e

=

Universitat de Girona

ROBUSTNESS ON RESOURCE ALLOCATION
PROBLEMS

Victor MUNOZ SOLA

ISBN: 978-84-694-2594-7
Diposit legal: GI1-372-201 |
http://hdl.handle.net/10803/7753

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a I'acceptacié de les segiients
condicions d'Us: La difusié d’aquesta tesi per mitja del servei TDX ha estat autoritzada pels titulars dels
drets de propietat intel-lectual Unicament per a usos privats emmarcats en activitats d’investigacio i
docéncia. No s’autoritza la seva reproduccié amb finalitats de lucre ni la seva difusié i posada a
disposicié des d’un lloc ali¢ al servei TDX. No s’autoritza la presentacié del seu contingut en una
finestra o marc ali¢ a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentaci6 de la
tesi com als seus continguts. En la utilitzacié o cita de parts de la tesi és obligat indicar el nom de la
persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptacion de las siguientes
condiciones de uso: La difusion de esta tesis por medio del servicio TDR sido autorizada por los
titulares de los derechos de propiedad intelectual Unicamente para usos privados enmarcados en
actividades de investigacion y docencia. No se autoriza su reproducciéon con finalidades de lucro ni su
difusién y puesta a disposicion desde un sitio ajeno al servicio TDR. No se autoriza la presentacion de su
contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al
resumen de presentacion de la tesis como a sus contenidos. En la utilizaciéon o cita de partes de la tesis
es obligado indicar el nombre de la persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions: Spreading
this thesis by the TDX service has been authorized by the titular of the intellectual property rights only
for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading and availability from a site foreign to the TDX service. Introducing its
content in a window or frame foreign to the TDX service is not authorized (framing). This rights affect
to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of
the thesis it’s obliged to indicate the name of the author.

http://www.tdx.cat/TDX-xxxxxxxxxx/
http://www.tesisenxarxa.net/
http://www.tesisenred.net/
http://www.tesisenxarxa.net/

UNIVERSITAT DE GIRONA

ESCOLA POLITECNICA SUPERIOR

PhD Thesis

Robustness in Resource Allocation
Problems

by
Victor Mu oz i Sok

Advisors
Dr. Didac Busquets i Font

Thesis submitted in partial fulfilment of the requiremefasthe degree of Doctor of Philosophy (Major
subject: Computer Science) at the University of Girona

2010

Robustness in Resource Allocation
Problems

A thesis submitted in partial fulfilment of the requiremefmisthe degree of Doctor of Philosophy
at the Universitat de Girona

Author:

Victor Mufioz i Sola

Advisor:

Dr. Didac Busquets i Font

Programa de Doctorat: Tecnologies de la Informacio

Departament d’Electronica, Informatica i Automatica

Contents

Abstract

Resum

Acknowledgements

List of Figures

List of Tables

List of Acronyms and Abbreviations

1 Introduction
1.1 Motivat

IONS . . o o e

1.2 TheTopicofthisResearch o ..
1.3 Objectives e
1.4 StatementoftheThesis e
1.5 Publications e

15.1

1.5.2
1.6 Awards
1.7 Outline

2 Background
2.1 Resour

Journals e e
Articlesinconferences e

oftheThesis e

ceAllocation. e e e

2.2 AUCLIONS e e

221
2.2.2
223

Auction Mechanisms Classification
AuctionPhases e
Incentive Compatibility

2.3 Combinatorial AUCLIONS e e e e e

231
2.3.2
2.3.3
234
235

Example
The Winner Determination Problem
Experiments with Combinatorial Auctions
Optimal Algorithms for Combinatorial Auctions
Summary of combinatorial auctionssolvers

2.4 Robustness e

24.1
242
243
244
245
24.6

Propositional satisfiability
Satisfiability Modulo Theories
Pseudo-Boolean
Supermodels
SuperSolutions
Weighted Super Solutions L o

2.5 Robustnessin AuCtions e e
2.6 SUMMANY o e

vii

Xi

Xiv

XV

XVii

Sensitivity Analysis

3.1
3.2
3.3
3.4

Introduction
Reallocation and Full-reparability
Repair Size Analysis
SUMMAry

Robustness of Resource Availability

4.1
4.2
4.3

4.4

4.5
4.6
4.7

Schematic View e e

Auctions as partial weighted Max-SAT problems
Robust auctions as partial weighted Max-SMT

problems
4.3.1 Robust auctions as robust partial weighted Max-SAblems
4.3.2 Robust partial weighted Max-SAT as partial weighteakAEMT

4.3.3 Robustness with cardinality constraints

Example
4.4,1 Pseudo-Boolean Formulation.

Otherrobustnessnotions
Experimentation.
SUMMAry e

Flexible Robustness

51
5.2
53
54

Adding Flexibility

Formalization of Flexibility
Experimentation.
SUMMAry

Incentive Compatibility

6.1
6.2
6.3

6.4

Incentive Compatible Mechanisms
Non-Incentive Compatibility with Restricted Robustse.

Incentive Compatibility inthe GeneralCase
6.3.1 Counter-exampleModel
6.3.2 Counter-example lterative Search
SUMMAry

Robustness for Recurrent Auctions

7.1
7.2
7.3

7.4

Recurrent Auctions
Case Example: The Waste Water Treatment Plant Problem
Learning Agents Behavior,
731 Trustmodel
7.3.2 Riskfunction L
7.3.3 Robustsolution generation
7.3.4 Experimentation
SUMMArY . . . e e e e e e

Conclusions and Future Work

8.1
8.2
8.3

SUMMArY . . . e e e e e e
Contributions e
Future Work e

35
35
36
38
14

65

65
65
67

77
77
77
79
79
81

...... 38

8.3.1 RobustnessNotions. 97

8.3.2 QuantifiedCOP e 8

8.3.3 Scalability a8

8.3.4 Search Algorithms 98

8.3.5 Incentive-Compatibility 98

8.3.6 RecurrentAuctions 99
Appendices 101
A Benchmarks with the WWTP Problem 103
Al The WWTPP Problem 103
A.2 Modelingthe WWTPP withSMT 104
A2.1 Constants 041

A.2.2 Variables 051

A23 Constraints 105

A3 IPmodeling e 106
A4 Benchmarking. 107
A5 Comparison with Constraint Programming 108
A.6 A different approach for Constraint Programming110
A7 SUMMANY . . . o e e e e e e e 121
B Winner Determination Algorithm for Single-unit Combinat orial Auctions 113
B.1 Introduction e e 113
B.2 Notation, 113
B.3 TheAlgorithm 114
B.3.1 Firstphase: Pre-processing i e 114

B.3.2 Second phase: Upper and Lower Bounding 117

B.3.3 Thirdphase: Search 118

B.4 Results. 119
B.5 Conclusions 120
Bibliography 123

Vii

Abstract

Real world resource allocation problems, where a set obtedth different requirements have to be
assigned a set of resources, usually include uncertathé¢san produce changes in the data of the
problem. For instance, in scheduling the duration or the stae of the tasks could change (due
to delays and tasks taking more time than expected). Them®gek may cause difficulties in the
applicability of the solution. Research in approachesdhasider data uncertainty while looking for
a solution is gaining importance recently, due to the wideafssuch problems in many domains.

Solutions that are able to overcome (up to a given degregjydkgible changes that can occur in the
environment are callesbbust solutions Auctions are a typical application of resource allocation
problems, and uncertainty in this scenario may cause sontieecfuctioned resources to be not
available.

This thesis is focused in finding robust solutions againsbuece unavailability for auctions. Our
notion of robustness is based on resources that becomeilahé@nce an allocation of the auc-
tioned items has been found. We begin with an extensive suithythe aim of quantifying the
effects of unavailable resources in the revenue of the @ucfrhen, we mathematically formalize
this concept of robustness and propose an approach for disdich robust solutions in combina-
torial auctions. In our approach, we first extend previouskw@n encoding auctions as weighted
Max-SAT formulas. Particularly, our approach is sustaiimegdropositional logic and that in turn
allows the model to be able to be applied in any Boolean foarmmging auctions a particular case.
We then present a mechanism to add flexibility to robust swiatf based on supermodels for the
Boolean satisfiability framework (SAT). Our approach is it in the sense that it allows to easily
set the desired degree between optimality and robustneaddition, we study the balance between
optimality and robustness of the solutions and discusseéganing that could be made in order to
choose the desired trade-off between optimality and rolesst

We also analyze the strategy-proofness of our approachder do force the participants to express
their true valuations, and therefore avoid possible mdatmns in the prices of the auction. We
will show that although our robustness mechanism is notritiee compatible in a restricted case
where only a subset of the resources can fail (the breakadess not include all the items), for the
generic case the same proof does not hold and furthermoreavélp two procedures to support
the idea that our robust approach is actually incentive ciible in practical cases.

Resum

Els problemes d’assignacio de recursos realistes, on ojurtode tasques amb diferents carac-
teristiques han d’ésser assignhades a un conjunt de os¢ungrmalment incorporen incerteses que
poden produir canvis en les dades del problema. Per exeerpguns problemes de planificacio,
la durada o el temps inicial de les tasques pot canviar (deggtards o tasques que triguen més del
previst). Aquests canvis poden dificultar I'aplicabilith la soluci6. La recerca en técniques que
consideren la incertesa alhora de cercar les solucioagaatyantimportancia darrerament gracies
a I'amplia utilitzacid d’aquest tipus de problemes enltiples dominis.

Les solucions que siguin capaces de superar (dins d'uiits)iaels possibles canvis en I'entorn sbn
anomenadesolucions robusted es subhastes son una aplicacio tipica dels problemsatisfaccio
de restriccions, i la incertesa en aquest escenari potclaisalisponibilitat d'alguns dels recursos
subhastats.

Aquesta tesi es centra en trobar solucions robustes ensteblen els recursos poden passar a ser
no disponibles. La nostra nocid de robustesa es basa ersosague esdevenen indisponibles un
cop aquests ja han estat subhastats i assignats. Comendemmagstudi que té com a objectiu
quantificar I'efecte que els recursos indisponibles produreen els ingressos de la subhasta. En
la nostra aproximacio, primer estenem treballs anteperscodificar subhastes en formules del
tipus “weighted Max-SAT". Particularment, la nostra apmacio es basa en logica proposicional i
aquest fet permet al model ser aplicable a qualsevol f@mableana, essent les subhastes només
un cas particular. També presentem un mecanisme per a fiésgpilitat a les solucions robustes
basat en supermodels, en el marc de la satisfactibilitateaoa (SAT). La nostra aproximaci6 és
flexible en el sentit de que permet establir facilment eltplesitjat entre robustesa i optimalitat.
Addicionalment, estudiem el balancg entre la optimalitatiobustesa de les solucions i discutim el
raonament que es podria fer per tal d’escollir el punt mésgat entre optimalitat i robustesa.

També analitzem la manipulabilitat de la nostra aproxithamb I'objectiu de forcar als participants
a informar de les seves valuacions reals, i aixi evitar gsmidueixin els preus de la subhasta pel
seu propi benefici. Demostrarem que tot i que el nostre memende robustesa no impedeix la
manipulabilitat en un cas restringit on només un subcdmjals recursos poden fallar (el conjunt de
trencament no inclou tots els recursos), la prova no es peiée® al cas generic, i de fet presentem
dos procediments que reforcen el fet que la nostra aproxnagcrobustesa no és manipulable en
casos practics.

Xi

Acknowledgements

I would like to give thanks to all the people that has helpedioméng my PhD. First of all, | want to
thank my supervisor Didac Busquets, who has guided my resaad revised all my work. He has
been always available whenever | have needed his help. ¢l camilhave written this thesis without
his priceless help. Secondly, to Beatriz Lopez, who was npgsvisor only during my first year of
PhD, but has continued always encouraging my work and piryyigseful comments.

| also wish to express my gratitude for the support of the efddntrol Engineering and Intelligent
Systems) research group, and to all the people working tlsprecially to my PhD mate Javier
Murillo. All of them have contributed to make these yeargdret

My most sincere appreciation to the Cork Constraint ContprniaCentre (4C) at the University of
Cork, Ireland. Specially to Dr. Alan Holland, who accepted as a research visitor and helped in
many aspects of my work.

Miquel Bofill and Mateu Villaret also deserve special thafdsintroducing me to SAT and SMT,
and specially, for their inestimable help in the mathenatparts of this thesis (proofs, theorems,
lemmas, etc.).

This thesis has been done with the support of the Commissfoné&niversities and Research of
the Department of Innovation, Universities and Company eh@&alitat of Catalonia and of the
European Social Fund, with the support of the University ab@a BR Grant program, with the
support of Spanish Ministry of Science and Innovation MISINroject SUR0S (TIN2008-04547)
and Desarrollo y aplicacion de técnicas de resolucigordblemas de scheduling en entornos multi-
agente (TIN2004-06354-C02-02).

Xiii

List of Figures

2.1
2.2
2.3
2.4

2.5

3.1
3.2

3.3

3.4

3.5

3.6

4.1
4.2
4.3

4.4

51
52
53
54

6.1
6.2

7.1
7.2
7.3
7.4

B.1

B.2

Auctions classification 14
Auctionphases. 16
Partitionintobins. e 22
Branch on items (left) versus branch on bids (right) falation. Figure extracted
from[16]. e 24
Example of (1,0)-super solution reformulationforCR. 31
Example of dominated bids. e 36

Reallocation results. (a) Arbitrary, (b) Arbitrary tvitut dominated bids, (c) Match-
ing, (d) Matching without dominated bids, (e) Paths, (f)MBatvithout dominated

Reallocation results. (a) Regions, (b) Regions witltmrhinated bids, (c) L7, (d)
L7 withoutdominated bids. oL 39
Full-reparability results. (a) Arbitrary, (b) Arbitpawithout dominated bids, (c)
Matching, (d) Matching without dominated bids, (e) PatifisPaths without domi-

natedbids. 04
Full-Reparability results. (a) Regions, (b) Regionthatit dominated bids, (c) L7,

(d) L7 withoutdominated bids. 41
Repair size analysis. (a) Without dominated bids, (thWominated bids. 41
Schematicview. e e 44
Optimal solution. Winning bids are those encircled. C e . 55

Repair solution when godtiturns unavailable. Proh|b|t|on signs denote |n|t|aIIy
winning bids which are changed to losers. Dashed circlestéarew winning bids. . 56

Optimal robust solution. 56
Optimality varyingpands. 68
Robustness varyifigands. L 68
Optimality varyinghanda. 74
Robustness varyifiganda. 74
Modifiedexample. 78
Iterative procedure for finding a counter-example. 82
Water treatmentsystem e e 86
Trustmodel. 89
Risk attitude function: (a) averse, (b) proclive. 89
Disobey probability function. e 93

Examples of (a) dominated iten{), (b) solution bid §,), (c) dominated and (d)
2-dominated bids. 115
Left: Example of pseudo-dominated big {s pseudo-dominated). Right: Example

of compatibility-dominated bidi; is compatibility-dominated by,). 115

Xiv

B.3 Pseudo-code algorithm of iCabro procedure
B.4 Left: Global comparative. Right: Comparative over idgttions

XV

List of Tables

2.1
2.2
2.3

4.1
4.2
4.3

51

5.2

53

54

6.1

7.1

Al
A.2
A.3

B.1

Combinatorial auctionexample e 18
Auction solverscomparative. e 26
Propositional satisfiability variants. Satisfied cksiare shown in boldface. 28
Experimentation results with Yices. oo L 60
Experimentation results with BSOLOand SCIP. 61
Experimentation results with CPLEXand GLPK. 62

Experimentation results: averages of 50 auction icssof 15 bids for each con-

figuration. L 96
Experimentation results: averages of 50 auction isof 20 bids for each con-
figuration. 07
Experimentation results: averages of 50 auction icssof 25 bids for each con-
figuration. 17
Experimentation results: averages of 50 auction isof 30 bids for each con-
figuration. 27
Combinatorial auction example of [37]. 78
Simulationresults. e e 92
SMTVS. IP . . e oa
SMTVS.CP . . . e e 091
Cumulativemodeling e 111

Finished auctionsK), not finished auctions(F') and percentage of finished auc-
tions %) beforethetimeout. 120

XVii

List of Acronyms and Abbreviations

CA: Combinatorial Auction

CABOB : Combinatorial Auction Branch On Bids
CASS : Combinatorial Auction Structured Search
CATS : Combinatorial Auctions Test Suite

CNF : Conjunctive Normal Form

COP : Constraint Optimization Problem

CP : Constraint Programming

CSP : Constraint Satisfaction Problem

DCOP : Distributed Constraint Optimization Problem
DPSB : Discriminatory Price Sealed Bid

FPSB : First Price Sealed Bid

GLB : Global Lower Bound

GLPK: Gnu Linear Programming Kit

IDA : Iterative Deeping A*

ILP : Integer Linear Programming

LIA: Linear Integer Arithmetic

LP : Linear Programming

LRA: Linear Real Arithmetic

MIP : Mixed Integer Programming

MUCA : Multi-Unit Combinatorial Auction

NP : Non-deterministic Polynomial-Time

PB : Pseudo-Boolean

QF : Quantifier Free

RAP : Resource Allocation Problem

SAT : Satisfiability

SMT : SAT Modulo Theories

SPSB : Second Price Sealed Bid

XViii

SS: Super Solutions

UPSB : Uniform Price Sealed Bid

VCG : Vickrey Clarke Groves (Generalized Vickrey Auction)
WDP : Winner Determination Problem

WSS : Weighted Super Solutions

WWWTPP : Waste Water Treatment Plant Problem

CHAPTER1
Introduction

This chapter gives a brief introduction to the topics disadin this thesis. First, an introduction of
the weaknesses in resource allocation problems is predémterder to motivate the development of
this research. After that, the concrete topic of this ditst#on is accurately delimitated. Then, a set
of objectives are established in order to evaluate the dqualithis work. This chapter ends with the
list of publications that have come out during the progrelsthis research and a description of the
structure of this report.

1.1 MOTIVATIONS

Researchers in mathematical optimization have been ttatlyrconcerned in developing and im-
proving algorithms for particularly hard problems where thputs (the data that defines the prob-
lem) are known and static. In real world situations, howesech data is not so precisely known;
instead, there is usually some degree of uncertainty thgtahange the values of some variables
in some circumstances. These changes in the data may cdficdtdis in the applicability of the
solutions found with the initial values.

In resource allocation problems, where a set of tasks wifardnt requirements have to be assigned
a set of resources, uncertainty appears as unpredictabiesehat may change both the characteris-
tics of the resources to allocate and the requirements dasies to be performed. In this situation
it is possible that even a very small change in the inputs@fpttoblem causes the optimal solution
to become completely unfeasible. For instance, a taskdakiittle more time than expected to be
performed, could cause the following task to not being pentmd at its scheduled time, which could
in turn cause a collapse of the whole schedule. This weakoggmated by the inherent uncertainty
that typically accompanies real world problems, motivalesresearch in approaches that consider
data uncertainty while looking for a solution, so that théaoted solution is able to overcome (up
to a given degree) possible changes that may occur, i.ea ibisust solution

Clearly, the price of robustness is optimality [5], sincagelly the optimal solution to a problem is
not robust, and consequently most of the robust solutioms@an-optimal. This fact turns the prob-
lem into a multi-objective one, where the two objectivedb(rstness and optimality) are conflicting.
In some systems that require providing functionality inexde situations, robust solutions are usu-
ally preferred since the loss of optimality can be overcoméhle increase in applicability of those
robust solutions. However, in the domains where the benefiedds directly on the optimality, ro-
bustness is usually sacrificed. In general, the desirecedagfrrobustness needs to be identified for
each case after a thorough analysis.

Although we all agree that robustness is a desired qualitpany practical applications, it is cer-

tainly a quite vague term and it is therefore not easy to yypifch robustness on the whole for any
possible optimization problem involving uncertainty. tiesd, we first need a proper and concise
definition of the following concepts:

e the resource allocation problem itself,
¢ the implications of the uncertainty in its data, and

e the exact meaning of a robust solution in this setting

In order to deal with the first point, in this thesis we adopttaans [49] as the means to define the
resource allocation problem. Auctions are an ancient enacad mechanism to sell a set of items
to a group of buyers, where the buyers express their interdse items by sending bids, and the
auction is used both to decide the winners of the items angribe of the items. In the last years

auctions have been increasingly used to deal with resollooaton problems, since they enable an
efficient distribution of resources amongst the buyers. éetian is simply, but also strictly, defined

with a set of items to sell (resources), and a set of bids gmgethem at a given price. This strict

definition gives a concise and proper modeling of resouloeation problems.

In this context, the implications of data uncertainty in aicteon can be straightforwardly defined
as either changes in the resources or in the bids. A changeesoarce would imply that either
the resource disappears or its capacity decrégsethe case of multi-unit resources). On the other
hand, as the bids are composed by the (set of) requestedees@nd its price, a change in a bid
could be an alteration of any of these values. Some reseaarbbee also considered another kind
of change concerning the bids: the bid withdrawal [36], vereervinning bid reneges on it and does
not neither want the item/s nor paying the agreed quantibys fact could cause an unacceptable
loss in revenue for the auctioneer if some “critical” wingioid is withdrawn, and therefore a robust
solution guaranteeing that possible bid withdrawals caedsily repaired with a restricted loss in
revenue is desired.

Regarding the exact meaning of a robust solution, it is putfined as its ability to absorb the
changes of the environment caused by uncertainties. Tlilis/atan be mainly understood from
two points of view:

o if the solution remains valid when breakages happen

e if the solution is easilyeparablewhen a breakage occurs

In terms of an auction, a robust solution is one that the sefirmfiing bids does not cause problems
(loss of revenue, spare items, etc.) to the auctioneer whexpected changes happen.

1.2 THE TOPIC OF THISRESEARCH

In this research we focus mainly in a concrete class of anstibat are known as combinatorial
auctions [16], which are a generalization of auctions whkeebidders are able to place bids on

Lincreases in the resources availability are naturally onsitlered as they do not negatively affect the applicgitilithe
solution.

bundles of items rather than just on individual items. Tréseralization is needed in order to be
able to represent the kind of resource allocation problémiswe are interested in.

As we will see in the following chapter, there has alreadynb&@me work in robustness for com-
binatorial auctions, mostly focused in changes in the baéag] concretely in the problem of bid
withdrawal [36]. Therefore, in our work we will deal with at@r kind of uncertainty that may
affect an auction, that is, changes in the resources. Mareretely we will consider the resource
unavailability problem, which happens when a resource inesounavailable once the auction has
been solved (the winning bids have been selected and anedunat before the resources have been
given to the winning bidders. Regarding the robustness@stiutions, we give a definition of a
robust solution that is based on the maximum number of claimgthe environment (caused by
inherent uncertainties) and the maximum size of the refdirs definition allows us to cover the
two previous definitions of robust solutions, given thatisgta maximum size of the repair of zero
actually means that the solution must remain valid when gasim the environment happen, while
any size greater than zero enables a repair.

As far as we know, this concept of robustness considerirayres unavailability based on repairable
solutions has not been studied before. However, it is naleeit is an insignificant problem, but
because typical applications of auctions do not have a I@argsaction phase (the time in which the
items are delivered to the agents) and, therefore, un@aitasources are simply not auctioned.
Nowadays, auctions are being applied to a wide range of redtwlomains, some of them having
a long transaction phase, where some of the resources nmaynavailable after an allocation has
been found. This thesis will be focused on the analysis amdldement of techniques for finding
robust solutions for such resource allocation problems.

As an example, consider a (combinatorial) auction desidoedssigning rooms for simultaneous
conferences. In the building where the conferences area#ld, there are several available rooms
with different characteristics, such as total capacitgijlability of projector, air conditioning, chair
style, etc. Each conference organizer would bid for (pdgsitltiple) combinations of rooms,
according to the conference’s needs (number of participanmber of parallel sessions, conference
requirements, etc.). The auction would be executed a feksueefore the conferences start because
some preparatives would be made in the rooms, and also tfiereane programs should be designed
and printed with the rooms’ location information. Nevel#ss, right before the actual use of the
rooms, or even worse, during the conferences, unexpectadserould happen (as for example a
projector in a room that is broken, a room that needs someterance or repair works, not to
mention fires, floods or any other disaster), causing the ailadoility of some rooms. In such a
case, it would be reasonable to make as few changes as passibé rooms assignments, instead
of finding a new (maybe completely different) allocationoirder to minimize the inconveniences
caused by other room reassignments. Therefore if a roblusisois searched in the first assignment
(instead of an optimal), such solution would be ready to miré the effects of unforseen events,
maybe only requiring few changes to the organizers and tmidiag possible conflicts.

There are many other domains where the problem of resouneébecome unavailable after the
auction has been solved comes out, as for example the assigrohrooms in a hotel to client
demands, the allocation of sportive events in sport congslethe placing of vacation days for the
employees in a company, etc. Therefore, robustness fouresanavailability is indeed applicable
to many domains today, and in the future will probably be aidieg point in many critical real

world applications.

In summary, in this thesis we will analyze the up till now upkxed problem of resource unavail-
ability in combinatorial auctions with repairable soluteo We will first quantify the effects that
resources becoming unavailable cause in the revenue ofitiem, in a set of real world scenarios.
We will mathematically formalize this concept of robusthesid propose an approach for finding
such robust solutions in combinatorial auctions. Our agginas flexible in the sense that it allows
to easily set the desired degree between optimality andstobss. Particularly, our approach is
sustained in propositional logic [9] and that in turn allaive model to be able to be applied in any
Boolean formula, being auctions a particular case.

1.3 OBJECTIVES

The objectives that we set to this thesis can be grouped imfaia groups:

the guantification of the negative effects that resourcatstibcome unavailable in combinato-
rial auctions produce to the auctioneer

¢ the design of a mechanism to incorporate robustness basegainsolutions in order to avoid
this problem

¢ the adaptation of that mechanism to add flexibility in theiiohs so that the desired degree
between optimality and robustness can be easily set

¢ the study of the strategy proofness of the proposed meahanis

¢ the evaluation of the results obtained using the proposedats, varying the different avail-
able parameters; and an analysis of the trade-off betwetmaljgy and robustness of the
solutions

The problem of resource unavailability in combinatoriattaans has not been studied before. The
reason for that is because current applications domainsrabmatorial auctions did not have to
deal with this problem, but now that combinatorial aucti@ans becoming more popular and are
being applied to domains with long transaction phasespittiblem cannot be neglected any more.
The first objective of this research is to measure the coresemps of such problem which will
raise the necessity of incorporating robustness. Extersialysis are performed in different auction
distributions modeling various real world scenarios, idesto quantify the implications of resources
that become unavailable after a solution to the combiratatiction has been found in a wide range
of applications.

In the related work chapter, we will see that supermodel$ §28 super solutions [30] have been
successfully applied to add robustness in propositiortadfiebility (SAT) and constraint program-
ming (CP) respectively. We also use them for our approacberming resource unavailability. Thus,
the second objective of this thesis consists in the adaptafi the existing supermodels (for SAT)
to our notion of robustness. For this purpose we will extegehéralize) the existing encoding of
a combinatorial auction to a SAT formula, so that it will bdeato model the two definitions of
robustness (solutions that either remain valid or areyeesjlarable).

Although the generalized encoding for finding super sohgiwill allow us to find robust solutions to
combinatorial auctions concerning resource unavaitgbilie will show that such encoding is quite
strict as it may not produce any solution in some particulegktrictive instances where no com-
pletely robust solution exists. Therefore, the third objecof this work is to incorporate flexibility
to the robustness mechanism with the aim of being able toymedolutions in adverse situations,
furthermore allowing to define the desired balance poinvbeh optimality and robustness and thus,
converting it into a more reliable tool.

An auction mechanism is said to be strategy-proof if it neesrards the participants that do not
inform their true preferences. This is the reason why in ntaay applications only strategy-proof

mechanisms are used. The fourth objective of this thesidwito analyze the strategy-proofness of
the proposed robustness mechanism.

Finally, our approaches will be evaluated. We will perforxperiments in a wide range of instances
of combinatorial auctions generated with a tool that leteegswith real-world-like instances. With
the obtained results, we will analyze in detail the solwitmsee if the problem of resource unavail-
ability is effectively solved with the proposed robustnesshanism and how it affects the goodness
of the solutions. Furthermore, we will study the trade-affween optimality and robustness of the
solutions and discuss the reasoning that could be made @l aser in order to choose the desired
balance point.

1.4 STATEMENT OF THE THESIS

The thesis can be stated as follows:

In combinatorial auctions resources that become unavéglalfter a solution has been found can
cause large losses in revenue for the auctioneer. Robustieos can be defined based on the
maximum number of breaks (resources that become unawgjlalibwed, the maximum size of the
repair, and the minimum acceptable revenue for the aucdoireany case. It is also possible for

this robustness to be flexible, allowing to easily set th@e@balance point between optimality and

robustness.

1.5 PUBLICATIONS

The work developed in the last four years within the eXiT groat the University of Girona has
led to several publications in the field of Artificial InteJénce. Although some of them have not
specifically focused on robustness, they constitute a#tdi of the acquired knowledge concerning
related areas such as resource allocation problems, aonisttisfaction and optimization problems,
combinatorial auctions, fairness, trust & reputation ara@ppsitional satisfiability.

The list of publications related to this research that haenipublished as either articles in journals
or in conference proceedings are the following (ordereddary

2Control Engineering and Intelligent Systems Group, hegit.udg.edu

1.5.1 DURNALS

e Javier Murillo, Beatriz LépezYictor Mu fioz, Didac Busquets. “Fairness in Recurrent Auc-
tions With Competing Markets and Supply FluctuationGdmputational Intelligence, 2010
In press.

e Javier Murillo, Victor Mu fioz, Didac Busquets, Beatriz Lopez. “Schedule Coordination
through Egalitarian Recurrent Multi-unit Combinatorialéions”. Applied Intelligence, Springer,
2009 Online version available.

e Beatriz Lopezyictor Mu oz, Javier Murillo, Federico Barber, Miguel ngel Salido, Mset-
rat Abril, Mariamar Cervantes, Luis F. Caro, Mateu Villar8Experimental Analysis of Op-
timization Techniques on the Road Passenger Transportatiablem”. Engineering Appli-
cation of Artificial Intelligence 22, pp. 374-388, (Ed. Blg@r Science), ISSN: 0952-1976,
2009

e Victor Mu floz, Javier Murillo. “Agent UNO: Winner in the 2nd Spanish ARTmpetition”.
Inteligencia Artificial, Revista Iberoamerica de Inteligaa Artificial, ISSN 1137-3601, N. 39,
pp. 19-27, 2008

1.5.2 ARTICLES IN CONFERENCES

¢ Victor Mu floz, Didac Busquets. “Balancing Optimality and Robustned3ésource Alloca-
tion Problems”.Nineteenth European conference on Artificial Intellige&€@Al 2010. Lis-
bon, Portugal. August 16-20, 2010

e Victor Mu floz, Javier Murillo, Beatriz Lopez, Didac Busquets. “Straés for Exploiting
Trust Models in Competitive Multiagent SystemsSeventh German conference on Multi-
Agent System Technologies MATES 2009. Hamburg, Germaptengzer 9-11, 2009

e Javier Murillo, Victor Mu fioz, Beatriz Lopez, Didac Busquets. “Developing Stratedies
the ART Domain”. Conferencia de la Asocian Espdiola para la Inteligencia Artificial
(CAEPIA). Sevilla, Spain, November 9-13, 2009

e Javier Murillo, Victor Mu fioz, Beatriz Lopez, Didac Busquets. “A Fair Mechanism for Re-
current Multi-unit Auctions”.Sixth German conference on Multi-Agent System Technalogie
MATES 2008, pp 147-158. Lecture Notes in Computer Sciendem¥ 5244/2008. Septem-
ber 2008. Kaiserslautern, Germany. September 23-26,.2008

e Victor Mu fioz, Didac Busquets. “Robustness in Recurrent Auctions fasoRee Allo-
cation”. Artificial Intelligence Research and Development. (Praitegs of 11th Catalan
Congress on Atrtificial Intelligence CCIA 08, pp. 70-79). IP@ss. 2008

e Victor Mu fioz, Javier Murillo. “CABRO: Winner Determination Algorithnof Single-unit
Combinatorial Auctions”Artificial Intelligence Research and Development. (Pratiegs of
11th Catalan Congress on Artificial Intelligence CCIA 08, 8p3-312). 10S Press. 2008

¢ Victor Mu fioz, Didac Busquets. “Managing Risk in Recurrent AuctionsRobust Resource
Allocation”. Proceedings of the 4th European Starting Al Researcher Sgimm STAIRS
2008 (in ECAI), pp 140-150. Patras, Greece. July 21-25, 2008

Javier Murillo, Didac Busquets, Jordi Dalmau, Beatrizoka, Victor Mu fioz. “Improving
Waste Water Treatment Quality Through an Auction-baseddgament of DischargesPro-
ceedings of the 4th International Congress on Environméntalelling and Software IEMSs
2008), pp 1370-1377. Barcelona, Catalonia, Spain. July072008. ISBN: 978-84-7653-
074-Q

Victor Mu fioz, Javier Murillo, Didac Busquets and Beatriz Lopez. “lioying Water Quality
by Coordinating Industries Schedules and Treatment PlaABMAS Workshop on Coordi-
nating Agent Plans and Schedules (CAPS). Honolulu, HaW&A. May 16-18, 2007

Javier Murillo, Victor Mu fioz, Beatriz Lépez and Didac Busquets. “Dynamic configurable
auctions for coordinating industrial waste dischargeisifth German conference on Multi-
Agent System Technologies MATES. Leipzig, Germany. Septém26, 2007.

Javier Murillo, Victor Mu floz, Didac Busquets and Beatriz Lopez. “Coordinating Agents
Schedules through Auction MechanismBlanning, Scheduling and Constraint Satisfaction,
The Conference of the Spanish Association for Artificialligence (CAEPIA). Salamanca,
Spain. November 12-16, 2007

Javier Murillo andVictor Mu fioz. “Agent UNO: Winner in the 2007 Spanish ART Testbed
competition”. Workshop on Competitive agents in Agent Reputation and Tastbed, The
Conference of the Spanish Association for Artificial Ingelhce (CAEPIA). Salamanca, Spain.
November 12-16, 2007

Josep Lluis de la Rosa, Ricardo Mollet, Miquel MontanemiebRuiz andVictor Mu fioz.
“Kalman Filters to Generate Customer Behavior Alarn#stificial Intelligence Research and
Development, 10th Catalan Congress on Atrtificial Inteltige CCIA 07. Sant Jide Loria,
Andorra. October 25-26, 2007

Victor Mu fioz, Miguel Montaner and Josep Lluis de la Rosa. “Seat Allacafor Massive
Events Based on Region Growing Techniquestificial Intelligence Research and Develop-
ment, 9th Catalan Congress on Atrtificial Intelligence CCI\ ®erpignan, France. October
26-27, 2006

1.6 AWARDS

While doing this research, we have participated in some@natiand international competitions and
presented parts of this work to various events with sucaesssults. The following is the list of the
received awards:

Best Paper Award in iEMSs 2008 for the paper “Improving Wa&tger Treatment Quality
Through an Auction-based Management of Discharges”.

Best Student Paper Award in MATES 2008 for the paper “A FaicMaism for Recurrent
Multi-unit Auctions”.

Catalan Association for Artificial Intelligence (ACIA) sewd prize for the Master Thesis work
2009. Project title: Robust Combinatorial Auctions for Baxe Allocation.

Winner in the 2008 International ART (Agent Reputation andst) Testbed Competition.
Estoril, Portugal. May 12-16, 2008.

e 7th classified in the 2007 International ART (Agent Repotatnd Trust) Testbed Competi-
tion. Honolulu, Hawaii, USA. May 14-18, 2007.

e Winner in the Second Spanish ART (Agent Reputation and Yitedtbed Competition. Va-
lencia, Spain. March 26-27, 2007.

e 2006 Catalan Association for Artificial Intelligence (ACiAward to the best final career
project. Project title: Allocation algorithm for distriing attendants at F1 Grands Prix.

1.7 QUTLINE OF THE THESIS

This document is structured in 8 chapters, followed by twpesqalices, and a bibliography section
at the end:

e Chapter 1, Introduction. This first chapter has introduced the concept of robustrersef
source allocation problems, established the topics tleeg@ing to be studied in this research,
and delimited the objectives of this thesis.

e Chapter 2, Background. In the second chapter, related work on robustness in geaedal
concretely for combinatorial auctions is reviewed and akbemund for the areas that shall
be used in the rest of the document is given, namely, res@llia@eation problems, auctions,
propositional satisfiability (SAT), SAT modulo theoried{¥), supermodels, super solutions
and weighted super solutions.

e Chapter 3, Sensitivity Analysis. The third chapter performs a “sensitivity analysis” of the
solutions in several combinatorial auctions instances@teioto see the effects of resources
becoming unavailable in the revenue of the auctioneer. diddysis provides a strong moti-
vation for our work.

e Chapter 4, Robustness against Resource AvailabilityThis chapter formalizes the concept
of robustness based in resource unavailability and prevédenodeling for obtaining such
robust solutions to SAT formulas. Some experiments appbetbmbinatorial auctions are
performed using the presented model and the obtainedseselinalyzed and discussed.

e Chapter 5, Flexible Robustnessin this chapter the previous modeling is adapted in order to
incorporate flexibility so that a trade-off between optiityahnd robustness can be easily set
up. Again, some more experiments are executed to analyzeutheme of this model, and a
more extensive analysis of the trade-off between optignalid robustness is performed.

e Chapter 6, Incentive Compatibility. This chapter discusses the strategy-proofness of the
proposed mechanism. Two methods for proving the non-maoinzitg (a necessary condition
for being strategy-proof) of our approach are describecdtested.

e Chapter 7, Robustness for Recurrent Auctions.Here we deal with the problem of recur-
rency in auctions, discuss the challenges that it poses rpebge an approach for achieving
robust solutions based in a trust model.

e Chapter 8, Conclusions and future work. The last chapter presents the conclusions of this
work and provides some ideas for future work.

e Appendix 1, The WWTP Problem. The first appendix analyzes the Waste Water Treatment
Plant Problem (WWTPP), a case study that is used in someaisdpt the experimentation.
It performs a benchmark of the different tools availabledlve it.

e Appendix 2, Winner Determination Algorithm for Single-unit Combinatorial Auctions.
The second appendix describes an algorithm for solvingragly combinatorial auctions that
was developed during this research with promising results.

11

CHAPTER 2
Background

In this chapter, we present a background of the topics usekemest of the document. First of all,
we introduce resource allocation problems (RAP) and audi¢specially combinatorial auctions)
as the mechanism used for dealing with them. Then, we reviewe generic approaches for ro-
bustness, later focusing on the mechanisms designed fposgitional satisfiability and constraint
programming, namely supermodels and super solutions otispéy. This background is needed for
our approach of robustness, which is based in a combinatfesupermodels and weighted super
solutions over satisfiability formulas. Finally, we pres#me current state-of-the-art on robustness
specifically for combinatorial auctions, while comparifgetdifferent techniques with the approach
we are proposing.

2.1 RESOURCEALLOCATION

Resource Allocation problems are an important topic in catepscience as well as in economics
[12]. They consist in the assignment (allocation) of a setesburces(probably with different
characteristics), to a set afjentshat want to use them, given a setre$trictions

The resources can be classified according to differentrfestu

e Durable vs perishable Durableresources are those that maintain their value as time goes by
That is, no matter when they are used, their properties arehramged. On the other hand,
perishableresources are those that lose value when held over an extpeded of time. In
this case, these resources cannot be stored for a lateruidea\e to be immediately used.
An example of a perishable resource is communication badttywsince it only has value if it
is used, but it cannot be stored for future increases in thewalth of a network connection.
On the other hand, an example of durable resources arécpigghtings, since they do not
never lose their value.

e Static vs renewable A staticresource is one that is assigned once, and thereafter igmass
ment does not change. On the other haadewableresources are only assigned for a given
period of time, after which they must be reassigned agains allows to model temporary
access to limited and shared resources such as for exampl&iGe.

e Divisible vs indivisible: This feature defines whether the resource can be inde¥imitabed
into as many units as desirediyisibleresource) or it cannot be dividethdivisibleresource).
In this latter case, however, there may be multiple unitdefresource (each of them being
indivisible). An example of a divisible resource is the fuel

12

e Controlled vs non-controlled: Although usually the resources belong to an owner that con-
trols the access to them, in some domains the resourcesraghew “public’, meaning that
anyone can use them, even without having been authorizemdo.drhisuncontrolled access
makes the resource allocation problem harder. Examplesrofontrolled resources can be
found in natural resources, which are usually accessild@yone, and for which there are no
physical means of controlling the access of the agents to.the

Regarding the agents, they are #witiesthat receive the resources after they sent a request for
getting them. In some domains, as for example schedulingyilaot refer to them as agents but
astasks which are the ones that make use of the resources. An assigrohresources to agents
(or tasks) is called anllocation The set of resources allocated to an agent is also calleahire s
domains aundle

There are many variations of resource allocation probléargxample assigning also the time at
which the resource has to be used by the agent (or when a tagk ba performed), minimizing
the cost of the allocation (given that each allocation of souece to an agent has an associated
cost), leveling the usage of the resources, etc. Regarbdagesstrictions, they usually include the
capacities of the resources, which limits the number of eg@n tasks) that can be simultaneously
using a single resource, precedence relations that foroe sasks to be performed before or after
other tasks, and deadlines establishing a maximum time igahvehtask must be performed.

The two most known classes of resource allocation probleescaedulingandauctions Schedul-

ing is the problem of assigning a set of tasks to a set of ressyusually minimizing the total time
required to perform all the tasks (makespan). It has manysimigl applications such as optimizing
production processes, transportation timetables, ereplogchedules, CPU utilization, video broad-
casting, etc. On the other hand, in the case of auctions #r@sgre assigned the available resources
in an economic way, trying to maximize the auctioneer’s nexe

The objective of resource allocation problems is eitherrtd & feasible solution (e.g. an allocation
of tasks to resources that guarantees that all the restrictire satisfied) or to find the optimal so-
lution given an objective function. In the latter case th@eotive function can be focused either on
the entity that is performing the allocation (e.g. the aarotier in a combinatorial auction) or in the
entities that are requesting the resources, given an agtizagunction of their individual prefer-
ences (e.g. an allocation of resources maximizing the geeautility obtained by the entities). This
aggregation of individual preferences can be modeled ubmgoncept ofocial welfareas studied

in Welfare Economics and Social Choice Theory. The two mestilsocial welfare aggregations
functions areutilitarian, where the aim is to maximize the sum of individual utilitiesdegalitar-
ian, where the goal is to maximize the welfare of the entity teagetting less [12]. In the case of
scheduling the main objective is usually to find the optindiison such that the total makespan is
minimized. In auctions, the objective is usually to maxieiize revenue of the auctioneer. However,
in recurrent versions of auctions and scheduling problemmbwelfare measures can be taken into
account.

There are two main approaches for solving resource allmegtioblems (both scheduling and auc-
tions). The first one is by usingtatally centralizecapproach based on classical artificial intelligence
techniques. The main drawback of this approach is that thgaleentity has all the power. That

is, it makes all the decisions, and therefore does not leagfemts take part in the obtention of the

13

allocationst.

To allow for a more participative mechanism, a distributpgraach can be taken. In this case, the
agents can interact with the central entity, or between therarder to reach an agreement on the
allocations. This approach can be divided into two mainsgasdepending on who is the responsible
of decision making:

e Centralized approachin this approach, as in the classical one, there is a singit/ehat
solves the problem. However, there is some interaction ée&tvthe agents and the decision
maker, so that the decisions are not totally taken by therla&n example of such approach
are auctions [73, 14], where agents bid for using the ressuand the auctioneer decides
which agents can do so.

e Decentralized approachn this approach there is no central entity, but the agdrsselves
are the ones solving the scheduling problem. They commtenigith each other in order to
reach a solution. This approach includes negotiation pad$pin which agents trade resources
until they are all satisfied with the allocation [40], andcadistributed constraint optimization
problems (DCOP) [50, 64].

There is also a lot of literature regarding preference sgration. In the context of resource al-
location, preferences express the satisfaction of an ageenh deciding between different potential
allocations of the resources, i.e. the different bundlesesburces received by the agent. As the
set of alternatives in resource allocation problems is egptial in the number of resources (one
for each combination of resources), it is not reasonableskotlae agents explicitly for the entire
preference list. For this reason, languages for prefersrpresentation are used [12].

Resource allocation problems are closely related (andrafguit in some cases) to matching, knap-
sack and set packing/covering problems, consequentigdati the class oNP-Completgroblems
(in its decision version), and therefore when developinghods for resource allocation problems
their complexity needs also to be taken into account.

In our work we deal with resource allocation problems whesetof agents compete for a set of
resources. However, as we focus on the robustness of tlraio mechanism, time constraints are
not the crucial point, and therefore we choose auctionseadémework to deal with RAPs instead
of scheduling. For our purposes, the resources in the auatie durable, static, indivisible and
controlled. We will use a centralized approach where thérakunit is the auctioneer which wants
to maximize his revenue while producing robust allocati@msl the agents inform their preferences
through the bids that are composed by the items (or combimatf items) that they want.

In the following section we give a background on auctionsgeng in more detail on combinatorial
auctions) and its challenges.

2.2 AUCTIONS

Auctions are an ancient economic mechanism designed te ttaiths between individuals where
the values of the items are not precisely known. In an aucticseller (theauctioneej offers the

1In appendix A a concrete resource allocation problem isyardl, modeled and solved using totally centralized tech-
niques, comparing their performance

14

units
per item

units
per item

Multi-unit Auction Combinatorial Auction Multi-unit Combinatorial Auction

sealed DPSB VCG VCG
protocol UPSB
VCG
English First Price Sealed Bid
Dutch Second Price Sealed Bid (Vickrey)

Figure 2.1: Auctions classification

items, and a set of buyers (th&derg notify their interest on them by submittifggds composed
by the desired item/s and the price that the bidder is wiltmgay for it/them. Once all the bids are
received, the auctioneer selects the (set of) winning biti&ch in turn determines the prices of the
items that have been sold.

Auctions were deeply studied first in economic theory as a twagstablish prices in the market.
Later, they where also applied to game theory, and with tra@evpiopularity of Internet and the
emergence of electronic commerce (where auctions serveeasidst popular mechanism), effi-
cient auction design has become a subject of consideraplertemce for researchers in multi-agent
systems. Within the field of Artificial Intelligence theredgrowing interest in using auction mech-
anisms to solve resource allocation problems in competitiulti-agent systems. For example,
auctions and other market mechanisms are used in netwodwldth allocation, distributed con-
figuration design, industrial scheduling, and memory atmn in operating systems. Auctions are
currently being used in several industrial scenarios [6hsas the electricity market, in which dif-
ferent kinds of energies are auctioned in order to favouuseof non-pollutant sources of energy
[57]. One of the reasons for the increased popularity ofianstis the perceived improvements in
efficiency and revenue for the seller.

2.2.1 AUCTION MECHANISMS CLASSIFICATION

Several types of auctions have been defined, a partial diagfahem can be seen in Figure 2.1.
Based on the number of items being offered, auctions candssified as either single-item or
multi-item auctions. The former are the most common, whélddys compete for a single good.
There exist quite a few protocols for them, being the mostroomtypes: English, Dutch, First
Price Sealed Bid and Vickrey.

In anEnglish auctionalso called an open-outcry ascending-price auction,dlcganeer begins the
auction at the reserve price (the lowest acceptable pticel); the bidders are free to raise their bid,

15

which must be higher than the last bid price. When no more aidgsisen the winner is the last
(highest) bidder which pays the price he declared. Thisésypical auction used, for instance, to
sell artistic works. In &utch auctionalso known as clock auction, or open-outcry descendifgepr
auction, the auctioneer lowers the price until a biddergakér a minimum price is reached). The
first bidder to speak wins, paying the last announced pribés ffpe of auction was first used to sell
tulips in the Netherlands, and has been extensively useddol years also in fish markets. First
Price Sealed Bid Auction (FPSB2ach bidder submits a bid without knowing the other bidders
bids. The highest bid wins, paying the price he submitteds differs from English auction because
as bids are not open or called, bidders must submit valumbased on an estimation of the market
value of the item and their own willingness to pay, as oppasedmpeting through relative prices
with other bidders.Vickrey auction71], also known assecond Price Sealed Bid Auction (SPSB)
is quite similar to first price sealed bid, but here the winbieider pays the second highest price
submitted. This small alteration, however, has importaabtetical implications, as it gives bidders
an incentive to bid honestly, meaning that the best strategyhe bidders is to reveal their true
values for the items, which does not happen in FPSB.

When the quantity of the items being sold is greater than orutiple copies of each item), auctions
are called multi-unit. Single-item auctions with multituitems are differently classified based on
the pricing rules. For example, inziscriminatory Price Sealed Bi(DPSB) auction, all the winners
pay their bid price. Alternatively, in Bniform Price Sealed BigUPSB) auction, all winners pay
the same price which is the highest bidding price of the kser

Multi-item auctions are known as Combinatorial Auction®&\jOwhich are the kind of auctions that
we will basically use in our work. In this kind of auctionsdhbliers can place bids on more than one
item at the same time. We can also have multi-unit items inmaldoatorial auction, turning it into

a Multi-unit Combinatorial Auction (MUCA). We will descrdbcombinatorial auctions in detail in
section 2.3, however an even more extensive study on coaiglgand multi-unit combinatorial
auctions can be found in the book by Peter Cramton, Yoav Shemal Richard Steinberg [16].

2.2.2 AUCTION PHASES

In an auction we can distinguish three phasesbttiding phasetheauction clearing phasand the
transaction phaseln the bidding phase, the bidders submit their bids acogrth the interest they
have on the objects that are being auctioned. After thahdratiction clearing phase, the auctioneer
determines the set of winning bids that maximizes his regeRinally, in thetransaction phaséhe
items are delivered to the corresponding bidders.

Figure 2.2 shows a diagram of the phases of an auction, whetesnsaction phase contains a long
period of time where unexpected changes can occur. In sthedations the transaction phase is
not considered as it is instantaneously made after thecauciearing, but there exist other domains
in which this phase can last for weeks or even months. It isi;dituations where finding a robust

solution is particularly important.

Coming back to the example presented in the introductorgtein@bout assigning rooms for simul-
taneous conferences, in the first phase the organizers weuldl their bids for (possibly multiple)
combinations of rooms according to their requirements. ditganizers would have a deadline to

16

g T

RS
7 2, %
O, %, Y,
S % % %
% S %
%, %
%0, ®
%, G %
Z o
)
v

Figure 2.2: Auction phases.

send the bids, which would be typically some weeks beforetiméerence starts. After this dead-
line, with all the received bids, the second phase wouldrbagd the auction would be solved and
the results announced to the participants. But after thatetwould be a period of time before the
rooms are actually used where some unpredictable evenlt lsappen. At the end of this second
phase, the conference would begin and only the availablmsoagould be used by the participants
(transaction phase). However, as some events could hagpeadn the auction clearing phase and
the transaction phase, it is possible for the solution sty found to be not valid. Therefore,
solution robustness would be useful in this case, sincenduhie transaction phase some breaks can
make the solution previously found invalid.

2.2.3 INCENTIVE COMPATIBILITY

In this section, we consider theuthfulnessof mechanisms for combinatorial auctions. This is an
interesting feature that is usually considered when dasigmechanisms for auctions (and combi-
natorial auctions). This means whether it is possible ortaatesign a mechanism for the auction
such that it is in the best interest of the bidders to send thiaistruthfully reveal their preferences
[43]. Auction mechanisms that have the feature of inceritigj bidders to bid truthfully are called
incentive-compatibleor strategy-proof On the other hand, non-incentive-compatible mechanisms
allow the possibility that the bidders strategically mangte the auction in order to decrease the
final price of the items, with the consequent gain for thend(ass for the auctioneer). Incentive-
compatible mechanisms are important in auctions becaisskribwn that no untruthful mechanism
achieves better outcome than any truthful (non-manipa)abkechanism. For that reason, develop-
ing auction mechanisms fulfilling this requirement is cathga major concern for auction designers,
and a lot of research has already been taken by the compigaceccommunity in this direction
[55, 54, 43]. In many applications of auctions, only meckars assuring that the bidders will bid
truthfully are considered.

The first auction mechanism that was proved to be incentirgetible was the Vickrey auction [71]
which, despite its simplicity, accomplished the theowdtdefinition. The Vickrey auction was then
extended in order to deal with multi-unit and combinatoaattions; resulting in th&eneralized

17

Vickrey Auctionalso known as VC& The drawback of VCG auctions for both CA and MUCA is
that they are much more computationally expensive, as the paid by each winndcis computed

by deducting the sum of payments of all the other bidders énctirrent solution from the sum of
all payments that would be obtained from those other bidiettse optimum allocation where the
bidderk is removed from the allocation. This requires to sajve 1 optimization problems (where
the optimal solutions are composed ppids). Therefore, and given that relaxations of the model
are not a good option since they compromise truthfulnegs {8 method is not generally used in
practice in large problems due to its intractable compaoitetime.

Incentive compatibility is hard to prove in complex auctimechanisms. For a mechanism to be
truthful it has to satisfy the conditions &xactnessParticipation Critical, A-Monotonicityand
P-Monotonicity[43]. Informally, exactness means that each bidder eitle¢s gxactly the set of
goods he requests or nothing, critical means that each mgrividder pays the lowest value he could
have declared and still be allocated the goods he requgstditipation means that bidders getting
nothing pay zero. Finally, regarding monotonicity coratis, a method is said to be monotone if and
only if each bid from the solution that increases its pridéaintinues in the solution, provided that
all the other bids remain fixed. This condition can be usedermely for proving non-monotonicity
[37].

The strategy-proofness of the approach that we will prdagstin this work for dealing with robust-
ness will be analyzed in Chapter 6 in the same way, using ttdessary condition of monotonicity
that incentive compatible mechanisms must hold.

2.3 COMBINATORIAL AUCTIONS

In this thesis, we focus on Combinatorial Auctions, as theyable to encode resource allocation
problems. These kind of auctions were first proposed by Rés&mith, and Bulfin in 1982 [60],
for the allocation of airport landing slots. In a combindbeauction, bidders can bid on bundles
(combinations) of multiple distinguishable items insteddust individual items. This allows the
bidders to be more expressive in the valuations of the itérhs.information contained in the bids
is composed by the desired subset of objects together wathribe that the bidder is willing to pay
for it.

In recent years combinatorial auctions have emerged anedhgiapidly as a popular mechanism for
the sale of a set of items among which bidders perceive depeies between the goods. The most
important dependencies artemplementaritieandsubstitutabilitied65, 24]:

e Substitutability : A bidder’s value of getting various goods is less than tha sfithe values
for each individually (e.g., they are at least partiallyuadant). For example, a DVD reader
and a DVD reader/writer are substitutable; a bidder may wastor another but not both.

e Complementarity: A bidder’s value of getting various goods is greater thangtm of the
values for each individually (e.g., they are at least plyteo-dependent). For example, in
the case of a suit, a bidder can still think of buying the jacked the pant separately but it is
certainly more valuable to buy the jacket and the pant tageth

2Where “V” stands for Vickrey [71], “C” for Clarke [13], and “Gfor Groves [27], the three researchers that created the
generalized versions of the Vickrey auction.

18

This increase in expressiveness that combinatorial anepeoovide allows more economical alloca-
tions of the items, since the bidders do not obtain undegisetial bundles of low value.

To solve the auction (allocate the items to the bidders)atietioneer gets the set of price offers
for various combinations of goods coming from the biddensl kis aim is to allocate the goods in
a way that maximizes his revenue or, in other words, the anieér selects a set of these bids that
provides him the highest revenue without assigning any ttemore than one bidder. The problem
of selecting the optimal set of bidders to allocate the gpkdswn as the Winner Determination
Problem, has a high computational complexity compared stitgle-item auctions, as we will see
in section 2.3.2.

2.3.1 EAMPLE

In order to understand the importance of the superior espigsthat combinatorial auctions pro-
vide, consider a very simple example of a combinatorialianatith three biddersif, b2, b3), and
two items for sale, A and B. The first biddéx] is only interested in the item A, the second bidder
(b2) is only interested in the item B, and the third bidd&y)(is interested in both items A and B,
however it is not interested in receiving only one of thosenis. The first two bidders are willing
to pay 10 each for the respective items, and the third biddeiliing to pay 18 for both, as seen in
Table 2.1. Therefore, the optimal solution for the auctanig to sell the item A to the biddéy and
the item B to the biddel,, achieving a total revenue of 20, instead of selling botmgeo the third
bidder which would achieve a total revenue of only 18.

Bidder A B AB

b1 10
bo 10
b3 18

Table 2.1: Combinatorial auction example

The problem of simple (non-combinatorial) auctions is thatauctioneer cannot know in advance
whether it is better to offer the items separately or as a pagkexample, if the auctioneer had sold
the items A and B together as a pack (in a single-item augtibej the revenue would have been
only 18 (from the third bidder) because the first two biddeosild have not bid for the pack. With
these prices it would be better for the auctioneer to offeritdtams separately. On the other hand, if
the third bidder offer was 22 instead of 18, then it would biedsdor the auctioneer to offer them as
a pack instead of separately, since he could get the offeR @ftilich is higher than the sum of the
other two bids (20).

Therefore, given that it is not possible for the auctioneddrtow in advance whether it is better to
sell the items together or separately, a combinatoriai@uethere bidders can submit bids on any
possible combination of items is the best option for him.

19

2.3.2 THE WINNER DETERMINATION PROBLEM

TheWinner Determination Problem (WDIBJ a combinatorial auction, also called thection clear-
ing algorithm is roughly defined as: given a set of bids in a combinatotietian, select the winning
bids that maximize the seller's revenue, subject to thetcain$ that each good cannot be allocated
more than once. The formal definition is as follows.

LetG ={¢1, 92, ..., gm } be a set of goods, and IBt={b1, bs, ..., b, } be a set of bids. Each bid is

a pair fp;, G;) wherep; € R is the price offer of bidh; andG; C G is the set of goods requested
by b;. For each bid; a binary indicator variable; is defined to encode the inclusion or exclusion
of bid b; from the allocation, i.e. whethéy is winner (1) or loser (0). Then, the single-unit WDP is
the following constraint optimization problem (COP):

n
max E T " Pi
i=1

S.t. thgl Vgeg

i|lgeG;

In a multi-unit combinatorial auction, instead of uniquenits we have a given quantityg) for
each good, and the bids can request also different quantitieach itemy; ,. Hence, the WDP for
multi-unit combinatorial auctions is the following COP:

n
max E T " Pi
i=1

st Y waig<qlg) Vgeg
i|geGi

The WDP is equivalent to the weighted set-packing problém khapsack problem and the maxi-
mum weighted clique probletnand its decision version is therefdw®-Completeven in its single-
unit variant (see e.g., [62]). Furthermore, it has been detmated that the WDP cannot even be
approximated to a ratio of' —¢ (any constant factor) in polynomial time, unléas- NP [65].

The above problem formulations assume the notiofineaf disposal This means that in the optimal
solution not all of the items have to be mandatorily sold.&dise, if it is required for all the items
to be sold, the inequalities<) should be changed by equalities){ then the problem becomes
equivalent to the Set Partition Problem [20], whictNB-Completeas well.

3To model a combinatorial auction as a maximum weighted eliptoblem the problem has to be converted as a graph
where nodes are bids and edges connect compatible bidgniagsihe bids prices to the vertices weights.

20

2.3.3 KEPERIMENTS WITH COMBINATORIAL AUCTIONS

Most of the literature on combinatorial auctions perforims tespective tests using the benchmark
for combinatorial auctions developed by Kevin Leyton-Broet al. [44] called “Combinatorial
Auctions Test Suite” (CATS). Since its first release in 2008TS has become the standard tool
for evaluating and comparing WDP algorithms [66, 16]. It gextes realistic combinatorial auction
instances, following a set of real-world economically matéd scenarios as well as many previously
published distributions (called legacy). Setting a giveimber of goods and bids, the program
generates the set of bids by selecting which goods to indludeach bid following the chosen
distribution.

For most of the real-world distributions a graph is genetapresenting adjacency relationships
between goods, and it is used to derive complementarityguties between goods and substitutabil-
ity properties for bids. Two of these distributions conceomplementarity based on adjacency in
(physical or conceptual) space, while the others concenptementarity based on correlation time.
The characteristics of each distribution are the followih:

e Paths This distribution models auctions regarding shipping, aad bandwidth problems.
Goods are represented as edges in a nearly planar graptageitis submitting a set of bids
for paths connecting two nodes.

Arbitrary . In this distribution the planarity assumption is relaxeahf the previous one in
order to model arbitrary complementarities between disayeods such as electronics parts
or colectables.

Matching. This distribution concerns the matching of time-slotsddixed number of differ-
ent goods; this case applies to airline take-off and landiigs.

Scheduling This distribution generates bids for a distributed jobyslscheduling domain,
and also its application to power generation auctions.

Regions This distribution models an auction of real state, or maregally of any goods
over which two-dimensional adjacency is the basis of complgtarity, e.g. spectrum rights
or property. Again, the relationship between goods is red by a graph, in this case
strictly planar.

The “legacy” distributions are the following [44]:

e L1, theRandondistribution from [65], chooses a number of items unifortfingm [1,7], and
assigns the bid a price drawn uniformly from [0, 1].

e L2, theWeighted Randomfistribution from [65], chooses a number of iteggniformly from
[1, m] and assigns a price drawn uniformly from [,

e L3, theUniformdistribution from [65], sets the number of items to some tamiz and draws
the price offer from [0, 1].

e L4, theDecaydistribution from [65] starts with a bundle size of 1, andrgmments the bundle
size until a uniform random value drawn from [0, 1] exceeda@metery.

21

e L5, the Normal distribution from [38], draws both the number of items and price offer
from normal distributions.

e L6, the Exponentialdistribution from [24], requests items with probabilityC-e—9/¢, and
assigns a price offer drawn uniformly from [@,5L.5¢].

e L7, the Binomialdistribution from [24], gives each item an independent piulity of p of
being included in a bundle, and assigns a price offer dravifiorumly from [0.5¢, 1.5¢] where
g is the number of items selected.

e L8, theConstantdistribution with 3 goods per bid, with a quadratic calcigdatfor the prices.

In our work we will mostly use the set of realistic instancad anly one of the legacy distributions
(L7), to examine the effects of robustness in various pdessipplications of combinatorial auctions.

2.3.4 O°PTIMAL ALGORITHMS FORCOMBINATORIAL AUCTIONS

Since the problem of finding the optimal solution to a comtwnial auction isNP-Hard*, any opti-
mal algorithm for the problem will be slow on some problenmamees. However, in the last years
considerable research has been done in the combinatartadiawinner determination problem. For
a more extended survey, see [20] and [16]. We will briefly dbsconly some of the most known
specific algorithms for solving combinatorial auctionsttirad the exact optimal solution, which are
actually able to solve quite large instances in practice.vilealso give details on how to model
combinatorial auctions with Integer Linear Programmindpéorun with a generic commercial LP
solver as CPLEX [15], which has nowadays become the gegersdid solving method for CAs.

CASS

One of the first specific solvers for combinatorial auctioms WASS (Combinatorial Auction Struc-
tured Search) [24], developed in the Stanford Universityrbyo Fujishima, Kevin Leyton-Brown

and Yoav Shoham. It used a clever branch and bound seardfitlahgevith dynamic programming

and caching techniques that allowed to solve quite largklenas in practice.

The crucial detail about CASS is that it structures the deapace usingins (see Figure 2.3). A
bin is created for each good, and every bid is placed into ihedrresponding to its lowest-order
good. Instead of always trying to add each bid to the allocatit most one bid from every bin is
added since all bids in a given bin are mutually exclusiveée@®éntire bins can be skipped. To treat
the possibility that the auctioneer’s revenue can incrbgdeeping itemsjgummybids of price zero
are placed on those items that received no 1-item bids. Hemvthe main benefit of bins is not the
ability to avoid consideration of conflicting bids. Bins grewerful because they allow the pruning
function to consider context without significant compudatl cost, and allowing the generation of
very fast and tight upper bounds.

The search method is based on the branch on bids formul&amh path in the search tree consists
of a sequence of disjoint bids, that is, bids that do not shams with each other. A path ends

4NP-Completén its decision version, i.e. deciding if a solution exists.

22

=

—t
O]
=Y
W
H

Figure 2.3: Partition into bins.

when no bid can be added to it. As the search proceeds dowr agptily, g, is kept of the sum
of the prices of the bids accepted on the path. At every seardh, the revenug from the path is
compared to the begtvalue found so far in the search tree to determine whetheectinrent path
is the best solution so far. If so, it is stored as the mewumbent Once the search completes, the
incumbent is an optimal solution. CASS also caches the tesiilpartial searches. This caching
scheme is a form of dynamic programming that allows the #lgorto use experience from earlier
in the search to tighten its upper bound function.

In terms of computational complexity, it is easy to see thainein the worst case, the size of the
explored tree is polynomial in the number of bids, but expuia¢in the number of items. However,
CASS may be used as an anytime algorithm, as it tends to find gitacations quickly. CASS is a
free and open source algorithm that can be unrestrictedinibmded from Kevin Leyton-Brown'’s
web pageé.

BIDTREE

Bidtree [65] is the other special-purpose WDP algorithnm tzes been most studied and cited in the
literature. It was presented in the same conference prouwgeds CASS. The Bidtree algorithm is
similar to CASS in several ways, but important differenceklh In particular, Bidtree performs a
secondary depth-first search to identify non-conflictindsbiwhereas CASS’s structured approach
provides context to the upper bound function as well as atigwt to avoid considering most con-
flicting bids. Bidtree performs no caching or cache prunidg the other hand, Bidtree uses an IDA*
search strategy rather than CASS’s branch-and-boundagiprand does more preprocessing.

The Bidtree algorithm has never been publicly availablé&hee to researchers. However, the cre-
ators of CASS affirm that overall, CASS dramatically outperis Bidtree, being between 2 and 500
times faster than Bidtree, and never slower.

LINEAR PROGRAMMING

Researchers soon realized that combinatorial auctiorld beteasily converted into an integer pro-
gramming problem, taking advantage of the astonishing éwvgments that such solvers, and spe-

Shttp://www.cs.ubc.catkevinlb/downloads.html

23

cially CPLEX, was including in the last versions of its mixeteger programming module. Nowa-
days, CPLEX is the default (and fastest) approach for sglthie WDP.

The Winner Determination Problem can be easily modeled &stager Programming Problem. To
do so, bids are converted to binary variab¥esnd the function to be maximizdéds the weighted
sum of the bids multiplied by its price. Restrictions are stoucted in order to assure that bids
sharing an item cannot both win (their sum must be less orleéqud. The constraint optimization
problem is the following:

n

maximize f="> " p;-X (i) (2.1)
=1
VgeG Y X(i)<1 (2.2)
ieC,

wheren is the number of bids, and, is the set of bids containing itegn Note that the constraint
is < 1 instead of= 1 because an optimal allocation may leave some items undoddl.the items
are required to be sold then the equality condition shoulsibe

ILOG'’s CPLEX is the most used LP optimization software waride. Universities and researchers
have extensively used it to solve most of the COP’s and evamyaigorithm or technique that comes
out is habitually compared versus CPLEX.

When CASS and Bidtree were proposed, ILOG’s CPLEX 5 mixeegat programming package
(the industry standard) was unable to solve most WDP prableithin a reasonable amount of
time. Since that time, however, CPLEX's mixed integer pamgming module improved substan-
tially with version 6 (released 2000), and considerablyiragéth version 7 (released 2001). In
version 8 (released 2002), with the MIP optimizer achievangaverage 40% speed increase to op-
timality, with a 70% increase on difficult problems, theresveageneral convergence in the research
community towards using CPLEX as the default approach fwirsgpthe WDP. Once again, CPLEX
with version 9 (released 2003) improved the MIP optimizeb#o50% faster on average, for a set
of difficult customer models. Version 10 (2006) improved timee to optimality by an average of
30% and improvements average 70% for particularly diffioutidels. CPLEX 11 introduced a new
search algorithm, dynamic search, while retaining its emtienal branch-and-cut algorithm, but
with advances in branching, cuts and heuristics. By selgdtie more efficient of the two search
strategies, CPLEX 11 improved the time to optimality by 15&@werage for models solved in less
than one minute, three times faster on average for moddigirange of one minute to one hour, and
for hard models requiring more than one hour to solve, thedpp was a factor of ten on average.
CPLEX 12 (released in 2009) is a 10% faster in large probldmisthe best good new was the for
the first time, it was available freely for academic purposes

Another possibility is to use the free open-source solveP&L(GNU Linear Programming Kit)
[26]. Although ILOG claims that its CPLEX solver is 100 timiaster than GLPK, it is lighter and
enough for solving not-hard medium-size instances.

24

CABOB

The only ongoing effort at competition with CPLEX came frone tauthors of Bidtree, who wrote
an updated algorithm called CABOB which they claim is muc$tda [66]. The CABOB (Com-
binatorial Auction Branch on Bids) algorithm is a depth fissanch and bound search with linear
relaxations that branches on bids. The main differenceisnistead of branching on items, CABOB
uses the branch on bids formulation. A graphical represientaf the search space generated with
both formulations is shown in Figure 2.4. When branching didathe children in the search tree
are the world where that bid is accepted, and the world whexeltid is rejected. The branching
factor is 2 and the depth is at mas{number of bids). No dummy bids are needed: the items that
are not allocated in bids on the search path are kept by th@aaer. Given the branching factor
and tree depth, a naive analysis shows that the number efdesnat mosg™. However, a deeper
analysis establishes a drastically lower worst-case uppend reaching a polynomial growth in
bids, while exponential in items.

The algorithm maintains a conflict graph structure callesl bid graph. The nodes of the graph
correspond to bids that are still available to be appendé#ktsearch path, that is, bids that do not
include any items that have already been allocated. Twdcesrin the graph share an edge when-
ever the corresponding bids share items. CABOB uses a tpohifdr pruning across independent
subproblems (components of the graph).

mo [2] [] [2] [5]

Branch on items formulation Branch on bids formulation

@ Bid graph

Figure 2.4: Branch on items (left) versus branch on bids$h{jifprmulation. Figure extracted from
[16].

CABOB uses Linear programming for upper bounding. This ligleads to faster search times than
any of the other special-purpose upper bounding methogmpeal for winner determination. This
is likely due to better bounding, better bid ordering, anel ¢ffifect of the INTEGER special case,
i.e an integer solution provided by the Linear Programmiiges, implying that no more search is
needed in the respective branch. The time taken to solvénbariprogram is greater than the per-

25

node time with the other bounding methods, but the reduatitnee size usually amply compensates
for that. However, on a non-negligible portion of instanttes special-purpose bounding heuristics
yield faster overall search time.

Like Bidtree, CABOB is neither available publicly. Its reped performance is apparently similar to
CPLEX’s, and as discussed above, CABOB is also similar toEOPIn its construction: it makes
use of linear programming as a subroutine and uses a siredacts strategy.

CABRO

We should also mention the algorithm CABRO, that was dewdaturing this research, and pub-
lished in 2008 [51]. CABRO (Combinatorial Auction BRanchdamound Optimizer) is mainly a
branch and bound depth-first search algorithm with a sggamnificative polynomial-time proce-
dure to reduce the size of the input problem. The algorithdivisled in three main phases:

e The first phase performs a fast preprocessing (polynomia)tivith the aim of removing as
many bids as possible. Bids removed in this phase may ber ditthe thatcannotbe in the
optimal solution, or bids thdtave tobe in the optimal solution.

e The second phase consists in calculating upper and lowerdsolor each bid. The upper
bound of a bid is computed by formulating a relaxed lineagpronming problem (LP), while
the lower bound is computed generating a solution quicklyis phase may also remove a
notable amount of bids.

e The third phase completes the problem by means of searchrately a branch and bound
depth first search. In this phase the two previous phasessatktalso as heuristics and for
pruning.

In some instances it is not necessary to execute all the ghrases of the algorithm, for example
when the optimal solution is already found before the septdse. The algorithm is able to end
prematurely either when all of the bids have been removedhanvat some point of the execution
the global lower bound reaches the global upper bound. Thdgithm also provides anytime per-
formance, giving the possibility to be stopped at any timdrduthe execution and providing the
best solution found so far.

The algorithm was compared against CASS, GLPK and CPLEXirgeelearly CASS and GLPK in
average, and being competitive with CPLEX. More detailssbite algorithm are given in Appendix
B.

2.3.5 SJMMARY OF COMBINATORIAL AUCTIONS SOLVERS

We have described five different methods to solve a combiiahtuction. Table 2.2 shows a com-
parison of these methods, focusing on the following charéstics:

e PerformanceHow fast the algorithm ends giving the optimal solution.

26

Anytime performanceHow fast the algorithm produces a valid solution.

Input & output This describes whether the algorithm receives as inpuithef bids directly
or it needs some conversion.

PreprocessingHow much preprocessing the algorithm executes.

Economical costThe price of the software.

Regarding the overall performance, CPLEX is clearly the pesiuct followed by CABOB, CABRO
and GLPK, with CASS at some distance, and finally BidTree. e\®v, concerning anytime perfor-
mance, CASS is the method requiring less amount of time tdym®a first solution. This is for two
reasons: firstly because it performs less preprocessingeswhdly because LP-based algorithms
need to solve first the LP problem (which does not generathglpce a valid solution) in order to
begin the search of valid solutions. Therefore, althougtfitlst (non-optimal) proposed solution of
CPLEX is probably much better than the CASS first solution SSAobtains it earlier, so we state
that CASS exhibits a better anytime performance.

CPLEX and GLPK need a transformation from the set of bids tmeal programming problem.
This transformation requires a small amount of time (poiyiad) compared to the total time of the
execution. However, for small problems it may be faster ® aisnethod that does not require any
transformation. Of course, when dealing with huge prob|éviB solvers will be much faster since
the transformation time would be insignificant compared® improvement in overall execution
time obtained.

Method | Perf. Anytime| Input&Output| Preproc Econ. Cost

CASS Slow Good Direct Very Fast Free

BidTree | Very Slow| Good* Direct* Fast* Unavailable

CPLEX | Very Fast | Bad Transformation Fast Free**

GLPK Fast Bad Transformation Fast Free

CABOB | Fast Bad* Direct* Slow* Unavailable

CABRO | Fast Good Direct Fast Avail. under demand

*Unknown (presumed values).
**For academic purposes.

Table 2.2: Auction solvers comparative.

For academic purposes there is no doubt that CPLEX is thebt&sh. However, for other industrial
applications CPLEX could be quite expensive. ThereforeSGAand CABRO should be the first
options to try, as they are easy to use (receiving as inpattirthe list of bids). If they were not
able to solve the problems because of its large size, thamsfarmation to LP should be considered
to test whether GLPK is able to solve it or not. Otherwise, ERIlwould be considered if its cost
could be afforded.

2.4 ROBUSTNESS

Previous sections have introduced resource allocatidsigamos and auctions, since they are the kind
of problems that we will deal with. In this section, we willvgi some background on robustness

27

in general, and the following section will talk more conetgtabout robustness in combinatorial
auctions.

There are two general approaches for dealing with robustnesactive and proactive. Whereas
reactivetechniques address the problem of how to recover from apmtisruonce it has occurred,
proactivemethods construct solutions that are inherently robustqapgiven degree) to uncertainty
in the data.

Kentaro Tsuchida [70] presented a reactive robust scheglotiethod for job-shop problem which
consisted on a method to produce robust schedules obtayrietdtively generating new schedules
together with appropriate adjustment rules. An adjustmeletis a modification of the schedule,
and is used when an environmental change happens, by ghiftireplacing jobs. They calculate
an expectation evaluation value of each robust solutiorkaeg the best solution based on various
initial situations.

On the proactive field, Andrew J. Davenport proposed a sheded technique for robust scheduling
[18]. The key idea of slack-based techniques is to providé eativity with extra time to execute
so that some level of uncertainty can be absorbed withoaheshiling.

Another usual way of achieving proactivity is by using supedels [25] and super solutions [30],
which are defined by two parametessandb. The parametea specifies the maximum size of
the break that the robust solution is able to absorb, andahenpeteb sets the maximum size of
the repair needed to fix the solution whenever a break octhereas slack-based techniques are
widely used in scheduling problems, supermodels and sugbatiens are mostly used in Boolean
satisfiability and Constraint Programming problems, respely.

In our work we will focus mainly in proactive approaches. 8upodels [25] were defined to find

robust solutions based on repairs for propositional saligfy (SAT) formulas. Later, they were

extended to super solutions [30] in order to find robust smhstfor constraint programming prob-
lems. After that, weighted super solutions [35] were intregd in order to handle more easily failure
probabilities and costs of the repairs.

In our work we will extend mainly the work on supermodels féfTSormulas, adding some con-
cepts from weighted super solutions. The resulting fortmawill need to move from SAT to a
much richer framework, known as SAT modulo theories (SMTHerefore, we will first give a brief
introduction on SAT and SMT; later we will describe the supedels for SAT, super solutions for
CP and weighted super solutions. This will give us a good gpamknd on the techniques that we
will use in the central part of this thesis.

2.4.1 HROPOSITIONAL SATISFIABILITY

A propositional variableis a variable whose value can be eithete or false. A propositional
formula (or Boolean formuliover a set of propositional variablé%is any variablep € P or a
negation(—Fp), a disjunction £, v Fy) or a conjunction £y A Fy) of smaller formulagy and Fy
(note the parentheses). The number of parentheses candmeddaly introducing precedence rules,
commonly giving highest priority te» and lowest priority tov. Also, other connectives can be used
as abbreviations, e.qn,— ¢ for -p V ¢, andp + ¢ for (p — q) A (¢ — p).

28

A variablep is anatom and a variable or its negation-p is aliteral. A clauseis a disjunction of
literalsiy Vv - - - vV [,,. A formulais inconjunctive normal fornfCNF) if it is written as a conjunction
of clause<’; A - - A Cp,. CNF formulas are sometimes denoted as a set of clduses. ., C, }.

An interpretation(or truth assignment/ for a formulaZF' is a function mapping the variables bfto
{true, false}. An interpretatiorn/ satisfiesa formula#’, denoted = F, if under this interpretation
of variables and the usual truth table interpretation ofdlgecal connectives, the formula evaluates
to true. An interpretatiort satisfying a formuld’ is called anodelof F. A formula F' having some
model is calledsatisfiable andunsatisfiabletherwise.

Satisfiability (SAT) is the problem of determining the sikility of a propositional formulat’
[7]. The formal definition of SAT actually requires the forfauo be expressed in CNF. Besides
the standard SAT problem, some variants have been defined-S¥a is the problem of finding
the maximum number of clauses that can be satisfied by arly asgignment. Weighted Max-
SAT is a variant of Max-SAT where every clause has a weigét, & weighted Max-SAT formula
is a conjunction of weighted clauses of the fo(fi, w), whereC' is a clause ana is a natural
number indicating the cost (weight) of the falsification(af The cost of a truth assignment for the
formulais the sum of the costs of the clauses falsified byasssgnment. Given a weighted formula,
weighted Max-SAT is the problem of finding a truth assignmeith minimal cost. A particular
case of weighted Max-SAT igartial weighted Max-SAThere some clauses are mandatory (have
an infinite cost of falsification) and the other clauses arighted. Table 2.3 shows schematically
the different variants of propositional satisfiability ptems.

Type Formula
SAT (pVa)A(=pV @) A(pV=g)A(=pV—g)
Result:unsat
Max-SAT (P VAPV DAP V —~a)A(=p V ~q)
Result: Maximum number of satisfied claus8} (
Weighted Max-SAT (pV q,10)A(—p V q,10)A(p V —q, 10)A(—p V —g, 10)
Result: Max sum of weights of satisfied claus&8)(
Partial Weighted Max-SAT| (p V @)A(—=p V @)A(p V —q, 10)A(—p V —q, 10)
Result: sat/Maximum sum of weights of unsat claud€}

Table 2.3: Propositional satisfiability variants. Satidfidauses are shown in boldface.

If F"andF" are two formulas such tha@t’ is true in all models of", then we say that” is alogical
consequencef F, orlogically followsfrom F', or thatF logically impliesF”’, and we denote it by
F = F'. Two formulasF andF” are said to b@logically) equivalentwritten F 5= F”, if, and only
if, they have the same truth value in each interpretati@n, @re either bothrue or both false), in
other words, iff’ = F’ andF’ |= F.

2.4.2 SATISFIABILITY MODULO THEORIES

Satisfiability Modulo Theories (SMT) is a generalizationSAT in which some propositional vari-
ables have been replaced by predicates with predefinegbiatations from background theories.
For example, a formula can contain clauses like, e ggV (z+2 < y)V(z > y+z), wherep and

q are Boolean variables andy andz integer ones. Predicates over non-Boolean variables,asich

29

linear integer inequalities, are evaluated accordingéatites of a background theory. Examples of
theories include equality, linear (integer or real) arigtim, arrays, bit vectors, etc., or combinations
of them.

Formally speaking, &heoryis a set of first-order formulas closed under logical consaga. A
theoryT is said to bedecidableif there is an effective method for determining whether sy
formulas are included iff".

The SMT problem for a theory' is: given a first-order formuld’, determine whether there is a
model of T"U {F'}. Usually, T is restricted to be decidable atfdis restricted to be quantifier-
free so that, while providing a much richer modeling langutigan it is possible with propositional
formulas, the problem s still decidable. The dominatingraach to SMT is based on the integration
of a SAT solver and a solver for the given thedrybeing in charge respectively of the Boolean and
the theory-specific components of reasoning. A survey ansihicalled lazy approach can be found
in [68].

It is also remarkable that state-of-the art SMT solvers haveeh input language, and it is not
necessary (neither convenient) to translate any formudedrset of clauses (CNF format) in order
they can read it.

SAT solvers are used for Bounded model checking, and Al prgnamong other things. Some of
the most used SMT solvers are Z3 [19], Yices [21], Barcel@@jiand MathSAT [10].

2.4.3 PSEUDO-BOOLEAN

A closely related problem to that of weighted Max-SAT is pd@Boolean optimizationPseudo-
Boolean constraint§PB-constraints) are linear constraints over Booleanabdes, that is, con-
straints of the formCylg + ... + C,,._1ln —1 > C,, where, for alls, I; is a literal andC; is an
integer constant. A true literal is interpreted as 1 and seféiteral is interpreted as 0, so that a
truth assignment satisfies a PB-constraint if the sum ofthevhose corresponding is assigned

to true exceeds or is equal to the right-hand constgnt Hence, PB-constraints can be seen as a
generalization of clauses, that coincide with clausesérctise that all the'; are 1.

The pseudo-Boolean optimizatiqPBO) problem consists in finding a satisfying assignmera to
set of clauses that minimizes a given objective functiorhefform>_"" , C;z;, whereC; is a non-
negative integer cost associated to the variablePBO is indeed a particular case of integer linear
programming (ILP) which is known as 0-1 integer programmivgreover, every PBO instance can
be translated into a partial weighted Max-SAT formula, veheach PB-constraint is translated into
a set of mandatory clauses [22] and the objective functidraisslated into a set of non-mandatory
clauses, each summaftx; becoming a unit clausef, C;).

Pseudo-Boolean problems can be straightforwardly fortadlas an integer program, in which the
non-linear constraints are linearized. This idea is usethbysolver glpPB, which applies GLPK

[26] for solving the IPs. The solver BSOLO [46] combines ge#e programming techniques with

SAT-solving. Another approach is from the point of view ohstraint integer programming (CIP),

the SCIP solver [4] is a combination of integer and constiaiogramming (CP) methods.

30

2.4.4 SJPERMODELS

Robustness for SAT formulas can be achieved by means ofrsgpets. The seminal work on robust
solutions for propositional logic formulas is the one of [2khere the notion osupermodeivas
introduced. The complexity for finding such supermodelsewvesal propositional logic fragments
has been studied in [63].

The definition of a supermodel is (from [25]):

An(S¢, Sb)-supermodedf a Boolean formuld” is a model oft” such that if we modify
the values taken by the variables in a subsespbf size at mosa (breakage), then
another model can be obtained by modifying the values of @hiables in a disjoint
subset of5; of size at mosb (repair).

An (5S¢, S%)-supermodel in which the breakag® J and the repair setS%) are unrestricted (but still
disjoint) is denoted as &, b)-supermodel. The task of findirig, b)-supermodels is NP-complete.
The approach followed by [25] is to encode the supermodelirements of a formuld™ as a new
formula Fsj; whose size is polynomially bounded by the sizeFof This new formulaFs, has a
model if and only ifF" has an(a, b)-supermodel.

For instance, the formul& = p V ¢ has three modeldp, ¢}, {-p, ¢} and{p, —¢}, which are all
(1,1)-supermodels given that if any variable changes its vahae(frue to false or viceversa) the
formula is either still satisfied or can be satisfied by chagdhe value of the other variable. The
encodingFs), fora(1, 1)-supermodel of", according to [25], would be:

break inp

original I/ no repair repairq
—~ —— ——
(pVa)A ((ﬂqu)V(ﬁp\/ﬂq))
M@V =)V (pV—a))
—_——— ——

no repair repairp

break ing

Note that, for instance, if the satisfying interpretationogel) chosen foif'sy, is {-p,q}, i.e.,
{p = false,q = true}, thenpV q is satisfied and, moreover gfswitches tdfalse, then a new model
for p vV ¢ can be obtained by switchingto true. That is, a break iy has a repair op. The key
idea is that the value of the subformut@ v —¢ under the initial interpretation coincides with the
value ofp Vv ¢ under the repaired interpretation and, herf¢g,; has a model if and only if" has a
supermodel. Note also that only the first mofielq} is a(1,0)-supermodel.

2.4.5 SJPERSOLUTIONS

The concept of(a, b)-supermodel for propositional logic was generalized td tfa(a, b)-super
solutionin the context of Constraint Programming (CP) in [30]. Anb)-super solutionis one

31

in which if at mosta variables lose their values, the solution can be repaireddsjgning these
variables with new values and also changing the values obatiother variables. The new values
taken by the variables can be any other in its respective thema

The paper [30] focused mainly on (1,0)-super solutions;esiimding super solutions for values of
a higher than 1 highly increases the complexity if the prohlemd provided two alternative ap-
proaches for finding such robust solutions: either via mefdation or via search. The reformulation
approach, called® + P, duplicates the variables. The duplicated variables ha@esame domain
as the original ones, and have the same constraints. Additomnstraints are added between each
original variable and its duplicate so that they cannot hheesame value. Figure 2.5 shows an ex-
ample of reformulation with 3 variables,(b andc) and 2 restrictions. An assignment to the original
variables is a super solution, where the repair is given bydtiplicated variables.

Figure 2.5: Example of (1,0)-super solution reformulafionCP.

This work also addressed the problem of finding the “most sblsolution” for the cases that a

robust solution does not exist. The most robust solutionsislation that maximizes the number of

repairable variables. In a later paper [29] the same autiisosaddressed the problem of finding the
“most robust optimal solution” and the “optimal robust g@na”.

2.4.6 WEIGHTED SUPER SOLUTIONS

In order to deal with application problems such as real wedchbinatorial auctions théx, 5)-
weighted super solution85] were developed, since super solutions were not exipeessough
because they only considered the number of changed vesiabkxled to repair a break. Instead,
weighted super solutions introduce the breakage probafil) and the cost of repairs to replace
the parameters andb of super solutions.

Weighted super solutions (WSS) were mainly applied to coioirial auctions, and more con-

32

cretely to the problem of bid withdrawal. When a winning bédwithdrawn®, there is a loss in
revenue for the auctioneer, who is left with unallocateth#ehat could be wanted by other losing
bidders. There is therefore an opportunity for the auctone reduce the resulting loss in revenue
by reallocating these items to some of such losing biddeas‘tepair” solution.

2.5 ROBUSTNESS INAUCTIONS

There are several works that deal with robustness with oegpepotential manipulations of the
auction mechanism, such as false-name bids [75, 48]. Hawiingis not the concept of robustness
we are interested in.

As we have described before, we focus our research on rafssstf the solution to the auction.
Some works, such as [59, 58] add the concept of robustifes$ folerancg to mechanism design
in order to deal with potential failures in the executionadits by the agents. However, these works
handle robustness using a probabilistic approach, andhéon ta robust solution is one that, on av-
erage, will perform well. Thus, since they rely on expectatlgs, there could still be situations
where a robust solution would perform badly. Nevertheltsgsy approach is appropriate in scenar-
ios where there is no possibility of performing repairs ie #olution. In contrast, we do consider
the possibility of repairing solutions (e.g. reassigniogds) and hence in our approach we provide
robust solutions that can be repaired in case any poteatiaté would arise.

Another closely related problem is that of robust knapsa@ék (i.e. a knapsack problem where the
weights and/or values of the objects are imprecise). Gikanrany auction mechanisms can be
modeled as a knapsack problem [39], it is reasonable to thatksome of the robust approaches to
this problem may yield robust solutions to auctions. Howgthee robustness concept used in the
field of knapsack is somehow different to ours, since it dadsansider the possibility of repairing a
solution. Instead, a robust solution of a knapsack problé@mimprecision is such that, on average,
performs well regardless of what the actual weights or \&abfdhe objects are, in a similar way to
the robustness presented in [59, 58].

As far as we know, the only previous work that has dealt witlitgzn repair in combinatorial auc-
tions is that of [36]. This work addresses the problem of bithdrawal (i.e. a bidder that withdraws
a winning bid), and, in order to find robust solutions, uéess)-weighted super solutionsThe
concrete definition of a robust solution for a CA with WSS i®(f [34]):

A robust solution for a combinatorial auction is one wherg anbset of successful bids
whose probability of withdrawal is at least can be repaired by reassigning items at
a cost of at mosp to other previously losing bids, in order to form a repair stbn
whose revenue is at least a fraction,of optimal revenue.

Our work is quite similar, since our approach is also baseslpermodels and we look for solutions
with a bounded cost. However, we consider the problem oimesounavailability, which is not con-
sidered in [36]. Moreover, we are also interested in keetlieqiumber of repairs low, which is only
done indirectly (through the cost function) in [36]. In atigi, our techniques are completely differ-
ent because we use the logic framework of weighted Max-SAiTSatisfiability Modulo Theories,

6The withdrawal of losing bids is not considered becauseetigeno need for the auctioneer to change the solution since
all items are already allocated.

33

while [36] presents an ad-hoc search algorithm to find rosolsttions.

2.6 SUMMARY

In this chapter we have provided the necessary backgroutttedopics that we shall use in the rest
of this dissertation. We have identified combinatorial &g as a natural and effective way to deal
with resource allocation problems. The problem of resour@vailability appears in the application
domains where the transaction phase is not instantanewditherefore some way of finding robust
solutions is desirable. We have also identified that ingerdgdmpatibility issues are a major concern
for auction designers and need to be taken into account.

Our approach for robustness is based on the concept of sagelnsomplemented with some ideas
from weighted super solutions. However, the model that wepepose is not plain SAT as in
supermodels, neither CP as in super solutions and weighfet solutions. Instead, we will for-
mulate it in SAT Modulo Theories (SMT), in order to take adieaye of the recent advances that
its solvers have achieved and will improve for sure in thetfiew years. SMT is closely related to
Pseudo-Boolean, therefore, we have also introduced thesgaxy background on both areas.

The following chapter performs a sensitivity analysis, ethivill make clear the importance of
incorporating robustness in combinatorial auctions theatl advith uncertainty regarding resources
becoming unavailable.

35

CHAPTER 3
Sensitivity Analysis

In this chapter we perform an analysis of the sensitivityhef dptimal solutions in combinatorial
auctions against resource unavailability. This analysjides a strong motivation for our research,
as it proves that breaks in resources may have a hard negeffget in the revenue of the optimal
solution and, therefore, robust solutions instead wouldioee useful as they would be less affected.

3.1 INTRODUCTION

Resources becoming unavailable after a solution to anauistfound may produce negative effects,
since the winning bids that contain such items must turn $er® and therefore their price is lost
(deducted from the revenue). In this chapter we study hoectgtl is the revenue against resource
unavailability in a set of different scenarios (distrilaurts) in what is called theensitivity analysis
This analysis will make clear the importance of robustnessich kind of problems.

A similar analysis was performed in [34] for the case of bidhdrawal. The conclusion of that
analysis was that robust solutions are needed in all thahdigbns (in ones more than in others).
We perform an analogous analysis regarding resource abiiy, incorporating some additional
experiments and results.

The sensitivity analysis is performed by running a largeo§eandomly generated instances using a
combinatorial auction generator. We first solve the winregetmination problem of each instance
in order to find its optimal solution. Then we simulate reseuunavailability by removing all the
items in the auction one by one, in order to examine the effetthose breakages in the revenue.
Whenever a resource is removed, it means that all the bidsioomg it are also removed, and in
case that some bid was part of the optimal solution (it wasraing bid), then it is removed from
the auction and consequently its price is deducted fromaenue. After that, we try to find a repair
to that breakage in order to get as much revenue back as [gosHile intuition is that the more bids
participating in the auction, the greater revenue will begildle to be recovered. The objective of
this analysis is to analyze the curve of percentage of ofityrragarding the size of the instances,
in a set of different distributions, in order to discover ihigh situations solution robustness would
be more useful.

We have used the Combinatorial Auction Test Suite (CATS) fdhgenerating all the auction in-
stances. We have used the 4 “real-world” distributionshpétepresenting transportation problems),
arbitrary (for modeling electronic parts), matching (eg@nting allocations for airline take-off and
landing slots) and regions (for property and spectrum sigltius one of the “legacy” distributions:
L7 (the binomial distribution). For each distribution wevkecreated 100 different instances with
the number of items fixed to 20, and the number of bids rangimg fL00 to 2000 (at intervals of

36

100). The other CATS flags used for the generation aregiides” and “bidalpha = 1".

We have generated instances with and without dominated bAdbid is dominated (by another
bid) when its set of items includes another bid’s items aadiice is lower. More formally, for
each pair of bidsb;, b;) where the set of items @, g(b;) is included in the set of bids df;, i.e.
g(b;) C g(b;), and its pricep is higher, i.ep(b;) > p(b;), b; is dominated by,. Figure 3.1 shows an
example of a dominated bidy(dominates,). It actually means that dominated bids cannot appear
in optimal solutions (that do not consider robustness) ag #re never preferable to the bid that
dominates them. This is the reason why CATS instances amraggncreated without dominated
bids, and this is the case also in [34]. However, dominatdd bould take part of an optimal robust
solution and therefore we have made experiments also wéth th

- e - -

Figure 3.1: Example of dominated bids.

3.2 REALLOCATION AND FULL-REPARABILITY

Regarding the repairs we have examined two different schken@n the one hand, we take the
“reallocation” repairing mode of [34], which assumes tHa¢ fuctioneer is unable to withdraw
winning bids, and therefore the items becoming availakikr dfie breakage, which are the items of
the bids that have been broken (in [34] because they haveviaidedrawn, and in our case because
they contain items that have become unavailable), can angskigned to (losing) bids requesting
subsets of them. On the other hand, we consider the alteenatti‘full-repairability”, where the
auctioneer has the full control and could withdraw winningstif required, in order to construct a
new solution as close to the optimal as possible.

The procedure for the sensitivity analysis that we perfarine following. First, each instance of a
combinatorial auction (created with CATS) is convertedridrdeger linear program (CATS can be
used as well to generate the ILP instance). After that, thiengbsolution to the auction is found by
using CPLEX ILP solver (version 12). Then we simulate resewmnavailability by removing every
single item of the auction and solving the resulting modifiedtion. For the “reallocation” setting
the resulting modified auction is only composed by the bidgaiaing subsets of the items that had
been left free by the winning bid that included the removethi{causing the bid to be now loser).
Hence, the revenue of the repair solution would be compdedearevenue of the original (with all
the items available) optimal solution, deducting the po€¢éhe removed winning bid, and adding
the revenue of the optimal solution of the modified auctiorar the “full-repairability” setting,
we simply delete all the bids containing the removed item i@agolve the modified auction. The
revenue of the repair solution in this case is given direoylyhe revenue of the optimal solution of
the modified auction.

Once the process is finished and all the revenues from opginghtepair solutions have been found,
the percentage of optimality of the repair solution is cotaglas the revenue of the repair solution
divided by the revenue of the original (with all the items iatale) optimal solution. The figures

37

below show two curves for each distribution, one displaythmigyaverage over all the instances and
the other plotting the worst case. The X axis representsuhgder of bids of the instances and the
Y axis is the revenue of the repair solution divided by theeraie of the optimal solution, i.e. the
percentage of optimality.

In Figures 3.2 and 3.3 we observe the sensitivity analysisltefor the “reallocation” scheme over
all the distributions. We can observe how the curve of oplitpnaf the repairs increases as the
number of bids is higher, which was excepted given that tgkdrithe number of bids, the easier is
to repair any breakage, since there are a lot of bids to cHomse We also see that the differences
between instances with dominated bids and without them,eapainted out before, give slightly
better optimality to instances that contain dominated bigsertheless the differences seem to be
very low. Regarding the differences amongst the distrimgj we notice that there are three distri-
butions (arbitrary, regions and L7) that are clearly atddty resource unavailability while the other
two (paths and matching) are not that affected.

Therefore, solution robustness seems to be specially luiefarbitrary, regions and L7-like in-
stances on not very large problems, since arbitrary onlyeaeb between 80% and 94% of opti-
mality in average and between 65% and 88% for the worst caskfoa regions, although it gives
slightly better optimality, the values are between 82% aithJor the average case and between
65% and 89% for the worst case. Conversely the L7 distribugiets the worst results with values
between 5% and 13% in average and between 0% and 1% in the sasest On the other hand,
paths-like and matchings-like instances do not seem toinethat much looking for robust solu-
tions since the optimal solutions seem to be quite inhegrentlust, specially for large instances.
We observe values between 91% and 92% for the average casetveen 79% and 82% for the
worst case in the matching distribution, and even bettep&ths with an optimality between 94%
and 95% on average and between 92% and 93% in the worst case.

However, even in those distributions that seem to be not naffelcted by resource unavailability,
there is a loss of revenue between 5% and 9% in average (awédre7% and 21% in the worst
case), which is also enough to motivate the developmentmfatness techniques.

Figures 3.4 and 3.5 show the same results for the “full-repdity” scheme. We can appreciate
the differences on the percentages of optimality that hexenaich higher than in the “reallocation”
scheme, which was expected since the repair in this schema Wider range of action. In these
cases, the percentage of optimality of the repair solutioise arbitrary distribution goes between
91% and 95% on average and between 81% and 91% in the worsindask is considerably higher
than in the previous case. In the regions distribution tHeesgo from 89% to 95% on average
and between 76% and 91% in the worst case, which is againlgdtiiner than in the reallocation
scheme. For the L7 distribution the optimality goes from 92984% in average and from 87%
to 94% in the worst case, which are extremely better resu#ts in the previous setting. For the
instances that were not much affected in the previous ca&se,the results are quite similar. For
the matching distribution we get values from 92% and 93% @a¥erage cases and between 81%
and 83% in the worst cases, which is only 1% or 2% higher thathénprevious case. For the
paths distributions the obtained values are 95% on averagjbetween 92% and 93% in the worst
case, which is pretty much the same results as before. Aga&rcan conclude that even in the
most robust distributions, there is a loss of optimality bbat 5% on average and 8% in the worst
case, which could be sufficient in some domains to considerporating robustness. Obviously,

38

1 T T T T T T T T T 1 T T T T T T T T T
g g
E osf g E osf g
g g
5 5
5 5
& &
g g
3 3
§ 04r g § 04r g
g g
3 3
-4 -4
02 g 02 g
Average Repair Solution Revenue —— Average Repair Solution Revenue ——
o)))) . Worst-case Repair Solution Revenue --—x--- o)))) . Worst-case Repair Solution Revenue --—x---
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Bids Bids
@) (b)
1 T T T T T T T T T 1 T T T T T T T T T
Lo e —— — Y
(.8 s e TR R R R e R e e B
g g
E osf g E osf g
g g
5 5
5 5
& &
g g
3 3
§ 04r g § 04r g
g g
3 3
-4 -4
02 g 02 g
Average Repair Solution Revenue —— Average Repair Solution Revenue ——
o)))) . Worst-case Repair Solution Revenue --—x--- o)))) . Worst-case Repair Solution Revenue --—x---
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Bids Bids
1 T T T T T T T T T 1 T T T T T T T T T
[+ —— e —— | —
08 g 08 g
£ £
5 5
E o6 q E o6 q
g g
5 5
5 5
g g
o o
2 2
5 04r g 5 04r g
g g
3]
3 3
02t g 02t g
Average Repair Solution Revenue —— Average Repair Solution Revenue ——
)))) _ Worst-case Repair Solution Revenue ~——)))) Worst-case Repair Solution Revenue —-x-—
0 0
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Bids Bids

(€) ()

Figure 3.2: Reallocation results. (a) Arbitrary, (b) Arbity without dominated bids, (c) Matching,
(d) Matching without dominated bids, (e) Paths, (f) Paththaiit dominated bids.

in the distributions that are highly affected by resourcauailability such as arbitrary or regions,
robustness is without any doubt a necessity.

3.3 REPAIR SIZE ANALYSIS

When repairing a solution, in the previous analysis (as a&lh the sensitivity analysis of [34]) we

have not cared about the size of the repair, since the obgauftthis analysis was to see the potential
effects of resources that become unavailable on the revamezefore, the size of the repair could
be as large as required with the aim of finding the best pasegplair solution. In practice, however,

39

Revenue (% of optimum)
Revenue (% of optimum)

02 g 02 g
Average Repair Solution Revenue —— Average Repair Solution Revenue ——
o)))) . Worst-case Repair Solution Revenue --—x--- o)))) . Worst-case Repair Solution Revenue --—x---
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Bids Bids
@ (b)
1 T T T T T T T T T 1 T T T T T T T T T
08 g 08 g
g g
E osf g E osf g
g g
5 5
5 5
& &
g g
3]
§ 04 q § 04 i
g g
3 3
-4 -4
02 g 02 g
Average Repair Solution Revenue —— Average Repair Solution Revenue ——
N . Worst-case Repair Solution Reyenue ------ o) . . Worst-case Repair Solution Revenue -—-x---
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Bids Bids

Figure 3.3: Reallocation results. (a) Regions, (b) Regisitisout dominated bids, (c) L7, (d) L7
without dominated bids.

the size of the repair may not be unlimited, and repairs ofllssime would be preferred, since the
participants do not need to be bothered much whenever a lsrpatiduced, which could give a bad
impression to the participants if the solution was changexddetely at every break, moreover given
that it is possible that some of them had began some acticesllman the previous solution.

In this section we analyze the repairs’ size in order to seethdr the previous (optimistic) results
were realistic enough or otherwise required too many chaingé¢he solution that they were not
actually practicable in real world situations. Thereforestudy the number of changes required for
the repair solution. If this value was low, it would mean ttiet size of the repair is not a crucial
factor to consider. However, we will see that this is not tasecindeed.

For this analysis we will not experiment with all the distrilons, since the results would be quite
similar, instead we will choose only one of them. The chosais the regions distribution, since in
the results of the previous section we saw that it is not thetmifected distribution when resources
become unavailable (the most affected is L7) nor the lehstiéast affected are matching and paths)
and therefore the results should be representative enough.

In Figure 3.6 we see the results of the regions distributimh the reallocation scheme. The graph
shows the average and worst case (largest) size of the @paialso the size of the solution, for
both dominated and non-dominated instances. We obsertalthaugh the average repair size is
always between 1 and 2, the worst case can be much largerQuip tmon-dominated instances, and

40

1 T T T T T T T T T 1 T T T T T T T T T
S
e R VXV/V,*,,,,)(,,">e»r—»x—r»—94r-~>(r-»r>¢r-r—x——rr><rr-rr><r-»—%"V—XrA»rx—r——rx—w—xr—-raer-ﬂ
T e
08t g 08 ¥t g
g g
E osf g E osf g
g g
5 5
5 5
& &
g g
3 3
§ 04r g § 04r g
g g
3 3
-4 -4
02 g 02 g
Average Repair Solution Revenue —— Average Repair Solution Revenue ——
o)))) . Worst-case Repair Solution Revenue --—x--- o)))) . Worst-case Repair Solution Revenue --—x---
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Bids Bids
@) (b)
1 T T T T T T T T T 1 T T T T T T T T T
[|
B A S Tt S I S
08 R 08F g
g g
E osf g E osf g
g g
5 5
5 5
& &
g g
3 3
§ 04r g § 04r g
g g
3 3
-4 -4
02 g 02 g
Average Repair Solution Revenue —— Average Repair Solution Revenue ——
o)))) . Worst-case Repair Solution Revenue --—x--- o)))) . Worst-case Repair Solution Revenue --—x---
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Bids Bids
1 T T T T T T T T T 1 T T T T T T T T T
—] —— T S S —
08 g 08 g
£ £
5 5
E o6 q E o6 q
g g
5 5
5 5
g g
o o
2 2
5 04r g 5 04r g
g g
3]
3 3
02t g 02t g
Average Repair Solution Revenue —— Average Repair Solution Revenue ——
)))) _ Worst-case Repair Solution Revenue ~——)))) Worst-case Repair Solution Revenue —-x-—
0 0
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Bids Bids

(€) ()

Figure 3.4: Full-reparability results. (a) Arbitrary, (Ajbitrary without dominated bids, (c) Match-
ing, (d) Matching without dominated bids, (e) Paths, (f)Bawithout dominated bids.

up to 12 for dominated ones. In this case, the size of the pnabboes not seem to affect too much.
However, we see that the worst case is always around 7. Alththe sizes of the repairs are small,
they represent about 10% of the solution size in averageshwdould be enough in some domains
for requiring robustness, and in the worst cases it goes 6p%b6 (exceeding 100% in one case).

These results point out the necessity of establishing aermpgpund for the repair size, since we do
not see any tendency in the graphs and therefore it does @t tbat the repair size can be actually
predicted or controlled at all. Thus, imposing a limit in tiepair size would avoid such large size
of the repairs that otherwise could be needed in some ins¢anc

41

1 T T T T T T T T 11— T T T T T T T T
S
/zi»e»—rrx—-»—x““‘x""*""X""*”‘%'"'xﬂ"'X""Xr"'*"”X""*m’xrm x/%,_,%,,_X,,,,,X,_,,X_,.,%,,,,x_,,,%rmxﬁ.,9(,.,,x,,,,*,_,,x,,_,*,,,,x,,,,
e e
X T
08 | 4 08 L g
g g
E osf g E osf g
g g
5 5
5 5
& &
g g
3 3
§ 04r g § 04r g
g g
3 3
-4 -4
02 g 02 g
Average Repair Solution Revenue —— Average Repair Solution Revenue ——
)))) . Worst-case Repair Solution Revenue --—x--- oL))) . Worst-case Repair Solution Revenue --—x---
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Bids Bids
@ (b)
1 T T T T T T T T 11— T T T T T T T T
,,,,,,, | g
= e
08 g 08 g
g g
E osf g E osf g
g g
5 5
5 5
& &
g g
3 3
§ 04 q § 04 i
g g
3 3
-4 -4
02 g 02 g
Average Repair Solution Revenue —— Average Repair Solution Revenue ——
)))) . Worst-case Repair Solution Revenue --—x--- oL))) . Worst-case Repair Solution Revenue --—x---
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Bids Bids

(©

(d)

Figure 3.5: Full-Reparability results. (a) Regions, (bpRes without dominated bids, (c) L7, (d)
L7 without dominated bids.

T T T T T T T T T T T T T T T T T =
XX semem
12 o 4 12+ x - 4
e i e
e e
T
10r X 1 d
7
1 jo— 1
@ \ @ g
> ; VAR X, > X \ e
& - X N %/ X et & JO— R A
© N 4 N
% X e \
4r q 4+ 4
2+ q 2+ q
Worst-case repair size —+— Worst-case repair size -
Solution size - Solution size ---x---
ol ; f ; f
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Bids Bids

@

(b)

Figure 3.6: Repair size analysis. (a) Without dominated ki) With dominated bids.

3.4 SUMMARY

In this chapter we have performed an extensive sensitivig}ysis that has proved the importance
of incorporating robustness mechanisms for combinataxiations, since the optimal solution in

many distributions is highly affected when some of the resesibecome unavailable, both in terms
of revenue for the auctioneer and number of changes requinegbair the solution.

42

Concretely, we have seen that the most affected distribsitéwe arbitrary, regions and L7. Addi-
tionally, we have observed that when the number of bids ig faggh, robustness is not required
so much, since a repair can be easily found anyway. Therdfotke following chapters we will
restrict our experiments with the distribution L7 and witheatricted number of bids.

For the experiments in this chapter we have only consideted happens when one of the resources
turns unavailable. If the number of resources that becoragailable was higher it is expected that
the results should be even worse in terms of a greater loss@émue for the auctioneer and, therefore,
robustness mechanisms would be even more necessary.

The following two chapters show how to find robust solutiomsdombinatorial auctions using an
encoding based on an extension of propositional logic. Téhe chapter shows a strict modeling
that finds robust solutions with hard constraints, whileftilewing chapter presents a more flexible
modeling, based on soft constraints, which could be morahielin some applications.

43

CHAPTERA4
Robustness of Resource Availability

In this chapter we formalize the concept of robustness fesuece allocation problems formulated
as combinatorial auctions. We begin by representing theuss allocation problem as a combi-
natorial auction, and encoding that auction as a weightedkMBAT formula. Then, we extend that
encoding in order to incorporate robustness. The extensicimilar as for supermodels, but we
also consider resource availability and add a parametet thaarantees a minimum revenue of the
solution, including all the possible repairs. The new eringds proved mathematically and the re-
sulting model is tested varying the different parametensl with several solvers. In the next chapter
we will add a modification to the encoding in order to add fl@kibto it and facilitate the task of
defining the desired balance point between optimality abhdstess.

4.1 SCHEMATIC VIEW

Our approach of robustness for resource allocation prableinased in four steps:

1. Representing the resource allocation problem as a catasial auction
2. Modeling the combinatorial auction as a propositionaifola (Max-SAT)

3. Extending the Max-SAT formula in order to incorporateusimess, so that the solution of the
formula implies a robust solution to the auction, and to thigail resource allocation problem

4. Solving the extended formulain order to find a solution ihia robust solution of the resource
allocation problem

Figure 4.1 shows an schema of our approach. We begin withbamesallocation problen? which

is converted to an auctiod. This auction is then transformed into a partial weightedkNbAT
formula F4 that encodes exactly the same auction (and the originaliresallocation problem).
Then, in order to add robustness we add some clauses to thelfgrhence we get a new larger
formulaFﬁM, which is not Max-SAT but Max-SMT (since it has some ineqiigd). Then we use a
Max-SMT solvet in order to find a model of the formuld',,. This model is actually a supermodel
of the formulaF4, which turns to be a super solution to the auctigrand finally, a robust solution
for the original resource allocation problef

The initial resource allocation problem is written as a comatorial auction by putting the resources
requirements of the different agents as the bids of the @uctind their valuation as their prices. In

1Apart from SMT, the model can be written as a pseudo-Boolearinear Programming problem as well.

44

RA problemP - --------- > robust allocation o

A

)

auction4 ------------3 > super solution ofd

Weighted Max-SAT
encoding
FA-ccecmecaaanann > supermodel of™4

Weighted Max-SMT

encoding

v

@
Fgy

N A
» model of F'¢,,

Figure 4.1: Schematic view.

the following sections, we will explain how to encode an @&rcinto a partial weighted Max-SAT
formula. Then we will define concretely what is robustnessfoauction and see how to incorporate
robustness through a reformulation of that formula.

4.2 AUCTIONS AS PARTIAL WEIGHTEDMAX-SAT PROBLEMS

An auction can be easily encoded as a partial weighted Mak-f6Anula [38, 32]. A partial
weighted Max-SAT formula has the forii = C' A W, whereC' denotes the set of mandatory
constraints, and’ denotes the set of weighted, non-mandatory constraintthelistandard mod-
eling (non-robust), a set of Boolean variables encode eathb..., b, to indicate whether it is
winner or loser. The mandatory clauses of the formula enttueleestrictions regarding the items of
the auction (the resources of the resource allocation pnajothat cannot be assigned to more than
one bid (to more than one agent or task in the respective res@liocation problem). Hence, the
mandatory clause£|) are the following:

e Bid incompatibility For each pair of incompatible bidg (i # j), i.e. such tha&; NG, # 0,
whereG; is the set of resources requested bybide state:

—b; V —b; (4.1)

since it is not possible to assign both bids as winners, givatithey share some items.
The non-mandatory clauséd’() are the prices (weights) of the bids:

e Bids’ values For each bid we add a weighted unit clagsg p;) indicating that if the-th bid
is not part of the solution, then there is a loss of revenyg .of

The sum of values of the satisfied weighted clauses will beirmiagd when solving the weighted
Max-SAT problem, which means that the revenue of the augtienthe sum of winning bids) will
be also maximized.

45

This encoding allows finding an optimal solution, but doesaumsider robustness. Since we deal
with robustness against resource unavailability, we fixstred this encoding by adding another set
of Boolean variables to represent resource availahjlity.., g,,. We also need to add the following
mandatory clauses, which will be includedah

e Resource availabilityln order to indicate resource availability we state:
bj = gig N ... A\ Ginj (42)

to indicate that whenever bidis accepted, then all of its goods must be available. (, i,
are the indices of the goods of the bid.e. G; = {giy, .-, 9i ; })-

Finally, we allow to introduce additional constraints irder to tailor the auction to follow specific
rules. For instance, we could add the constraint that eaehtagns at least one of its bids (we will
use this restriction in the example of Section 4.4):

e Minimum winning bids

For each seR;, = {i1,...,i,, } corresponding to the bids of agentwe state the following

mandatory clause:

bi, Voo Vb,

Any additional constraint (as long as it is formulated as alBan formula) could be added. For
example, we could easily introduce other constraints onntimaber of winning bids (e.g. set a
minimum, maximum or exact number of winning bids per ageimpose the non-free disposal
condition (i.e. every good must be allocated to some agengyen introduce constraints over the
goods being allocated (e.g. if godd is allocated to some agent, then gddodtannot be allocated
to any agent), among others. The latter would allow us toesgpimcompatibility between goods:
for instance, in the conference room assignment scenaeaonld have a large rooni that can
be also reconfigured into two smaller roonss (S2), but obviously we could not allocate both the
large and some small room at the same time. We could thentsattausd, — =S A —=.55.

Moreover, if we consider directly encoding the problem asMirSormula (e.g. SAT modulo
quantifier-free linear integer arithmetic) instead of pISIAT, as we will see in the following sub-
section, then the encoding of such constraints would bagktfarward thanks to the higher expres-
siveness of the language.

The conjunction of the previous sets of clauses is a weighitext SAT problem for the auction. In
the following section we show how a weighted Max-SAT formita defining an auctiont can be
transformed into a weighted Max-SMT formula defining a rdlwession of the former. In particular,
we describe how to obtain a weighted Max-SMT formild,, such that’s,, has a model if and
only if A has an(a, b, 8)-super solution (see definition below).

4.3 ROBUST AUCTIONS AS PARTIAL WEIGHTEDMAX-SMT
PROBLEMS

Robustness with reparable solutions is defined based oe gammetersa, b and 3, wherea is
the number of breakages that the solution can abgoithe maximum size of a repair (number

46

of variables changed), artlis the minimum benefit of the solution (including its possitgpairs).
Thus, the definition of am(b,3)-super solution is the following:

Definition 1. An (a, b, 8)-super solutiorof an auction is a (maximal revenue) solution for the auc-
tion such that, ifa goods become unavailable (breakage), then another solgto be obtained by
changing at moghb bids from winner to loser or vice-versa (repair) and, moregthe solution and
all possible repaired solutions have a revenue of at Igast

Note that asking for a (1,0)-super solution would make no sense, since this meansihgratly
break (a good becoming unavailable) by not changing anyds@jament. However, we must bear
in mind that if a good becomes unavailable, an immediate ghamust be made to the variable of
the winning bid requesting that good (resource availgbdgnstraint), which should become loser.
Given that a super solution must handle any possible break ifi the case of = 1, any single
resource break), the only (18;super solution would be to assign all bids as losers, seakin

a resource would not affect any bid. But obviously this solutvould be totally useless. A more
reasonable demand would be that of (8)isuper solution, where one break should be repairable
with one change in bid assignment, and so this single chargédvwbe on the bid requesting the
affected resource, leaving the rest of bids unaltered.

4.3.1 ROBUST AUCTIONS AS ROBUST PARTIAL WEIGHTEDMAX-SAT PROB-
LEMS

Now that we have defined the concept of robustness in auctieasieed to map it to the SAT
framework. The following definition generalizes the one28][to weighted Max-SAT.

Definition 2. An (5¢, S5, 3)-supermodel of a partial weighted Max-SAT formilds a (minimal
cost) model ofF' such that if we modify the values taken by the variables inbsetuofS; of size
at mosta (breakage), another model can be obtained by modifying dh&eg of the variables in a
disjoint subset o, of size at mosh (repair) and, moreover, the solution and all possible repdi
solutions have a cost of at most

Note that while in auctions the objective is to maximize teeenue of the auctioneer, in weighted
Max-SAT the objective is to minimize the cost of the unsatidfclauses. Therefore the previous
definition updates the one in the previous section takingitita account.

Next lemma shows that finding a super solution for an auctlois equivalent to finding a su-
permodel for the formuld™# that encodes the auction. Nevertheless there is a subilenastyy
concerning initial availability of goods. Namely, notidet in auctions, all goods are assumed to be
available at the starting point, while i, values for variables denoting availability of goods are
not established. Fortunately, next fact shows that for autiyral supermodel of 4, there exists an
equivalent supermodel (i.e., a model with exactly the satimaivwg bids) with all good availability
variables set torue.

Fact 1. For any auction4 havingN goods andV/ bids, letF"4 be the formula encoding it. Kis an
(S¢, S5, B)-supermodel of'4, whereS; = {g1,...,gn} and Sy = {by, ..., bar}, then there exists a
supermodel” where all availability variables are set to true ant(b;) = 1(b;) forall 1 < i < M.

47

Proof. Let I be an 6, S5, 3)-supermodel of"4 such that for some; I(g;) = false. Let I’ be
an interpretation fo#"4 such thatl’(b;) = I(b;) forall 1 < i < M andI'(g;) = true for all

1 <4 < N. The cost ofl’ is the same as the one bbecause it falsifies the same set of weighted
clauses thaf sincel’(b;) = I(b;) forall 1 < i < M, andbid’s valueclauses are the only weighted
ones, thereforé’ is optimal too. Concerning repairability, it is not hard &eshat for any breakage
s’ (with s C S; and|s’| < a) in I’, there exists some breakagdwith s C S; and|s| < |])

in interpretation/ such that for every; that is false in I’ under breakag€/, g; is alsofalse in I
under breakage Therefore, all bids allowed (accordingresource availabilitformula) in7 under
breakages are also allowed i’ under breakage’. Finally, sincel is an (¢, S, 3)-supermodel
and|s| < a, s must be repairable and hence, havingnd’ the same values for dll, s’ must also
be repairable for’. O

Lemma 2. An auctionA with N goods andV/ bids has ar(a, b, 5)-super solution if and only if the
partial weighted Max-SAT formul&4 has an(S¢, S8, 5’)-supermodel wher8; = {g1,...,9x},
Sy = {b1,...,byp}, and cost (i.e. loss of revenug) = (vailpi) — 3, andp; is the value of the

i-th bid.

Proof. (=) According to the existing robust solution fdrand without loss of generality. according
to the previous fact, we define an interpretatichfor F4 that sets tarue all good availability
variables and all winning bid variables, and setsftdse all loser bid variables. Now we prove
that 74 is effectively an 6%, S8, 5)-supermodel ofF'4. From the construction of'4 and I it

is easy to see thdt! = 4 becausd™ encodes the auction semantics of bid incompatibility, of
resource availability and of any additional restrictioe #uction may have. Moreover, the cost of
F4 underI* is the sum of the prices of the loser bids, in other words, dkal amount of the prices
minus the winning ones, i.d.>"", p;) — (M, pi|I*(b;) = true). Since our auction solution is
an (u, b, 5)-super solution, we have th&d" | p;|I4(b;) = true) > 3, and hence the cost df*
underZ4 is at most(3>, p;) — 8 as required.

Next, we need to prove faf* that any breakage of size at most a.$ncan be repaired with at
mostb changes inS; variable values withu cost of at mos{3’. Since our auction solution is an
(a, b, B)-super solution, when any (at moatjoods become unavailable, there exists a repair of size
at mostb on the winning bids, that has a revenue of at Igadtiotice that having a breakages means
changing the value of a variables encoding good availgl§ititm true to false. Therefore, for any

a changes in5; variable values, we can build an interpretatkm consisting on the samg* but
where thex variables of the breakage have been setdbse, and theb variables corresponding to
the winning bids of the repair of the auction have been flipgesimilar reasoning as faf* serves

to prove that’!, |= F and thatF™* has a cost of at mo$ty";" | p;) — 8 under interpretatior’,.

Finally, since our auction super solution is optimal, ssif . Suppose the opposite. Then there
would exist an ¢, S5, 3')-supermodel”’ of 4 with cost smaller than the one éf'. FromI’ we
could build an §, b, 5)-super solution for4, following the reasoning of the<) part of the proof,
and this would have a greater revenue than the original sgbetion, contradicting its optimality.

(<) LetI” be an §¢, S8,)-supermodel of*“. We can build a bid assignmesi. for the auction
A, setting as winning bids all the bidsuch that/ *(b;) = true. Sincel4 | F4 and 4 satisfies
all the semantics of the auctiof, S;4 is effectively a solution ofd. Moreover,F'4 has a cost
equal to(X1, p;) — (M, pilI4(b;) = true) underI*, and we know that this cost is smaller

48

than or equal tg3’, which amounts t((Z;Vilpi) — (. Therefore, the revenue ¢f;4, namely
(M pil T4 (bi) = true), is at leasp.

Now we need to prove that for any (at moatgoods becoming unavailable, we can change (at
most)b bid values ofS7a from losers to winners or vice-versa, still obtaining a siolufor A with

a minimum revenue off. Sincel” is an (5¢, S%, 5')-supermodel ofF4 we know that for any
(at most)a value changes (w.r.tI4) of variables inS;, we can build another model far4 by
changing (at most) values of variables i%s. Let’s call this interpretatioﬁf’b. ThenSILfb is a bid
assignment for auctiod when at most: goods become unavailable, involving at mbshanges in

bid assignment w.r.tS;4. With a similar reasoning as befor&;;b is a solution of auctiom with

a minimum revenue of.

Finally, since ourF4 supermodel“ is optimal, so it isS;4. Suppose the opposite. Then there
exists an ¢, b, 5)-super solutiors” of A with profit greater than the one 6%4. From S’ we could
build another §¢, S, 3’)-supermodel foF=# following the reasoning of the=¢) part of the proof,
and this would have a smaller cost th&h, contradicting its optimality. O

Now we show how to construct a partial weighted Max-SMT folanids ,, from a partial weighted

Max-SAT formulaF, such that has an(S¢, S, 3)-supermodel if and only iFs), has a model.

Weighted Max-SMT formulas are a generalization of the weidiMax-SAT formulas where propo-
sitional variables can be replaced by predicates of thenlyidg theory (linear integer arithmetic
for our purposes). Given a weighted Max-SMT formula, theghigéd Max-SMT problem is the
problem of finding an assignment with minimal cost.

4.3.2 PROBUST PARTIAL WEIGHTED MAX-SAT AS PARTIAL WEIGHTED MAX -
SMT

In this section we show how robustness can be added to anglpaeighted Max-SAT formula.
We proceed by means of a transformation, generalizing thatref [25]. Interestingly, after our
transformation we get a partial weighted Max-SMT formula.

Let
F=CANW

be a weighted Max-SAT formula, whe€édenotes the set of mandatory constraints Bhdenotes
the set of weighted, non-mandatory constrafntéor the sake of simplicity, we will assume that
W consists only of unary clauses of the fofitn w), whereb is a Boolean variable and is a
weight. Note that any Max-SAT formula can be transformed i equisatisfiable one fulfilling
this requirement by reification, i.e., by replacing any vieégl constraintG, w) such thai is not
unary by(G > b) A (b, w).

Now, assuming that
W = (b1,’w1) VANRERWAN (bk,wk)

2In the following, we will sometimes talk about constraintstead of clauses since our transformation into the SMT
setting does not require the formula to be in clausal form.

49

we introduce a set of integer variablgs. . ., i, and define

L= /\(bj*)’bjil)/\(_'b]*)lj:())
jel. .k

Let S™ denote the set of all (possibly empty) subsets of ésghose size is at most, and letS™"
denote the set of all non-empty subsets of aSsethose size is at most Moreover, letFz denote a
Boolean formulal” where all occurrences of variables in the Sdtave been flipped (i.e., negated).

We define

jerw | —i5) -w; ifb; &S

whereS is the set of Boolean variables occurringiin. We denote by5 the particular casé; =

> je1. k(1 —1;)-wj, corresponding to the cost of the unsatisfied clausés inf the Boolean values
false andtrue were interpreted as the integer valleend1, respectively, in arithmetic expressions,
we could forget about and directly writeB = >, ,(=b;) - w; and analogously foBy.

Finally, we define

Fspyy = CAWALA(B<ZPB)A

A V (Csor A (Bsgr < 8)) (4.3)

Seset \T€(S2\5)"

Roughly speaking, the meaning of the instahgg, is the following: we have”, that is the manda-
tory clauses of the original formula, and we aBd< / to bound the cost. Next, we need to be
able to repair all possible breakages. Thedng accounts for all possibldfeakagé setsS of size
smaller than or equal te, and the bigor ensures the existence of a repair for e4cHThis is done

by means of considering all possiblefair) setsT" of variables fromS, (excluding the ones i),

and limiting the number of variables froSy to b. By flipping the breakages and the repairs, each
subformula(Cs7 A (B < B3)) enforces (see Lemma 3) the existence of a possible réifair

the breakagé, with a cost which is bounded by

Observe that, sinceandb are constants, the size Bf,, is polynomially bounded by the size .
Namely, Fisar is O(n%*?) larger thanF, wheren is the number of variables df. In Section 4.3.3
we show how, by encoding the disjunctionsdf,,; into cardinality constraints, an equisatisfiable
formula which is onlyO®(n®) larger thanF' can be obtained.

Note that, due td. and the constraints of the forf < 3, this formula is not plain SAT; it falls into
SAT modulo the quantifier-free fragment of the (first-ordangar arithmetic theor

Now we proceed to prove the correctness of fig; reformulation.

Definition 3. (Flipped interpretation)Let S be a set of variables anfibe an interpretation. Then
Iz denotes the interpretation such that(z) = —I(z) if « € S and Ig(x) = I(z) for all other
variablesz.

31t will be integer or real arithmetic depending on the typetsf weightsw; andg.

50

Lemma 3. Let ' be a Boolean formula and be a set of propositional variables occurring in
Then! is a model ofF" if and only if Iz is a model offs.

Proof. We proceed by induction on the size 8f If S is empty, the lemma holds trivially. To
conclude we need to show thatlif= F' < Ig |= Fgthenl = F & Isomr = Fsogpy for every
set of propositional variablesand every propositional variabpenot included inS. For this observe

that, for every literal with the variablep (that isp or —p), we havelg(l) = I (=1). Therefore,

Su{p}
I§ ': F§ <~ Im ': Fm and hence ifl ': F < I§ ': F§ thenI ': F < Im ':
FiSU{p}' O

The next theorem follows the spirit of the result of [25], ldiding costs. Here, the key idea is that
Bggr, gives us the cost of the unsatisfied clausdd’iif the variables inSUT were to change their
value with respect to the initial solution. Note that thei@hles inS represent the breakage variables
and the ones if" represent the repair variables and, herfte, 7' denotes the set of variables that
are going to change their value. Note also that the Setsd7" are disjoint, since it makes no sense
to repair a broken variable.

Theorem 4. Let I’ be a partial weighted Max-SAT formula, 18% and S, be sets of variables
occurring in F, and leta, b and 3 be non-negative integer constants. Themas an(S¢, S5, 8)-
supermodel if and only if the instanég,; has a solution.

Proof. Let us recall that 45¢, S5, 3)-supermodel of is a minimal cost model of" such that if
we modify the values taken by the variables in a subsé aff size at most:, then another model
can be obtained by modifying the values of the variables irs@idt subset ofS; of size at mosb
and, moreover, the solution and all possible repaired isvisithave a cost of at most

By assumptionf’ = C AW whereC'is a set of mandatory clauses dndis a set of weighted (non-
mandatory) unit clauses. For the right-to-left implicatitet I be a solution (i.e., an optimal truth
assignment) td’s ;. From the definition o3, we clearly have that the cost of the unsatisfied clauses
in W is at most3. Notice also thaf is a model ofF’, sinceF' is included in the PB-constraints of
Fsyr. To conclude we will show that is a model ofF’ such that if we modify the values taken by
the variables in a subsgtof S; with |S| < a, then another model can be obtained by modifying the
values of the variables in a disjoint sub§ebf S, with |T' N S| < b and, moreover, the repaired
solution has a cost of at mg8t If S = () then this trivially holds taking” = (). Otherwisez > 0 and

1 <[S] < aand, sincd is a solution ofFsa7, then!l = Vi s,\s), /10, |<b(Caor A (Bgor < B)),
thatis,/ = Csg7 A (Bggr < B) forsomeT’ in (S2 \ S) with |71 S3| < b. Now, sincel = Cgr,

by Lemma 3 we havésr = (Csor)sor and, sincCgor)sor = C, we havelgg7 = C as
desired. Finally, we show thdt = Bgg7 < 3 implies that the cost of the unsatisfied clauses in
W under interpretatiotig+ is at most3. Notice that/(B) is the cost of the unsatisfied clauses
in W. Now, considering the interpretatidi+ we have thatls+(Bg57) = I(B). Therefore,
Is57((Bsgr)gsor) = I(Bsgy), that s, Igg7(B) = I(Bggy). From this and the fact that =
Bgo7 < 3, we finally get thatfz(B) (which amounts to the cost of the unsatisfied clausé¥'in
under interpretatiotts =) is at mosts.

For the left-to-right implication, lef be a model off’ such that if we modify the values taken
by the variables in a subsét of S; of size at most, then another model can be obtained by
modifying the values of the variables in a disjoint subfeof Sy such thatT N Se| < b (that

51

is, Isgr = F) and, moreover, both the solution and the repaired solutame a cost of at most
B. We will show that every such an interpretatidris a solution of Fis;;. Since the solution
has cost at mosf, we have that = B < /. Now it remains to be proved that it holds}|=
Nscsyi<|s|<a(Vrc(sa\8),1mnss|<6(Csor A (Bggr < B))). For this recall that, by assumption,
for every subsef of Sy with |S| < a there exists a subs@t of (S \ S) with |T"N S3| < b such
that s+ = C. Then, by Lemma 3(Is57)so7 = Cgor and, sinceIggr)sor = I, we have

I |= C5gz. In order to show thaf |= Bz < $, recall that the cost of the repaired solution is at
most 3, which means thafz7 = B < . Then since, as seen befolgg7(B) = I(Bgyr), we
havel = B < 6. O

Observe that, in the previous proof, we have establishegkatioin between supermodels Bfand
solutions of Fis5,. Moreover, sinceB denotes the cost of the unsatisfied clause®init is not
difficult to see that optimality is preserved. Hence, itdolk that a solution oFs,, is precisely a
(S¢, S5, B)-supermodel of-.

Corollary 5. Let F' be a partial weighted Max-SAT formula, 18t and S> be sets of variables
occurring in F', and leta, b and 5 be non-negative integer constants. Then every optimatiealof
Fsyris a(S¢, St B)-supermodel of.

Theorem 6. An auctionA has an(a, b, §)-super solution if and only if the weighted Max-SMT
formulaFZ,, has a model.

Proof. Let F4 = C A W denote the weighted Max-SAT formula obtained frotras explained

in Subsection 4.2, wher€ and W denote respectively the set of mandatory and non-mandatory
constraints introduced in section 4.2. L&t = {g1,...,9n}, S2 = {b1,...,bp} and g’ =
(M, p;) — B. By Theorem 4F4 has ar(S{, S5, 3')-supermodel if and only if’¢,; has a model.
Therefore, by Lemma 24 has an(a, b, 8)-super solution if and only iFg‘M has a model. O

Given an(a, b, B)-super solution and breakages, finding a repair with at mésthanges in variable
values has polynomial time complexity: simply generatedfe’) repairs on the broken solution,
check whether they are solutions or not, and get the one héimiaximum revenue, greater than

Corollary 7. Given an auctiord, the decision problem of the existence of arb, 5)-super solution
for A is NP-hard.

4.3.3 FROBUSTNESS WITH CARDINALITY CONSTRAINTS

The Formula 4.3 is the most straightforward to understaridtlgrows exponentially with botla
andb. In this section we show how we can get rid of the disjunctioihthe previous encoding by
means of cardinality constraints. A formula which is oldlyn®) larger thanF is obtained. This

is especially important, since it means that the complexdityur approach does not depend on the
number of repairs, but only on the number of breakages, whighually assumed to be low. In fact,
in most of the previous works on robustness the number oklagess has always been set to one.

The main idea is to define, for each possible br&a# new set of variablds . These are duplicate
variables from the original instance that will encode thgaie solution. These variables have to

52

satisfy the same constraints as the original ones takirggtbat the variables of the repair solution do
not use the unavailable resources, therefore the restrictire duplicated with some modifications
(the restrictionC' A B < § is duplicated toCg A Bg < S with the variables of the breakage
negated). Finally, the changes made on the repair solutitnrespect to the initial solution should
not exceed the maximum size of the rep&)r (n order to do so, we also define new integer variables
(d;) to indicate whether the repair variable is different to tieeresponding initial variable, which
are calculated as shown in Equation 4.4.

Therefore, given that each breakage cannot have a repabigiger thar, the sum of differences of
each breakage is limited to At the end, the improved partial weighted Max-SMT formutaeding
a robust CA with cardinality constraints is the followingiioula:

F$y = CALAWABZBA N (Cg/\(ngﬁ)/\Zdisgb> (4.5)

Ses¢t

Another advantage of this modification, apart from the réidumf the complexity, is that once the
model is solved, all the repairs are also determined (by tidichted variables), while the previous
encoding only assured that a repair could be found but it veagimen.

Now we proceed to prove the correctness of i}&, reformulation.

Definition 4. (Variable renaming)Let R be a set of variables. The functiép : X — X is defined
asd(x) = z° for every variabler € R, wherez® is a new atom, and(z) = z if x ¢ R.

Definition 5. (Difference cardinality)Let R and.S be sets of variables, antk s be a variable re-
naming function. Then we define tiéerence cardinality formulasv°rs = 3" _ . (z # 6g,s(x))

Lemma 8. Let I' be a Boolean formulak be a subset of the variables Bfand I be an interpreta-
tion. Then! |= F°% if and only if I = F5, whereD = {z € Var(F) | I(z) # I(6x(z))}.

Proof. First of all notice that from the definition d it follows that the domain of is Var(F) U
Var(F°r). Moreover, sincé™® is a variable renamed version 6fand 5 is a variable flipped
version of F', we have that both formulas are the same except for someblarinamings (for each
variable inR) and negations (for each variable i»). Hence, for every literal in F'5 we have a
corresponding literal in Fo,

Now, let! be any literal occurring irF'5, and!’ its corresponding literal iF°=. Without loss of
generality, we assume thats either of the forme or —z, wherex is a variable inVar(F). We
distinguish between two cases.IIfxr) = I(dx(x)) thenz ¢ D and, hence, occurs inF5 with the
same polarity with whicl’ occurs inF°=. Then, sincd (z) = I(5x(x)), we have thaf (1) = I(I').
If, otherwise,I(x) # I(0x(x)) thenz € D and, hencel occurs inf'5 with the opposite polarity
with which I’ occurs inF°=. Then, sincel (z) # I(5x(x)), and literalsl and!’ have opposite
polarity, we have that(l) = I(l).

Finally, sincel (1) = I(I’) for all literals, we have that = F°% < I = Fg. O

53

Next lemma shows the equivalence of the cardinality comttrdormulation and the previous ex-
haustive encoding presented in section 4.3.2.

Lemma 9. Let F' be a Boolean formula$; andS; be sets of variables occurring i, a andb be
non-negative integer numbers, ahdbe an interpretation. Then

I'E Ascs, 1<)5/<a (VTQ(Sg\S),\TﬂSglgb Fm)

if and only if there exists an interpretatidi such thatl’ (z) = I(z) for all z € Var(F) and

1)
I’): /\SCS1.1<|S|<a (Fg((sz\s)),s A (V5(SQ\S),S < b))

Proof. For the left-to-right direction, we have that for every setC S; with 1 < |S| < a, there
exists a sef” C (S \ S) with |T'N Sy| < b such thatl = Fgg7. We can define an interpretation
IS whose domain ig/ar(F) U Var(F°«s219).5) and such thaf®(z) = I(z) for all z € Var(F)
andI5(z%) # I(z) if and only if z € T for all 25 € Var(F°s219).5), Now observe that
Fso7 = (Fg)7 sinceS andT are disjoint. Moreover, sincg = (Fg)z andI®(z) = I(z) for all

x € Var(F), then alsal® = (Fg)?. Then, by Lemma 8, takings for F, ((S> \ S)) for R, I°

for I andT for D, we havel® = Fg((SQ\S))'S. Concerning Vo215 < b), by construction of

we havel® (Vo2\9).5) = |T'N (S \ S)| < |T N Sy| < b. Finally, since all considered sefsare
different, the domains of every pair of such interpretagi6h can only have non-renamed variables
of F in common. Then, since all interpretatioh$ give the same value to non-renamed variables
of I/, we conclude that there exists an interpretatiothat is compatible with all®, that is, an

interpretation with the same truth assignment as evéry

For the right-to-left implication, we have the following’ = Fé“S?\S”’S A (Vo198 < p) for
every setS C S; with 1 < |S] < a. We definel” as the set of variablesin (S, \ S) such that
I'(z%) # I'(x). We trivially have thatl’ C (S; \ S). Now we show thafT N S,| < b. For this,
first of all note that, we have thdtn (S2 \ S) = T'N S,. Then, by definition ofl’, we have that
er(&\s)(l’(:cs) #I'(x)) = TN (S2\ S)| = |T N S2|. Moreover, by assumption, we have that
I' = (Vo218 < D), i.e.,zxe(sﬂs)(l’(zs) # I'(x)) < b. Therefore|T N S3| < b. Next, since
I' = Fé“S?\S”'S, we also have that’ = Fg 7 by Lemma 8, taking”s for F', ((S2 \ S)) for R,
and’ for I. Finally sincel’(x) = I(x) for all z € Var(F'), we have thaf |= Fg 7, which lets us
conclude. O

Theorem 10. Let F' be a partial weighted Max-SAT formula, 18t and S, be sets of variables
occurring in F', and leta, b and 8 be non-negative integer constants. Th€ras a(S¢, S5, 3)-
supermodel if and only if the instané&;, has a solution.

Proof. By assumptionf' = C AW whereC is a set of mandatory clauses dfd= (I, wi)A- - A
(Ik, wi) is a set of weighted, non-mandatory unit clauses. Moremeedefine = > ., ,
forall j in 1..k. Hence, we conclude by Theorem 4 and Lemma 9, takingC A (B < 3). O

ﬂl]ww]-,

Corollary 11. Let F' be a partial weighted Max-SAT formula, 161 and S> be sets of variables
occurring in F', and leta, b and 5 be non-negative integer constants. Then every optimatiealaf
F&,,isa(S¢, S5, B)-supermodel of'.

In this section we have proved that finding supermodels faiglaveighted Max-SAT formulaé’
amounts to solving the corresponding instanEg; . It is worth noting that solutions afy,, allow

54

us to immediately find an appropriate repair for every paadibreakage: given a solutidin and
a breakages, a repair (set of variables that must flip their value) $ois the set{ax € Var(F) |

I(2) # 12%)}.

This approach for finding supermodels using differenceinafily constraint resembles those pre-
sented in [72, 30, 31, 28] for the CP setting. The reformatatipproach presented in [72] for finding
(1,0)-super solutions, referred to &s+ P in [30], and explained in Section 2.4.5 consists in du-
plicating the breakable variables and adding a not equalsti@int between each original variable
and its duplicate as shown in Figure 2.5. In [28] it is mentidthat the same duplication approach
could be generalized for finding., b)-super solutions. However, the authors argue that the $ize o
the new problem would be prohibitive and opt for using a baaiting algorithm [31] where the
original problem is only duplicated to check that an assigntitan be repaired. Thus, although the
algorithm finds a super solution, it does not provide the irgpaince it “forgets” them once it has
checked the repairability of a solution. The main problenusihg the reformulation approach in
the CP setting is the space needed to store the variablesliderand the restrictions among them,
which are replicated many times. In our approach we alsoicktplthe problem for each possible
break through the renaming function, and limit the numbettanges to be lower thanwith the
difference cardinality constraint. Fortunately, in thedBxan settings such reformulation is not that
expensive, since the domains are restrictedft@ se, true} and the only restrictions are the Boolean
clauses.

4.4 EXAMPLE

In order to illustrate our approach, we present an exammgptain each of the steps needed to find
robust solutions to auctions. The example is deliberaiaiple so that the notion of robustness and
its codification should be clear to the reader.

For this example, we use single-item bundles, that is, eigateuests only one item (not combinato-
rial bids), although the reader should note that the praghaperoach is also valid for combinatorial

auctions. Moreover, in order to show the expressivenessmfpproach, we impose the constraint
that each agent must win at least one of the bids it sends lfvdoicld be changed according to the
auction’s rules and requirements).

Assume we have 3 agents and 4 goods (or resources). In thevifodl table we indicate the price of
each single-item bid of each agent, where each row repieaditider and each column an item.

Goods
1 2 3 4
110 15 - -
(2]
5
© 2| - 5 10 20
<
3115 - - 10

55

Thus we have the following list of bids:

[(1,10),(2,15),(2,5), (3,10), (4,20), (1,15), (4, 10)]

first agent’s bids second agent’s bids third agent’s bids

We define the Boolean variablgs, g2, g3 andg, to represent the availability of the corresponding
goods, and the Boolean variablgsi € {1..7} to indicate whether bid is winner or loser. Then,
assuming that the only possible source of breakages isnasauailability, we define the breakage
set as being1 = {91, 92,93, 94}. Then, the repair set iS; = {b1, b2, b3, b, b5, bs, b7 }, Since a
break in a resource may imply that a winning bid becomes lasdr eventually, other assignments
can be reconsidered in order to improve the auctioneer&way under the new circumstances.

Assume that we look faobust solutionsvhere one break may occur and each possible break must
be repairable with at most four changes. Assume, moredwaryte want that whatever the break
is, the revenue of the initial solution and of the repaireldtson is at least 30. This will correspond

to a(l,4,30)-super solution.

The optimal solution to this auction without considerinpustness shown in Figure 4.2, would be
to set as winning bids the second, the fourth, the fifth anditkté bids, i.e.,

by =0,by = 1,b3=0,by=1,bs = 1,bg = 1, b7 = 0,

which means assigning goado the first agent, goodsand4 to the second agent and gobtb the
third agent. For the sake of readability we use the notatimh ®1s 2456 to indicate which are the
winning bids of a solution. With this solution, the auctiengvould have a revenue of 60.

Goods
1 2 3 4
1]110(15) - -
0 b1 bo
=)
82| 5
3115) - - 10
bg by

Figure 4.2: Optimal solution. Winning bids are those eretic

However, this optimal solution is not(@, 4, 30)-super solution as we can see in Figure 4.3: if good
2 became unavailable (break), the only alternative for thst éigent would be goot, but this is
already allocated to the third agent; this would imply firglaiso an alternative for the third agent,
which would be good, but this good is allocated to the second agent. Thus, iapdhre breakage
of good2 would imply modifying two winning bids; to b; andbg to b7) and unassigning one
winning bid (), meaning five repairs (as shown in boldface):

b1 =1,by=0,bs=0,b, = 1,bs = 0,bg = 0, by = 1,

which is more than the four allowed repairs. Note that folhdaidder, choosing a new winning bid
may imply two repairs (one to set the initially winning bid@pand in case he had no other winning
bids, another one to set one of its losing bids to 1).

56

Goods
1 X 3 a4
2 ! ‘}P) __
3 - 5 (10
2’ b3 by &
3 - - {10
bz 7

Figure 4.3: Repair solution when goddurns unavailable. Prohibition signs denote initially wiimg
bids which are changed to losers. Dashed circles denote iraving bids.

This auction has 9 feasible solutions (i.e., solutions#atig the constraints on bid incompatibility
and minimum number of winning bids per agent), which are tlewing: 1247, 137, 1347, 147,
246, 2456, 247, 2467 and 256. Within these solutions, onlgetlof them aré1, 4, 30)-super so-
lutions: 246, 2467 and 247. Next we go through the detailobft®n 2467 shown in Figure 4.4,
ie.,

b1 =0,b0=1,b3=0,by =1,b5 =0,bs = 1,b7 =1

which has a revenue of 50 units for the auctioneer. For thigiso, the four possible breakages can
be repaired as follows:

1. g1 = 0. The repair i9g = 0, being the new solution 247, and the revenue 35.
2. go = 0. Therepairid; = 1,by = 0,bs = 0, being the new solution 147 and the revenue 30.
3. g3 = 0. Therepairid, = 0,b5 = 1, by = 0, being the new solution 256 and the revenue 50.

4. g4 = 0. The repair i97 = 0, being the new solution 246 and the revenue 40.

Goods
1 2 3 4
1]10 - -
2] b1
[
g 2 (19) 2
<

2@
JORN®

Figure 4.4: Optimal robust solution.

It can be seen that all repairs have a revenue of at least 3tharmimber of repairs is not greater
than 4. Moreover, in the third case there is not even lossamalienue. We let the reader check that
solutions 246 and 247 are aléb 4, 30)-super solutions, with a revenue of 40 and 35, respectively.
However, since the revenue of solution 2467 is higher, thasld/be the optima(1, 4, 30)-super
solution to this auction.

As for the rest of feasible solutions, some of them (147 andi7)2re(1,4, _)-super solutions,
meaning that they can be repaired with at mbshanges, but ndftl, 4, 30)-super solutions, since

57

they do not satisfy that the solution and its repairs havevamee of at least 30. In particular,
solution 147 has a revenue of 30, but one of its repairs hasemue of only 25 (when goo#l
becomes unavailable, the second agent must be assigne@ gwbith corresponds to a low value
bid). Similarly, solution 1247 has a revenue of 45, but ibdkils in the revenue of repairs, since
one of them has again a revenue of 25.

Finally, some solutions (137, 1347, 2456 and 256) are nat €lel, _)-super solutions, since they
do need more than 4 changes in order to repair some of thedieakThis is the case of the optimal
solution without robustness (2456), as we have seen a fexgphs above.

Now we describe how to model this example as a robust audtierbegin by modeling the auction
as a Max-SAT problem as explained in Subsection 4.2, whioksgisF4 = C' A W with

C:(bl%gl)/\(bQ*)‘QQ)/\(bd%92)/\(1744)93)/\
(bs = ga) A (be — g1) A (b7 = ga) A
(ﬁbl \Y _‘bﬁ) A\ ("bg V ﬁb3) N (_|b5 V ﬁb7) N
(

b1V ba) A (b3 V by Vbs) A (bg V br)
and

W = (b1,10) A (b2, 15) A (bs, 5) A (ba, 10) A
(b5, 20) AN (b@, 15) AN (b7, 10)

Note that the sum of the costs of the non-mandatory weigHtedes isl0 + 15 + 5 + 10 + 20 +
15 + 10 = 85. Then, as stated by Lemma 2, in order4chave a(1, 4, 30)-super solution, we
must look for a(S1, S3,85 — 30)-supermodel oF4, i.e., a(S}, 53, 55)-supermodel oF'4, where
S1 = {91,92, 93,94} andSe = {b1,ba, b3, by, b5, bs, b7 }. Finally, according to Theorem 4, this
amounts to find a model of the weighted Max-SMT formula

F&y = CAWALA(B<55)A

A \ (Csur A (Bgyz < 55))
Sesi+ \T€(S2\9)4

as described in Subsection 4.3.2, where
L= /\ (bjg)ljil)/\(_'b]*)%:())
jel.r
and
B=(1—-41)-10+(1—d2)-154+ (1 —i3) -5+ (1 —i4)-10
+(1—i5)-204+ (1 —ig) - 15+ (1 —i7)- 10
Note thatSllJr denotes the non-empty subsetsSyfwith at most one element, i.e., the singletons

{g1},{92}, {93} and{gs}. And, sinceS; andS, are disjoint, we have thds, \ S)* = S3, i.e., the
(possibly empty) subsets 6% of size at most.

58

Due to their extension we only develop the first termg’gf 7, i.e. when the breakage setjisand
the repair set is empty:

= (b1 = —g1) A (ba = g2) A (bs — g2) A (by — g3) A
bs — ga) A (bg = —g1) A (by = g4) A

by V —bg) A (mbg V —b3) A (—bs V —br) A

by V ba) A (bs V by V bs) A (bg V br)

Finally, according to Theorem 10, the formula can be writisimg the cardinality constraints refor-
mulation as follows:

Féy = CAWALA(B<55)A
/\ <Cg<32\sms A Bg(S?\S)'S <55A Zdis < b)
sesit '

441 PSsEUDO-BOOLEAN FORMULATION

Pseudo-Boolean optimization problems are closely reladedeighted Max-SAT problems. The
constraints are linear equations over those Boolean ‘asaWwhere a variable with the valdeue

is interpreted as 1 andjailse is interpreted as 0. Theseudo-Boolean optimizatig®@BO) problem
consists in finding a satisfying assignment to the set of 8alvariables that minimizes a given
objective function.

Now we show how to model the previous weighted Max-SAT foratioh as a pseudo-Boolean (PB)
instance. In this case we do not have weighted clauses buijaative function to be maximized.
The original formulation (without cardinality constrashis the following:

Fsy =
Minimize B
Subject To C A (B < B)A
/\SQSl,I§|S|§a <\/T§(Sg\S)USg,TﬂSg|§b Cm A (BW < 5))
where

B = Z ﬁlj"wj

jEL.k

which amounts to the cost of the unsatisfied clausé®in

59

Notice thatFsy, is not a set of PB-constraints, but a conjunction of disjioms of PB-constraints.
As noted in [45], some problems are most directly specifiethis latter form. Moreover, notice
that we use literals in the objective functighrather than only variables, but this can be avoided
by introducing new variables if necessary. Also,constraints can be changed inteconstraints
by negating all constants. Observe that minimiziBigs indeed optional, i.e., it is only necessary
if we want the robust solution to be optimal in turn. Howew@nce we are adding robustness to
Max-SAT, we will assume that optimality is desired for robsslutions.

Similarly, the formula with cardinality constraints woudé encoded as the following PB instance:

FSVM =
Minimize B
Subject To C A (B < B) A

Nscs,1<|8<a (C?SQ\S)’S A (B%SZ\S)’S <B) A (Vos2ss < b))

In this case the OR inside the big AND is substituted by theis#a of the duplicated variables
(05,1 5),5), assuring that the total number of differences regardiegotiginal variablesy®sz\s).s |
is not greater thah.

The formulation can be written similarly as an Integer Pamgming instance by usingig — M
transformations.

4.5 OTHER ROBUSTNESS NOTIONS

Although throughout the report we focus on robustness wespect to good unavailability, we could
deal with distinct robustness variants. For instance, &mirtg robustness with respect to bid with-
drawal, we simply need to set bath andS; to the variables that encode whether bids are winners or
losers. Another straightforward variant would be to diedesignate the potential breaks to handle:
instead of usings{ ", we could decide what (combinations of) breaks deserveglrejpaired, which
would be a subset @f*. This would be useful if we only want to consider those brdskang a non
negligible probability of occurring. We could also thinkafobustness notion where each breakable
variable has a corresponding set of associated repairabkles. This could serve, for instance,
in the presence of scheduling, where one should only lookepairs on the forthcoming assigned
resources, or in an auction scenario where it is not perdiittenake repairs by switching a winning
bid to a loser one. Actually, this last robustness variargésnat compatible with the definition of
(S¢, S8, B)-supermodels for weighted Max-SAT, since the breakagetendepair sets specification
requires more information. However, thanks to the high eggiveness of SMT we could easily
directly encode such notion of robustness without movingfimum the SMT setting, and therefore,
there would be no need of changing the underlying solvindoubt

4.6 EXPERIMENTATION

In this section we show results of robust solutions usingtimding with the cardinality constraints,
and varying the different parameters of the robustness mode

60

Yices .
a b %opt| %SAT . !) Size
%Sol SAT Time UNSAT Time
1 60 90 8.84 (2.64) 1.36 (0.37)
80 2 3.7 (0.00) 1.15(0.7)
3246 vars
5 60 98 24.66 (15.74) 4.89 (0.00)
80 2 8.93 (0.00) 1.57 (1.17)
1 100
4 60 100 106.6 (54.4) -
80 18 18.69 (6.32) 3.4 (3.65)
14714 constr
8 60 100 37.09 (10.36) -
80 54 20.94 (7.29) 1.48 (1.21)
1 60 0 100 - 10.74 (7.11)
80 0 100 - 4(1.47)
. 33160 vars
5 60 - 90 time out 38.77 (58.9)
5 80 0 100 - 4.21 (1.59)
4 60 - 24 time out 95.18 (69.51)
80 0 100 - 4,75 (3.71)
. 149297 constr|
8 60 - 14 time out 78.85 (70.61)
80 0 100 - 11.3(35.12)

Table 4.1: Experimentation results with Yices.

For the experimentation we have used the popular benchmoarkoinbinatorial auctions CATS

(Combinatorial Auction Test Suite) [44]. CATS generatestamces following different distributions.

Given arequired number of goods and bids, the distributiandomly select which goods to include
in each bid. We have chosen the L7 distribution (the binodigttibution, also described in [24]) of

CATS since it generates bids with bundles that are not taglére. with just a few of the resources
being auctioned). We wanted to avoid having large bundleadre they do not help that much in
repairing a broken solution. Moreover, as we saw in the seitgianalysis chapter, this distribution

is particularly affected by resources becoming unavaglabl

The number of goods offered in the auction and the number ricjEating bids were fixed to 20
and 40, respectively. For the rest of parameters we haved/lrem as follows: number of allowed
breakages in {1,2}, number of allowed repairsin {1,2,4,8, and the valued has been set ac-
cording to several percentages of the optimal revenue wdtarstness is not considered, concretely:
{80%, 60%}.

For each configuration of the parameters, we have generétedi@ion instances of the L7 dis-
tribution of CATS. Then, for each instance we first find theimpl revenue without considering
robustness, and then we solve each of thé,(%opt) robust versions of the problem. To solve each
instance, we have used several solvers. For SMT we haverches [21] since it was the win-
ner in the last SMT competition. For the pseudo-Boolean éwork we have chosen two solvers:
BSOLO v3.1 [46] and SCIP v1.2 (with SOPLEX 1.4*Zjnce they were the winners in the pseudo
boolean Competition of 2009 and 2010 respectively. Fin&dlylinear programming we have cho-
sen the best commercial solver, CPLEX® Hhd the best free solver, GLPK 4835\Ne have set a
solving timeout of 300 seconds. The experiments have bedarped on an Intel Core i5 CPU at

4http://scip.zib.de/
Shttp://www.ilog.com/products/cplex
Bhttp://www.gnu.org/software/glpk

61

BSOLO .
a b %opt| %SAT i) Size
%Sol SAT Time UNSAT Time
1 60 90 0.25 (0.04) 0.25 (0.02)
80 2 0.25 (0.00) 0.21 (0.03)
3246 vars
5 60 98 0.30 (0.08) 0.50 (0.00)
80 2 0.24 (0.00) 0.27 (0.07)
1 100
4 60 100 0.38 (0.12) -
80 18 0.52 (0.26) 0.30 (0.11)
14714 constr
8 60 100 0.25 (0.03) -
80 54 0.29 (0.04) 0.21 (0.02)
1 60 0 - 29.25 (3.39)
80 0 - 26.37 (5.40)
33160 vars
5 60 4 27.23 (1.79) 30.07 (3.87)
80 0 - 28.71 (3.28)
2 100
4 60 28 41.43 (7.11) 35.77 (8.02)
80 0 - 28.86 (3.50)
149297 constr|
8 60 68 31.84 (3.31) 32.07 (4.12)
80 0 - 28.96 (3.74)
SCIP .
a b %opt| %SAT)) Size
%Sol SAT Time UNSAT Time
1 60 90 100 68.12 (24.62) 64.9 (4.71)
80 2 100 77.5 (0.00) 57.01 (19.52
. 3246 vars
5 60 98 86 165.53 (51.94) time out
1 80 2 90 time out 136.33 (50.5)
4 60 100 92 191.63 (58.18) -
80 18 12 time out 188.82 (55.15)
14714 constr
8 60 100 84 176.82 (65.1) -
80 54 32 173.66 (40.15) 116.00 (0.04
2 * * * 0 time out

Table 4.2: Experimentation results with BSOLO and SCIP.

2.66 GHz, with 4GB of RAM, running openSUSE 11.2 (kernel 21.

Tables 4.1, 4.2 and 4.3 show the average percentage ofafaitisfi(deviaton in brackets) of the 50
instances (with 20 goods and 40 bids) of each parameter coafign (%SAT), i.e. a robust solution

exists, and for each solver, the percentage of instancesdblefore the timeout (%Sol) and the

average time and deviation (in seconds) for solving theim=$, differentiating the satisfiable and

unsatisfiable cases. We also show the average size of theatgsherstances (number of variables

and constraints). A ‘-’ indicates that there were either T ®r UNSAT instances in a given

configuration, and time out indicates that the solver reddhe time out of 300 seconds before

finding a solution.

The first thing to notice is that the pseudo-Boolean solve®BS is the only solver capable of
solving all the instances before the timeout. CPLEX doesesall the (1,*) instances but then

“Computed only for those solved before the timeout.

62

its solving performance falls down to about 79% for the (2ygtances. As for SCIP and GLPK,
they could only solve about 74% and 51% of the (1,*) instancespectively, and none of the
(2,*) instances. Moreover, the time taken by SCIP and GLP#vand three orders of magnitude
more than the time taken by BSOLO. Comparing the solvinggiofeBSOLO and CPLEX, we can
observe that when solving the (1,*) instances, BSOLO isefastan CPLEX. However, with the
(2,*) instances, we can see an interesting effect. When ¢heeptage of optimality is set to 80%,
CPLEX is an order of magnitude faster than BSOLO, while wlith percentage set to 60%, CPLEX
encounters hard problems and can only solve about 58% ofigtenices. A possible explanation to
this behavior is that asking for a revenue of at least 80% efojptimal is a very strict restriction,
and so CPLEX rapidly finds out that there is no solution to ttabfem (note that in all cases where
CPLEX solves the instances quickly, the percentage offigdibity is null). However, when relaxing
the revenue constraint, the search space is enlarged ahthkes more time to solve the problem.
On the other hand, BSOLO is not affected at all by this paramand all its solving times are almost

the same.

a b %opt| %SAT CPLEX Size
P %Sol SATTime UNSAT Time
1 60 90 0.54 (0.51) 3.27 (1.15)
80 2 0.44 (0) 0.74 (0.61)
3246 vars
9 60 98 0.76 (0.94) 5.62 (0)
1 80 2 100 0.38 (0) 2.87 (2.43)
4 60 100 0.7 (0.72) -(0)
80 18 15.02 (16.1) 6.24 (14.44)
14714 constr
8 60 100 0.31(0.17) -
80 54 1.61(1.71) 0.4 (0.22)
1 60 0 100 - 30.99 (11.28)
80 0 100 - 5.44 (1.71) 33160 vars
9 60 4 68 19.3 (7.86) 146.2 (83.96
2 80 0 100 - 5.61 (3.55)
4 60 28 10 25.9 (0) 113.9 (96.76
80 0 100 - 5.39 (7.27)
149297 constr
8 60 68 54 56.4 (64.48) 185.2 (90.39
80 0 100 - 4.46 (4.89)
GLPK .
a b %opt| %SAT)) Size
%Sol SAT Time UNSAT Time
1 60 90 20 83.58 (74.57) 171.21 (77.68)
80 2 8 147.49 (0.00) 61.21 (44.01
. 3246 vars
5 60 98 54 194.98 (77.67) time out
1 80 2 48 107.73 (0.00) 198.34 (61.06)
4 60 100 52 230.55 (60.37) -
80 18 28 201.98 (0.00) 213.24 (44.66)
14714 constr
8 60 100 78 230.14 (43.57) -
80 54 54 250.52 (23.68) 216.24 (50.50)
2 * * * 0 time out

Table 4.3: Experimentation results with CPLEX and GLPK.

63

We can also observe the effect of allowing more breakagesdaro when increasing to 2, the
solving time increases two orders of magnitude; by contthstvalue ofb has not a considerable
effect on the solving time. Regarding satisfiability, as tiwred before, we can observe that asking
for a robust solution being 80%-optimal is way too strictd@o only a few instances have such a
robust solution (percentage that increaselsiasreases).

We have to point out that the main goal of the experimentatias not to perform a comparison of
the solvers, but to show that our reformulation approachbeagffectively implemented and solved.
Actually, given the declarative nature of our approach, veeret bound to any specific solver, and
we can profit from the advances in the state-of-the-art sg/\x them pure pseudo-Boolean solvers,
SMT solvers, or more generic integer programming solvers.

Finally we should remark that, although not shown in thelteswe have also solved (3,8) instances
(~ 200000 variables and 1 million constraints) using BSOLO, with aerage solving time of 180
seconds.

4.7 SUMMARY

In this chapter we have shown that finding a robust allocateombe encoded as &m, b, 3)-super
solution for an auction, which can be reduced to modelingathetion as a partial weighted Max-
SAT formula and then looking for a supermodel of this formdihis results into the new problem of
robust weighted Max-SAT. We have faced these problemsviatip the approach of [25] for SAT.
However, since SAT does not allow to easily encode formuliéls arithmetic operations, needed
to achieve robustness, we have moved the problem to ther timffieal framework of Satisfiability
Modulo Theories.

We have presented a first approach of robustness that hay highrcomplexity, growing exponen-
tially with both the parameters andb. After that, we have presented a second approach based in
cardinality constraints that allows to reduce the compyeai the model by removing the parame-
ter b from the exponent. This is especially important, becauseeins that the complexity of our
approach does not depend on the number of repairs, but ortlyeamumber of breakages, which is
usually assumed to be low. In fact, given that in most of thekwa = 1 the increase would be
linearly in the size of the problem.

In the experiments section we have observed that our fotronlean be easily converted into many
modelings. Concretely, we have encoded it as SMT, pseudideBo and integer linear program-
ming. We have observed that CPLEX and BSOLO are the bestrsalyeto now, and are able to

solve efficiently our approach of robustness for valueg ahdb up to 2 and 8 respectively, which

are much higher than previous approaches of robustness.

Nonetheless, the increase in size of our reformulation dawentually produce intractable in-
stances, for example when the number of bids or goods arly tégh, or when the parameters
a andb are set too high. In those cases, other approaches couldhbeleed. Instead of solving
the problem through reformulation, an alternative coultidmodify the search procedure of a com-
binatorial auction solver in order to directly deal with usitness. Such approach should be more
effective in short, but reformulation is certainly more flde and can take advantage of the future
advances in the development of competitive solvers.

65

CHAPTERDS
Flexible Robustness

In this chapter we add a modification to the previous encodiirgbustness that allows some degree
of flexibility to the solutions so that we are able to find siolug in hard scenarios and also allows
easily switching the characteristics of the solutions lEswmore optimal than robust or more robust
than optimal, depending on a single parameter.

5.1 ADDING FLEXIBILITY

The encoding that we have seen in the previous chapter fireeslutions to bea(b,3) reparable,
i.e. if a single breakage is not reparable the problem is atitfe@able, and so there is no robust
solution. Although having a completely robust solution Veble the ideal situation, it may not be
always possible to find it. This fact can be observed clearthé experiments of the previous chap-
ter, where the percentage of solved instances in some casegany low (when a high percentage
of optimality is required, or when the parametgs greater or equal to 2). Therefore, in order to be
able to obtain solutions in hard instances, we add the pitigsif allowing some of the breakages
to be left unrepaired, in what we cdliéxible robustness

The concept of flexibility is also tackled in [30]. Althoughet paper was focused on defining super
solutions for constraint programming, it also pointed ofits notion of flexibility by defining the
“most robust solution” for the cases that a robust solutioesthot exist. The most robust solution is
a solution that maximizes the number of repairable vargtlea later paper [29] the same authors
also addressed the balance between optimality and rolssshyesearching for the “most robust
optimal solution” and the “optimal robust solution”. Thi®vwk is pretty close to ours but it is rather
a preliminary step into flexible robustness and, additigndbes not consider the cost of the repair
but only the total number of variables changed.

Our way technique for adding flexibility is based soft constraint§61]. Soft constraints provide
a way to model preferences over constraints, so that sorrsraorts can be violated for overcon-
strained problems, still such violation of constraintsveided as far as possible.

5.2 FORMALIZATION OF FLEXIBILITY

In order to add flexibility we need to slightly modify the preus encoding in order to make the
breakages not mandatorily reparable using a framework tefremft constraints based on weighted
variables that activate constraints. To do so, we first rilaxepair’s constraints so that they are not
mandatory to be satisfied. This is done by adding new Boolesiahlesrs for each breakags
that will betrue if (and only if) the breakage is reparable afidd se otherwise. These variables will
allow to leave some breakages unrepaired by setting thectgprs to false. Then we have to

66

add a mechanism to count the number of reparable breakageslar to maximize it (i.e. maximize
the repairability of the solution). Hence, Formula 4.5 baes:

Fspyy =CAWALAB<BA N 7“5(:><C§/\B§§B/\Zdisgb> (5.1)
Seset @

An alternative formulation would be to change the doublelicapion (-5 < (...)) by an or s Vv
(...)). The difference using this alternative is that the numbfersdeingtrue should be minimized
instead of maximized. However, current solvers may alrgeaform this transformation if better.

With this new encoding, if a given breaka§és not repairable, its corresponding variables set to
false, and this will not affect the satisfiability of the whole foata, since now the only mandatory
clauses are those i@@ (which contains the bid incompatibility clauses and reseuavailability
restrictions) and3 < g.

Obviously we do not want all they variables to bef alse but to maximize the number of; variables
set totrue. Therefore, we associate a weighd to each variablegs, and state the weighted clause
(rs,wg) for eachS. The satisfaction of these new weighted clauses will be meped together
with the weights of the bids.

The values of the weights of these variables allow us to esgléferent robustness notions:

e Optimal solutions as robust as possible (OR)this setting we are concerned with finding,
from all the solutions that have the maximum benefit possthkeone that is most robust.

e Robust solutions as optimal as possible (R@gre we look, among the solutions that have the
maximum possible level of robustness, for the one with tighést benefit.

e Trade-off solutions This is a hybrid setting that uses a parameter to deterrhimel¢sired
degree between optimality and robustness.

The difference between the three above settings is in thghitsethat are set for the bids’ prices and
for the robustness clauses. For the first setting the wedajttse robustness clauses must be much
lower than the bids’ prices (since we are giving prefereceptimality). For example, we could
set a weight of 1 for all the robustness clauses, and add thlentamber of robust clauses?*|, to

the bids’ prices. The second setting is the inverse, we atdriterested in robustness, and secondly
in optimality, so the robustness clauses have to be much watwable than the bids. Similarly, we
could leave the same weights for the bids (their prices) ahthe robustness clauses to be the sum
of weights of the bidsX_"_, b;).

Another alternative would be that the weights of the bids thiedrobustness clauses do not overlap,
and so when summing up all weights, the most significativésligould be only affected by ro-
bustness weights, and the least significative would betaffiday bids’ prices for the RO setting (or
vice-versa for the OR setting). For instance, if the sum efttlis ", b;) is X, then the weights

of the bids for RO should be from 0 1@ /910X and the robustness clauses weights beginning from
10t0910X1 "and the other way round for OR.

67

Alternatively, for the RO and OR cases we could apply a BaoMaltilevel Optimization approach
[2], since in these two cases there is a hierarchy in the tbgsq(first robustness and then optimality,
or inversely).

Note that this model can actually generalize the one defiméluei previous chapter. We can obtain
the same solutions (i.e. full repairability) by using the B&ting and adding a constraint to force
the total revenue to be greater or equal to the sum of weidhteaobustness clauses, that is, force
all breakages to be repaired.

For the hybrid setting we introduce a new paramatahat defines the trade-off between optimality
and robustness, so that= 0 is equivalent to the first setting (OR) and= 1 is equivalent to the
second setting (RO). In this hybrid setting, the weight$iefrobustness clauses and bids prices will
be combined, and so they have to be normalized. Thus, wel seeabbustness clauses weights to
bews = a/n, wheren is the number of robustness clauses, so that the maximumuevhat the
solution is able to get from the robustness clauses iShe prices of the bids are also normalized,
setting for each bid a weightw; = (1 — «)-p;/op wherep; is the original price of the bid anap

is the revenue of the optimal solution (without robustness)that the maximum revenue that the
solution would be able to obtain from the bids weightd is «, and consequently the maximum
revenue from the entire formula s 1.

The flexibility that we have added to the model allows us teedtit with new interesting features
such as the probability of breakage. It is likely that someakages are more probable than others,
and so they should have different weights. In order to imglenthis, the weights of the robustness
clauses could be multiplied by the probability of the breakage occurringg = ps-«). Actually,

with the weights given beforeys = «/n, we were considering all breakages equally probable, i.e.
ps =1/n,forall S € S,

5.3 EXPERIMENTATION

For the experimentation we have used again the Combinhfauigtion Test Suite (CATS) [44]
with the L7 distribution. However, in this case we have alseaerformed experiments in other
distributions, namely, arbitrary, paths, matching andaesg, obtaining similar results.

We have analyzed the effect of some of the parameters ofithg)-super solutions, as well as the
number of bids participating. Some of the parameters hatlkee®n varied, such aswhich has been
fixed to 1 (it increases considerably the complexity of thetances), and the number of goods being
sold, which has been set to 15. We have varied the number sfibid 5, 20, 25, 30}, the number

of repairshin {1, 2, 3,4, 5} and, finally, the valug has been set according to several percentages of
the optimal revenue when robustness is not consideredrehec{ 50%, 60%, 70%, 80%, 90%} .

For each combination of number of goods and number of bidsave lgenerated 50 auction in-
stances. Then, we have solved each instance without coimgid®bustness to get the optimal
revenue, and then we have solved each of thigf)-robust solutions of the problem, settifgo
the appropriate value given the optimal revenue and peagerdf optimality.

68

OR (Alpha = 0) —+—
RO (Alpha = 1) ---x---
Trade-off (Alpha = 0.5) ---%---

100
99
98
97
96
95
94
93
92
91

Optimality

min % Optimality

Figure 5.1: Optimality varying andj.

OR (Alpha = 0) —+—
RO (Alpha =1) ------
Trade-off (Alpha = 0.5) ---%---

100

90

80

Robustness 7q
60

50

40

30

Figure 5.2: Robustness varyih@nd;.

OR (o =0) a=0.25 a=0.5 a=0.75 RO (. =1)

NB B || Solv. OptRev Rob| Solv OptRev Robp Solv OptRev Rab Solv OptRev b RoSolv OptRev Rob
90 || 100 100 3547 100 98.89 3893 100 99.77 3440 100 99.07 735800 98.88 36.0(
80 || 100 100 4560 100 97.04 50.80 100 99.86 4413 100 98.21 747100 97.03 47.87%
70 || 100 100 58.6717 100 9565 66.13 100 99.61 5853 100 97.83 761800 95.65 63.20
60 || 100 100 71.04 100 9242 79.20 100 99.71 70.27 100 97.55 373B00 93.09 76.13
50 | 100 100 7853 100 91.37 9143 100 99.47 7933 100 96.13 386100 91.81 88.67
90 || 100 100 40.00 100 100 41.7 100 99.07 42|53 100 99.29 40.420 199.43 39.33
80 || 100 100 53.817 100 98.38 5590 100 96.44 5987 100 96.87 187100 97.55 56.27
70 || 100 100 70.00 100 96.61 75.38 100 93.87 7933 100 9578 077HM00 96.54 75.07
60 || 100 100 86.677 100 96.80 90.03 100 96.35 9427 100 97.77 794200 98.43 90.4(
50 || 100 100 94,13 100 9843 96.83 100 97.12 9893 100 98.57 497000 99.12 94.80
90 || 100 100 42.40 100 99.07 45.33 100 99.82 4093 100 99.06 042100 99.06 42.4(
80 || 100 100 59.20 100 95.38 67.20 100 99.69 5907 100 97.30 063200 95.38 64.27

15 70 || 100 100 79.20 100 93.08 86.93 100 99.78 7867 100 98.41 781400 95.03 83.47
60 || 100 100 93.20 100 97.85 96.40 100 99.80 91.47 100 98.96 092800 97.83 93.47
50 | 100 100 98.93 100 98.70 99.13 100 100 9600 100 99.82 96.200 198.68 96.80
90 || 100 100 45.47 100 99.58 46.64 100 99.07 4773 100 99.66 845000 99.06 44.8(
80 || 100 100 65.73 100 9849 6898 100 95.38 7120 100 96.63 969800 97.30 67.20
70 || 100 100 84.27 100 96.60 86.00 100 93.08 8893 100 93.08 186100 98.41 84.67
60 || 100 100 95.33 100 99.15 96.11 100 97.85 9693 100 98.22 195B00 98.96 93.47
50 | 100 100 99.60 100 9894 99.48 100 98.70 9973 100 99.07 497IJ00 99.82 96.67
90 || 100 100 47.87 100 99.62 49.07 100 99.91 4560 100 99.75 0461000 99.61 46.13
80 || 100 100 68.53 100 98.02 7213 100 99.66 67.87 100 99.23 068HM00 98.02 69.20
70 || 100 100 88.00 100 9854 89.87 100 99.94 8587 100 99.59 086400 98.54 86.93
60 || 100 100 97.20 100 99.43 97.640 100 99.99 9440 100 99.88 394800 99.88 94.53
50 || 100 100 99.60 100 99.82 99.13 100 100 96167 100 100 96.67 1@.81 96.80

Table 5.1: Experimentation results: averages of 50 auatistances of 15 bids for each configuration.

69

h9.33

OR (o =0) a=0.25 a=0.5 a=0.75 RO (. =1)

NB B || Solv. OptRev Rob| Solv OptRev Robh Solv OptRev Rab Solv OptRev b RoSolv OptRev Rob
90 || 100 100 28,53 100 9811 32.80 100 99.66 2983 100 98.59 331100 98.11 32.13
80 || 100 100 44.40 100 96.71 50.27 100 99.61 47.15 100 9851 748800 96.71 49.6(
70 || 100 100 61.01 100 94.63 72.47 100 98.88 6570 100 95.83 771000 94.62 72.00
60 || 100 100 80.13 100 9392 89.40 100 99.34 8509 100 98.67 786B00 95.82 88.40
50 | 100 100 91.73 100 97.36 9947 100 99.29 9574 100 97.83 7988B00 97.83 98.67
90 || 100 100 3293 100 99.12 34.47 100 98.45 36.67 100 99.02 535800 98.78 35.73
80 || 100 100 56.21 100 97.47 60.00 100 94.78 6520 100 96.02 065200 97.50 62.80
70 || 100 100 79.01 100 96.49 8556 100 93.94 8933 100 9497 888B00 96.58 87.47
60 || 100 100 93.81 100 98.05 96.81 100 96.63 99.07 100 97.79 998HB00 98.35 97.6(
50 || 100 100 99.01 100 100 99.01 100 98.95 100 100 99.03 99.68 1@®.67 99.07
90 || 100 100 35.33 100 98.10 4040 100 99.65 3753 100 98.75 03900 98.09 39.73
80 || 100 100 65.60 100 9494 7440 100 99.84 6825 100 97.72 072100 94.94 73.73

20 70 || 100 100 86.00 100 94.06 94.80 100 99.25 89.00 100 97.93 092100 94.65 94.00
60 || 100 100 97.81 100 9856 99.43 100 9991 9808 100 99.53 798B00 99.02 98.93
50 | 100 100 99.81 100 99.91 100 100 100 9918 100 99.91 99.33 16®.91 99.33
90 || 100 100 38.40 100 99.33 40.50 100 98.45 4373 100 98.61 743100 98.79 42.8(
80 || 100 100 7181 100 96.72 7541 100 94.89 80.13 100 96.39 478B00 97.63 77.60
70 || 100 100 91.87 100 9819 9470 100 9595 9653 100 97.54 195800 99.43 94.40
60 || 100 100 99.33 100 99.02 9899 100 98.79 100 100 100 90.11 10000 98.80
50 | 100 100 100| 100 100 10(100 100 100 100 100 100 100 99.99 ¢
90 || 100 100 42.00 100 98.69 46.13 100 99.60 4405 100 99.02 045200 98.69 45.47
80 || 100 100 77.33 100 96.18 83.40 100 99.77 7904 100 98.13 081B00 96.18 82.93
70 || 100 100 94.00 100 9824 96.93 100 99.89 9478 100 99.59 795400 98.66 96.13
60 || 100 100 99.60 100 99.72 100 100 99.99 9890 100 99.71 99.3®W 199.71 99.33
50 || 100 100 100| 100 100 10d 100 100 99.31 100 100 99.33 100 99.99.33

Table 5.2: Experimentation results: averages of 50 auatistances of 20 bids for each configuration.

0.

OR (o =0) a=0.25 a=0.5 a=0.75 RO (. =1)

NB B || Solv. OptRev Rob| Solv OptRev Robp Solv OptRev Rab Solv OptRev b RoSolv OptRev Rob
90 || 100 100 28,53 100 99.72 29.81 100 99.33 3053 100 98.97 030800 98.97 31.20
80 || 100 100 43.20 100 99.54 47.04 100 98.98 47.07 100 97.17 748200 97.17 48.67
70 || 100 100 62.13 100 9857 7140 100 97.66 73.07 100 96.18 374100 95.68 74.67
60 || 100 100 8120 100 99.05 88.93 100 98.57 8893 100 96.74 390100 96.75 90.53
50 | 100 100 88.53 100 9887 9522 100 9792 9653 100 96.77 397300 96.34 97.87
90 || 100 100 32.93 100 100 34.04 100 9845 3667 100 98.67 3I6.000 198.78 35.73
80 || 100 100 56.27 100 99.66 60.12 100 94.78 6520 100 96.98 963800 97.50 62.80
70 || 100 100 79.04 100 98.11 8159 100 93.94 8933 100 94.18 188B00 96.58 87.47
60 || 100 100 93.87 100 97.38 9581 100 96.63 99.07 100 97.05 497100 98.35 97.60
50 || 100 100 99.01 100 99.13 99.01 100 98.95 100 100 99.15 99.30 199.67 99.07
90 || 100 100 3440 100 9980 36.48 100 98.74 3840 100 98.21 038800 98.21 39.20
80 || 100 100 60.00 100 9895 66.16 100 9598 7200 100 93.75 073B00 93.75 74.00

25 70 || 100 100 84.6717 100 99.34 9119 100 97.82 9360 100 96.88 794200 95.41 95.07
60 || 100 100 97.60 100 99.92 97.86 100 99.57 9867 100 98.95 398B00 98.05 99.6(
50 | 100 100 99.47 100 100 97.11 100 99.99 9907 100 99.20 99.400 199.21 99.87
90 || 100 100 38.40 100 99.66 4041 100 98.45 4373 100 98.65 743400 98.79 42.80
80 || 100 100 7187 100 96.82 7558 100 94.89 80.13 100 96.19 078B00 97.63 77.60
70 || 100 100 9187 100 98.84 93.10 100 9595 9653 100 97.38 995100 99.43 94.40
60 || 100 100 99.33 100 99.00 99.67 100 98.79 1p0 100 100 98.94 10000 98.80
50 | 100 100 100| 100 100 10d 100 100 100 100 100 100 100 99.99 99.33
90 || 100 100 43.07 100 99.36 46.29 100 98.28 4840 100 97.59 348100 97.60 49.33
80 || 100 100 75.81 100 99.35 79.50 100 98.29 8093 100 96.13 082100 96.13 82.80
70 || 100 100 94.40 98 99.70 9585 100 99.36 9600 100 99.03 96270 98.45 96.8(C
60 || 100 100 99.33 100 100 98.99 100 99.78 9920 100 99.78 99.200 199.79 99.6(Q
50 || 100 100 99.81 100 100 99.50 100 99.95 99,60 100 99.95 99.600 199.95 100

Table 5.3: Experimentation results: averages of 50 auatistances of 25 bids for each configuration.

T.

OR (o =0) a=0.25 a=0.5 a=0.75 RO (. =1)

NB B || Solv. OptRev Rob| Solv OptRev Robh Solv OptRev Rab Solv OptRev b RoSolv OptRev Rob
90 || 100 100 24291 100 99.78 26.27 100 98.78 2800 100 98.27 028M00 98.25 29.87
80 || 100 100 46.24 100 99.69 49.Y3 100 98.37 5240 100 96.83 353.B00 96.84 53.33
70 || 100 100 68.21 100 99.42 7293 100 98.09 6680 100 96.36 3716P00 96.38 76.93
60 || 100 100 87.20 100 9956 90.80 100 98.22 9040 98 96.68 931000 96.31 94.8Q
50 | 100 100 96.13 100 99.79 91.20 100 99.02 9787 100 98.36 099.68 98.37 99.60
90 || 100 100 3293 100 99.33 34.2 100 9845 3667 100 98.61 036200 98.78 35.73
80 || 100 100 56.21 100 97.44 60.28 100 94.78 6520 100 95.99 963100 97.50 62.80
70 || 100 100 79.01 100 9552 8246 100 93.94 8933 100 9573 488B00 96.58 87.47
60 || 100 100 93.81 100 97.76 9542 100 96.63 99.07 100 97.22 898I00 98.35 97.6(
50 || 100 100 99.01 100 99.69 99.54 100 98.95 1p0 100 99.31 100 109.67 99.07
90 || 100 100 33.07 100 99.24 37.47 100 9793 3973 100 97.64 040.08 97.64 40.00
80 || 100 100 67.01 96 99.30 72.67 96 96.99 74{67 100 93.76 78.86 993.79 78.80

30 70 98 100 90.93 96 9948 91.13 94 98.50 91j07 100 96.57 98.270 1®6.58 98.27
80 98 100 99.73 96 99.94 9340 98 99.94 97|87 100 99.93 100 10®.949 100
50 | 100 100 100 100 99.99 93.40 88 99.99 97|87 100 99.99 100 10000 1 100
90 || 100 100 38.40 100 99.70 40.23 100 98.45 4373 100 98.99 443100 98.79 42.80
80 || 100 100 7181 100 9387 7747 100 94.89 80.13 100 96.31 078B00 97.63 77.60
70 || 100 100 91.87 100 96.25 9348 100 9595 9653 100 97.35 595800 99.43 94.40
60 || 100 100 99.33 100 9950 99.63 100 98.79 1p0 100 99.33 99.000 1 100 98.80
50 | 100 100 100| 100 100 10(100 100 100 100 100 100 100 99.99 99.33
90 || 100 100 42271 94 99.45 46.00 98 98.54 48,00 100 98.38 8.130 198.40 48.13
80 || 100 100 80.80 98 99.28 83.07 96 97.97 8520 100 95.40 8.930 195.42 88.93
70 96 100 98.27 94 99.89 99.q7 98 99.77 99133 100 99.24 99.600 1®9.24 99.60
60 98 100 100 86 99.99 9147 98 99.99 97/87 100 99.99 00 100 1000
50 || 100 100 100 94 99.99 93.0 98 99.99 97(87 100 99.98 00 100 0 10100

Table 5.4: Experimentation results: averages of 50 auatistances of 30 bids for each configuration.

4

73

Tables 5.1 to 5.4 show the detailed results of the experisnaetformed with distribution L7. The
results with 15, 20, 25 and 30 goods are shown for five diffevelues ofv = {1,2,3,4,5}. Each
row shows the average of the 50 instances of each case. Tumarsblv indicates the percentage of
instances where the solver finds the solution before theoting@et to 1000 seconds). The column
OptRev indicates the percentage of optimality, computed only Fear $atisfiable instances. The
column Rob (robustness) indicates the percentage of robustnesseslaasisfied. Each of these
values has been calculated in five different settings: agtsolutions as robust as possible OR
(equivalent tax = 0), robust solutions as optimal as possible RO (equivalentto 1), and trade-
off solutions with different balance points= {0.25,0.5,0.75}.

We observe that, in general, when the valuesadecreases the value &b increases, since the
problemis less restricted and it is easier to find robust&wis. Also, when the size of the repaij (
increases, obviously the value Bbb is also increased, since more repairs are allowed. We can als
see that when the value afincreases the percentage of optimality decreases (siecgolhtions
are more robust, and thus less optimal), and converselydiestness increases. Regarding the
percentage of solved instances, we also see that it logidaireases when the complexity of the
instances increases (with 30 bids and high valugg;dtill in these experiments with 30 bids, the
percentage of solved instances is in all cases over 94%.

Figure 5.1 graphically shows the results with 15 bids. Thexi$ eepresents the minimum revenue
percentage of the solution (and its repairs), the Y axiscidis the size of the repdir and the Z
axis plots the percentaged revenue of the solution (i.édidiy the revenue of the solution by that
of the optimal solution without robustness). Obviously graph witha = 0 is a plane with the
100% of optimality. Whenv is increased we see that the revenue of the solutions desrbas
with a slow rhythm (the worst solution is still 91% optimallherefore, in some cases looking for
robust solutions may be a good option since we see that thé@ofound is already very close to
the optimal.

Figure 5.2 compares the same settings regarding its ramsstao in this case the Z axis represents
the percentage of robustness clauses satisfied. In thisveade not see a plane for the RO because
it is not always possible to find solutions that are 100% meylde, but still the RO graph is almost
in all the cases the one obtaining most robustness. It isdstieg that in this case the differences
between the graphs are higher than in the results regargtimality, with the RO graph obtaining
20 percentual points more robustness than OR in the indavitte lower values of..

Figures 5.3 and 5.4 show the results of optimality and rotmsst respectively, with different values
of a. Here the number of goods is also 15 and the minimum percermdhgptimality has been
fixed to 50%. We can see that as the valuexd$ increased the optimality decreases and the other
way around for the robustness, whelincreases, robustness is generally also increased. Again,
observe that the optimality is much less affected than thasimess.

These results show that the optimality of the solutions wlobeking for robust solutions is not
affected in the same level as the robustness when searatirgtimal solutions. Therefore, for
decision makers worried about the optimality of the sohsiat would be not bad to incorpore ro-
bustness, since the optimality would remain very close (¥9%ptimal in the worst case of our
experiments). However, when looking for optimal solutioihe robustness is highly affected. This
is a factor that decision makers wanting robust solutiormailshconsider. The loss of optimality
when searching robust solutions is lower than the loss afstrtess when looking for optimal solu-

74

Optimality —+—

100

99.8

Optimality 99.6
99.4

99.2

99

98.8

Figure 5.3: Optimality varying anda.

Robustness —+—

100
95
Robustness 90

85

80
75

Figure 5.4: Robustness varyih@ndco.

tions. We have performed more experiments with other distions (arbitrary, paths, matching and
regions) obtaining similar results. This fact was also seahe work of [34], therefore we think
that our observations can be extrapolated in general ta ddmains.

54 SJMMARY

In this chapter we have presented a flexible robustness mbldelfflexibility allows to find solutions
in overrestricted situations where no complete robusttgsius possible. In such case this model
is able to find the “most robust solution”, i.e. the solutitvatt satisfies most robustness clauses.

75

Conversely, we can find also the most optimal robust solutienthe optimal solution that is most
robust. Moreover, a parameteris defined in order to easily set the desired trade-off betwee
optimality and robustness.

In the experimentation section we have analyzed the relstip between robustness and optimality,
i.e. with different values ofy, and the conclusion is that the loss of optimality when d&agcrobust
solutions is lower than the loss of robustness when looldngptimal solutions. This is a result that
should be taken into account when deciding the most apiapralue oty in real world problems,
depending on the preferences of the decision maker (elgseisking, risk-averse, etc.).

77

CHAPTERG
Incentive Compatibility

Incentive compatible methods ensure that malicious pagis cannot use strategies for manip-
ulating the results. This chapter analyzes the strategyefiress of our approach for robustness.
We first extend the proof of non-incentive compatibilityegior the bid-withdrawal problem in
[37] which captures a restricted version of our problem. filvee provide two ways of looking for
incentive compatibility for the generic version of the deoh.

6.1 INCENTIVE COMPATIBLE MECHANISMS

Auction mechanisms with the feature that the best strategyhie bidders is to bid truthfully are
calledincentive-compatibleThis feature makes impossible -theoretically- for thedeid to strate-
gically manipulate the auction in order to gain money by dasing the final prices of the items.
This manipulation would be a gain for them but a loss for thetianeer, therefore strategy-proof
mechanisms are preferred in real world applications ofianst Furthermore, it has been proved
that no untruthful mechanism achieves better outcome thgrrathful (non-manipulable) mecha-
nism [47]. This is another reason why in many applicationly arcentive compatible mechanisms
are considered.

The design of truthful mechanisms for combinatorial austits a hard task. For example, the gen-
eralized Vickrey auction (VCG) mechanism [71, 13, 27] guéeas that the best strategy for the
bidders is to bid truthfully. However, its computationahgplexity is very high. For the robustness
mechanism shown in the previous chapters, to prove eitlartitle mechanism is incentive com-
patibility or that it is not, is even harder. For that reasee, will first show that the robustness
mechanism is not incentive compatible in a restricted cdseravonly a subset of the resources can
fail (the breakage set does not include all the items). F@gtneral case we will provide two proce-
dures to support the idea that the robustness mechanistualgéncentive compatible in practical
cases.

6.2 NON-INCENTIVE COMPATIBILITY WITH RESTRICTEDROBUST
NESS

In our model of robustness, the parametaepresenting the size of the break included all the re-
sources. For example,= 1 meant that each one of the resources could fail (but not twbevh at
the same time). In the restricted robustness setting, wietlm set of resources that can fail. This
is similar to the work of Alan Holland [37], where he considéithat only “brittle” bids could be
withdrawn. He provided the example shown in Table 6.1 to ptbe non-incentive compatibility of
robust solutions (weighted super solutions).

78

Bd A B C AB BC Wihdrawal probability
vy 183 0 0 O 0 0.02
vy 0 12 0 O 0 0.03
U3 0O 0 8 O 0 0.04
Uy 0O 0 0O 33 © 0.15
vs 0O 0 0O 0 24 0.05

Table 6.1: Combinatorial auction example of [37].

The proof of non-incentive compatibility is made using tlee@ssary condition of monotonicity that
incentive-compatible mechanisms exhibit. This conditie@ans that if a winning bid increases its
price, then it remains in the solution. Therefore, if in aggivauction mechanism a bid increasing its
price drops out of the solution then it means that the auetieohanism is not incentive-compatible.

For the example in [37] the threshold for the withdrawal @roitity («) was set td).1, and therefore
the only bid that has a probability higher than(brittle bid) is the one of the fourth bidder. In
this example the minimum acceptable revenue was set to 8reftire the optimal robust solution
is {v1,vs} with a total revenue of 37, because the solutfop, v, } that has a higher revenue (41)
cannot be repaired to form a solution of at least 34; its regdution{v;, v, v3} gets only 33.

Then, supposing that the first bid increases its value to 16, it turns out that now the solution
{vs,v4} is reparable by{vi, v, v3}, getting a revenue of 36. Therefore the new optimal robust
solution becomes$uvs, v4}. This implies that the bidy that was in an optimal robust solution, when
increasing its value, drops out of the solution, violatihg monotonicity requirement of incentive-
compatible mechanisms.

D A B c
.

,

v
v, 33 |

“

Figure 6.1: Modified example.

In our case, we can slightly modify the previous example iheoito prove the non monotonicity
of our restricted robustness mechanism as shown -morellyisimFigure 6.1, where each column
is an individual item and the rectangles indicate the itemetuded in each bid and its price. Let
us add a new itend to the fourth bidvy. Let us suppose that there is only one resource that can
become unavailabld). In such situation, the only bid that can faildg, converting the example
to be exactly the same as before. Therefore, the same priuts, lamd this restricted version of our

79

robustness mechanism is not incentive-compatible.

6.3 INCENTIVE COMPATIBILITY IN THE GENERAL CASE

The previous example actually proves that when some (a gutfsthe resources are brittle, the
robustness mechanism is not incentive-compatible. Horvelie problem may not be the same
when all the resources are brittle, and the previous cowaxample cannot be easily generalized.
Let us mention that in the case of [37], they did not considerdase of all bids being brittle, which
we think that could have the same problem, i.e. the proposedter-example does not necessarily
imply that when all the bids are brittle the problem is no&intive-compatible.

In this section we propose two procedures to find a countem@ie of monotonicity for the generic
case of robustness where every resource can fail. The fosegdure consists in the formulation
of a CP model to find a counter-example (if it exists) with aegivnumber of items. The second
procedure is an iterative search process that systenigatiesis all the possible bid profiles in order
to check whether they constitute or not a counter-example.

6.3.1 (OOUNTER-EXAMPLE MODEL

The problem of finding a counter-example of monotonicityd @onsequently, of non-incentive-
compatibility) in the general case of robustness can be taddes a CSP. Given a fixed number of
itemsk, the goal of such CSP is to find a combinatorial auction irctavhose robust solution is not
monotonic, i.e. such that if some bid of the optimal robustitson increases its price, then the new
optimal robust solution does not include that bid. Thereftine output of the CSP are the bids that
compose such combinatorial auction. The input of the CSPh&ithe maximum number of items
that can be auctioned}.

We first define the bid variable8 = { By, ..., B, }. These are integer variables that define the price
of the bids of the auction. The number of bidss all the possible combinations afitems, that

is, 2¥ — 1. The price of the bid can be any natural number. Note thateemi zero is allowed,
which would actually mean that the bid does not take partératinction. This is necessary because
it is not required for the counter-example auction to be cosap of all the possible bids (item
combinations) but only a subset of them. After that, we alsednthe variables that will specify
the optimal robust solutioX = {X7y, ..., X,,}, which are Boolean variables indicating which of
the bids are in the solutiortiue) and which are notflalse). Then, the CSP consists in finding
values forB (an instance of a combinatorial auction) such tais its optimal robust solution, but
X is not monotone, i.e. there is a bid which, if its price is #&sed, it drops out from the optimal
robust solution. Therefore, the CSP program to find a cowaxample is as shown in the following
CSP formulation (CSP 1), which uses the CSP functOfS IMAL-ROBUST-SOLUTION(Bind
NON-MONOTONIC(Xiefined next.

CSP 1COUNTEREXAMPLE
find values forB such that:
X + OPTIMAL-ROBUST-SOLUTION(B)
NON-MONOTONIC(X)

80

The functionOPTIMAL-ROBUST-SOLUTION(R)ets an instance of an auctidh and finds its
robust optimal solutiorX. SinceX has to be the optimal robust solution, we have to makeXhat
is a solution (it satisfies the bid incompatibility restidgets), it is a robust solution (it is repairable
doing at mosb changes, for each break of size at mgstnd it is optimal (it is the maximal revenue
robust solution). Therefore we define the functORTIMAL-ROBUST-SOLUTION(B) shown in
CSP 2.

CSP 20PTIMAL-ROBUST-SOLUTION
find values forX such that:
SOLUTION(X)
ROBUST(X, B)
BEST(X, B)

WhereSOLUTION(X)is a function that verifies thaX is a solution by checking that no bids sharing
the same item are set toue as shown in Algorithm 3; anBROBUST(X, Bexamines ifX is robust
by checking that each possible breiks repairable, which means that an alternative solufign
(a solution where the values of the variables in the breakat® are negated) can be found, and it
does not differ from the original solutiaki in more tharb changes, as shown in Algorithm 4.

Algorithm 3 SOLUTION(X)
returny X <1 Vi € [1..k]

ilgeGy

Algorithm 4 ROBUST(X, B)
z = true
VS e §at
z2=2NSOLUTION (X3)
z2=2ANMIN_REVENUE(Xg, B,)
2=z ANY 01X = Xg | <D
returnz

Note that since the goal of the CSP is actually to find an andtistance whose solution is not
monotonic, we cannot define an objective function to be meddh(turning the CSP into a COP) in
order to find the optimal solution (as we would make if the peabgoal of the problem was to find
the optimal solution). Therefore, we have to assure #ias the optimal solution by brute force,
that is, by imposing thaX is better than any other possible solution, as shown in Adgor5.

Algorithm 5 BEST(X,B)

VX' £ X
z =true
z=2zA 27:1 (X]-B;) < REVENUE(X)
z2=2zAN-SOLUTION (X’)
z=2AN-ROBUST(X', B)
if zreturnfalse

returntrue

The functiolMIN_REVENUE(X,B3) assures that the solution has a revenue of at leasts shown
in Algorithm 6; and the functioREVENUE(Xomputes the revenue of the soluti&nas shown in
Algorithm 7.

81

Algorithm 6 MIN _REVENUE(X,B3)
returnREVENUE(X) > S

Algorithm 7 REVENUE(X)
return« >-" | (X;B;)

Finally, we define the functioNON-MONOTONIC(XJo force that when a given winning bid from
X increases its price bythen it gets out from the solution, as shown in CSP 8. To do sajaiine
the prices of the bid®’ = {Bj, ..., B),}, after some bidB, (j € {1..n} is the index of the bid that
increases its price) has increased its price. Then we $tateétte new robust solutioyi, i.e. such
that SOLUTION (Y) AN ROBUST (Y, B') AN BEST (Y, B'), satisfies that some of the previously
winning bids is now a losing bid, i.e. such thét: X; =1 AY; = 0.

CSP 8NON-MONOTONIC
find values forB’ such that:
Vi §(BL = Bi) A (B} = B +6) A(X; = 1)
SOLUTION(Y,B') N ROBUST(Y, B') A BEST(Y, B')
Ji:X;=1AY; =0

Note that the complexity of this model is extremely high. §Tisi mainly because of tHBEST(X,B)
function, which has to assure that the solutiis the best possible, implying checking all the other
possible solutions with bids, that i2” possibilities (where = 2*). The exact number of variables
can be computed with the expression shown in Equation 6.1.

NV =2[(2F — 1) + 22" . 2%] (6.1)

For k = 1 the total number of variables is 18, for= 2 it grows to 134, fork = 3 the number is
4110, and for higher values &fthe number of variables is extremely high- (106 for k = 4, and
210 for k = 5).

Therefore, this model is not very useful in practice, asdgg extremely exponentially and there is
not any solver able to solve it when the number of items is rntioail, say, three. However, we keep
this model as it is interesting theoretically, and is adyule best way to prove non-monotonicity in
the general case if any solver could eventually find solsttonit efficiently.

In the following section we show a more practical (although complete) procedure for finding
such counter-example.

6.3.2 OOUNTER-EXAMPLE ITERATIVE SEARCH

The iterative search method consists in a procedure tharagsically generates and checks all the
possible auction instances, in order to find a counter-el@wipmonotonicity. For each auction
instance, the procedure checks for all the possible assigtsof prices to the bids (up to a given
limit), calledbid profiles This model will eventually find a counter-example if it esis

82

More concretely, the procedure begins by generating aangstof a combinatorial auction, com-
posed by bids with its respective items but without deteadiprices for the bids. After that, the
bids profilesare created with all the possible combinations of pricebéddids (up to a given limit).
With each bid profile, the robust solution is found with thedabpreviously presented in Section
4.3.3. Next, all the bids from the optimal robust solutior taken one by one and their prices are
increased; the new auction is solved again and the solwiamalyzed in order to check whether
a counter-example has been achieved, i.e. by observingiiétls any of the winning bids that
increasing its price turns to a losing bid. A diagram of tippmach is shown in Figure 6.2.

| Create Auction }—%| Rob @ unsat

sat unsat

Check solution Modify Auction H Rob @

sat

Compare‘ i Check solution I

Counter-example

Figure 6.2: Iterative procedure for finding a counter-exiEmp

First of all, an auction is created. The first module, “createtion”, generates progressively all the
possible combinatorial auction configurations, that isgegia number of items, generates all the
possible bid combinations using these bids, i.e. the enatimercombinatorics of: items. With
each bid combination, the bid profiles are created, by py#lhthe possible combinations of prices
to the bids (in a given interval). Therefore;, bid profiles are generated, whetas the number of
bid combinations, ang is the range size of the prices interval. Symmetry brealsngpinsidered
while generating the bid profiles, in order to avoid checldoglicated profiles.

Each bid profile is encoded with the robustness model (mallub, and passed to the solver which
can be either SMT, ILP or pseudo-Boolean, depending on thergeed model. If the model is
unsatisfiable the next bid profile is checked, otherwisei$f #atisfiable, then the solution is checked
in order to find if by increasing the price of some winning btddrops out of the solution, which
would imply that a counter example has been found. Therefor@ach one of the winning bids, a
new auction is created copying the original auction andeasing the price of the winning bid by a
given bid increment. Again, the auction is encoded addibgistness and solved using a solver. If
the result is satisfiable, then the solution is checked antbeoed with the previous one in order to
find if the winning bid is now a losing bid. The process is itechuntil a counter example is found.

83

Using this procedure, we have proved that no counter exaexmés with less than 4 items, with a
price interval between 0 and 10, and a winning bid incremédt ¢-or higher number of items, or
wider prices intervals, this procedure is not so succestfalto its exponential increase in computa-
tional time. However, we have tried setting bid combinagiomanually (susceptible of composing a
counter-example) with 8 items at most, and then generallittgeebid profiles and a counter example
has neither been found.

This means that either such counter example does not exishamobustness mechanism is indeed
incentive compatible, or that the counter example wouldvemenore complex. This is actually a
good result, since as we saw in the sensitivity analysistelagarge auctions tend to be inherently
robust and therefore, robustness would not be applied setbhases where manipulation strategies
could exist.

6.4 SUMMARY

Incentive compatibility issues are a crucial point in thasige of mechanisms for auctions, since
only strategy-proof mechanisms are actually used in realdrapplications because of their impos-
sibility of being manipulated by the participants. A ne@gsondition that incentive-compatible
mechanisms must hold is monotonicity, which can be conliersed to prove non-monotonicity.

In this chapter we have analyzed the incentive compaijtilitour robustness approach. We have
firstly seen that in a restricted version, where only somaefésources are brittle, the method is not
incentive compatible. We have provided a counterexamptearfotonicity to prove that, following
the spirit of the proof of non-monotonicity for the problerinbid withdrawal in [37].

For the generic case, however, no handmade counterexaampleslen found. Therefore, we have
tried two different ways to find such counterexample: viarefulation and by iterative search.

Through reformulation, we generate a CSP model that prg¥aduls a counter-example (if it exists),

given a maximum number of items. On the other hand, we hawaded (and implemented) an

iterative procedure which checks all the possible bid corations one by one in order to find such
counter-example.

The first approach has turned out to be not practical sincedhgplexity of the model is highly
exponential. The second approach, although more practiaalnot found any counterexample up
to now. There are two possible explanations for that, theding is that the counter-example does
not exist and therefore the method is actually incentive atible, the second option is that the
counter-example exists but it is very intricate. Both altgives are good, since as we saw in the
sensitivity analysis, large auctions tend to be inherenthyust and therefore, possible manipulations
in such cases could be avoided as robustness would not be used

85

CHAPTER /
Robustness for Recurrent Auctions

In this chapter we examine how to achieve robustness in aeseguof auctions. The robustness
mechanism explained in the previous chapters using supeticas could also be applied, repeat-
ing it on each auction. However, in a sequence of auctions dha repeated through time with
similar resources and participants, a problem arises whenresources are public and uncontrolled
(see Section 2.1): the problem of agents using the resoutbewt authorization. Therefore, the
problem of resources that become unavailable is convededénts that use the resources without
authorization. We take a new approach to improve robusttiegsconsists in learning the behavior
of the agents using a trust model and using the learnt pararaé@t each individual auction in order
to improve its robustness even more.

7.1 RECURRENTAUCTIONS

In some domains the allocation of resources to bidders ade fias a specific time only [42]. Hence,
short-term contract is often used in those markets. Whetirtteeof the contract expires the resource
allocated becomes free. Then the auctioneer needs tot&llttearesource to bidders again. Conse-
quently, these short-term contracts are continuoushatejpen what is known asracurrent auction
This recurrence is also from the point of view of bidderscsirach bidder repeatedly requests the
resources for a specific time interval. Recurrent auctians gaining importance [42, 56, 41] since
there are many applications where this recurrence appans,as e-service oriented marketplaces.

Robustness for recurrent auctions acquires a differenhingdhan in single auctions. Especially

in the case of public uncontrolled resources that can be bigetle agents without authorization.

In the domains where those kind of resources apply, the mmaiblgm is not on resources that

become unavailable (because the resources are renewathaepatition of the auction), therefore

robustness would not be achieved as in single auctions tgjroid) robust solutions that can be

repaired if a resource fails. Instead, in these domainsstoless is needed for avoiding possible
conflicts in the case that the agents use the resources wahthorization.

7.2 CASE EXAMPLE: THE WASTE WATER TREATMENT PLANT
PROBLEM

In this section, we introduce a real world problem where sbbess in recurrent auctions with un-
controlled resources takes an important role: the wastentrtatment plant problem (WWTPP).

INotice the difference between recurrent auctions and sgigli@uctions. A recurrent auction could be formed by a
succession of some of the auction types described in Se2thd. So a set of items can be auctioned periodically. In
contrast, in a sequential auction the auctioneer does rtibawall the items, only one item at a time.

86

Figure 7.1: Water treatment system

The treatment of the wastewater discharged by industriesttire rivers is vital for environmental
quality. For this purpose, the wastewater is treated in evestier treatment plants (WWTP). A
WWTP receives the polluted wastewater discharges comarg the city and different industries.
Nowadays the most common wastewater treatment is the tediwudge process. The system
consists in an aeration tank in which the microorganismgaesible for treatment (i.e. removal of
carbon, nitrogen and phosphorous) are kept in suspensbaenated followed by a liquid-solids
separation, usually called secondary settler. Finallycgale system is responsible for returning a
fraction of solids removed from the liquid-solids separatunit back to the reactor, whereas the
other fraction is wasted from the system [69].

A typical water treatment system is depicted in Figure 7 e ihdustries discharge their wastes to
a sewage system, which directs the water to the WWTP. The, mlace the water has been treated,
puts it back to the river. The hydraulic capacity of the pliaritmited, and therefore the main goal
of the system is to ensure that the water flow entering the W\AfidPits contamination levels are
below some given thresholds, so that it can be correctlyade@therwise, the wastewater could not
be fully treated and the river would be polluted.

The hydraulic and contaminants capacity restrictions afsed according to its expected use (in-
dustries and cities in the surroundings that generate ttstejvaCurrently, there exist regulations
intended to achieve this goal by assigning a fixed amountthiosized discharges to each industry.
However, they are not sufficient to guarantee the propeiniresat of the wastewater. The problem is
that, although these regulations enforce industries fmectshe WWTP capacity thresholds, they do
not take into account that simultaneous discharges byrdiftéandustries may exceed the WWTP’s
thresholds. In such a case, no industry would be breakingiths, but the effect would be to exceed
the WWTP capacity.

The scheduling problem faced in this domain is to distriith&industrial discharges over time so
that all the water entering the WWTP can be treated. If thehdigges are done without any coor-
dination, the amount of water arriving at the WWTP can exdesthcoming water flow threshold,
and cause the overflow to go directly to the river without baireated. Moreover, if the contami-
nation level of the water is too high, the microorganismgusethe cleaning process die, and the
process has to stop until they are regenerated. Thus, im trgeevent such dangerous situations,
the industrial discharges should be temporally distrithsie that all of them can be fully treated.

87

Each industry has a tank (of a given capacity) where it care $t® waste in case a discharge is not
authorized. Obviously, if the industry is denied to disgfegaand its tank is full, it will be forced to
realize the discharge anyway. As this situation can affegatively the process in the WWTP, it
should be avoided. It is assumed that an industry can pettiwondischarges at the same time: one
coming from the production process, and another one comamg the retention tank (from previous
discharges).

The WWTPP can be modeled as a recurrent combinatorial awetiere the auctioneer is the treat-
ment plant, the resource being sold is its capacity, andgheta using the resource are the industries
that perform discharges. Here the resource consumptiomndhss the individual discharges) does
not have only a global capacity limit (hydraulic capacityyt it is extended with many thresholds,
one for each contaminant type. The goal of the auctioneeotismexceed any of its thresholds
(hydraulic capacity and contaminant levels).

In this scenario it is conceivable that industries may samext disobey the decisions of the plant.
The most obvious reason is when an industry has its retetdiok completely full; in this case

if the forthcoming discharge is not authorized, the industill be forced to discharge it anyway,
thus disobeying the plant. However, an industry could dégahe decisions of the plant for other
uncontrolled and unpredictable reasons, for example whendastry cannot use its retention tank
(for maintenance purposes, for instance), or when a candistharge cannot be stored in the tank
because of its high level of contamination, etc.

In the following sections we will study how to solve this pheim with robustness, in order to avoid
possible overflows caused by unauthorized discharges. Etleooh is based in proactive robust-
ness, where we are interested in a solution that takes immuat possible changes, rather than a
reactive approach where the system reacts when there ishamge, finding an alternative solu-
tion. Appendix A shows how to solve optimally (without rolusss) this problem using centralized
approaches and comparing the performance of different limggeand solvers.

7.3 LEARNING AGENTSBEHAVIOR

In this section we describe how to add robustness by usingtrtrechanism to the recurrent auction
that is able to consider several possible changes on thimauthe mechanism is based on building
a model of the participants in the auction that is learneduiccessive iterations of the recurrent
auction. The robustness mechanism consists in three maipaoents:

e Trust model of the agents requesting the resources
e Risk function of the agent selling the resources (thectioneey or coordinator)

e Robust solution generation

The first component (the trust model) is concerned with thenegrequesting resources. Itis a
main part of the mechanism as it models the behavior of thatad®y learning from their actions
their behavior and the circumstances in which an agent ig tikedy to disobey the decisions of
the coordinator and use the resource without authorizalibe second component is related to the
coordinator and its risk function, as the concept of a rologition varies depending on the risk

88

attitude of this concrete agent. Finally, with the inputsniag from all the agents, the robustness
of the system is achieved by combining the risk of the coaidinwith the trust on the agents
requesting the resources to generate a solution that ist,ahat is, it is able to absorb (up to some
level) the changes in the environment.

7.3.1 TRUST MODEL

An agent requesting resources to perform tasks can disbeajetisions of the auctioneer for sev-
eral reasons. It is not usually the case that an agent dis@eyy decision of the auctioneer inde-
pendently of the characteristics of the task to perform.maily, an agent would disobey only the
decisions that deny some tasks that it needs to perform foeseason. Therefore the trust model
should not contain only a unique global value for the degferust of an agent, but the trust value
should be related to a given task features. Possible tatkésao build the trust model include the
resources capacity requirements, the task duration, etc.

The trust model is learned during the recurrent auction bgirgy two main characteristics. First,
the probability of disobeying of the agents, which happehsman agent uses the resource when it
is not authorized to. Second, its lying magnitude, représgithe difference between the requested
capacity of the resources and the real used capacity, ghant some scenarios an agent may
request to perform some tasks using a given capacity of ress@and later use a higher capacity
than requested. Consequently, the measures stored byshentndel are the following:

e Probability of disobeying. This valueP € [0..1] could be measured in many different ways,
being the most obvious the average of disobediences inaeltt the total number of auc-
tions the agent has been involved in. However, it could besorea counting also the times
where the agent has performed the authorized task but usiighhar amount of capacity than
requested.

e Lie magnitude. This valueM € [0..0c] represents the degree of the disobedience. For
example a value of 1 would represent that when the agent @jsolit uses the quantity of
resources requested for the task, while a value of 1.5 waydtesent that it uses 150% of the
requested capacity.

A graphical representation of this trust model using onlg characteristic of the task is shown in
Figure 7.2 (to use more task characteristics, additiomakdsions would be added). Note that this
model is general enough to allow including even the case evaeiindustry does never disobey the
auctioneer, but it uses a higher amount of capacity thanestqd (having a lie magnitude greater
than O at disobey probability of 0). This is particularly fudén problems where the resource capac-
ity requirements of the agents are quite dynamic.

The trust model is learned by the auctioneer agent at exerctitne. Every time a task is performed
the trust model of the respective agent is updated checkisityfif the task has been performed
after the authorization of the auctioneer or not, that is, dhent has disobeyed the result of the
coordination (the solution of the auction), and secondtié resource capacity used is the same as
what was requested.

89

Disobey probability

Task characteristic

Lie magnitude

Figure 7.2: Trust model.

We use statistical procedures to learn the trust model, hemvether more complex learning tech-
niques could be used as well to fill the model such as neuradanks, bayesian networks, etc.

7.3.2 RSK FUNCTION

The risk attitude of the auctioneer characterizes the tfithetween robustness and optimality that
he wants, given that robustness and optimality are comtiagiobjectives. The risk function of the
coordinator can be also seen as his willingness to face dangsituations.

Risk attitudes are generally categorized in three distitadses: risk averse, neutral and proclive.
Risk aversion is a conservative attitude for individualowdo not want to be at stake. Risk neutral
agents display an objective predilection for risk, whilgeats with a proclivity for risk are willing

to engage in situations with a low probability of successr &mample, a risk-averse auctioneer
would consider that every request with a probability of bisging greater than 0 is going to use the
resources even if unauthorized, and thus it would auctidy the remaining resources capacities
over the rest of the requests. On the other hand a risk-peoalictioneer would consider that if a
request has a low probability of being disobeyed, it woult m®the case at this time and hence
the auctioneer would auction a bigger amount of resourqasoiides, although with a higher risk of
being overused.

Risk

Probability [. Probability
1 of disobedience 1 of disobedience

(@ (b)

Figure 7.3: Risk attitude function: (a) averse, (b) praeliv

The risk functionf,.;s; defines the risk attitude of the auctioneer (between 0 and &)fanction of
the probability of disobeying of a given agent and a giverues;. An example of a risk function
is shown in Figure 7.3(a). In this case it represents a ngse auctioneer, since the resultiek
valueis almost always 1 (it considers risky requests as if theygareg to surely use the resources
even if unauthorized), regardless of the probability obtisying. On the other hand, a risk-proclive
auctioneer would have the final value almost always set t@ @ean in Figure 7.3(b), and a risk-
neutral one would have it set accordingly to the probabidftdisobeying.

90

7.3.3 FOBUST SOLUTION GENERATION

The trust model and the risk function of the coordinator @edito generate threbustness constraint
that will provide robust solutions. This constraint is adde the constraint optimization problem
related to the auction, in order to force the solution to Hrigb.

In the auction (executed each time a conflict is detected@uletioneer is faced with a set of requests
(the tasks involved in the conflict), each with trust feasuassociated obtained from the trust model.
Then the auctioneer decides which requests to authorizendépy on its risk attitude.

The robustness constraint is formulated in a way that thdisaolfinds a balance between the amount
of resources required by the authorized requests and thmasgsisk from the unauthorized requests
(appropriately weighted by its probability of disobeyitig,magnitude and the risk functiofy, . of

the auctioneer). The objective is not to exceed the maximapadiies of the resourceQ{). This
constraint is defined as shown in Equation 7.1, where varsahl represent whether a discharge
is authorized or notg; ; is the capacity required by the dischargend@; are the limits of the
contaminantg’.

Z TiCij + Z (1 —x)-cij frisk(Py) M; <Q; VjeC (7.1)

i€[1,n] i€[1,n]

The first summatory represents the resources used by therieith requestsy; = 1), while the
second summatory characterizes the resources potenigaty by the unauthorized requests €

0). Hence, the unauthorized requests are considered ag/ifsbiee performed in the cases where
the probability of disobeying of the associated agédfj) (s higher than zero. However this value
(appropriately weighted with its corresponding lie magdé)/;) is considered as a function of the
risk attitude of the auctionegf.;.>

Another way of understanding this equation is by moving theoad summatory to the right side,
as shown in Equation 7.2. Then it can be read as if a concrpteitg of the resources is reserved
to be used by the unauthorized tasks that are likely to bédiserl and performed anyway, which is
similar to slack-based techniques [18].

S omici; <Qi— > (L= xi)cijfris(Pi)-M; (7.2)
i€[1,n] i€[1,n]
—_————

Authorized ReservedCapacity

7.3.4 EXPERIMENTATION

To evaluate the robustness mechanism we have implementetbéype of the system reproducing
the coordination and communication process between plahtredustries. So far we have only
considered the hydraulic capacity of the plant. Industeraigicalculate their bids taking into account
the urgency to perform a discharge, based on the percentagpewapation of the tank. In case an

2In this case we have considered that the lie magnitude istfinmultiplied by therisk valug but another function could
be used as well.

91

industry agent is denied to perform one of its dischargdgsittries to store the rejected discharge
into the tank, scheduling the discharge of the tank as itsftsvity after the current conflict finishes.
If the industry has its tank already full, the discharge ifgened anyway.

The free linear programming kit GLPK (GNU Linear Programgifit) has been used to solve the
winner determination problem related to each (multi-uaitttion, modeling it as a mixed integer
programming problem. The robustness constraint is addad additional constraint.

The trust models of the industries have been implemented)usily one characteristic of the dis-
charges: the flow. The models of the industries are learngdgithe execution by storing the total
number of lies and truths (that is, disobedient and obedietiins), together with a value to compute
the lie magnitude. These values are updated after eachrpediadischarge in the following way:
if the industry was authorized then the number of truths efdbrresponding flow is incremented;
otherwise the number of lies is incremented. The lie mageiis independently computed as the
difference between the used capacity and the requestedisapa

Results have been evaluated considering some quality mesdsased on different characteristics of
the solution:

number of overflows (NO)occurred during the simulation

maximum flow overflowed (MFO), measured im? /day

total volume overflowed (VO) in liters

percentage of discharge deniatseyedby the industrie$%lO)

The experiments consisted of simulations using a set ofdat provided by the Laboratory of
Chemical and Environmental Engineering (LEQUIA) of the Wsity of Girona. This data is com-
posed of the discharges of 5 industries in two weeks. Thedirstis a pharmaceutical industry; it
is increasing its discharge flow during the week and does ischdrge during the weekend. The
second one is a slaughterhouse that discharges a constaraxtept at the end of the day when it
increases. The third one is a paper industry that dischargeastant flow during the seven days of
the week. The fourth one is a textile industry, whose disgbaflow oscillates during the day. The
fifth one is the waste water coming from the city, whose flowxedi The hydraulic capacity of the
plant is 32000 rivday.

We have tested the mechanism in different scenarios aratisits.

e In the first scenario there is no coordination among the imahss(without coordination the
industries perform its initial discharges plans, and teatinent plant does never unauthorise
any discharge).

e The second scenario uses the recurrent auction to cocedimadischarges of the industries
and assumes that they always obey the decisions of the ptaloing as they have enough tank
capacity.

¢ Inthe third scenario we introduce a probability of disolmgythe outcome of the coordination
mechanism. This probability depends on the occupationedtathk (the higher the occupation,

NO MFO VO %10
No coordination 80 9826 15.21-106 -
Obey 28 4996 3.74-106 98.95
NG RobUSINess 77.60 14432 11.5-108 98.55
(4.12) (865.93) (216866) (0.12)
78.70 14360 11.3-106 98.27
Low Disob. Averse | 715y | (1522) (261362) | (1.57)
Robust. i i
79 13531 11.4-108 98.19
Neutral
(7.83) (1396) (260669) | (0.24)
. 84.1 14052 11.3-106 98.15
Proclive
(5.16) (1006) (251712) | (0.17)
126.60 14398 13.3-106 96.48
No Robustness
(6.13) (1604) (363484) | (0.31)
126.60 14398 13.3-106 96.48
. . Averse
Medium Disob. Robust (6.13) (1604) (363484) | (0.31)
' 122.9 13966 13.2-106 96.61
Neutral
(6.84) (803) (403934) | (0.32)
. 121.3 14233 13.2:106 96.58
Proclive
(7.94) (1358) (374673) | (0.41)

TEXTILE INDUSTRY ALWAYS DISOBEYING

No coordination 80 9826 15.21-108 -
Obey No Robustness 112 6523 6.89-106 90.84
Robustness 58 6590 5.47-106 96.77
112 14955 12.6-10° 90.98
No Robustness
(6.09) (1201.58) (233076) | (0.2)
77.70 14225 11.8-106 96.69
Low Disob. Averse | 368) | (1212) (205150) | (1.57)
Robust. i : i
82.5 15110 11.9-106 96.66
Neutral
(7.66) (997) (199074) | (0.16)
. 81.2 14018 11.8-10° 96.68
Proclive
(4.44) (1596) (133988) | (0.18)
119.70 14819 14.3-106 89.96
No Robustness
(4.72) (1373.74) (263955) | (0.28)
109.50 14150 13.6-10° 95.19
. . Averse
Medium Disob. Robust (3.95) (1310) (242619) | (0.17)
' 113.5 13708 13.6-10° 95.16
Neutral
(5.5) (1040) (445501) | (0.37)
. 110.9 14522 13.6-10° 95.31
Proclive
(8.16) (1571) (338985) (0.29)

Table 7.1: Simulation results.

the higher the chances of disobeying); a graphical reptaten of this function is shown in
Figure 7.4. Two variations of the disobeying probabilitydidobeying have been tested, the

93

first one is exactly the same as the one shown in the figure (Lisekd@dience), and the second
starts at a probability of 0.1, instead of 0 (Medium Disoleadk).

e Additionally, we have tested the above scenarios settiegomle industry (the textile, chosen
randomly) always disobeying the decisions of the plantyfaifrits discharges is unauthorized.

0,8 /
07 /
0,6 /

0,5 /

0.4 /

: 0,2 /

0,1 /

0

isobey probability

o © 2 @ o 9 9 9 9 9 9
- 8 ® ¥§ L © ~ © & O

Buffer Occupacy (%)

Figure 7.4: Disobey probability function.

Every scenario has been tested activating and deactividitingobustness mechanism and with dif-
ferent risk attitudes of the coordinator (averse, neutndlgroclive).

The outcome of all the scenarios is shown in Table 7.1, wighetrerage and deviation (in brackets)
of 10 simulations performed for each scenario. Concretadycan notice that the non-coordinating
scenario produces the worst results regarding volume ovexfl (which is the most important indi-
cator), while the auction-based system improves the equincipally when all the industries obey
(this reflects the best possible circumstances). With @igiolg industries we can notice a subtle im-
provement when using the robustness mechanism in both hee@and maximum flow overflowed
yet the difference is not much relevant, and the number offloves is generally higher. Regarding
the risk attitude of the coordinator we do not observe its@ff in this scenario.

In the environment where there is one industry always digolgethe robustness mechanism seems
to mark differences given that all the indicators are sigaiiily improved, specially regarding the
volume overflowed and percentage of obedience. Howevehjsrstenario, as in the previous, the
different risk attitudes do not produce clear differencethie outcome.

7.4 SUMMARY

In this chapter we have analyzed robustness for recurretibas. In recurrent auctions the problem
of resources that become unavailable is converted to afettsse the resources without authoriza-
tion. Robustness in this setting means to find a solutionwien some agents use the resources
without authorization the solution is still valid and theo@rces are not overused. We have proposed
an approach to achieve that which uses a trust model thatsl¢élae behavior of the agents in order
to know the situations in which they are most likely to userdsource even if unauthorized.

We have presented the Wastewater Treatment Plant Probl&T@®W®), a real world problem that
fits perfectly in this setting, as the resource (water flow) lsa overflown in the case that the indus-
tries perform unauthorized discharges into the river. Quor@ach has been tested in this scenario
obtaining successful results.

The method effectively learns the behavior of the agentgthidorm more unauthorized discharges

94

and decides the solution in each one of the recurrent awgctaking that into account, achieving
much less overflows than the classical approach (without@amystness mechanism).

95

CHAPTER 8
Conclusions and Future Work

In this final chapter we first make a brief summary of the the3isen, we review the objectives
initially set to this thesis and compare them with the finatknand contributions achieved. Finally,
we propose a set of topics that could be extended in futur&swor

8.1 SUMMARY

Robustness is a key issue when dealing with real world agpbics, where uncertainty is almost
always present. In this thesis we have analyzed robustoesssiource allocation problems modeled
as auctions, where it has been rarely taken into account.afticplar, we have focused on the
possibility of some resources becoming unavailable oneatlttion has already been cleared, and
we have provided a mechanism to proactively look for sohdithat can be easily repaired when
such unexpected events happen.

A sensitivity analysis has been performed to see that ressirecoming unavailable can produce big
loses in the benefit of the auctioneer. This fact is a strontvaion for our research in robustness.

We have presented a notion of robustness that balancesnfigenof allowed repairs when a break
occurs and the loss of revenue for the auctioneer, by def{nirig 5)-super solutions. This approach
allows the auctioneer to choose the more convenient vabresaich parameter, depending on how
conservative or risk seeking his strategy is. We have shbarnfinding an ¢, b, 5)-super solution
for an auction can be reduced to modeling an auction as a teeigilax-SAT formula and the
looking for a supermodel of this formula. This results inb@ thew problem of robust weighted
Max-SAT. We have faced these problems following the sameagmh as supermodels for SAT.
However, since SAT does not allow to easily encode formuliéls arithmetic operations, needed
to achieve robustness, we have moved the problem to ther tmifieal framework of Satisfiability
Modulo Theories (SMT).

We have analyzed the relationship between robustness dimdadiy and proposed a mechanism
to define the trade-off between them with a paramatetn the experimentation section we have
analyzed the results for different valuescofind the conclusion is that the loss of optimality when
searching robust solutions is lower than the loss of rolasstivhen looking for optimal solutions.
This is a result that should be taken into account when degitfie most appropriate value ofin
real world problems.

Some experimental results have been performed, showirfgak#ility of our approach with differ-
ent frameworks and solvers, namely, SMT, pseudo-Booledr_arear Programming. The results
obtained are quite successful, especially if we considemtim relation with other works on ro-

96

bustness. As far as we know, there are very few results onmedation approaches, and they are
restricted to (1,0)- and (1,1)-supermodels. Regardingltesen search-based approaches, they are
also restricted to find at most (1,3)-super solutions to C&Blpms. Although extensive experi-
mentation with harder instances and other kind of probldmasa that of auctions, for instance the
job-shop problem, should be done in order to better assesctiability of our approach, we think
that achieving a reasonable performance for finding up #®){8Jpermodels as we do is a very
successful result.

8.2 CONTRIBUTIONS

The definition and modeling of robustness for resource Llabibity with repairable solutions in
resource allocation problems (encoded as combinator@icams) is the main topic of this thesis.
However, in the introduction we established a set of objestto this work. Now we analyze these
objectives and discuss the work developed for each of thedithe conclusions that can be derived.

The first objective was the quantification of the negative@f that resource unavailability produces
in combinatorial auctions. Resources that become un&aitance a solution has been found pro-
duce losses in the revenue for the auctioneer. We have pextban extensiveensitivity analysis
with several combinatorial auction distributions genedatiith CATS, and studied the loss in rev-
enue in the optimal solution when some resources fail. Tinelagion is that optimal solutions are
usually sensitive to changes in resource availability, imgkhem hard to be repaired. Although
some distributions are more affected than others and mdeerbake the repair easier to restore the
lost revenue, the loss in revenue in all the cases is cordileand therefore, robust solutions would
be desired. Furthermore, we have analyzed the size of tlaér i@pd saw that repair sizes should be
also limited as it could be arbitrarily high.

The second objective was to design a mechanism to incogsuah robustness based on repair
solutions. We have defined robustness in a similar way agsguels for SAT, super solutions and
weighted super solutions for CP. Qlat; b, 5)-super solutionsare a new kind of robust solutions that
actually generalize them, enabling to find the robust sohstthat we are interested in. We presented
a mechanism based in propositional logic to find such rolalatisns, which uses reformulation to
create a formula that is satisfiable if and only if the probless a robust solution. We have made
a large amount of experiments with this model on a wide wanétombinatorial distributions and
several solvers, and changing the values of the paramétbesconclusion is that it is effectively
applicable to many practical instances.

Actually, our mechanism for solving weighted Max-SMT rotness is generic and can be applied
to any weighted Max-SAT problem, auctions being a particcdese. Moreover, since our approach
is based on reformulation, there is no need of developingaigarithms to solve the robust version
of the problem, and so we can take advantage of the advan&édiand SMT solvers that we think
are going to improve drastically its performance in the rfiewxtyears.

The third objective of this thesis was to affigkibility to the solutions in order to study the compro-
mise between optimality and robustness. This flexibilitgl® useful for hard instances, where the
previous mechanism did not provide any solution due to fistaess. We adapted the robustness
mechanism by using a concept similar to soft-constraints. al§0 incorporated a new parameter
« to easily switch between robust and optimal solutions. Tikigbility allows to find solutions in

97

over-restricted situations, and furthermore to easilyrmgetfhe desired trade-off between optimality
and robustness by setting the appropriate value. &k set of experiments was performed with this
parameter for analyzing the balance between optimalityrabdstness (fifth objective of the thesis)
and the conclusion is that the loss of optimality when saagchobust solutions is lower than the
loss of robustness when looking for optimal solutions. Tikia result that should be taken into
account when deciding the most appropriate value f real world problems.

Incentive-compatibility issues (fourth objective of ttiiesis) were analyzed in the sixth chapter. We
proved that although a restricted version of our problemveincentive compatible, the same proof
did not succeed for the generic case. Two approaches weetoped for finding counter-examples
of monotonicity, which would imply that the mechanism is matentive-compatible. Both methods
did not find any counter-example. This means that either thmter-example does not exist and
therefore the method is actually incentive compatiblehat the counter-example exists but it is not
simple. Both alternatives are good, since we saw in the hatsanalysis that large auctions (where
the counter-example could appear) tend to be already intigrebust.

8.3 FRJUTURE WORK

Although the initial objectives of this thesis have beenomaplished, during this research we have
realized that there is still more work to do in various dif@gs. In this section we give an idea of
the topics that could be extended.

8.3.1 FROBUSTNESSNOTIONS

The use of logic languages and techniques to deal with auctibustness gives us a high level

of expressiveness, which enables us to deal with distirmigimess variants. For instance, in the
auctions setting we have considered, we have focussed astr@ss with respect to good unavail-
ability. However, for having robustness with respect to Withdrawal, we simply need to set the

breakable variables to the bids. Our approach can be seegeseac framework for robustness

through reformulation, since with only slight changes ia €mcoding, we can achieve other notions
of robustness.

Thus, an open line of research is to study these notions &irdaincodings to different frameworks.
For example, a robustness variant could be to directly deséggthe potential breaks to handle:
instead of using all the variables, we could decide what @@oations of) breaks deserve being
repaired. This would be useful if we only want to considersthbreaks having a non negligible
probability of occurring. We could also think of a robuste@stion where each breakable variable
has a corresponding set of associated repairable varidtiescould serve, for instance, in the pres-
ence of scheduling, where one should only look for repairtherforthcoming assigned resources,
or in an auction scenario where it is not permitted to makairgfpy switching a winning bid to a
loser one. We could study also how to define the notion of noless for multi-unit auctions, or in
scenarios where failure probabilities are taken into ant@among others. Again, we envisage that
thanks to the high expressiveness of our modeling, theserésashould be feasible.

98

8.3.2 QIANTIFIED COP

Quantified COP (QCOP) is a generalization of COP where thablas may be universally quanti-
fied over their domains [3]. This framework seems suitabidifaling robust resource allocations.
Using QCOP might lead us to a more compact reformulationeptioblem. This approach might be
particularly useful when dealing with cumulative resosrfies. resources that can be simultaneously
used by several agents).

However, the expressive power of QCOP comes at a cost. Wi 8 solved by just assigning
values for its (existentially quantified) variables suchtthll the constraints are satisfied, a QCOP is
solved by exhibitingnvinning strategies Therefore, it would be interesting to elaborate an study of
the suitability of QCOP for robustness.

8.3.3 S ALABILITY

The size complexity of the proposed mechanism for robustin@sed on reformulation is exponential
in a even when using cardinality constraints. Therefore, it aworth performing a more extensive
analysis on the scalability of our approach, and the growfitoblem size with the number of items
and bids.

8.3.4 S$ARCHALGORITHMS

We have proposed a method based on reformulation to find rgbligions. The model can be
generated in different encodings so that it can be then dalgeng various solvers, such as SMT,
pseudo-Boolean and Integer Linear Programming. We have tba¢ this approach obtains good
results.

Itis left as future work to look for specialized search altjons or operational research techniques
for solving the robust weighted Max-SAT problem and makeegponding performance compar-
isons. This would be specially important for those casek witarge number of bids and/or higher
values ofa, where our approach could be inefficient.

8.3.5 INCENTIVE-COMPATIBILITY

In the chapter dedicated to incentive compatibility, we #aat although the robustness mechanism
was not incentive compatible in a restricted case (becauseiater-example of monotonicity was
found), no proof of non-monotonicity was found in the geoedse. Two approaches for finding
such counter-example were proposed, but they did not findcangter-example. This points to the
possibility that the mechanism is indeed incentive-corbpathowever, a formal proof should be
given to ensure that.

After that, the remaining necessary conditions (exactmessicipation and critical) for proving the
truthfulness of the mechanism could be studied in orderdggthe truthfulness of the mechanism.

99

8.3.6 RECURRENTAUCTIONS

For recurrent auctions, we proposed an approach of aclgiesbust solutions based on a trust model
that learns the behavior of the agents. However, other appes could be used. Concretely, the
robustness mechanism proposed for single shot auctiorld bewextended in order to deal more
naturally with recurrent auctions.

Alternatively, the parameters learnt by the trust modeldbe used in order to set the probability of
failure (breakage) in the flexible robustness approacts Would be a good work to tie up all loose

ends.

101

Appendices

102

103

APPENDIX A
Benchmarks with the WWTP
Problem

In this chapter we deal with the Waste Water Treatment Plaoblem (WWTPP) introduced in
Chapter 7. We define it formally, and use it to test the effayief the different tools and solvers
available with it. Although we do not handle robustnessdssa this case, we think that the com-
parison of the different solvers is interesting, since &lihem could be used to solve the robustness
problem presented throughout the thesis.

A.1l THEWWTPP RROBLEM

The Waste Water Treatment Plant Problem (WWTPP) was intedlin Section 7.2. We focus

on the decision variant of the problem, i.e., in finding a iigl@ssolution not exceeding an overall

deadline, instead of in minimizing the makespan. Actualiythe real case, it is sufficient that all

discharges are rescheduled within the same day for whighwieee originally scheduled (and, in

fact, the minimization of the makespan could be not goodferWWTP, as it is preferably, for the

microorganisms’ functioning, that the discharges are hgaeneously distributed throughout time).
We will address this problem taking into account only theexdibw, therefore we assume having a
single resource of given capacity.

The problem can be roughly defined as: given a list of all tiseltirges to be performed (each one
with a given duration, release time, deadline and resowapadity requirement), we are asked to find
a start time of each discharge between its release time suédline, such that, at any time, the
sum of resource requirements of the discharges schedutbdtdaime does not exceed the WWTP

capacity. There is some precedence relation (presumabhaia) between the tasks of each single
industry. Since the delays introduced in the dischargesrer to find a feasible schedule) should
not stop or delay the production processes of the industifiesidea is to keep those discharges
temporarily in a retention tank in the industry itself, amddischarge them to the river later on,

possibly in disjoint intervals, because a discharge corfimmg a tank can be interrupted.

In summary, an instance of the Wastewater Treatment Plablém (WWTPP) is given by:

e asingle resource of given capacity,
e a set of tasks, each one with a given duration, release titheesource capacity requirement,

e a chain-like precedence relation between the tasks,

104

e for any such chain of tasks, a buffer (or retention tank) eégicapacity and output rate (we
assume that the input rate is flexible) and

e an overall deadline (greater than all release times).

The question is to find a schedule where:

e each task is either scheduled at its release time (and doegeeed the deadline), or else itis
redirected to its corresponding buffer with a volume eqadistresource capacity requirement
multiplied by its duration,

o the capacity of each buffer is not exceeded at any time,
e each buffer is emptied, preemptively, at its corresponde,
e each buffer is empty at the deadline, and

e at any time, the sum of required capacities of the tasks sdbedt that time, together with
the required capacities of the emptying of the buffers attthree, does not exceed the capacity
of the single resource.

Notice that nothing prevents a buffer from being emptied fdletl at the same time, and also from
being emptied at the same time at which one of the tasks islatdz

A.2 MODELING THEWWTPPWITH SMT

In this section we give an encoding of a WWTPP instance int&Rr8odulo unquantified Linear
Integer Arithmetic (LIA) instance. As we will see, SAT modullA nicely captures all constraints.
Afterwards we translate this encoding into an Integer Rrogning problem, with the aim of com-
paring the performance of state-of-the-art solvers on bptiroaches.

A WWTPP instance can be easily encoded as a SAT modulo urifjedhinear Integer Arithmetic
instance as follows.

A.2.1 CONSTANTS

We have the following non-negative integer constants:

e PlantCapacity denotes the capacity of the wastewater treatment planthtteae period.

e Given a set o industries, TankCapacity; and TankFlow; denote respectively the capacity
and the emptying rate of the buffer associated to industrty € 1. .. k.

e Given a set of discharges frokrindustries to be scheduled within time periodsd;; denotes
the scheduled flow of discharge for industrguring time period, Vi€ 1...k,j € 1...m.

105

A.2.2 VARIABLES

Given a set of discharges fromindustries to be scheduled within time periods, we have the
following integer variablesi € 1...k,j € 1...m:

e For everyd;; > 0, ¢;; denotes the actual “capacity requirement” of industduring time
periodj, corresponding to a scheduled discharge. That is, for eliery 0, eitherc;; = d;;,
or¢;; = 0 and the discharge is redirected to that industry’s buffer.

e Bout;; denotes the flow discharged from buffer (of industrguring time period;.
e Buf,; denotes the flow stored in bufféat the end of time periogl
A.2.3 CONSTRAINTS

We next define the set of constraints. The explanation of eanhtraint is given at the end.

k

Viel...m: Zcij + Bout,;; < PlantCapacity (A1)

i=1
Viel...k: Bufﬂ =d;1 — ci1 (A2)
Viel...k,j€2...m:Buf;; = Buf;;_1 — Bout;j + dij — cij (A.3)
Viel...k,je€2...m—1:Buf,; < TankCapacity; (A.4)
Viel...k:Buf,, =0 (A.5)

In constraints A.2 and A.3, the differendg — ¢;; is replaced by if d;; = 0 (recall that variables
¢i; have been defined only for corresponding constdpts- 0).

Viel...k:Boutiy =0 (A.6)
Viel...k,je€2...m: Bout;; =0 (A.7)
V (Bout;; = TankFlow; A Buf ;1 > TankFlow;) (A.8)

V (Bout;j = Buf;;_1 A Buf ;; 1 < TankFlow;) (A.9)

For every discharge from an industryspanning from time period to time periodh, we state:

(Cm =0A---Acpp = 0)\/ (Cw =dig N - Ncip = dib)l (A.].O)

Finally, the following (obvious) redundant constraintsidze added in order to help orienting the
search:

INotice thatd;, = --- = d; > 0.

106

Viel...k,je2...m:0< Bouty; < TankFlow; (A.11)
Viel...k,j€2...m: Bout;; < Buf (A.12)

ij—1
Constraints A.1 state that the capacity of the WWTP is noeered at any time. Constraints A.2
and A.3 define the amount of water inside every buffer at etiarg interval, taking into account
the amount of water inside each buffer at the previous tirrenal, and the current output and input
flows for this buffer. Constraints A.4 require the capacitgach buffer not being exceeded at any
time, and constraints A.5 impose all buffers being emptii@tieadline. Constraints from A.6to A.9
are restrictions on the output flow from the buffers (or rétentanks): the output flow at the first
time interval must be zero (as the buffer is empty) and, assgbent time intervals, it can be either
zero, or it can be equal to the tank flow (provided that themnisugh water inside the buffer) or
it can be equal to the remaining water inside the buffer i ikiless or equal than the tank flow.
Constraints A.10 express the dichotomy of throwing eacbidigge to the river or redirecting it to a
buffer.

Constraints A.11 and A.12 are unnecessary, but have provied helpful in our experiments. No-
tice that, although the value of thRout variables is perfectly defined by constraints A.6 to A.9,
restricting the domain of thBout variables can help in the search for solutions.

A.3 IP MODELING

In order to obtain an IP instance from the previous SMT instawe need to convert logical combi-
nations of linear constraints into conjunctions of lineanstraints. We use standard transformations
like the ones of [74].

We defineyi € 1...k,j € 1...m, binary variables;; denoting whether discharge from industry
at time periodj is actually scheduled or else redirected to a buffer. Therepkacec;; with r;; - d;;
inside constraints A.1, A.2 and A.3. Constraints A.4, A.%5 &6 remain the same. The binary
variablesr;; allow constraint A.10 to be translated into

Tig + - +7p=0Vrig+ - +rp=b—a+1.

This can then be encoded as a conjunction of linear con&riayndefining additional binary vari-
ablesd;,;, for every discharge from an industiyspanning from time period to time period, and
stating:
Tiat+ - +ri+(b—a+1) o <b—a+1 (A.13)
—(riat+- o +rp)—(b—a+1) G <—(b—a+1) (A.14)

The disjunction of constraints A.7, A.8 and A.9 can be exgedsas

05,5 — Bout;j = TankFlow; A Buf ;;_y > TankFlow; (A.16)
03,5 — Boutij = Buf ;1 A Buf;; _y < TankFlow; (A.17)
wheredy; ;, 05,; andds,; are again binary variables, and

Lij 055 + 035 > 1 (A.18)

lij

107

Then constraints A.15, A.16 and A.17 can be transformeddronjunction of linear constraints by
usingBig — M like constraintd. In this way, constraint A.15 becomes
BO’U,tij —+ T(I/IlkF‘lOLUZ . 5’

1ij

< TankFlow; (A.19)
and constraint A.16 becomes

TankFlow; - 03;; — Bout;; < 0 (A.20)
—Buf ;_y + TankFlow; - 63;; < 0 (A.21)
Notice that these constraints work in conjunction with d¢caiets A.11, which are mandatory here:
on the one hand, from A.19 we gBbut;; < 0 whenevepy,;; = 1, which together witl) < Bout;;
(from A.11) gives usBout;; = 0 as we need; on the other hand, from A.20 we GetkFlow; <
Bout;; wheneverégij = 1, which together withBout;; < TankFlow; (from A.11) gives us
Bout;; = TankFlow; as we need.

Finally, constraint A.17 becomes

Buf — Bout;; 4+ TankCapacity; - 63,; < TankCapacity; (A.22)

Buf;;_1 + TankCapacity; - 55” < TankCapacity; + TankFlow; (A.23)

ij—1

Constraints A.12 are mandatory for similar reasons as be$arce they work in conjunction with A.22.

A.4 BENCHMARKING

Here we comment on some benchmarking we have performed,rslp¢iat state-of-the-art SMT
solvers outperform best IP solvers with the previous modedf the WWTPP. We worked with two
sets of benchmarks, one coming from real data and anothéngdrom randomly generated déta

In the real set of benchmarks we used data coming from 8 iridagieach one having its own
retention tank), with a total of 94 discharges planned withiperiod of 24 hours. We took a time
discretization of one hour and an overall deadline of 24 fidoir the schedule. Different problem
instances were generated with different capacities of th&tewater treatment plant, ranging from
2000 units to 10000, at increments of 20. In this way, an dasg-easy transition was observed (as
already noted by [11, 33] for similar scheduling problem#ja transition from unsatisfiability to
satisfiability taking place at 5000 units of capacity.

For the random set of benchmarks we considered a total ofis&hatges from 10 industries (having
again each one an associated retention tank), all of thengipédnned within a period of 24 hours.
Although randomly generated, both the magnitude and durati the discharges and the size of the
retention tanks was restricted to be within reasonablddimiVe took a time discretization of one
hour and an overall deadline of 26 hours for the schedulemfinis data different problem instances
were generated, with a capacity of the wastewater treatptent ranging from 5000 to 30000 units,
at increments of 100, resulting into a transition from uis$iability to satisfiability at 14500 units.

All the benchmarks, written according to the modeling ofteecA.2 in the SMT-LIB standard

2The idea of Big — M constraints is the following: a disjunction like, e.gz; < 0) V b, whereb is a propositional
variable, can be converted inio< ubound(z)b, whereubound(x) denotes an upper bound of
3The data used in both sets of benchmarks can be fouhtip/ima.udg.edu/ mbofill/wwtpp.tar

108

Table A.1: SMT vs. IP

Real set Random set
Solver % Solved Time % Solved Time

Yices 100.0 1227.4 100.0 5.2
Z3 99.8 1152.7 100.0 285.2
CPLEX® 97.6 1855.5 98.8 594.8
CPLEX® 93.5 1811.5 92.9 25.0

aMinimizing sum of buffer contents.
b without objective function.

language, were submitted in 2009 to the SMT libfagnd some of them were chosen for the annual
SMT competitiofi in the corresponding category.

Table A.1 shows the percentage of solved benchmarks andtti¢ime spent by IBM ILOG CPLEX
11, 23.2 (SMT-COMP’08 QFELIA division winner) and Yices 2 (SMT-COMP’09 QEIA division
winner), with a time out of 1800 seconds for each instanchémréal set, and of 300 seconds in the
random set. All benchmarks were executed on a 3.80 GHz ItehXnachine with 3.5 GB of RAM
running under GNU/Linux 2.6. The modeling given in sectio® &vas used for CPLEX.

As it can be seen, state-of-the-art SMT solvers clearly erispm CPLEX on this benchmarks. It
is specially remarkable that Yices solves all the benchsjakd Z3 only fails in solving one from
the real set around the phase transition. Moreover, Yicablis to solve all the 251 benchmarks
from the random set in only 5.15 seconds, being almost iitseno the phase transition. With
respect to CPLEX, although it has very good performance inynirastances, it fails to solve some
of them around the phase transition. Since SMT solvers,daeit CPLEX, use a simplex procedure
for handling atomic linear constraints, other elements MfTSechnology such as conflict-driven
lemma learning, backjumping or restarts can be playing &a@emle in this problem.

It is worth noting that worse results are obtained by CPLEXafobjective function is used. After
trying with several objective functions, we obtained thetlvesults by minimizing the sum of buffer
contents. This somehow corresponds to an eager strategistiog in avoiding the use of buffers if
possible (and hence prioritizing discharges of wasteveattireir preliminarily scheduled times) and
emptying the buffers as soon as possible. Notice howevénthabjective function or user-given
search strategy is possible with SMT solvers, which are detaly black-box for the user and, still,
better results are obtained.

A.5 COMPARISON WITH CONSTRAINT PROGRAMMING

For the sake of completeness, in this section we detail thdtseobtained with several Constraint
Programming (CP) tools on our benchmarks.

In order to do the benchmarking, our modeling needs to beslatad into several CP dialects. For
the comparison to be fair, in all cases we must choose an ergcad similar as possible to the one
described in section A.2. This implies avoiding the use obgl constraints and sophisticated search

4http://www.smt-lib.org
Shttp://www.smt-comp.org

109

Table A.2: SMT vs. CP

Real set Random set
Solver % Solved Time % Solved Time
SICStus 68.8 258.9 81.7 27.7
Comeb 76.3 744.5 53.8 196.0
Comet 46.4 43.8 71.7 27.1
Tailor + Minion 81.3 547.6 44.6 98.3
mzn2fzn+ G12 28.9 32.2 74.9 77.1
mzn2fzn+ Gecode 0.0 0.0 37.1 9.8
mzn2fzn+ ECL'PS 0.0 0.0 0.0 0.0
mzn2fzn+ SICStus 0.0 0.0 37.1 345.8
mzn2fzn+ fzn2smt+ Z3 99.8 4735.8 100.0 159.0

mzn2fzn+ fzn2smt+ Yices 99.8 702.8 100.0 40.5
awith labeling options: max, down.

b Using CP engine.

€Using LP engine.

strategies that can be available in CP tools. For this reasemave only used labeling stratedies
Results on a different encoding, using themulative global constraint, are given in the next
section.

Since the translation of the encoding described in secti@imo a CP program over finite domains

is almost direct, the encodings obtained for each CP toolemesimilar and hence we do not detail

them here. Moreover, for solvers providing a FlatZinc frentl, we have used the same MiniZinc
model: MiniZinc [53] proposes to be a standard CP modelingleage that can be translated into an
intermediate language called FlatZinc. FlatZinc instaraan be obtained from MiniZinc instances
by using the MiniZinc-to-FlatZinc translatonzn2fzn , and then can be plugged into any solver
providing an specialized front-end for FlatZinc.

Table A.2 shows the results obtained by several CP solveth@benchmarks described in Sec-
tion A.4, except for the last two entries, which show the ltssabtained by the same SMT solvers
used in Section A.4, but where SMT instances have been @ut&iom FlatZinc instances through
an experimental compildzn2smt ‘. The table refers only to the solving time (we do not include
translation times since we are interested in comparingrepliimes, regardless of the input lan-
guage). All benchmarks were executed on a 3 GHz Intel Core@rachine with 1 GB of RAM
running under GNU/Linux 2.6.

At a first glance we can observe that SMT solvers are far bbiderother tools on these benchmarks.
It is remarkable that, after the two step translation frommidinc-to-FlatZinc-to-SMT, we obtain
similar (and in some case even better) results to the onesditiod A.4.

We tried different labeling strategies with CP solvers, &lmost identical results were obtained.
Hence, unless contrarily indicated, the results in Tab[2 @e for the default strategy, which is

6Notice that there is always a default labeling strategy @séhtools and, hence, trying with some labeling options does
not imply doing any change in the encoding.
7Available athttp://ima.udg.edu/recerca/grupESLiP.html

110

usually first-fail: selecting the leftmost variable with albest domain next, in order to detect infea-
sibility early. This is often a good strategy. However, vBfCStus Prolog we obtained significantly
better results when using theax anddown options: selecting the leftmost variable with the greatest
upper bound next, and exploring its domain in descendingroid our program, this translates to a
strategy consisting in giving priority to the biggest diagies, and keeping them in buffers as least
as possible. Notice that this roughly coincides with thesotiye function giving best results in the
IP approach of Section A.4.

The concrete versions of the CP solvers we used are: SIC8ilogR.0.1 (for the first entry in the
table), SICStus Prolog 4.1.1 (with FlatZinc support, fa MiniZinc case), Comet 2.0, Minion 0.9,
G12 MiniZinc 1.0.3, Gecode 3.2.2, and EES 6.0. For the case of Minion, we used Tailor as
a translator from the ESENCE[23] high-level language to the Minion language, in the sapieit

of using the Minizinc-to-Flatzinc translatonzn2fzn . This allowed us to use an almost identical
model. Comet already supports a high-level language wHioWved us to express the constraints in
a very similar way. Moreover, for the case of Comet we triethithe CP engine and the LP engine,
with no clear winner. We want to remark that we are aware of IRKAG CP Optimizer, which
uses constraint programming to solve detailed schedutioigiems and combinatorial problems not
easily solved using mathematical programming methodsottunfiately we were not able to test this
tool on our benchmarks, since the trial version has seuveiitalions in the number of variables and
in the number of allowed constraints.

A.6 A DIFFERENT APPROACH FORCONSTRAINT PROGRAMMING

An alternative approach is to solve the WWTPP by exploiting tise of theeumulative con-
straint within a CP system, since this constraint is closelgted to our problem. Many CP sys-
tems, such as CHIP V5, ECRS, B-Prolog and SICStus Prolog, include themulative global
constraint in their finite domain library. This constrainasvoriginally introduced into the CHIP
programming system to describe and solve complex schedpitivblems [1].

Its habitual syntax isumulative(Starts,Durations,Resources,Limit) ,whereStarts
Durations , andResources are lists of integer domain variables or integers of the siemgth,
andLimit is an integer. The declarative meaning is: if the lists demespectively the start times,
durations and resource capacity requirements of a set kd,tésen the sum of resource usage of
all the tasks does not excektmit at any time. One should expect that, by using this constraint
adequately, the performance of a CP system on the previobggon will be better (or, at least, not
worse) than if not using it.

Our modeling using theumulative constraint goes as follows. Given a dischargédurationd;

and resource capacity requiremenptsince it can either go directly to the river or be rediredted
retention tank of certain output ratewe create a set of newdischarges of duratiohand capacity
requirement, and one discharge of duratidrand non-negative requirement capacity< r (the
remainder), such that;c; = rn + /. Observe that by dividing the discharges into a number of
discharges of duratiohwe get rid of preemption. Then, by using reified constraiwes state that
the capacity requirements of thoset- 1 new discharges is actuallyif and only if the associated
original discharge goes to the river.

Notice that a set of remainders (each of them coming fromfareifit original discharge of the same

111

Table A.3: Cumulative modeling

Real set Random set
Solver % Solved Time % Solved Time
SICStus 76.6 3231.9 95.2 1347.2
mzn2fzn+ G12 67.6 64.0 12.8 8.5
mzn2fzn+ Gecode 72.6 1709.2 61.4 24.8
mzn2fzn+ ECL'PS 23.2 3255.7 17.9 637.0
mzn2fzn+ SICStus 69.3 2029.8 51.4 432.4

awith labeling options: max, down.

industry) could eventually be redistributed, forming a rest of discharges of resource capacity
plus one single remainder. However, such redistributimukhbe made for the remainders being
available at each time, i.e., dynamically, and this doegyndh the direction of an encoding using
thecumulative constraint, which requires a fixed set of resources. Thezeftere we do not
consider the possibility of redistributing the remaindexkhough this is an inexact formulation of
the problem, in practice it results a very few times in a saralét of solutions than with the encoding
used in the previous sections. And, in any case, since thigliication results in a smaller search
space, it is likely to favour this approach.

Then, apart from stating the obvious release time, precsdand finishing time constraints, we use
thecumulative constraint two-fold. On the one hand, we use it in order tomEsthat the WWTP
capacity is not exceeded. On the other hand, we use it in ¢odessure that the output rate and
capacity of every retention tank is not exceeded. This sttasa implies stating twoumulative
constraints for each industry, in the following way:

Let[I1,...,In] be a list with the initial times of the discharges kept in te&ention tank of a
industry, let[H1,...,Hn] be the times at which they are respectively flushed out fraertahk,
let[C1,...,Cn] be their resource capacity requirementsy Ik the output rate of the tank, and

let c be the capacity of the tank. Then we state

cumulative([H1,...,Hn],[1,...,1],[C1,...,Cn],r)

in order that the output rate of the tank is not exceeded, and

cumulative([l1,..., In],[H1-11,...,Hn-In],[C1,...,.Cn],¢)

in order that the capacity of the tank is not exceeded.

Finally, for symmetry breaking, we state ordering constissbetween (indistinguishable) discharges
from each retention tank. Since all these discharges arnerafidni, this improvement dramatically
reduces the search space.

Table A.3 shows the results obtained by the CP solvers stipggdhecumulative global con-
straint on the same benchmarks as in the previous secti@asén Ave used the possibility of sharing
a unigue MiniZinc model, except for the first entry, where viectly built a Prolog program. We

112

can observe that, in general, the results are better thamnthntprevious encoding for the same CP
solvers (with the only exception of G12 in the random set)wkler, these results are still far from
the ones obtained by SMT solvers. This can be due to the factth are using twoumulative
constraints for each industry (for assuring, respectjvigit the output rate and the capacity of
each retention tank is not exceeded), plus camulative global constraint (for assuring that
the WWTP capacity is not exceeded) and, moreover, we arg usamy reified constraints (for the
dichotomy of sending the discharges either to the river @r tetention tank), making thus difficult
for the CP solvers to take profit of their algorithms for thenulative constraint.

A.7 SUMMARY

We have presented the Wastewater Treatment Plant Probl&aT®¥), a real scheduling problem,
and have compared several techniques for solving it. Theding of the WWTPP into SAT modulo
linear integer arithmetic, and using a high-performancéridiver as a black-box for solving it,
has turned out to be one of the best approaches. Specifivallyave seen that state-of-the-art SMT
solvers are competitive with current best IP solvers, arehéwetter on difficult instances of this
problem (i.e., the ones around the phase transition). Titessdts show that current SMT solvers are
ready to solve real problems outside the verification aned that they provide a nice compromise
between expressivity and efficiency.

Let us recall that SMT solvers, like IP tools, use a simplexcpdure for handling atomic linear
constraints. However, the particular treatment of bounastraints of the formx < korax > k

inside a simplex procedure like the one of Yices, must be aikgsedient for the good results
obtained in this problem by this solver (notice that manystints in this problem are of this
form). Also, we think that usual SMT techniques such as haukjing, restarts, and conflict-driven
lemma learning must be a key ingredient for the good resblisined around the phase transition.

Moreover, in our point of view, the encoding of the WWTPP aSafiT problem is simpler than as
an IP problem (where logical combinations of linear coristsamust be translated into conjunctions
of linear constraints, with the addition of zero-one valgalp. Compared to CP, the SMT approach is
not that simple (since most CP tools provide a high-levajlage front-end), but far more efficient.
The performance of SMT solvers on this problem is still magaiicant if we take into account that
they are completely black-box, and one cannot provide eeldbeling strategies nor local search
algorithms for guiding the search.

113

APPENDIX B
Winner Determination Algorithm for
Single-unit Combinatorial Auctions

In this chapter we present an algorithm for solving the windetermination problem related to
single-unit combinatorial auctions. The algorithm is digd in three main phases. The first phase
is a pre-processing step with some reduction techniquess&bond phase calculates an upper and
a lower bound based on a linear programming relaxation inesrtb prune the search. Finally, the
third phase is a branch and bound depth first search whereittgauit programming relaxation is
used as upper bounding and sorting strategy. Experimerdmagspecific solvers like CASS and
general purpose MIP solvers as GLPK and CPLEX show that qgorithm is in average the fastest
free solver (CPLEX not included), and in some instancestidally faster than any other.

B.1 INTRODUCTION

Since 1998 there has been a surge of research on designicigreftilgorithms for the WDP in
combinatorial auctions (see [20, 16] for a more extendedes)r Given that the problem iP-Hard

in the strong sense, any optimal algorithm will be slow on e@roblem instances. However, in
practice, modern search algorithms can optimally solv&\bd in a large variety of practical cases.
There exist typically two different ways of solving it. On@hand there exist specific algorithms that
have been created exclusively for this purpose, such as ¢28%nd CABOB [66]. On the other
hand, the WDP can be modeled as a mixed integer linear praéR) and solved using a generic
MIP solver. Due to the efficiency of actual MIP solvers like B (free) and specially CPLEX
(commercial), the research community has nowadays mostiyarged towards using MIP solvers
as the default approach for solving the WDP. There also sulstoptimal algorithms for solving the
winner determination problem that find quick solutions tontinatorial auctions [67, 38]. However
we will focus only on optimal solutions.

An interesting thing to be noted about the modeling of the VB8R MIP is that if bids were defined
in such a way that they could be accepted partially, the pralbould become a linear program (LP)
which, unlike MIP, can be solved in polynomial time. We haepkthis idea in mind to design a
new algorithm, which combines LP, search and several rexfuttchniques to obtain better results
than other solvers, even CPLEX in some patrticular instances

B.2 NOTATION

Here we introduce a few notation that is going to be used tjtidhis chapter. In a single-unit
combinatorial auction the auctioneer receives a set of Bids {44, ..., b, }, each of them composed

114

by a pricep(b;) and a subset of itemgb;) of sizen(b;) (such that.(b;) = |g(b;)|). The complete
setof items id = {ity, ..., it }.

Useful relations between bids inclutig;) as the set of bids that contain the itétn andC'(b;) as
the set of bids compatible with big (i.e. the set of bids that do not contain any iteny{h;)). Ad-
ditionally, C(b;, b;) and—C'(b;, b;) represent whether bids andb,; are compatible or incompatible.

B.3 THE ALGORITHM

CABRO (Combinatorial Auction BRanch and bound Optimizex)mainly a branch and bound
depth-first search algorithm with a specially significaprecedure to reduce the size of the input
problem. The algorithm is divided in three main phases:

e The first phase performs a fast preprocessing (polynomia)tivith the aim of removing as
many bids as possible. Bids removed in this phase may be éittethat are surely not in the
optimal solution, or bids that surely are.

e The second phase consists in calculating upper and lowerdsofor each bid. The upper
bound of a bid is computed by formulating a relaxed lineagpgonming problem (LP), while
the lower bound is computed generating a solution quicklyis phase may also remove a
notable amount of bids.

e The third phase completes the problem by means of searchrately a branch and bound
depth first search. In this phase the two previous phasessakalso as heuristic and for
pruning.

In some instances it is not necessary to execute all the ghrases of the algorithm, for example
when the optimal solution is already found before the sephase (which happens more frequently
than expected). The algorithm is able to end prematureheeivhen all of the bids have been
removed or when at some point of the execution the globalidweend reaches the global upper
bound.

This algorithm also provides anytime performance, givimg possibility to be stopped at any time
during the execution and providing the best solution fouméhs. In the following sections each of
the three phases of the algorithm are explained in detail.

B.3.1 HRST PHASE PRE-PROCESSING

This phase uses fast algorithms (with polynomial-time claxipy) to reduce the size of the problem
by deleting bids and items that either cannot be preseneaitimal solution or that surely belong
to it. This phase consists of 8 separate strategies (stepsi), of them using a different criteria to
remove either bids or items.

e Step 1: Bids with null compatibility. In this step all the bids that do not have any compatible
bid are deleted, except for the bid with the highest pbiceThese bids are surely not in the

115

Figure B.1: Examples of (a) dominated iteumn,], (b) solution bid §;), (c) dominated and (d) 2-
dominated bids.

—— - ——

N
! bi) = 120 tible(b1) = b
______ 1|@| p(b1) compatible(b1) = bs
b '@ | —-——===’
HOICIE ! 1 ; oo -
|) bz @ | p(b2) =100 compatible(b2) = bs

o

p(bs) = 50 compatible(bs) = b1, bz, bs, bs

5
®:
®.
6]

- = - ——— - _———_

p(bs) =100 compatible(bs) = b, bs

HO
©

p(bs) = 90 compatible(bs) = bs, ba

o
@

(a) (b)

Figure B.2: Left: Example of pseudo-dominated kg i6 pseudo-dominated). Right: Example of
compatibility-dominated biddg is compatibility-dominated by,).

optimal solution since the maximum benefit of a solution aorihg any of them would be its
own price, yet it still does not surpass the price of thethid

e Step 2: Dependent items.ltems give information about incompatible bids. Still inns®
cases the information given by an item is already includéal &dmother’s: the item idepen-
dent Then, the former can be removed without any loss of infoimnat Hence, this step
deletes (leaves out of consideration) dependent itemse Kbwmally, for each pair of items
(it1, it2) such thab(it1) C b(it2), it; may be deleted from the problem since the information
given byit; is redundant. Figure B.1 (a) shows an example of this sdnatiere itemit,
can be deleted given that the information givenily(—C (b2, b3)) is already included in the
information given byito (—C'(b1, ba), =C(be, b3) and—C'(b1, b3)).

e Step 3: Bids of the solution.In some instances there may exist bids such that all of isste
are unique (the bid is the only one containing them), ancefioee the bid does not have any
incompatible bid. In such situations the bid is surely pathe optimal solution.

This step finds all the bids complying with this conditiondady them to the optimal solution
and being removed from the remaining set of bids. Figure B)kljows an example of this
situation, where bid; is added to the optimal solution given that its itépis unique.

e Step 4: Dominated bids.This is the same pre-processing step that CASS [24] and CABOB

116

[66] perform: the elimination of dominated bids. A bid is dioited by another when its set of
items includes another bid’s items and its price is lowerréformally, for each pair of bids
(bi, b;) whereg(b;) C g(b;) andp(b;) > p(b;), b; may be removed as it is never preferable to
b;. Figure B.1 (c) shows an example of a dominated bjddpominateds,).

Step 5: 2-Dominated bids. This is an extension of the previous technique (also noticed
[65]), checking whether a bid is dominated by a pair of bids.sbme cases a bid is not
dominated by any single bid separately, but the union of tidle tbgether (joining items and
adding prices) may dominate it. Figure B.1 (d) shows an examipa 2-dominated bid (the
union ofb; andb, dominatess). This step can be easily generalized to chealominated
bids. However, for many reasonable distributions, the gbilty of a bid being dominated
by n bids is very low for higher values of, still requiring much more processing (finding all
subsets of size), so this generalization is not so useful for> 2.

Step 6: Pseudo-dominated bids.This step is an even more complex generalization of the
dominating techniques. Here we deal again with pairs of figs;) such that not all of the
items inb; are contained ih;, but there is one single iten,, not included. In this situation
the bidb; can be removed only if adding to its price the price of its Ife&jhest price) com-
patible bid containing iteni,, is not higher than the price of the bid. In such a situation;

is always preferable tb; even when taking; together with its best compatible bid; therefore
b; does definitely not belong to the optimal solution and mightémoved. Figure B.2 (a)
illustrates this situation: herg, pseudo-dominatds since its price (50) is higher than the
sum of bidb;’s price (30) plus the price of its best compatible bid camitag the itemits, in

this casebs (10), thereforé, can be removed.

Step 7: Upper and lower bound values.In this step, fast upper and a lower bounds are
assigned to each bid with the aim of deleting bids with itsergpound lower than global
lower bound(GLB)?, since they cannot improve the best solution already found.

The upper bound of a bidb,, is calculated according to Equation B.1 wheéréb,, ity) is
the set of compatible bids &f, including itemit;.. Roughly speaking, it computes the upper
bound of a bich; by adding to its price the best possible prices of the bidsatnimg the items
not included ing(b;).

After that, the lower bound of the bids is then calculatedstarcting a solution of a bid by

iteratively attempting to add all of its compatible bids be tsolution. Its compatible bids are
ordered in descending order according to the upper bounibprgly calculated. All the solu-

tions obtained with this algorithm are valid solutions amdiate the GLB accordingly. Note
that GLB actually stores the best solution to the problemnébso far (although it may not
be the optimal one), therefore it can be returned immedidtehe user decides to stop de
execution, thus providing anytime performance.

p(b;)
u(bs) = p(bs) + Z ~ max
Vidatos) TIEC (rits) n(b;)

(B.1)

1The global lower bound (GLB) is the best (maximum) lower lbéwund, associated to a valid solution.

117

e Step 8: Compatibility-Dominated bids. This step is another generalization of dominated
bids. A bidb; is compatibility-dominated by another bidg if the set of compatible bids dj;
is a subset of the set of compatible bids¢fand its price is lower. More formally, for each
pair of bids(b,, b;) whereC(b;) C C(b;) andp(b;) > p(b;), b; may be removed as it is never
preferable ta;. Figure B.2 (b) shows an example whepeis not dominated by, but it is
compatibility-dominated.

Once all of these steps have been executed, since the prbbkerhanged, it may be the case that
some bids and items previously undeleted can now be remdwdexample the deletion of a bid
may cause the appearance of dominated items and vice-Vdrsgefore phase 1 is repeated until it
does not remove any more bid or item.

B.3.2 SECOND PHASE UPPER ANDLOWER BOUNDING

In the second phase, the algorithm calculates improvedruget lower bounds for each bid. In
order to compute the upper bound for a given hida relaxed linear programming (LP) problem
is formulated. This relaxed formulation defines the bidsunhsa way that they can be accepted
partially (a real number in the interval [0, 1]), therefotecan be solved using the well-known
simplex algorithm [17], which solves most of the instaneegalynomial-time. The relaxed version
does not contains neither the current bjchor none of the bids with items included in (i.e. its
incompatible bids). Adding the price of the Higdto the solution of the relaxed LP problem gives a
new upper bound that is usually much more precise than thelotaéned in step 7 of phase 1.

This step firstly performs an ordering of the bids accordmthe upper bound value calculated in
step 7 of phase 1 in ascending order. Then the process ofla@icunew upper bounds using the
simplex method starts with the bid with the lower upper bquardl each time a bid’s upper bound
is lower that the GLB, it is deleted, thus decreasing the gizbe subsequent bids’ simplex.

Note that the chosen ordering, beginning with the “worstishimay seem inappropriate at first
glance, but this is in fact a good strategy since the word’ bigper bounds are usually much faster
to compute than the “best”, hence we quickly obtain accurppeer and lower bounds that may allow
to remove lots of bids rapidly, thus decreasing the size efftoblem and making “best” bids also

faster to be computed. This fact has been verified experaignt

Regarding the lower bound for each bidit is computed using the values returned by the LP solver,
and updates the GLB accordingly. The solution is constdioyeirstly considering any value greater
than 0.5 to be actually 1; that is, part of the (partial) dolut This assumption is not inconsistent (it
does not produce solutions containing incompatible biggahse compatible bids are restricted to
sum at most 1, therefore two incompatible bids cannot hatle mues larger than 0.5. After that,
the remaining bids (with values smaller or equal to 0.5) #engpted to be put into the solution in
descending order. Of course if the solution of the LP wagjieit¢his process is not required, as it is
the optimal solution for that bid.

118

B.3.3 THIRD PHASE SEARCH

The third phaseiCabro) performs a branch-and-bound depth-first search with tmaiging bids of

the previous phase&]. The full algorithm can be seen in Figure B.3. The value eflibst solution

found so far (GLB) is stored in the global variali€olution Initially bSolution=0, and the search
starts by callingCabro(L,0).

1 procedureiCabro(L,cSolution)

2 for each element) of L

3 L2 + L) compatible(b)

4 cSolution2 < cSolution | Jb

5 LPSol + simplex(cSolution2)

6 if LPSol is integerthen

7 cSolution2 < cSolution2| J LPSol
8

9

L2+ 0

end-if
10 if v(LPSol) > v(bSolution) then
11 if v(eSolution2) > v(bSolution) then
12 bSolution < cSolution?2
13 end-if
14 if L2 is not emptythen
15 sort(L2)
16 iCabro(L2, cSolution2)
17 end-if
18 end-if
19 end-for

20 end-procedure

Figure B.3: Pseudo-code algorithm of iCabro procedure

TheiCabro procedure processes the incoming list of hidgerforming the following steps:

e The algorithm begins getting the first bicof the list L (recall thatL is sorted according to
the upper bound computed in phase 2). A newligtis created as the intersection between
L andC(b) (compatible bids ob). In deeper nodes (as it is a recursive function) thelget
represents the compatible bids with the current solution.

o After that, the algorithm formulates and solves the LineagiPamming (LP) problem related
to the current solution. If the result of the LP problem istper then the algorithm finishes
(prunes) the current branch, as the optimal solution of taad¢h has been found.

e Atline 10 the algorithm verifies if the upper bound of the emtrsolution is greater than the
GLB (the best solution found so far). If this is the case tharce continues through this
branch updating the best current solution if necessarye@ike, the branch is pruned.

e At line 14 the algorithm verifies that thB2 set is not empty, given that if it is empty then it
means that the current solution does not have any more ciigpbids and consequently the

119

250 350

K —,—,—,——————-y g

N
o
IS

{150 SR ——

=]
S

250 4-------~ -~ -l R -
2004--+---—- -~—-f--—--f--—-§--------f------ -
1504--- ----§k--B--—--B--BF--—-8B---8B0------ --—-%----0---F-1
5 1004- W -- -'N----%--18 -- ---BR------- ERRt REEE EERE EE|
7777777777777777777777777 50 | - - R --- -~0--18--B -8 K
‘ ‘ ‘ = A Wy B I FININ ..
NN

CABRO CASS GLPK CPLEX

Avg. execution time (sec)
Avg. execution time (sec)

o
S

o
o

<s

CABRO m CASS GLPK m CPLEX

Figure B.4: Left: Global comparative. Right: Comparativeodistributions.

branch is finished. Alternatively, if this condition doeg apply, then the following action is
to sort the listL2 according to the upper bound of each bid, in order to perfonecarsive
call toiCabro with the list LL2.

B.4 RESULTS

To evaluate the CABRO algorithm we have compared it agaitst §pecific algorithms and general
purpose MIP solvers. We have chosen CASS for the specifiesatgtead of CABOB because
although their authors claim that it outperforms CASS, ¢hierno implementation of it available
publicly. For the MIP solver, both GLPK (free) and CPLEX 1Qcbmmercial) have been tested.

Test examples have been generated using the popular berkctimeombinatorial auctions CATS
(Combinatorial Auctions Test Suite) [44], which createaiggic auction instances. The CATS suite
generates instances following five real-world situatiomd seven previously published distributions
by different authors (called legacy).

We have also created a new distribution called transpoR&A{NS) based on a real problem: the road
transportation problem. The problem roughly consists dafifig the best assignment of available
drivers to a set of requested services given a cost functidnsabject to a set of constraints (see
[52] for more details). To model this problem as an auctiom bids represent journeys (a set of
services) associated with a driver, therefore its itemeasgmt the services performed as well as the
driver used. Note that the original problem consists in miring the final cost of doing all the
services, while an auction is concerned on maximizing. &foee, the costs associated to the bids
are appropriately transformed so that the maximized smiutorresponds to the real (minimizing)
solution.

We have generated 100 instances of each distribution witbreihnt amounts of bids and items.
Each instance has been solved using CABRO, CASS, GLPK 4.C&hdEX 10.1 with a timeout
of 300 seconds. The first three methods have been run in a 2.#@hktium IV with 2Gb of RAM
running under Windows XP SP2, while CPLEX has been run on &lB2Dual-Core Intel Xeon
5060 machine with 2 Gb of RAM running under GNU/Linux 2.6.

Figure B.4 (left) shows the average execution time (in sdsprequired for each method to solve
all the instances of all the distributions. Here we can oleséitat CPLEX is in average the fastest

120

solver since it solves all the instances (1167 auctions)msiclerably less time than the other solvers.
Recall that the machine used for CPLEX is considerably fasi@n the one used for the others;
however, we believe that the results on equal machines watldhange significantly. Yet CABRO
spends less time than the free solvers GLPK and CASS.

Figure B.4 (right) shows the results in each of the distidng comparing the average time required
(in seconds) to solve all the instances of each distributigh the four methods. Here we can
observe that in two distributions (L2 and L7) CABRO is clgdHe best algorithm and in other one
(ARB) is also the best solver but CPLEX is very close. In th&t af distributions CPLEX is the
best. Regarding the free solvers, GLPK is cleary the begtsol L3, L5, TRANS, MAT and PATHS
while CABRO is cleary the bestin L1, L2,L7, ARB and SCH. CASSonly rather competitive in
L1, L2, L7 and ARB distributions.

CABRO CASS GLPK CPLEX
F -F % F -F % F -F % F -F %
L1 80 15 84.2| 67 28 70.5 39 56 414 95 a 1040.0
L2 100 0 100.0f 90 10| 90.Q 7 93 7.0 50 50 50.0
L3 54 46 54.0 3 97 3.00 84 16 84.0 98| 2 980
L4 100 0 100.0| 22 78| 22.0 10 0 100/0 100 D 100.0
L5 44 56 440 23 77 23.0 61 39 61.p 9Q 1p 90.0
L6 53 47 53.0| 46 54| 46.0 70 30 70.0 100 ¢ 100.0
L7 100 0 100.0| 68 32| 68.0 0 100 0.p 15 8p 15.0
ARB 96 4 96.0| 86 14| 86.0 81 19 81.D 99 1 99,0
MAT 81 19 81.0 0 100 0.0 10d 0 100.p 100 ¢ 100.0
PATHS | 55 17 76.4 1 71 1.4 72 0 100.0 72 0 1000
SCH 98 2 98.0 9 91 9.0, 84 16 84.0 10(0 1000
TRANS | 94 6 94.0| 24 76 24.0 10d 0 100.p 100 ¢ 100.0
TOTAL | 955 | 212 81.8| 439 728§ 37.¢ 798 369 684 1019 148 g7.3

Table B.1: Finished auctiond, not finished auctions{F') and percentage of finished auctions
(%) before the timeout.

Table B.1 shows the number of auctions finish&gl, the number of auctions not finishedX) and

the percentage of finished auctioris)(before the timeout, for each method and each distribution.
The results are similar to the execution time results, wiLEX being the best method in absolute
results, as it solves up to 1019 instances (87%). Howevergtls not any method that can be
claimed to be the best, since it depends on the kind of dat#tdauction is processing. Particularly,
CABRO performs better for the weighted random and binomigtfithutions, solving 100% of the
instances, while CPLEX only solves 15% in L7 and 50% in L2.

B.5 CONCLUSIONS

An algorithm for solving combinatorial auction problemsstzeen presented. It uses many reduc-
tion techniques, together with an heuristic function basedinear programming techniques that
provides more pruning. We have compared its performandeatiiter existing algorithms obtaining
encouraging results, particularly for weighted random indmial distributions.

There is a lot of room for improvements in the algorithm, sasmew reduction strategies, a better
integration in the search phase, improvements in the uppemdfunction used in the first phase,
other sorting criteria to obtain better lower bounds. Aladyetter understanding of the different
characteristics of the domains and its influence in the Eoldime could help to theoretically char-

121

acterize domains where CABRO outperforms CPLEX and workéndomains where it does not.

Another interesting point would be to extend this algoritiordeal also with multi-unit combinatorial
auctions, as there are not many specific algorithms for tinid &f auctions. Finally, a comparison
of the anytime behavior and the memory consumption coulddsopmed, as it is known to be a
drawback of MIP solvers.

123

Bibliography

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in order tdveocomplex scheduling and
placement problemdvathematical Computer Modelling, 17(pages 57—73, 1993.

[2] J. Argelich, I. Lynce, and J. Marques-Silva. On solvirgplean multilevel optimization prob-
lems. In Proceedings of IJCAI Q%ages 393-398, 2009.

[3] M. Benedetti, A. Lallouet, and J. Vautard. Quantified staint optimization. InCP, pages
463-477, 2008.

[4] T. Berthold, S. Heinz, and M.E. Pfetsch. Solving pseldolean problems with scipZIB-
Report 08-1220009.

[5] D. Bertsimas and M. Sim. The price of robustne®perations Resear¢h2(1):35-53, 2004.

[6] M. Bichler, A. Davenport, G. Hohner, and J. Kalaghana@ombinatorial Auctionschapter
Industrial Procurement Auctions, pages 593—612. MIT R12386.

[7] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walstandbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applicans 10S Press, Amsterdam, The
Netherlands, The Netherlands, 2009.

[8] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodrguez-Cartell, and A. Rubio. The barcelogic
smt solver.Lecture Notes in Computer Scien&d23/2008:294-298, 2008.

[9] G. Boolos and R. JeffreyComputability and LogicCambridge University Press, 1974.

[10] R. Bruttomesso, A. Cimatti, A. Franzn, A. Griggio, and &ebastiani. The mathsat 4 smt
solver.In Proceedings of CAV, LNCS123, 2008.

[11] Y. Caseau and F. Laburthe. Cumulative scheduling vagk tintervals. Joint International
Conference and Symposium on Logic Programmiragies 363—-377, 1996.

[12] Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. LeareaN. Maudet, J. Padget, S. Phelps,
J.A. Rodriguez-Aguilar, and P. Sousa. Issues in multiaggsource allocationlnformatica
30:3-31, 2006.

[13] E.H. Clarke. Multipart pricing of public good®ublic Choice 11(1):17-33, 1971.

[14] S. H. Clearwater. Market-based control: a paradigndfstributed resource allocatiokVorld
Scientific Publishing Co., Inc., River Edge, NJ, U3896.

[15] CPLEX. http://www.ilog.com/products/cplex/.
[16] P. Cramton, Y. Shoham, and R. SteinbeZgmbinatorial AuctionsMIT Press, 2006.

[17] G.B. Dantzig. The simplex metho@®AND Corp 1956.

124

[18] A.J. Davenport, C. Gefflot, and J.C. Beck. Slack-bassthiniques for robust schedules. In
Proceedings of the Sixth European Conference on Planni@¢2001) 2001.

[19] L. de Moura and N. Bjrner. Z3: An efficient smt solverecture Notes in Computer Science
4963/2008:337-340, 2008.

[20] S. de Vries and R.V. Vohra. Combinatorial auctions: Avey. INFORMS Journal on Com-
puting, (3):284-309, 2003.

[21] B. Dutertre and L. De Moura. The yices smt solver. Techhieport, 2006.

[22] N. Een and N. Sorensson. Translating pseudo-booleasti@ints into satJournal on Satisfi-
ability, Boolean Modeling and Computatio®(1-4):1-26, 2006.

[23] A.M. Frisch, W. Harvey, C. Jefferson, B. Martinez-lHandez, and I. Miguel. Essence: A
constraint language for specifying combinatorial prolder€onstraints, 13(3)pages 268—
306, 2008.

[24] Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Tamingetbomputational complexity of
combinatorial auctions: Optimal and approximate appreachninternational Joint Confer-
ences on Atrtificial Intelligence (IJCAlpages 548-553, 1999.

[25] M.L. Ginsberg, A.J. Parkes, and A. Roy. Supermodels mnmlistness. [FAAAI '98/IAAI
'98: Proceedings of the fifteenth national/tenth confeeson Artificial intelligence/Innovative
applications of artificial intelligencgpages 334-339, Menlo Park, CA, USA, 1998.

[26] GLPK. GNU Linear Programming Kit, http://www.gnu.dsgftware/glpk/.
[27] T. Groves. Incentives in teamEconometrica41(4):617-631, 1973.

[28] E. Hebrard, B. Hnich, B. O'Sullivan, and T. Walsh. Findidiverse and similar solutions in
constraint programmingn AAAI'05: Proceedings of the 20th national conference atifiéial
intelligence pages 372-377, 2005.

[29] E. Hebrard, B. Hnich, and T. Walsh. Robust solutionsdmmstraint satisfaction and optimiza-
tion. In ECAI, pages 186-190, 2004.

[30] E. Hebrard, B. Hnich, and T. Walsh. Super solutions ingtmaint programming. I€PAIOR
pages 157-172, 2004.

[31] E. Hebrard, B. Hnich, and T. Walsh. Improved algoritronfinding (a, b)-super solution$n
Proc. of Workshop on Constraint Programming for Planningl&chedulingpages 236—-248,
2005.

[32] F. Heras, J. Larrosa, S. de Givry, and T. Schiex. 200620Q¥ max-sat evaluations: Con-
tributed instancesJournal of Satisfiability, Boolean Modeling and Computatié:239-250,
2008.

[33] W. Herroelen and B. De Reyck. Phase transitions in ptgjehedulingJournal of the Opera-
tional Research Society, 50(Dages 148-156, 1999.

[34] A. Holland. Risk Management for Combinatorial AuctiorRhD thesis, Department of Com-
puter Science, National University of Ireland, Cork, 2005.

125

[35] A. Holland and B. O’Sullivan. Weighted super solutidias constraint programsTechnical
Report: No. UCC-CS-2004-12-Q2004.

[36] A. Holland and B. O’Sullivan. Robust solutions for comatorial auctionsin ACM Conf. on
Electronic Commerce2005.

[37] A. Holland and B. O’Sullivan. Truthful risk-managedrobinatorial auctions. IhRJCAI, pages
1315-1320, 2007.

[38] H.H. Hoos and C. Bouitilier. Solving combinatorial aiacis using stochastic local search. In
Procedings of AAAI'O0pages 22—-29, 2000.

[39] T. Kelly. Generalized Knapsack Solvers for Multi-uibmbinatorial Auctions: Analysis and
Application to Computational Resource AllocatidrNAI, 3435:73—-86, 2005.

[40] S. Krauss. Strategic negotiation in multiagent envinents.MIT Press 2001.

[41] J.S. Lee and B.K. Szymanski. An analysis and simulatiba novel auction-based pricing
mechanism for network service$echnical report, Department of Comupter Science, Rensse-
laer Polytechnic Institute2005.

[42] J.S. Lee and B.K. Szymanski. Auctions as a dynamic pgichechanism for e-services. In
Service Enterprise Integratiopages 131-156. Cheng Hsu (ed.), Kluwer, New York, 2006.

[43] D.Lehman, L.I. O'Callaghan, and Y. Shoham. Truth retiein in aproximately efficient com-
binatorial auctionsJournal of the ACM, 49(5)pages 577-602, 2002.

[44] K. Leyton-Brown, M.Pearson, and Y. Shoham. Towardsigarsal test suite for combinatorial
auction algorithms. ICM Conference on Electronic Commerpages 66—76, 2000.

[45] L. Liu and M. Truszczynski. Satisfiability testing of blean combinations of pseudo-boolean
constraints using local-search techniquésnstraints, 12(3)pages 345-369, 2007.

[46] V.M. Manquinho and J. Marques-Silva. Effective lowesumding techniques for pseudo-
boolean optimization. lin Proc. of the conference on Design, Automation and Testin e
pages 660-665. IEEE Computer Society, 2005.

[47] A. Mas-Colell, M.D. Whinston, and Green J. Rlicroeconomic theory New York: Oxford
University Press, 1995.

[48] T. Matsuo, T. Ito, R.W. Day, and T. Shintani. A robust daimatorial auction mechanism
against shill bidderdrifth international joint conference on Autonomous agemd multiagent
systems, pages 1183-1190, New York, NY,,12806.

[49] J. McMillan. Selling spectrum rights. pages 145-16294.

[50] P. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: Asynawas distributed constraint
optimization with quality guaranteeéurtificial Intelligence Journal161:149-180, 2005.

[51] V. Munoz and J. Murillo. Cabro: Winner determinatiogatithm for single-unit combinatorial
auctions. InProceeding of the 2008 conference on Atrtificial IntelligefResearch and Devel-
opmentpages 303-312, Amsterdam, The Netherlands, The Netllsrl2008. 10S Press.

[52] J. Murillo and B. Lopez. An empirical study of planninggscheduling interactions in the
road passenger transportation dom#&roceedings of PlanSIG 200pages 129-136, 2006.

126

[53] N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, Gug¢kDand G. Tack. Minizinc: Towards
a standard CP modelling languadeth International Conference on Principles and Practice
of Constraint Programming, CP’07, volume 4741 of LN@&ges 529-543, 2007.

[54] N. Nisan and A. Ronen. Computationally feasible VCG haaisms. IPACM Conference on
Electronic Commercgages 242-252, 2000.

[55] N. Nisan and A. Ronen. Algorithmic mechanism desi@@ames and Economic Behavior,, 35
pages 166—-196, 2001.

[56] T.R. Payne, E. David, N.R. Jennings, and M. Sharifi. Aarctnechanisms for efficient adver-
tisement selection on public displays.ECAI, pages 285-289, 2006.

[57] Y.K. Penya and N.R. Jennings. Optimal combinatoriat#icity marketsinternational Jour-
nal of Web Intelligence and Agent Systems 6Z0P8.

[58] R. Porter, A. Ronen, Y. Shoham, and M. Tennenholtz. {Ralé¢rant mechanism desigArti-
ficial Intelligence, 172(15):1783-1792008.

[59] S.D. Ramchurn, C. Mezzetti, A. Giovannucci, J.A. Rgdez, R.K. Dash, and N.R. Jennings.
Trust-based mechanisms for robust and eficient task aibwcat the presence of execution
uncertainty.Journal of Artificial Intelligence Research, 35:119-12009.

[60] S.J.Rassenti, V.L. Smith, and R.L. Bulfin. A combin&bauction mechanism for airport time
slot allocation.Bell Journal of Economicg13):402-417, 1982.

[61] F. Rossi, P. Beek, and T. WalsHandbook of Constraint Programming (Foundations of Artifi-
cial Intelligence) Elsevier Science Inc., New York, NY, USA, 2006.

[62] M. H. Rothkopf, A. Pekec, and R. M. Harstad. Computadibnmanageable combinatorial
auctions. Technical Report 95-09, 19, 1995.

[63] A.Roy. Faulttolerant boolean satisfiabilitiournal of Artificial Intelligence Research, 25:503-
527, 2006.

[64] M.A. Salido and F. Barber. Distributed csps by graphtifianing. Applied Mathematics and
Computation183:491-498, 2006.

[65] T.Sandholm. Algorithm for optimal winner determir@tiin combinatorial auctiongrtificial
Intelligence 135(1-2):1-54, 2002.

[66] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. CABOB: Ast optimal algorithm for combi-
natorial auctions. IhWJCAI, pages 1102-1108, 2001.

[67] D. Schuurmans, F. Southey, and R. C. Holte. The expadentgradient algorithm for heuris-
tic boolean programmindJCAI, 2001.

[68] R. Sebastiani. Lazy satisability modulo theoridsurnal on Satisfiability, Boolean Modeling
and Computation, 3(3-4):141-222007.

[69] G. Tchobanoglous, F.L. Burton, and H.D. Stensel. \Waater engineering. treatment and
reuse.Metcalf and Eddy, Inc., 4th edition, McGraw-Hill, New YpB003.

[70] K. Tsuchida, H. Oka, Y. Ikkai, and N. Komoda. A robust eduling method for a job shop
problem in production by using data carriers. SNIC (2) pages 1464-1468, 2004.

127

[71] W. Vickrey. Counterspeculation, auctions, and cortipetsealed tenderslournal of Finance
16(1):8-37,1961.

[72] R. Weigel and C. Bliek. On reformulation of constraiatisfaction problemsln Proceedings
of ECAI pages 254-258, 1998.

[73] M.P. Wellman. A market-oriented programming envir@mhand its application to distributed
multicommodity flow problemsJournal of Artificial Intelligence Research:1-23, 1993.

[74] H.P. Williams. Model building in mathematical prograrmg. J. Wiley and Sons, New York
1978.

[75] M. Yokoo, Y. Sakurai, and S. Matsuraba. Robust comhinatauction protocol against false-
name bidsAtrtificial Intelligence Journal, 130(2):167-182001.

[76] G. Yu. On the max-min 0-1 knapsack problem with robugtrojzation applicationsOpera-
tions Research, 44:407-415996.

	Contents

	Abstract

	Resum

	Acknowledgements

	List of figures

	List of tables

	List of acronyms and abbreviations

	1. Introduction

	1.1 Motivations

	1.2 The Topic of this research

	1.3 Objectives

	1.4 Statement of the thesis

	1.5 Publications

	1.6 Awards

	1.7 Outline of the thesis

	2. Background

	2.1 Resource allocation

	2.2 Auctions

	2.3 Combinatorial auctions

	2.4 Robustness

	2.5 Robustness in auctions

	2.6 Summary

	3. Sensitivity analysis

	3.1 Introduction

	3.2 Reallocation and full-reparability

	3.3 repair size analysis

	3.4 Summary

	4. Robustness of resource availability

	4.1 Schematic view

	4.2 Auctions as partial weighted MAX-SAT problems

	4.3 Robust auctions as partial weighted MAX-SMT problems

	4.4 Example

	4.5 Other robustness notions

	4.6 Experimentation

	4.7 Summary

	5. Flexible robustness

	5.1 Adding flexibility

	5.2 Formalization of flexibility

	5.3 Experimentation

	5.4 Summary

	6. Incentive compatibility

	6.1 incentive compatible mechanisms

	6.2 Non-incentive compatibility with restrictes robustness

	6.3 Incentive compatibility in the general case

	6.4 Summary

	7. Robustness for recurrent auctions

	7.1 Recurrent auctions

	7.2 Case example: the waste water treatment plant problem

	7.3 Learning agents behavior

	7.4 Summary

	8. Conclusions and future work

	8.1 Summary

	8.2 Contributions

	8.3 Future work

	Appendices

	Appendix A: Benchmarks with the WWTP problem

	Appendix B: Winner determination algorithm for single-unit combinatorial auctions

	Bibliography

