6 Awards . 7

1.7 Outline of the Thesis 8

2 Background 11
2.1 Resource Allocation 11

2.2 Auctions .. 13

2.2.1 Auction Mechanisms Classification 14

2.2.2 Auction Phases .15

2.2.3 Incentive Compatibility 16

2.3 Combinatorial Auctions 17

2.3.1 Example . 18

2.3.2 The Winner Determination Problem 19

2.3.3 Experiments with Combinatorial Auctions 20

2.3.4 Optimal Algorithms for Combinatorial Auctions 21

2.3.5 Summary of combinatorial auctions solvers 25

2.4 Robustness .. 26

2.4.1 Propositional satisfiability 27

2.4.2 Satisfiability Modulo Theories 28

2.4.3 Pseudo-Boolean .29

2.4.4 Supermodels . 30

2.4.5 Super Solutions .. 30

2.4.6 Weighted Super Solutions 31

2.5 Robustness in Auctions 32

2.6 Summary . 33

iv

3 Sensitivity Analysis 35

3.1 Introduction 35

3.2 Reallocation and Full-reparability 36

3.3 Repair Size Analysis 38

3.4 Summary . 41

4 Robustness of Resource Availability 43

4.1 Schematic View .. . 43

4.2 Auctions as partial weighted Max-SAT problems 44

4.3 Robust auctions as partial weighted Max-SMT

problems . 45

4.3.1 Robust auctions as robust partial weighted Max-SAT problems 46

4.3.2 Robust partial weighted Max-SAT as partial weighted Max-SMT 48

4.3.3 Robustness with cardinality constraints 51

4.4 Example .54

4.4.1 Pseudo-Boolean Formulation 58

4.5 Other robustness notions 59

4.6 Experimentation 59

4.7 Summary . 63

5 Flexible Robustness 65

5.1 Adding Flexibility 65

5.2 Formalization of Flexibility 65

5.3 Experimentation 67

5.4 Summary . 74

6 Incentive Compatibility 77

6.1 Incentive Compatible Mechanisms 77

6.2 Non-Incentive Compatibility with Restricted Robustness 77

6.3 Incentive Compatibility in the General Case 79

6.3.1 Counter-example Model .. . 79

6.3.2 Counter-example Iterative Search 81

6.4 Summary . 83

7 Robustness for Recurrent Auctions 85

7.1 Recurrent Auctions 85

7.2 Case Example: The Waste Water Treatment Plant Problem 85

7.3 Learning Agents Behavior 87

7.3.1 Trust model . 88

7.3.2 Risk function .89

7.3.3 Robust solution generation 90

7.3.4 Experimentation .. 90

7.4 Summary . 93

8 Conclusions and Future Work 95

8.1 Summary . 95

8.2 Contributions 96

8.3 Future Work .. 97

v

8.3.1 Robustness Notions .. . 97

8.3.2 Quantified COP . 98

8.3.3 Scalability .98

8.3.4 Search Algorithms .. 98

8.3.5 Incentive-Compatibility 98

8.3.6 Recurrent Auctions .. . 99

Appendices 101

A Benchmarks with the WWTP Problem 103
A.1 The WWTPP Problem .103

A.2 Modeling the WWTPP with SMT .. . 104

A.2.1 Constants . 104

A.2.2 Variables . 105

A.2.3 Constraints .105

A.3 IP modeling .. 106

A.4 Benchmarking .. . 107

A.5 Comparison with Constraint Programming 108

A.6 A different approach for Constraint Programming 110

A.7 Summary . 112

B Winner Determination Algorithm for Single-unit Combinat orial Auctions 113
B.1 Introduction 113

B.2 Notation .. 113

B.3 The Algorithm .. 114

B.3.1 First phase: Pre-processing 114

B.3.2 Second phase: Upper and Lower Bounding 117

B.3.3 Third phase: Search .. 118

B.4 Results .. 119

B.5 Conclusions .. . 120

Bibliography 123

vii

Abstract

Real world resource allocation problems, where a set of tasks with different requirements have to be

assigned a set of resources, usually include uncertaintiesthat can produce changes in the data of the

problem. For instance, in scheduling the duration or the start time of the tasks could change (due

to delays and tasks taking more time than expected). These changes may cause difficulties in the

applicability of the solution. Research in approaches thatconsider data uncertainty while looking for

a solution is gaining importance recently, due to the wide use of such problems in many domains.

Solutions that are able to overcome (up to a given degree) thepossible changes that can occur in the

environment are calledrobust solutions. Auctions are a typical application of resource allocations

problems, and uncertainty in this scenario may cause some ofthe auctioned resources to be not

available.

This thesis is focused in finding robust solutions against resource unavailability for auctions. Our

notion of robustness is based on resources that become unavailable once an allocation of the auc-

tioned items has been found. We begin with an extensive studywith the aim of quantifying the

effects of unavailable resources in the revenue of the auction. Then, we mathematically formalize

this concept of robustness and propose an approach for finding such robust solutions in combina-

torial auctions. In our approach, we first extend previous works on encoding auctions as weighted

Max-SAT formulas. Particularly, our approach is sustainedin propositional logic and that in turn

allows the model to be able to be applied in any Boolean formula, being auctions a particular case.

We then present a mechanism to add flexibility to robust solutions, based on supermodels for the

Boolean satisfiability framework (SAT). Our approach is flexible in the sense that it allows to easily

set the desired degree between optimality and robustness. In addition, we study the balance between

optimality and robustness of the solutions and discuss the reasoning that could be made in order to

choose the desired trade-off between optimality and robustness.

We also analyze the strategy-proofness of our approach in order to force the participants to express

their true valuations, and therefore avoid possible manipulations in the prices of the auction. We

will show that although our robustness mechanism is not incentive compatible in a restricted case

where only a subset of the resources can fail (the breakage set does not include all the items), for the

generic case the same proof does not hold and furthermore we provide two procedures to support

the idea that our robust approach is actually incentive compatible in practical cases.

ix

Resum

Els problemes d’assignació de recursos realistes, on un conjunt de tasques amb diferents carac-

terı́stiques han d’ésser assignades a un conjunt de recursos, normalment incorporen incerteses que

poden produir canvis en les dades del problema. Per exemple,en alguns problemes de planificació,

la durada o el temps inicial de les tasques pot canviar (deguta retards o tasques que triguen més del

previst). Aquests canvis poden dificultar l’aplicabilitatde la solució. La recerca en tècniques que

consideren la incertesa alhora de cercar les solucions est`a guanyant importància darrerament gràcies

a l’àmplia utilització d’aquest tipus de problemes en múltiples dominis.

Les solucions que siguin capaces de superar (dins d’uns lı́mits) els possibles canvis en l’entorn són

anomenadessolucions robustes. Les subhastes són una aplicació tı́pica dels problemes de satisfacció

de restriccions, i la incertesa en aquest escenari pot causar la indisponibilitat d’alguns dels recursos

subhastats.

Aquesta tesi es centra en trobar solucions robustes en subhastes on els recursos poden passar a ser

no disponibles. La nostra noció de robustesa es basa en recursos que esdevenen indisponibles un

cop aquests ja han estat subhastats i assignats. Comencem amb un estudi que té com a objectiu

quantificar l’efecte que els recursos indisponibles produeixen en els ingressos de la subhasta. En

la nostra aproximació, primer estenem treballs anteriorsper codificar subhastes en fórmules del

tipus “weighted Max-SAT”. Particularment, la nostra aproximació es basa en lògica proposicional i

aquest fet permet al model ser aplicable a qualsevol fórmula booleana, essent les subhastes només

un cas particular. També presentem un mecanisme per a afegir flexibilitat a les solucions robustes

basat en supermodels, en el marc de la satisfactibilitat Booleana (SAT). La nostra aproximació és

flexible en el sentit de que permet establir fàcilment el punt desitjat entre robustesa i optimalitat.

Addicionalment, estudiem el balanç entre la optimalitat ila robustesa de les solucions i discutim el

raonament que es podria fer per tal d’escollir el punt més apropiat entre optimalitat i robustesa.

També analitzem la manipulabilitat de la nostra aproximació amb l’objectiu de forçar als participants

a informar de les seves valuacions reals, i aixı́ evitar que disminueixin els preus de la subhasta pel

seu propi benefici. Demostrarem que tot i que el nostre mecanisme de robustesa no impedeix la

manipulabilitat en un cas restringit on només un subconjunt dels recursos poden fallar (el conjunt de

trencament no inclou tots els recursos), la prova no es pot estendre al cas genèric, i de fet presentem

dos procediments que reforcen el fet que la nostra aproximació de robustesa no és manipulable en

casos pràctics.

xi

Acknowledgements

I would like to give thanks to all the people that has helped meduring my PhD. First of all, I want to

thank my supervisor Dı́dac Busquets, who has guided my research and revised all my work. He has

been always available whenever I have needed his help. I could not have written this thesis without

his priceless help. Secondly, to Beatriz López, who was my supervisor only during my first year of

PhD, but has continued always encouraging my work and providing useful comments.

I also wish to express my gratitude for the support of the eXiT(Control Engineering and Intelligent

Systems) research group, and to all the people working there, specially to my PhD mate Javier

Murillo. All of them have contributed to make these years better.

My most sincere appreciation to the Cork Constraint Computation Centre (4C) at the University of

Cork, Ireland. Specially to Dr. Alan Holland, who accepted me as a research visitor and helped in

many aspects of my work.

Miquel Bofill and Mateu Villaret also deserve special thanksfor introducing me to SAT and SMT,

and specially, for their inestimable help in the mathematical parts of this thesis (proofs, theorems,

lemmas, etc.).

This thesis has been done with the support of the Commissioner for Universities and Research of

the Department of Innovation, Universities and Company of Generalitat of Catalonia and of the

European Social Fund, with the support of the University of Girona BR Grant program, with the

support of Spanish Ministry of Science and Innovation MICINN project SuRoS (TIN2008-04547)

and Desarrollo y aplicación de técnicas de resolución deproblemas de scheduling en entornos multi-

agente (TIN2004-06354-C02-02).

xiii

List of Figures

2.1 Auctions classification 14

2.2 Auction phases. 16

2.3 Partition into bins. 22

2.4 Branch on items (left) versus branch on bids (right) formulation. Figure extracted

from [16]. 24

2.5 Example of (1,0)-super solution reformulation for CP. 31

3.1 Example of dominated bids. 36

3.2 Reallocation results. (a) Arbitrary, (b) Arbitrary without dominated bids, (c) Match-

ing, (d) Matching without dominated bids, (e) Paths, (f) Paths without dominated

bids. 38

3.3 Reallocation results. (a) Regions, (b) Regions withoutdominated bids, (c) L7, (d)

L7 without dominated bids. 39

3.4 Full-reparability results. (a) Arbitrary, (b) Arbitrary without dominated bids, (c)

Matching, (d) Matching without dominated bids, (e) Paths, (f) Paths without domi-

nated bids. 40

3.5 Full-Reparability results. (a) Regions, (b) Regions without dominated bids, (c) L7,

(d) L7 without dominated bids. 41

3.6 Repair size analysis. (a) Without dominated bids, (b) With dominated bids. 41

4.1 Schematic view. 44

4.2 Optimal solution. Winning bids are those encircled. 55

4.3 Repair solution when good2 turns unavailable. Prohibition signs denote initially

winning bids which are changed to losers. Dashed circles denote new winning bids. . 56

4.4 Optimal robust solution. 56

5.1 Optimality varyingb andβ. 68

5.2 Robustness varyingb andβ. 68

5.3 Optimality varyingb andα. 74

5.4 Robustness varyingb andα. 74

6.1 Modified example. .. . 78

6.2 Iterative procedure for finding a counter-example. 82

7.1 Water treatment system 86

7.2 Trust model. .. . 89

7.3 Risk attitude function: (a) averse, (b) proclive. 89

7.4 Disobey probability function. 93

B.1 Examples of (a) dominated item (it1), (b) solution bid (b1), (c) dominated and (d)

2-dominated bids. .115

B.2 Left: Example of pseudo-dominated bid (b1 is pseudo-dominated). Right: Example

of compatibility-dominated bid (b2 is compatibility-dominated byb1). 115

xiv

B.3 Pseudo-code algorithm of iCabro procedure 118

B.4 Left: Global comparative. Right: Comparative over distributions. 119

xv

List of Tables

2.1 Combinatorial auction example 18

2.2 Auction solvers comparative. 26

2.3 Propositional satisfiability variants. Satisfied clauses are shown in boldface. 28

4.1 Experimentation results with Yices. 60

4.2 Experimentation results with BSOLO and SCIP. 61

4.3 Experimentation results with CPLEX and GLPK. 62

5.1 Experimentation results: averages of 50 auction instances of 15 bids for each con-

figuration. 69

5.2 Experimentation results: averages of 50 auction instances of 20 bids for each con-

figuration. 70

5.3 Experimentation results: averages of 50 auction instances of 25 bids for each con-

figuration. 71

5.4 Experimentation results: averages of 50 auction instances of 30 bids for each con-

figuration. 72

6.1 Combinatorial auction example of [37]. 78

7.1 Simulation results. 92

A.1 SMT vs. IP . 108

A.2 SMT vs. CP . 109

A.3 Cumulative modeling 111

B.1 Finished auctions (F), not finished auctions (¬F) and percentage of finished auc-

tions (%) before the timeout. 120

xvii

List of Acronyms and Abbreviations
CA : Combinatorial Auction

CABOB : Combinatorial Auction Branch On Bids

CASS : Combinatorial Auction Structured Search

CATS : Combinatorial Auctions Test Suite

CNF : Conjunctive Normal Form

COP : Constraint Optimization Problem

CP : Constraint Programming

CSP : Constraint Satisfaction Problem

DCOP : Distributed Constraint Optimization Problem

DPSB : Discriminatory Price Sealed Bid

FPSB : First Price Sealed Bid

GLB : Global Lower Bound

GLPK : Gnu Linear Programming Kit

IDA : Iterative Deeping A*

ILP : Integer Linear Programming

LIA : Linear Integer Arithmetic

LP : Linear Programming

LRA : Linear Real Arithmetic

MIP : Mixed Integer Programming

MUCA : Multi-Unit Combinatorial Auction

NP : Non-deterministic Polynomial-Time

PB : Pseudo-Boolean

QF : Quantifier Free

RAP : Resource Allocation Problem

SAT : Satisfiability

SMT : SAT Modulo Theories

SPSB : Second Price Sealed Bid

xviii

SS : Super Solutions

UPSB : Uniform Price Sealed Bid

VCG : Vickrey Clarke Groves (Generalized Vickrey Auction)

WDP : Winner Determination Problem

WSS : Weighted Super Solutions

WWWTPP : Waste Water Treatment Plant Problem

1

CHAPTER 1

Introduction

This chapter gives a brief introduction to the topics discussed in this thesis. First, an introduction of

the weaknesses in resource allocation problems is presented in order to motivate the development of

this research. After that, the concrete topic of this dissertation is accurately delimitated. Then, a set

of objectives are established in order to evaluate the quality of this work. This chapter ends with the

list of publications that have come out during the progress of this research and a description of the

structure of this report.

1.1 MOTIVATIONS

Researchers in mathematical optimization have been historically concerned in developing and im-

proving algorithms for particularly hard problems where the inputs (the data that defines the prob-

lem) are known and static. In real world situations, however, such data is not so precisely known;

instead, there is usually some degree of uncertainty that may change the values of some variables

in some circumstances. These changes in the data may cause difficulties in the applicability of the

solutions found with the initial values.

In resource allocation problems, where a set of tasks with different requirements have to be assigned

a set of resources, uncertainty appears as unpredictable events that may change both the characteris-

tics of the resources to allocate and the requirements of thetasks to be performed. In this situation

it is possible that even a very small change in the inputs of the problem causes the optimal solution

to become completely unfeasible. For instance, a task taking a little more time than expected to be

performed, could cause the following task to not being performed at its scheduled time, which could

in turn cause a collapse of the whole schedule. This weakness, originated by the inherent uncertainty

that typically accompanies real world problems, motivatesthe research in approaches that consider

data uncertainty while looking for a solution, so that the obtained solution is able to overcome (up

to a given degree) possible changes that may occur, i.e. it isa robust solution.

Clearly, the price of robustness is optimality [5], since generally the optimal solution to a problem is

not robust, and consequently most of the robust solutions are sub-optimal. This fact turns the prob-

lem into a multi-objective one, where the two objectives (robustness and optimality) are conflicting.

In some systems that require providing functionality in adverse situations, robust solutions are usu-

ally preferred since the loss of optimality can be overcome by the increase in applicability of those

robust solutions. However, in the domains where the benefit depends directly on the optimality, ro-

bustness is usually sacrificed. In general, the desired degree of robustness needs to be identified for

each case after a thorough analysis.

Although we all agree that robustness is a desired quality inmany practical applications, it is cer-

2

tainly a quite vague term and it is therefore not easy to typify such robustness on the whole for any

possible optimization problem involving uncertainty. Instead, we first need a proper and concise

definition of the following concepts:

• the resource allocation problem itself,

• the implications of the uncertainty in its data, and

• the exact meaning of a robust solution in this setting

In order to deal with the first point, in this thesis we adopt auctions [49] as the means to define the

resource allocation problem. Auctions are an ancient economical mechanism to sell a set of items

to a group of buyers, where the buyers express their interestin the items by sending bids, and the

auction is used both to decide the winners of the items and theprice of the items. In the last years

auctions have been increasingly used to deal with resource allocation problems, since they enable an

efficient distribution of resources amongst the buyers. An auction is simply, but also strictly, defined

with a set of items to sell (resources), and a set of bids requesting them at a given price. This strict

definition gives a concise and proper modeling of resource allocation problems.

In this context, the implications of data uncertainty in an auction can be straightforwardly defined

as either changes in the resources or in the bids. A change in aresource would imply that either

the resource disappears or its capacity decreases1 (in the case of multi-unit resources). On the other

hand, as the bids are composed by the (set of) requested resources and its price, a change in a bid

could be an alteration of any of these values. Some researchers have also considered another kind

of change concerning the bids: the bid withdrawal [36], where a winning bid reneges on it and does

not neither want the item/s nor paying the agreed quantity. This fact could cause an unacceptable

loss in revenue for the auctioneer if some “critical” winning bid is withdrawn, and therefore a robust

solution guaranteeing that possible bid withdrawals can beeasily repaired with a restricted loss in

revenue is desired.

Regarding the exact meaning of a robust solution, it is usually defined as its ability to absorb the

changes of the environment caused by uncertainties. This ability can be mainly understood from

two points of view:

• if the solution remains valid when breakages happen

• if the solution is easilyreparablewhen a breakage occurs

In terms of an auction, a robust solution is one that the set ofwinning bids does not cause problems

(loss of revenue, spare items, etc.) to the auctioneer when unexpected changes happen.

1.2 THE TOPIC OF THISRESEARCH

In this research we focus mainly in a concrete class of auctions that are known as combinatorial

auctions [16], which are a generalization of auctions wherethe bidders are able to place bids on

1Increases in the resources availability are naturally not considered as they do not negatively affect the applicability of the

solution.

3

bundles of items rather than just on individual items. This generalization is needed in order to be

able to represent the kind of resource allocation problems that we are interested in.

As we will see in the following chapter, there has already been some work in robustness for com-

binatorial auctions, mostly focused in changes in the bids,and concretely in the problem of bid

withdrawal [36]. Therefore, in our work we will deal with another kind of uncertainty that may

affect an auction, that is, changes in the resources. More concretely we will consider the resource

unavailability problem, which happens when a resource becomes unavailable once the auction has

been solved (the winning bids have been selected and announced) but before the resources have been

given to the winning bidders. Regarding the robustness of the solutions, we give a definition of a

robust solution that is based on the maximum number of changes in the environment (caused by

inherent uncertainties) and the maximum size of the repair.This definition allows us to cover the

two previous definitions of robust solutions, given that setting a maximum size of the repair of zero

actually means that the solution must remain valid when changes in the environment happen, while

any size greater than zero enables a repair.

As far as we know, this concept of robustness considering resource unavailability based on repairable

solutions has not been studied before. However, it is not because it is an insignificant problem, but

because typical applications of auctions do not have a long transaction phase (the time in which the

items are delivered to the agents) and, therefore, unavailable resources are simply not auctioned.

Nowadays, auctions are being applied to a wide range of real world domains, some of them having

a long transaction phase, where some of the resources may turn unavailable after an allocation has

been found. This thesis will be focused on the analysis and development of techniques for finding

robust solutions for such resource allocation problems.

As an example, consider a (combinatorial) auction designedfor assigning rooms for simultaneous

conferences. In the building where the conferences are allocated, there are several available rooms

with different characteristics, such as total capacity, availability of projector, air conditioning, chair

style, etc. Each conference organizer would bid for (possibly multiple) combinations of rooms,

according to the conference’s needs (number of participants, number of parallel sessions, conference

requirements, etc.). The auction would be executed a few weeks before the conferences start because

some preparatives would be made in the rooms, and also the conference programs should be designed

and printed with the rooms’ location information. Nevertheless, right before the actual use of the

rooms, or even worse, during the conferences, unexpected events could happen (as for example a

projector in a room that is broken, a room that needs some maintenance or repair works, not to

mention fires, floods or any other disaster), causing the unavailability of some rooms. In such a

case, it would be reasonable to make as few changes as possible in the rooms assignments, instead

of finding a new (maybe completely different) allocation, inorder to minimize the inconveniences

caused by other room reassignments. Therefore if a robust solution is searched in the first assignment

(instead of an optimal), such solution would be ready to minimize the effects of unforseen events,

maybe only requiring few changes to the organizers and thus avoiding possible conflicts.

There are many other domains where the problem of resources that become unavailable after the

auction has been solved comes out, as for example the assignment of rooms in a hotel to client

demands, the allocation of sportive events in sport complexes, the placing of vacation days for the

employees in a company, etc. Therefore, robustness for resource unavailability is indeed applicable

to many domains today, and in the future will probably be a deciding point in many critical real

4

world applications.

In summary, in this thesis we will analyze the up till now unexplored problem of resource unavail-

ability in combinatorial auctions with repairable solutions. We will first quantify the effects that

resources becoming unavailable cause in the revenue of the auction, in a set of real world scenarios.

We will mathematically formalize this concept of robustness and propose an approach for finding

such robust solutions in combinatorial auctions. Our approach is flexible in the sense that it allows

to easily set the desired degree between optimality and robustness. Particularly, our approach is

sustained in propositional logic [9] and that in turn allowsthe model to be able to be applied in any

Boolean formula, being auctions a particular case.

1.3 OBJECTIVES

The objectives that we set to this thesis can be grouped in fivemain groups:

• the quantification of the negative effects that resources that become unavailable in combinato-

rial auctions produce to the auctioneer

• the design of a mechanism to incorporate robustness based onrepair solutions in order to avoid

this problem

• the adaptation of that mechanism to add flexibility in the solutions so that the desired degree

between optimality and robustness can be easily set

• the study of the strategy proofness of the proposed mechanism

• the evaluation of the results obtained using the proposed methods, varying the different avail-

able parameters; and an analysis of the trade-off between optimality and robustness of the

solutions

The problem of resource unavailability in combinatorial auctions has not been studied before. The

reason for that is because current applications domains of combinatorial auctions did not have to

deal with this problem, but now that combinatorial auctionsare becoming more popular and are

being applied to domains with long transaction phases, thisproblem cannot be neglected any more.

The first objective of this research is to measure the consequences of such problem which will

raise the necessity of incorporating robustness. Extensive analysis are performed in different auction

distributions modeling various real world scenarios, in order to quantify the implications of resources

that become unavailable after a solution to the combinatorial auction has been found in a wide range

of applications.

In the related work chapter, we will see that supermodels [25] and super solutions [30] have been

successfully applied to add robustness in propositional satisfiability (SAT) and constraint program-

ming (CP) respectively. We also use them for our approach concerning resource unavailability. Thus,

the second objective of this thesis consists in the adaptation of the existing supermodels (for SAT)

to our notion of robustness. For this purpose we will extend (generalize) the existing encoding of

a combinatorial auction to a SAT formula, so that it will be able to model the two definitions of

robustness (solutions that either remain valid or are easily reparable).

5

Although the generalized encoding for finding super solutions will allow us to find robust solutions to

combinatorial auctions concerning resource unavailability, we will show that such encoding is quite

strict as it may not produce any solution in some particularly restrictive instances where no com-

pletely robust solution exists. Therefore, the third objective of this work is to incorporate flexibility

to the robustness mechanism with the aim of being able to produce solutions in adverse situations,

furthermore allowing to define the desired balance point between optimality and robustness and thus,

converting it into a more reliable tool.

An auction mechanism is said to be strategy-proof if it neverrewards the participants that do not

inform their true preferences. This is the reason why in manyreal applications only strategy-proof

mechanisms are used. The fourth objective of this thesis will be to analyze the strategy-proofness of

the proposed robustness mechanism.

Finally, our approaches will be evaluated. We will perform experiments in a wide range of instances

of combinatorial auctions generated with a tool that lets ustest with real-world-like instances. With

the obtained results, we will analyze in detail the solutions to see if the problem of resource unavail-

ability is effectively solved with the proposed robustnessmechanism and how it affects the goodness

of the solutions. Furthermore, we will study the trade-off between optimality and robustness of the

solutions and discuss the reasoning that could be made by a real user in order to choose the desired

balance point.

1.4 STATEMENT OF THE THESIS

The thesis can be stated as follows:

In combinatorial auctions resources that become unavailable after a solution has been found can

cause large losses in revenue for the auctioneer. Robust solutions can be defined based on the

maximum number of breaks (resources that become unavailable) allowed, the maximum size of the

repair, and the minimum acceptable revenue for the auctioneer in any case. It is also possible for

this robustness to be flexible, allowing to easily set the desired balance point between optimality and

robustness.

1.5 PUBLICATIONS

The work developed in the last four years within the eXiT group2 at the University of Girona has

led to several publications in the field of Artificial Intelligence. Although some of them have not

specifically focused on robustness, they constitute an indicator of the acquired knowledge concerning

related areas such as resource allocation problems, constraint satisfaction and optimization problems,

combinatorial auctions, fairness, trust & reputation and propositional satisfiability.

The list of publications related to this research that have been published as either articles in journals

or in conference proceedings are the following (ordered by year):

2Control Engineering and Intelligent Systems Group, http://exit.udg.edu

6

1.5.1 JOURNALS

• Javier Murillo, Beatriz López,Vı́ctor Mu ñoz, Dı́dac Busquets. “Fairness in Recurrent Auc-

tions With Competing Markets and Supply Fluctuations”.Computational Intelligence, 2010.

In press.

• Javier Murillo, Vı́ctor Mu ñoz, Dı́dac Busquets, Beatriz López. “Schedule Coordination

through Egalitarian Recurrent Multi-unit Combinatorial Auctions”.Applied Intelligence, Springer,

2009. Online version available.

• Beatriz López,Vı́ctor Mu ñoz, Javier Murillo, Federico Barber, Miguel ngel Salido, Montser-

rat Abril, Mariamar Cervantes, Luis F. Caro, Mateu Villaret. “Experimental Analysis of Op-

timization Techniques on the Road Passenger Transportation Problem”. Engineering Appli-

cation of Artificial Intelligence 22, pp. 374-388, (Ed. Elsevier Science), ISSN: 0952-1976,

2009.

• Vı́ctor Mu ñoz, Javier Murillo. “Agent UNO: Winner in the 2nd Spanish ART competition”.

Inteligencia Artificial, Revista Iberoamerica de Inteligencia Artificial, ISSN 1137-3601, N. 39,

pp. 19-27, 2008.

1.5.2 ARTICLES IN CONFERENCES

• Vı́ctor Mu ñoz, Dı́dac Busquets. “Balancing Optimality and Robustness inResource Alloca-

tion Problems”.Nineteenth European conference on Artificial IntelligenceECAI 2010. Lis-

bon, Portugal. August 16-20, 2010.

• Vı́ctor Mu ñoz, Javier Murillo, Beatriz López, Dı́dac Busquets. “Strategies for Exploiting

Trust Models in Competitive Multiagent Systems”.Seventh German conference on Multi-

Agent System Technologies MATES 2009. Hamburg, Germany. September 9-11, 2009.

• Javier Murillo, Vı́ctor Mu ñoz, Beatriz López, Dı́dac Busquets. “Developing Strategiesfor

the ART Domain”. Conferencia de la Asociación Espãnola para la Inteligencia Artificial

(CAEPIA). Sevilla, Spain, November 9-13, 2009.

• Javier Murillo,Vı́ctor Mu ñoz, Beatriz López, Dı́dac Busquets. “A Fair Mechanism for Re-

current Multi-unit Auctions”.Sixth German conference on Multi-Agent System Technologies

MATES 2008, pp 147-158. Lecture Notes in Computer Science. Volume 5244/2008. Septem-

ber 2008. Kaiserslautern, Germany. September 23-26, 2008.

• Vı́ctor Mu ñoz, Dı́dac Busquets. “Robustness in Recurrent Auctions for Resource Allo-

cation”. Artificial Intelligence Research and Development. (Proceedings of 11th Catalan

Congress on Artificial Intelligence CCIA 08, pp. 70-79). IOSPress. 2008.

• Vı́ctor Mu ñoz, Javier Murillo. “CABRO: Winner Determination Algorithm for Single-unit

Combinatorial Auctions”.Artificial Intelligence Research and Development. (Proceedings of

11th Catalan Congress on Artificial Intelligence CCIA 08, pp. 303-312). IOS Press. 2008.

• Vı́ctor Mu ñoz, Dı́dac Busquets. “Managing Risk in Recurrent Auctions forRobust Resource

Allocation”. Proceedings of the 4th European Starting AI Researcher Symposium STAIRS

2008 (in ECAI), pp 140-150. Patras, Greece. July 21-25, 2008.

7

• Javier Murillo, Dı́dac Busquets, Jordi Dalmau, Beatriz López,Vı́ctor Mu ñoz. “Improving

Waste Water Treatment Quality Through an Auction-based Management of Discharges”.Pro-

ceedings of the 4th International Congress on Environmental Modelling and Software (iEMSs

2008), pp 1370-1377. Barcelona, Catalonia, Spain. July 7-10, 2008. ISBN: 978-84-7653-

074-0.

• Vı́ctor Mu ñoz, Javier Murillo, Dı́dac Busquets and Beatriz López. “Improving Water Quality

by Coordinating Industries Schedules and Treatment Plants”. AAMAS Workshop on Coordi-

nating Agent Plans and Schedules (CAPS). Honolulu, Hawaii,USA. May 16-18, 2007.

• Javier Murillo,Vı́ctor Mu ñoz, Beatriz López and Dı́dac Busquets. “Dynamic configurable

auctions for coordinating industrial waste discharges”.Fifth German conference on Multi-

Agent System Technologies MATES. Leipzig, Germany. September 24-26, 2007.

• Javier Murillo, Vı́ctor Mu ñoz, Dı́dac Busquets and Beatriz López. “Coordinating Agents’

Schedules through Auction Mechanisms”.Planning, Scheduling and Constraint Satisfaction,

The Conference of the Spanish Association for Artificial Intelligence (CAEPIA). Salamanca,

Spain. November 12-16, 2007.

• Javier Murillo andVictor Mu ñoz. “Agent UNO: Winner in the 2007 Spanish ART Testbed

competition”. Workshop on Competitive agents in Agent Reputation and Trust Testbed, The

Conference of the Spanish Association for Artificial Intelligence (CAEPIA). Salamanca, Spain.

November 12-16, 2007.

• Josep Lluı́s de la Rosa, Ricardo Mollet, Miquel Montaner, Daniel Ruiz andVı́ctor Mu ñoz.
“Kalman Filters to Generate Customer Behavior Alarms”.Artificial Intelligence Research and

Development, 10th Catalan Congress on Artificial Intelligence CCIA 07. Sant Julià de L̀oria,

Andorra. October 25-26, 2007.

• Vı́ctor Mu ñoz, Miquel Montaner and Josep Lluı́s de la Rosa. “Seat Allocation for Massive

Events Based on Region Growing Techniques”.Artificial Intelligence Research and Develop-

ment, 9th Catalan Congress on Artificial Intelligence CCIA 06. Perpignan, France. October

26-27, 2006.

1.6 AWARDS

While doing this research, we have participated in some national and international competitions and

presented parts of this work to various events with successful results. The following is the list of the

received awards:

• Best Paper Award in iEMSs 2008 for the paper “Improving WasteWater Treatment Quality

Through an Auction-based Management of Discharges”.

• Best Student Paper Award in MATES 2008 for the paper “A Fair Mechanism for Recurrent

Multi-unit Auctions”.

• Catalan Association for Artificial Intelligence (ACIA) second prize for the Master Thesis work

2009. Project title: Robust Combinatorial Auctions for Resource Allocation.

• Winner in the 2008 International ART (Agent Reputation and Trust) Testbed Competition.

Estoril, Portugal. May 12-16, 2008.

8

• 7th classified in the 2007 International ART (Agent Reputation and Trust) Testbed Competi-

tion. Honolulu, Hawaii, USA. May 14-18, 2007.

• Winner in the Second Spanish ART (Agent Reputation and Trust) Testbed Competition. Va-

lencia, Spain. March 26-27, 2007.

• 2006 Catalan Association for Artificial Intelligence (ACIA) Award to the best final career

project. Project title: Allocation algorithm for distributing attendants at F1 Grands Prix.

1.7 OUTLINE OF THE THESIS

This document is structured in 8 chapters, followed by two appendices, and a bibliography section

at the end:

• Chapter 1, Introduction. This first chapter has introduced the concept of robustness for re-

source allocation problems, established the topics that are going to be studied in this research,

and delimited the objectives of this thesis.

• Chapter 2, Background. In the second chapter, related work on robustness in generaland

concretely for combinatorial auctions is reviewed and a background for the areas that shall

be used in the rest of the document is given, namely, resourceallocation problems, auctions,

propositional satisfiability (SAT), SAT modulo theories (SMT), supermodels, super solutions

and weighted super solutions.

• Chapter 3, Sensitivity Analysis. The third chapter performs a “sensitivity analysis” of the

solutions in several combinatorial auctions instances in order to see the effects of resources

becoming unavailable in the revenue of the auctioneer. Thisanalysis provides a strong moti-

vation for our work.

• Chapter 4, Robustness against Resource Availability.This chapter formalizes the concept

of robustness based in resource unavailability and provides a modeling for obtaining such

robust solutions to SAT formulas. Some experiments appliedto combinatorial auctions are

performed using the presented model and the obtained results are analyzed and discussed.

• Chapter 5, Flexible Robustness.In this chapter the previous modeling is adapted in order to

incorporate flexibility so that a trade-off between optimality and robustness can be easily set

up. Again, some more experiments are executed to analyze theoutcome of this model, and a

more extensive analysis of the trade-off between optimality and robustness is performed.

• Chapter 6, Incentive Compatibility. This chapter discusses the strategy-proofness of the

proposed mechanism. Two methods for proving the non-monotonicity (a necessary condition

for being strategy-proof) of our approach are described andtested.

• Chapter 7, Robustness for Recurrent Auctions.Here we deal with the problem of recur-

rency in auctions, discuss the challenges that it poses and propose an approach for achieving

robust solutions based in a trust model.

• Chapter 8, Conclusions and future work. The last chapter presents the conclusions of this

work and provides some ideas for future work.

9

• Appendix 1, The WWTP Problem. The first appendix analyzes the Waste Water Treatment

Plant Problem (WWTPP), a case study that is used in some chapters for the experimentation.

It performs a benchmark of the different tools available to solve it.

• Appendix 2, Winner Determination Algorithm for Single-uni t Combinatorial Auctions.
The second appendix describes an algorithm for solving optimally combinatorial auctions that

was developed during this research with promising results.

11

CHAPTER 2

Background

In this chapter, we present a background of the topics used inthe rest of the document. First of all,

we introduce resource allocation problems (RAP) and auctions (specially combinatorial auctions)

as the mechanism used for dealing with them. Then, we review some generic approaches for ro-

bustness, later focusing on the mechanisms designed for propositional satisfiability and constraint

programming, namely supermodels and super solutions respectively. This background is needed for

our approach of robustness, which is based in a combination of supermodels and weighted super

solutions over satisfiability formulas. Finally, we present the current state-of-the-art on robustness

specifically for combinatorial auctions, while comparing the different techniques with the approach

we are proposing.

2.1 RESOURCEALLOCATION

Resource Allocation problems are an important topic in computer science as well as in economics

[12]. They consist in the assignment (allocation) of a set ofresources(probably with different

characteristics), to a set ofagentsthat want to use them, given a set ofrestrictions.

The resources can be classified according to different features:

• Durable vs perishable: Durableresources are those that maintain their value as time goes by.

That is, no matter when they are used, their properties are not changed. On the other hand,

perishableresources are those that lose value when held over an extended period of time. In

this case, these resources cannot be stored for a later use, but have to be immediately used.

An example of a perishable resource is communication bandwidth, since it only has value if it

is used, but it cannot be stored for future increases in the bandwidth of a network connection.

On the other hand, an example of durable resources are artistic paintings, since they do not

never lose their value.

• Static vs renewable: A staticresource is one that is assigned once, and thereafter its assign-

ment does not change. On the other hand,renewableresources are only assigned for a given

period of time, after which they must be reassigned again. This allows to model temporary

access to limited and shared resources such as for example CPU time.

• Divisible vs indivisible: This feature defines whether the resource can be indefinitely divided

into as many units as desired (divisibleresource) or it cannot be divided (indivisibleresource).

In this latter case, however, there may be multiple units of the resource (each of them being

indivisible). An example of a divisible resource is the fuel.

12

• Controlled vs non-controlled: Although usually the resources belong to an owner that con-

trols the access to them, in some domains the resources are somehow “public”, meaning that

anyone can use them, even without having been authorized to do so. Thisuncontrolled access

makes the resource allocation problem harder. Examples of non-controlled resources can be

found in natural resources, which are usually accessible toanyone, and for which there are no

physical means of controlling the access of the agents to them.

Regarding the agents, they are theentitiesthat receive the resources after they sent a request for

getting them. In some domains, as for example scheduling, wewill not refer to them as agents but

astasks, which are the ones that make use of the resources. An assignment of resources to agents

(or tasks) is called anallocation. The set of resources allocated to an agent is also called in some

domains abundle.

There are many variations of resource allocation problems,for example assigning also the time at

which the resource has to be used by the agent (or when a task has to be performed), minimizing

the cost of the allocation (given that each allocation of a resource to an agent has an associated

cost), leveling the usage of the resources, etc. Regarding the restrictions, they usually include the

capacities of the resources, which limits the number of agents (or tasks) that can be simultaneously

using a single resource, precedence relations that force some tasks to be performed before or after

other tasks, and deadlines establishing a maximum time at which a task must be performed.

The two most known classes of resource allocation problems areschedulingandauctions. Schedul-

ing is the problem of assigning a set of tasks to a set of resources, usually minimizing the total time

required to perform all the tasks (makespan). It has many industrial applications such as optimizing

production processes, transportation timetables, employees schedules, CPU utilization, video broad-

casting, etc. On the other hand, in the case of auctions the agents are assigned the available resources

in an economic way, trying to maximize the auctioneer’s revenue.

The objective of resource allocation problems is either to find a feasible solution (e.g. an allocation

of tasks to resources that guarantees that all the restrictions are satisfied) or to find the optimal so-

lution given an objective function. In the latter case the objective function can be focused either on

the entity that is performing the allocation (e.g. the auctioneer in a combinatorial auction) or in the

entities that are requesting the resources, given an aggregation function of their individual prefer-

ences (e.g. an allocation of resources maximizing the average utility obtained by the entities). This

aggregation of individual preferences can be modeled usingthe concept ofsocial welfareas studied

in Welfare Economics and Social Choice Theory. The two most used social welfare aggregations

functions are,utilitarian, where the aim is to maximize the sum of individual utilities, andegalitar-

ian, where the goal is to maximize the welfare of the entity that is getting less [12]. In the case of

scheduling the main objective is usually to find the optimal solution such that the total makespan is

minimized. In auctions, the objective is usually to maximize the revenue of the auctioneer. However,

in recurrent versions of auctions and scheduling problems social welfare measures can be taken into

account.

There are two main approaches for solving resource allocation problems (both scheduling and auc-

tions). The first one is by using atotally centralizedapproach based on classical artificial intelligence

techniques. The main drawback of this approach is that the central entity has all the power. That

is, it makes all the decisions, and therefore does not let theagents take part in the obtention of the

13

allocations1.

To allow for a more participative mechanism, a distributed approach can be taken. In this case, the

agents can interact with the central entity, or between them, in order to reach an agreement on the

allocations. This approach can be divided into two main classes, depending on who is the responsible

of decision making:

• Centralized approach: In this approach, as in the classical one, there is a single entity that

solves the problem. However, there is some interaction between the agents and the decision

maker, so that the decisions are not totally taken by the latter. An example of such approach

are auctions [73, 14], where agents bid for using the resources and the auctioneer decides

which agents can do so.

• Decentralized approach: In this approach there is no central entity, but the agents themselves

are the ones solving the scheduling problem. They communicate with each other in order to

reach a solution. This approach includes negotiation protocols, in which agents trade resources

until they are all satisfied with the allocation [40], and also distributed constraint optimization

problems (DCOP) [50, 64].

There is also a lot of literature regarding preference representation. In the context of resource al-

location, preferences express the satisfaction of an agentwhen deciding between different potential

allocations of the resources, i.e. the different bundles ofresources received by the agent. As the

set of alternatives in resource allocation problems is exponential in the number of resources (one

for each combination of resources), it is not reasonable to ask the agents explicitly for the entire

preference list. For this reason, languages for preferencerepresentation are used [12].

Resource allocation problems are closely related (and equivalent in some cases) to matching, knap-

sack and set packing/covering problems, consequently falling in the class ofNP-Completeproblems

(in its decision version), and therefore when developing methods for resource allocation problems

their complexity needs also to be taken into account.

In our work we deal with resource allocation problems where aset of agents compete for a set of

resources. However, as we focus on the robustness of the allocation mechanism, time constraints are

not the crucial point, and therefore we choose auctions as the framework to deal with RAPs instead

of scheduling. For our purposes, the resources in the auction are durable, static, indivisible and

controlled. We will use a centralized approach where the central unit is the auctioneer which wants

to maximize his revenue while producing robust allocations, and the agents inform their preferences

through the bids that are composed by the items (or combinations of items) that they want.

In the following section we give a background on auctions (entering in more detail on combinatorial

auctions) and its challenges.

2.2 AUCTIONS

Auctions are an ancient economic mechanism designed to trade items between individuals where

the values of the items are not precisely known. In an auction, a seller (theauctioneer) offers the
1In appendix A a concrete resource allocation problem is analyzed, modeled and solved using totally centralized tech-

niques, comparing their performance

14

items

1 N

units

per item

units

per item

1 N 1 N

English

Dutch

Multi-unit Auction

DPSB

UPSB

VCG

Combinatorial Auction

VCG

Multi-unit Combinatorial Auction

VCG
protocol

out-cry sealed

First Price Sealed Bid

Second Price Sealed Bid (Vickrey)

Figure 2.1: Auctions classification

items, and a set of buyers (thebidders) notify their interest on them by submittingbids, composed

by the desired item/s and the price that the bidder is willingto pay for it/them. Once all the bids are

received, the auctioneer selects the (set of) winning bids,which in turn determines the prices of the

items that have been sold.

Auctions were deeply studied first in economic theory as a wayto establish prices in the market.

Later, they where also applied to game theory, and with the wide popularity of Internet and the

emergence of electronic commerce (where auctions serve as the most popular mechanism), effi-

cient auction design has become a subject of considerable importance for researchers in multi-agent

systems. Within the field of Artificial Intelligence there isa growing interest in using auction mech-

anisms to solve resource allocation problems in competitive multi-agent systems. For example,

auctions and other market mechanisms are used in network bandwidth allocation, distributed con-

figuration design, industrial scheduling, and memory allocation in operating systems. Auctions are

currently being used in several industrial scenarios [6], such as the electricity market, in which dif-

ferent kinds of energies are auctioned in order to favour theuse of non-pollutant sources of energy

[57]. One of the reasons for the increased popularity of auctions is the perceived improvements in

efficiency and revenue for the seller.

2.2.1 AUCTION MECHANISMS CLASSIFICATION

Several types of auctions have been defined, a partial diagram of them can be seen in Figure 2.1.

Based on the number of items being offered, auctions can be classified as either single-item or

multi-item auctions. The former are the most common, where bidders compete for a single good.

There exist quite a few protocols for them, being the most common types: English, Dutch, First

Price Sealed Bid and Vickrey.

In anEnglish auction, also called an open-outcry ascending-price auction, the auctioneer begins the

auction at the reserve price (the lowest acceptable price);then the bidders are free to raise their bid,

15

which must be higher than the last bid price. When no more bidsare risen the winner is the last

(highest) bidder which pays the price he declared. This is the typical auction used, for instance, to

sell artistic works. In aDutch auction, also known as clock auction, or open-outcry descending-price

auction, the auctioneer lowers the price until a bidder takes it (or a minimum price is reached). The

first bidder to speak wins, paying the last announced price. This type of auction was first used to sell

tulips in the Netherlands, and has been extensively used formany years also in fish markets. InFirst

Price Sealed Bid Auction (FPSB), each bidder submits a bid without knowing the other bidders’

bids. The highest bid wins, paying the price he submitted. This differs from English auction because

as bids are not open or called, bidders must submit valuations based on an estimation of the market

value of the item and their own willingness to pay, as opposedto competing through relative prices

with other bidders.Vickrey auction[71], also known asSecond Price Sealed Bid Auction (SPSB),

is quite similar to first price sealed bid, but here the winnerbidder pays the second highest price

submitted. This small alteration, however, has important theoretical implications, as it gives bidders

an incentive to bid honestly, meaning that the best strategyfor the bidders is to reveal their true

values for the items, which does not happen in FPSB.

When the quantity of the items being sold is greater than one (multiple copies of each item), auctions

are called multi-unit. Single-item auctions with multi-unit items are differently classified based on

the pricing rules. For example, in aDiscriminatory Price Sealed Bid(DPSB) auction, all the winners

pay their bid price. Alternatively, in aUniform Price Sealed Bid(UPSB) auction, all winners pay

the same price which is the highest bidding price of the losers.

Multi-item auctions are known as Combinatorial Auctions (CA), which are the kind of auctions that

we will basically use in our work. In this kind of auctions, bidders can place bids on more than one

item at the same time. We can also have multi-unit items in a combinatorial auction, turning it into

a Multi-unit Combinatorial Auction (MUCA). We will describe combinatorial auctions in detail in

section 2.3, however an even more extensive study on combinatorial and multi-unit combinatorial

auctions can be found in the book by Peter Cramton, Yoav Shoham and Richard Steinberg [16].

2.2.2 AUCTION PHASES

In an auction we can distinguish three phases: thebidding phase, theauction clearing phaseand the

transaction phase. In the bidding phase, the bidders submit their bids according to the interest they

have on the objects that are being auctioned. After that, in the auction clearing phase, the auctioneer

determines the set of winning bids that maximizes his revenue. Finally, in thetransaction phasethe

items are delivered to the corresponding bidders.

Figure 2.2 shows a diagram of the phases of an auction, where the transaction phase contains a long

period of time where unexpected changes can occur. In standard auctions the transaction phase is

not considered as it is instantaneously made after the auction clearing, but there exist other domains

in which this phase can last for weeks or even months. It is in this situations where finding a robust

solution is particularly important.

Coming back to the example presented in the introductory chapter about assigning rooms for simul-

taneous conferences, in the first phase the organizers wouldsend their bids for (possibly multiple)

combinations of rooms according to their requirements. Theorganizers would have a deadline to

16

time

Call for Bids

Bidding phase

Auction
clearance

Results
announced

Actual resource use

Unexpected events

Figure 2.2: Auction phases.

send the bids, which would be typically some weeks before theconference starts. After this dead-

line, with all the received bids, the second phase would begin and the auction would be solved and

the results announced to the participants. But after that, there would be a period of time before the

rooms are actually used where some unpredictable events could happen. At the end of this second

phase, the conference would begin and only the available rooms would be used by the participants

(transaction phase). However, as some events could happen between the auction clearing phase and

the transaction phase, it is possible for the solution previously found to be not valid. Therefore,

solution robustness would be useful in this case, since during the transaction phase some breaks can

make the solution previously found invalid.

2.2.3 INCENTIVE COMPATIBILITY

In this section, we consider thetruthfulnessof mechanisms for combinatorial auctions. This is an

interesting feature that is usually considered when designing mechanisms for auctions (and combi-

natorial auctions). This means whether it is possible or notto design a mechanism for the auction

such that it is in the best interest of the bidders to send bidsthat truthfully reveal their preferences

[43]. Auction mechanisms that have the feature of incentivizing bidders to bid truthfully are called

incentive-compatible, or strategy-proof. On the other hand, non-incentive-compatible mechanisms

allow the possibility that the bidders strategically manipulate the auction in order to decrease the

final price of the items, with the consequent gain for them (and loss for the auctioneer). Incentive-

compatible mechanisms are important in auctions because itis known that no untruthful mechanism

achieves better outcome than any truthful (non-manipulable) mechanism. For that reason, develop-

ing auction mechanisms fulfilling this requirement is currently a major concern for auction designers,

and a lot of research has already been taken by the computer science community in this direction

[55, 54, 43]. In many applications of auctions, only mechanisms assuring that the bidders will bid

truthfully are considered.

The first auction mechanism that was proved to be incentive compatible was the Vickrey auction [71]

which, despite its simplicity, accomplished the theoretical definition. The Vickrey auction was then

extended in order to deal with multi-unit and combinatorialauctions; resulting in theGeneralized

17

Vickrey Auction, also known as VCG2. The drawback of VCG auctions for both CA and MUCA is

that they are much more computationally expensive, as the price paid by each winnerk is computed

by deducting the sum of payments of all the other bidders in the current solution from the sum of

all payments that would be obtained from those other biddersin the optimum allocation where the

bidderk is removed from the allocation. This requires to solveq + 1 optimization problems (where

the optimal solutions are composed byq bids). Therefore, and given that relaxations of the model

are not a good option since they compromise truthfulness [55], this method is not generally used in

practice in large problems due to its intractable computation time.

Incentive compatibility is hard to prove in complex auctionmechanisms. For a mechanism to be

truthful it has to satisfy the conditions ofExactness, Participation, Critical, A-Monotonicityand

P-Monotonicity[43]. Informally, exactness means that each bidder either gets exactly the set of

goods he requests or nothing, critical means that each winning bidder pays the lowest value he could

have declared and still be allocated the goods he requested,participation means that bidders getting

nothing pay zero. Finally, regarding monotonicity conditions, a method is said to be monotone if and

only if each bid from the solution that increases its price still continues in the solution, provided that

all the other bids remain fixed. This condition can be used conversely for proving non-monotonicity

[37].

The strategy-proofness of the approach that we will presentlater in this work for dealing with robust-

ness will be analyzed in Chapter 6 in the same way, using this necessary condition of monotonicity

that incentive compatible mechanisms must hold.

2.3 COMBINATORIAL AUCTIONS

In this thesis, we focus on Combinatorial Auctions, as they are able to encode resource allocation

problems. These kind of auctions were first proposed by Rassenti, Smith, and Bulfin in 1982 [60],

for the allocation of airport landing slots. In a combinatorial auction, bidders can bid on bundles

(combinations) of multiple distinguishable items insteadof just individual items. This allows the

bidders to be more expressive in the valuations of the items.The information contained in the bids

is composed by the desired subset of objects together with the price that the bidder is willing to pay

for it.

In recent years combinatorial auctions have emerged and grown rapidly as a popular mechanism for

the sale of a set of items among which bidders perceive dependencies between the goods. The most

important dependencies arecomplementaritiesandsubstitutabilities[65, 24]:

• Substitutability : A bidder’s value of getting various goods is less than the sum of the values

for each individually (e.g., they are at least partially redundant). For example, a DVD reader

and a DVD reader/writer are substitutable; a bidder may wantone or another but not both.

• Complementarity: A bidder’s value of getting various goods is greater than the sum of the

values for each individually (e.g., they are at least partially co-dependent). For example, in

the case of a suit, a bidder can still think of buying the jacket and the pant separately but it is

certainly more valuable to buy the jacket and the pant together.

2Where “V” stands for Vickrey [71], “C” for Clarke [13], and “G” for Groves [27], the three researchers that created the

generalized versions of the Vickrey auction.

18

This increase in expressiveness that combinatorial auctions provide allows more economical alloca-

tions of the items, since the bidders do not obtain undesiredpartial bundles of low value.

To solve the auction (allocate the items to the bidders), theauctioneer gets the set of price offers

for various combinations of goods coming from the bidders, and his aim is to allocate the goods in

a way that maximizes his revenue or, in other words, the auctioneer selects a set of these bids that

provides him the highest revenue without assigning any itemto more than one bidder. The problem

of selecting the optimal set of bidders to allocate the goods, known as the Winner Determination

Problem, has a high computational complexity compared withsingle-item auctions, as we will see

in section 2.3.2.

2.3.1 EXAMPLE

In order to understand the importance of the superior expressivity that combinatorial auctions pro-

vide, consider a very simple example of a combinatorial auction with three bidders (b1, b2, b3), and

two items for sale, A and B. The first bidder (b1) is only interested in the item A, the second bidder

(b2) is only interested in the item B, and the third bidder (b3) is interested in both items A and B,

however it is not interested in receiving only one of those items. The first two bidders are willing

to pay 10 each for the respective items, and the third bidder is willing to pay 18 for both, as seen in

Table 2.1. Therefore, the optimal solution for the auctioneer is to sell the item A to the bidderb1 and

the item B to the bidderb2, achieving a total revenue of 20, instead of selling both items to the third

bidder which would achieve a total revenue of only 18.

Bidder A B AB

b1 10

b2 10

b3 18

Table 2.1: Combinatorial auction example

The problem of simple (non-combinatorial) auctions is thatthe auctioneer cannot know in advance

whether it is better to offer the items separately or as a pack. For example, if the auctioneer had sold

the items A and B together as a pack (in a single-item auction), then the revenue would have been

only 18 (from the third bidder) because the first two bidders would have not bid for the pack. With

these prices it would be better for the auctioneer to offer the items separately. On the other hand, if

the third bidder offer was 22 instead of 18, then it would be better for the auctioneer to offer them as

a pack instead of separately, since he could get the offer of 22 which is higher than the sum of the

other two bids (20).

Therefore, given that it is not possible for the auctioneer to know in advance whether it is better to

sell the items together or separately, a combinatorial auction where bidders can submit bids on any

possible combination of items is the best option for him.

19

2.3.2 THE WINNER DETERMINATION PROBLEM

TheWinner Determination Problem (WDP)of a combinatorial auction, also called theauction clear-

ing algorithm, is roughly defined as: given a set of bids in a combinatorial auction, select the winning

bids that maximize the seller’s revenue, subject to the constraint that each good cannot be allocated

more than once. The formal definition is as follows.

Let G ={g1, g2, ..., gm} be a set of goods, and letB ={b1, b2, ..., bn} be a set of bids. Each bidbi is

a pair (pi, Gi) wherepi ∈ R
+ is the price offer of bidbi andGi ⊆ G is the set of goods requested

by bi. For each bidbi a binary indicator variablexi is defined to encode the inclusion or exclusion

of bid bi from the allocation, i.e. whetherbi is winner (1) or loser (0). Then, the single-unit WDP is

the following constraint optimization problem (COP):

max
n∑

i=1

xi · pi

s.t.
∑

i|g∈Gi

xi ≤ 1 ∀g ∈ G

In a multi-unit combinatorial auction, instead of unique items we have a given quantityq(g) for

each good, and the bids can request also different quantities of each itemqi,g. Hence, the WDP for

multi-unit combinatorial auctions is the following COP:

max

n∑

i=1

xi · pi

s.t.
∑

i|g∈Gi

xi·qi,g ≤ q(g) ∀g ∈ G

The WDP is equivalent to the weighted set-packing problem, the knapsack problem and the maxi-

mum weighted clique problem3, and its decision version is thereforeNP-Completeeven in its single-

unit variant (see e.g., [62]). Furthermore, it has been demonstrated that the WDP cannot even be

approximated to a ratio ofn1−e (any constant factor) in polynomial time, unlessP = NP [65].

The above problem formulations assume the notion offree disposal. This means that in the optimal

solution not all of the items have to be mandatorily sold. Otherwise, if it is required for all the items

to be sold, the inequalities (≤) should be changed by equalities (=); then the problem becomes

equivalent to the Set Partition Problem [20], which isNP-Completeas well.

3To model a combinatorial auction as a maximum weighted clique problem the problem has to be converted as a graph

where nodes are bids and edges connect compatible bids, assigning the bids prices to the vertices weights.

20

2.3.3 EXPERIMENTS WITH COMBINATORIAL AUCTIONS

Most of the literature on combinatorial auctions performs the respective tests using the benchmark

for combinatorial auctions developed by Kevin Leyton-Brown et al. [44] called “Combinatorial

Auctions Test Suite” (CATS). Since its first release in 2000,CATS has become the standard tool

for evaluating and comparing WDP algorithms [66, 16]. It generates realistic combinatorial auction

instances, following a set of real-world economically motivated scenarios as well as many previously

published distributions (called legacy). Setting a given number of goods and bids, the program

generates the set of bids by selecting which goods to includein each bid following the chosen

distribution.

For most of the real-world distributions a graph is generated representing adjacency relationships

between goods, and it is used to derive complementarity properties between goods and substitutabil-

ity properties for bids. Two of these distributions concerncomplementarity based on adjacency in

(physical or conceptual) space, while the others concern complementarity based on correlation time.

The characteristics of each distribution are the following[44]:

• Paths. This distribution models auctions regarding shipping, rail and bandwidth problems.

Goods are represented as edges in a nearly planar graph, withagents submitting a set of bids

for paths connecting two nodes.

• Arbitrary . In this distribution the planarity assumption is relaxed from the previous one in

order to model arbitrary complementarities between discrete goods such as electronics parts

or colectables.

• Matching. This distribution concerns the matching of time-slots fora fixed number of differ-

ent goods; this case applies to airline take-off and landingrights.

• Scheduling. This distribution generates bids for a distributed job-shop scheduling domain,

and also its application to power generation auctions.

• Regions. This distribution models an auction of real state, or more generally of any goods

over which two-dimensional adjacency is the basis of complementarity, e.g. spectrum rights

or property. Again, the relationship between goods is represented by a graph, in this case

strictly planar.

The “legacy” distributions are the following [44]:

• L1, theRandomdistribution from [65], chooses a number of items uniformlyfrom [1,m], and

assigns the bid a price drawn uniformly from [0, 1].

• L2, theWeighted Randomdistribution from [65], chooses a number of itemsg uniformly from

[1, m] and assigns a price drawn uniformly from [0,g].

• L3, theUniformdistribution from [65], sets the number of items to some constantc and draws

the price offer from [0, 1].

• L4, theDecaydistribution from [65] starts with a bundle size of 1, and increments the bundle

size until a uniform random value drawn from [0, 1] exceeds a parameterα.

21

• L5, the Normal distribution from [38], draws both the number of items and the price offer

from normal distributions.

• L6, the Exponentialdistribution from [24], requestsg items with probabilityC·e−g/q, and

assigns a price offer drawn uniformly from [0.5g, 1.5g].

• L7, theBinomialdistribution from [24], gives each item an independent probability of p of

being included in a bundle, and assigns a price offer drawn uniformly from [0.5g, 1.5g] where

g is the number of items selected.

• L8, theConstantdistribution with 3 goods per bid, with a quadratic calculation for the prices.

In our work we will mostly use the set of realistic instances and only one of the legacy distributions

(L7), to examine the effects of robustness in various possible applications of combinatorial auctions.

2.3.4 OPTIMAL ALGORITHMS FORCOMBINATORIAL AUCTIONS

Since the problem of finding the optimal solution to a combinatorial auction isNP-Hard4, any opti-

mal algorithm for the problem will be slow on some problem instances. However, in the last years

considerable research has been done in the combinatorial auction winner determination problem. For

a more extended survey, see [20] and [16]. We will briefly describe only some of the most known

specific algorithms for solving combinatorial auctions that find the exact optimal solution, which are

actually able to solve quite large instances in practice. Wewill also give details on how to model

combinatorial auctions with Integer Linear Programming tobe run with a generic commercial LP

solver as CPLEX [15], which has nowadays become the generally used solving method for CAs.

CASS

One of the first specific solvers for combinatorial auctions was CASS (Combinatorial Auction Struc-

tured Search) [24], developed in the Stanford University byYuzo Fujishima, Kevin Leyton-Brown

and Yoav Shoham. It used a clever branch and bound search algorithm with dynamic programming

and caching techniques that allowed to solve quite large problems in practice.

The crucial detail about CASS is that it structures the search space usingbins (see Figure 2.3). A

bin is created for each good, and every bid is placed into the bin corresponding to its lowest-order

good. Instead of always trying to add each bid to the allocation, at most one bid from every bin is

added since all bids in a given bin are mutually exclusive. Often entire bins can be skipped. To treat

the possibility that the auctioneer’s revenue can increaseby keeping items,dummybids of price zero

are placed on those items that received no 1-item bids. However, the main benefit of bins is not the

ability to avoid consideration of conflicting bids. Bins arepowerful because they allow the pruning

function to consider context without significant computational cost, and allowing the generation of

very fast and tight upper bounds.

The search method is based on the branch on bids formulation.Each path in the search tree consists

of a sequence of disjoint bids, that is, bids that do not shareitems with each other. A path ends

4NP-Completein its decision version, i.e. deciding if a solution exists.

22

Figure 2.3: Partition into bins.

when no bid can be added to it. As the search proceeds down a path, a tally,g, is kept of the sum

of the prices of the bids accepted on the path. At every searchnode, the revenueg from the path is

compared to the bestg-value found so far in the search tree to determine whether the current path

is the best solution so far. If so, it is stored as the newincumbent. Once the search completes, the

incumbent is an optimal solution. CASS also caches the results of partial searches. This caching

scheme is a form of dynamic programming that allows the algorithm to use experience from earlier

in the search to tighten its upper bound function.

In terms of computational complexity, it is easy to see that even in the worst case, the size of the

explored tree is polynomial in the number of bids, but exponential in the number of items. However,

CASS may be used as an anytime algorithm, as it tends to find good allocations quickly. CASS is a

free and open source algorithm that can be unrestrictedly downloaded from Kevin Leyton-Brown’s

web page5.

BIDTREE

Bidtree [65] is the other special-purpose WDP algorithm that has been most studied and cited in the

literature. It was presented in the same conference proceedings as CASS. The Bidtree algorithm is

similar to CASS in several ways, but important differences hold. In particular, Bidtree performs a

secondary depth-first search to identify non-conflicting bids, whereas CASS’s structured approach

provides context to the upper bound function as well as allowing it to avoid considering most con-

flicting bids. Bidtree performs no caching or cache pruning.On the other hand, Bidtree uses an IDA*

search strategy rather than CASS’s branch-and-bound approach, and does more preprocessing.

The Bidtree algorithm has never been publicly available, neither to researchers. However, the cre-

ators of CASS affirm that overall, CASS dramatically outperforms Bidtree, being between 2 and 500

times faster than Bidtree, and never slower.

L INEAR PROGRAMMING

Researchers soon realized that combinatorial auctions could be easily converted into an integer pro-

gramming problem, taking advantage of the astonishing improvements that such solvers, and spe-

5http://www.cs.ubc.ca/∼kevinlb/downloads.html

23

cially CPLEX, was including in the last versions of its mixedinteger programming module. Nowa-

days, CPLEX is the default (and fastest) approach for solving the WDP.

The Winner Determination Problem can be easily modeled as anInteger Programming Problem. To

do so, bids are converted to binary variablesX, and the function to be maximizedf is the weighted

sum of the bids multiplied by its price. Restrictions are constructed in order to assure that bids

sharing an item cannot both win (their sum must be less or equal to 1). The constraint optimization

problem is the following:

maximize f=
n∑

i=1

pi·X(i) (2.1)

∀g ∈ G
∑

i∈Cg

X(i) ≤ 1 (2.2)

wheren is the number of bids, andCg is the set of bids containing itemg. Note that the constraint

is≤ 1 instead of= 1 because an optimal allocation may leave some items unsold. If all the items

are required to be sold then the equality condition should beset.

ILOG’s CPLEX is the most used LP optimization software worldwide. Universities and researchers

have extensively used it to solve most of the COP’s and every new algorithm or technique that comes

out is habitually compared versus CPLEX.

When CASS and Bidtree were proposed, ILOG’s CPLEX 5 mixed integer programming package

(the industry standard) was unable to solve most WDP problems within a reasonable amount of

time. Since that time, however, CPLEX’s mixed integer programming module improved substan-

tially with version 6 (released 2000), and considerably again with version 7 (released 2001). In

version 8 (released 2002), with the MIP optimizer achievingan average 40% speed increase to op-

timality, with a 70% increase on difficult problems, there was a general convergence in the research

community towards using CPLEX as the default approach for solving the WDP. Once again, CPLEX

with version 9 (released 2003) improved the MIP optimizer tobe 50% faster on average, for a set

of difficult customer models. Version 10 (2006) improved thetime to optimality by an average of

30% and improvements average 70% for particularly difficultmodels. CPLEX 11 introduced a new

search algorithm, dynamic search, while retaining its conventional branch-and-cut algorithm, but

with advances in branching, cuts and heuristics. By selecting the more efficient of the two search

strategies, CPLEX 11 improved the time to optimality by 15% on average for models solved in less

than one minute, three times faster on average for models in the range of one minute to one hour, and

for hard models requiring more than one hour to solve, the speed up was a factor of ten on average.

CPLEX 12 (released in 2009) is a 10% faster in large problems,but the best good new was the for

the first time, it was available freely for academic purposes.

Another possibility is to use the free open-source solver GLPK (GNU Linear Programming Kit)

[26]. Although ILOG claims that its CPLEX solver is 100 timesfaster than GLPK, it is lighter and

enough for solving not-hard medium-size instances.

24

CABOB

The only ongoing effort at competition with CPLEX came from the authors of Bidtree, who wrote

an updated algorithm called CABOB which they claim is much faster [66]. The CABOB (Com-

binatorial Auction Branch on Bids) algorithm is a depth firstbranch and bound search with linear

relaxations that branches on bids. The main difference is that instead of branching on items, CABOB

uses the branch on bids formulation. A graphical representation of the search space generated with

both formulations is shown in Figure 2.4. When branching on abid, the children in the search tree

are the world where that bid is accepted, and the world where that bid is rejected. The branching

factor is 2 and the depth is at mostn (number of bids). No dummy bids are needed: the items that

are not allocated in bids on the search path are kept by the auctioneer. Given the branching factor

and tree depth, a naive analysis shows that the number of leaves is at most2n. However, a deeper

analysis establishes a drastically lower worst-case upperbound reaching a polynomial growth in

bids, while exponential in items.

The algorithm maintains a conflict graph structure called the bid graph. The nodes of the graph

correspond to bids that are still available to be appended tothe search path, that is, bids that do not

include any items that have already been allocated. Two vertices in the graph share an edge when-

ever the corresponding bids share items. CABOB uses a technique for pruning across independent

subproblems (components of the graph).

1, 2 1, 3

3

1

2 2

2

1, 3

1, 2

3 2, 3

3

1, 3

in

in in

in

in

out

out out

out

out

1, 2

1, 3

3 2, 2

Bid graph

1, 3

3 2, 2

1, 3

3

1, 3

3

Bids 1, 2 1, 3 2, 3 3

Dummy 1 2

Branch on items formulation Branch on bids formulation

Figure 2.4: Branch on items (left) versus branch on bids (right) formulation. Figure extracted from

[16].

CABOB uses Linear programming for upper bounding. This usually leads to faster search times than

any of the other special-purpose upper bounding methods proposed for winner determination. This

is likely due to better bounding, better bid ordering, and the effect of the INTEGER special case,

i.e an integer solution provided by the Linear Programming solver, implying that no more search is

needed in the respective branch. The time taken to solve the linear program is greater than the per-

25

node time with the other bounding methods, but the reductionin tree size usually amply compensates

for that. However, on a non-negligible portion of instancesthe special-purpose bounding heuristics

yield faster overall search time.

Like Bidtree, CABOB is neither available publicly. Its reported performance is apparently similar to

CPLEX’s, and as discussed above, CABOB is also similar to CPLEX in its construction: it makes

use of linear programming as a subroutine and uses a similar search strategy.

CABRO

We should also mention the algorithm CABRO, that was developed during this research, and pub-

lished in 2008 [51]. CABRO (Combinatorial Auction BRanch and bound Optimizer) is mainly a

branch and bound depth-first search algorithm with a specially significative polynomial-time proce-

dure to reduce the size of the input problem. The algorithm isdivided in three main phases:

• The first phase performs a fast preprocessing (polynomial time) with the aim of removing as

many bids as possible. Bids removed in this phase may be either bids thatcannotbe in the

optimal solution, or bids thathave tobe in the optimal solution.

• The second phase consists in calculating upper and lower bounds for each bid. The upper

bound of a bid is computed by formulating a relaxed linear programming problem (LP), while

the lower bound is computed generating a solution quickly. This phase may also remove a

notable amount of bids.

• The third phase completes the problem by means of search, concretely a branch and bound

depth first search. In this phase the two previous phases are used also as heuristics and for

pruning.

In some instances it is not necessary to execute all the threephases of the algorithm, for example

when the optimal solution is already found before the searchphase. The algorithm is able to end

prematurely either when all of the bids have been removed or when at some point of the execution

the global lower bound reaches the global upper bound. This algorithm also provides anytime per-

formance, giving the possibility to be stopped at any time during the execution and providing the

best solution found so far.

The algorithm was compared against CASS, GLPK and CPLEX, beating clearly CASS and GLPK in

average, and being competitive with CPLEX. More details about the algorithm are given in Appendix

B.

2.3.5 SUMMARY OF COMBINATORIAL AUCTIONS SOLVERS

We have described five different methods to solve a combinatorial auction. Table 2.2 shows a com-

parison of these methods, focusing on the following characteristics:

• Performance. How fast the algorithm ends giving the optimal solution.

26

• Anytime performance. How fast the algorithm produces a valid solution.

• Input & output. This describes whether the algorithm receives as input thelist of bids directly

or it needs some conversion.

• Preprocessing. How much preprocessing the algorithm executes.

• Economical cost. The price of the software.

Regarding the overall performance, CPLEX is clearly the best product followed by CABOB, CABRO

and GLPK, with CASS at some distance, and finally BidTree. However, concerning anytime perfor-

mance, CASS is the method requiring less amount of time to produce a first solution. This is for two

reasons: firstly because it performs less preprocessing andsecondly because LP-based algorithms

need to solve first the LP problem (which does not generally produce a valid solution) in order to

begin the search of valid solutions. Therefore, although the first (non-optimal) proposed solution of

CPLEX is probably much better than the CASS first solution, CASS obtains it earlier, so we state

that CASS exhibits a better anytime performance.

CPLEX and GLPK need a transformation from the set of bids to a linear programming problem.

This transformation requires a small amount of time (polynomial) compared to the total time of the

execution. However, for small problems it may be faster to use a method that does not require any

transformation. Of course, when dealing with huge problems, MIP solvers will be much faster since

the transformation time would be insignificant compared to the improvement in overall execution

time obtained.

Method Perf. Anytime Input&Output Preproc. Econ. Cost

CASS Slow Good Direct Very Fast Free

BidTree Very Slow Good* Direct* Fast* Unavailable

CPLEX Very Fast Bad Transformation Fast Free**

GLPK Fast Bad Transformation Fast Free

CABOB Fast Bad* Direct* Slow* Unavailable

CABRO Fast Good Direct Fast Avail. under demand

*Unknown (presumed values).

**For academic purposes.

Table 2.2: Auction solvers comparative.

For academic purposes there is no doubt that CPLEX is the bestoption. However, for other industrial

applications CPLEX could be quite expensive. Therefore, CASS and CABRO should be the first

options to try, as they are easy to use (receiving as input directly the list of bids). If they were not

able to solve the problems because of its large size, then a transformation to LP should be considered

to test whether GLPK is able to solve it or not. Otherwise, CPLEX would be considered if its cost

could be afforded.

2.4 ROBUSTNESS

Previous sections have introduced resource allocation problems and auctions, since they are the kind

of problems that we will deal with. In this section, we will give some background on robustness

27

in general, and the following section will talk more concretely about robustness in combinatorial

auctions.

There are two general approaches for dealing with robustness: reactive and proactive. Whereas

reactivetechniques address the problem of how to recover from a disruption once it has occurred,

proactivemethods construct solutions that are inherently robust (upto a given degree) to uncertainty

in the data.

Kentaro Tsuchida [70] presented a reactive robust scheduling method for job-shop problem which

consisted on a method to produce robust schedules obtained by iteratively generating new schedules

together with appropriate adjustment rules. An adjustmentrule is a modification of the schedule,

and is used when an environmental change happens, by shifting or replacing jobs. They calculate

an expectation evaluation value of each robust solution andkeep the best solution based on various

initial situations.

On the proactive field, Andrew J. Davenport proposed a slack-based technique for robust scheduling

[18]. The key idea of slack-based techniques is to provide each activity with extra time to execute

so that some level of uncertainty can be absorbed without rescheduling.

Another usual way of achieving proactivity is by using supermodels [25] and super solutions [30],

which are defined by two parameters,a and b. The parametera specifies the maximum size of

the break that the robust solution is able to absorb, and the parameterb sets the maximum size of

the repair needed to fix the solution whenever a break occurs.Whereas slack-based techniques are

widely used in scheduling problems, supermodels and super solutions are mostly used in Boolean

satisfiability and Constraint Programming problems, respectively.

In our work we will focus mainly in proactive approaches. Supermodels [25] were defined to find

robust solutions based on repairs for propositional satisfiability (SAT) formulas. Later, they were

extended to super solutions [30] in order to find robust solutions for constraint programming prob-

lems. After that, weighted super solutions [35] were introduced in order to handle more easily failure

probabilities and costs of the repairs.

In our work we will extend mainly the work on supermodels for SAT formulas, adding some con-

cepts from weighted super solutions. The resulting formulation will need to move from SAT to a

much richer framework, known as SAT modulo theories (SMT). Therefore, we will first give a brief

introduction on SAT and SMT; later we will describe the supermodels for SAT, super solutions for

CP and weighted super solutions. This will give us a good background on the techniques that we

will use in the central part of this thesis.

2.4.1 PROPOSITIONAL SATISFIABILITY

A propositional variableis a variable whose value can be eithertrue or false . A propositional

formula (or Boolean formula) over a set of propositional variablesP is any variablep ∈ P or a

negation(¬F0), a disjunction(F0 ∨ F1) or a conjunction(F0 ∧ F1) of smaller formulasF0 andF1

(note the parentheses). The number of parentheses can be reduced by introducing precedence rules,

commonly giving highest priority to¬ and lowest priority to∨. Also, other connectives can be used

as abbreviations, e.g.,p→ q for ¬p ∨ q, andp↔ q for (p→ q) ∧ (q → p).

28

A variablep is anatom, and a variablep or its negation¬p is a literal. A clauseis a disjunction of

literalsl1 ∨ · · · ∨ ln. A formula is inconjunctive normal form(CNF) if it is written as a conjunction

of clausesC1 ∧ · · · ∧ Cm. CNF formulas are sometimes denoted as a set of clauses{C1, . . . , Cm}.

An interpretation(or truth assignment) I for a formulaF is a function mapping the variables ofF to

{true, false}. An interpretationI satisfiesa formulaF , denotedI |= F , if under this interpretation

of variables and the usual truth table interpretation of thelogical connectives, the formulaF evaluates

to true. An interpretationI satisfying a formulaF is called amodelof F . A formulaF having some

model is calledsatisfiable, andunsatisfiableotherwise.

Satisfiability (SAT) is the problem of determining the satisfiability of a propositional formulaF

[7]. The formal definition of SAT actually requires the formula to be expressed in CNF. Besides

the standard SAT problem, some variants have been defined. Max-SAT is the problem of finding

the maximum number of clauses that can be satisfied by any truth assignment. Weighted Max-

SAT is a variant of Max-SAT where every clause has a weight, i.e., a weighted Max-SAT formula

is a conjunction of weighted clauses of the form(C,w), whereC is a clause andw is a natural

number indicating the cost (weight) of the falsification ofC. The cost of a truth assignment for the

formula is the sum of the costs of the clauses falsified by thisassignment. Given a weighted formula,

weighted Max-SAT is the problem of finding a truth assignmentwith minimal cost. A particular

case of weighted Max-SAT ispartial weighted Max-SATwhere some clauses are mandatory (have

an infinite cost of falsification) and the other clauses are weighted. Table 2.3 shows schematically

the different variants of propositional satisfiability problems.

Type Formula

SAT (p ∨ q) ∧ (¬p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ ¬q)

Result:unsat
Max-SAT (p ∨ q)∧(¬p ∨ q)∧(p ∨ ¬q)∧(¬p ∨ ¬q)

Result: Maximum number of satisfied clauses (3)

Weighted Max-SAT (p ∨ q,10)∧(¬p ∨ q,10)∧(p ∨ ¬q,10)∧(¬p ∨ ¬q, 10)

Result: Max sum of weights of satisfied clauses (10)

Partial Weighted Max-SAT (p ∨ q)∧(¬p ∨ q)∧(p ∨ ¬q,10)∧(¬p ∨ ¬q, 10)

Result: sat/Maximum sum of weights of unsat clauses (10)

Table 2.3: Propositional satisfiability variants. Satisfied clauses are shown in boldface.

If F andF ′ are two formulas such thatF ′ is true in all models ofF , then we say thatF ′ is a logical

consequenceof F , or logically followsfrom F , or thatF logically impliesF ′, and we denote it by

F |= F ′. Two formulasF andF ′ are said to be(logically) equivalent, writtenF =||= F ′, if, and only

if, they have the same truth value in each interpretation (i.e., are either bothtrue or bothfalse), in

other words, ifF |= F ′ andF ′ |= F .

2.4.2 SATISFIABILITY MODULO THEORIES

Satisfiability Modulo Theories (SMT) is a generalization ofSAT in which some propositional vari-

ables have been replaced by predicates with predefined interpretations from background theories.

For example, a formula can contain clauses like, e.g.,p∨q∨ (x+2 ≤ y)∨ (x > y+z), wherep and

q are Boolean variables andx, y andz integer ones. Predicates over non-Boolean variables, suchas

29

linear integer inequalities, are evaluated according to the rules of a background theory. Examples of

theories include equality, linear (integer or real) arithmetic, arrays, bit vectors, etc., or combinations

of them.

Formally speaking, atheory is a set of first-order formulas closed under logical consequence. A

theoryT is said to bedecidableif there is an effective method for determining whether arbitrary

formulas are included inT .

The SMT problem for a theoryT is: given a first-order formulaF , determine whether there is a

model ofT ∪ {F}. Usually,T is restricted to be decidable andF is restricted to be quantifier-

free so that, while providing a much richer modeling language than it is possible with propositional

formulas, the problem is still decidable. The dominating approach to SMT is based on the integration

of a SAT solver and a solver for the given theoryT , being in charge respectively of the Boolean and

the theory-specific components of reasoning. A survey on this so-called lazy approach can be found

in [68].

It is also remarkable that state-of-the art SMT solvers havea rich input language, and it is not

necessary (neither convenient) to translate any formula into a set of clauses (CNF format) in order

they can read it.

SAT solvers are used for Bounded model checking, and AI planning among other things. Some of

the most used SMT solvers are Z3 [19], Yices [21], Barcelogic[8] and MathSAT [10].

2.4.3 PSEUDO-BOOLEAN

A closely related problem to that of weighted Max-SAT is pseudo-Boolean optimization.Pseudo-

Boolean constraints(PB-constraints) are linear constraints over Boolean variables, that is, con-

straints of the formC0l0 + ... + Cn−1ln− 1 ≥ Cn where, for alli, li is a literal andCi is an

integer constant. A true literal is interpreted as 1 and a false literal is interpreted as 0, so that a

truth assignment satisfies a PB-constraint if the sum of theCi whose correspondingli is assigned

to true exceeds or is equal to the right-hand constantCn. Hence, PB-constraints can be seen as a

generalization of clauses, that coincide with clauses in the case that all theCi are 1.

The pseudo-Boolean optimization(PBO) problem consists in finding a satisfying assignment toa

set of clauses that minimizes a given objective function of the form
∑m

j=1 Cjxj , whereCj is a non-

negative integer cost associated to the variablexj . PBO is indeed a particular case of integer linear

programming (ILP) which is known as 0-1 integer programming. Moreover, every PBO instance can

be translated into a partial weighted Max-SAT formula, where each PB-constraint is translated into

a set of mandatory clauses [22] and the objective function istranslated into a set of non-mandatory

clauses, each summandCjxj becoming a unit clause (xj , Cj).

Pseudo-Boolean problems can be straightforwardly formulated as an integer program, in which the

non-linear constraints are linearized. This idea is used bythe solver glpPB, which applies GLPK

[26] for solving the IPs. The solver BSOLO [46] combines integer programming techniques with

SAT-solving. Another approach is from the point of view of constraint integer programming (CIP),

the SCIP solver [4] is a combination of integer and constraint programming (CP) methods.

30

2.4.4 SUPERMODELS

Robustness for SAT formulas can be achieved by means of supermodels. The seminal work on robust

solutions for propositional logic formulas is the one of [25], where the notion ofsupermodelwas

introduced. The complexity for finding such supermodels in several propositional logic fragments

has been studied in [63].

The definition of a supermodel is (from [25]):

An(Sa
1 , S

b
2)-supermodelof a Boolean formulaF is a model ofF such that if we modify

the values taken by the variables in a subset ofS1 of size at mosta (breakage), then

another model can be obtained by modifying the values of the variables in a disjoint

subset ofS2 of size at mostb (repair).

An (Sa
1 , S

b
2)-supermodel in which the breakage (S1) and the repair set (S2) are unrestricted (but still

disjoint) is denoted as an(a, b)-supermodel. The task of finding(a, b)-supermodels is NP-complete.

The approach followed by [25] is to encode the supermodel requirements of a formulaF as a new

formulaFSM whose size is polynomially bounded by the size ofF . This new formulaFSM has a

model if and only ifF has an(a, b)-supermodel.

For instance, the formulaF = p ∨ q has three models,{p, q}, {¬p, q} and{p,¬q}, which are all

(1, 1)-supermodels given that if any variable changes its value (from true to false or viceversa) the

formula is either still satisfied or can be satisfied by changing the value of the other variable. The

encodingFSM for a (1, 1)-supermodel ofF , according to [25], would be:

originalF
︷ ︸︸ ︷

(p ∨ q) ∧

break inp
︷ ︸︸ ︷

(
no repair
︷ ︸︸ ︷

(¬p ∨ q)∨

repairq
︷ ︸︸ ︷

(¬p ∨ ¬q)
)

∧
(

(p ∨ ¬q)
︸ ︷︷ ︸

no repair

∨ (¬p ∨ ¬q)
︸ ︷︷ ︸

repairp

)

︸ ︷︷ ︸

break inq

Note that, for instance, if the satisfying interpretation (model) chosen forFSM is {¬p, q}, i.e.,

{p = false, q = true}, thenp∨ q is satisfied and, moreover, ifq switches tofalse, then a new model

for p ∨ q can be obtained by switchingp to true. That is, a break inq has a repair onp. The key

idea is that the value of the subformula¬p ∨ ¬q under the initial interpretation coincides with the

value ofp ∨ q under the repaired interpretation and, hence,FSM has a model if and only ifF has a

supermodel. Note also that only the first model{p, q} is a(1, 0)-supermodel.

2.4.5 SUPER SOLUTIONS

The concept of(a, b)-supermodel for propositional logic was generalized to that of (a, b)-super

solution in the context of Constraint Programming (CP) in [30]. An(a, b)-super solutionis one

31

in which if at mosta variables lose their values, the solution can be repaired byassigning these

variables with new values and also changing the values of at mostb other variables. The new values

taken by the variables can be any other in its respective domains.

The paper [30] focused mainly on (1,0)-super solutions, since finding super solutions for values of

a higher than 1 highly increases the complexity if the problem, and provided two alternative ap-

proaches for finding such robust solutions: either via reformulation or via search. The reformulation

approach, calledP + P , duplicates the variables. The duplicated variables have the same domain

as the original ones, and have the same constraints. Additional constraints are added between each

original variable and its duplicate so that they cannot havethe same value. Figure 2.5 shows an ex-

ample of reformulation with 3 variables (a, b andc) and 2 restrictions. An assignment to the original

variables is a super solution, where the repair is given by the duplicated variables.

Figure 2.5: Example of (1,0)-super solution reformulationfor CP.

This work also addressed the problem of finding the “most robust solution” for the cases that a

robust solution does not exist. The most robust solution is asolution that maximizes the number of

repairable variables. In a later paper [29] the same authorsalso addressed the problem of finding the

“most robust optimal solution” and the “optimal robust solution”.

2.4.6 WEIGHTED SUPER SOLUTIONS

In order to deal with application problems such as real worldcombinatorial auctions the(α, β)-

weighted super solutions[35] were developed, since super solutions were not expressive enough

because they only considered the number of changed variables needed to repair a break. Instead,

weighted super solutions introduce the breakage probability (α) and the cost of repair (β) to replace

the parametersa andb of super solutions.

Weighted super solutions (WSS) were mainly applied to combinatorial auctions, and more con-

32

cretely to the problem of bid withdrawal. When a winning bid is withdrawn6, there is a loss in

revenue for the auctioneer, who is left with unallocated items that could be wanted by other losing

bidders. There is therefore an opportunity for the auctioneer to reduce the resulting loss in revenue

by reallocating these items to some of such losing bidders ina “repair” solution.

2.5 ROBUSTNESS INAUCTIONS

There are several works that deal with robustness with respect to potential manipulations of the

auction mechanism, such as false-name bids [75, 48]. However, this is not the concept of robustness

we are interested in.

As we have described before, we focus our research on robustness of the solution to the auction.

Some works, such as [59, 58] add the concept of robustness (fault tolerance) to mechanism design

in order to deal with potential failures in the execution of tasks by the agents. However, these works

handle robustness using a probabilistic approach, and for them a robust solution is one that, on av-

erage, will perform well. Thus, since they rely on expected values, there could still be situations

where a robust solution would perform badly. Nevertheless,their approach is appropriate in scenar-

ios where there is no possibility of performing repairs in the solution. In contrast, we do consider

the possibility of repairing solutions (e.g. reassigning goods) and hence in our approach we provide

robust solutions that can be repaired in case any potential failure would arise.

Another closely related problem is that of robust knapsack [76] (i.e. a knapsack problem where the

weights and/or values of the objects are imprecise). Given that many auction mechanisms can be

modeled as a knapsack problem [39], it is reasonable to thinkthat some of the robust approaches to

this problem may yield robust solutions to auctions. However, the robustness concept used in the

field of knapsack is somehow different to ours, since it does not consider the possibility of repairing a

solution. Instead, a robust solution of a knapsack problem with imprecision is such that, on average,

performs well regardless of what the actual weights or values of the objects are, in a similar way to

the robustness presented in [59, 58].

As far as we know, the only previous work that has dealt with solution repair in combinatorial auc-

tions is that of [36]. This work addresses the problem of bid withdrawal (i.e. a bidder that withdraws

a winning bid), and, in order to find robust solutions, uses(α, β)-weighted super solutions. The

concrete definition of a robust solution for a CA with WSS is (from [34]):

A robust solution for a combinatorial auction is one where any subset of successful bids

whose probability of withdrawal is at leastα can be repaired by reassigning items at

a cost of at mostβ to other previously losing bids, in order to form a repair solution

whose revenue is at least a fraction,γ, of optimal revenue.

Our work is quite similar, since our approach is also based onsupermodels and we look for solutions

with a bounded cost. However, we consider the problem of resource unavailability, which is not con-

sidered in [36]. Moreover, we are also interested in keepingthe number of repairs low, which is only

done indirectly (through the cost function) in [36]. In addition, our techniques are completely differ-

ent because we use the logic framework of weighted Max-SAT and Satisfiability Modulo Theories,

6The withdrawal of losing bids is not considered because there is no need for the auctioneer to change the solution since

all items are already allocated.

33

while [36] presents an ad-hoc search algorithm to find robustsolutions.

2.6 SUMMARY

In this chapter we have provided the necessary background onthe topics that we shall use in the rest

of this dissertation. We have identified combinatorial auctions as a natural and effective way to deal

with resource allocation problems. The problem of resourceunavailability appears in the application

domains where the transaction phase is not instantaneous, and therefore some way of finding robust

solutions is desirable. We have also identified that incentive compatibility issues are a major concern

for auction designers and need to be taken into account.

Our approach for robustness is based on the concept of supermodel, complemented with some ideas

from weighted super solutions. However, the model that we will propose is not plain SAT as in

supermodels, neither CP as in super solutions and weighted super solutions. Instead, we will for-

mulate it in SAT Modulo Theories (SMT), in order to take advantage of the recent advances that

its solvers have achieved and will improve for sure in the next few years. SMT is closely related to

Pseudo-Boolean, therefore, we have also introduced the necessary background on both areas.

The following chapter performs a sensitivity analysis, which will make clear the importance of

incorporating robustness in combinatorial auctions that deal with uncertainty regarding resources

becoming unavailable.

35

CHAPTER 3

Sensitivity Analysis

In this chapter we perform an analysis of the sensitivity of the optimal solutions in combinatorial

auctions against resource unavailability. This analysis provides a strong motivation for our research,

as it proves that breaks in resources may have a hard negativeeffect in the revenue of the optimal

solution and, therefore, robust solutions instead would bemore useful as they would be less affected.

3.1 INTRODUCTION

Resources becoming unavailable after a solution to an auction is found may produce negative effects,

since the winning bids that contain such items must turn to losers and therefore their price is lost

(deducted from the revenue). In this chapter we study how affected is the revenue against resource

unavailability in a set of different scenarios (distributions) in what is called thesensitivity analysis.

This analysis will make clear the importance of robustness in such kind of problems.

A similar analysis was performed in [34] for the case of bid withdrawal. The conclusion of that

analysis was that robust solutions are needed in all the distributions (in ones more than in others).

We perform an analogous analysis regarding resource unavailability, incorporating some additional

experiments and results.

The sensitivity analysis is performed by running a large setof randomly generated instances using a

combinatorial auction generator. We first solve the winner determination problem of each instance

in order to find its optimal solution. Then we simulate resource unavailability by removing all the

items in the auction one by one, in order to examine the effects of those breakages in the revenue.

Whenever a resource is removed, it means that all the bids containing it are also removed, and in

case that some bid was part of the optimal solution (it was a winning bid), then it is removed from

the auction and consequently its price is deducted from the revenue. After that, we try to find a repair

to that breakage in order to get as much revenue back as possible. The intuition is that the more bids

participating in the auction, the greater revenue will be possible to be recovered. The objective of

this analysis is to analyze the curve of percentage of optimality regarding the size of the instances,

in a set of different distributions, in order to discover in which situations solution robustness would

be more useful.

We have used the Combinatorial Auction Test Suite (CATS) [44] for generating all the auction in-

stances. We have used the 4 “real-world” distributions: paths (representing transportation problems),

arbitrary (for modeling electronic parts), matching (representing allocations for airline take-off and

landing slots) and regions (for property and spectrum rights), plus one of the “legacy” distributions:

L7 (the binomial distribution). For each distribution we have created 100 different instances with

the number of items fixed to 20, and the number of bids ranging from 100 to 2000 (at intervals of

36

100). The other CATS flags used for the generation are “intprices” and “bidalpha = 1”.

We have generated instances with and without dominated bids. A bid is dominated (by another

bid) when its set of items includes another bid’s items and its price is lower. More formally, for

each pair of bids(bi, bj) where the set of items ofbi, g(bi) is included in the set of bids ofbj , i.e.

g(bi) ⊆ g(bj), and its pricep is higher, i.e.p(bi) ≥ p(bj), bj is dominated bybi. Figure 3.1 shows an

example of a dominated bid (b1 dominatesb2). It actually means that dominated bids cannot appear

in optimal solutions (that do not consider robustness) as they are never preferable to the bid that

dominates them. This is the reason why CATS instances are generally created without dominated

bids, and this is the case also in [34]. However, dominated bids could take part of an optimal robust

solution and therefore we have made experiments also with them.

I t 1 It 2

It 1 It 2 It 3

b1

b2

30

20

Figure 3.1: Example of dominated bids.

3.2 REALLOCATION AND FULL -REPARABILITY

Regarding the repairs we have examined two different schemes. On the one hand, we take the

“reallocation” repairing mode of [34], which assumes that the auctioneer is unable to withdraw

winning bids, and therefore the items becoming available after the breakage, which are the items of

the bids that have been broken (in [34] because they have beenwithdrawn, and in our case because

they contain items that have become unavailable), can only be assigned to (losing) bids requesting

subsets of them. On the other hand, we consider the alternative of “full-repairability”, where the

auctioneer has the full control and could withdraw winning bids if required, in order to construct a

new solution as close to the optimal as possible.

The procedure for the sensitivity analysis that we perform is the following. First, each instance of a

combinatorial auction (created with CATS) is converted to an integer linear program (CATS can be

used as well to generate the ILP instance). After that, the optimal solution to the auction is found by

using CPLEX ILP solver (version 12). Then we simulate resource unavailability by removing every

single item of the auction and solving the resulting modifiedauction. For the “reallocation” setting

the resulting modified auction is only composed by the bids containing subsets of the items that had

been left free by the winning bid that included the removed item (causing the bid to be now loser).

Hence, the revenue of the repair solution would be computed as the revenue of the original (with all

the items available) optimal solution, deducting the priceof the removed winning bid, and adding

the revenue of the optimal solution of the modified auction. For the “full-repairability” setting,

we simply delete all the bids containing the removed item andre-solve the modified auction. The

revenue of the repair solution in this case is given directlyby the revenue of the optimal solution of

the modified auction.

Once the process is finished and all the revenues from optimaland repair solutions have been found,

the percentage of optimality of the repair solution is computed as the revenue of the repair solution

divided by the revenue of the original (with all the items available) optimal solution. The figures

37

below show two curves for each distribution, one displayingthe average over all the instances and

the other plotting the worst case. The X axis represents the number of bids of the instances and the

Y axis is the revenue of the repair solution divided by the revenue of the optimal solution, i.e. the

percentage of optimality.

In Figures 3.2 and 3.3 we observe the sensitivity analysis results for the “reallocation” scheme over

all the distributions. We can observe how the curve of optimality of the repairs increases as the

number of bids is higher, which was excepted given that the higher the number of bids, the easier is

to repair any breakage, since there are a lot of bids to choosefrom. We also see that the differences

between instances with dominated bids and without them, as we pointed out before, give slightly

better optimality to instances that contain dominated bids, nevertheless the differences seem to be

very low. Regarding the differences amongst the distributions, we notice that there are three distri-

butions (arbitrary, regions and L7) that are clearly affected by resource unavailability while the other

two (paths and matching) are not that affected.

Therefore, solution robustness seems to be specially useful for arbitrary, regions and L7-like in-

stances on not very large problems, since arbitrary only achieves between 80% and 94% of opti-

mality in average and between 65% and 88% for the worst case; and for regions, although it gives

slightly better optimality, the values are between 82% and 94% for the average case and between

65% and 89% for the worst case. Conversely the L7 distribution gets the worst results with values

between 5% and 13% in average and between 0% and 1% in the worstcase. On the other hand,

paths-like and matchings-like instances do not seem to require that much looking for robust solu-

tions since the optimal solutions seem to be quite inherently robust, specially for large instances.

We observe values between 91% and 92% for the average case andbetween 79% and 82% for the

worst case in the matching distribution, and even better forpaths with an optimality between 94%

and 95% on average and between 92% and 93% in the worst case.

However, even in those distributions that seem to be not muchaffected by resource unavailability,

there is a loss of revenue between 5% and 9% in average (and between 7% and 21% in the worst

case), which is also enough to motivate the development of robustness techniques.

Figures 3.4 and 3.5 show the same results for the “full-repairability” scheme. We can appreciate

the differences on the percentages of optimality that here are much higher than in the “reallocation”

scheme, which was expected since the repair in this scheme has a wider range of action. In these

cases, the percentage of optimality of the repair solutionsin the arbitrary distribution goes between

91% and 95% on average and between 81% and 91% in the worst case, which is considerably higher

than in the previous case. In the regions distribution the values go from 89% to 95% on average

and between 76% and 91% in the worst case, which is again notably higher than in the reallocation

scheme. For the L7 distribution the optimality goes from 92%to 94% in average and from 87%

to 94% in the worst case, which are extremely better results than in the previous setting. For the

instances that were not much affected in the previous case, here the results are quite similar. For

the matching distribution we get values from 92% and 93% in the average cases and between 81%

and 83% in the worst cases, which is only 1% or 2% higher than inthe previous case. For the

paths distributions the obtained values are 95% on average and between 92% and 93% in the worst

case, which is pretty much the same results as before. Again,we can conclude that even in the

most robust distributions, there is a loss of optimality of about 5% on average and 8% in the worst

case, which could be sufficient in some domains to consider incorporating robustness. Obviously,

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(f)

Figure 3.2: Reallocation results. (a) Arbitrary, (b) Arbitrary without dominated bids, (c) Matching,

(d) Matching without dominated bids, (e) Paths, (f) Paths without dominated bids.

in the distributions that are highly affected by resource unavailability such as arbitrary or regions,

robustness is without any doubt a necessity.

3.3 REPAIR SIZE ANALYSIS

When repairing a solution, in the previous analysis (as wellas in the sensitivity analysis of [34]) we

have not cared about the size of the repair, since the objective of this analysis was to see the potential

effects of resources that become unavailable on the revenue. Therefore, the size of the repair could

be as large as required with the aim of finding the best possible repair solution. In practice, however,

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(d)

Figure 3.3: Reallocation results. (a) Regions, (b) Regionswithout dominated bids, (c) L7, (d) L7

without dominated bids.

the size of the repair may not be unlimited, and repairs of small size would be preferred, since the

participants do not need to be bothered much whenever a breakis produced, which could give a bad

impression to the participants if the solution was changed completely at every break, moreover given

that it is possible that some of them had began some actions based on the previous solution.

In this section we analyze the repairs’ size in order to see whether the previous (optimistic) results

were realistic enough or otherwise required too many changes in the solution that they were not

actually practicable in real world situations. Therefore we study the number of changes required for

the repair solution. If this value was low, it would mean thatthe size of the repair is not a crucial

factor to consider. However, we will see that this is not the case indeed.

For this analysis we will not experiment with all the distributions, since the results would be quite

similar, instead we will choose only one of them. The chosen one is the regions distribution, since in

the results of the previous section we saw that it is not the most affected distribution when resources

become unavailable (the most affected is L7) nor the least (the least affected are matching and paths)

and therefore the results should be representative enough.

In Figure 3.6 we see the results of the regions distribution and the reallocation scheme. The graph

shows the average and worst case (largest) size of the repairand also the size of the solution, for

both dominated and non-dominated instances. We observe that although the average repair size is

always between 1 and 2, the worst case can be much larger, up to9 in non-dominated instances, and

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(f)

Figure 3.4: Full-reparability results. (a) Arbitrary, (b)Arbitrary without dominated bids, (c) Match-

ing, (d) Matching without dominated bids, (e) Paths, (f) Paths without dominated bids.

up to 12 for dominated ones. In this case, the size of the problems does not seem to affect too much.

However, we see that the worst case is always around 7. Although the sizes of the repairs are small,

they represent about 10% of the solution size in average, which could be enough in some domains

for requiring robustness, and in the worst cases it goes up to50% (exceeding 100% in one case).

These results point out the necessity of establishing an upper bound for the repair size, since we do

not see any tendency in the graphs and therefore it does not seem that the repair size can be actually

predicted or controlled at all. Thus, imposing a limit in therepair size would avoid such large size

of the repairs that otherwise could be needed in some instances.

41

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

Average Repair Solution Revenue
Worst-case Repair Solution Revenue

(d)

Figure 3.5: Full-Reparability results. (a) Regions, (b) Regions without dominated bids, (c) L7, (d)

L7 without dominated bids.

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ep

ai
r

si
ze

Bids

Average repair size
Worst-case repair size

Solution size

(a)

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ep

ai
r

si
ze

Bids

Average repair size
Worst-case repair size

Solution size

(b)

Figure 3.6: Repair size analysis. (a) Without dominated bids, (b) With dominated bids.

3.4 SUMMARY

In this chapter we have performed an extensive sensitivity analysis that has proved the importance

of incorporating robustness mechanisms for combinatorialauctions, since the optimal solution in

many distributions is highly affected when some of the resources become unavailable, both in terms

of revenue for the auctioneer and number of changes requiredto repair the solution.

42

Concretely, we have seen that the most affected distributions are arbitrary, regions and L7. Addi-

tionally, we have observed that when the number of bids is very high, robustness is not required

so much, since a repair can be easily found anyway. Therefore, in the following chapters we will

restrict our experiments with the distribution L7 and with arestricted number of bids.

For the experiments in this chapter we have only considered what happens when one of the resources

turns unavailable. If the number of resources that become unavailable was higher it is expected that

the results should be even worse in terms of a greater loss in revenue for the auctioneer and, therefore,

robustness mechanisms would be even more necessary.

The following two chapters show how to find robust solutions for combinatorial auctions using an

encoding based on an extension of propositional logic. The next chapter shows a strict modeling

that finds robust solutions with hard constraints, while thefollowing chapter presents a more flexible

modeling, based on soft constraints, which could be more reliable in some applications.

43

CHAPTER 4

Robustness of Resource Availability

In this chapter we formalize the concept of robustness for resource allocation problems formulated

as combinatorial auctions. We begin by representing the resource allocation problem as a combi-

natorial auction, and encoding that auction as a weighted Max-SAT formula. Then, we extend that

encoding in order to incorporate robustness. The extensionis similar as for supermodels, but we

also consider resource availability and add a parameter that guarantees a minimum revenue of the

solution, including all the possible repairs. The new encoding is proved mathematically and the re-

sulting model is tested varying the different parameters, and with several solvers. In the next chapter

we will add a modification to the encoding in order to add flexibility to it and facilitate the task of

defining the desired balance point between optimality and robustness.

4.1 SCHEMATIC V IEW

Our approach of robustness for resource allocation problems is based in four steps:

1. Representing the resource allocation problem as a combinatorial auction

2. Modeling the combinatorial auction as a propositional formula (Max-SAT)

3. Extending the Max-SAT formula in order to incorporate robustness, so that the solution of the

formula implies a robust solution to the auction, and to the initial resource allocation problem

4. Solving the extended formula in order to find a solution that is a robust solution of the resource

allocation problem

Figure 4.1 shows an schema of our approach. We begin with a resource allocation problemP which

is converted to an auctionA. This auction is then transformed into a partial weighted Max-SAT

formulaFA that encodes exactly the same auction (and the original resource allocation problem).

Then, in order to add robustness we add some clauses to the formula, hence we get a new larger

formulaFA
SM , which is not Max-SAT but Max-SMT (since it has some inequalities). Then we use a

Max-SMT solver1 in order to find a model of the formulaFA
SM . This model is actually a supermodel

of the formulaFA, which turns to be a super solution to the auctionA, and finally, a robust solution

for the original resource allocation problemP .

The initial resource allocation problem is written as a combinatorial auction by putting the resources

requirements of the different agents as the bids of the auction, and their valuation as their prices. In

1Apart from SMT, the model can be written as a pseudo-Boolean or Linear Programming problem as well.

44

RA problemP

auctionA

(1)

FA

Weighted Max-SAT

encoding
(2)

FA
SM

Weighted Max-SMT

encoding
(3)

model ofFA
SMWeighted Max-SMT

solver

(4)

supermodel ofFA

super solution ofA

robust allocation ofP

Figure 4.1: Schematic view.

the following sections, we will explain how to encode an auction into a partial weighted Max-SAT

formula. Then we will define concretely what is robustness for an auction and see how to incorporate

robustness through a reformulation of that formula.

4.2 AUCTIONS AS PARTIAL WEIGHTEDMAX -SAT PROBLEMS

An auction can be easily encoded as a partial weighted Max-SAT formula [38, 32]. A partial

weighted Max-SAT formula has the formF = C ∧ W , whereC denotes the set of mandatory

constraints, andW denotes the set of weighted, non-mandatory constraints. Inthe standard mod-

eling (non-robust), a set of Boolean variables encode each bid b1, ..., bn to indicate whether it is

winner or loser. The mandatory clauses of the formula encodethe restrictions regarding the items of

the auction (the resources of the resource allocation problem) that cannot be assigned to more than

one bid (to more than one agent or task in the respective resource allocation problem). Hence, the

mandatory clauses (C) are the following:

• Bid incompatibility: For each pair of incompatible bidsi,j (i 6= j), i.e. such thatGi∩Gj 6= ∅,

whereGi is the set of resources requested by bidi, we state:

¬bi ∨ ¬bj (4.1)

since it is not possible to assign both bids as winners, giventhat they share some items.

The non-mandatory clauses (W) are the prices (weights) of the bids:

• Bids’ values: For each bid we add a weighted unit clause(bi, pi) indicating that if thei-th bid

is not part of the solution, then there is a loss of revenue ofpi.

The sum of values of the satisfied weighted clauses will be maximized when solving the weighted

Max-SAT problem, which means that the revenue of the auction(i.e. the sum of winning bids) will

be also maximized.

45

This encoding allows finding an optimal solution, but does not consider robustness. Since we deal

with robustness against resource unavailability, we first extend this encoding by adding another set

of Boolean variables to represent resource availabilityg1, ..., gm. We also need to add the following

mandatory clauses, which will be included inC:

• Resource availability: In order to indicate resource availability we state:

bj ⇒ gi1 ∧ ... ∧ ginj (4.2)

to indicate that whenever bidj is accepted, then all of its goods must be available (i1, ..., inj

are the indices of the goods of the bidj, i.e.Gj = {gi1, ..., ginj}).

Finally, we allow to introduce additional constraints in order to tailor the auction to follow specific

rules. For instance, we could add the constraint that each agent wins at least one of its bids (we will

use this restriction in the example of Section 4.4):

• Minimum winning bids

For each setRk = {i1, . . . , ink
} corresponding to the bids of agentk, we state the following

mandatory clause:

bi1 ∨ · · · ∨ bink

Any additional constraint (as long as it is formulated as a Boolean formula) could be added. For

example, we could easily introduce other constraints on thenumber of winning bids (e.g. set a

minimum, maximum or exact number of winning bids per agent),impose the non-free disposal

condition (i.e. every good must be allocated to some agent),or even introduce constraints over the

goods being allocated (e.g. if goodX is allocated to some agent, then goodY cannot be allocated

to any agent), among others. The latter would allow us to express incompatibility between goods:

for instance, in the conference room assignment scenario, we could have a large room (L) that can

be also reconfigured into two smaller rooms (S1, S2), but obviously we could not allocate both the

large and some small room at the same time. We could then statethe clauseL→ ¬S1 ∧ ¬S2.

Moreover, if we consider directly encoding the problem as a SMT formula (e.g. SAT modulo

quantifier-free linear integer arithmetic) instead of plain SAT, as we will see in the following sub-

section, then the encoding of such constraints would be straightforward thanks to the higher expres-

siveness of the language.

The conjunction of the previous sets of clauses is a weightedMax-SAT problem for the auction. In

the following section we show how a weighted Max-SAT formulaFA defining an auctionA can be

transformed into a weighted Max-SMT formula defining a robust version of the former. In particular,

we describe how to obtain a weighted Max-SMT formulaFA
SM such thatFA

SM has a model if and

only if A has an(a, b, β)-super solution (see definition below).

4.3 ROBUST AUCTIONS AS PARTIAL WEIGHTEDMAX -SMT

PROBLEMS

Robustness with reparable solutions is defined based on three parameters:a, b andβ, wherea is

the number of breakages that the solution can absorb,b is the maximum size of a repair (number

46

of variables changed), andβ is the minimum benefit of the solution (including its possible repairs).

Thus, the definition of an (a,b,β)-super solution is the following:

Definition 1. An (a, b, β)-super solutionof an auction is a (maximal revenue) solution for the auc-

tion such that, ifa goods become unavailable (breakage), then another solution can be obtained by

changing at mostb bids from winner to loser or vice-versa (repair) and, moreover, the solution and

all possible repaired solutions have a revenue of at leastβ.

Note that asking for a (1,0,β)-super solution would make no sense, since this means handling any

break (a good becoming unavailable) by not changing any bid assignment. However, we must bear

in mind that if a good becomes unavailable, an immediate change must be made to the variable of

the winning bid requesting that good (resource availability constraint), which should become loser.

Given that a super solution must handle any possible break (i.e. in the case ofa = 1, any single

resource break), the only (1,0,β)-super solution would be to assign all bids as losers, so a break in

a resource would not affect any bid. But obviously this solution would be totally useless. A more

reasonable demand would be that of (1,1,β)-super solution, where one break should be repairable

with one change in bid assignment, and so this single change would be on the bid requesting the

affected resource, leaving the rest of bids unaltered.

4.3.1 ROBUST AUCTIONS AS ROBUST PARTIAL WEIGHTEDMAX -SAT PROB-

LEMS

Now that we have defined the concept of robustness in auctions, we need to map it to the SAT

framework. The following definition generalizes the one of [25] to weighted Max-SAT.

Definition 2. An (Sa
1 , S

b
2, β)-supermodel of a partial weighted Max-SAT formulaF is a (minimal

cost) model ofF such that if we modify the values taken by the variables in a subset ofS1 of size

at mosta (breakage), another model can be obtained by modifying the values of the variables in a

disjoint subset ofS2 of size at mostb (repair) and, moreover, the solution and all possible repaired

solutions have a cost of at mostβ.

Note that while in auctions the objective is to maximize the revenue of the auctioneer, in weighted

Max-SAT the objective is to minimize the cost of the unsatisfied clauses. Therefore the previous

definition updates the one in the previous section taking that into account.

Next lemma shows that finding a super solution for an auctionA is equivalent to finding a su-

permodel for the formulaFA that encodes the auction. Nevertheless there is a subtle asymmetry

concerning initial availability of goods. Namely, notice that in auctions, all goods are assumed to be

available at the starting point, while inFA, values for variables denoting availability of goods are

not established. Fortunately, next fact shows that for any optimal supermodel ofFA, there exists an

equivalent supermodel (i.e., a model with exactly the same winning bids) with all good availability

variables set totrue.

Fact 1. For any auctionA havingN goods andM bids, letFA be the formula encoding it. IfI is an

(Sa
1 , S

b
2, β)-supermodel ofFA, whereS1 = {g1, ..., gN} andS2 = {b1, ..., bM}, then there exists a

supermodelI ′ where all availability variables are set to true and,I ′(bi) = I(bi) for all 1 ≤ i ≤M .

47

Proof. Let I be an (Sa
1 , S

b
2, β)-supermodel ofFA such that for somei; I(gi) = false. Let I ′ be

an interpretation forFA such thatI ′(bi) = I(bi) for all 1 ≤ i ≤ M andI ′(gi) = true for all

1 ≤ i ≤ N . The cost ofI ′ is the same as the one ofI because it falsifies the same set of weighted

clauses thatI sinceI ′(bi) = I(bi) for all 1 ≤ i ≤M , andbid’s valueclauses are the only weighted

ones, thereforeI ′ is optimal too. Concerning repairability, it is not hard to see that for any breakage

s′ (with s′ ⊆ S1 and |s′| ≤ a) in I ′, there exists some breakages (with s ⊆ S1 and |s| ≤ |s′|)

in interpretationI such that for everygi that isfalse in I ′ under breakages′, gi is alsofalse in I

under breakages. Therefore, all bids allowed (according toresource availabilityformula) inI under

breakages are also allowed inI ′ under breakages′. Finally, sinceI is an (Sa
1 , S

b
2, β)-supermodel

and|s| ≤ a, s must be repairable and hence, havingI andI ′ the same values for allbi, s′ must also

be repairable forI ′.

Lemma 2. An auctionA withN goods andM bids has an(a, b, β)-super solution if and only if the

partial weighted Max-SAT formulaFA has an(Sa
1 , S

b
2, β

′)-supermodel whereS1 = {g1, . . . , gN},

S2 = {b1, . . . , bM}, and cost (i.e. loss of revenue)β′ =
(∑M

i=1 pi
)
− β, andpi is the value of the

i-th bid.

Proof. (⇒) According to the existing robust solution forA and without loss of generality. according

to the previous fact, we define an interpretationIA for FA that sets totrue all good availability

variables and all winning bid variables, and sets tofalse all loser bid variables. Now we prove

that IA is effectively an (Sa
1 , S

b
2, β

′)-supermodel ofFA. From the construction ofFA andIA it

is easy to see thatIA |= FA becauseFA encodes the auction semantics of bid incompatibility, of

resource availability and of any additional restriction the auction may have. Moreover, the cost of

FA underIA is the sum of the prices of the loser bids, in other words, the total amount of the prices

minus the winning ones, i.e.
(∑M

i=1 pi
)
−
(∑M

i=1 pi|I
A(bi) = true

)
. Since our auction solution is

an (a, b, β)-super solution, we have that
(∑M

i=1 pi|I
A(bi) = true

)
≥ β, and hence the cost ofFA

underIA is at most
(∑M

i=1 pi
)
− β as required.

Next, we need to prove forIA that any breakage of size at most a onS1 can be repaired with at

mostb changes inS2 variable values witha cost of at mostβ′. Since our auction solution is an

(a, b, β)-super solution, when any (at most)a goods become unavailable, there exists a repair of size

at mostb on the winning bids, that has a revenue of at leastβ. Notice that having a breakages means

changing the value of a variables encoding good availability from true to false. Therefore, for any

a changes inS1 variable values, we can build an interpretationIAa,b consisting on the sameIA but

where thea variables of the breakage have been set tofalse, and theb variables corresponding to

the winning bids of the repair of the auction have been flipped. A similar reasoning as forIA serves

to prove thatIAa,b |= FA and thatFA has a cost of at most
(∑M

i=1 pi
)
− β under interpretationIAa,b.

Finally, since our auction super solution is optimal, so it is IA. Suppose the opposite. Then there

would exist an (Sa
1 , S

b
2, β

′)-supermodelI ′ of FA with cost smaller than the one ofIA. FromI ′ we

could build an (a, b, β)-super solution forA, following the reasoning of the (⇐) part of the proof,

and this would have a greater revenue than the original supersolution, contradicting its optimality.

(⇐) Let IA be an (Sa
1 , S

b
2, β

′)-supermodel ofFA. We can build a bid assignmentSIA for the auction

A, setting as winning bids all the bidsi such thatIA(bi) = true. SinceIA |= FA andFA satisfies

all the semantics of the auctionA, SIA is effectively a solution ofA. Moreover,FA has a cost

equal to
(∑M

i=1 pi
)
−
(∑M

i=1 pi|I
A(bi) = true

)
underIA, and we know that this cost is smaller

48

than or equal toβ′, which amounts to
(∑M

i=1 pi
)
− β. Therefore, the revenue ofSIA , namely

(∑M
i=1 pi|I

A(bi) = true
)
, is at leastβ.

Now we need to prove that for any (at most)a goods becoming unavailable, we can change (at

most)b bid values ofSIA from losers to winners or vice-versa, still obtaining a solution for A with

a minimum revenue ofβ. SinceIA is an (Sa
1 , S

b
2, β

′)-supermodel ofFA we know that for any

(at most)a value changes (w.r.t.IA) of variables inS1, we can build another model forFA by

changing (at most)b values of variables inS2. Let’s call this interpretationIAa,b. ThenSIA
a,b

is a bid

assignment for auctionA when at mosta goods become unavailable, involving at mostb changes in

bid assignment w.r.t.SIA . With a similar reasoning as before,SIA
a,b

is a solution of auctionA with

a minimum revenue ofβ.

Finally, since ourFA supermodelIA is optimal, so it isSIA . Suppose the opposite. Then there

exists an (a, b, β)-super solutionS′ of A with profit greater than the one ofSIA . FromS′ we could

build another (Sa
1 , S

b
2, β

′)-supermodel forFA following the reasoning of the (⇒) part of the proof,

and this would have a smaller cost thanIA, contradicting its optimality.

Now we show how to construct a partial weighted Max-SMT formulaFSM from a partial weighted

Max-SAT formulaF , such thatF has an(Sa
1 , S

b
2, β)-supermodel if and only ifFSM has a model.

Weighted Max-SMT formulas are a generalization of the weighted Max-SAT formulas where propo-

sitional variables can be replaced by predicates of the underlying theory (linear integer arithmetic

for our purposes). Given a weighted Max-SMT formula, the weighted Max-SMT problem is the

problem of finding an assignment with minimal cost.

4.3.2 ROBUST PARTIAL WEIGHTED MAX -SAT AS PARTIAL WEIGHTED MAX -

SMT

In this section we show how robustness can be added to any partial weighted Max-SAT formula.

We proceed by means of a transformation, generalizing the result of [25]. Interestingly, after our

transformation we get a partial weighted Max-SMT formula.

Let

F = C ∧W

be a weighted Max-SAT formula, whereC denotes the set of mandatory constraints andW denotes

the set of weighted, non-mandatory constraints2. For the sake of simplicity, we will assume that

W consists only of unary clauses of the form(b, w), whereb is a Boolean variable andw is a

weight. Note that any Max-SAT formula can be transformed into an equisatisfiable one fulfilling

this requirement by reification, i.e., by replacing any weighted constraint(G,w) such thatG is not

unary by(G↔ b) ∧ (b, w).

Now, assuming that

W = (b1, w1) ∧ · · · ∧ (bk, wk)

2In the following, we will sometimes talk about constraints instead of clauses since our transformation into the SMT

setting does not require the formula to be in clausal form.

49

we introduce a set of integer variablesi1, . . . , ik and define

L =
∧

j∈1..k

(bj → ij = 1) ∧ (¬bj → ij = 0)

LetSn denote the set of all (possibly empty) subsets of a setS whose size is at mostn, and letSn+

denote the set of all non-empty subsets of a setS whose size is at mostn. Moreover, letFS denote a

Boolean formulaF where all occurrences of variables in the setS have been flipped (i.e., negated).

We define

BS =
∑

j∈1..k







ij · wj if bj ∈ S

(1− ij) · wj if bj /∈ S

whereS is the set of Boolean variables occurring inW . We denote byB the particular caseB∅ =
∑

j∈1..k(1− ij) ·wj , corresponding to the cost of the unsatisfied clauses inW . If the Boolean values

false andtrue were interpreted as the integer values0 and1, respectively, in arithmetic expressions,

we could forget aboutL and directly writeB =
∑

j∈1..k(¬bj) · wj and analogously forBS .

Finally, we define

FSM = C ∧W ∧ L ∧ (B ≤ β) ∧

∧

S∈Sa+
1




∨

T∈(S2\S)b

(CS∪T ∧ (BS∪T ≤ β))



 (4.3)

Roughly speaking, the meaning of the instanceFSM is the following: we haveC, that is the manda-

tory clauses of the original formula, and we addB ≤ β to bound the cost. Next, we need to be

able to repair all possible breakages. The bigandaccounts for all possible (breakage) setsS of size

smaller than or equal toa, and the bigor ensures the existence of a repair for eachS. This is done

by means of considering all possible (repair) setsT of variables fromS2 (excluding the ones inS),

and limiting the number of variables fromS2 to b. By flipping the breakages and the repairs, each

subformula(CS∪T ∧ (BS∪T ≤ β)) enforces (see Lemma 3) the existence of a possible repairT for

the breakageS, with a cost which is bounded byβ.

Observe that, sincea andb are constants, the size ofFSM is polynomially bounded by the size ofF .

Namely,FSM isO(na+b) larger thanF , wheren is the number of variables ofF . In Section 4.3.3

we show how, by encoding the disjunctions ofFSM into cardinality constraints, an equisatisfiable

formula which is onlyO(na) larger thanF can be obtained.

Note that, due toL and the constraints of the formB ≤ β, this formula is not plain SAT; it falls into

SAT modulo the quantifier-free fragment of the (first-order)linear arithmetic theory3.

Now we proceed to prove the correctness of theFSM reformulation.

Definition 3. (Flipped interpretation).LetS be a set of variables andI be an interpretation. Then

IS denotes the interpretation such thatIS(x) = ¬I(x) if x ∈ S and IS(x) = I(x) for all other

variablesx.

3It will be integer or real arithmetic depending on the type ofthe weightswj andβ.

50

Lemma 3. LetF be a Boolean formula andS be a set of propositional variables occurring inF .

ThenI is a model ofF if and only ifIS is a model ofFS .

Proof. We proceed by induction on the size ofS. If S is empty, the lemma holds trivially. To

conclude we need to show that ifI |= F ⇔ IS |= FS thenI |= F ⇔ IS∪{p} |= FS∪{p} for every

set of propositional variablesS and every propositional variablep not included inS. For this observe

that, for every literall with the variablep (that isp or¬p), we haveIS(l) = I
S∪{p}

(¬l). Therefore,

IS |= FS ⇔ IS∪{p} |= FS∪{p} and hence ifI |= F ⇔ IS |= FS thenI |= F ⇔ IS∪{p} |=

FS∪{p}.

The next theorem follows the spirit of the result of [25], butadding costs. Here, the key idea is that

BS∪T , gives us the cost of the unsatisfied clauses inW if the variables inS∪T were to change their

value with respect to the initial solution. Note that the variables inS represent the breakage variables

and the ones inT represent the repair variables and, hence,S ∪ T denotes the set of variables that

are going to change their value. Note also that the setsS andT are disjoint, since it makes no sense

to repair a broken variable.

Theorem 4. Let F be a partial weighted Max-SAT formula, letS1 and S2 be sets of variables

occurring inF , and leta, b andβ be non-negative integer constants. ThenF has an(Sa
1 , S

b
2, β)-

supermodel if and only if the instanceFSM has a solution.

Proof. Let us recall that a(Sa
1 , S

b
2, β)-supermodel ofF is a minimal cost model ofF such that if

we modify the values taken by the variables in a subset ofS1 of size at mosta, then another model

can be obtained by modifying the values of the variables in a disjoint subset ofS2 of size at mostb

and, moreover, the solution and all possible repaired solutions have a cost of at mostβ.

By assumption,F = C ∧W whereC is a set of mandatory clauses andW is a set of weighted (non-

mandatory) unit clauses. For the right-to-left implication, let I be a solution (i.e., an optimal truth

assignment) toFSM . From the definition ofB, we clearly have that the cost of the unsatisfied clauses

in W is at mostβ. Notice also thatI is a model ofF , sinceF is included in the PB-constraints of

FSM . To conclude we will show thatI is a model ofF such that if we modify the values taken by

the variables in a subsetS of S1 with |S| ≤ a, then another model can be obtained by modifying the

values of the variables in a disjoint subsetT of S2 with |T ∩ S2| ≤ b and, moreover, the repaired

solution has a cost of at mostβ. If S = ∅ then this trivially holds takingT = ∅. Otherwisea > 0 and

1 ≤ |S| ≤ a and, sinceI is a solution ofFSM , thenI |= ∨T⊆(S2\S),|T∩S2|≤b(CS∪T ∧(BS∪T ≤ β)),

that is,I |= CS∪T ∧ (BS∪T ≤ β) for someT in (S2 \S) with |T ∩S2| ≤ b. Now, sinceI |= CS∪T ,

by Lemma 3 we haveIS∪T |= (CS∪T)S∪T and, since(CS∪T)S∪T = C, we haveIS∪T |= C as

desired. Finally, we show thatI |= BS∪T ≤ β implies that the cost of the unsatisfied clauses in

W under interpretationIS∪T is at mostβ. Notice thatI(B) is the cost of the unsatisfied clauses

in W . Now, considering the interpretationIS∪T we have thatIS∪T (BS∪T) = I(B). Therefore,

IS∪T ((BS∪T)S∪T) = I(BS∪T), that is,IS∪T (B) = I(BS∪T). From this and the fact thatI |=

BS∪T ≤ β, we finally get thatIS∪T (B) (which amounts to the cost of the unsatisfied clauses inW

under interpretationIS∪T) is at mostβ.

For the left-to-right implication, letI be a model ofF such that if we modify the values taken

by the variables in a subsetS of S1 of size at mosta, then another model can be obtained by

modifying the values of the variables in a disjoint subsetT of S2 such that|T ∩ S2| ≤ b (that

51

is, IS∪T |= F) and, moreover, both the solution and the repaired solutionhave a cost of at most

β. We will show that every such an interpretationI is a solution ofFSM . Since the solution

has cost at mostβ, we have thatI |= B ≤ β. Now it remains to be proved that it holdsI |=

∧S⊆S1,1≤|S|≤a(∨T⊆(S2\S),|T∩S2|≤b(CS∪T ∧ (BS∪T ≤ β))). For this recall that, by assumption,

for every subsetS of S1 with |S| ≤ a there exists a subsetT of (S2 \ S) with |T ∩ S2| ≤ b such

that IS∪T |= C. Then, by Lemma 3,(IS∪T)S∪T |= CS∪T and, since(IS∪T)S∪T = I, we have

I |= CS∪T . In order to show thatI |= BS∪T ≤ β, recall that the cost of the repaired solution is at

mostβ, which means thatIS∪T |= B ≤ β. Then since, as seen before,IS∪T (B) = I(BS∪T), we

haveI |= BS∪T ≤ β.

Observe that, in the previous proof, we have established a bijection between supermodels ofF and

solutions ofFSM . Moreover, sinceB denotes the cost of the unsatisfied clauses inW , it is not

difficult to see that optimality is preserved. Hence, it follows that a solution ofFSM is precisely a

(Sa
1 , S

b
2, β)-supermodel ofF .

Corollary 5. Let F be a partial weighted Max-SAT formula, letS1 and S2 be sets of variables

occurring inF , and leta, b andβ be non-negative integer constants. Then every optimal solution of

FSM is a (Sa
1 , S

b
2, β)-supermodel ofF .

Theorem 6. An auctionA has an(a, b, β)-super solution if and only if the weighted Max-SMT

formulaFA
SM has a model.

Proof. Let FA = C ∧ W denote the weighted Max-SAT formula obtained fromA as explained

in Subsection 4.2, whereC andW denote respectively the set of mandatory and non-mandatory

constraints introduced in section 4.2. LetS1 = {g1, . . . , gN}, S2 = {b1, . . . , bM} andβ′ =
(∑M

i=1 pi
)
−β. By Theorem 4,FA has an(Sa

1 , S
b
2, β

′)-supermodel if and only ifFA
SM has a model.

Therefore, by Lemma 2,A has an(a, b, β)-super solution if and only ifFA
SM has a model.

Given an(a, b, β)-super solution anda breakages, finding a repair with at mostb changes in variable

values has polynomial time complexity: simply generate theO(nb) repairs on the broken solution,

check whether they are solutions or not, and get the one with the maximum revenue, greater thanβ.

Corollary 7. Given an auctionA, the decision problem of the existence of an(a, b, β)-super solution

for A is NP-hard.

4.3.3 ROBUSTNESS WITH CARDINALITY CONSTRAINTS

The Formula 4.3 is the most straightforward to understand but it grows exponentially with botha

andb. In this section we show how we can get rid of the disjunctionsof the previous encoding by

means of cardinality constraints. A formula which is onlyO(na) larger thanF is obtained. This

is especially important, since it means that the complexityof our approach does not depend on the

number of repairs, but only on the number of breakages, whichis usually assumed to be low. In fact,

in most of the previous works on robustness the number of breakages has always been set to one.

The main idea is to define, for each possible breakS, a new set of variablesbiS . These are duplicate

variables from the original instance that will encode the repair solution. These variables have to

52

satisfy the same constraints as the original ones taking care that the variables of the repair solution do

not use the unavailable resources, therefore the restrictions are duplicated with some modifications

(the restrictionC ∧ B ≤ β is duplicated toCS ∧ BS ≤ β with the variables of the breakageS

negated). Finally, the changes made on the repair solution with respect to the initial solution should

not exceed the maximum size of the repair (b). In order to do so, we also define new integer variables

(di) to indicate whether the repair variable is different to thecorresponding initial variable, which

are calculated as shown in Equation 4.4.

(diS = 0⇔ bi = biS) ∧ (diS = 1⇔ bi 6= biS) (4.4)

Therefore, given that each breakage cannot have a repair size bigger thanb, the sum of differences of

each breakage is limited tob. At the end, the improved partial weighted Max-SMT formula encoding

a robust CA with cardinality constraints is the following formula:

F∇
SM = C ∧ L ∧W ∧ (B ≤ β) ∧

∧

S∈Sa+
1

(

CS ∧ (BS ≤ β) ∧
∑

i

diS ≤ b

)

(4.5)

Another advantage of this modification, apart from the reduction of the complexity, is that once the

model is solved, all the repairs are also determined (by the duplicated variables), while the previous

encoding only assured that a repair could be found but it was not given.

Now we proceed to prove the correctness of theF∇
SM reformulation.

Definition 4. (Variable renaming).LetR be a set of variables. The functionδR : X → X is defined

asδR(x) = xS for every variablex ∈ R, wherexS is a new atom, andδR(x) = x if x /∈ R.

Definition 5. (Difference cardinality).LetR andS be sets of variables, andδR,S be a variable re-

naming function. Then we define thedifference cardinality formulaas∇δR,S =
∑

x∈R (x 6= δR,s(x))

Lemma 8. LetF be a Boolean formula,R be a subset of the variables ofF andI be an interpreta-

tion. ThenI |= F δR if and only ifI |= FD, whereD = {x ∈ Var(F) | I(x) 6= I(δR(x))}.

Proof. First of all notice that from the definition ofD it follows that the domain ofI is Var(F) ∪

Var(F δR). Moreover, sinceF δR is a variable renamed version ofF andFD is a variable flipped

version ofF , we have that both formulas are the same except for some variable renamings (for each

variable inR) and negations (for each variable inD). Hence, for every literall in FD we have a

corresponding literall′ in F δR .

Now, let l be any literal occurring inFD, andl′ its corresponding literal inF δR . Without loss of

generality, we assume thatl is either of the formx or ¬x, wherex is a variable inVar(F). We

distinguish between two cases. IfI(x) = I(δR(x)) thenx /∈ D and, hence,l occurs inFD with the

same polarity with whichl′ occurs inF δR . Then, sinceI(x) = I(δR(x)), we have thatI(l) = I(l′).

If, otherwise,I(x) 6= I(δR(x)) thenx ∈ D and, hence,l occurs inFD with the opposite polarity

with which l′ occurs inF δR . Then, sinceI(x) 6= I(δR(x)), and literalsl and l′ have opposite

polarity, we have thatI(l) = I(l′).

Finally, sinceI(l) = I(l′) for all literals, we have thatI |= F δR ⇔ I |= FD.

53

Next lemma shows the equivalence of the cardinality constraints formulation and the previous ex-

haustive encoding presented in section 4.3.2.

Lemma 9. LetF be a Boolean formula,S1 andS2 be sets of variables occurring inF , a andb be

non-negative integer numbers, andI be an interpretation. Then

I |=
∧

S⊆S1,1≤|S|≤a

(
∨

T⊆(S2\S),|T∩S2|≤b FS∪T

)

if and only if there exists an interpretationI ′ such thatI ′(x) = I(x) for all x ∈ Var(F) and

I ′ |=
∧

S⊆S1,1≤|S|≤a

(

F
δ((S2\S)),S

S
∧ (∇δ(S2\S),S ≤ b)

)

Proof. For the left-to-right direction, we have that for every setS ⊆ S1 with 1 ≤ |S| ≤ a, there

exists a setT ⊆ (S2 \ S) with |T ∩ S2| ≤ b such thatI |= FS∪T . We can define an interpretation

IS whose domain isVar(F) ∪ Var(F δ((S2\S)),S) and such thatIS(x) = I(x) for all x ∈ Var(F)

and IS(xS) 6= I(x) if and only if x ∈ T for all xS ∈ Var(F δ((S2\S)),S). Now observe that

FS∪T = (FS)T sinceS andT are disjoint. Moreover, sinceI |= (FS)T andIS(x) = I(x) for all

x ∈ Var(F), then alsoIS |= (FS)T . Then, by Lemma 8, takingFS for F , ((S2 \ S)) for R, IS

for I andT for D, we haveIS |= F
δ((S2\S)),S

S
. Concerning(∇δ(S2\S),S ≤ b), by construction ofIS

we haveIS(∇δ(S2\S),S) = |T ∩ (S2 \ S)| ≤ |T ∩ S2| ≤ b. Finally, since all considered setsS are

different, the domains of every pair of such interpretationsIS can only have non-renamed variables

of F in common. Then, since all interpretationsIS give the same value to non-renamed variables

of F , we conclude that there exists an interpretationI ′ that is compatible with allIS , that is, an

interpretation with the same truth assignment as everyIS .

For the right-to-left implication, we have the following:I ′ |= F
δ((S2\S)),S

S
∧ (∇δ(S2\S),S ≤ b) for

every setS ⊆ S1 with 1 ≤ |S| ≤ a. We defineT as the set of variablesx in (S2 \ S) such that

I ′(xS) 6= I ′(x). We trivially have thatT ⊆ (S2 \ S). Now we show that|T ∩ S2| ≤ b. For this,

first of all note that, we have thatT ∩ (S2 \ S) = T ∩ S2. Then, by definition ofT , we have that
∑

x∈(S2\S)(I
′(xS) 6= I ′(x)) = |T ∩ (S2 \ S)| = |T ∩ S2|. Moreover, by assumption, we have that

I ′ |= (∇δ(S2\S),S ≤ b), i.e.,
∑

x∈(S2\S)(I
′(xS) 6= I ′(x)) ≤ b. Therefore,|T ∩ S2| ≤ b. Next, since

I ′ |= F
δ((S2\S)),S

S
, we also have thatI ′ |= FS∪T by Lemma 8, takingFS for F , ((S2 \ S)) for R,

andI ′ for I. Finally sinceI ′(x) = I(x) for all x ∈ Var(F), we have thatI |= FS∪T , which lets us

conclude.

Theorem 10. Let F be a partial weighted Max-SAT formula, letS1 andS2 be sets of variables

occurring inF , and leta, b andβ be non-negative integer constants. ThenF has a(Sa
1 , S

b
2, β)-

supermodel if and only if the instanceF∇
SM has a solution.

Proof. By assumption,F = C ∧W whereC is a set of mandatory clauses andW = (l1, w1)∧· · ·∧

(lk, wk) is a set of weighted, non-mandatoryunit clauses. Moreover,we defineB =
∑

j∈1..k ¬lj ·wj ,

for all j in 1..k. Hence, we conclude by Theorem 4 and Lemma 9, takingF = C ∧ (B ≤ β).

Corollary 11. Let F be a partial weighted Max-SAT formula, letS1 andS2 be sets of variables

occurring inF , and leta, b andβ be non-negative integer constants. Then every optimal solution of

F∇
SM is a (Sa

1 , S
b
2, β)-supermodel ofF .

In this section we have proved that finding supermodels for partial weighted Max-SAT formulaeF

amounts to solving the corresponding instancesF∇
SM . It is worth noting that solutions ofF∇

SM allow

54

us to immediately find an appropriate repair for every permitted breakage: given a solutionI, and

a breakageS, a repair (set of variables that must flip their value) forS is the set{x ∈ Var(F) |

I(x) 6= I(xS)}.

This approach for finding supermodels using difference cardinality constraint resembles those pre-

sented in [72, 30, 31, 28] for the CP setting. The reformulation approach presented in [72] for finding

(1,0)-super solutions, referred to asP + P in [30], and explained in Section 2.4.5 consists in du-

plicating the breakable variables and adding a not equals constraint between each original variable

and its duplicate as shown in Figure 2.5. In [28] it is mentioned that the same duplication approach

could be generalized for finding(a, b)-super solutions. However, the authors argue that the size of

the new problem would be prohibitive and opt for using a backtracking algorithm [31] where the

original problem is only duplicated to check that an assignment can be repaired. Thus, although the

algorithm finds a super solution, it does not provide the repairs, since it “forgets” them once it has

checked the repairability of a solution. The main problem ofusing the reformulation approach in

the CP setting is the space needed to store the variables’ domains and the restrictions among them,

which are replicated many times. In our approach we also duplicate the problem for each possible

break through the renaming function, and limit the number ofchanges to be lower thanb with the

difference cardinality constraint. Fortunately, in the Boolean settings such reformulation is not that

expensive, since the domains are restricted to{false, true} and the only restrictions are the Boolean

clauses.

4.4 EXAMPLE

In order to illustrate our approach, we present an example toexplain each of the steps needed to find

robust solutions to auctions. The example is deliberately simple so that the notion of robustness and

its codification should be clear to the reader.

For this example, we use single-item bundles, that is, each bid requests only one item (not combinato-

rial bids), although the reader should note that the proposed approach is also valid for combinatorial

auctions. Moreover, in order to show the expressiveness of our approach, we impose the constraint

that each agent must win at least one of the bids it sends (which could be changed according to the

auction’s rules and requirements).

Assume we have 3 agents and 4 goods (or resources). In the following table we indicate the price of

each single-item bid of each agent, where each row represents a bidder and each column an item.

Goods

A
g

en
ts

1 2 3 4

1

2

3

10 15 - -

- 5 10 20

15 - - 10

55

Thus we have the following list of bids:

[(1, 10), (2, 15)
︸ ︷︷ ︸

first agent’s bids

, (2, 5), (3, 10), (4, 20)
︸ ︷︷ ︸

second agent’s bids

, (1, 15), (4, 10)
︸ ︷︷ ︸

third agent’s bids

]

We define the Boolean variablesg1, g2, g3 andg4 to represent the availability of the corresponding

goods, and the Boolean variablesbi, i ∈ {1..7} to indicate whether bidi is winner or loser. Then,

assuming that the only possible source of breakages is resource availability, we define the breakage

set as beingS1 = {g1, g2, g3, g4}. Then, the repair set isS2 = {b1, b2, b3, b4, b5, b6, b7}, since a

break in a resource may imply that a winning bid becomes loserand, eventually, other assignments

can be reconsidered in order to improve the auctioneer’s revenue under the new circumstances.

Assume that we look forrobust solutionswhere one break may occur and each possible break must

be repairable with at most four changes. Assume, moreover, that we want that whatever the break

is, the revenue of the initial solution and of the repaired solution is at least 30. This will correspond

to a(1, 4, 30)-super solution.

The optimal solution to this auction without considering robustness shown in Figure 4.2, would be

to set as winning bids the second, the fourth, the fifth and thesixth bids, i.e.,

b1 = 0, b2 = 1, b3 = 0, b4 = 1, b5 = 1, b6 = 1, b7 = 0,

which means assigning good2 to the first agent, goods3 and4 to the second agent and good1 to the

third agent. For the sake of readability we use the notation such as 2456 to indicate which are the

winning bids of a solution. With this solution, the auctioneer would have a revenue of 60.

Goods

A
g

en
ts

1 2 3 4

1

2

3

10
b1

15
b2

- -

- 5
b3

10
b4

20
b5

15
b6

- - 10
b7

Figure 4.2: Optimal solution. Winning bids are those encircled.

However, this optimal solution is not a(1, 4, 30)-super solution as we can see in Figure 4.3: if good

2 became unavailable (break), the only alternative for the first agent would be good1, but this is

already allocated to the third agent; this would imply finding also an alternative for the third agent,

which would be good4, but this good is allocated to the second agent. Thus, repairing the breakage

of good2 would imply modifying two winning bids (b2 to b1 andb6 to b7) and unassigning one

winning bid (b5), meaning five repairs (as shown in boldface):

b1 = 1,b2 = 0, b3 = 0, b4 = 1,b5 = 0,b6 = 0,b7 = 1,

which is more than the four allowed repairs. Note that for each bidder, choosing a new winning bid

may imply two repairs (one to set the initially winning bid to0, and in case he had no other winning

bids, another one to set one of its losing bids to 1).

56

Goods

A
g

en
ts

1 2 3 4

1

2

3

10
b1

15
b2

- -

- 5
b3

10
b4

20
b5

15
b6

- - 10
b7

2

Figure 4.3: Repair solution when good2 turns unavailable. Prohibition signs denote initially winning

bids which are changed to losers. Dashed circles denote new winning bids.

This auction has 9 feasible solutions (i.e., solutions satisfying the constraints on bid incompatibility

and minimum number of winning bids per agent), which are the following: 1247, 137, 1347, 147,

246, 2456, 247, 2467 and 256. Within these solutions, only three of them are(1, 4, 30)-super so-

lutions: 246, 2467 and 247. Next we go through the details of solution 2467 shown in Figure 4.4,

i.e.,

b1 = 0, b2 = 1, b3 = 0, b4 = 1, b5 = 0, b6 = 1, b7 = 1

which has a revenue of 50 units for the auctioneer. For this solution, the four possible breakages can

be repaired as follows:

1. g1 = 0. The repair isb6 = 0, being the new solution 247, and the revenue 35.

2. g2 = 0. The repair isb1 = 1, b2 = 0, b6 = 0, being the new solution 147 and the revenue 30.

3. g3 = 0. The repair isb4 = 0, b5 = 1, b7 = 0, being the new solution 256 and the revenue 50.

4. g4 = 0. The repair isb7 = 0, being the new solution 246 and the revenue 40.

Goods

A
g

en
ts

1 2 3 4

1

2

3

10
b1

15
b2

- -

- 5
b3

10
b4

20
b5

15
b6

- - 10
b7

Figure 4.4: Optimal robust solution.

It can be seen that all repairs have a revenue of at least 30 andthe number of repairs is not greater

than 4. Moreover, in the third case there is not even loss in the revenue. We let the reader check that

solutions 246 and 247 are also(1, 4, 30)-super solutions, with a revenue of 40 and 35, respectively.

However, since the revenue of solution 2467 is higher, this would be the optimal(1, 4, 30)-super

solution to this auction.

As for the rest of feasible solutions, some of them (147 and 1247) are(1, 4,)-super solutions,

meaning that they can be repaired with at most4 changes, but not(1, 4, 30)-super solutions, since

57

they do not satisfy that the solution and its repairs have a revenue of at least 30. In particular,

solution 147 has a revenue of 30, but one of its repairs has a revenue of only 25 (when good3

becomes unavailable, the second agent must be assigned good2, which corresponds to a low value

bid). Similarly, solution 1247 has a revenue of 45, but it also fails in the revenue of repairs, since

one of them has again a revenue of 25.

Finally, some solutions (137, 1347, 2456 and 256) are not even (1, 4,)-super solutions, since they

do need more than 4 changes in order to repair some of the breakages. This is the case of the optimal

solution without robustness (2456), as we have seen a few paragraphs above.

Now we describe how to model this example as a robust auction.We begin by modeling the auction

as a Max-SAT problem as explained in Subsection 4.2, which gives usFA = C ∧W with

C = (b1 → g1) ∧ (b2 → g2) ∧ (b3 → g2) ∧ (b4 → g3) ∧

(b5 → g4) ∧ (b6 → g1) ∧ (b7 → g4) ∧

(¬b1 ∨ ¬b6) ∧ (¬b2 ∨ ¬b3) ∧ (¬b5 ∨ ¬b7) ∧

(b1 ∨ b2) ∧ (b3 ∨ b4 ∨ b5) ∧ (b6 ∨ b7)

and

W = (b1, 10) ∧ (b2, 15) ∧ (b3, 5) ∧ (b4, 10) ∧

(b5, 20) ∧ (b6, 15) ∧ (b7, 10)

Note that the sum of the costs of the non-mandatory weighted clauses is10 + 15 + 5 + 10 + 20 +

15 + 10 = 85. Then, as stated by Lemma 2, in order toA have a(1, 4, 30)-super solution, we

must look for a(S1
1 , S

4
2 , 85− 30)-supermodel ofFA, i.e., a(S1

1 , S
4
2 , 55)-supermodel ofFA, where

S1 = {g1, g2, g3, g4} andS2 = {b1, b2, b3, b4, b5, b6, b7}. Finally, according to Theorem 4, this

amounts to find a model of the weighted Max-SMT formula

FA
SM = C ∧W ∧ L ∧ (B ≤ 55) ∧

∧

S∈S1+
1




∨

T∈(S2\S)4

(CS∪T ∧ (BS∪T ≤ 55))





as described in Subsection 4.3.2, where

L =
∧

j∈1..7

(bj → ij = 1) ∧ (¬bj → ij = 0)

and

B = (1− i1) · 10 + (1− i2) · 15 + (1− i3) · 5 + (1− i4) · 10

+ (1− i5) · 20 + (1− i6) · 15 + (1− i7) · 10

Note thatS1+
1 denotes the non-empty subsets ofS1 with at most one element, i.e., the singletons

{g1}, {g2}, {g3} and{g4}. And, sinceS1 andS2 are disjoint, we have that(S2 \ S)4 = S4
2 , i.e., the

(possibly empty) subsets ofS2 of size at most4.

58

Due to their extension we only develop the first terms ofCS∪T , i.e. when the breakage set isg1 and

the repair set is empty:

C
{g1}

= (b1 → ¬g1) ∧ (b2 → g2) ∧ (b3 → g2) ∧ (b4 → g3) ∧

(b5 → g4) ∧ (b6 → ¬g1) ∧ (b7 → g4) ∧

(¬b1 ∨ ¬b6) ∧ (¬b2 ∨ ¬b3) ∧ (¬b5 ∨ ¬b7) ∧

(b1 ∨ b2) ∧ (b3 ∨ b4 ∨ b5) ∧ (b6 ∨ b7)

Finally, according to Theorem 10, the formula can be writtenusing the cardinality constraints refor-

mulation as follows:

FA
SM = C ∧W ∧ L ∧ (B ≤ 55) ∧

∧

S∈S1+
1

(

C
δ(S2\S),S

S
∧B

δ(S2\S),S

S
≤ 55 ∧

∑

i

diS ≤ b

)

4.4.1 PSEUDO-BOOLEAN FORMULATION

Pseudo-Boolean optimization problems are closely relatedto weighted Max-SAT problems. The

constraints are linear equations over those Boolean variables, where a variable with the valuetrue

is interpreted as 1 and afalse is interpreted as 0. Thepseudo-Boolean optimization(PBO) problem

consists in finding a satisfying assignment to the set of Boolean variables that minimizes a given

objective function.

Now we show how to model the previous weighted Max-SAT formulation as a pseudo-Boolean (PB)

instance. In this case we do not have weighted clauses but an objective function to be maximized.

The original formulation (without cardinality constraints) is the following:

FSM =

Minimize B

Subject To C ∧ (B ≤ β)∧

∧

S⊆S1,1≤|S|≤a

(
∨

T⊆(S2\S)∪S3,|T∩S2|≤b CS∪T ∧ (BS∪T ≤ β)

)

where

B =
∑

j∈1..k

¬lj · wj

which amounts to the cost of the unsatisfied clauses inW .

59

Notice thatFSM is not a set of PB-constraints, but a conjunction of disjunctions of PB-constraints.

As noted in [45], some problems are most directly specified inthis latter form. Moreover, notice

that we use literals in the objective functionB rather than only variables, but this can be avoided

by introducing new variables if necessary. Also,≤-constraints can be changed into≥-constraints

by negating all constants. Observe that minimizingB is indeed optional, i.e., it is only necessary

if we want the robust solution to be optimal in turn. However,since we are adding robustness to

Max-SAT, we will assume that optimality is desired for robust solutions.

Similarly, the formula with cardinality constraints wouldbe encoded as the following PB instance:

F∇
SM =

Minimize B

Subject To C ∧ (B ≤ β)∧
∧

S⊆S1,1≤|S|≤a

(

C
δ(S2\S),S

S
∧ (B

δ(S2\S),S

S
≤ β) ∧ (∇δ(S2\S),S ≤ b)

)

In this case the OR inside the big AND is substituted by the clauses of the duplicated variables

(δ(S2\S),S), assuring that the total number of differences regarding the original variables,∇δ(S2\S),S ,

is not greater thanb.

The formulation can be written similarly as an Integer Programming instance by usingBig −M

transformations.

4.5 OTHER ROBUSTNESS NOTIONS

Although throughout the report we focus on robustness with respect to good unavailability, we could

deal with distinct robustness variants. For instance, for having robustness with respect to bid with-

drawal, we simply need to set bothS1 andS2 to the variables that encode whether bids are winners or

losers. Another straightforward variant would be to directly designate the potential breaks to handle:

instead of usingSa+
1 , we could decide what (combinations of) breaks deserve being repaired, which

would be a subset of2S1 . This would be useful if we only want to consider those breakshaving a non

negligible probability of occurring. We could also think ofa robustness notion where each breakable

variable has a corresponding set of associated repairable variables. This could serve, for instance,

in the presence of scheduling, where one should only look forrepairs on the forthcoming assigned

resources, or in an auction scenario where it is not permitted to make repairs by switching a winning

bid to a loser one. Actually, this last robustness variants are not compatible with the definition of

(Sa
1 , S

b
2, β)-supermodels for weighted Max-SAT, since the breakage and the repair sets specification

requires more information. However, thanks to the high expressiveness of SMT we could easily

directly encode such notion of robustness without moving out from the SMT setting, and therefore,

there would be no need of changing the underlying solving method.

4.6 EXPERIMENTATION

In this section we show results of robust solutions using theencoding with the cardinality constraints,

and varying the different parameters of the robustness model.

60

a b %opt %SAT
Yices

Size
%Sol SAT Time UNSAT Time

1

1
60 90

100

8.84 (2.64) 1.36 (0.37)

3246 vars
80 2 3.7 (0.00) 1.15 (0.7)

2
60 98 24.66 (15.74) 4.89 (0.00)

80 2 8.93 (0.00) 1.57 (1.17)

4
60 100 106.6 (54.4) -

14714 constr
80 18 18.69 (6.32) 3.4 (3.65)

8
60 100 37.09 (10.36) -

80 54 20.94 (7.29) 1.48 (1.21)

2

1
60 0 100 - 10.74 (7.11)

33160 vars
80 0 100 - 4 (1.47)

2
60 - 90 time out 38.77 (58.9)

80 0 100 - 4.21 (1.59)

4
60 - 24 time out 95.18 (69.51)

149297 constr
80 0 100 - 4.75 (3.71)

8
60 - 14 time out 78.85 (70.61)

80 0 100 - 11.3 (35.12)

Table 4.1: Experimentation results with Yices.

For the experimentation we have used the popular benchmark for combinatorial auctions CATS

(Combinatorial Auction Test Suite) [44]. CATS generates instances following different distributions.

Given a required number of goods and bids, the distributionsrandomly select which goods to include

in each bid. We have chosen the L7 distribution (the binomialdistribution, also described in [24]) of

CATS since it generates bids with bundles that are not too large (i.e. with just a few of the resources

being auctioned). We wanted to avoid having large bundles because they do not help that much in

repairing a broken solution. Moreover, as we saw in the sensitivity analysis chapter, this distribution

is particularly affected by resources becoming unavailable.

The number of goods offered in the auction and the number of participating bids were fixed to 20

and 40, respectively. For the rest of parameters we have varied them as follows: number of allowed

breakagesa in {1,2}, number of allowed repairsb in {1,2,4,8}, and the valueβ has been set ac-

cording to several percentages of the optimal revenue when robustness is not considered, concretely:

{80%, 60%}.

For each configuration of the parameters, we have generated 50 auction instances of the L7 dis-

tribution of CATS. Then, for each instance we first find the optimal revenue without considering

robustness, and then we solve each of the (a, b, %opt) robust versions of the problem. To solve each

instance, we have used several solvers. For SMT we have chosen Yices [21] since it was the win-

ner in the last SMT competition. For the pseudo-Boolean framework we have chosen two solvers:

BSOLO v3.1 [46] and SCIP v1.2 (with SoPLEX 1.4.2)4 since they were the winners in the pseudo

boolean Competition of 2009 and 2010 respectively. Finally, for linear programming we have cho-

sen the best commercial solver, CPLEX 125 and the best free solver, GLPK 4.356. We have set a

solving timeout of 300 seconds. The experiments have been performed on an Intel Core i5 CPU at

4http://scip.zib.de/
5http://www.ilog.com/products/cplex
6http://www.gnu.org/software/glpk

61

a b %opt %SAT
BSOLO

Size
%Sol SAT Time UNSAT Time

1

1
60 90

100

0.25 (0.04) 0.25 (0.02)

3246 vars
80 2 0.25 (0.00) 0.21 (0.03)

2
60 98 0.30 (0.08) 0.50 (0.00)

80 2 0.24 (0.00) 0.27 (0.07)

4
60 100 0.38 (0.12) -

14714 constr
80 18 0.52 (0.26) 0.30 (0.11)

8
60 100 0.25 (0.03) -

80 54 0.29 (0.04) 0.21 (0.02)

2

1
60 0

100

- 29.25 (3.39)

33160 vars
80 0 - 26.37 (5.40)

2
60 4 27.23 (1.79) 30.07 (3.87)

80 0 - 28.71 (3.28)

4
60 28 41.43 (7.11) 35.77 (8.02)

149297 constr
80 0 - 28.86 (3.50)

8
60 68 31.84 (3.31) 32.07 (4.12)

80 0 - 28.96 (3.74)

a b %opt %SAT
SCIP

Size
%Sol SAT Time UNSAT Time

1

1
60 90 100 68.12 (24.62) 64.9 (4.71)

3246 vars
80 2 100 77.5 (0.00) 57.01 (19.52)

2
60 98 86 165.53 (51.94) time out

80 2 90 time out 136.33 (50.5)

4
60 100 92 191.63 (58.18) -

14714 constr
80 18 12 time out 188.82 (55.15)

8
60 100 84 176.82 (65.1) -

80 54 32 173.66 (40.15) 116.00 (0.00)

2 * * * 0 time out

Table 4.2: Experimentation results with BSOLO and SCIP.

2.66 GHz, with 4GB of RAM, running openSUSE 11.2 (kernel 2.6.31).

Tables 4.1, 4.2 and 4.3 show the average percentage of satisfiability (deviaton in brackets) of the 50

instances (with 20 goods and 40 bids) of each parameter configuration (%SAT), i.e. a robust solution

exists, and for each solver, the percentage of instances solved before the timeout (%Sol) and the

average time and deviation (in seconds) for solving the instances7, differentiating the satisfiable and

unsatisfiable cases. We also show the average size of the generated instances (number of variables

and constraints). A ‘-’ indicates that there were either no SAT or UNSAT instances in a given

configuration, and time out indicates that the solver reached the time out of 300 seconds before

finding a solution.

The first thing to notice is that the pseudo-Boolean solver BSOLO is the only solver capable of

solving all the instances before the timeout. CPLEX does solve all the (1,*) instances but then

7Computed only for those solved before the timeout.

62

its solving performance falls down to about 79% for the (2,*)instances. As for SCIP and GLPK,

they could only solve about 74% and 51% of the (1,*) instances, respectively, and none of the

(2,*) instances. Moreover, the time taken by SCIP and GLPK istwo and three orders of magnitude

more than the time taken by BSOLO. Comparing the solving times of BSOLO and CPLEX, we can

observe that when solving the (1,*) instances, BSOLO is faster than CPLEX. However, with the

(2,*) instances, we can see an interesting effect. When the percentage of optimality is set to 80%,

CPLEX is an order of magnitude faster than BSOLO, while with the percentage set to 60%, CPLEX

encounters hard problems and can only solve about 58% of the instances. A possible explanation to

this behavior is that asking for a revenue of at least 80% of the optimal is a very strict restriction,

and so CPLEX rapidly finds out that there is no solution to the problem (note that in all cases where

CPLEX solves the instances quickly, the percentage of satisfiability is null). However, when relaxing

the revenue constraint, the search space is enlarged and so it takes more time to solve the problem.

On the other hand, BSOLO is not affected at all by this parameter, and all its solving times are almost

the same.

a b %opt %SAT
CPLEX

Size
%Sol SAT Time UNSAT Time

1

1
60 90

100

0.54 (0.51) 3.27 (1.15)

3246 vars
80 2 0.44 (0) 0.74 (0.61)

2
60 98 0.76 (0.94) 5.62 (0)

80 2 0.38 (0) 2.87 (2.43)

4
60 100 0.7 (0.72) - (0)

14714 constr
80 18 15.02 (16.1) 6.24 (14.44)

8
60 100 0.31 (0.17) -

80 54 1.61 (1.71) 0.4 (0.22)

2

1
60 0 100 - 30.99 (11.28)

33160 vars
80 0 100 - 5.44 (1.71)

2
60 4 68 19.3 (7.86) 146.2 (83.96)

80 0 100 - 5.61 (3.55)

4
60 28 10 25.9 (0) 113.9 (96.76)

149297 constr
80 0 100 - 5.39 (7.27)

8
60 68 54 56.4 (64.48) 185.2 (90.39)

80 0 100 - 4.46 (4.89)

a b %opt %SAT
GLPK

Size
%Sol SAT Time UNSAT Time

1

1
60 90 90 83.58 (74.57) 171.21 (77.63)

3246 vars
80 2 8 147.49 (0.00) 61.21 (44.01)

2
60 98 54 194.98 (77.67) time out

80 2 48 107.73 (0.00) 198.34 (61.06)

4
60 100 52 230.55 (60.37) -

14714 constr
80 18 28 201.98 (0.00) 213.24 (44.66)

8
60 100 78 230.14 (43.57) -

80 54 54 250.52 (23.68) 216.24 (50.50)

2 * * * 0 time out

Table 4.3: Experimentation results with CPLEX and GLPK.

63

We can also observe the effect of allowing more breakages to occur: when increasinga to 2, the

solving time increases two orders of magnitude; by contrast, the value ofb has not a considerable

effect on the solving time. Regarding satisfiability, as mentioned before, we can observe that asking

for a robust solution being 80%-optimal is way too strict, and so only a few instances have such a

robust solution (percentage that increases asb increases).

We have to point out that the main goal of the experimentationwas not to perform a comparison of

the solvers, but to show that our reformulation approach canbe effectively implemented and solved.

Actually, given the declarative nature of our approach, we are not bound to any specific solver, and

we can profit from the advances in the state-of-the-art solvers, be them pure pseudo-Boolean solvers,

SMT solvers, or more generic integer programming solvers.

Finally we should remark that, although not shown in the results, we have also solved (3,8) instances

(∼ 200000 variables and 1 million constraints) using BSOLO, with an average solving time of 180

seconds.

4.7 SUMMARY

In this chapter we have shown that finding a robust allocationcan be encoded as an(a, b, β)-super

solution for an auction, which can be reduced to modeling theauction as a partial weighted Max-

SAT formula and then looking for a supermodel of this formula. This results into the new problem of

robust weighted Max-SAT. We have faced these problems following the approach of [25] for SAT.

However, since SAT does not allow to easily encode formulas with arithmetic operations, needed

to achieve robustness, we have moved the problem to the richer logical framework of Satisfiability

Modulo Theories.

We have presented a first approach of robustness that had a very high complexity, growing exponen-

tially with both the parametersa andb. After that, we have presented a second approach based in

cardinality constraints that allows to reduce the complexity of the model by removing the parame-

ter b from the exponent. This is especially important, because itmeans that the complexity of our

approach does not depend on the number of repairs, but only onthe number of breakages, which is

usually assumed to be low. In fact, given that in most of the works a = 1 the increase would be

linearly in the size of the problem.

In the experiments section we have observed that our formulation can be easily converted into many

modelings. Concretely, we have encoded it as SMT, pseudo-Boolean and integer linear program-

ming. We have observed that CPLEX and BSOLO are the best solvers up to now, and are able to

solve efficiently our approach of robustness for values ofa andb up to 2 and 8 respectively, which

are much higher than previous approaches of robustness.

Nonetheless, the increase in size of our reformulation would eventually produce intractable in-

stances, for example when the number of bids or goods are really high, or when the parameters

a andb are set too high. In those cases, other approaches could be considered. Instead of solving

the problem through reformulation, an alternative could beto modify the search procedure of a com-

binatorial auction solver in order to directly deal with robustness. Such approach should be more

effective in short, but reformulation is certainly more flexible and can take advantage of the future

advances in the development of competitive solvers.

65

CHAPTER 5

Flexible Robustness

In this chapter we add a modification to the previous encodingof robustness that allows some degree

of flexibility to the solutions so that we are able to find solutions in hard scenarios and also allows

easily switching the characteristics of the solutions between more optimal than robust or more robust

than optimal, depending on a single parameter.

5.1 ADDING FLEXIBILITY

The encoding that we have seen in the previous chapter forcesthe solutions to be (a,b,β) reparable,

i.e. if a single breakage is not reparable the problem is not satisfiable, and so there is no robust

solution. Although having a completely robust solution would be the ideal situation, it may not be

always possible to find it. This fact can be observed clearly in the experiments of the previous chap-

ter, where the percentage of solved instances in some cases was very low (when a high percentage

of optimality is required, or when the parametera is greater or equal to 2). Therefore, in order to be

able to obtain solutions in hard instances, we add the possibility of allowing some of the breakages

to be left unrepaired, in what we callflexible robustness.

The concept of flexibility is also tackled in [30]. Although that paper was focused on defining super

solutions for constraint programming, it also pointed out afirst notion of flexibility by defining the

“most robust solution” for the cases that a robust solution does not exist. The most robust solution is

a solution that maximizes the number of repairable variables. In a later paper [29] the same authors

also addressed the balance between optimality and robustness by searching for the “most robust

optimal solution” and the “optimal robust solution”. This work is pretty close to ours but it is rather

a preliminary step into flexible robustness and, additionally, does not consider the cost of the repair

but only the total number of variables changed.

Our way technique for adding flexibility is based onsoft constraints[61]. Soft constraints provide

a way to model preferences over constraints, so that some constraints can be violated for overcon-

strained problems, still such violation of constraints is avoided as far as possible.

5.2 FORMALIZATION OF FLEXIBILITY

In order to add flexibility we need to slightly modify the previous encoding in order to make the

breakages not mandatorily reparable using a framework to model soft constraints based on weighted

variables that activate constraints. To do so, we first relaxthe repair’s constraints so that they are not

mandatory to be satisfied. This is done by adding new Boolean variablesrS for each breakageS

that will betrue if (and only if) the breakage is reparable andfalse otherwise. These variables will

allow to leave some breakages unrepaired by setting the respectiverS to false. Then we have to

66

add a mechanism to count the number of reparable breakages, in order to maximize it (i.e. maximize

the repairability of the solution). Hence, Formula 4.5 becomes:

FSM = C ∧W ∧ L ∧ (B ≤ β) ∧
∧

S∈Sa+
1

rS ⇔

(

CS ∧BS ≤ β ∧
∑

i

diS ≤ b

)

(5.1)

An alternative formulation would be to change the double implication (rS ⇔ (...)) by an or (rS ∨

(...)). The difference using this alternative is that the number of rS beingtrue should be minimized

instead of maximized. However, current solvers may alreadyperform this transformation if better.

With this new encoding, if a given breakageS is not repairable, its corresponding variablerS is set to

false, and this will not affect the satisfiability of the whole formula, since now the only mandatory

clauses are those inC (which contains the bid incompatibility clauses and resource availability

restrictions) andB ≤ β.

Obviously we do not want all therS variables to befalse but to maximize the number ofrS variables

set totrue. Therefore, we associate a weightwS to each variablerS , and state the weighted clause

(rS , wS) for eachS. The satisfaction of these new weighted clauses will be maximized together

with the weights of the bids.

The values of the weights of these variables allow us to express different robustness notions:

• Optimal solutions as robust as possible (OR). In this setting we are concerned with finding,

from all the solutions that have the maximum benefit possible, the one that is most robust.

• Robust solutions as optimal as possible (RO). Here we look, among the solutions that have the

maximum possible level of robustness, for the one with the highest benefit.

• Trade-off solutions. This is a hybrid setting that uses a parameter to determine the desired

degree between optimality and robustness.

The difference between the three above settings is in the weights that are set for the bids’ prices and

for the robustness clauses. For the first setting the weightsof the robustness clauses must be much

lower than the bids’ prices (since we are giving preference to optimality). For example, we could

set a weight of 1 for all the robustness clauses, and add the total number of robust clauses,|Sa+
1 |, to

the bids’ prices. The second setting is the inverse, we are first interested in robustness, and secondly

in optimality, so the robustness clauses have to be much morevaluable than the bids. Similarly, we

could leave the same weights for the bids (their prices) and set the robustness clauses to be the sum

of weights of the bids (
∑n

i=1 bi).

Another alternative would be that the weights of the bids andthe robustness clauses do not overlap,

and so when summing up all weights, the most significative digits would be only affected by ro-

bustness weights, and the least significative would be affected by bids’ prices for the RO setting (or

vice-versa for the OR setting). For instance, if the sum of the bids (
∑n

i=1 bi) is X, then the weights

of the bids for RO should be from 0 to10⌈log10X⌉ and the robustness clauses weights beginning from

10⌈log10X⌉, and the other way round for OR.

67

Alternatively, for the RO and OR cases we could apply a Boolean Multilevel Optimization approach

[2], since in these two cases there is a hierarchy in the objectives (first robustness and then optimality,

or inversely).

Note that this model can actually generalize the one defined in the previous chapter. We can obtain

the same solutions (i.e. full repairability) by using the ROsetting and adding a constraint to force

the total revenue to be greater or equal to the sum of weights of the robustness clauses, that is, force

all breakages to be repaired.

For the hybrid setting we introduce a new parameterα, that defines the trade-off between optimality

and robustness, so thatα = 0 is equivalent to the first setting (OR) andα = 1 is equivalent to the

second setting (RO). In this hybrid setting, the weights of the robustness clauses and bids prices will

be combined, and so they have to be normalized. Thus, we set all the robustness clauses weights to

bewS = α/n, wheren is the number of robustness clauses, so that the maximum revenue that the

solution is able to get from the robustness clauses isα. The prices of the bids are also normalized,

setting for each bidi a weightwi = (1 − α)·pi/op wherepi is the original price of the bid andop

is the revenue of the optimal solution (without robustness), so that the maximum revenue that the

solution would be able to obtain from the bids weights is1 − α, and consequently the maximum

revenue from the entire formula is 1.

The flexibility that we have added to the model allows us to extend it with new interesting features

such as the probability of breakage. It is likely that some breakages are more probable than others,

and so they should have different weights. In order to implement this, the weights of the robustness

clauses could be multiplied by the probabilitypS of the breakage occurring (wS = pS ·α). Actually,

with the weights given before,wS = α/n, we were considering all breakages equally probable, i.e.

pS = 1/n, for all S ∈ Sa+
i .

5.3 EXPERIMENTATION

For the experimentation we have used again the Combinatorial Auction Test Suite (CATS) [44]

with the L7 distribution. However, in this case we have already performed experiments in other

distributions, namely, arbitrary, paths, matching and regions, obtaining similar results.

We have analyzed the effect of some of the parameters of the (a,b,β)-super solutions, as well as the

number of bids participating. Some of the parameters have not been varied, such asa which has been

fixed to 1 (it increases considerably the complexity of the instances), and the number of goods being

sold, which has been set to 15. We have varied the number of bids in {15, 20, 25, 30}, the number

of repairsb in {1, 2, 3, 4, 5} and, finally, the valueβ has been set according to several percentages of

the optimal revenue when robustness is not considered, concretely{50%, 60%, 70%, 80%, 90%}.

For each combination of number of goods and number of bids we have generated 50 auction in-

stances. Then, we have solved each instance without considering robustness to get the optimal

revenue, and then we have solved each of the (a,b,β)-robust solutions of the problem, settingβ to

the appropriate value given the optimal revenue and percentage of optimality.

68

 50 55 60 65 70 75 80 85 90 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 91
 92
 93
 94
 95
 96
 97
 98
 99

 100

Optimality

OR (Alpha = 0)
RO (Alpha = 1)

Trade-off (Alpha = 0.5)

min % Optimality

b

Optimality

Figure 5.1: Optimality varyingb andβ.

 50 55 60 65 70 75 80 85 90 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 30

 40

 50

 60

 70

 80

 90

 100

Robustness

OR (Alpha = 0)
RO (Alpha = 1)

Trade-off (Alpha = 0.5)

min % Optimality

b

Robustness

Figure 5.2: Robustness varyingb andβ.

69

OR (α = 0) α = 0.25 α = 0.5 α = 0.75 RO (α = 1)

NB a b β Solv OptRev Rob Solv OptRev Rob Solv OptRev Rob Solv OptRev Rob Solv OptRev Rob

15 1

1

90 100 100 35.47 100 98.89 38.93 100 99.77 34.40 100 99.07 35.87 100 98.88 36.00

80 100 100 45.60 100 97.04 50.80 100 99.86 44.13 100 98.21 47.07 100 97.03 47.87

70 100 100 58.67 100 95.65 66.13 100 99.61 58.53 100 97.83 61.87 100 95.65 63.20

60 100 100 71.07 100 92.42 79.20 100 99.71 70.27 100 97.55 73.33 100 93.09 76.13

50 100 100 78.53 100 91.37 91.73 100 99.47 79.33 100 96.13 86.13 100 91.81 88.67

2

90 100 100 40.00 100 100 41.57 100 99.07 42.53 100 99.29 40.44 100 99.43 39.33

80 100 100 53.87 100 98.38 55.90 100 96.44 59.87 100 96.87 57.71 100 97.55 56.27

70 100 100 70.00 100 96.61 75.38 100 93.87 79.33 100 95.78 77.40 100 96.54 75.07

60 100 100 86.67 100 96.80 90.03 100 96.35 94.27 100 97.77 94.27 100 98.43 90.40

50 100 100 94.13 100 98.43 96.83 100 97.12 98.93 100 98.57 97.04 100 99.12 94.80

3

90 100 100 42.40 100 99.07 45.33 100 99.82 40.93 100 99.06 42.40 100 99.06 42.40

80 100 100 59.20 100 95.38 67.20 100 99.69 59.07 100 97.30 63.20 100 95.38 64.27

70 100 100 79.20 100 93.08 86.93 100 99.78 78.67 100 98.41 81.47 100 95.03 83.47

60 100 100 93.20 100 97.85 96.40 100 99.80 91.47 100 98.96 92.80 100 97.83 93.47

50 100 100 98.93 100 98.70 99.73 100 100 96.00 100 99.82 96.27 100 98.68 96.80

4

90 100 100 45.47 100 99.58 46.64 100 99.07 47.73 100 99.66 45.08 100 99.06 44.80

80 100 100 65.73 100 98.49 68.98 100 95.38 71.20 100 96.63 69.69 100 97.30 67.20

70 100 100 84.27 100 96.60 86.00 100 93.08 88.93 100 93.08 86.01 100 98.41 84.67

60 100 100 95.33 100 99.15 96.11 100 97.85 96.93 100 98.22 95.31 100 98.96 93.47

50 100 100 99.60 100 98.94 99.68 100 98.70 99.73 100 99.07 97.74 100 99.82 96.67

5

90 100 100 47.87 100 99.62 49.07 100 99.91 45.60 100 99.75 46.00 100 99.61 46.13

80 100 100 68.53 100 98.02 72.13 100 99.66 67.87 100 99.23 68.40 100 98.02 69.20

70 100 100 88.00 100 98.54 89.87 100 99.94 85.87 100 99.59 86.40 100 98.54 86.93

60 100 100 97.20 100 99.43 97.60 100 99.99 94.40 100 99.88 94.53 100 99.88 94.53

50 100 100 99.60 100 99.82 99.73 100 100 96.67 100 100 96.67 10099.81 96.80

Table 5.1: Experimentation results: averages of 50 auctioninstances of 15 bids for each configuration.

70OR (α = 0) α = 0.25 α = 0.5 α = 0.75 RO (α = 1)

NB a b β Solv OptRev Rob Solv OptRev Rob Solv OptRev Rob Solv OptRev Rob Solv OptRev Rob

20 1

1

90 100 100 28.53 100 98.11 32.80 100 99.66 29.83 100 98.59 31.73 100 98.11 32.13

80 100 100 44.40 100 96.71 50.27 100 99.61 47.15 100 98.51 48.67 100 96.71 49.60

70 100 100 61.07 100 94.63 72.67 100 98.88 65.70 100 95.83 71.07 100 94.62 72.00

60 100 100 80.13 100 93.92 89.60 100 99.34 85.09 100 98.67 86.67 100 95.82 88.40

50 100 100 91.73 100 97.36 99.47 100 99.29 95.74 100 97.83 98.67 100 97.83 98.67

2

90 100 100 32.93 100 99.12 34.47 100 98.45 36.67 100 99.02 35.95 100 98.78 35.73

80 100 100 56.27 100 97.47 60.00 100 94.78 65.20 100 96.02 65.20 100 97.50 62.80

70 100 100 79.07 100 96.49 85.56 100 93.94 89.33 100 94.97 88.88 100 96.58 87.47

60 100 100 93.87 100 98.05 96.81 100 96.63 99.07 100 97.79 98.59 100 98.35 97.60

50 100 100 99.07 100 100 99.01 100 98.95 100 100 99.03 99.68 10099.67 99.07

3

90 100 100 35.33 100 98.10 40.40 100 99.65 37.53 100 98.75 39.20 100 98.09 39.73

80 100 100 65.60 100 94.94 74.40 100 99.84 68.25 100 97.72 72.00 100 94.94 73.73

70 100 100 86.00 100 94.06 94.80 100 99.25 89.00 100 97.93 92.00 100 94.65 94.00

60 100 100 97.87 100 98.56 99.73 100 99.91 98.08 100 99.53 98.67 100 99.02 98.93

50 100 100 99.87 100 99.91 100 100 100 99.18 100 99.91 99.33 10099.91 99.33

4

90 100 100 38.40 100 99.33 40.50 100 98.45 43.73 100 98.61 43.17 100 98.79 42.80

80 100 100 71.87 100 96.72 75.41 100 94.89 80.13 100 96.39 78.84 100 97.63 77.60

70 100 100 91.87 100 98.19 94.70 100 95.95 96.53 100 97.54 95.81 100 99.43 94.40

60 100 100 99.33 100 99.02 98.99 100 98.79 100 100 100 99.11 100100 98.80

50 100 100 100 100 100 100 100 100 100 100 100 100 100 99.99 99.33

5

90 100 100 42.00 100 98.69 46.13 100 99.60 44.05 100 99.02 45.20 100 98.69 45.47

80 100 100 77.33 100 96.18 83.60 100 99.77 79.04 100 98.13 81.60 100 96.18 82.93

70 100 100 94.00 100 98.24 96.93 100 99.89 94.78 100 99.59 95.47 100 98.66 96.13

60 100 100 99.60 100 99.72 100 100 99.99 98.90 100 99.71 99.33 100 99.71 99.33

50 100 100 100 100 100 100 100 100 99.31 100 100 99.33 100 99.99 99.33

Table 5.2: Experimentation results: averages of 50 auctioninstances of 20 bids for each configuration.

71

OR (α = 0) α = 0.25 α = 0.5 α = 0.75 RO (α = 1)

NB a b β Solv OptRev Rob Solv OptRev Rob Solv OptRev Rob Solv OptRev Rob Solv OptRev Rob

25 1

1

90 100 100 28.53 100 99.72 29.81 100 99.33 30.53 100 98.97 30.80 100 98.97 31.20

80 100 100 43.20 100 99.54 47.04 100 98.98 47.07 100 97.17 48.27 100 97.17 48.67

70 100 100 62.13 100 98.57 71.70 100 97.66 73.07 100 96.18 74.13 100 95.68 74.67

60 100 100 81.20 100 99.05 88.93 100 98.57 88.93 100 96.74 90.13 100 96.75 90.53

50 100 100 88.53 100 98.87 95.22 100 97.92 96.53 100 96.77 97.33 100 96.34 97.87

2

90 100 100 32.93 100 100 34.04 100 98.45 36.67 100 98.67 36.01 100 98.78 35.73

80 100 100 56.27 100 99.66 60.12 100 94.78 65.20 100 96.98 63.39 100 97.50 62.80

70 100 100 79.07 100 98.11 81.59 100 93.94 89.33 100 94.18 88.81 100 96.58 87.47

60 100 100 93.87 100 97.38 95.81 100 96.63 99.07 100 97.05 97.14 100 98.35 97.60

50 100 100 99.07 100 99.13 99.01 100 98.95 100 100 99.15 99.32 100 99.67 99.07

3

90 100 100 34.40 100 99.80 36.48 100 98.74 38.40 100 98.21 38.80 100 98.21 39.20

80 100 100 60.00 100 98.95 66.16 100 95.98 72.00 100 93.75 73.60 100 93.75 74.00

70 100 100 84.67 100 99.34 91.19 100 97.82 93.60 100 96.88 94.27 100 95.41 95.07

60 100 100 97.60 100 99.92 97.86 100 99.57 98.67 100 98.95 98.93 100 98.05 99.60

50 100 100 99.47 100 100 97.11 100 99.99 99.07 100 99.20 99.47 100 99.21 99.87

4

90 100 100 38.40 100 99.66 40.41 100 98.45 43.73 100 98.65 43.47 100 98.79 42.80

80 100 100 71.87 100 96.82 75.58 100 94.89 80.13 100 96.19 78.30 100 97.63 77.60

70 100 100 91.87 100 98.84 93.10 100 95.95 96.53 100 97.38 95.09 100 99.43 94.40

60 100 100 99.33 100 99.00 99.67 100 98.79 100 100 100 98.94 100100 98.80

50 100 100 100 100 100 100 100 100 100 100 100 100 100 99.99 99.33

5

90 100 100 43.07 100 99.36 46.29 100 98.28 48.40 100 97.59 48.93 100 97.60 49.33

80 100 100 75.87 100 99.35 79.50 100 98.29 80.93 100 96.13 82.40 100 96.13 82.80

70 100 100 94.40 98 99.70 95.85 100 99.36 96.00 100 99.03 96.27100 98.45 96.80

60 100 100 99.33 100 100 98.99 100 99.78 99.20 100 99.78 99.20 100 99.79 99.60

50 100 100 99.87 100 100 99.50 100 99.95 99.60 100 99.95 99.60 100 99.95 100

Table 5.3: Experimentation results: averages of 50 auctioninstances of 25 bids for each configuration.

72OR (α = 0) α = 0.25 α = 0.5 α = 0.75 RO (α = 1)

NB a b β Solv OptRev Rob Solv OptRev Rob Solv OptRev Rob Solv OptRev Rob Solv OptRev Rob

30 1

1

90 100 100 24.27 100 99.78 26.27 100 98.78 28.00 100 98.27 28.40 100 98.25 29.87

80 100 100 46.27 100 99.69 49.73 100 98.37 52.40 100 96.83 53.33 100 96.84 53.33

70 100 100 68.27 100 99.42 72.93 100 98.09 66.80 100 96.36 76.93 100 96.38 76.93

60 100 100 87.20 100 99.56 90.80 100 98.22 90.40 98 96.68 93.07100 96.31 94.80

50 100 100 96.13 100 99.79 91.20 100 99.02 97.87 100 98.36 99.60 98 98.37 99.60

2

90 100 100 32.93 100 99.33 34.72 100 98.45 36.67 100 98.61 36.20 100 98.78 35.73

80 100 100 56.27 100 97.44 60.28 100 94.78 65.20 100 95.99 63.19 100 97.50 62.80

70 100 100 79.07 100 95.52 82.46 100 93.94 89.33 100 95.73 88.64 100 96.58 87.47

60 100 100 93.87 100 97.76 95.42 100 96.63 99.07 100 97.22 98.78 100 98.35 97.60

50 100 100 99.07 100 99.69 99.54 100 98.95 100 100 99.31 100 10099.67 99.07

3

90 100 100 33.07 100 99.24 37.47 100 97.93 39.73 100 97.64 40.00 98 97.64 40.00

80 100 100 67.07 96 99.30 72.67 96 96.99 74.67 100 93.76 78.80 96 93.79 78.80

70 98 100 90.93 96 99.48 91.73 94 98.50 91.07 100 96.57 98.27 100 96.58 98.27

80 98 100 99.73 96 99.94 93.60 98 99.94 97.87 100 99.93 100 100 99.94 100

50 100 100 100 100 99.99 93.60 88 99.99 97.87 100 99.99 100 100 100 100

4

90 100 100 38.40 100 99.70 40.23 100 98.45 43.73 100 98.99 43.14 100 98.79 42.80

80 100 100 71.87 100 93.87 77.47 100 94.89 80.13 100 96.31 78.60 100 97.63 77.60

70 100 100 91.87 100 96.25 93.48 100 95.95 96.53 100 97.35 95.55 100 99.43 94.40

60 100 100 99.33 100 99.50 99.63 100 98.79 100 100 99.33 99.00 100 100 98.80

50 100 100 100 100 100 100 100 100 100 100 100 100 100 99.99 99.33

5

90 100 100 42.27 94 99.45 46.00 98 98.54 48.00 100 98.38 48.13 100 98.40 48.13

80 100 100 80.80 98 99.28 83.07 96 97.97 85.20 100 95.40 88.93 100 95.42 88.93

70 96 100 98.27 94 99.89 99.07 98 99.77 99.33 100 99.24 99.60 100 99.24 99.60

60 98 100 100 86 99.99 91.47 98 99.99 97.87 100 99.99 100 100 100100

50 100 100 100 94 99.99 93.60 98 99.99 97.87 100 99.98 100 100 100 100

Table 5.4: Experimentation results: averages of 50 auctioninstances of 30 bids for each configuration.

73

Tables 5.1 to 5.4 show the detailed results of the experiments performed with distribution L7. The

results with 15, 20, 25 and 30 goods are shown for five different values ofb = {1, 2, 3, 4, 5}. Each

row shows the average of the 50 instances of each case. The columnSolv indicates the percentage of

instances where the solver finds the solution before the timeout (set to 1000 seconds). The column

OptRev indicates the percentage of optimality, computed only for the satisfiable instances. The

columnRob (robustness) indicates the percentage of robustness clauses satisfied. Each of these

values has been calculated in five different settings: optimal solutions as robust as possible OR

(equivalent toα = 0), robust solutions as optimal as possible RO (equivalent toα = 1), and trade-

off solutions with different balance pointsα = {0.25, 0.5, 0.75}.

We observe that, in general, when the value ofβ decreases the value ofRob increases, since the

problem is less restricted and it is easier to find robust solutions. Also, when the size of the repair (b)

increases, obviously the value ofRob is also increased, since more repairs are allowed. We can also

see that when the value ofα increases the percentage of optimality decreases (since the solutions

are more robust, and thus less optimal), and conversely the robustness increases. Regarding the

percentage of solved instances, we also see that it logically decreases when the complexity of the

instances increases (with 30 bids and high values ofb); still in these experiments with 30 bids, the

percentage of solved instances is in all cases over 94%.

Figure 5.1 graphically shows the results with 15 bids. The X axis represents the minimum revenue

percentage of the solution (and its repairs), the Y axis indicates the size of the repairb, and the Z

axis plots the percentaged revenue of the solution (i.e. dividing the revenue of the solution by that

of the optimal solution without robustness). Obviously thegraph withα = 0 is a plane with the

100% of optimality. Whenα is increased we see that the revenue of the solutions decreases but

with a slow rhythm (the worst solution is still 91% optimal).Therefore, in some cases looking for

robust solutions may be a good option since we see that the solution found is already very close to

the optimal.

Figure 5.2 compares the same settings regarding its robustness, so in this case the Z axis represents

the percentage of robustness clauses satisfied. In this casewe do not see a plane for the RO because

it is not always possible to find solutions that are 100% repairable, but still the RO graph is almost

in all the cases the one obtaining most robustness. It is interesting that in this case the differences

between the graphs are higher than in the results regarding optimality, with the RO graph obtaining

20 percentual points more robustness than OR in the instances with lower values ofα.

Figures 5.3 and 5.4 show the results of optimality and robustness respectively, with different values

of α. Here the number of goods is also 15 and the minimum percentage of optimality has been

fixed to 50%. We can see that as the value ofα is increased the optimality decreases and the other

way around for the robustness, whenα increases, robustness is generally also increased. Again,we

observe that the optimality is much less affected than the robustness.

These results show that the optimality of the solutions whenlooking for robust solutions is not

affected in the same level as the robustness when searching for optimal solutions. Therefore, for

decision makers worried about the optimality of the solutions, it would be not bad to incorpore ro-

bustness, since the optimality would remain very close (90%of optimal in the worst case of our

experiments). However, when looking for optimal solutions, the robustness is highly affected. This

is a factor that decision makers wanting robust solutions should consider. The loss of optimality

when searching robust solutions is lower than the loss of robustness when looking for optimal solu-

74

 0
 0.2

 0.4
 0.6

 0.8
 1 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

Optimality

Optimality

alpha

b

Optimality

Figure 5.3: Optimality varyingb andα.

 0
 0.2

 0.4
 0.6

 0.8
 1 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 75

 80

 85

 90

 95

 100

Robustness

Robustness

alpha

b

Robustness

Figure 5.4: Robustness varyingb andα.

tions. We have performed more experiments with other distributions (arbitrary, paths, matching and

regions) obtaining similar results. This fact was also seenin the work of [34], therefore we think

that our observations can be extrapolated in general to other domains.

5.4 SUMMARY

In this chapter we have presented a flexible robustness model. The flexibility allows to find solutions

in overrestricted situations where no complete robust solution is possible. In such case this model

is able to find the “most robust solution”, i.e. the solution that satisfies most robustness clauses.

75

Conversely, we can find also the most optimal robust solution, i.e. the optimal solution that is most

robust. Moreover, a parameterα is defined in order to easily set the desired trade-off between

optimality and robustness.

In the experimentation section we have analyzed the relationship between robustness and optimality,

i.e. with different values ofα, and the conclusion is that the loss of optimality when searching robust

solutions is lower than the loss of robustness when looking for optimal solutions. This is a result that

should be taken into account when deciding the most appropriate value ofα in real world problems,

depending on the preferences of the decision maker (e.g. risk-seeking, risk-averse, etc.).

77

CHAPTER 6

Incentive Compatibility

Incentive compatible methods ensure that malicious participants cannot use strategies for manip-

ulating the results. This chapter analyzes the strategy-proofness of our approach for robustness.

We first extend the proof of non-incentive compatibility given for the bid-withdrawal problem in

[37] which captures a restricted version of our problem. Then we provide two ways of looking for

incentive compatibility for the generic version of the problem.

6.1 INCENTIVE COMPATIBLE MECHANISMS

Auction mechanisms with the feature that the best strategy for the bidders is to bid truthfully are

calledincentive-compatible. This feature makes impossible -theoretically- for the bidders to strate-

gically manipulate the auction in order to gain money by decreasing the final prices of the items.

This manipulation would be a gain for them but a loss for the auctioneer, therefore strategy-proof

mechanisms are preferred in real world applications of auctions. Furthermore, it has been proved

that no untruthful mechanism achieves better outcome than any truthful (non-manipulable) mecha-

nism [47]. This is another reason why in many applications only incentive compatible mechanisms

are considered.

The design of truthful mechanisms for combinatorial auctions is a hard task. For example, the gen-

eralized Vickrey auction (VCG) mechanism [71, 13, 27] guarantees that the best strategy for the

bidders is to bid truthfully. However, its computational complexity is very high. For the robustness

mechanism shown in the previous chapters, to prove either that the mechanism is incentive com-

patibility or that it is not, is even harder. For that reason,we will first show that the robustness

mechanism is not incentive compatible in a restricted case where only a subset of the resources can

fail (the breakage set does not include all the items). For the general case we will provide two proce-

dures to support the idea that the robustness mechanism is actually incentive compatible in practical

cases.

6.2 NON-INCENTIVE COMPATIBILITY WITH RESTRICTEDROBUST-

NESS

In our model of robustness, the parametera representing the size of the break included all the re-

sources. For example,a = 1 meant that each one of the resources could fail (but not two ofthem at

the same time). In the restricted robustness setting, we limit the set of resources that can fail. This

is similar to the work of Alan Holland [37], where he considered that only “brittle” bids could be

withdrawn. He provided the example shown in Table 6.1 to prove the non-incentive compatibility of

robust solutions (weighted super solutions).

78

Bid A B C AB BC Withdrawal probability

v1 13 0 0 0 0 0.02

v2 0 12 0 0 0 0.03

v3 0 0 8 0 0 0.04

v4 0 0 0 33 0 0.15

v5 0 0 0 0 24 0.05

Table 6.1: Combinatorial auction example of [37].

The proof of non-incentive compatibility is made using the necessary condition of monotonicity that

incentive-compatible mechanisms exhibit. This conditionmeans that if a winning bid increases its

price, then it remains in the solution. Therefore, if in a given auction mechanism a bid increasing its

price drops out of the solution then it means that the auctionmechanism is not incentive-compatible.

For the example in [37] the threshold for the withdrawal probability (α) was set to0.1, and therefore

the only bid that has a probability higher thanα (brittle bid) is the one of the fourth bidder. In

this example the minimum acceptable revenue was set to 34, therefore the optimal robust solution

is {v1, v5} with a total revenue of 37, because the solution{v3, v4} that has a higher revenue (41)

cannot be repaired to form a solution of at least 34; its repair solution{v1, v2, v3} gets only 33.

Then, supposing that the first bidv1 increases its value to 16, it turns out that now the solution

{v3, v4} is reparable by{v1, v2, v3}, getting a revenue of 36. Therefore the new optimal robust

solution becomes{v3, v4}. This implies that the bidv1 that was in an optimal robust solution, when

increasing its value, drops out of the solution, violating the monotonicity requirement of incentive-

compatible mechanisms.

Figure 6.1: Modified example.

In our case, we can slightly modify the previous example in order to prove the non monotonicity

of our restricted robustness mechanism as shown -more visually- in Figure 6.1, where each column

is an individual item and the rectangles indicate the items included in each bid and its price. Let

us add a new itemD to the fourth bidv4. Let us suppose that there is only one resource that can

become unavailable,D. In such situation, the only bid that can fail isv4, converting the example

to be exactly the same as before. Therefore, the same proof holds, and this restricted version of our

79

robustness mechanism is not incentive-compatible.

6.3 INCENTIVE COMPATIBILITY IN THE GENERAL CASE

The previous example actually proves that when some (a subset) of the resources are brittle, the

robustness mechanism is not incentive-compatible. However, the problem may not be the same

when all the resources are brittle, and the previous counter-example cannot be easily generalized.

Let us mention that in the case of [37], they did not consider the case of all bids being brittle, which

we think that could have the same problem, i.e. the proposed counter-example does not necessarily

imply that when all the bids are brittle the problem is not incentive-compatible.

In this section we propose two procedures to find a counter-example of monotonicity for the generic

case of robustness where every resource can fail. The first procedure consists in the formulation

of a CP model to find a counter-example (if it exists) with a given number of items. The second

procedure is an iterative search process that systematically tests all the possible bid profiles in order

to check whether they constitute or not a counter-example.

6.3.1 COUNTER-EXAMPLE MODEL

The problem of finding a counter-example of monotonicity (and consequently, of non-incentive-

compatibility) in the general case of robustness can be modeled as a CSP. Given a fixed number of

itemsk, the goal of such CSP is to find a combinatorial auction instance whose robust solution is not

monotonic, i.e. such that if some bid of the optimal robust solution increases its price, then the new

optimal robust solution does not include that bid. Therefore, the output of the CSP are the bids that

compose such combinatorial auction. The input of the CSP will be the maximum number of items

that can be auctioned (k).

We first define the bid variablesB = {B1, ..., Bn}. These are integer variables that define the price

of the bids of the auction. The number of bidsn is all the possible combinations ofk items, that

is, 2k − 1. The price of the bid can be any natural number. Note that a price of zero is allowed,

which would actually mean that the bid does not take part in the auction. This is necessary because

it is not required for the counter-example auction to be composed of all the possible bids (item

combinations) but only a subset of them. After that, we also need the variables that will specify

the optimal robust solutionX = {X1, ..., Xn}, which are Boolean variables indicating which of

the bids are in the solution (true) and which are not (false). Then, the CSP consists in finding

values forB (an instance of a combinatorial auction) such thatX is its optimal robust solution, but

X is not monotone, i.e. there is a bid which, if its price is increased, it drops out from the optimal

robust solution. Therefore, the CSP program to find a counterexample is as shown in the following

CSP formulation (CSP 1), which uses the CSP functionsOPTIMAL-ROBUST-SOLUTION(B)and

NON-MONOTONIC(X)defined next.

CSP 1COUNTEREXAMPLE
find values forB such that:

X ← OPTIMAL-ROBUST-SOLUTION(B)

NON-MONOTONIC(X)

80

The functionOPTIMAL-ROBUST-SOLUTION(B)gets an instance of an auctionB and finds its

robust optimal solutionX . SinceX has to be the optimal robust solution, we have to make thatX

is a solution (it satisfies the bid incompatibility restrictions), it is a robust solution (it is repairable

doing at mostb changes, for each break of size at mosta), and it is optimal (it is the maximal revenue

robust solution). Therefore we define the functionOPTIMAL-ROBUST-SOLUTION(B)as shown in

CSP 2.

CSP 2OPTIMAL-ROBUST-SOLUTION
find values forX such that:

SOLUTION(X)

ROBUST(X, B)

BEST(X, B)

WhereSOLUTION(X)is a function that verifies thatX is a solution by checking that no bids sharing

the same item are set totrue as shown in Algorithm 3; andROBUST(X, B)examines ifX is robust

by checking that each possible breakS is repairable, which means that an alternative solutionXS

(a solution where the values of the variables in the breakagesetS are negated) can be found, and it

does not differ from the original solutionX in more thanb changes, as shown in Algorithm 4.

Algorithm 3 SOLUTION(X)

return
∑

i|g∈Gi
Xi ≤ 1 ∀i ∈ [1..k]

Algorithm 4 ROBUST(X, B)

z = true

∀S ∈ Sa+

z = z ∧ SOLUTION(XS)

z = z ∧MIN REV ENUE(XS , B, β)

z = z ∧
∑n

i=1 |Xi −XSi
| ≤ b

returnz

Note that since the goal of the CSP is actually to find an auction instance whose solution is not

monotonic, we cannot define an objective function to be maximized (turning the CSP into a COP) in

order to find the optimal solution (as we would make if the problem goal of the problem was to find

the optimal solution). Therefore, we have to assure thatX is the optimal solution by brute force,

that is, by imposing thatX is better than any other possible solution, as shown in Algorithm 5.

Algorithm 5 BEST(X,B)

∀X ′ 6= X

z = true

z = z ∧
∑n

i=1 (X
′
i ·Bi) < REV ENUE(X)

z = z ∧ ¬SOLUTION(X ′)

z = z ∧ ¬ROBUST (X ′, B)

if z returnfalse

returntrue

The functionMIN REVENUE(X,B,β) assures that the solutionX has a revenue of at leastβ as shown

in Algorithm 6; and the functionREVENUE(X)computes the revenue of the solutionX as shown in

Algorithm 7.

81

Algorithm 6 MIN REVENUE(X,B,β)

returnREV ENUE(X) ≥ β

Algorithm 7 REVENUE(X)

return←
∑n

i=1 (XiḂi)

Finally, we define the functionNON-MONOTONIC(X)to force that when a given winning bid from

X increases its price byδ then it gets out from the solution, as shown in CSP 8. To do so, we define

the prices of the bidsB′ = {B′
1, ..., B

′
n}, after some bidBj (j ∈ {1..n} is the index of the bid that

increases its price) has increased its price. Then we state that the new robust solutionY , i.e. such

thatSOLUTION(Y) ∧ ROBUST (Y,B′) ∧ BEST (Y,B′), satisfies that some of the previously

winning bids is now a losing bid, i.e. such that∃i : Xi = 1 ∧ Yi = 0.

CSP 8NON-MONOTONIC

find values forB′ such that:

∀i 6= j(B′
i = Bi) ∧ (B′

j = Bj + δ) ∧ (Xj = 1)

SOLUTION(Y,B′) ∧ROBUST (Y,B′) ∧BEST (Y,B′)

∃i : Xi = 1 ∧ Yi = 0

Note that the complexity of this model is extremely high. This is mainly because of theBEST(X,B)

function, which has to assure that the solutionX is the best possible, implying checking all the other

possible solutions withn bids, that is2n possibilities (wheren = 2k). The exact number of variables

can be computed with the expression shown in Equation 6.1.

NV = 2[(2k − 1) + 22
k

· 2k] (6.1)

For k = 1 the total number of variables is 18, fork = 2 it grows to 134, fork = 3 the number is

4110, and for higher values ofk the number of variables is extremely high (2 · 106 for k = 4, and

2 · 1011 for k = 5).

Therefore, this model is not very useful in practice, as it grows extremely exponentially and there is

not any solver able to solve it when the number of items is morethan, say, three. However, we keep

this model as it is interesting theoretically, and is actually the best way to prove non-monotonicity in

the general case if any solver could eventually find solutions to it efficiently.

In the following section we show a more practical (although not complete) procedure for finding

such counter-example.

6.3.2 COUNTER-EXAMPLE ITERATIVE SEARCH

The iterative search method consists in a procedure that systematically generates and checks all the

possible auction instances, in order to find a counter-example of monotonicity. For each auction

instance, the procedure checks for all the possible assignments of prices to the bids (up to a given

limit), calledbid profiles. This model will eventually find a counter-example if it exists.

82

More concretely, the procedure begins by generating an instance of a combinatorial auction, com-

posed by bids with its respective items but without determined prices for the bids. After that, the

bids profilesare created with all the possible combinations of prices to the bids (up to a given limit).

With each bid profile, the robust solution is found with the model previously presented in Section

4.3.3. Next, all the bids from the optimal robust solution are taken one by one and their prices are

increased; the new auction is solved again and the solution is analyzed in order to check whether

a counter-example has been achieved, i.e. by observing if there is any of the winning bids that

increasing its price turns to a losing bid. A diagram of this approach is shown in Figure 6.2.

Figure 6.2: Iterative procedure for finding a counter-example.

First of all, an auction is created. The first module, “createauction”, generates progressively all the

possible combinatorial auction configurations, that is, given a number of itemsk, generates all the

possible bid combinations using these bids, i.e. the enumerative combinatorics ofk items. With

each bid combination, the bid profiles are created, by putting all the possible combinations of prices

to the bids (in a given interval). Therefore,np bid profiles are generated, wheren is the number of

bid combinations, andp is the range size of the prices interval. Symmetry breaking is considered

while generating the bid profiles, in order to avoid checkingduplicated profiles.

Each bid profile is encoded with the robustness model (moduleRob), and passed to the solver which

can be either SMT, ILP or pseudo-Boolean, depending on the generated model. If the model is

unsatisfiable the next bid profile is checked, otherwise if itis satisfiable, then the solution is checked

in order to find if by increasing the price of some winning bid,it drops out of the solution, which

would imply that a counter example has been found. Therefore, for each one of the winning bids, a

new auction is created copying the original auction and increasing the price of the winning bid by a

given bid increment. Again, the auction is encoded adding robustness and solved using a solver. If

the result is satisfiable, then the solution is checked and compared with the previous one in order to

find if the winning bid is now a losing bid. The process is iterated until a counter example is found.

83

Using this procedure, we have proved that no counter exampleexists with less than 4 items, with a

price interval between 0 and 10, and a winning bid increment of 1. For higher number of items, or

wider prices intervals, this procedure is not so successfuldue to its exponential increase in computa-

tional time. However, we have tried setting bid combinations manually (susceptible of composing a

counter-example) with 8 items at most, and then generating all the bid profiles and a counter example

has neither been found.

This means that either such counter example does not exist and the robustness mechanism is indeed

incentive compatible, or that the counter example would be even more complex. This is actually a

good result, since as we saw in the sensitivity analysis chapter, large auctions tend to be inherently

robust and therefore, robustness would not be applied in those cases where manipulation strategies

could exist.

6.4 SUMMARY

Incentive compatibility issues are a crucial point in the design of mechanisms for auctions, since

only strategy-proof mechanisms are actually used in real-world applications because of their impos-

sibility of being manipulated by the participants. A necessary condition that incentive-compatible

mechanisms must hold is monotonicity, which can be conversely used to prove non-monotonicity.

In this chapter we have analyzed the incentive compatibility of our robustness approach. We have

firstly seen that in a restricted version, where only some of the resources are brittle, the method is not

incentive compatible. We have provided a counterexample ofmonotonicity to prove that, following

the spirit of the proof of non-monotonicity for the problem of bid withdrawal in [37].

For the generic case, however, no handmade counterexample has been found. Therefore, we have

tried two different ways to find such counterexample: via reformulation and by iterative search.

Through reformulation, we generate a CSP model that provably finds a counter-example (if it exists),

given a maximum number of items. On the other hand, we have provided (and implemented) an

iterative procedure which checks all the possible bid combinations one by one in order to find such

counter-example.

The first approach has turned out to be not practical since thecomplexity of the model is highly

exponential. The second approach, although more practical, has not found any counterexample up

to now. There are two possible explanations for that, the first one is that the counter-example does

not exist and therefore the method is actually incentive compatible, the second option is that the

counter-example exists but it is very intricate. Both alternatives are good, since as we saw in the

sensitivity analysis, large auctions tend to be inherentlyrobust and therefore, possible manipulations

in such cases could be avoided as robustness would not be used.

85

CHAPTER 7

Robustness for Recurrent Auctions

In this chapter we examine how to achieve robustness in a sequence of auctions. The robustness

mechanism explained in the previous chapters using super solutions could also be applied, repeat-

ing it on each auction. However, in a sequence of auctions that are repeated through time with

similar resources and participants, a problem arises when the resources are public and uncontrolled

(see Section 2.1): the problem of agents using the resource without authorization. Therefore, the

problem of resources that become unavailable is converted to agents that use the resources without

authorization. We take a new approach to improve robustnessthat consists in learning the behavior

of the agents using a trust model and using the learnt parameters in each individual auction in order

to improve its robustness even more.

7.1 RECURRENTAUCTIONS

In some domains the allocation of resources to bidders are made for a specific time only [42]. Hence,

short-term contract is often used in those markets. When thetime of the contract expires the resource

allocated becomes free. Then the auctioneer needs to allocate the resource to bidders again. Conse-

quently, these short-term contracts are continuously repeated in what is known as arecurrent auction.

This recurrence is also from the point of view of bidders, since each bidder repeatedly requests the

resources for a specific time interval. Recurrent auctions1 are gaining importance [42, 56, 41] since

there are many applications where this recurrence appears,such as e-service oriented marketplaces.

Robustness for recurrent auctions acquires a different meaning than in single auctions. Especially

in the case of public uncontrolled resources that can be usedby the agents without authorization.

In the domains where those kind of resources apply, the main problem is not on resources that

become unavailable (because the resources are renewed at each repetition of the auction), therefore

robustness would not be achieved as in single auctions by obtaining robust solutions that can be

repaired if a resource fails. Instead, in these domains robustness is needed for avoiding possible

conflicts in the case that the agents use the resources without authorization.

7.2 CASE EXAMPLE : THE WASTE WATER TREATMENT PLANT

PROBLEM

In this section, we introduce a real world problem where robustness in recurrent auctions with un-

controlled resources takes an important role: the waste water treatment plant problem (WWTPP).

1Notice the difference between recurrent auctions and sequential auctions. A recurrent auction could be formed by a

succession of some of the auction types described in Section2.2.1. So a set of items can be auctioned periodically. In

contrast, in a sequential auction the auctioneer does not auction all the items, only one item at a time.

86

Figure 7.1: Water treatment system

The treatment of the wastewater discharged by industries into the rivers is vital for environmental

quality. For this purpose, the wastewater is treated in wastewater treatment plants (WWTP). A

WWTP receives the polluted wastewater discharges coming from the city and different industries.

Nowadays the most common wastewater treatment is the activated sludge process. The system

consists in an aeration tank in which the microorganisms responsible for treatment (i.e. removal of

carbon, nitrogen and phosphorous) are kept in suspension and aerated followed by a liquid-solids

separation, usually called secondary settler. Finally a recycle system is responsible for returning a

fraction of solids removed from the liquid-solids separation unit back to the reactor, whereas the

other fraction is wasted from the system [69].

A typical water treatment system is depicted in Figure 7.1. The industries discharge their wastes to

a sewage system, which directs the water to the WWTP. The plant, once the water has been treated,

puts it back to the river. The hydraulic capacity of the plantis limited, and therefore the main goal

of the system is to ensure that the water flow entering the WWTPand its contamination levels are

below some given thresholds, so that it can be correctly treated. Otherwise, the wastewater could not

be fully treated and the river would be polluted.

The hydraulic and contaminants capacity restrictions are defined according to its expected use (in-

dustries and cities in the surroundings that generate the waste). Currently, there exist regulations

intended to achieve this goal by assigning a fixed amount of authorized discharges to each industry.

However, they are not sufficient to guarantee the proper treatment of the wastewater. The problem is

that, although these regulations enforce industries to respect the WWTP capacity thresholds, they do

not take into account that simultaneous discharges by different industries may exceed the WWTP’s

thresholds. In such a case, no industry would be breaking therules, but the effect would be to exceed

the WWTP capacity.

The scheduling problem faced in this domain is to distributethe industrial discharges over time so

that all the water entering the WWTP can be treated. If the discharges are done without any coor-

dination, the amount of water arriving at the WWTP can exceedits incoming water flow threshold,

and cause the overflow to go directly to the river without being treated. Moreover, if the contami-

nation level of the water is too high, the microorganisms used in the cleaning process die, and the

process has to stop until they are regenerated. Thus, in order to prevent such dangerous situations,

the industrial discharges should be temporally distributed so that all of them can be fully treated.

87

Each industry has a tank (of a given capacity) where it can store its waste in case a discharge is not

authorized. Obviously, if the industry is denied to discharge and its tank is full, it will be forced to

realize the discharge anyway. As this situation can affect negatively the process in the WWTP, it

should be avoided. It is assumed that an industry can performtwo discharges at the same time: one

coming from the production process, and another one coming from the retention tank (from previous

discharges).

The WWTPP can be modeled as a recurrent combinatorial auction, where the auctioneer is the treat-

ment plant, the resource being sold is its capacity, and the agents using the resource are the industries

that perform discharges. Here the resource consumption (aswell as the individual discharges) does

not have only a global capacity limit (hydraulic capacity),but it is extended with many thresholds,

one for each contaminant type. The goal of the auctioneer is not to exceed any of its thresholds

(hydraulic capacity and contaminant levels).

In this scenario it is conceivable that industries may sometimes disobey the decisions of the plant.

The most obvious reason is when an industry has its retentiontank completely full; in this case

if the forthcoming discharge is not authorized, the industry will be forced to discharge it anyway,

thus disobeying the plant. However, an industry could disobey the decisions of the plant for other

uncontrolled and unpredictable reasons, for example when an industry cannot use its retention tank

(for maintenance purposes, for instance), or when a concrete discharge cannot be stored in the tank

because of its high level of contamination, etc.

In the following sections we will study how to solve this problem with robustness, in order to avoid

possible overflows caused by unauthorized discharges. The method is based in proactive robust-

ness, where we are interested in a solution that takes into account possible changes, rather than a

reactive approach where the system reacts when there is any change, finding an alternative solu-

tion. Appendix A shows how to solve optimally (without robustness) this problem using centralized

approaches and comparing the performance of different modelings and solvers.

7.3 LEARNING AGENTS BEHAVIOR

In this section we describe how to add robustness by using a trust mechanism to the recurrent auction

that is able to consider several possible changes on the auction. The mechanism is based on building

a model of the participants in the auction that is learned in successive iterations of the recurrent

auction. The robustness mechanism consists in three main components:

• Trust model of the agents requesting the resources

• Risk function of the agent selling the resources (theauctioneer, or coordinator)

• Robust solution generation

The first component (the trust model) is concerned with the agents requesting resources. It is a

main part of the mechanism as it models the behavior of the agents by learning from their actions

their behavior and the circumstances in which an agent is most likely to disobey the decisions of

the coordinator and use the resource without authorization. The second component is related to the

coordinator and its risk function, as the concept of a robustsolution varies depending on the risk

88

attitude of this concrete agent. Finally, with the inputs coming from all the agents, the robustness

of the system is achieved by combining the risk of the coordinator with the trust on the agents

requesting the resources to generate a solution that is robust, that is, it is able to absorb (up to some

level) the changes in the environment.

7.3.1 TRUST MODEL

An agent requesting resources to perform tasks can disobey the decisions of the auctioneer for sev-

eral reasons. It is not usually the case that an agent disobeys every decision of the auctioneer inde-

pendently of the characteristics of the task to perform. Normally, an agent would disobey only the

decisions that deny some tasks that it needs to perform for some reason. Therefore the trust model

should not contain only a unique global value for the degree of trust of an agent, but the trust value

should be related to a given task features. Possible task features to build the trust model include the

resources capacity requirements, the task duration, etc.

The trust model is learned during the recurrent auction by storing two main characteristics. First,

the probability of disobeying of the agents, which happens when an agent uses the resource when it

is not authorized to. Second, its lying magnitude, representing the difference between the requested

capacity of the resources and the real used capacity, given that in some scenarios an agent may

request to perform some tasks using a given capacity of resources and later use a higher capacity

than requested. Consequently, the measures stored by the trust model are the following:

• Probability of disobeying. This valueP ∈ [0..1] could be measured in many different ways,

being the most obvious the average of disobediences in relation to the total number of auc-

tions the agent has been involved in. However, it could be measured counting also the times

where the agent has performed the authorized task but using ahigher amount of capacity than

requested.

• Lie magnitude. This valueM ∈ [0..∞] represents the degree of the disobedience. For

example a value of 1 would represent that when the agent disobeys, it uses the quantity of

resources requested for the task, while a value of 1.5 would represent that it uses 150% of the

requested capacity.

A graphical representation of this trust model using only one characteristic of the task is shown in

Figure 7.2 (to use more task characteristics, additional dimensions would be added). Note that this

model is general enough to allow including even the case where an industry does never disobey the

auctioneer, but it uses a higher amount of capacity than requested (having a lie magnitude greater

than 0 at disobey probability of 0). This is particularly useful in problems where the resource capac-

ity requirements of the agents are quite dynamic.

The trust model is learned by the auctioneer agent at execution time. Every time a task is performed

the trust model of the respective agent is updated checking firstly if the task has been performed

after the authorization of the auctioneer or not, that is, the agent has disobeyed the result of the

coordination (the solution of the auction), and secondly ifthe resource capacity used is the same as

what was requested.

89

Disobey probability

Lie magnitude

Task characteristic

Figure 7.2: Trust model.

We use statistical procedures to learn the trust model, however, other more complex learning tech-

niques could be used as well to fill the model such as neural networks, bayesian networks, etc.

7.3.2 RISK FUNCTION

The risk attitude of the auctioneer characterizes the tradeoff between robustness and optimality that

he wants, given that robustness and optimality are contradictory objectives. The risk function of the

coordinator can be also seen as his willingness to face dangerous situations.

Risk attitudes are generally categorized in three distinctclasses: risk averse, neutral and proclive.

Risk aversion is a conservative attitude for individuals who do not want to be at stake. Risk neutral

agents display an objective predilection for risk, whilst agents with a proclivity for risk are willing

to engage in situations with a low probability of success. For example, a risk-averse auctioneer

would consider that every request with a probability of disobeying greater than 0 is going to use the

resources even if unauthorized, and thus it would auction only the remaining resources capacities

over the rest of the requests. On the other hand a risk-proclive auctioneer would consider that if a

request has a low probability of being disobeyed, it would not be the case at this time and hence

the auctioneer would auction a bigger amount of resources capacities, although with a higher risk of

being overused.

Risk

Probability
of disobedience1

1

Risk

Probability
of disobedience1

1

(a) (b)

Figure 7.3: Risk attitude function: (a) averse, (b) proclive.

The risk functionfrisk defines the risk attitude of the auctioneer (between 0 and 1) as a function of

the probability of disobeying of a given agent and a given request. An example of a risk function

is shown in Figure 7.3(a). In this case it represents a risk-averse auctioneer, since the resultingrisk

valueis almost always 1 (it considers risky requests as if they aregoing to surely use the resources

even if unauthorized), regardless of the probability of disobeying. On the other hand, a risk-proclive

auctioneer would have the final value almost always set to 0, as seen in Figure 7.3(b), and a risk-

neutral one would have it set accordingly to the probabilityof disobeying.

90

7.3.3 ROBUST SOLUTION GENERATION

The trust model and the risk function of the coordinator are used to generate therobustness constraint

that will provide robust solutions. This constraint is added to the constraint optimization problem

related to the auction, in order to force the solution to be robust.

In the auction (executed each time a conflict is detected) theauctioneer is faced with a set of requests

(the tasks involved in the conflict), each with trust features associated obtained from the trust model.

Then the auctioneer decides which requests to authorize depending on its risk attitude.

The robustness constraint is formulated in a way that the solution finds a balance between the amount

of resources required by the authorized requests and the assumed risk from the unauthorized requests

(appropriately weighted by its probability of disobeying,lie magnitude and the risk functionfrisk of

the auctioneer). The objective is not to exceed the maximum capacities of the resources (Qj). This

constraint is defined as shown in Equation 7.1, where variablesxi represent whether a discharge

is authorized or not,ci,j is the capacity required by the dischargei, andQj are the limits of the

contaminantsC.

∑

i∈[1,n]

xi·ci,j +
∑

i∈[1,n]

(1 − xi)·ci,j ·frisk(Pi)·Mi ≤ Qj ∀j ∈ C (7.1)

The first summatory represents the resources used by the authorized requests (xi = 1), while the

second summatory characterizes the resources potentiallyused by the unauthorized requests (xi =

0). Hence, the unauthorized requests are considered as if they were performed in the cases where

the probability of disobeying of the associated agent (Pi) is higher than zero. However this value

(appropriately weighted with its corresponding lie magnitudeMi) is considered as a function of the

risk attitude of the auctioneerfrisk2

Another way of understanding this equation is by moving the second summatory to the right side,

as shown in Equation 7.2. Then it can be read as if a concrete capacity of the resources is reserved

to be used by the unauthorized tasks that are likely to be disobeyed and performed anyway, which is

similar to slack-based techniques [18].

∑

i∈[1,n]

xi·ci,j

︸ ︷︷ ︸

Authorized

≤ Qj −
∑

i∈[1,n]

(1− xi)·ci,j ·frisk(Pi)·Mi

︸ ︷︷ ︸

ReservedCapacity

(7.2)

7.3.4 EXPERIMENTATION

To evaluate the robustness mechanism we have implemented a prototype of the system reproducing

the coordination and communication process between plant and industries. So far we have only

considered the hydraulic capacity of the plant. Industry agents calculate their bids taking into account

the urgency to perform a discharge, based on the percentage of occupation of the tank. In case an

2In this case we have considered that the lie magnitude is directly multiplied by therisk value, but another function could

be used as well.

91

industry agent is denied to perform one of its discharges, itfirst tries to store the rejected discharge

into the tank, scheduling the discharge of the tank as its first activity after the current conflict finishes.

If the industry has its tank already full, the discharge is performed anyway.

The free linear programming kit GLPK (GNU Linear Programming Kit) has been used to solve the

winner determination problem related to each (multi-unit)auction, modeling it as a mixed integer

programming problem. The robustness constraint is added asan additional constraint.

The trust models of the industries have been implemented using only one characteristic of the dis-

charges: the flow. The models of the industries are learned during the execution by storing the total

number of lies and truths (that is, disobedient and obedientactions), together with a value to compute

the lie magnitude. These values are updated after each performed discharge in the following way:

if the industry was authorized then the number of truths of the corresponding flow is incremented;

otherwise the number of lies is incremented. The lie magnitude is independently computed as the

difference between the used capacity and the requested capacity.

Results have been evaluated considering some quality measures based on different characteristics of

the solution:

• number of overflows (NO)occurred during the simulation

• maximum flow overflowed (MFO), measured inm3/day

• total volume overflowed (VO), in liters

• percentage of discharge denialsobeyedby the industries(%IO)

The experiments consisted of simulations using a set of realdata provided by the Laboratory of

Chemical and Environmental Engineering (LEQUIA) of the University of Girona. This data is com-

posed of the discharges of 5 industries in two weeks. The firstone is a pharmaceutical industry; it

is increasing its discharge flow during the week and does not discharge during the weekend. The

second one is a slaughterhouse that discharges a constant flow, except at the end of the day when it

increases. The third one is a paper industry that dischargesa constant flow during the seven days of

the week. The fourth one is a textile industry, whose discharges flow oscillates during the day. The

fifth one is the waste water coming from the city, whose flow is fixed. The hydraulic capacity of the

plant is 32000 m3/day.

We have tested the mechanism in different scenarios and situations.

• In the first scenario there is no coordination among the industries (without coordination the

industries perform its initial discharges plans, and the treatment plant does never unauthorise

any discharge).

• The second scenario uses the recurrent auction to coordinate the discharges of the industries

and assumes that they always obey the decisions of the plant,as long as they have enough tank

capacity.

• In the third scenario we introduce a probability of disobeying the outcome of the coordination

mechanism. This probability depends on the occupation of the tank (the higher the occupation,

92

NO MFO VO %IO

No coordination 80 9826 15.21·106 -

Obey 28 4996 3.74·106 98.95

Low Disob.

No Robustness
77.60

(4.12)

14432

(865.93)
11.5·106

(216866)

98.55

(0.12)

Robust.

Averse
78.70

(7.15)

14360

(1522)
11.3·106

(261362)

98.27

(1.57)

Neutral
79

(7.83)

13531

(1396)
11.4·106

(260669)

98.19

(0.24)

Proclive
84.1

(5.16)

14052

(1006)
11.3·106

(251712)

98.15

(0.17)

Medium Disob.

No Robustness
126.60

(6.13)

14398

(1604)
13.3·106

(363484)

96.48

(0.31)

Robust.

Averse
126.60

(6.13)

14398

(1604)
13.3·106

(363484)

96.48

(0.31)

Neutral
122.9

(6.84)

13966

(803)
13.2·106

(403934)

96.61

(0.32)

Proclive
121.3

(7.94)

14233

(1358)
13.2·106

(374673)

96.58

(0.41)

TEXTILE INDUSTRY ALWAYS DISOBEYING

No coordination 80 9826 15.21·106 -

Obey
No Robustness 112 6523 6.89·106 90.84
Robustness 58 6590 5.47·106 96.77

Low Disob.

No Robustness
112

(6.09)

14955

(1201.58)
12.6·106

(233076)

90.98

(0.2)

Robust.

Averse
77.70

(3.68)

14225

(1212)
11.8·106

(205150)

96.69

(1.57)

Neutral
82.5

(7.66)

15110

(997)
11.9·106

(199074)

96.66

(0.16)

Proclive
81.2

(4.44)

14018

(1596)
11.8·106

(133988)

96.68

(0.18)

Medium Disob.

No Robustness
119.70

(4.72)

14819

(1373.74)
14.3·106

(263955)

89.96

(0.28)

Robust.

Averse
109.50

(3.95)

14150

(1310)
13.6·106

(242619)

95.19

(0.17)

Neutral
113.5

(5.5)

13708

(1040)
13.6·106

(445501)

95.16

(0.37)

Proclive
110.9

(8.16)

14522

(1571)
13.6·106

(338985)

95.31

(0.29)

Table 7.1: Simulation results.

the higher the chances of disobeying); a graphical representation of this function is shown in

Figure 7.4. Two variations of the disobeying probability ofdisobeying have been tested, the

93

first one is exactly the same as the one shown in the figure (Low Disobedience), and the second

starts at a probability of 0.1, instead of 0 (Medium Disobedience).

• Additionally, we have tested the above scenarios setting one single industry (the textile, chosen

randomly) always disobeying the decisions of the plant if any of its discharges is unauthorized.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Buffer Occupacy (%)

D
is

o
b
e
y
 p

ro
b
a
b
ili

ty

Figure 7.4: Disobey probability function.

Every scenario has been tested activating and deactivatingthe robustness mechanism and with dif-

ferent risk attitudes of the coordinator (averse, neutral and proclive).

The outcome of all the scenarios is shown in Table 7.1, with the average and deviation (in brackets)

of 10 simulations performed for each scenario. Concretely,we can notice that the non-coordinating

scenario produces the worst results regarding volume overflowed (which is the most important indi-

cator), while the auction-based system improves the results, principally when all the industries obey

(this reflects the best possible circumstances). With disobeying industries we can notice a subtle im-

provement when using the robustness mechanism in both the volume and maximum flow overflowed

yet the difference is not much relevant, and the number of overflows is generally higher. Regarding

the risk attitude of the coordinator we do not observe its effects in this scenario.

In the environment where there is one industry always disobeying, the robustness mechanism seems

to mark differences given that all the indicators are significantly improved, specially regarding the

volume overflowed and percentage of obedience. However, in this scenario, as in the previous, the

different risk attitudes do not produce clear differences in the outcome.

7.4 SUMMARY

In this chapter we have analyzed robustness for recurrent auctions. In recurrent auctions the problem

of resources that become unavailable is converted to agentsthat use the resources without authoriza-

tion. Robustness in this setting means to find a solution thatwhen some agents use the resources

without authorization the solution is still valid and the resources are not overused. We have proposed

an approach to achieve that which uses a trust model that learns the behavior of the agents in order

to know the situations in which they are most likely to use theresource even if unauthorized.

We have presented the Wastewater Treatment Plant Problem (WWTPP), a real world problem that

fits perfectly in this setting, as the resource (water flow) can be overflown in the case that the indus-

tries perform unauthorized discharges into the river. Our approach has been tested in this scenario

obtaining successful results.

The method effectively learns the behavior of the agents that perform more unauthorized discharges

94

and decides the solution in each one of the recurrent auctions taking that into account, achieving

much less overflows than the classical approach (without anyrobustness mechanism).

95

CHAPTER 8

Conclusions and Future Work

In this final chapter we first make a brief summary of the thesis. Then, we review the objectives

initially set to this thesis and compare them with the final work and contributions achieved. Finally,

we propose a set of topics that could be extended in future works.

8.1 SUMMARY

Robustness is a key issue when dealing with real world applications, where uncertainty is almost

always present. In this thesis we have analyzed robustness for resource allocation problems modeled

as auctions, where it has been rarely taken into account. In particular, we have focused on the

possibility of some resources becoming unavailable once the auction has already been cleared, and

we have provided a mechanism to proactively look for solutions that can be easily repaired when

such unexpected events happen.

A sensitivity analysis has been performed to see that resources becoming unavailable can produce big

loses in the benefit of the auctioneer. This fact is a strong motivation for our research in robustness.

We have presented a notion of robustness that balances the number of allowed repairs when a break

occurs and the loss of revenue for the auctioneer, by defining(a, b, β)-super solutions. This approach

allows the auctioneer to choose the more convenient values for each parameter, depending on how

conservative or risk seeking his strategy is. We have shown that finding an (a, b, β)-super solution

for an auction can be reduced to modeling an auction as a weighted Max-SAT formula and the

looking for a supermodel of this formula. This results into the new problem of robust weighted

Max-SAT. We have faced these problems following the same approach as supermodels for SAT.

However, since SAT does not allow to easily encode formulas with arithmetic operations, needed

to achieve robustness, we have moved the problem to the richer logical framework of Satisfiability

Modulo Theories (SMT).

We have analyzed the relationship between robustness and optimality and proposed a mechanism

to define the trade-off between them with a parameterα. In the experimentation section we have

analyzed the results for different values ofα and the conclusion is that the loss of optimality when

searching robust solutions is lower than the loss of robustness when looking for optimal solutions.

This is a result that should be taken into account when deciding the most appropriate value ofα in

real world problems.

Some experimental results have been performed, showing thefeasibility of our approach with differ-

ent frameworks and solvers, namely, SMT, pseudo-Boolean and Linear Programming. The results

obtained are quite successful, especially if we consider them in relation with other works on ro-

96

bustness. As far as we know, there are very few results on reformulation approaches, and they are

restricted to (1,0)- and (1,1)-supermodels. Regarding results on search-based approaches, they are

also restricted to find at most (1,3)-super solutions to CSP problems. Although extensive experi-

mentation with harder instances and other kind of problems than that of auctions, for instance the

job-shop problem, should be done in order to better assess the scalability of our approach, we think

that achieving a reasonable performance for finding up to (3,8)-supermodels as we do is a very

successful result.

8.2 CONTRIBUTIONS

The definition and modeling of robustness for resource unavailability with repairable solutions in

resource allocation problems (encoded as combinatorial auctions) is the main topic of this thesis.

However, in the introduction we established a set of objectives to this work. Now we analyze these

objectives and discuss the work developed for each of them, and the conclusions that can be derived.

The first objective was the quantification of the negative effects that resource unavailability produces

in combinatorial auctions. Resources that become unavailable once a solution has been found pro-

duce losses in the revenue for the auctioneer. We have performed an extensivesensitivity analysis

with several combinatorial auction distributions generated with CATS, and studied the loss in rev-

enue in the optimal solution when some resources fail. The conclusion is that optimal solutions are

usually sensitive to changes in resource availability, making them hard to be repaired. Although

some distributions are more affected than others and more bids make the repair easier to restore the

lost revenue, the loss in revenue in all the cases is considerable and therefore, robust solutions would

be desired. Furthermore, we have analyzed the size of the repair and saw that repair sizes should be

also limited as it could be arbitrarily high.

The second objective was to design a mechanism to incorporate such robustness based on repair

solutions. We have defined robustness in a similar way as supermodels for SAT, super solutions and

weighted super solutions for CP. Our(a, b, β)-super solutionsare a new kind of robust solutions that

actually generalize them, enabling to find the robust solutions that we are interested in. We presented

a mechanism based in propositional logic to find such robust solutions, which uses reformulation to

create a formula that is satisfiable if and only if the problemhas a robust solution. We have made

a large amount of experiments with this model on a wide variety of combinatorial distributions and

several solvers, and changing the values of the parameters.The conclusion is that it is effectively

applicable to many practical instances.

Actually, our mechanism for solving weighted Max-SMT robustness is generic and can be applied

to any weighted Max-SAT problem, auctions being a particular case. Moreover, since our approach

is based on reformulation, there is no need of developing newalgorithms to solve the robust version

of the problem, and so we can take advantage of the advances inSAT and SMT solvers that we think

are going to improve drastically its performance in the nextfew years.

The third objective of this thesis was to addflexibility to the solutions in order to study the compro-

mise between optimality and robustness. This flexibility isalso useful for hard instances, where the

previous mechanism did not provide any solution due to its strictness. We adapted the robustness

mechanism by using a concept similar to soft-constraints. We also incorporated a new parameter

α to easily switch between robust and optimal solutions. Thisflexibility allows to find solutions in

97

over-restricted situations, and furthermore to easily define the desired trade-off between optimality

and robustness by setting the appropriate value ofα. A set of experiments was performed with this

parameter for analyzing the balance between optimality androbustness (fifth objective of the thesis)

and the conclusion is that the loss of optimality when searching robust solutions is lower than the

loss of robustness when looking for optimal solutions. Thisis a result that should be taken into

account when deciding the most appropriate value ofα in real world problems.

Incentive-compatibility issues (fourth objective of thisthesis) were analyzed in the sixth chapter. We

proved that although a restricted version of our problem wasnot incentive compatible, the same proof

did not succeed for the generic case. Two approaches were developed for finding counter-examples

of monotonicity, which would imply that the mechanism is notincentive-compatible. Both methods

did not find any counter-example. This means that either the counter-example does not exist and

therefore the method is actually incentive compatible, or that the counter-example exists but it is not

simple. Both alternatives are good, since we saw in the sensitivity analysis that large auctions (where

the counter-example could appear) tend to be already inherently robust.

8.3 FUTURE WORK

Although the initial objectives of this thesis have been accomplished, during this research we have

realized that there is still more work to do in various directions. In this section we give an idea of

the topics that could be extended.

8.3.1 ROBUSTNESSNOTIONS

The use of logic languages and techniques to deal with auction robustness gives us a high level

of expressiveness, which enables us to deal with distinct robustness variants. For instance, in the

auctions setting we have considered, we have focussed on robustness with respect to good unavail-

ability. However, for having robustness with respect to bidwithdrawal, we simply need to set the

breakable variables to the bids. Our approach can be seen as ageneric framework for robustness

through reformulation, since with only slight changes in the encoding, we can achieve other notions

of robustness.

Thus, an open line of research is to study these notions and their encodings to different frameworks.

For example, a robustness variant could be to directly designate the potential breaks to handle:

instead of using all the variables, we could decide what (combinations of) breaks deserve being

repaired. This would be useful if we only want to consider those breaks having a non negligible

probability of occurring. We could also think of a robustness notion where each breakable variable

has a corresponding set of associated repairable variables. This could serve, for instance, in the pres-

ence of scheduling, where one should only look for repairs onthe forthcoming assigned resources,

or in an auction scenario where it is not permitted to make repairs by switching a winning bid to a

loser one. We could study also how to define the notion of robustness for multi-unit auctions, or in

scenarios where failure probabilities are taken into account, among others. Again, we envisage that

thanks to the high expressiveness of our modeling, these features should be feasible.

98

8.3.2 QUANTIFIED COP

Quantified COP (QCOP) is a generalization of COP where the variables may be universally quanti-

fied over their domains [3]. This framework seems suitable for finding robust resource allocations.

Using QCOP might lead us to a more compact reformulation of the problem. This approach might be

particularly useful when dealing with cumulative resources (i.e. resources that can be simultaneously

used by several agents).

However, the expressive power of QCOP comes at a cost. While COP is solved by just assigning

values for its (existentially quantified) variables such that all the constraints are satisfied, a QCOP is

solved by exhibitingwinning strategies. Therefore, it would be interesting to elaborate an study of

the suitability of QCOP for robustness.

8.3.3 SCALABILITY

The size complexity of the proposed mechanism for robustness based on reformulation is exponential

in a even when using cardinality constraints. Therefore, it maybe worth performing a more extensive

analysis on the scalability of our approach, and the growth in problem size with the number of items

and bids.

8.3.4 SEARCH ALGORITHMS

We have proposed a method based on reformulation to find robust solutions. The model can be

generated in different encodings so that it can be then solved using various solvers, such as SMT,

pseudo-Boolean and Integer Linear Programming. We have seen that this approach obtains good

results.

It is left as future work to look for specialized search algorithms or operational research techniques

for solving the robust weighted Max-SAT problem and make corresponding performance compar-

isons. This would be specially important for those cases with a large number of bids and/or higher

values ofa, where our approach could be inefficient.

8.3.5 INCENTIVE-COMPATIBILITY

In the chapter dedicated to incentive compatibility, we sawthat although the robustness mechanism

was not incentive compatible in a restricted case (because acounter-example of monotonicity was

found), no proof of non-monotonicity was found in the generic case. Two approaches for finding

such counter-example were proposed, but they did not find anycounter-example. This points to the

possibility that the mechanism is indeed incentive-compatible, however, a formal proof should be

given to ensure that.

After that, the remaining necessary conditions (exactness, participation and critical) for proving the

truthfulness of the mechanism could be studied in order to prove the truthfulness of the mechanism.

99

8.3.6 RECURRENT AUCTIONS

For recurrent auctions, we proposed an approach of achieving robust solutions based on a trust model

that learns the behavior of the agents. However, other approaches could be used. Concretely, the

robustness mechanism proposed for single shot auctions could be extended in order to deal more

naturally with recurrent auctions.

Alternatively, the parameters learnt by the trust model could be used in order to set the probability of

failure (breakage) in the flexible robustness approach. This would be a good work to tie up all loose

ends.

101

Appendices

102

103

APPENDIX A

Benchmarks with the WWTP

Problem

In this chapter we deal with the Waste Water Treatment Plant Problem (WWTPP) introduced in

Chapter 7. We define it formally, and use it to test the efficiency of the different tools and solvers

available with it. Although we do not handle robustness issues in this case, we think that the com-

parison of the different solvers is interesting, since all of them could be used to solve the robustness

problem presented throughout the thesis.

A.1 THE WWTPP PROBLEM

The Waste Water Treatment Plant Problem (WWTPP) was introduced in Section 7.2. We focus

on the decision variant of the problem, i.e., in finding a feasible solution not exceeding an overall

deadline, instead of in minimizing the makespan. Actually,in the real case, it is sufficient that all

discharges are rescheduled within the same day for which they were originally scheduled (and, in

fact, the minimization of the makespan could be not good for the WWTP, as it is preferably, for the

microorganisms’ functioning, that the discharges are homogeneously distributed throughout time).

We will address this problem taking into account only the water flow, therefore we assume having a

single resource of given capacity.

The problem can be roughly defined as: given a list of all the discharges to be performed (each one

with a given duration, release time, deadline and resource capacity requirement), we are asked to find

a start time of each discharge between its release time and its deadline, such that, at any time, the

sum of resource requirements of the discharges scheduled atthat time does not exceed the WWTP

capacity. There is some precedence relation (presumably, achain) between the tasks of each single

industry. Since the delays introduced in the discharges (inorder to find a feasible schedule) should

not stop or delay the production processes of the industries, the idea is to keep those discharges

temporarily in a retention tank in the industry itself, and to discharge them to the river later on,

possibly in disjoint intervals, because a discharge comingfrom a tank can be interrupted.

In summary, an instance of the Wastewater Treatment Plant Problem (WWTPP) is given by:

• a single resource of given capacity,

• a set of tasks, each one with a given duration, release time and resource capacity requirement,

• a chain-like precedence relation between the tasks,

104

• for any such chain of tasks, a buffer (or retention tank) of given capacity and output rate (we

assume that the input rate is flexible) and

• an overall deadline (greater than all release times).

The question is to find a schedule where:

• each task is either scheduled at its release time (and does not exceed the deadline), or else it is

redirected to its corresponding buffer with a volume equal to its resource capacity requirement

multiplied by its duration,

• the capacity of each buffer is not exceeded at any time,

• each buffer is emptied, preemptively, at its correspondingrate,

• each buffer is empty at the deadline, and

• at any time, the sum of required capacities of the tasks scheduled at that time, together with

the required capacities of the emptying of the buffers at that time, does not exceed the capacity

of the single resource.

Notice that nothing prevents a buffer from being emptied andfilled at the same time, and also from

being emptied at the same time at which one of the tasks is scheduled.

A.2 MODELING THE WWTPPWITH SMT

In this section we give an encoding of a WWTPP instance into a SAT modulo unquantified Linear

Integer Arithmetic (LIA) instance. As we will see, SAT modulo LIA nicely captures all constraints.

Afterwards we translate this encoding into an Integer Programming problem, with the aim of com-

paring the performance of state-of-the-art solvers on bothapproaches.

A WWTPP instance can be easily encoded as a SAT modulo unquantified Linear Integer Arithmetic

instance as follows.

A.2.1 CONSTANTS

We have the following non-negative integer constants:

• PlantCapacity denotes the capacity of the wastewater treatment plant at each time period.

• Given a set ofk industries,TankCapacityi andTankFlowi denote respectively the capacity

and the emptying rate of the buffer associated to industryi, ∀i ∈ 1 . . . k.

• Given a set of discharges fromk industries to be scheduled withinm time periods,dij denotes

the scheduled flow of discharge for industryi during time periodj, ∀i ∈ 1 . . . k, j ∈ 1 . . .m.

105

A.2.2 VARIABLES

Given a set of discharges fromk industries to be scheduled withinm time periods, we have the

following integer variables∀i ∈ 1 . . . k, j ∈ 1 . . .m:

• For everydij > 0, cij denotes the actual “capacity requirement” of industryi during time

periodj, corresponding to a scheduled discharge. That is, for everydij > 0, eithercij = dij ,

or cij = 0 and the discharge is redirected to that industry’s buffer.

• Bout ij denotes the flow discharged from buffer (of industry)i during time periodj.

• Buf ij denotes the flow stored in bufferi at the end of time periodj.

A.2.3 CONSTRAINTS

We next define the set of constraints. The explanation of eachconstraint is given at the end.

∀j ∈ 1 . . .m :

k∑

i=1

cij + Bout ij ≤ PlantCapacity (A.1)

∀i ∈ 1 . . . k : Buf i1 = di1 − ci1 (A.2)

∀i ∈ 1 . . . k, j ∈ 2 . . .m : Buf ij = Buf ij−1 − Bout ij + dij − cij (A.3)

∀i ∈ 1 . . . k, j ∈ 2 . . .m− 1 : Buf ij ≤ TankCapacityi (A.4)

∀i ∈ 1 . . . k : Buf im = 0 (A.5)

In constraints A.2 and A.3, the differencedij − cij is replaced by0 if dij = 0 (recall that variables

cij have been defined only for corresponding constantsdij > 0).

∀i ∈ 1 . . . k : Bout i1 = 0 (A.6)

∀i ∈ 1 . . . k, j ∈ 2 . . .m : Bout ij = 0 (A.7)

∨ (Bout ij = TankFlowi ∧ Buf ij−1 ≥ TankFlowi) (A.8)

∨ (Bout ij = Buf ij−1 ∧ Buf ij−1 ≤ TankFlowi) (A.9)

For every discharge from an industryi, spanning from time perioda to time periodb, we state:

(cia = 0 ∧ · · · ∧ cib = 0) ∨ (cia = dia ∧ · · · ∧ cib = dib)
1 (A.10)

Finally, the following (obvious) redundant constraints can be added in order to help orienting the

search:
1Notice thatdia = · · · = dib > 0.

106

∀i ∈ 1 . . . k, j ∈ 2 . . .m : 0 ≤ Bout ij ≤ TankFlowi (A.11)

∀i ∈ 1 . . . k, j ∈ 2 . . .m : Bout ij ≤ Buf ij−1 (A.12)

Constraints A.1 state that the capacity of the WWTP is not exceeded at any time. Constraints A.2

and A.3 define the amount of water inside every buffer at everytime interval, taking into account

the amount of water inside each buffer at the previous time interval, and the current output and input

flows for this buffer. Constraints A.4 require the capacity of each buffer not being exceeded at any

time, and constraints A.5 impose all buffers being empty at the deadline. Constraints from A.6 to A.9

are restrictions on the output flow from the buffers (or retention tanks): the output flow at the first

time interval must be zero (as the buffer is empty) and, at subsequent time intervals, it can be either

zero, or it can be equal to the tank flow (provided that there isenough water inside the buffer) or

it can be equal to the remaining water inside the buffer if this is less or equal than the tank flow.

Constraints A.10 express the dichotomy of throwing each discharge to the river or redirecting it to a

buffer.

Constraints A.11 and A.12 are unnecessary, but have proved to be helpful in our experiments. No-

tice that, although the value of theBout variables is perfectly defined by constraints A.6 to A.9,

restricting the domain of theBout variables can help in the search for solutions.

A.3 IP MODELING

In order to obtain an IP instance from the previous SMT instance, we need to convert logical combi-

nations of linear constraints into conjunctions of linear constraints. We use standard transformations

like the ones of [74].

We define,∀i ∈ 1 . . . k, j ∈ 1 . . .m, binary variablesrij denoting whether discharge from industryi

at time periodj is actually scheduled or else redirected to a buffer. Then wereplacecij with rij · dij

inside constraints A.1, A.2 and A.3. Constraints A.4, A.5 and A.6 remain the same. The binary

variablesrij allow constraint A.10 to be translated into

ria + · · ·+ rib = 0 ∨ ria + · · ·+ rib = b− a+ 1.

This can then be encoded as a conjunction of linear constraints by defining additional binary vari-

ablesδiab for every discharge from an industryi spanning from time perioda to time periodb, and

stating:

ria + · · ·+ rib + (b− a+ 1) · δiab ≤ b− a+ 1 (A.13)

−(ria + · · ·+ rib)− (b− a+ 1) · δiab ≤ −(b− a+ 1) (A.14)

The disjunction of constraints A.7, A.8 and A.9 can be expressed as

δ′1ij → Bout ij = 0 (A.15)

δ′2ij → Bout ij = TankFlowi ∧ Buf ij−1 ≥ TankFlowi (A.16)

δ′3ij → Bout ij = Buf ij−1 ∧ Buf ij−1 ≤ TankFlowi (A.17)

whereδ′1ij , δ
′
2ij andδ′3ij are again binary variables, and

δ′1ij + δ′2ij + δ′3ij ≥ 1 (A.18)

107

Then constraints A.15, A.16 and A.17 can be transformed intoa conjunction of linear constraints by

usingBig −M like constraints2. In this way, constraint A.15 becomes

Bout ij + TankFlowi · δ
′
1ij ≤ TankFlowi (A.19)

and constraint A.16 becomes

TankFlowi · δ
′
2ij − Bout ij ≤ 0 (A.20)

−Buf ij−1 + TankFlowi · δ
′
2ij ≤ 0 (A.21)

Notice that these constraints work in conjunction with constraints A.11, which are mandatory here:

on the one hand, from A.19 we getBout ij ≤ 0 wheneverδ′1ij = 1, which together with0 ≤ Bout ij

(from A.11) gives usBout ij = 0 as we need; on the other hand, from A.20 we getTankFlowi ≤

Bout ij wheneverδ′2ij = 1, which together withBout ij ≤ TankFlowi (from A.11) gives us

Bout ij = TankFlowi as we need.

Finally, constraint A.17 becomes

Buf ij−1 − Bout ij + TankCapacityi · δ
′
3ij ≤ TankCapacityi (A.22)

Buf ij−1 + TankCapacityi · δ
′
3ij ≤ TankCapacityi + TankFlowi (A.23)

Constraints A.12 are mandatory for similar reasons as before, since they work in conjunction with A.22.

A.4 BENCHMARKING

Here we comment on some benchmarking we have performed, showing that state-of-the-art SMT

solvers outperform best IP solvers with the previous modeling of the WWTPP. We worked with two

sets of benchmarks, one coming from real data and another coming from randomly generated data3.

In the real set of benchmarks we used data coming from 8 industries (each one having its own

retention tank), with a total of 94 discharges planned within a period of 24 hours. We took a time

discretization of one hour and an overall deadline of 24 hours for the schedule. Different problem

instances were generated with different capacities of the wastewater treatment plant, ranging from

2000 units to 10000, at increments of 20. In this way, an easy-hard-easy transition was observed (as

already noted by [11, 33] for similar scheduling problems) with a transition from unsatisfiability to

satisfiability taking place at 5000 units of capacity.

For the random set of benchmarks we considered a total of 114 discharges from 10 industries (having

again each one an associated retention tank), all of them being planned within a period of 24 hours.

Although randomly generated, both the magnitude and duration of the discharges and the size of the

retention tanks was restricted to be within reasonable limits. We took a time discretization of one

hour and an overall deadline of 26 hours for the schedule. From this data different problem instances

were generated, with a capacity of the wastewater treatmentplant ranging from 5000 to 30000 units,

at increments of 100, resulting into a transition from unsatisfiability to satisfiability at 14500 units.

All the benchmarks, written according to the modeling of section A.2 in the SMT-LIB standard

2The idea ofBig − M constraints is the following: a disjunction like, e.g.,(x ≤ 0) ∨ b, whereb is a propositional

variable, can be converted intox ≤ ubound(x)b, whereubound(x) denotes an upper bound ofx.
3The data used in both sets of benchmarks can be found inhttp://ima.udg.edu/˜mbofill/wwtpp.tar

108

Table A.1: SMT vs. IP

Real set Random set

Solver % Solved Time % Solved Time

Yices 100.0 1227.4 100.0 5.2
Z3 99.8 1152.7 100.0 285.2

CPLEXa 97.6 1855.5 98.8 594.8

CPLEXb 93.5 1811.5 92.9 25.0
a Minimizing sum of buffer contents.
b Without objective function.

language, were submitted in 2009 to the SMT library4, and some of them were chosen for the annual

SMT competition5 in the corresponding category.

Table A.1 shows the percentage of solved benchmarks and the total time spent by IBM ILOG CPLEX

11, Z3.2α (SMT-COMP’08 QFLIA division winner) and Yices 2 (SMT-COMP’09 QFLIA division

winner), with a time out of 1800 seconds for each instance in the real set, and of 300 seconds in the

random set. All benchmarks were executed on a 3.80 GHz Intel Xeon machine with 3.5 GB of RAM

running under GNU/Linux 2.6. The modeling given in section A.3 was used for CPLEX.

As it can be seen, state-of-the-art SMT solvers clearly outperform CPLEX on this benchmarks. It

is specially remarkable that Yices solves all the benchmarks, and Z3 only fails in solving one from

the real set around the phase transition. Moreover, Yices isable to solve all the 251 benchmarks

from the random set in only 5.15 seconds, being almost insensitive to the phase transition. With

respect to CPLEX, although it has very good performance in many instances, it fails to solve some

of them around the phase transition. Since SMT solvers, as itdoes CPLEX, use a simplex procedure

for handling atomic linear constraints, other elements of SMT technology such as conflict-driven

lemma learning, backjumping or restarts can be playing a central role in this problem.

It is worth noting that worse results are obtained by CPLEX ifno objective function is used. After

trying with several objective functions, we obtained the best results by minimizing the sum of buffer

contents. This somehow corresponds to an eager strategy consisting in avoiding the use of buffers if

possible (and hence prioritizing discharges of wastewaterat their preliminarily scheduled times) and

emptying the buffers as soon as possible. Notice however that no objective function or user-given

search strategy is possible with SMT solvers, which are completely black-box for the user and, still,

better results are obtained.

A.5 COMPARISON WITH CONSTRAINT PROGRAMMING

For the sake of completeness, in this section we detail the results obtained with several Constraint

Programming (CP) tools on our benchmarks.

In order to do the benchmarking, our modeling needs to be translated into several CP dialects. For

the comparison to be fair, in all cases we must choose an encoding as similar as possible to the one

described in section A.2. This implies avoiding the use of global constraints and sophisticated search

4http://www.smt-lib.org
5http://www.smt-comp.org

109

Table A.2: SMT vs. CP

Real set Random set

Solver % Solved Time % Solved Time

SICStusa 68.8 258.9 81.7 27.7

Cometb 76.3 744.5 53.8 196.0

Cometc 46.4 43.8 71.7 27.1

Tailor+ Minion 81.3 547.6 44.6 98.3

mzn2fzn+ G12 28.9 32.2 74.9 77.1

mzn2fzn+ Gecode 0.0 0.0 37.1 9.8

mzn2fzn+ ECLiPSe 0.0 0.0 0.0 0.0

mzn2fzn+ SICStus 0.0 0.0 37.1 345.8

mzn2fzn+ fzn2smt+ Z3 99.8 4735.8 100.0 159.0

mzn2fzn+ fzn2smt+ Yices 99.8 702.8 100.0 40.5
a With labeling options: max, down.
b Using CP engine.
c Using LP engine.

strategies that can be available in CP tools. For this reason, we have only used labeling strategies6.

Results on a different encoding, using thecumulative global constraint, are given in the next

section.

Since the translation of the encoding described in section A.2 into a CP program over finite domains

is almost direct, the encodings obtained for each CP tool arevery similar and hence we do not detail

them here. Moreover, for solvers providing a FlatZinc front-end, we have used the same MiniZinc

model: MiniZinc [53] proposes to be a standard CP modeling language that can be translated into an

intermediate language called FlatZinc. FlatZinc instances can be obtained from MiniZinc instances

by using the MiniZinc-to-FlatZinc translatormzn2fzn , and then can be plugged into any solver

providing an specialized front-end for FlatZinc.

Table A.2 shows the results obtained by several CP solvers onthe benchmarks described in Sec-

tion A.4, except for the last two entries, which show the results obtained by the same SMT solvers

used in Section A.4, but where SMT instances have been obtained from FlatZinc instances through

an experimental compilerfzn2smt 7. The table refers only to the solving time (we do not include

translation times since we are interested in comparing solving times, regardless of the input lan-

guage). All benchmarks were executed on a 3 GHz Intel Core 2 Duo machine with 1 GB of RAM

running under GNU/Linux 2.6.

At a first glance we can observe that SMT solvers are far betterthan other tools on these benchmarks.

It is remarkable that, after the two step translation from MiniZinc-to-FlatZinc-to-SMT, we obtain

similar (and in some case even better) results to the ones in Section A.4.

We tried different labeling strategies with CP solvers, butalmost identical results were obtained.

Hence, unless contrarily indicated, the results in Table A.2 are for the default strategy, which is

6Notice that there is always a default labeling strategy in these tools and, hence, trying with some labeling options does

not imply doing any change in the encoding.
7Available athttp://ima.udg.edu/recerca/grupESLiP.html

110

usually first-fail: selecting the leftmost variable with smallest domain next, in order to detect infea-

sibility early. This is often a good strategy. However, withSICStus Prolog we obtained significantly

better results when using themaxanddown options: selecting the leftmost variable with the greatest

upper bound next, and exploring its domain in descending order. In our program, this translates to a

strategy consisting in giving priority to the biggest discharges, and keeping them in buffers as least

as possible. Notice that this roughly coincides with the objective function giving best results in the

IP approach of Section A.4.

The concrete versions of the CP solvers we used are: SICStus Prolog 4.0.1 (for the first entry in the

table), SICStus Prolog 4.1.1 (with FlatZinc support, for the MiniZinc case), Comet 2.0, Minion 0.9,

G12 MiniZinc 1.0.3, Gecode 3.2.2, and ECLiPSe 6.0. For the case of Minion, we used Tailor as

a translator from the ESSENCE[23] high-level language to the Minion language, in the samespirit

of using the Minizinc-to-Flatzinc translatormzn2fzn . This allowed us to use an almost identical

model. Comet already supports a high-level language which allowed us to express the constraints in

a very similar way. Moreover, for the case of Comet we tried both the CP engine and the LP engine,

with no clear winner. We want to remark that we are aware of IBMILOG CP Optimizer, which

uses constraint programming to solve detailed scheduling problems and combinatorial problems not

easily solved using mathematical programming methods. Unfortunately we were not able to test this

tool on our benchmarks, since the trial version has severe limitations in the number of variables and

in the number of allowed constraints.

A.6 A DIFFERENT APPROACH FORCONSTRAINT PROGRAMMING

An alternative approach is to solve the WWTPP by exploiting the use of thecumulative con-

straint within a CP system, since this constraint is closelyrelated to our problem. Many CP sys-

tems, such as CHIP V5, ECLiPSe, B-Prolog and SICStus Prolog, include thecumulative global

constraint in their finite domain library. This constraint was originally introduced into the CHIP

programming system to describe and solve complex scheduling problems [1].

Its habitual syntax iscumulative(Starts,Durations,Resources,Limit) ,whereStarts ,

Durations , andResources are lists of integer domain variables or integers of the samelength,

andLimit is an integer. The declarative meaning is: if the lists denote respectively the start times,

durations and resource capacity requirements of a set of tasks, then the sum of resource usage of

all the tasks does not exceedLimit at any time. One should expect that, by using this constraint

adequately, the performance of a CP system on the previous problem will be better (or, at least, not

worse) than if not using it.

Our modeling using thecumulative constraint goes as follows. Given a dischargei of durationdi
and resource capacity requirementci, since it can either go directly to the river or be redirectedto a

retention tank of certain output rater, we create a set of newn discharges of duration1 and capacity

requirementr, and one discharge of duration1 and non-negative requirement capacityr′ ≤ r (the

remainder), such thatdici = rn + r′. Observe that by dividing the discharges into a number of

discharges of duration1 we get rid of preemption. Then, by using reified constraints,we state that

the capacity requirements of thosen + 1 new discharges is actually0 if and only if the associated

original dischargei goes to the river.

Notice that a set of remainders (each of them coming from a different original discharge of the same

111

Table A.3: Cumulative modeling

Real set Random set

Solver % Solved Time % Solved Time

SICStusa 76.6 3231.9 95.2 1347.2

mzn2fzn+ G12 67.6 64.0 12.8 8.5

mzn2fzn+ Gecode 72.6 1709.2 61.4 24.8

mzn2fzn+ ECLiPSe 23.2 3255.7 17.9 637.0

mzn2fzn+ SICStus 69.3 2029.8 51.4 432.4
a With labeling options: max, down.

industry) could eventually be redistributed, forming a newset of discharges of resource capacityr

plus one single remainder. However, such redistribution should be made for the remainders being

available at each time, i.e., dynamically, and this does notgo in the direction of an encoding using

the cumulative constraint, which requires a fixed set of resources. Therefore, here we do not

consider the possibility of redistributing the remainders. Although this is an inexact formulation of

the problem, in practice it results a very few times in a smaller set of solutions than with the encoding

used in the previous sections. And, in any case, since this simplification results in a smaller search

space, it is likely to favour this approach.

Then, apart from stating the obvious release time, precedence and finishing time constraints, we use

thecumulative constraint two-fold. On the one hand, we use it in order to assure that the WWTP

capacity is not exceeded. On the other hand, we use it in orderto assure that the output rate and

capacity of every retention tank is not exceeded. This second use implies stating twocumulative

constraints for each industry, in the following way:

Let [I1,...,In] be a list with the initial times of the discharges kept in the retention tank of a

industry, let[H1,...,Hn] be the times at which they are respectively flushed out from the tank,

let [C1,...,Cn] be their resource capacity requirements, letr be the output rate of the tank, and

let c be the capacity of the tank. Then we state

cumulative([H1,...,Hn],[1,...,1],[C1,...,Cn],r)

in order that the output rate of the tank is not exceeded, and

cumulative([I1,..., In],[H1-I1,...,Hn-In],[C1,...,Cn],c)

in order that the capacity of the tank is not exceeded.

Finally, for symmetry breaking, we state ordering constraints between (indistinguishable) discharges

from each retention tank. Since all these discharges are of duration1, this improvement dramatically

reduces the search space.

Table A.3 shows the results obtained by the CP solvers supporting thecumulative global con-

straint on the same benchmarks as in the previous sections. Again, we used the possibility of sharing

a unique MiniZinc model, except for the first entry, where we directly built a Prolog program. We

112

can observe that, in general, the results are better than with the previous encoding for the same CP

solvers (with the only exception of G12 in the random set). However, these results are still far from

the ones obtained by SMT solvers. This can be due to the fact that we are using twocumulative

constraints for each industry (for assuring, respectively, that the output rate and the capacity of

each retention tank is not exceeded), plus onecumulative global constraint (for assuring that

the WWTP capacity is not exceeded) and, moreover, we are using many reified constraints (for the

dichotomy of sending the discharges either to the river or toa retention tank), making thus difficult

for the CP solvers to take profit of their algorithms for thecumulative constraint.

A.7 SUMMARY

We have presented the Wastewater Treatment Plant Problem (WWTPP), a real scheduling problem,

and have compared several techniques for solving it. The encoding of the WWTPP into SAT modulo

linear integer arithmetic, and using a high-performance SMT solver as a black-box for solving it,

has turned out to be one of the best approaches. Specifically,we have seen that state-of-the-art SMT

solvers are competitive with current best IP solvers, and even better on difficult instances of this

problem (i.e., the ones around the phase transition). Theseresults show that current SMT solvers are

ready to solve real problems outside the verification area, and that they provide a nice compromise

between expressivity and efficiency.

Let us recall that SMT solvers, like IP tools, use a simplex procedure for handling atomic linear

constraints. However, the particular treatment of bound constraints of the formx ≤ k or x ≥ k

inside a simplex procedure like the one of Yices, must be a keyingredient for the good results

obtained in this problem by this solver (notice that many constraints in this problem are of this

form). Also, we think that usual SMT techniques such as backjumping, restarts, and conflict-driven

lemma learning must be a key ingredient for the good results obtained around the phase transition.

Moreover, in our point of view, the encoding of the WWTPP as anSMT problem is simpler than as

an IP problem (where logical combinations of linear constraints must be translated into conjunctions

of linear constraints, with the addition of zero-one variables). Compared to CP, the SMT approach is

not that simple (since most CP tools provide a high-level language front-end), but far more efficient.

The performance of SMT solvers on this problem is still more significant if we take into account that

they are completely black-box, and one cannot provide neither labeling strategies nor local search

algorithms for guiding the search.

113

APPENDIX B

Winner Determination Algorithm for

Single-unit Combinatorial Auctions

In this chapter we present an algorithm for solving the winner determination problem related to

single-unit combinatorial auctions. The algorithm is divided in three main phases. The first phase

is a pre-processing step with some reduction techniques. The second phase calculates an upper and

a lower bound based on a linear programming relaxation in order to prune the search. Finally, the

third phase is a branch and bound depth first search where the linear programming relaxation is

used as upper bounding and sorting strategy. Experiments against specific solvers like CASS and

general purpose MIP solvers as GLPK and CPLEX show that our algorithm is in average the fastest

free solver (CPLEX not included), and in some instances drastically faster than any other.

B.1 INTRODUCTION

Since 1998 there has been a surge of research on designing efficient algorithms for the WDP in

combinatorial auctions (see [20, 16] for a more extended survey). Given that the problem isNP-Hard

in the strong sense, any optimal algorithm will be slow on some problem instances. However, in

practice, modern search algorithms can optimally solve theWDP in a large variety of practical cases.

There exist typically two different ways of solving it. On one hand there exist specific algorithms that

have been created exclusively for this purpose, such as CASS[24] and CABOB [66]. On the other

hand, the WDP can be modeled as a mixed integer linear problem(MIP) and solved using a generic

MIP solver. Due to the efficiency of actual MIP solvers like GLPK (free) and specially CPLEX

(commercial), the research community has nowadays mostly converged towards using MIP solvers

as the default approach for solving the WDP. There also existsub-optimal algorithms for solving the

winner determination problem that find quick solutions to combinatorial auctions [67, 38]. However

we will focus only on optimal solutions.

An interesting thing to be noted about the modeling of the WDPas a MIP is that if bids were defined

in such a way that they could be accepted partially, the problem would become a linear program (LP)

which, unlike MIP, can be solved in polynomial time. We have kept this idea in mind to design a

new algorithm, which combines LP, search and several reduction techniques to obtain better results

than other solvers, even CPLEX in some particular instances.

B.2 NOTATION

Here we introduce a few notation that is going to be used through this chapter. In a single-unit

combinatorial auction the auctioneer receives a set of bidsB = {b1, ..., bn}, each of them composed

114

by a pricep(bi) and a subset of itemsg(bi) of sizen(bi) (such thatn(bi) = |g(bi)|). The complete

set of items isI = {it1, ..., itm}.

Useful relations between bids includeb(iti) as the set of bids that contain the itemiti, andC(bi) as

the set of bids compatible with bidbi (i.e. the set of bids that do not contain any item ing(bi)). Ad-

ditionally,C(bi, bj) and¬C(bi, bj) represent whether bidsbi andbj are compatible or incompatible.

B.3 THE ALGORITHM

CABRO (Combinatorial Auction BRanch and bound Optimizer) is mainly a branch and bound

depth-first search algorithm with a specially significativeprocedure to reduce the size of the input

problem. The algorithm is divided in three main phases:

• The first phase performs a fast preprocessing (polynomial time) with the aim of removing as

many bids as possible. Bids removed in this phase may be either bids that are surely not in the

optimal solution, or bids that surely are.

• The second phase consists in calculating upper and lower bounds for each bid. The upper

bound of a bid is computed by formulating a relaxed linear programming problem (LP), while

the lower bound is computed generating a solution quickly. This phase may also remove a

notable amount of bids.

• The third phase completes the problem by means of search, concretely a branch and bound

depth first search. In this phase the two previous phases are used also as heuristic and for

pruning.

In some instances it is not necessary to execute all the threephases of the algorithm, for example

when the optimal solution is already found before the searchphase (which happens more frequently

than expected). The algorithm is able to end prematurely either when all of the bids have been

removed or when at some point of the execution the global lower bound reaches the global upper

bound.

This algorithm also provides anytime performance, giving the possibility to be stopped at any time

during the execution and providing the best solution found so far. In the following sections each of

the three phases of the algorithm are explained in detail.

B.3.1 FIRST PHASE: PRE-PROCESSING

This phase uses fast algorithms (with polynomial-time complexity) to reduce the size of the problem

by deleting bids and items that either cannot be present at the optimal solution or that surely belong

to it. This phase consists of 8 separate strategies (steps),each of them using a different criteria to

remove either bids or items.

• Step 1: Bids with null compatibility. In this step all the bids that do not have any compatible

bid are deleted, except for the bid with the highest pricebh. These bids are surely not in the

115

I t 2

It 1 It 2

b1

b2

I t 1 It 2b3

I t 1

It 2 It 3

b1

b2

I t 2 It 4b3

(a) (b)

It 1 It 2

It 1 It 2 It 3

b1

b2

30

20

It 1

It 1 It 2 It 3

b1

b3

15

20

It 215

b2

(c) (d)

Figure B.1: Examples of (a) dominated item (it1), (b) solution bid (b1), (c) dominated and (d) 2-

dominated bids.

b1

b2

b3

b4

b5

p(b1) = 120

p(b2) = 100

p(b5) = 90

p(b4) = 100

p(b3) = 50

compatible(b1) = b3

compatible(b2) = b3

compatible(b3) = b1, b2, b4, b5

compatible(b4) = b3, b5

compatible(b5) = b3, b4

I t 1 It 4

It 2 It 4

It 3

It 1 It 2

It 4

I t 3

It 1 It 2

b3

b2

It 1 It 2b1

It 3

It 4

30

50

10

(a) (b)

Figure B.2: Left: Example of pseudo-dominated bid (b1 is pseudo-dominated). Right: Example of

compatibility-dominated bid (b2 is compatibility-dominated byb1).

optimal solution since the maximum benefit of a solution containing any of them would be its

own price, yet it still does not surpass the price of the bidbh.

• Step 2: Dependent items.Items give information about incompatible bids. Still in some

cases the information given by an item is already included into another’s: the item isdepen-

dent. Then, the former can be removed without any loss of information. Hence, this step

deletes (leaves out of consideration) dependent items. More formally, for each pair of items

(it1, it2) such thatb(it1) ⊆ b(it2), it1 may be deleted from the problem since the information

given byit1 is redundant. Figure B.1 (a) shows an example of this situation; here itemit1
can be deleted given that the information given byit1 (¬C(b2, b3)) is already included in the

information given byit2 (¬C(b1, b2), ¬C(b2, b3) and¬C(b1, b3)).

• Step 3: Bids of the solution.In some instances there may exist bids such that all of its items

are unique (the bid is the only one containing them), and therefore the bid does not have any

incompatible bid. In such situations the bid is surely part of the optimal solution.

This step finds all the bids complying with this condition, adding them to the optimal solution

and being removed from the remaining set of bids. Figure B.1 (b) shows an example of this

situation, where bidb1 is added to the optimal solution given that its itemi1 is unique.

• Step 4: Dominated bids.This is the same pre-processing step that CASS [24] and CABOB

116

[66] perform: the elimination of dominated bids. A bid is dominated by another when its set of

items includes another bid’s items and its price is lower. More formally, for each pair of bids

(bi, bj) whereg(bi) ⊆ g(bj) andp(bi) ≥ p(bj), bj may be removed as it is never preferable to

bi. Figure B.1 (c) shows an example of a dominated bid (b1 dominatesb2).

• Step 5: 2-Dominated bids.This is an extension of the previous technique (also noticedin

[65]), checking whether a bid is dominated by a pair of bids. In some cases a bid is not

dominated by any single bid separately, but the union of two bids together (joining items and

adding prices) may dominate it. Figure B.1 (d) shows an example of a 2-dominated bid (the

union ofb1 andb2 dominatesb3). This step can be easily generalized to checkn-dominated

bids. However, for many reasonable distributions, the probability of a bid being dominated

by n bids is very low for higher values ofn, still requiring much more processing (finding all

subsets of sizen), so this generalization is not so useful forn > 2.

• Step 6: Pseudo-dominated bids.This step is an even more complex generalization of the

dominating techniques. Here we deal again with pairs of bids(bi, bj) such that not all of the

items inbi are contained inbj , but there is one single itemitk not included. In this situation

the bidbi can be removed only if adding to its price the price of its best(highest price) com-

patible bid containing itemitk is not higher than the price of the bidbj. In such a situationbj
is always preferable tobi even when takingbi together with its best compatible bid; therefore

bi does definitely not belong to the optimal solution and might be removed. Figure B.2 (a)

illustrates this situation: hereb2 pseudo-dominatesb1 since its price (50) is higher than the

sum of bidb1’s price (30) plus the price of its best compatible bid containing the itemit3, in

this caseb3 (10), thereforeb1 can be removed.

• Step 7: Upper and lower bound values. In this step, fast upper and a lower bounds are

assigned to each bid with the aim of deleting bids with its upper bound lower than aglobal

lower bound(GLB)1, since they cannot improve the best solution already found.

The upper boundu of a bid bx is calculated according to Equation B.1 whereC′(bx, itk) is

the set of compatible bids ofbx including itemitk. Roughly speaking, it computes the upper

bound of a bidbi by adding to its price the best possible prices of the bids containing the items

not included ing(bi).

After that, the lower bound of the bids is then calculated constructing a solution of a bid by

iteratively attempting to add all of its compatible bids to the solution. Its compatible bids are

ordered in descending order according to the upper bound previously calculated. All the solu-

tions obtained with this algorithm are valid solutions and update the GLB accordingly. Note

that GLB actually stores the best solution to the problem found so far (although it may not

be the optimal one), therefore it can be returned immediately if the user decides to stop de

execution, thus providing anytime performance.

u(bx) = p(bx) +
∑

∀i/∈g(bx)

max
∀j∈C′(bx,itk)

p(bj)

n(bj)
(B.1)

1The global lower bound (GLB) is the best (maximum) lower bound found, associated to a valid solution.

117

• Step 8: Compatibility-Dominated bids. This step is another generalization of dominated

bids. A bidbi is compatibility-dominated by another bidbj if the set of compatible bids ofbi
is a subset of the set of compatible bids ofbj and its price is lower. More formally, for each

pair of bids(bi, bj) whereC(bi) ⊆ C(bj) andp(bi) ≥ p(bj), bj may be removed as it is never

preferable tobi. Figure B.2 (b) shows an example whereb2 is not dominated byb1 but it is

compatibility-dominated.

Once all of these steps have been executed, since the problemhas changed, it may be the case that

some bids and items previously undeleted can now be removed.For example the deletion of a bid

may cause the appearance of dominated items and vice-versa.Therefore phase 1 is repeated until it

does not remove any more bid or item.

B.3.2 SECOND PHASE: UPPER ANDLOWER BOUNDING

In the second phase, the algorithm calculates improved upper and lower bounds for each bid. In

order to compute the upper bound for a given bidbi, a relaxed linear programming (LP) problem

is formulated. This relaxed formulation defines the bids in such a way that they can be accepted

partially (a real number in the interval [0, 1]), therefore it can be solved using the well-known

simplex algorithm [17], which solves most of the instances in polynomial-time. The relaxed version

does not contains neither the current bidbi nor none of the bids with items included inbi (i.e. its

incompatible bids). Adding the price of the bidbi to the solution of the relaxed LP problem gives a

new upper bound that is usually much more precise than the oneobtained in step 7 of phase 1.

This step firstly performs an ordering of the bids according to the upper bound value calculated in

step 7 of phase 1 in ascending order. Then the process of calculating new upper bounds using the

simplex method starts with the bid with the lower upper bound, and each time a bid’s upper bound

is lower that the GLB, it is deleted, thus decreasing the sizeof the subsequent bids’ simplex.

Note that the chosen ordering, beginning with the “worst” bids, may seem inappropriate at first

glance, but this is in fact a good strategy since the worst bids’ upper bounds are usually much faster

to compute than the “best”, hence we quickly obtain accurateupper and lower bounds that may allow

to remove lots of bids rapidly, thus decreasing the size of the problem and making “best” bids also

faster to be computed. This fact has been verified experimentally.

Regarding the lower bound for each bidbi, it is computed using the values returned by the LP solver,

and updates the GLB accordingly. The solution is constructed by firstly considering any value greater

than 0.5 to be actually 1; that is, part of the (partial) solution. This assumption is not inconsistent (it

does not produce solutions containing incompatible bids) because compatible bids are restricted to

sum at most 1, therefore two incompatible bids cannot have both values larger than 0.5. After that,

the remaining bids (with values smaller or equal to 0.5) are attempted to be put into the solution in

descending order. Of course if the solution of the LP was integer this process is not required, as it is

the optimal solution for that bid.

118

B.3.3 THIRD PHASE: SEARCH

The third phase (iCabro) performs a branch-and-bound depth-first search with the remaining bids of

the previous phases (L). The full algorithm can be seen in Figure B.3. The value of the best solution

found so far (GLB) is stored in the global variablebSolution. Initially bSolution=0, and the search

starts by callingiCabro(L,0).

1 procedure iCabro(L,cSolution)

2 for each elementb of L
3 L2← L

⋂
compatible(b)

4 cSolution2← cSolution
⋃
b

5 LPSol← simplex(cSolution2)

6 if LPSol is integerthen

7 cSolution2← cSolution2
⋃
LPSol

8 L2← ∅

9 end-if
10 if v(LPSol) > v(bSolution) then

11 if v(cSolution2)> v(bSolution) then
12 bSolution← cSolution2

13 end-if
14 if L2 is not emptythen

15 sort(L2)

16 iCabro(L2, cSolution2)

17 end-if

18 end-if
19 end-for

20 end-procedure

Figure B.3: Pseudo-code algorithm of iCabro procedure

The iCabroprocedure processes the incoming list of bidsL performing the following steps:

• The algorithm begins getting the first bidb of the listL (recall thatL is sorted according to

the upper bound computed in phase 2). A new listL2 is created as the intersection between

L andC(b) (compatible bids ofb). In deeper nodes (as it is a recursive function) the setL2

represents the compatible bids with the current solution.

• After that, the algorithm formulates and solves the Linear Programming (LP) problem related

to the current solution. If the result of the LP problem is integer then the algorithm finishes

(prunes) the current branch, as the optimal solution of the branch has been found.

• At line 10 the algorithm verifies if the upper bound of the current solution is greater than the

GLB (the best solution found so far). If this is the case the search continues through this

branch updating the best current solution if necessary. Otherwise, the branch is pruned.

• At line 14 the algorithm verifies that theL2 set is not empty, given that if it is empty then it

means that the current solution does not have any more compatible bids and consequently the

119

0

50

100

150

200

250

300

350

L1 L2 L3 L4 L5 L6 L7
A
R
B

M
AT

PA
T
H
S

S
C
H

T
R
A
N
S

A
v

g
.

e
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
)

CABRO CASS GLPK CPLEX

0

50

100

150

200

250

CABRO CASS GLPK CPLEX

A
vg

. e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Figure B.4: Left: Global comparative. Right: Comparative over distributions.

branch is finished. Alternatively, if this condition does not apply, then the following action is

to sort the listL2 according to the upper bound of each bid, in order to perform arecursive

call to iCabro with the listL2.

B.4 RESULTS

To evaluate the CABRO algorithm we have compared it against both specific algorithms and general

purpose MIP solvers. We have chosen CASS for the specific solver instead of CABOB because

although their authors claim that it outperforms CASS, there is no implementation of it available

publicly. For the MIP solver, both GLPK (free) and CPLEX 10.1(commercial) have been tested.

Test examples have been generated using the popular benchmark for combinatorial auctions CATS

(Combinatorial Auctions Test Suite) [44], which creates realistic auction instances. The CATS suite

generates instances following five real-world situations and seven previously published distributions

by different authors (called legacy).

We have also created a new distribution called transports (TRANS) based on a real problem: the road

transportation problem. The problem roughly consists of finding the best assignment of available

drivers to a set of requested services given a cost function and subject to a set of constraints (see

[52] for more details). To model this problem as an auction the bids represent journeys (a set of

services) associated with a driver, therefore its items represent the services performed as well as the

driver used. Note that the original problem consists in minimizing the final cost of doing all the

services, while an auction is concerned on maximizing. Therefore, the costs associated to the bids

are appropriately transformed so that the maximized solution corresponds to the real (minimizing)

solution.

We have generated 100 instances of each distribution with different amounts of bids and items.

Each instance has been solved using CABRO, CASS, GLPK 4.9 andCPLEX 10.1 with a timeout

of 300 seconds. The first three methods have been run in a 2.4GHz Pentium IV with 2Gb of RAM

running under Windows XP SP2, while CPLEX has been run on a 3.2GHz Dual-Core Intel Xeon

5060 machine with 2 Gb of RAM running under GNU/Linux 2.6.

Figure B.4 (left) shows the average execution time (in seconds) required for each method to solve

all the instances of all the distributions. Here we can observe that CPLEX is in average the fastest

120

solver since it solves all the instances (1167 auctions) in considerably less time than the other solvers.

Recall that the machine used for CPLEX is considerably faster than the one used for the others;

however, we believe that the results on equal machines wouldnot change significantly. Yet CABRO

spends less time than the free solvers GLPK and CASS.

Figure B.4 (right) shows the results in each of the distributions comparing the average time required

(in seconds) to solve all the instances of each distributionwith the four methods. Here we can

observe that in two distributions (L2 and L7) CABRO is clearly the best algorithm and in other one

(ARB) is also the best solver but CPLEX is very close. In the rest of distributions CPLEX is the

best. Regarding the free solvers, GLPK is cleary the best solver in L3, L5, TRANS, MAT and PATHS

while CABRO is cleary the best in L1, L2,L7, ARB and SCH. CASS is only rather competitive in

L1, L2, L7 and ARB distributions.

CABRO CASS GLPK CPLEX

F ¬F % F ¬F % F ¬F % F ¬F %

L1 80 15 84.2 67 28 70.5 39 56 41.1 95 0 100.0

L2 100 0 100.0 90 10 90.0 7 93 7.0 50 50 50.0

L3 54 46 54.0 3 97 3.0 84 16 84.0 98 2 98.0

L4 100 0 100.0 22 78 22.0 100 0 100.0 100 0 100.0

L5 44 56 44.0 23 77 23.0 61 39 61.0 90 10 90.0

L6 53 47 53.0 46 54 46.0 70 30 70.0 100 0 100.0

L7 100 0 100.0 68 32 68.0 0 100 0.0 15 85 15.0

ARB 96 4 96.0 86 14 86.0 81 19 81.0 99 1 99.0

MAT 81 19 81.0 0 100 0.0 100 0 100.0 100 0 100.0

PATHS 55 17 76.4 1 71 1.4 72 0 100.0 72 0 100.0

SCH 98 2 98.0 9 91 9.0 84 16 84.0 100 0 100.0

TRANS 94 6 94.0 24 76 24.0 100 0 100.0 100 0 100.0

TOTAL 955 212 81.8 439 728 37.6 798 369 68.4 1019 148 87.3

Table B.1: Finished auctions (F), not finished auctions (¬F) and percentage of finished auctions

(%) before the timeout.

Table B.1 shows the number of auctions finished (F), the number of auctions not finished (¬F) and

the percentage of finished auctions (%) before the timeout, for each method and each distribution.

The results are similar to the execution time results, with CPLEX being the best method in absolute

results, as it solves up to 1019 instances (87%). However, there is not any method that can be

claimed to be the best, since it depends on the kind of data that the auction is processing. Particularly,

CABRO performs better for the weighted random and binomial distributions, solving 100% of the

instances, while CPLEX only solves 15% in L7 and 50% in L2.

B.5 CONCLUSIONS

An algorithm for solving combinatorial auction problems has been presented. It uses many reduc-

tion techniques, together with an heuristic function basedon linear programming techniques that

provides more pruning. We have compared its performance with other existing algorithms obtaining

encouraging results, particularly for weighted random andbinomial distributions.

There is a lot of room for improvements in the algorithm, suchas new reduction strategies, a better

integration in the search phase, improvements in the upper bound function used in the first phase,

other sorting criteria to obtain better lower bounds. Also,a better understanding of the different

characteristics of the domains and its influence in the solution time could help to theoretically char-

121

acterize domains where CABRO outperforms CPLEX and work in the domains where it does not.

Another interesting point would be to extend this algorithmto deal also with multi-unit combinatorial

auctions, as there are not many specific algorithms for this kind of auctions. Finally, a comparison

of the anytime behavior and the memory consumption could be performed, as it is known to be a

drawback of MIP solvers.

123

Bibliography

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex scheduling and

placement problems.Mathematical Computer Modelling, 17(7), pages 57–73, 1993.

[2] J. Argelich, I. Lynce, and J. Marques-Silva. On solving boolean multilevel optimization prob-

lems. In Proceedings of IJCAI 09, pages 393–398, 2009.

[3] M. Benedetti, A. Lallouet, and J. Vautard. Quantified constraint optimization. InCP, pages

463–477, 2008.

[4] T. Berthold, S. Heinz, and M.E. Pfetsch. Solving pseudo-boolean problems with scip.ZIB-

Report 08-12, 2009.

[5] D. Bertsimas and M. Sim. The price of robustness.Operations Research, 52(1):35–53, 2004.

[6] M. Bichler, A. Davenport, G. Hohner, and J. Kalagnanam.Combinatorial Auctions, chapter

Industrial Procurement Auctions, pages 593–612. MIT Press, 2006.

[7] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh.Handbook of Satisfiability:

Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, The

Netherlands, The Netherlands, 2009.

[8] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodrguez-Carbonell, and A. Rubio. The barcelogic

smt solver.Lecture Notes in Computer Science, 5123/2008:294–298, 2008.

[9] G. Boolos and R. Jeffrey.Computability and Logic. Cambridge University Press, 1974.

[10] R. Bruttomesso, A. Cimatti, A. Franzn, A. Griggio, and R. Sebastiani. The mathsat 4 smt

solver. In Proceedings of CAV, LNCS, 5123, 2008.

[11] Y. Caseau and F. Laburthe. Cumulative scheduling with task intervals. Joint International

Conference and Symposium on Logic Programming, pages 363–377, 1996.

[12] Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemaˆıtre, N. Maudet, J. Padget, S. Phelps,

J.A. Rodrı́guez-Aguilar, and P. Sousa. Issues in multiagent resource allocation.Informatica,

30:3–31, 2006.

[13] E.H. Clarke. Multipart pricing of public goods.Public Choice, 11(1):17–33, 1971.

[14] S. H. Clearwater. Market-based control: a paradigm fordistributed resource allocation.World

Scientific Publishing Co., Inc., River Edge, NJ, USA, 1996.

[15] CPLEX. http://www.ilog.com/products/cplex/.

[16] P. Cramton, Y. Shoham, and R. Steinberg.Combinatorial Auctions. MIT Press, 2006.

[17] G.B. Dantzig. The simplex method.RAND Corp, 1956.

124

[18] A.J. Davenport, C. Gefflot, and J.C. Beck. Slack-based techniques for robust schedules. In

Proceedings of the Sixth European Conference on Planning (ECP-2001), 2001.

[19] L. de Moura and N. Bjrner. Z3: An efficient smt solver.Lecture Notes in Computer Science,

4963/2008:337–340, 2008.

[20] S. de Vries and R.V. Vohra. Combinatorial auctions: A survey. INFORMS Journal on Com-

puting, (3):284–309, 2003.

[21] B. Dutertre and L. De Moura. The yices smt solver. Technical report, 2006.

[22] N. Een and N. Sorensson. Translating pseudo-boolean constraints into sat.Journal on Satisfi-

ability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.

[23] A.M. Frisch, W. Harvey, C. Jefferson, B. Martı́nez-Hernández, and I. Miguel. Essence: A

constraint language for specifying combinatorial problems. Constraints, 13(3), pages 268–

306, 2008.

[24] Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computational complexity of

combinatorial auctions: Optimal and approximate approaches. InInternational Joint Confer-

ences on Artificial Intelligence (IJCAI), pages 548–553, 1999.

[25] M.L. Ginsberg, A.J. Parkes, and A. Roy. Supermodels androbustness. InAAAI ’98/IAAI

’98: Proceedings of the fifteenth national/tenth conference on Artificial intelligence/Innovative

applications of artificial intelligence, pages 334–339, Menlo Park, CA, USA, 1998.

[26] GLPK. GNU Linear Programming Kit, http://www.gnu.org/software/glpk/.

[27] T. Groves. Incentives in teams.Econometrica, 41(4):617–631, 1973.

[28] E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh. Finding diverse and similar solutions in

constraint programming.In AAAI’05: Proceedings of the 20th national conference on Artificial

intelligence, pages 372–377, 2005.

[29] E. Hebrard, B. Hnich, and T. Walsh. Robust solutions forconstraint satisfaction and optimiza-

tion. In ECAI, pages 186–190, 2004.

[30] E. Hebrard, B. Hnich, and T. Walsh. Super solutions in constraint programming. InCPAIOR,

pages 157–172, 2004.

[31] E. Hebrard, B. Hnich, and T. Walsh. Improved algorithm for finding (a, b)-super solutions.In

Proc. of Workshop on Constraint Programming for Planning and Scheduling, pages 236–248,

2005.

[32] F. Heras, J. Larrosa, S. de Givry, and T. Schiex. 2006 and2007 max-sat evaluations: Con-

tributed instances.Journal of Satisfiability, Boolean Modeling and Computation, 4:239–250,

2008.

[33] W. Herroelen and B. De Reyck. Phase transitions in project scheduling.Journal of the Opera-

tional Research Society, 50(2), pages 148–156, 1999.

[34] A. Holland. Risk Management for Combinatorial Auctions. PhD thesis, Department of Com-

puter Science, National University of Ireland, Cork, 2005.

125

[35] A. Holland and B. O’Sullivan. Weighted super solutionsfor constraint programs.Technical

Report: No. UCC-CS-2004-12-02., 2004.

[36] A. Holland and B. O’Sullivan. Robust solutions for combinatorial auctions.In ACM Conf. on

Electronic Commerce, 2005.

[37] A. Holland and B. O’Sullivan. Truthful risk-managed combinatorial auctions. InIJCAI, pages

1315–1320, 2007.

[38] H.H. Hoos and C. Boutilier. Solving combinatorial auctions using stochastic local search. In

Procedings of AAAI’00, pages 22–29, 2000.

[39] T. Kelly. Generalized Knapsack Solvers for Multi-unitCombinatorial Auctions: Analysis and

Application to Computational Resource Allocation.LNAI, 3435:73–86, 2005.

[40] S. Krauss. Strategic negotiation in multiagent environments.MIT Press, 2001.

[41] J.S. Lee and B.K. Szymanski. An analysis and simulationof a novel auction-based pricing

mechanism for network services.Technical report, Department of Comupter Science, Rensse-

laer Polytechnic Institute, 2005.

[42] J.S. Lee and B.K. Szymanski. Auctions as a dynamic pricing mechanism for e-services. In

Service Enterprise Integration, pages 131–156. Cheng Hsu (ed.), Kluwer, New York, 2006.

[43] D. Lehman, L.I. O’Callaghan, and Y. Shoham. Truth revelation in aproximately efficient com-

binatorial auctions.Journal of the ACM, 49(5), pages 577–602, 2002.

[44] K. Leyton-Brown, M.Pearson, and Y. Shoham. Towards a universal test suite for combinatorial

auction algorithms. InACM Conference on Electronic Commerce, pages 66–76, 2000.

[45] L. Liu and M. Truszczynski. Satisfiability testing of boolean combinations of pseudo-boolean

constraints using local-search techniques.Constraints, 12(3), pages 345–369, 2007.

[46] V.M. Manquinho and J. Marques-Silva. Effective lower bounding techniques for pseudo-

boolean optimization. InIn Proc. of the conference on Design, Automation and Test in Europe,

pages 660–665. IEEE Computer Society, 2005.

[47] A. Mas-Colell, M.D. Whinston, and Green J. R.Microeconomic theory. New York: Oxford

University Press, 1995.

[48] T. Matsuo, T. Ito, R.W. Day, and T. Shintani. A robust combinatorial auction mechanism

against shill bidders.Fifth international joint conference on Autonomous agentsand multiagent

systems, pages 1183-1190, New York, NY, USA, 2006.

[49] J. McMillan. Selling spectrum rights. pages 145–162, 1994.

[50] P. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: Asynchronous distributed constraint

optimization with quality guarantees.Artificial Intelligence Journal, 161:149–180, 2005.

[51] V. Munoz and J. Murillo. Cabro: Winner determination algorithm for single-unit combinatorial

auctions. InProceeding of the 2008 conference on Artificial Intelligence Research and Devel-

opment, pages 303–312, Amsterdam, The Netherlands, The Netherlands, 2008. IOS Press.

[52] J. Murillo and B. Lopez. An empirical study of planning and scheduling interactions in the

road passenger transportation domain.Proceedings of PlanSIG 2006, pages 129–136, 2006.

126

[53] N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and G. Tack. Minizinc: Towards

a standard CP modelling language.13th International Conference on Principles and Practice

of Constraint Programming, CP’07, volume 4741 of LNCS, pages 529–543, 2007.

[54] N. Nisan and A. Ronen. Computationally feasible VCG mechanisms. InACM Conference on

Electronic Commerce, pages 242–252, 2000.

[55] N. Nisan and A. Ronen. Algorithmic mechanism design.Games and Economic Behavior, 35,

pages 166–196, 2001.

[56] T.R. Payne, E. David, N.R. Jennings, and M. Sharifi. Auction mechanisms for efficient adver-

tisement selection on public displays. InECAI, pages 285–289, 2006.

[57] Y.K. Penya and N.R. Jennings. Optimal combinatorial electricity markets.International Jour-

nal of Web Intelligence and Agent Systems 6 (1), 2008.

[58] R. Porter, A. Ronen, Y. Shoham, and M. Tennenholtz. Fault tolerant mechanism design.Arti-

ficial Intelligence, 172(15):1783-1799, 2008.

[59] S.D. Ramchurn, C. Mezzetti, A. Giovannucci, J.A. Rodriguez, R.K. Dash, and N.R. Jennings.

Trust-based mechanisms for robust and eficient task allocation in the presence of execution

uncertainty.Journal of Artificial Intelligence Research, 35:119-159, 2009.

[60] S.J. Rassenti, V.L. Smith, and R.L. Bulfin. A combinatorial auction mechanism for airport time

slot allocation.Bell Journal of Economics, (13):402–417, 1982.

[61] F. Rossi, P. Beek, and T. Walsh.Handbook of Constraint Programming (Foundations of Artifi-

cial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.

[62] M. H. Rothkopf, A. Pekec, and R. M. Harstad. Computationally manageable combinatorial

auctions. Technical Report 95-09, 19, 1995.

[63] A. Roy. Fault tolerant boolean satisfiability.Journal of Artificial Intelligence Research, 25:503-

527, 2006.

[64] M.A. Salido and F. Barber. Distributed csps by graph partitioning. Applied Mathematics and

Computation, 183:491–498, 2006.

[65] T. Sandholm. Algorithm for optimal winner determination in combinatorial auctions.Artificial

Intelligence, 135(1-2):1–54, 2002.

[66] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. CABOB: A fast optimal algorithm for combi-

natorial auctions. InIJCAI, pages 1102–1108, 2001.

[67] D. Schuurmans, F. Southey, and R. C. Holte. The exponential subgradient algorithm for heuris-

tic boolean programming.IJCAI, 2001.

[68] R. Sebastiani. Lazy satisability modulo theories.Journal on Satisfiability, Boolean Modeling

and Computation, 3(3-4):141-224, 2007.

[69] G. Tchobanoglous, F.L. Burton, and H.D. Stensel. Wastewater engineering. treatment and

reuse.Metcalf and Eddy, Inc., 4th edition, McGraw-Hill, New York, 2003.

[70] K. Tsuchida, H. Oka, Y. Ikkai, and N. Komoda. A robust scheduling method for a job shop

problem in production by using data carriers. InSMC (2), pages 1464–1468, 2004.

127

[71] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders.Journal of Finance,

16(1):8–37, 1961.

[72] R. Weigel and C. Bliek. On reformulation of constraint satisfaction problems.In Proceedings

of ECAI, pages 254–258, 1998.

[73] M.P. Wellman. A market-oriented programming environment and its application to distributed

multicommodity flow problems.Journal of Artificial Intelligence Research, 1:1–23, 1993.

[74] H.P. Williams. Model building in mathematical programming. J. Wiley and Sons, New York,

1978.

[75] M. Yokoo, Y. Sakurai, and S. Matsuraba. Robust combinatorial auction protocol against false-

name bids.Artificial Intelligence Journal, 130(2):167-181, 2001.

[76] G. Yu. On the max-min 0-1 knapsack problem with robust optimization applications.Opera-

tions Research, 44:407-415, 1996.

	Contents

	Abstract

	Resum

	Acknowledgements

	List of figures

	List of tables

	List of acronyms and abbreviations

	1. Introduction

	1.1 Motivations

	1.2 The Topic of this research

	1.3 Objectives

	1.4 Statement of the thesis

	1.5 Publications

	1.6 Awards

	1.7 Outline of the thesis

	2. Background

	2.1 Resource allocation

	2.2 Auctions

	2.3 Combinatorial auctions

	2.4 Robustness

	2.5 Robustness in auctions

	2.6 Summary

	3. Sensitivity analysis

	3.1 Introduction

	3.2 Reallocation and full-reparability

	3.3 repair size analysis

	3.4 Summary

	4. Robustness of resource availability

	4.1 Schematic view

	4.2 Auctions as partial weighted MAX-SAT problems

	4.3 Robust auctions as partial weighted MAX-SMT problems

	4.4 Example

	4.5 Other robustness notions

	4.6 Experimentation

	4.7 Summary

	5. Flexible robustness

	5.1 Adding flexibility

	5.2 Formalization of flexibility

	5.3 Experimentation

	5.4 Summary

	6. Incentive compatibility

	6.1 incentive compatible mechanisms

	6.2 Non-incentive compatibility with restrictes robustness

	6.3 Incentive compatibility in the general case

	6.4 Summary

	7. Robustness for recurrent auctions

	7.1 Recurrent auctions

	7.2 Case example: the waste water treatment plant problem

	7.3 Learning agents behavior

	7.4 Summary

	8. Conclusions and future work

	8.1 Summary

	8.2 Contributions

	8.3 Future work

	Appendices

	Appendix A: Benchmarks with the WWTP problem

	Appendix B: Winner determination algorithm for single-unit combinatorial auctions

	Bibliography

