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By Salvador Ibarra Martínez 
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Dr. Christian G. Quintero M. 

 
 
 
 

This thesis proposes a framework to decision support suitable for supporting the 
distributed performing of cooperative actions in dynamic and complex multi-agent 
environments. Decision support is a process aiming to improve the decision-making 
performance in cooperative scenarios. Simply stated, decision-making is the process of 
selecting a specific action out of multiple alternatives. This process occurs continuously 
in daily life. Humans, for instance, have to take decisions about what cloths to wear, 
what food to eat, etc. In this sense, an agent is defined as anything that is situated in an 
environment and acts, based on its observation, its interpretation and its knowledge 
about its situation on such environment to fulfil a particular action. Therefore, to take 
decisions, agents must get knowledge that allow them to be aware on what actions can 
or cannot perform. Here, such process takes three information parameters trying to 
embody an agent in a typically physical world. This set of information is known as 
decision axes, which it any agent must take into account to decide if it can perform 
correctly the task proposed by other agent or human. Agents can make better decision 
by considering and representing properly such information. Decision axes, mainly 
based on the agents’ environmental condition, the agents’ physical knowledge and the 
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agents’ trust value, provide multi-agent systems a reliable reasoning for achieving 
feasible and successful cooperative performance.  

Currently, many researches tend to generate news advances in agent technology to 
increase the intelligence, autonomy, communication and self-adaptation in open and 
distributed agent scenarios. In this sense, this research aims to contribute to the 
development of a new path to impact on both individual and cooperative decisions in 
multi-agent environments. In this light, the thesis was used to implement the concrete 
actions involved in the robot soccer both in simulated as in real scenarios. It emulates a 
soccer game where agents must communicate; interact and cooperate among them to 
perform complex actions within a dynamic and competitive scenario, both to drive the 
design of the involved actions’ requirements as to demonstrate its effectiveness in 
cooperative jobs. Therefore, the thesis has obtained results, both on simulation and on 
real experimentations, showing that the framework to decision support for situated 
agents presented is capable to improve the interaction and the communication, reflect 
in a suitable and reliable agent’s team-work within an unpredictable, dynamic and 
competitive environment. 

The experimentation also showed that the selected information to generate the 
decision axes to situate agents are useful when these agents must perform the proper 
action or made sure commitments at each moment in order to reach successfully a goal. 
Conclusions emphasizing the advantages and usefulness of the introduced approach, 
in the improvement of multi-agent performance in coordinated task and task allocation 
problems are presented. 
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Chapter 1  

Introduction 
The search of elements that allow obtain the needed knowledge to achieve multi-agent 

cooperation constitutes the main objective of this thesis. This chapter provides an introduction 
to the work presented in this dissertation. Specifically, an overview in the research area, the 
pursed aims and the main contributions are briefly described. Finally, the organization of this 
document is presented at the end of the chapter. 

1.1 Overview 

Most of the research into cooperative systems to date has concentrated on how to 
obtain desired dynamics interaction between agents [Tang and Parker, 07]. In this 
sense, to solve complex problems, multi-agents systems require knowledge about each 
agent and their skills to perform individual actions in distributed and cooperative 
environments. In this context, a distributed and cooperative environment refers to a 
world in which entities share goals and their actions are beneficial to their team-mates 
[Parker, 08]. So, the above knowledge allows multi-agent systems to know the skill of 
each to work performing both individual as collective actions. In this light, several 
recent efforts in multi-agent systems are related to building computer-controlled 
systems able to solve some well-know cooperative challenges [Haldemann et al., 07], 
[Benson et al., 07], [Walker et al., 05], [Huhns et al., 05]. High levels of cooperation, 
control, coordination and autonomy are looked for in distributed, asynchronous and 
networked environments. However, the recent approaches have a great deal of 
complexity that makes them less applicable to real-life problems.  
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Methods for cooperative multi-agent decisions are therefore, in most cases, intensive 
software applications and highly sophisticated algorithms that use advanced design 
technologies. Moreover, these systems have generally requirements that go beyond 
single disciplines (form control engineering to computer sciences). Over the past decade, 
there has been some work towards combining artificial intelligence (AI) approaches 
with traditional control theories to obtain intelligent systems. Despite several 
researches in multi-agent systems (MAS), important theoretical aspects of cooperation 
have been untreatable [Parker, 00b]. In this direction, the advances of the AI 
community in planning, adaptation, learning, logic-based theories and knowledge 
representation together with other techniques as well as control theories [Murray et al, 
03] [Sanz et al., 04], societal metaphors [Esteva et al., 01], [Rodríguez-Aguilar, 01] or 
bidding methods [Busquets et al., 02] has present a fresh path for further progress.  

In particular, some research trends have led to managing complex and cooperative 
problems using agents. Agents are defined as computer systems capable of flexible and 
autonomous actions in dynamic, unpredictable and typically cooperative 
environments [Luck et al., 05]. In this sense, several results have been obtained for 
coordinated actions using agent technology [Parker, 00], [Stone and Veloso, 00]. Agent 
technology helps to solve complex problems in real multi-agent scenarios by means of 
its cooperative problem-solving paradigm. However, these agents lack an appropriate 
reasoning on the needed kind of information that will be useful in the agents’ decision-
making, aiming to improve cooperative actions’ performance. 

Indeed, this information is closely related to the agents’ environmental conditions, 
the agents’ knowledge about its physical features and the agents’ social relationship 
with other agents, and is used when they must solve complex problems. In this sense, 
theses three aspects arise as information elements in decision axes with the purpose of 
situate an agent considering all the agents’ knowledge involved in the execution of any 
proposed action in a real cooperative scenario. For thus, this thesis proposes the 
information of the decision axes being directly related to: 

● the agents’ environmental conditions directly involved in the performance of a 
cooperative action. 

● the agents’ physical features meaning the specification, the structure and other relevant 
details related to the agents’ dynamic. 

● the agents’ trust value relates to the capability of an agent to interact and to work 
together with other agents. 
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Several results have been obtained where agents have analyze someone of the 
proposed axes to increase their knowledge base and to use such information in their 
decision-making to perform cooperative actions [Quintero et al., 07a], [González et al., 
07], [Duffy, 04], [Busquets et al., 02]. However, some approaches lack of an appropriate 
reasoning on these kinds of elements, especially when such elements can joint in the 
agents’ decision-making.  

Moreover, such relevant knowledge is not appropriately reflected and 
communicated by the agents. These deficiencies do not allow agents to make feasible 
collective decision when these are requested. Obviously, lack of the appropriate 
reasoning on these knowledge results in a lower cooperative performance between 
agents, mainly in coordinated tasks and task allocation problems where a proper 
managing of such knowledge is quite relevant to achieve sure and trustworthy 
commitments. In this sense, achieving cooperative agents is desirable for many 
considerable reasons, such that:  

● many agents application are inherently distributed in space, time or functionality, thus 
requiring a distributed solution.  

● there are more possibilities that many applications could be solved much more quickly if 
the goals can be performed by a number of agents working at the same time pursuing the benefit 
of the agents-group. 

● exploiting the chance of allocate determinate actions for an agent knowing its individual 
skills. 

Although achieving cooperative agents is still a challenging, because of many issues 
must be addressed in order to develop a working cooperative team, such as task 
allocation, conflict of interest, communication, etc. So, such cooperative agents systems 
often work in dynamic, unpredictable, hazardous and risky environments, requiring 
the agents-team members to respond robustly, reliably, adaptively to unexpected 
environmental changes, failures in the communication and modification in the agent 
system configuration due to failures, learning of new skills or by directly human 
intervention. In particular, cooperative agent systems are characterized by distributed 
control of heterogeneous agents. So, this thesis argues that in the near future, any 
autonomous system (e.g., cars, aircrafts, mobile robots, house artefacts) controlled by 
agents will only complete its tasks correctly and make proper decision, if it is able to 
reflect, consider and communicate its situation taking into account the information 
provided by the decision axes aforementioned. 
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Therefore, explicit reasoning on the managing of the decision axes in the agents’ 
decision-making will prevent, most of the time, undesirable situations. As it has been 
mentioned before, each agent could represent in different ways these elements 
modifying its behavior to execute any proposed action. Here, agents are then proposed 
to be aware on the set of information involved in the decision axes. In this sense, 
computer engineers need practical tools for developing this new type of agents and 
their coordinated method, taking into account the proposed information for the 
decision axes. Similarly, cooperative agents and humans working jointly in search and 
rescue operations [Quintero et al., 07a], [Murphy, 04], [Davids, 02] could optimize their 
multi-agent team-work coordination if the agents know and they are able to reflect and 
communicate their knowledge on their limitations or capabilities related to the 
information involved in the decision axes. 

In summary, agents do not reflect on their knowledge related to their situation on 
the environment and, this knowledge is not currently properly taken into account in 
the agents’ decision-making. This thesis then claims that reflection on the information 
involved in the decision axes is an interesting agent-oriented perspective implemented 
in multi-cooperative and controlled scenarios. In particular, such perspective makes it 
easier for agents to manage and communicate the execution of cooperative actions in 
controlled systems aiming at making physically feasible decihsion. Such decisions aim 
to improve the multi-agent performance in cooperative scenarios. 

Physical agents are particular examples of controlled agent systems [De la Rosa et 
al., 07] for coordinated actions. Here, physical agents are understood as physical and 
encapsulated entities with control architectures that satisfy the agent design metaphor. 
In recent years, mobile robots one typical representation of physical agents, have 
become progressively more autonomous and cooperative. So, mobile robots are used in 
this approach without loss of general applicability. Such autonomous mobile 
cooperating robots must then have reliable self-knowledge if they are to improve their 
performance when executing cooperative and collective actions. This self-knowledge 
must be based on an appropriate agent-oriented representation of the decision axes in 
agents’ knowledge bases. With this representation, any physical agent could reflect and 
consider appropriately its situation in some environment whenever it is committed to 
carry out a task or assume specific behavior in a multi-agent scenario. Thus, a physical 
agent is an intelligent entity, and its actions and cooperation with other agents or 
humans, to achieve the desired goals in a real environment, are restricted and 
conditioned by the consideration of the knowledge involved in the agents’ situation. 
In this light, the above knowledge constitute a feasible and trustworthy path towards 
improve cooperative actions inside dynamics, unpredictable and totally distributed 
scenarios.  
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The main objective of this research is to propose a formal framework to the decision 
support for situated agents, providing agents with the cognitive ability for reasoning if 
they are able to perform a determinate task or if they can assume a specific behavior, 
aiming at making feasible decisions and getting reachable and physically grounded 
commitments to improve the overall system performance. To that end, a reflection on 
the proposed decision axes guarantees an appropriate and proper explicit agent-
oriented representation of coordination and commitments. As will be shown, the 
research on support decisions for situated agents in physical multi-agent systems 
proves the impact of this agency property, and its effectiveness in cooperative 
intelligent systems. 

1.2 Objectives 

The research addressed in this dissertation is focused on including the knowledge of 
the decision axes to embody the agent’s situation in their decision-making. Such 
challenge has been worked from a cooperation viewpoint. 

In this sense, the main objective of this thesis consists of improving the agents’ 
collective performance within cooperative environments. An effective cooperation is 
one actions performed by two or more agents which is performed successfully. The 
success of such action depends on the capability of the agents to seek for useful 
knowledge about the decision axes and reflect it in a proper way when they must 
decide if they are able or not to perform an action or agree a commitment. 

For thus, this thesis presents an appropriate framework to include the three decision 
axes in the physical agents’ decision-making, and to represent explicitly such 
information in the agent’s knowledge’s bases. In fact, this thesis looks for then to 
bridge the gap between the high abstraction level of agents’ cooperation and the low 
abstraction level of the environment’s information sources.  

In order that this objective can be achieved was necessary to fulfil the following 
goals to achieve the aim of the thesis: 

● To define relevant information of the decision axes related to the physical agent to obtain 
reliable level of knowledge to use in the high level of cooperative decisions. 

● To establish a formal coordinated framework to perform cooperative actions within multi-
agents systems. 
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● To demonstrate the utility and feasibility of the overall proposed approach on several 
examples of coordination in physical multi-agent environments. 

1.3 Contributions 

This thesis is the result of a re-examination of intelligence and intelligent 
cooperation, with the aim of insight into how cooperative systems may be constructed. 
For thus, this thesis makes the following contributions: 

● A consideration of the three decision axes to situate a physical agent within real 
cooperative environments. 

● A formal design of a framework for coordination of physical multi-agent systems using 
the information of the decision axes. 

● An agents’ decision making tool as a bridge to the gap between the actions’ requirements 
and the agents’ capabilities to perform the proposed action.  

● A taxonomy for classification of approaches related to coordinated activities both in 
physical multi-agent systems as in multi-robot systems. 

1.4 Outline of the Thesis 

Following is a general description of the contents of this thesis: 

Chapter 1 presented a motivational introduction and overview of the thesis, its 
motivation, objectives and contributions. 

Chapter 2 provides a general overview of background information regarding 
artificial intelligence, agent technology, robotics and decision support which is 
required to follow the approach described in section 4 and 5. 

Chapter 3 is devoted to relevant related work and state-of-the-art on the field of 
cooperative agents and multi-agent systems as well as to autonomous robots.  

Chapter 4 describes the formal aspects of the novel framework to decision support 
for situated agents presented in this dissertation. 
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Chapter 5 presents the implementation and results on several test bed of the 
framework proposed in chapter 4. The chapter also contributes to complete the 
description of such proposal. 

Chapter 6 discusses and analyses the obtained results, summarizes the conclusions 
of this thesis and outlines the most promising directions for future works. The chapter 
also includes a list of publications and conference contributions. 

Appendix A presents some results which complement the results presented in 
Chapter 5. 

Appendix B describes the robots used in the real experimental phase depicted in 
Chapter 5. 
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Chapter 2  

Background Information 
This chapter introduces and reviews general concepts of agents, multi-agent systems and 

robotics, such that an architecture for physical multi-agent systems is proposed and discussed 
later. 

2.1 Agent Technology 

In recent years, agents technology is one of the most relevant and useful 
contribution in the Information Technology (IT) world. Agent-based systems emerge as 
an appropriate alternative to improve the traditional computing and current 
algorithms and software applications especially in dynamics and open environments, 
where heterogeneous systems must interact effectively to achieve specific goal. In this 
sense, agent-oriented developments are seen as fundamental to enable systems to 
respond in a suitable, effective and reliable way to changing conditions while trying to 
achieve the objectives for which they were designed. 

The agent paradigm has found currency in several sub-disciplines of information 
technology, including computer networks, software engineering, artificial intelligence, 
human-computer interaction, distributed and concurrent systems, mobile systems, 
telematics, computer-supported cooperative work, control systems, decision support, 
information retrieval and management, and electronic commerce [Luck et al., 05]. 

In particular, agent technology offers fundamentally new ways of design, 
standardization and support for IT applications through distinct and independent 
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software components interacting to provide better performance and valuable 
functionality. In such context, agent technology constitutes a proper way to 
conceptualise and implement the present and future computer systems. 

2.2 Agent Concept 

In the current literature is very difficult to find some definitions that represent and 
introduce the concept of agent in a precise and technical manner. The agent concept, in 
such case, is a general abstraction appropriated to a large range of applications. 
However, several criteria allow distinguishing between what is an agent and what is 
not at an engineering level. Such criteria are based on a reasonable model of the agents’ 
features and behaviors. In this sense, some to the most cited definitions are 
highlighted. 

Agent can be defined as computer systems capable of flexible and autonomous 
actions in dynamics, unpredictable and typically multi-agent domains [Luck et al., 05]. 
More specifically, agents can be defined as autonomous and problem-solving 
computational entities capable of effective operation and flexible autonomous actions 
in dynamics, unpredictable and open environments.  Agents are often deployed in 
environments in which they interact, and maybe cooperate, with other agents that have 
possibly conflicting aims. Such environments are known as multi-agents systems [Luck 
et al., 03]. 

In addition, an agent denotes a software-based computer systems that has several 
properties as autonomy, social ability, pro-activeness, reactivity, mobility, rationality, 
etc., which is capable of independent actions to achieve some goals or desires 
[Wooldridge, 02]. 

In summary, agents are [Jennings and Bussmann, 03]: 

1. Clearly identifiable problem-solving entities with well-defined boundaries and 
interfaces. 

2. Situated (embedded) in a particular environment over which they have partial 
control and observability. 

3. Designed to fulfil a specific role, they have particular objectives to achieve. 

4. Autonomous, they have control over both their internal state and their own 
behavior. 
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5. Capable of exhibiting flexible problem-solving behavior in pursuit of their 
design objectives, being both reactive (able to respond in a timely way to 
changes that occur in their environment) and proactive (able to opportunistically 
adopt goals and take the initiative). 

To avoid confusions with other agents meaning and contexts, the above agents are 
also commonly known as software agents. 

2.3 Agent Metaphor 

Agent technology finds a stronger applicability when is used as a design metaphor 
of well-structured approaches for solving real-life IT challenges. Currently, agents 
provide software designers and developers an appropriate way of structuring software 
tools and applications around autonomous, communicative, situated and problem-
solving entities to achieve the required design goals [Jennings, 01]. In this sense, the 
agent concept offers a promising route to the development of computational systems, 
especially in open and dynamics environments of several real-world domains [Luck et 
al., 05]. In addition, the agent concept provides elegant tools/methods for abstraction 
and encapsulation [Quintero, 07]. 

2.4 Agent Architectures 

The internal structure of an agent is determined by its control architecture. The 
architecture determines the mechanisms used by an agent to interact under external 
and internal conditions, given some specification of its desired behavior. 

There are several control architectures that allow describing the internal structure of 
an agent. However, four main perspectives can be mentioned: the deliberative (think 
hard, then act), the reactive (don’t think, react), hybrids of the above two (think and act 
independently, in parallel) and a behavior-based strategy (think the way you act). 
Deliberative and reactive architectures embrace two basic ideas related to the agent 
concept respectively: the need of deliberation for long term reasoning based on a 
symbolic knowledge representation, and quick answers for suitable agent’s behaviors 
according to the current situation. 

A relevant deliberative architecture is the BDI (Beliefs – Desires - Intentions) 
architecture [Rao and Georgeff, 95]. The BDI model has been developed to provide 
solutions in uncertain and dynamic environments where agents have a partial 
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knowledge of the problem and usually manage limited resources. Beliefs, desires and 
intentions constitute then important parts of the agents’ state in these systems under 
the above conditions. 

The beliefs represent the domain knowledge embedded in the agents. The desires 
represent the objectives or the expected set of actions that agent must do, representing 
the final state. Additionally, it is necessary to define a planning mechanism that allows 
identifying the agents’ intentions to reach the pursued objectives taking into account 
the current beliefs. In this sense, the plans involved to the attainment of objectives 
constitute the intentions. The type of modelling used by a deliberative agent us usually 
very elaborate. 

However, the associated problem to a symbolic representation has led to the study 
of more effective models for the knowledge representation. In this sense, reactive 
architectures are an alternative. Subsumption [Brooks, 91] is a relevant reactive 
architecture. Such architecture is based on the hypothesis that “intelligence” is an 
emergent property of some complex systems and it allows generating suitable 
behaviors without symbolic models or any internal representation of the environment. 
Agents react to the current sensory information in a “stimulus-response” manner. This 
allows agents to respond very quickly to changing and unstructured environments. 
The Subsumption architecture manages a hierarchy of tasks for defining the agent’s 
behavior and they are usually organized in layers from a low to a high abstraction 
level. A great amount of applications of this type of architecture is found in the 
development of controllers in robotics. In this sense, Subsumption architecture for 
mobile robots is based on a given priority to different controllers under different 
circumstances. Here, robots can be considered as real or physical agents that act in a 
environment favours the adoption of reactive architectures. Limitations of this 
approach are that such robots, because they only look up actions for any sensory input, 
do not usually keep much information around, have no memory, no internal 
representation around them, and no ability to learn over time. 

In addition, there have been some proposed hybrid architectures [Wang et al., 07], 
[Jeong-Ki et al., 06], [Yong and Bo, 06], aimed at combining aspects related to 
deliberative and reactive architectures and to overcome their limitations. Such 
architectures adopt a layered organization generally distributed in three abstraction 
levels [Mas et al., 05]: Reactive (low level) is related to decision-making based on real 
time environments conditions. Knowledge (intermediate level) is related to the domain 
knowledge based on a symbolic representation of the environment. Social (high level) 
is related to social aspects in the environment, exchange information between agents, 
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etc. The agent’s global behavior is the defined by the interaction between all the above 
levels. However, such interaction could be different for different hybrid architectures. 

On the other hand, behavior-based approaches [Weyns et al., 04] [Farahmand et al., 
04] are an extension of reactive systems that fall between the purely reactive and the 
planner-based extremes. The behavior-based approach is a methodology for designing 
autonomous agents and robots [Arkin, 98]. The behavior-based methodology imposes 
a general biological inspired, bottom-up philosophy, allowing for a certain freedom of 
interpretation. It goal is to develop methods for controlling artificial systems (usually 
physical robots, but also simulated robots and other autonomous software agents) and 
to use robotics to model and better understand biological systems. In behavior-based 
approaches, the decomposition f the control system is performed in a task-oriented 
manner. Unlike reactive systems, behavior-based systems are not limited in their 
expressive and learning capabilities: behaviors themselves can have a state (internal 
and particular view of the world), and can form representation when networked 
together. 

2.5 Multi-agent Systems 

Several approaches, where a number of entities work together to cooperatively solve 
problems, fall into the area of distributed systems. The combination of distributed 
systems and artificial intelligence is collectively known as Distributed Artificial 
Intelligence (DAI). Traditionally, DAI is divided into two areas [Stone and Veloso, 00]. 
The first area, distributed problem solving (DPS), is usually concerned with the 
decomposition and distribution of a problem-solving process among multiple slave 
components, and the collective construction of a solution to the problem. The second 
area, Multi-Agent Systems (MAS), emphasizes the joint behaviors of agents with some 
degree of autonomy and the complexities arising from their interactions [Panait and 
Luke, 05]. In recent years, multi-agent systems have been studied by several research 
groups. There are also several multi-agent systems definitions. The most widely 
accepted definitions are here summarized. 

Multi-agent systems are systems with a varying number of interacting, autonomous 
agents that communicate with each other using flexible and complex protocols, in 
order to achieve particular goals or perform some set of tasks. In multi-agent systems 
“the intelligence” arises from the aggregation of simple competitions as well as the task 
assigned to every individual is as important as the collective task [Weiss, 99]. 
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According to the distributed artificial intelligence, a multi-agent system is a network 
of entities able to solve problems, working jointly to find answer to problems that are 
beyond the capacity and the individual knowledge of each entity. Thus, in multi-agent 
environments, agents must generally coordinate their actions and they must 
communicate the proper knowledge and information. In addition, there are constraints 
in a multi-agent environment such that agents may not at any given time know 
everything about the world that other agents know [Panait and Luke, 05]. 

In summary, the multi-agent system term is used to define all types of systems with 
multiple autonomous components that have the following elements and features 
[Jennings et al., 98]: 

● A common environment. 

● Agents. 

● Interaction among agents. 

● Interactions among agents and dynamic environment. 

● Each agent has the capacity to solve the problem partially. 

● There is no a global control system. 

● The data are not centralized. 

● The computation is asynchronous. 

Three common types of interactions are described: 

● Cooperation: working together towards a common goal. 

● Coordination: organising problem solving activities so that harmful interactions 
are avoided and beneficial interactions are exploited. 

● Negotiation: coming to an agreement which is acceptable to all the parties 
involved. 

Agents interact to share information and achieve the proposed tasks and objectives 
in cooperative environments. In this sense, the interaction is understood as a 
mechanism to articulate the cooperation, coordination and negotiation between agents. 
In this light, several authors [Wajid and Mehandjiev, 06], [Far, 04], [Prouskas and Pitt, 
04] define three key elements to achieve a good level of interaction within multi-agent 
environments: 



Chapter 2: Background Information 

15 

● A common language and communication protocol. 

● A common communication format. 

● A shared ontology. 

2.6 Agents’ Interaction 

In the past, several researches in agent technology were focused to achieve more 
autonomous and robust single agents systems, however, currently the recent efforts of 
the AI community are aimed on how improve the cooperation among intelligent, 
autonomous and heterogeneous entities [Stone and Veloso, 00] (i.e., agents). In this 
sense, agents’ interaction is recurrent in order to share information to perform 
cooperative problems; due to the agents’ interaction skill is the main characteristic of 
agents [Parker, 08]. From a practical perspective, when agents interact, first they 
analyse their skills to know their actions capabilities, then they made commitments to 
perform the proposed tasks and definitely they recur to the coordination to know how 
they can achieve their goals. In this sense, is possible to see how by means of 
coordination methods (e.g., cooperation, negotiation, and collaboration) agents are able 
to interact with other with a major feasibility aiming to improve the performance of the 
actions that they do at group. 

Other point of view is given by the assumption that agents are, intentionally, 
designed with some differences (e.g., size, shape, weight, etc). This fact emphasises the 
problem from other perspective of interaction. It means, agent not only must to be able 
to interpret knowledge from their situation on the environment but they must capable 
to interact involving this new perspective.  

2.6.1 Coordination 

Coordination is interested in fully cooperative multi-agent systems in which all 
agents share a common goal and their actions are beneficial for the whole system. In 
this light, agents can select the actions they can execute singly, in a suitable way. A key 
aspect in such systems is therefore the problem of coordination: the process that 
ensures that the individual decisions of the agents result in optimal decisions for the 
group as a single unit. 
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Coordination refers to ensuring that the actions of independent agents in an 
environment are coherent in some way [Luck et al., 05]. The most widely accepted 
definition of coordination has its origins in the organization theory. In this sense, 
coordination is the management of dependences between organizational activities 
[Malone and Crowston, 94]. Taxonomy of such dependences and a set of coordination 
actions assigned for each dependence must be established according to the multi-agent 
system’s features. [D’Inverno and Luck, 04] presents a formalization of possible 
different relations between agents in multi-agent environments. Thus, the coordination 
process is related to the attainment of two main tasks: to establish the dependences and 
to make decision on which coordination action must be performed. A coordination 
mechanism determines the way of how one or several agents perform the above tasks 
[Hongru et al., 06]. 

From a practical perspective, it is possible to understand the coordination as an 
effort to manage the interactions between agents [Busi et al., 01], [Gerkey and Matarić, 
03]. From a design perspective, the challenge is how agents can interact in an 
appropriate way to solve the dependences and make the related decisions. There are 
several approaches in the literature on the matter [Scerri et al., 04]. Multi-agent 
scheduling, negotiation, organizational structures, norms, trust, etc., are some of them. 
The aim of the above approaches is to determine the interaction space. The applications 
of these mechanisms depend on the characteristics of the coordination problem. 

2.6.2 Cooperation and Collaboration 

Cooperation refers to coordination with a common goal in mind [Luck et al., 05]. 
Cooperation between agents has been widely studied in the distributed artificial 
intelligence field. There are several works related to cooperation [Mayoh, 02] [Watson 
et al., 02] [Jennings, 00]. These works address the problem from a deliberative 
architectures viewpoint, though the cooperation has been also studied in reactive 
agents [Molina et al., 04]. However, there is not a global vision about cooperation and 
all the current contributions are related to the cooperation advantages from a 
perspective aimed at answering of how cooperation can be performed, or how agents 
must interact to cooperate. Cooperation embraces the allocation and coordination of 
tasks. They are key factors in order that the cooperation arises. In this sense, there are 
studies focused on methods to allocate tasks between agents in a set of synchronized 
actions in time and resources. In addition, collaboration refers to a suitable allocation 
of information, tasks and resources between agents in multi-agent systems [Ferber, 
99]. Such allocation must take into account the agents’ capabilities, the tasks’ nature 
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and the social structure of the system. In fact, difference between commitment and 
cooperation is measured by the level of autonomy of the involved agents. Cooperation 
happens when an autonomous agent generates a goal taking into account the goal of 
other autonomous agent. 

2.6.3 Negotiation 

Agents in a multi-agent environment typically have conflicting goals and not all 
agents may satisfy their respective goals simultaneously. In this sense, agents will need 
to negotiate with each other to resolve conflicts [Luck et al., 05], [Far et al., 06]. 
Recently, several efforts have been devoted to negotiation protocols, resource-
allocation methods, and optimal division procedures based on ideas from computer 
science, artificial intelligence and socio-economic sciences. Negotiation is then, a key 
coordination mechanism for interaction that allows to a group of agents to reach an 
agreement according to their beliefs, goals or plans. The negotiation process can be 
performed of different ways as auctions, contract net, etc. However, this fact is a bit 
confused, because to the agents’ complexity or the great variety in the interaction 
mechanisms must be added the complexity of the different contexts that prevail inside 
a negotiation [Beer et al., 99]. The negotiation consists therefore in reaching an 
agreement between agents that benefits them when each one has its own interest. 

2.6.4 Commitments 

A commitment refers to an acquired obligation when an agent interacts with others 
[Mallya et al., 03]. A need of finding suitable ways to fulfil such commitment then 
arises. Therefore, agents will base their actions on their capabilities, the capabilities of 
others and the developed work framework. There are coordination mechanisms that 
allow an organized way to perform actions in group. Thus, an agent decides to commit 
to others when it is able to fulfil the proposed tasks, to interact with other agents and to 
communicate with its action partners. 

2.7 Agents & Robotics 

Robotics is a research field where the agent concept can be directly applied. There is 
a direct equivalence between robots and agents in a rigorous sense. A robot is a real or 
physical agent situated in a real environment unlike an agent who just is a software 
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entity. Physical agents are then understood as physical and encapsulated entities with 
control architectures that satisfy the agent design metaphor.  

An agent’s architecture in robotics is equivalent to a robot’s control architecture 
[Matellán and Borrajo, 01]. It is necessary to identify a set of actions (agent’s 
capabilities) that allows robot to interact within the environment in all control 
architectures. The set of capabilities needs different hierarchic levels (grouping of 
capabilities to achieve a goal) in the control structure [Oller, 02]. Such control levels 
depend on the features of the tasks to perform and the available resources. There are 
then mainly two control levels following the above considerations. The high level 
performs long term reasoning and task planning while the low level performs the 
easiest tasks, solving the more immediate problems that not need planning. In 
summary, the fact that a robot is autonomous and physically independent has driven 
to the utilization of the agent technology as something slightly natural. 

2.7.1 Mobile Robotics & Multi-robot Systems 

In particular, mobile robotics refers to the application field of robotics where the 
essential feature of robots is the ability of autonomous motion [Oller, 02]. The motion 
allows the robot the accomplishment of movements in more or less structured 
environments and forces it to be equipped with specific sensors to know the 
environment’s state. 

On the other hand, the study of multiple-robot systems naturally extends research 
on single-robot systems [Parker, 00a]. Multiple-robot systems can accomplish tasks 
that no single robot can accomplish [Arai et al., 02]. Multiple-robot systems are also 
different from other distributed systems because of their implicit “real world” 
environment, which is presumably more difficult to model and reason. 

There are three general problems to study in the mobile robotics that are relevant in 
this thesis [Parker, 00a]: 

● The movement control of the mobile robot like an individual entity. 

● The control of a system composed by diverse robots: the cooperation. 

● The planning of the actions to perform, depending on the temporal and spatial 
restrictions. 
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A more deep and extensive analysis of related works on multi-robot systems and 
mobile robotics, focused specifically on the research topics addressed in this thesis, is 
presented in future sections of the chapter 3. 

2.8 Decision Support Systems 

A suitability fulfilment of cooperative team-work is largely dependent on the 
quality of the available information used to make an appropriate decision. In this light, 
some problems arise when the quantities of available information are huge and 
nonuniform (i.e., coming from many different sources or knowledge categories) and 
their quality could not be stated in advance. Another associated issue is the dynamical 
nature of the problem. For thus, Finlay [Finlay, 94] and others introduce decision 
support systems (DSS) rather broadly as “a computer-based system that aids the 
process of decision making”. Turban [Turban, 95] defines it more specifically as “an 
interactive, flexible, and adaptable computer-based information system, especially 
developed for supporting the solution of a non-structured management problem for 
improved decision making”. It utilizes data, provides an easy-to-use interface, and 
allows for the decision maker’s own insights”. Nevertheless, according to Power 
[Power, 02], the term decision support system remains a useful and inclusive term for 
many types of information systems that support decision making. To the end, the term 
decision support system (DSS) has been used in some different ways [Harrison et al., 
07], and has been defined in various ways depending upon the author’s point of view 
[Liping, 05]. 

In a recent study, distributed decision support systems offer a methodology which 
can be used to combine distributed and heterogeneous models and problem solving 
processes under a single unified framework. They (DSS) improve the effectiveness of 
decision-making rather than its efficiency; they attempt to combine the use of models 
or analytical techniques with traditional data access and retrieval functions; they 
specifically focus on features that make them easy to use by noncomputer people in an 
interactive mode; and they emphasize the flexibility and adaptability to accommodate 
changes in both the approach of the decision maker and the environment in which he 
acts [Adla and Zarate, 06]. In this sense, a group of entities (e.g., agents, robots, 
intelligent artefacts) using a decision support system (GDSS) technique refers to a 
system based on the integration of knowledge, communication and decision taking 
into account the experience and capabilities of all its members. So, such members are 
able to reach individual decision aiming to achieve a beneficial behavior for the 
expectations of the whole group. 
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2.8.1 Characteristics and Capabilities 

Because there is no exact definition of decision support system, there is obviously no 
agreement on the standard characteristics and capabilities of decision support system. 
In this light, in [Turban et al., 05] constitute an ideal set of characteristics and 
capabilities of decision support system. The key decision support system 
characteristics and capabilities are as follows: 

● Support individuals and groups.  

● Support managers at all levels.  

● Support for interdependent or sequential decisions.  

● Support intelligence, design, choice, and implementation.  

● Support variety of decision processes and styles.  

● DSS should be adaptable and flexible.  

● DSS should be interactive and provide ease of use.  

● Effectiveness balanced with efficiency (benefit must exceed cost).  

● Support modelling and analysis.  

2.8.2 Benefits of Decision Support Systems 

Current decision support systems are highly complex and effective. They generally 
have a large number of interacting entities. Such systems aim to improve the 
cooperative metaphor of multi-agent systems by means of their mechanism to support 
both individual as collective decisions. Agents systems are invariably described in 
terms of “cooperating to achieve common objectives”. For thus, they look for the 
indicated tools that allow to reach and to improve their decision-making structure 
especially when they must cooperate with other in order to achieve a common goal. In 
this light, decision support systems arise as a strong alternative to increase in sure and 
trustworthy way the choices in multi-agent systems. So, a list of possible benefits 
obtained in the application of the decision support technology in cooperative multi-
agents environments is described as follow: 

● Improving Personal Efficiency  
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● Expediting Problem Solving  

● Facilitating Interpersonal Communication  

● Promoting Learning or Training  

● Increasing Organizational Control  

2.9 Final Remarks 

The aim of this chapter was to introduce and standardize the most transcendental 
theoretical topics addressed in this thesis. In this sense, a review of several definitions 
has been presented according with the most celebrated definition published until now.  

The present background information on current works and definition about agents, 
multi-agent and multi-robot systems shows how some aspects involved in these 
technologies are yet in development. However, the references cited have been useful to 
illustrate the general concepts aimed on this thesis. 
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Chapter 3  

Cooperative Agents 
This chapter presents an overview of the main works focused in the topics addressed in this 

dissertation. 

3.1 Autonomous Mobile Agents 

Multi-agents systems are computational systems in which two or more autonomous 
agents are able to work jointly aiming to improve the overall systems performance. In 
this sense, this thesis presents an extension of these systems by means of the physical 
agent paradigm. One typical implementation of physical agents is autonomous mobile 
cooperative robots. In fact, a physical agent makes its decisions based on the physical 
capabilities of its body. Likewise, a Physical Multi-agent Systems (PMAS) are assumed 
in the literature by implementing Multi-robot System (MRS) due to the physical 
embodiment of these systems is the main factor to operate in real cooperative 
environments. In this sense, physical multi-agent systems have been proposed in the 
last decade in a variety of settings and frameworks, pursuing different research goals, 
and successfully applied in several cooperative domains. Special attention has been 
given to PMAS developed to operate in dynamics and unpredictable environments 
where uncertainty changes can happen due to the inherent presence of other agents 
and external factors that could affect in the decision process of the cooperative systems. 

Generally speaking, PMAS can be characterized as a set of physical agents operating 
in the same environment, in particular, physical agent may range from simple 
perception of intentions (i.e., in its cognitive representation), acquiring and processing 
knowledge both from the agent interaction as directly from the environment, able to 
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interact with the world in fairly complex ways. Indeed, it is not easy to give a 
definition of the level of autonomy that is required for a physical agent in order to be 
considered as the physical representation of one entity acting in some environment, 
capable to be reactive and to be pro-active to the events that could happen in such 
environment. For that reason, the physical agent paradigm arises as the consideration 
of an intelligent agent who must handle a physical body and so, it must take its 
decisions based on the knowledge about the features of such physical body and its 
satiation on the environment. Here, such interpretation is devoted to analyse three 
kinds of information related to: the agents’ world representation, the agents’ awareness 
about their physical capabilities and the agents’ interaction [Ibarra et al., 07b]. These set 
of information aims to provide physical agent with knowledge related to its situation 
involved in the execution of any action in a world therefore, agents are able to know 
“which” actions can or cannot perform in a suitable way.  

Moreover, a significant amount of work on PMAS has been essentially originated 
from coordination ideology, where these systems are designed and implemented to 
improve the effectiveness of robotic systems [Parker, 08]. In fact, PMAS are useful not 
only when the agents can perform different actions, but also when they can perform 
the same actions in different ways by showing heterogeneity [Stone and Veloso, 00]. In 
this sense, heterogeneity refers to the fact that multiple entities, with different 
capabilities (i.e., physical features) and skills (i.e., communicative agents) should co-inhabit 
and, operate collectively to achieve the correct fulfilment of complex problems in real 
environments. Although these entities could be similar (i.e., manufactured with the 
same parts, at the same place and at the same time) they can act in a diverse way by 
representing both cognitive aspects such as: 

● internal representation of the state, social attributes, experiences, etc. 

as physical factors such that:  

● energy consumption, actuator, sensor, shape, size, response time, etc 

Besides, even when a single physical agent can achieve any given task, the 
possibility of deploying a physical agents’ team can represent a significant 
improvement in the performance of the overall systems. A huge single robot, no matter 
how powerful it is, will be spatially limited while smaller robots could achieve a given 
goal more efficiently [Gulec et al., 06]. Another interesting development of PMAS 
stems from the studies on bio-inspired systems or complex models arising in cognitive 
science and economics (see for example [Busquets et al., 02], [Esteva et al., 01]). This 
thesis takes an engineering perspective, although it also looks at a few bio-inspired 
approaches. In addition, the increased availability of complex solutions on cooperation 
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is nowadays a transcendent factor which represents a new challenge to present a 
classification on PMAS according to the current trends. Thus, it gives the guaranty to 
use solutions where a single action could be, in some cases, improved by using 
coordination among several physical agents because is feasible the assumption that 
multiple agents are able to solve problems more efficiently that a single agent [Jung, 
and Zelinsky, 98]. In this direction, several approaches to cooperation in PMAS 
consider the control of the actions of an individual agent separately from the actions of 
a cooperative group. Indeed, this thesis argues that cooperative behavior at group 
level emerges from individual agents’ interactions. Therefore, the study of PMAS 
applications is particularly relevant and significant for further investigation 
[Østergaard et al., 02]. 

Finally, physical multi-agent systems have been applied in several test beds (i.e., 
foraging, box pushing, clean tasks and exploration) and recently a significant boost to 
the work on such systems has been given also by robotics competitions, such as 
RoboCup1 and FIRA2. In fact, the development of PMAS is regarded as one of the 
major scientific challenges and robotic contests, extremely useful for comparing and 
analyzing different strategies [Østergaard et al., 02] and techniques by providing a 
common test bed for experiments. Likewise, these competitions offer new challenges in 
the design of PMAS; for example in soccer domain the PMAS are tested against other 
teams, the environment is highly dynamic and present external factors, such that: light 
problems, noise in the radio frequency, etc. In this sense, the complexity both the 
systems and the applications domains requires more and more sophisticated 
alternatives for coordination. While some points on coordination are still open to 
discussion, here, physical multi-agent systems are presented by the consideration of 
intelligent entities that are embodied by considering their situation in the 
environment. Such situation refers to: the purely agents’ perception of their 
environment, the knowledge about the agents’ physical bodies and the relationship 
among agents, as a set of parameters that agents use to make decisions aiming to 
cooperate between them in order to achieve successfully the solution of complex 
problems. 

3.2 How can cooperation benefit Agents? 

The control and coordination of multiple mobile agents is a challenging task; 
particularly in environments with multiple, rapidly changing conditions and agents 

                                                           
1 http://www.robocup.org 
2 http://www.fira.net 

http://www.robocup.org
http://www.fira.net
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[Xu et al., 07]. So, a number of reasons exist for which cooperation among agents is 
necessary, and numerous issues have to be tackled to achieve efficient coordination. In 
fact, the objective of the cooperation is to maintain maximum utilization of multi-agent 
resources while ensuring job performance at the highest productive level. In this sense, 
the purpose of cooperative multi-agent systems is to increase the system performance 
in dynamic environments. But, a general theory of cooperation for multi-agents 
domains remains elusive [Ostergaard et al., 02]. However, the research effort into 
multi-agent systems is given by the assumption that multiple agents have advantages 
over single agents for the solution of some problems. In particular, this thesis argues 
that significant reliability and computational benefits may be had by employing multi-
agent cooperative systems for tasks that could be achieved with a single robot. In this 
light, the most obvious advantage for multi-agent systems is that some tasks cannot be 
accomplished by a single agent. For example, one of the most cited examples is the 
pushing a box test bed, where two or more agents must work together to carry out the 
proposed actions (i.e., move a box from one point to other), or performing tasks that 
must be accomplished quickly (i.e., make a pass between soccer players). 

In recent years, cooperation in multi-agent systems is an increasingly and essential 
element for managing systems with enormous amount of data to process and 
communicate, providing high performance, high confidence, and reconfigurable 
operation in the presence of uncertainties [Murray et al., 03]. Although multi-agent 
systems provide many potential advantages, they also present many difficult 
challenges inherent both in design as in the implementation of such systems, such that: 

− how to formulate, describe, and allocate problems among a group of physical agents? 

− how to enable agents to interact? how can heterogeneous agents interoperate? what and 
when can they communicate?  

− How to find useful agents in an open environment? 

− how to ensure that agents work coherently in making decisions or assume a commit?  

− how do enable individual agents to represent and reason about the actions, and 
knowledge of other agents to coordinate with them; how do reason about the state of their 
coordinated process (for example, initiation and completion)?  

In this sense, the solutions to these problems are interrelated. For example, different 
cooperative schemes of an individual agent can constrain the range of effective 
coordination regimes; different procedures for communication and interaction have 
implications for behavioral coherence [Sycara, 98]. Coherence is a global (or regional) 
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property of the multi-agent systems that could be measured by the efficiency, quality, 
and consistency of a global solution (system behavior). In this sense, the more 
transcendent topics for this dissertation are coordinated task and task allocation. 

3.2.1 Coordinated Task 

Agents can improve cooperation by planning the execution of complex problems. 
Planning for a single agent is a process of constructing a sequence of actions 
considering only goals, capabilities, and environmental constraints. However, planning 
a coordinated task in an multi-agent environment also considers the constraints that 
the other agents’ activities place on an agent’s choice of actions, the constraints that an 
agent’s commitments to others place on its own choice of actions, and the 
unpredictable evolution of the world caused by other agents or changes occurred 
during the action’s process. Most early work in Distributed Artificial Intelligence (DAI) 
has dealt with groups of agents pursuing common goals (e.g., Jung [Jung and Zelinsky, 
98]; Simmons [Simmons et al., 02]. In this sense, agent interactions are guided by 
cooperation strategies meant to improve their collective performance. 

Most work on multi-agent cooperative planning assumes an individual 
sophisticated agent architecture that enables them to do rather complex reasoning. 
Several recent works on distributed planning took the approach of complete planning 
before action. To produce a reasoned plan, the agents must be able to be aware of sub-
goal interactions and avoid them or resolve them. Another direction of research in 
cooperative multi-agent planning has been focused on modelling team-work explicitly. 
Explicit modelling of team-work is particularly helpful in dynamic environments 
where team-members might fail or be presented with new opportunities, such in 
[Matellán and Borrajo, 01]. In such situations, it is necessary that teams monitor their 
performance and reorganize based on the situation. Agents within a multi-agent 
scenario need to have wide-ranging knowledge to improve their decisions and to 
achieve sure commitments within an agent society. For instance, reference [Oller et al., 
99] introduces dynamical aspects that consider a physical body in the design of agents. 
Empirical results are obtained when the physical agent systems try to solve dynamic-
world problems using knowledge about their physical bodies’ capabilities.  

Other related examples of this approach are presented in [Quintero et al., 04a] 
[Quintero et al., 04b] [Quintero et al., 04c] [Quintero et al., 04d] where the agents are 
able to analyze their physical bodies using introspective reasoning techniques to know 
which tasks they can perform with their physical capabilities. Some results are drawn 
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to show how these approaches are effective when a team of agents must achieve 
cooperative actions. 

Since Brooks proposed the Subsumption architecture [Brooks, 86], many other 
coordination mechanisms for robotic systems have been proposed. This fact 
demonstrates that coordination mechanisms for autonomous robots are necessary to 
improve the performance of the above systems. Such mechanisms allow these systems 
to perform cooperative tasks to improve their interactions and make sure decisions 
within an agent cooperative system. In this direction, several authors have studied the 
problem to cooperative actions planning, especially in multi-robot environments, 
based on different kinds of coordination mechanisms. However, an approach based on 
the proposed decision axes has not been completely carried out. For instance, 
architecture to explicitly coordinate actions for multiple robots is presented in 
[Simmons et al., 02] where market-based techniques are used to assign tasks at the 
planning level. In particular, this architecture describes a multi-robot extension to the 
traditional three-layered architecture allowing direct communication with its peer 
layers in other robots. 

Reference [Jung and Zelinsky, 98] proposes architecture for behavior-based agents. 
This architecture provides a distributed planning capability with task-specific 
mechanisms to perform cooperative joint-planning and communication in 
heterogeneous multi-robot systems. In particular, the architecture above expresses the 
behavior of a system by implementing two modules which represent an agent’s 
knowledge both in terms of the agent’s position and the physical agent’s capabilities. 

Reference [Langley, 05] presents an adaptive architecture in an in-city-drive 
example domain that involves cognition but in which “perception and action” play 
central roles. This approach is concerned with intelligent behavior in physical 
scenarios. In the same way, authors such as: [Behnke et al., 00], [Goldberg and Matarić, 
02], [Chaimowicz et al., 01] and [Gerkey and Matarić, 01], show similar alternatives to 
perform the coordination process of their systems. Moreover, in [Busquets et al., 02] a 
multi-agent approach is implemented in a navigation system. This approach proposes 
a model of cooperation and competition based on a bidding mechanism. Thus, the 
agents must coordinate among themselves to manage resources and information such 
as motion and vision for the navigation system. 

Reference [Aylett and Barnes, 98] shows a multi-robot architecture for planetary 
rovers. It is designed to be able to accommodate diverse and usually conflicting 
behavior related to physical robot capabilities and the relationship among them. 
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Results are presented using two real robots to perform a cooperative task (i.e., 
transport an object from one point to another avoiding obstacle). 

Reference [Duffy, 04] presents architecture to express robot social embodiment in 
autonomous mobile robotics. In particular such architecture address the issue of 
embodiment in two distinct robots attributes: the internal representation of beliefs, 
desires and intentions; and the external consideration of the physical agent on the 
environment. 

In references [Parker et al., 01], [Bredenfeld and Kobialka, 00] knowledge regarding 
to the agent’s situation inside the environment has been vaguely implemented. In 
particular, these approaches use the geographical current position of the agents at 
moment in which such agents decide the actions that they might perform. Some results 
are present to show how these systems response due to the changes that happen in the 
environment conditions. In addition, in [Simmons et al., 00] a software architecture to 
coordination of heterogeneous robots is presented showing result with three robots in 
a high-precision docking tasks. Such robots are able both to interact with the other 
robots as to identify its physical configuration. Other related approach is implemented 
in [Castelpietra et al., 00] where agents’ interaction and physical agents’ capabilities are 
the information that the agents have used to express a certain level of awareness to 
perform cooperative behavior. 

Reference [Wegner, 99] is focused on systems of cooperative autonomous robots in 
dynamics environments. In fact, it is discuses that both the explicit communications 
among agents as the representation of a model of the world are needed into systems 
that cooperate only through environmental interaction. This approach presents its 
main conclusions by implementing a RoboCup soccer system. 

Architecture that allows teams of heterogeneous robots that dynamically adapt their 
actions over time is present in [Zweilge et al., 06]. In this sense, the robots are able to 
perform their actions over long periods of time requiring the robot ability to be 
responsive to continual changes in the capabilities of its team-mates and to changes in 
the state of the environment or the proposed goals. 

Early work by [Falcone et al., 04], [Ramchurn et al., 04], [Carter and Ghorbani, 03] 
have present approaches focused on the design and implementation of models of trust 
to multi-agent systems. In fact, agents may operate jointly because they are able to 
relate with other agents using information involved in the result of their above 
interactions. 
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The afore-mentioned works present suitable approaches to represent and to include 
the knowledge related to physical features of agent systems. However, it is still 
difficult to choose the needed and enough information to include in the agents’ 
decision-making. In this light, it is possible to assume that such knowledge must be 
directly related to the information of the three decision axes previously introduced: 

● The agents’ environment conditions that directly affect in the performance of their 
selected actions. 

● The agents’ physical knowledge related to the physical features and dynamic of their 
bodies when they take decision. 

● The agents’ trust value allowing them to work jointly with other team-mates. 

Thus, reliable information must be extracted from the decision axes to obtain an 
appropriate knowledge of the agents’ situation. In this sense, such knowledge can be 
represented by means of specific features focused mainly on the decision axes as it will 
be show in the next chapters. 

3.2.2 Task Allocation 

Task allocation is the problem of assigning responsibility and problem-solving 
resources to an agent. Minimizing task interdependencies has two general benefits 
regarding cooperation: First, it improves problem-solving efficiency by decreasing 
communication overhead among the problem-solving agents. Second, it improves the 
chances for solution consistency by minimizing potential conflicts. In the second case, 
it also improves efficiency because resolving conflicts can be a time-consuming 
process. The issue of task allocation was one of the earliest problems to be worked on 
in Distributed Artificial Intelligence (DAI) research. On the one extreme, the designer 
can make all the task assignments in advance, thus creating a non-adaptive problem-
solving organization. This approach is limiting and inflexible for environments with a 
high degree of dynamism, openness, and uncertainty. However, one can do task 
allocation dynamically and flexibly.  

In this sense, several authors have been studied the problems related to task 
allocation, especially in multi-agent environments, based on utility/cost functions. 
These approaches mainly take into account domain knowledge in the agents’ decision-
making. However, an approach based on decision axes features has not been 
completely carried out. For instance, [Krothapalli, 03] presents a distributed allocation 
of dynamically arriving interdependent tasks to the agents. Such agents are partners in 
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a heterogeneous multi-agent system and they must to perform task allocation to 
achieve cooperation within an uncertain and dynamic environment using knowledge 
of their interactions.  

Reference [Gerkey and Matarić, 02] presents the MURDOCH system for the 
allocation of tasks using auctions. Regarding metrics, it only states that “it should 
represent the robot’s fitness for a task” and that “it could perform any arbitrary 
computation". It gives as examples of metrics: a) the cartesian distances from the 
robot’s position to the goal position, and b) the offset of an object in the robot's camera 
image. 

Reference [Fatima and Wooldridge, 01] introduces an adaptive organizational police 
for multi-agent systems that allows a collection of multiple agent organization to 
dynamically allocate tasks and resources between themselves in order to efficiently 
process an incoming stream of task request. It main contribution is intended to cope 
with environments in which tasks have time constraints. Likewise, in reference 
[Goldberg and Matarić, 00] is presented a behavior-based controller for a multi-robot 
collection task that is easily modifiable to obtain new controllers. However, it does not 
perform any controller/agent selection.  

A learning method that uses decisions trees to learn pass advices from observation 
of players’ actions in the simulated robot soccer test bed is presented in [Bou et al., 06]. 
This approach uses an online coach-agent who acts as advice-given agent. A coach-
agent aims at improving a team’s performance by providing advices of the players, 
which refer to environmental knowledge. 

A short review of different task allocation methods, analyzing their efficiency 
(solution quality versus computation and communication costs) is provided in [Gerkey 
and Matarić, 04]. It defines utility as the difference between the quality of task execution 
and the cost of executing the task. However, it does not indicate how this quality and 
cost should be computed. The approach presented in [Dahl et al., 04] uses Q-learning 
to establish task utilities (which task is the most profitable among a set of possible 
tasks) in a multi-robot transportation scenario. This utility is computed as the reward 
(fixed) obtained by executing the task (weighted according to the execution time), and 
is used to decide which. 

The afore-mentioned works present suitable approaches to task/action selection 
where the criteria to bid in such multi-agent task allocation are usually classified by: 
cost/function (i.e., spatial/temporal) and embodiment (i.e., agents’ physical features, 
actuator and preceptor capabilities, etc), social ability (i.e., communication between 
agents) and environmental conditions (i.e., the current setting of the environment). In 
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this sense, such basic utility/cost functions are only related to the physical elements of 
the physical agents where aspect such as their social ability, their dynamics or their 
current environmental conditions are not taken into account at all, within the agents’ 
decision-making. However, the next chapters show how these three decision axes 
contribute to a more suitable task allocation by considering the agents’ situation in a 
better and more reliable way. Such consideration is directly related to the 
representation of such information performed by the physical agents within dynamical 
and unpredictable environments. Thus, appropriate representation of knowledge must 
be extracted by the agents from by perception of the current environmental state, the 
features of their physical bodies, and the result of previous interaction among 
themselves. Finally, the representation of such knowledge applied in the execution of 
cooperative actions contributes to satisfy then the above challenges in multi-agent 
systems. 

3.3 Cooperative Decisions in Multi-agent Environments 

Research in multi-agent systems is concerned with the study, behavior, and 
construction of a collection of possibly preexisting autonomous agents that interact 
with each other and their environments [Sycara, 98]. According to [Wooldridge, 02] an 
agent is an entity that is situated within some environment and is capable of solving 
problems through autonomous actions to achieve its goals in typically cooperative 
environments. Therefore, multi-agent systems can be integrated by a group of 
autonomous agents with different capabilities such that the ability to communicate 
among themselves and to make collective decisions aims to improve cooperative 
agents’ performance in dynamical and unpredictable environments. In fact, multiple 
cooperating agents hold the promise of improved performance and increased fault 
tolerance for large-scale problems such as planetary survey [Haldemann et al., 07] and 
habitat construction [Howard, 05]. Reach cooperative decisions in multi-agent 
coordination, however, is a complex problem. Along this thesis will show such 
problem in the framework of multi-agent dynamic tasks allocation (i.e., coordinated 
tasks) and tasks planning under uncertainty. According to this, the study on multi-
agent systems (MAS) focuses on systems in which intelligent agents should interact 
with each other [Tang and Parker., 07], [Vlassis, 03], [Ostergaard et al., 02], is due to all 
agents in a multi-agent system can potentially influence each other, it is important to 
ensure that the individual actions selected by the agents result in optimal decisions for 
the group as a whole. 
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In this sense, scientific research and practice in cooperative multi-agent systems, 
which in the past has been called DAI focuses on the development of computational 
techniques and methods for constructing, describing, implementing and analyzing the 
patterns of interaction and coordination in both large and small agent societies [Benson 
et al., 07]. In this sense, distributed intelligence on computer science is, currently, 
focused to generate systems of software agents, robots, sensors, computer systems, and 
even people that can work together with the same level of efficiency and expertise as 
human teams [Parker, 08].  

In brief, the main difficulty of the coordination problem addressed in this 
dissertation is that each agent can select an individual action, but that the outcome of 
its actions is directly beneficial to their team-mates. It means, if an agent forget its 
mission or cannot fulfil a commitment such effect is reflected on the performance of the 
whole system. Fortunately, in most of the cases, to perform an action an agent does not 
depend on the action performed by other agents. In fact agents are able to select and to 
perform any actions without involve other agents’ action. For example, in many real-
world domains only agents which are spatially close have to coordinate and to share 
their goals, and agents that are positioned far away from each others can act 
independently. Coordination then enables agents’ groups to solve complex problems 
more effectively. For thus, the agents’ group must be able to take decisions related to 
who agents must perform any action and when, as well as to define to whom they 
must communicate the result of their actions. In summary, even though the use of 
multi-agent systems technology is still in its development and the number of fielded 
commercial applications to date is small, there is tremendous potential and an exciting 
research agenda for the field. The field has already developed a rich set of concepts and 
mechanisms, both theoretical and practical, which will provide a solid base for future 
work. The challenge is determining how best to properly design the system so as to 
achieve global coherence trough the local interaction of individual entities [Parker, 08] 

3.4 Final Remarks 

An important element of the multiple agent research is the development of a system 
that supports the ability of each agent to be able to interact between periods of limited 
and unlimited communication in a cooperative environment. In this direction, agents 
must know the implications of the commitments with other agent-based entities or 
humans and they must know if they can carry out them. To that end, it is necessary to 
have some physical knowledge of the system to know what it is physically possible to 
perform and what it is not possible. For thus, physical inputs and outputs towards and 
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from the environment must be integrated to the agent’s knowledge base. This is due to 
the fact that the agent is contained in a physical body (embody and situated) which it 
must cooperate by means of collective decisions. 

The approaches presented in this chapter summarize the recent effort development 
on the field of Physical Multi-agent System and Multi-Robot Cooperation, especially on 
those approaches that are focused to specific tasks, actions, skills, environments, and 
motivated by engineering consideration. Specifically, the thesis has remarked such 
approaches aiming to emphasising the coordinated features on the earliest proposals. 
For that reason, the thesis has defined a set of awareness levels [Ibarra et al., 07a] for 
the classification of the approaches introduced (see Fig. 3.1). Such classification arises 
from the binary combination of the three proposed decision axes which has been 
explained throughout this chapter. Indeed, the combination describes the usefulness of 
each axis in the agents’ reasoning process. In summary, the Fig. 3.1 provides a 
classification of the revised approaches according to the consideration (or not) of the 
decision axes into their decision-maker. To the end, the analysis of the recent works in 
the literature shows that for more complex tasks (e.g., soccer, rescue mission, etc), in 
unpredictable, uncertain and hazardous environments, systems require both a very 
suitable performance and high robustness, for thus; more complex coordination 
capabilities are required.  

This thesis has identified some limitations of the current architectures, but these 
suggest in turn some natural extensions which will let that the classification cover a 
wide range of intelligent knowledge that, it  believe, will prove difficult to achieve in a 
traditional architectural background. In recent efforts on large scale systems, 
heterogeneity is often chosen in order to exploit different agents’ capabilities and 
reduce the cost of the overall system. In conclusion, the analysis of the literature 
indicates that the problem of coordination will be decentralized when the physical 
agents are able both to has an individual perception of its situation in the world as to 
use this knowledge in their decision-making to perform cooperative actions within a 
typically cooperative environment. In summary, agents can achieve a successful 
coordination by mean of the consideration of the three decision axes. Such information 
promise to be useful in the agents’ decision-making aimed to improve the performance 
of the overall system. Improving the cooperative multi-agent performance is the main 
research goal pursued in this doctoral dissertation.  
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Table 3.1. Classification of Agents’ Awareness Level based on a combination of the Decision Axes. 

Awareness 
Level 

Agents’  
Other Approaches 

Environmental 
Conditions 

Physical 
Knowledge Trust Value 

0 (0,0,0) 0 0 0 All reference takes at least one 
of these parameters. 

1 (0,0,1) 0 0 1 

[Patel, 05], [Falcone et al., 04], 
[Krothapalli, 03], [Ramchurn et 
al., 04] [Carter and Ghorbani, 

03], [Lesser, 99] 

2 (0,1,0) 0 1 0 

[Quintero et al., 04a], [Quintero 
et al., 04b], [Quintero et al., 
04c], [Quintero et al., 04d], 

[Goldberg and Matarić, 00], 
[Oller et al., 99] 

3 (0,1,1) 0 1 1 
 [Simmons et al., 00], 

[Castelpietra et al., 00], [Aylett 
and Barnes, 98] 

4 (1,0,0) 1 0 0 
[Gerkey and Matarić, 02], 

[Parker et al., 01], [Bredenfeld 
and Kobialka, 00] 

5 (1,0,1) 1 0 1 

[Tang and Parker, 07], [Bou et 
al., 06], [Zweilge et al., 06], 
[González and Torres, 06], 

[Simmons et al., 02], [Busquets 
et al., 02], [Wegner, 99], [Veloso 

et al., 97] 

6 (1,1,0) 1 1 0 

[Langley, 05], [Duffy, 04], 
Goldberg and Matarić, 02], 

[Matellán and Simmons, 02] 
[Fatima & Wooldridge, 01], 

[Jung and Zelinsky, 98], 
[Parker, 00b], [Behnke et al., 

00], [, [Chaimowicz et al., 01], 
[Gerkey and Matarić, 01] 

7 (1,1,1) 1 1 1 
[De la Rosa et al., 07], 
[Quintero et al., 07a] 
[Quintero et al., 07b] 
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Chapter 4  

Decision Support for Situated Agents 
Improving Cooperative Actions is reachable when agents can successfully interact among 

them based on their situation. This chapter presents the formalization of the framework to 
decision support for situated agents proposed in this dissertation to provide agents with a 
cognitive ability for reasoning on decision axes, aiming at making physically feasible cooperative 
actions and to get reachable and physically feasible commitments that maximize the overall 
expected performance in multi-agent systems. The main definitions, formalization aspects and 
information provided by the decision axes used in this work are introduced in this chapter. 

4.1 Situated Agents 

The main challenge involved in this thesis is focused on the agent’s lack on the 
appropriate awareness of their situation mainly related to its perception involved in 
the knowledge that influence them to work jointly when they must execute a collective 
action in a physical world. In particular, agents’ situation refers to all the information 
that an agent has to decide if can or cannot execute any proposed action. Specifically, 
these information elements are directly estimated from three points of view, called 
decision axes. 

● Agents’ environmental conditions (world), composed by information about the state of 
the environment, directly involved in the performance of a cooperative action. 

● Agents’ physical knowledge (awareness) meaning the specification, the structure and 
other relevant details related to the agents’ physical skills and characteristics. 
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● Agents’ trust value (interaction) related to the capability of an agent to communicate, to 
interact and other relevant details to work together with other agents. 

Explicitly, the lack of the appropriate reasoning on the information provided by the 
decision axes reflects in a lower cooperative performance between agents, mainly in 
complex problems performed in situations, such as, coordinated task or task allocation. 
In this sense, a proper alternative is that agents can communicate such information 
aiming to achieve a successful cooperative agents’ performance. Indeed, such lack 
represents a significant impediment to reduce complexity and to achieve appropriate 
levels of coordination and autonomy in multi-agent systems. 

Otherwise, an analysis of the recent works in the literature [Parker, 08], [Tang and 
Parker, 07], [Halderman et al., 07], [Jeong-ki et al., 06], [Duffy, 04], shows that for more 
complex tasks (e.g., soccer, rescue mission, etc), where unpredictable, uncertain and 
hazardous environments requires both a very suitable performance as well as a high 
robustness, more complex coordination capabilities will be required. For instance, in 
[Parker, 08] is claimed that if a large number of robot are too expensive or are not 
available to be applied to, say, planetary exploration, then more purposive interaction 
(i.e., cooperation) is required to achieve the goal of the mission. Of course, it indicates 
that a complex problem will be decentralized when agents will able both to have an 
individual perception of its situation in the world as to use such information in their 
decision-making aiming to make sure decisions and to achieve trustworthy 
commitments in cooperative environments. In this light, the expected agents’ 
performance depends on the information that they can acquire about their situation on 
the environment before to take a decision. Therefore, agents within a multi-agent 
scenario need to have a wide-range of knowledge which allows them to reach good 
decisions and to achieve sure commitments within an agents’ group. In this sense, the 
fact of receiving and sending the right information related to agents’ situation is 
essential for an appropriate agents’ collective performance and to reach a coherent 
agents’ behavior to achieve the expected system performance. For thus, to include 
appropriately the knowledge about the agents’ situation in their decision-making, a 
suitable representation of the elements involved in the decision axes must be first 
developed to include such information in the agents’ knowledge base which is general, 
accessible, understandable, comparable and computationally tractable for these agents. 
In particular, such agent’s knowledge base means the embodiment of the agents 
representing their situation within a cooperative physical environment. 

In summary, the thesis argues that the framework to decision support for situated 
agents based on the information elements of the decision axes makes then easier for 
agents to reflect such knowledge in their knowledge bases, aiming at making 
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physically feasible and safer decision, getting more secure and reachable commitments, 
avoiding undesirable situation that could affect the collaboration, achieving a better 
cooperative levels. 

4.2 Multi-agent Decision Support 

Along the history of the artificial intelligence (AI), and until these days, several 
researchers in artificial intelligence have dealt with developing theories, techniques, 
and systems to study and understand the behavior and reasoning properties of a single 
cognitive and intelligent virtual entity (i.e., an agent). Artificial Intelligence (AI) has 
advanced, and it tries to attack more complex, practical, and large-scale problems, 
essentially when these problems are beyond the capabilities of an individual agent. So, 
the skills of an agent are limited by its knowledge, and the perspective of its situation 
on an environment, especially when those entities must to coordinate among them. 

If a problem domain is particularly complex, large, or unpredictable, then the only 
way it can reasonably be addressed is to develop a number of functionally specific and 
nearly modular entities (i.e., multi-agents) that are specialized at solving a particular 
problem aspect [Sycara, 98]. Such segmentation allows each agent to use the most 
appropriate paradigm for solving its particular problem. Aside, when interdependent 
problems arise, the agents in the system must coordinate with one another to ensure 
that interdependencies are properly managed.  

In this light, “multi-agent systems are computational systems in which two or more 
autonomous agents interact or work together to perform some set of tasks or to satisfy 
some set of goals”. These systems may be comprised of homogeneous or 
heterogeneous agents. Therefore, before an agent starts a task, it should make a plan 
for how to reach a given goal. Such planning requires that agents have: knowledge 
about their perception of the current environmental conditions (world), knowledge 
about their physical capabilities to execute an action (awareness), and knowledge about 
the result of previous interactions between themselves (interaction), to represent such 
set of information in their knowledge bases. It means that the representation of such 
information (i.e., knowledge) internally represented in an agent is usually known as its 
knowledge bases [Quintero, 07]. Such knowledge allows agents to be able to reason 
about their situation in the environment and it is useful in the agents’ decision-
making, especially when they must work together with other agents or humans. In this 
sense, the methods, mechanisms or techniques that allows an agent to be “aware” 
about the fact that they must plan their actions before to take a decision or make a 
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commitment is knows as decision support. It aims to achieve more suitable cooperative 
performance in the overall system. 

4.3 Decision Axes 

Decision making is a vital component of multi-agent systems success. Decisions that 
are based on a foundation of knowledge and sound reasoning can lead agents into 
long-term cooperation; conversely, decisions that are made on the basis of flawed 
knowledge or incomplete information can quickly put an agent system out of 
commission (indeed, bad decisions can cripple even robust agent systems over time). 
Ultimately, what drives cooperative agents’ success is the quality of decisions, and 
their implementation. “Good decisions mean good performance”. 

In this sense, problem-solving also sometimes referred to as problem management 
and it can be divided into two parts: process and decision. The process of problem 
solving is predicated on the existence of a system designed to address issues as they 
crop up. In many cases, cooperative systems are apparently content to operate with an 
ultimately fatalistic manner “what happens, happens”.  

Experts in the area [Parker, 08], [Matarić, 00], [Stone, 00], [Lesser, 98] contend that 
such attitude is simply unacceptable, especially for autonomous cooperative agents 
that wish to expand, let alone survive. The second part of the problem management 
equation is the decision (or choice) itself. Several sets of elements are needed to be 
considered in looking at the decision process. Such set of elements refers to the 
rationales used for the agents to reach decisions. Others emphasize the setting, the 
scope and level of the decision, and the use of procedural and technical aids. 

Models of decision-makers have adopted a variety of styles in their decision making 
processes [De la Rosa et al., 07], [González et al., 07], [Duffy, 04], [Jung and Zelinsky, 
98]. For example, some approaches leaders embrace processes wherein every 
conceivable response to an issue is examined before settling on a final response [Patel, 
05], while others adopt more flexible philosophies [Quintero, 07]. The legitimacy of 
each style varies in accordance with individual realities in such realms as competitive 
environments, dynamic task allocation, etc. Special attention must be paid to 
cooperative scope and organizational levels in multi-agent systems. Cooperative 
problems of large scope need to be dealt with high levels of organization. Similarly, 
problems of smaller scope can be handled with lower levels of organization. The final 
step in the decision-making process is the implementation of the decision. This is an 
extremely important element of decision-making; after all, the utility/benefits 



Chapter 4: Decision Support for Situated Agents 

41 

associated with even the most intelligent decision can be severely compromised if 
implementation is slow or imperfect. In addition, several factors in deficient decision-
making are commonly cited by several experts [Luck et al., 05], [Wooldridge, 02] 
including the following: limited cooperative capacity; limited information; 
interdependencies between agents’ skills and tasks requirements; the robustness of the 
system(s) to be analyzed; and the diversity of forms on which cooperative decisions 
actually arise. Moreover, time constraints, agents’ distractions, low levels of decision 
making skill, conflict over individual goals can also have a deleterious impact on the 
decision making capacities of a cooperative multi-agent system. In this sense, this 
thesis proposes three decision axes (world, awareness, interaction) that mean information 
parameters which try to help agents to achieve a more suitable decision-making 
process. These axes are the embodiment of an agent on the environment dealing with 
information that represents all the knowledge that an agent has involved in the 
execution of any proposed action. It means the agent’s knowledge base characterizes 
all the information that an agent can acquire to execute an action or to assume a 
commitment in a real cooperative world. In (Fig. 4.1) is showed the scheme of the 
decision axes. 

 

Fig. 4.1. General scheme of the proposed Decision axes. 

4.3.1 Axis 1 – World. The Environmental Conditions  

Previous studies [Gulec et al., 06] revealed that one of the main problems in 
cooperative systems is to avoid the collisions of the robots with obstacles as well as 
with other members of the group (i.e., other agents). For thus, physical systems must 
attempt to consider prevalent sources related to the current environmental state which 
represents the situation both the “objects” (i.e., walls, obstacles, etc) as the “conditions” 
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(i.e., lights, noise, etc) that reproduces the real world situations. In this sense, a set of 
environmental conditions refer to the information available from the environment. In 
other words, the representation of the information is considered as the embodiment of 
all the knowledge that has influence (e.g., in god or bad ways) in the reasoning process 
(i.e., perception) of a physical agent. Besides, physical agents may at times, be working 
on different parts of the higher goal, and thus may at times have to ensure that they 
share the workspace without interfering with each other [Parker, 08]. Agents must be 
therefore, capable to analyze the information of their workspace before to take a 
decision about to perform an action or to assume a commitment [Bolander, 03] in real 
environments. In fact, this knowledge helps agents in their decision-making modelling 
the current setting that could affect in the correct development of their expected 
actions. If agents are not able to abstractly represent their environment then their 
actions’ performance could be lower due to the fact of does not take into account the 
setting and features of their work space. However, although, it is possible to find many 
kinds of helpful information from the environment; it is import to define and to restrict 
as far as is possible to consider the information involved in a real cooperative scenario. 
In particular, environmental conditions aim to guide the agents’ decision-making 
about what information must take into account from the environment at moment to 
decide if they have an opportunity to execute an action achieving the required 
performance. 

4.3.2 Axis 2 – Awareness. The Physical Knowledge 

When agent interaction exists in a real cooperative environment, each entity of the 
agent group must be able to be physically differentiated from others. These agents 
require a sense of themselves as distinct and autonomous individuals obliged to 
interact with others within cooperative environments (i.e., they require an agent 
identification) [Duffy, 04]. Such identification refers to the property of each agent to 
know who it is and what it does according to the knowledge of its physical 
representation (i.e., its body). For instance, before an agent commits it in the execution 
of an action, the agent should register the fact of knowing if it can or cannot perform 
the proposed action; it needs knowledge about the capabilities and skills of its physical 
body to reach at suitable decisions. In addition, to decide how well the agent is doing 
or will do the proposed action, an agent will also need this self-examination capability 
[Quintero, 07]. To express, self-examination reasoning, the agent should refer to its 
own knowledge as objects in its world. It means that there is a complete separation 
between the model (i.e., the knowledge base) and the reality being modelled (i.e., the 
environment). For that reason, although the agent possesses a body within a world, in 
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its internal representation it is not part of the world, it only consider internally their 
capabilities and skills of its body. The knowledge base therefore contains sentences 
expressing those features (e.g., dynamic, skills) about its physical body that the agent 
takes to be true. In this sense, an agent is “aware” if it can reason about the actions that 
it can execute based on the knowledge (i.e., capabilities, skills) of its physical body. In 
particular, physical knowledge aims to guide the agents’ decision-making in knowing 
on what actions can perform taking into account their physical skills and 
characteristics. 

4.3.3 Axis 3 – Interaction. The Trust Value 

Many computer applications are open distributed systems in which the constituent 
components are spread throughout a network, in a decentralised control regime, and 
which are subject to constant change throughout the system’s lifetime [Ramchurm, 04]. 
In this sense, the need of considering risky situations in open multi-agent systems (i.e., 
situations in which cooperation between different autonomous entities is not assured 
by the mechanisms and protocols of interaction) requires to model decision-making 
tools into each single agent (i.e., to rely on other entities). For thus, open distributed 
systems can be modelled as open multi-agent systems that are composed of 
autonomous heterogeneous agents that interact with one another using particular 
mechanisms and protocols of coordination. However, their application on large-scale 
open distributed systems presents a number of new challenges. Thus,  

● The agents are likely to represent different stakeholders that each has their own aims and 
objectives. 

● The agents can join and leave at any given time, this given that the system is open. 

● An open distributed system allows agents with different characteristics to enter the 
system and interact with others. 

Specifically, the presented challenges characterize the key interaction problems. In 
this light, many researchers are focusing their efforts on formalizing social models that 
introduced interesting and promising interactions’ models in virtual societies can base 
their interaction process on different manners [Patel, 05], [Ramchurn, 04], [Carter & 
Ghorbani, 02], [Falcone et al., 01]. Such models are often built over time by 
accumulating personal experience with others, and using this experience to judge how 
they will perform in an as yet unobserved and unknown situation. Generally speaking, 
there are two approaches to trust value in multi-agent systems. First, to allow agents to 
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interact with others, there is a need to endow them with the ability to reason about the 
reciprocal nature, reliability, or honesty of their partners. The second approach 
concerns to design of protocols and mechanisms of interaction. It expects agents to 
interact using a particular way only if it can be trustworthy. In particular, a trust value 
aims to guide the agents’ decision-making in deciding on how, and whom to interact 
with. 

4.4 Electronic Institutions for Situated Agents 

Computer-based systems are being to tackle increasingly complex problems in ever 
more demanding domains [Parker, 08]. The most important paradigm to face this 
situation is to decompose the problem into smaller and more manageable components 
which can communicate and cooperate at the level of sharing processing 
responsibilities and information. Over the years, one of the best-known and most 
influential contributions to the area of the agent theory is due to Cohen and Levesque 
in [Cohen and Levesque, 90]. In this light, problem-solving agents cooperate to achieve 
the goal of the individual and of the system as a whole [Jennings, 93]. Each individual 
is capable of a range of identifiable problem-solving activities, has its own aims and 
objectives, and can communicate with others. Typically, agents within a given system 
have problem-solving expertise that is related but distinct that has to be coordinated. 
Such interaction are needed because agent’s actions and the necessity to meet global 
constraints and because often, no one individual has sufficient competence to solve the 
entire problem. In this sense, agents must be able to increase their ability to take more 
successful and trustworthy decisions. Because there are many approaches to problem-
solving and due to the wide range of domains in which decisions are made, the 
concept of decision support is very broad. In such case, a cooperative multi-agent 
decision support can take many different forms. In general, it can say that a 
formalization of a multi-agent decision support is a computerized system for helping 
make collective decisions. A decision refers to a choice between alternatives based on 
previous analysis about the suitability rates of such alternatives. Supporting a decision 
means helping people (i.e., agents) working alone or in a group gathers intelligence, 
generate alternatives and make good choices. So, reaching cooperative agents is 
possible if they are “aware” on how perform their actions based on the knowledge that 
they have about their situation on a determined environment. Agents must know and 
must manage such information aiming to solve a complex problem inside particular 
regions of the environment. 
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Indeed, there are several approaches which establish cooperation between agents 
[Luck et al., 05], [Goldberg and Matarić, 00], [Jung and Zelinsky, 98]. Some kind of 
limitations are identified from the perspective that authors have focused in its 
implementation [Parker, 08], [Jennings, 04], [Mataric, 04] where their efforts are aimed 
to develop ad-hoc methodologies or frameworks to solve a particular problem [Sariel 
et al., 07], [Wang et al., 07]. So, one of the most recent efforts in cooperation and 
collaboration is based on approaches which base their organizational paradigm from 
human systems [Bou et al., 03], [Esteva et al., 02], [Busquets et al., 02]. In this sense, the 
electronic institutions (e-Institutions) have arisen as a proper answer to solve the 
cooperative agents paradigm when these agent form temporal groups. Some 
approaches using e-Institutions have been tested in different scenarios [Esteva et al., 02] 
and applying diverse artificial intelligence techniques to introduce cooperative 
behavior in open agent systems with a large number of successful results. In fact, e-
Institutions [Esteva et al., 02] are organizations formed by autonomous agents in which 
is necessary the declaration of certain types of lineaments that allows estipulate the 
conduct, which determines how a group of agents could work jointly (i.e., “the rules of 
the game”). Such lineaments must be respected and must provide agents as the ways to 
express individual behavior and so, to reach cooperative behavior. 

In this light, according to [Esteva et al., 02] an e-Institution is identified with four 
basic elements which allow cooperating agents to work jointly: dialogic framework, 
scenes, performative structure and norms. The dialogic framework refers to the valid 
communication and inter-change of information among agents. Likewise, the dialogic 
framework defines which are the roles that participating agents may play within the 
institution. The scenes model a particular multi-agent dialogic activity (i.e., a meeting 
among agents). In this sense, any agent participating in a scene has to play one of its 
roles. The performative structure is, in general, defined as a collection of multiple, 
concurrent scenes. Agents navigate from scene to scene constrained by the rules 
defining the relationship among scenes. Performative structure is then a specification 
that must be regarded as networks of scenes. The norms which govern an organization 
are one of the key sources of trust for potential participants, since they define the 
commitments, obligation and right of participating agents. In fact, the norms are, in 
effect, local. Finally, in any e-Institution, the roles define the pattern of behavior and, 
particularly, any agent within an institution is required to adopt some of them. In this 
sense, the adaptation of these features is sometimes unsuitable or must be re-defined. 
For instance, in this thesis, the set of actions that must be executed by the participating 
agents are grouped in sets of goals which represent the expected intentions for the 
multi-agent systems. Such goals are, in general, related to a specific region of the 
environment. The first difference is then, the ideology of the roles formalism. Aside, 
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based on the dialogic framework definition, a communication language and a decision 
algorithm are needed to describe the way in which agents will be able both to converse 
among them and to make sure collective commitments. The second difference is 
therefore, how agents participating can inter-act and can work together aiming to 
increase the cooperative levels of a complex problem. On the other hand, here, the 
scenes are meeting areas where autonomous agents must satisfy particular 
requirements to participate in the scene’s jobs. Similarly to the e-Institutions, each agent 
must play a role (i.e., to execute an action) inside a scene whenever agent can ensure the 
correct execution of its role. It is the first equality with the traditional e-Institution 
methodology. The transition of agents from scene to scene depends on the situation of 
the agents related to their capabilities to execute in suitable way the actions involved in 
such scenes. It means, the agents navigate between the scenes (and goes to the scenes) 
constrained by the agents’ knowledge about what they should supposedly doing and 
under what conditions and constraints must work in a determined scene. In this sense, 
the third difference is that agents can change of scene depending on their capabilities to 
fulfil the issues’ requirements in this scene. Finally, the norms concept is taken to 
define a set of condition that any agent must attend before to start an action. The fourth 
difference is that agents must obey the stipulated norms to achieve a sure and effective 
cooperative performance. Besides, the norms will be in effect, local to the scenes. The 
second equality has been introduced. The main objective of re-defining the traditional 
concepts of e-Institutions is to do that these ideas are more suitable for the formalization 
of the framework to decision support that will be described in this dissertation. Such 
adaptation supposes some useful concepts for manage agent interaction in populated 
and dynamics environments. These ideas also provide solutions aiming to enhance the 
level of autonomy and cooperation in open and distributed multi-agent systems. In 
order to stressing the adaptation of the e-Institution methodology performed in this 
dissertation, in (Fig. 4.2) is drawn a comparative between the traditional model of the e-
Institutions methodology and the proposed adaptation. 

 

Fig. 4.2. Adaptation of the e-Institution methodology. 
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In this sense, a situated agent can cooperate throughout a formal framework based 
on the e-Institution, where the main factor to perform cooperation will be the 
information that embodies the agent’s situation regards to the proposed action. Thus, 

Definition 1: Agents’ Situation refers to the agents’ capability to perceive, interpret, and 
include all the information related to their job’s capabilities and can introduce in their 
knowledge bases. 

In particular, this thesis classifies agents into two categories. Such classification 
allows differentiating the information that each agent processes, and the range of 
actions that agents can execute, such that: supervisor agents (SA) and physical agents 
(PA) describe the intelligent entities that constitute a cooperative multi-agent system. 
Agents are then differentiated among them and such classification is helpful to the 
cooperative process due to agents are able to include their own information on their 
knowledge bases. Such differentiation allows to classify the job of each agent can 
execute on the environment, avoiding that agents confuse whom are they and what 
they can do. Thus,  

Definition 2: Physical Agent (PA) refers to an intelligent entity that has a physical 
representation on the environment and through which the multi-agent systems can introduce 
physical changes in a real cooperative environment. Such physical agents are embodied by 
considering the information parameters of the three decision axes within its knowledge base. 

Physical agents are then the connection between the real world and the cognitive 
cooperative representation of the agent world paradigm. In some cases, such physical 
agent might need a particular supervision of a more perceptual and cognitive entity 
introduced as an omniscient and omnipresent centralized intelligent supervisor agent 
[Stone, 00]. Thus,   

Definition 3: Supervisor Agent (SA) refers to an intelligent entity that is in-charge of 
informing and supervising the successful fulfilment of the actions in a specific region of the 
environment. Such supervisor agents are characterized by considering the set of requirements 
involved in the region supervised by them. Such information represents the supervisors’ 
knowledge bases. 

At this context, both physical as supervisor agents must reach agreement in 
cooperative groups by properly including the information involved in the agents’ 
situation on their knowledge bases. Thus,  

Definition 4: Agent’s knowledge base refers to the set of information that an agent has 
linked to its perception regards to its situation on the environment. Such situation allows 
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systems be aware about the cognitive perception of the problem (i.e., the required requirements) 
and the physical perception of the problem (i.e., the expected actions). 

Therefore, physical agents must be “aware” on their knowledge bases to decide if 
they are capable or not to execute an action in a suitable way to achieve a collective 
solution. On the other hand, supervisor agents interpret the information of its 
supervised region to know the requirements of the involved problems in order to 
ensure the right development of the actions in such region in a typically multi-agent 
environment. Due to the nature that multi-agent systems are composed by 
autonomous and distributed entities that must interact, decisions will reached only if 
agents are capable to carry on a reasoning process on how they must perform a 
determine action in order to fulfil their individual actions to achieve the global goal. In 
this light, human interactions very often follow conventions, that is, general 
agreements on language, meaning, and behavior [Esteva et al., 02]. In this case, all the 
agents who co-inhabit the systems must respect a proposed set of rules that govern the 
way in which agents must collaborate. Such rules attempt to be useful as a defined 
reasoning through which agents can get reliable commitments with their agent-mates. 
Therefore, to imitate the ideology of the e-Institutions (i.e., e- Institutions use a set of 
regulations to manage the execution of multi-agent tasks), the agents’ decision-making 
structure must be able to endow agents with the needed skill to define how they could 
work jointly to reach collective behavior, taking as a main decision factor their 
situation related to the execution of any proposed action. Then, in order to adapt in a 
suitable way the e-Institutions features, let us to define a scene (S) as a spatial region 
which represents “a meeting area” where a set of actions (with requirements) are 
expected and must be performed to fulfil the intentions of the scene. Thus, 

Definition 5: Scene is a spatial region where agents must interact and cooperate to perform 
some set of action in order to satisfy the system goals. 

In this sense, to ensure the correct interaction and well-execution of the actions, 
agents-meting (i.e., scenes) requires norms, which define how agents can interact and 
the manner in which agents must work to look for the benefit of its particular agents-
group. In particular, such norms stipulate the set of terms and conditions that agents 
must respect to play a role in a determinate scene in order to collaborate with other 
agents. In other words, such norms are useful when different organizational units (i.e., 
agents) must coordinate their actions for joint benefit. So, a norm is considered as one 
of the most critical requirements stated in cooperative organizations. For thus,  

Definition 6: Norms refer to the set of rules which determine how agents must perform an 
action on a specific scene. In this case, the rules are in effect, locals. 
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4.5 Formalization Aspects 

Let us suppose that a supervisor agent saα is part of a cooperative group Gsa. A 
cooperative group must generally involve more than one supervisor agent for the 
execution of the system’s goals (see Fig. 4.3). That is, 

SAGsaandsasa|Gsasa,sa jiji ⊆≠∈∃  

}sa,...,sa,sa,sa{Gsa,where n321=  

Where SA is the set of all possible supervisor agents in the environment. 

 

Fig. 4.3. General scheme of the supervisor agents within the environment. 

One supervisor agent is in-charge to examine and evaluate a determined spatial 
region of the environment aiming to fulfil the greater sum of cooperative actions 
involved in such scene (see Fig. 4.4). In this sense, a supervisor agent has a pro-active 
behavior according to the agent metaphor [Wooldridge, 02] (i.e., it is pro-active 
because is continually checking which scene it must supervise). Besides, when a 
supervisor has identified its scene, it must claim the information involved in such scene 
in order to know which actions must be achieved in such area. It is defined as a 
supervisor agent sensitive to the events that happen and affect in a determinate way the 
process of the actions inside any spatial region of the environment. For thus,  

Let us define that a scene sα is a spatial region on the environment where agents 
have meetings and must interact to perform a set of actions involved in such space, 
such that, 

}s,...,s,s,s{S,wheress|Ss,s n321jiji =≠∈∃  
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Where S is the set of all possible scene in the environment. 

Let us consider that a scene sα is supervised by a supervisor agent saα such that, 

SSAssa|SsGsasa iiii =∴→∈∃∈∀  

 

Fig. 4.4. General scheme of the Scenes within the Environment. Each scene is supervised by one supervisor agent. 

Aside, studies about which actions are involved in a determined scene are required 
to provide and to define all the information involved in the execution of a complex 
problem, to facilitate the execution of the management of such region. Once a 
supervisor agent knows the region where it will develop its function, it must identify 
the goals to be accomplished in such spatial region, it must indicate the tasks that 
should be performed to achieve such goals, and what roles are necessary for the task 
achievement. All together, this set of information constitutes information which 
differentiates one supervisor from others. Thus, it is possible to considerer a 
heterogeneous group of supervisor agents trying to reach collective behavior to solve a 
global complex problem. Indeed, it is necessary to propose a priority index ω which 
represents the relevance of every cooperative issue (i.e., goals, task and roles) within 
determined region of the environment. In this sense, a supervisor will know both the 
sequence in which the goals and the tasks must be performed and the sequence in 
which roles will be executed according to its supervised scene. Such priority index will 
be established according to system requirements (i.e., robustness, timeline, etc) aiming 
to achieve a sure and effective accomplishment of the scene’s aims. 

Let us suppose that a goal gγ is part of a set of cooperative goals involved in any 
determined scene. A scene must generally involve more than one goal for the 
fulfilment of the system’s proposal (see Fig. 4.5). Thus, 

G)s(Gandgg|)s(Gg,g jiji ⊆≠∈∃ αα  
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}g,..,g,g,g{)s(G,where o321=α  

1)g(0|))s(G()g()s(Gg,thus iii ≤ω≤Ω∈ω∃∈∀ αα  

Where G is the set of all possible goals in the environment, and )s(G α is the set of 

goal involved in a determined scene sα. 

Where ))s(G( αΩ  is the set of the priority indexes defined for the relevance of the 

goals in specific scene, and ω(gi) is the priority index of a specific goal.  

 

Fig. 4.5. General scheme of the goals within the environment. 

Here, a goal refers to the set of issues that must be performed in any determined 
scene, aiming to achieve a particular system’s target. Such goals then embody the 
system aims, according with the targets that must be reached as the outcome of the 
cooperation among agents. 

Let us define that a task tδ is part of a set of cooperative activities that must be 
performed to achieve a specific goal gγ in any determined scene. A goal must generally 
involve more than one task for the achievement of the scene’s proposal (see Fig. 4.6). 
Thus,  

T)s(T)g(Tandtt|)g(Tt,t ijiiji ⊆⊆≠∈∃ α  

}t,...,t,t,t{)g(T,where p321i =  

1)t(0|))s(T()t()s(Tt,thus iii ≤ω≤Ω∈ω∃∈∀ αα  
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Where T is the set of all possible tasks in the environment, and )s(T α is the set of all 

possible task involved in determined scene, and )g(T i is the set of all possible tasks 

involved in the performance of a determined goal. 

Where ))s(T( αΩ  is the set of the priority indexes defined for the relevance of the 

tasks in specific scene, and ω(ti) is the priority index of specific task.  

 

Fig. 4.6. General scheme of tasks within the environment. 

A goal therefore could be achieved without the implicit needed of performing or 
assuming its entire involved tasks. In fact, the execution of one task is independent of 
other task execution, but their development and outcome could reflect in a positive or 
negative way the development and execution of other tasks (see Fig. 4.6). Here, a task 
refers to the set of action that must be performed in any determined scene aiming to 
achieve a particular goal.  

Let us define that a role rφ is part of a set of cooperative actions that must be 
performed to achieve a specific task tδ in any determined scene. A task must generally 
involve more than one role for the achievement of the goal’s proposal (see Fig. 4.7). 
Thus,  

R)s(R)t(Randrr|)t(Rr,r ijiiji ⊆⊆≠∈∃ α  

}r,...,r,r,r{)t(R,where q321i =  

1)r(0|))s(R()r()s(Rr,thus iii ≤ω≤Ω∈ω∃∈∀ αα  
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Where R is the set of all possible roles in the environment, and )s(R α is the set of all 

possible tasks involved in determined scene, and )g(T i is the set of all possible tasks 

involved in the performance of a determined goal. 

Where ))s(R( αΩ  is the set of the priority indexes defined for the relevance of the 

tasks in specific scene, and ω(ri) is the priority index of specific task.  

 

Fig. 4.7. General scheme of the roles within the environment. 

A task then could be achieved without the implicit needed of performing or 
assuming its entire involved roles. In fact, the performance of one role is independent 
of other roles performance, but their development and outcome could reflect in a 
positive or negative way the development and performance of other roles (see Fig. 4.7). 
Here, a role refers to a specific action that must be executed by a particular physical 
agent in order to fulfil the performance of a determined task within the development of 
any scene’s goals. 

The information acquired by the supervisor agents usually constitutes their 
knowledge bases. Such bases have associated all the information about the 
requirements (i.e., the issues that must be solved) involved in a determined area. The 
overall set of information aims to provide supervisor agents with the enough 
knowledge allowing them to perform a sure and reliable fulfilment of a greater amount 
of cooperative actions involved in its supervised area. The supervisor agent’s 
knowledge base KB (see Fig. 4.8) is therefore founded on the union both of the goals, 
the tasks and the roles implicated in the scene under its manage as is described in (4.1). 

)1.4()s(R)s(T)s(G)sa(KB αααα ∪∪=  
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Fig. 4.8. General scheme of the supervisor agent’s knowledge base. 

In consequence, the supervisor agent’s knowledge base allows each supervisor to be 
conscious about what it can do for the fulfilment of the global system’s goal. Such 
information also keeps the systems “aware” about the requirements of its involved 
action, because of this; it is needed identify the capabilities of the workers (i.e., the 
physical agents) that operate within the environment. Thus, 

Let us define that a physical agent paβ inhabit in a real and typically cooperative 
environment. These agents have therefore the ability to consider their physical situation 
related to the execution of a particular action in such physical scenario. Although these 
characteristics could supposedly take a lot of “things” concerning the environment, 
this thesis argues to consider three kinds of knowledge looking for include information 
which could be useful for the perception of particular paβ about its situation in the 
environment. So, the environmental conditions refer to knowledge involving the 
physical condition of an agent within an environment, the physical knowledge 
represents knowledge about the physical features of the agents and the trust value 
takes all the knowledge involved in the agent interactions. Thus,  

Let us suppose that a physical agent paβ is part of a cooperative mobile group Gpa. A 
cooperative mobile group must generally involve more than one physical agent for the 
execution of the actions in a scene (see Fig. 4.9). That is,  

PAGpaandpapa|Gpapa,pa jiji ⊆≠∈∃  

}pa,...,pa,pa,pa{Gpa,where m321=  

Where PA is the set of all possible physical agents in the environment. 
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Fig. 4.9. General scheme of the physical agents within the environment. 

Let us suppose that physical systems enhance prevalent knowledge regarding the 
current environmental state, trying to model the situation of the “objects” (i.e., walls, 
obstacles, ets) that reproduce the current world features in which physical agents 
operate and interact. Thus, physical agents could look for numerous kinds of helpful 
information from the environment; but here, such information only refers to the notion 
of environmental conditions as the needed information to describe the state of the 
environment which could influence the agents’ reasoning process at moment to 
evaluate if they are capable or not to perform a proposed action. 

Let us consider that physical agents’ environmental conditions EC are composed by 
a set of environmental features EF (e.g., noise, lights, etc) and a set of environmental 
objects EO (e.g., walls, obstacles, etc) as is described by (4.6) 

)6.4()pa(EO)pa(EF)pa(EC iii ∪=  

jiijijiiji eoeo|)pa(EOeo,eoandefef|)pa(EFef,ef,where ≠∈∃≠∈∃  

}eo,...,eo,eo,eo;ef,...,ef,ef,ef{)pa(EC,givesThis v321u321i =  

The environmental conditions of any selected physical agent for the execution of a 
specific role in a time in a determined scene are obtained, as in (4.7) taking into account 
the features and objects related to the proposed role such that (see Fig. 4.10): 

)7.4()r,pa(EO)r,pa(EF)r,pa(ECGpapa
sss tititii ααα ϕϕϕ ∪=∃∈∀  
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Fig. 4.10. General scheme of the physical agents’ environmental conditions involved in a specific role within a 
determined scene. 

In this context, environmental conditions refer to the well-defined information to 
describe the physical state of the environment. The environmental objects refer to the 
needed set of information that usually embodies the conditions of the environment.  

Definition 7: Environmental Conditions refer to the set of environmental knowledge that 
physical agents have to perform the proposed set of actions. Such domain representation is 
considered as the embodiment of the environment knowledge that represents all the physical 
information that has influence in the physical agents’ reasoning process. 

Likewise, a physical agent could be any physical object “handled” by an intelligent 
agent or group of intelligent agents, (i.e., an autonomous robot, a machine or an electric 
device). So, such agents have aspects which represent their physical body features (i.e., 
their dynamic, their physical structure) usually when they must perform some task or 
must satisfy a specific behavior within a cooperative group. 

Let us define that physical agent’s physical knowledge PK is constituted by a set of 
movement skills MS (e.g., speediness, robustness, etc) and a set of body specifications 
BS (e.g., shape, size, wheels, etc) as is described by (4.4) 

)4.4()pa(BS)pa(MS)pa(PK iii ∪=  

jiijijiiji bsbs|)pa(BSbs,bsandmsms|)pa(MSms,ms,where ≠∈∃≠∈∃  

}bs,...,bs,bs,bs;ms,...,ms,ms,ms{)pa(PK,givesThis x321w321i =  

In particular, the physical knowledge of any selected physical agent is constituted 
for the movement skills and body specification involved in the execution of a specific 
role in a time in a determined scene (see Fig. 4.11) as is described by (4.5). 
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)5.4()r,pa(BS)r,pa(MS)r,pa(pkGpapa
sss tititii ααα ϕϕϕ ∪=∃∈∀  

 

Fig. 4.11. General scheme of the physical agents’ physical knowledge involved in a specific role within a determined 
scene. 

In this context, the movement skills refer to specific knowledge to define the skills 
and characteristics of one physical agent have to perform a determined free movement 
trajectory. In addition, the body specifications refer to the needed set of information 
that usually embodies the body specifications of any physical agent. 

Definition 8: Physical knowledge refers to the set of physical self-knowledge that a physical 
agent has represented about its skills and physical characteristics to execute any proposed 
action. Such physical representation is considered as the embodiment of the physical features 
that constitute all the information that physical agents can include in their decision-making. 

Let us suppose that the set of information about the physical agent’s trust value is 
given as the consequence of the previous interaction between them. Such knowledge 
provides physical agents the needed knowledge to assume a commitment or to 
perform an action with a high level of effectiveness and certainty.  

Let us define that physical agent’s trust value TV is constituted by a set of good 
feelings GF (e.g., honesty, certainty, fitness, etc) and a set of bad feelings BF (e.g., 
selfish, deceitful, disinterest, etc) as is described by (4.2). 

)2.4()pa(BF)pa(GF)pa(TV iii ∪=  

jiijijiiji bgbf|)pa(BFbf,bfandgfgf|)pa(GFgf,gf,where ≠∈∃≠∈∃  

}bf,...,bf,bf,bf;gf,...,gf,gf,gf{)pa(TV,givesThis z321y321i =  
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Specifically, the trust value of any selected physical agent is made up for the good 
and bad feelings involved in the performance of a specific role in a time in a 
determined scene (see Fig. 4.12) as is described by (4.3). 

)3.4()r,pa(BF)r,pa(GF)r,pa(tvGpapa
sss tititii ααα ϕϕϕ ∪=∃∈∀  

 

Fig. 4.12. General scheme of the physical agents’ trust value involved in a specific role within a determined scene. 

Here, good feelings refer to the proper knowledge, implicit in the nature of one 
physical agent to interact with other agents. Against, bad feelings refer to the negative 
disposition of one agent which could affect in the physical agent’s interactions. 

Definition 9: Trust Value refers to the certainty that an agent wants to interact with other 
agents to assume a specific behavior with successful and high reliability to achieve any action 
proposed within any determined scene. Such information is useful in the interaction process of 
the agents because they can trust in other agents based on the result of their previous 
interactions.  

In this sense, the set of knowledge acquired by a physical agent usually constitutes 
its knowledge base. Such base therefore, involves the associated information about the 
rate that each physical agent has to perform a proposed action in a time in determined 
scene. Explicitly, such information aims to provide physical agents with enough 
knowledge that allows them to perform in a more successful and reliable way the 
execution of any proposed individual action at any scene. 

The physical agent’s knowledge base KB (see Fig. 4.13) is therefore founded on the 
combination of the environmental condition, the physical knowledge and the trust 
value implicated in the execution of an action as is described by (4.8) 

)8.4()pa(TV)pa(PK)pa(EC)pa(KBGpapa βββββ ∪∪=∃∈∀  
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Fig. 4.13. General scheme of the Physical agents’ knowledge base. 

In particular the physical agent’s knowledge base for the development of any 
specific role rφ in a time t in a determined scene is given by (4.9). 

)9.4()r,pa(tv)r,pa(pk)r,pa(ec)r,pa(kb
ssss titititi αααα ϕϕϕϕ ∪∪=  

At this context, the physical agents must agree among them to define which actions 
will play every one in a determined region (scene); where a supervisor agent checks 
and coordinates the physical agents’ performance to ensure a successful development 
of the activities. In this sense, multi-agent systems present coordination at two meta-
levels (i.e., supervision of the intentions and physical execution), thus, supervisor 
agents must coordinate among them to guide a predefined group of physical agent, 
aiming to achieve a sure and reliable performance of the goals’ system (see Fig. 4.14).  

 

Fig. 4.14. General scheme of the meta-level of coordination within the multi-agent system. 

In this sense, agents (both supervisor and physical) can achieve sure and 
trustworthy commitments within a specific scene; for thus, agents, both the supervisors 
as the physical, must attend to an implicit set of rules which establish the normative 
structure for develop a specific action within determined scene. Thus,  

Let us define that a norm Nη is denoted as a rule that govern the way in which 
agents perform the actions in a scene. Besides, such rules must be respected by the 
physical agents while they try to keep behavior or to perform an action in such scene. 
Thus, the accomplishment of a norm Nη is denoted by the condition: 
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}action{donot/do)N(if η  

NN)s(NNandNN|)s(NNN,N,where jiji ⊆≠∈∃ αα  

}N,...,N,N,N{)s(NN,givesThus a321=α  

For instance, let us consider a group of two supervisor agents Gsa = {sa1, sa2} 
supervising the actions in a defined set of two scenes, such that, S = {s1, s2}, and a group 
of four physical agents Gpa = {pa1, pa2, pa3, pa4} aiming at solving a task allocation 
problem. The sa1 supervises the s1 and the sa2 supervises the s2. For sake of simplicity, 
each scene only has one goal, one task and two roles.  

Firstly, it is assumed that supervisor agents agree between them to schedule their 
interaction with the group of physical agent. Such agreement is achieved when the 
supervisors inform to the other supervisors their rates of priority of their involved goals, 
following the norm N1 as follow: 

)}executeg(else)g(execute{do))g()g((ifN jiji1 ω>ω=  

The supervisor agents’ decisions are achieved by following the N1, such that: 

76.0)g(}g{)s(G 111 =ω∧=           81.0)g(}g{)s(G 222 =ω∧=  

)performedisg(else)performedisg(then))g()g((if 2121 ω>ω  

In this sense, the g2 is higher than g1 therefore the sa2 must start the communication 
with the physical agent for the execution of the task involved in the g2. In this sense, as 
the goal g2 only has one task (t2) the supervisor agent only must allocate (for this case) 
the involved roles of the task t2, such that: 

)}r,risorderallocatedthe(else)r,risorderallocatedthe{(then))r()r((ifN ijjiji2 ω>ω=  

54.0)r(,45.0)r(}r,r{)t(R76.0)t(}t{)g(T 21211111 =ω=ω∧==ω∧=  

74.0)r(;67.0)r(}r,r{)t(R56.0)t(}t{)g(T 43432222 =ω=ω∧==ω∧=  

According with the given values the r4 must be the first one to be executed and the r3 

must be allocated after it. For instance, let us to suppose that pa1 and pa2 are the more 
suitable agents respectively for this case, then the allocation will be, such that: 

2314 pathetoallocatedisrandpathetoallocatedisr  



Chapter 4: Decision Support for Situated Agents 

61 

After this, the remaining supervisor agent (sa1) can perform the same process to 
interact with the remaining physical agents (i.e., pa3, pa4) and allocate its roles (i.e., r1, 
r2) following the same rules. 

4.6 Influence Degree. A suitable way to obtain the utility of the agents 

Multi-agent utility is a unifying, if sometimes implicit, concept in economics 
[Esteva, 02], game theory [He et al., 06], and operations research [Endo et al., 06], as 
well as multi-robot coordination [Fang and Parker, 07]. The main idea of such utility is 
therefore, that each agent can somehow internally estimate and evaluate its capability 
of executing a proposed action. In the literature [Simmons et al., 02], [Goldberg and 
Matarić, 00], the notion of utility of the agents has received various names according to 
its application, such that: fitness, valuation, and utility/cost. Utility/cost functions 
provide a natural and advantageous framework for achieving self-optimization in 
distributed autonomic computing systems [Weyns et al., 04]. In this sense, an exact and 
practical formulation varies from system to system; this thesis now gives a useful and 
general, yet practical, definition of utility for multi-agent cooperative systems. 

In particular, this thesis assumes that each physical agent (i.e., a robot) is capable to 
evaluate its aptitude for the execution of any proposed action. Such estimation is 
performed by including two aspects, which allow the agents to self-calculate their 
suitability rate for any proposed action, such as,  

● the capabilities of the physical agents (i.e., their situation) taking into account the 
information parameters of the decision axes, to perform any proposed action. 

● the influence degree that every axis has as requirement to the selection/allocation of any 
determined action. 

Influence Degree Ψ refers to the relevance that the decision axes has over the 
execution of any determined action in a particular scene. Such influence aims to 
provide the awareness needed to determine the suitability of a physical agent to 
execute any action in a successful and reliable way. In this sense, such influence degree 
is represented as is described by the tupla (4.10). 

)10.4()]TV()PK()EC([)s(R ΨΨΨ=Ψ
α

 

]1,0[)TV(),PK(),EC(,where ∈ΨΨΨ  

Where Ψ(EC) is the relevance of the environmental conditions, Ψ(PK) is the 
relevance of the physical knowledge and Ψ(TV) is the relevance of the trust value. In 
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particular, the influence degree for the development of any specific role within any 
determined scene is given by (4.11). 

)11.4(])TV()PK()EC([)s(Rr s,rs,rs,r)s(Rs,ri αϕαϕαϕααϕ
ψψψ=Ψ∈ψ∃∈∀ α  

In such case, the suitability rate of any physical agents is obtained by a match 
function ξ which works as a capabilities/requirements function. 

4.6.1 Formalism 

Let us suppose that a physical agent pai is capable of executing a role rj with a 
suitability rate 

ji r,paξ as is described in (4.12). 
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Suitability rate ξ refers the range of certainty that a physical agent has to perform 
any proposed action in a time in a scene. In fact, the suitability rate provides physical 
agents a reliable measure of its capability for the execution of specific role in 
determined scene. For instance, let us to suppose a group of three physical agents, such 
that, Gpa = {pa1, pa2, pa3} and four roles in a determined scene R(sα) = {r1, r2, r3, r4}, and it 
is established, for illustrative reasons, a decision threshold (th=0.7), which establish the 
minim value of suitability required for the execution of any action. For sake of 
simplicity, the influence degree for all the roles is: ]5.06.04.0[=Ψ . 

In the example, physical agents use the information of their knowledge bases (see 
Fig. 4.15) to self-calculate their suitability rate for each proposed role. In this sense, 
each physical agent can classify its estimation in a decreasing order and discard those 
actions in which it has not opportunity. Therefore, using this classification, the agents 
are able to agree among them to define which action executes each. In this sense, when 
more than one physical agent can execute the same action, the elected agent will be the 
agent with the higher suitability to execute the actions (see Fig. 4.16, decision trial 1). 

Then, the remaining agents agree between them to discuss what action executes 
which one. In this case, each agent can execute different role with higher suitability rate 
(see Fig. 4.16, decision trial 2) taking into account the proposed decision threshold (th). 
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Fig. 4.15. Empirical Knowledge bases. 

 

Fig. 4.16. General scheme of a coordination process performed by physical agents to execute the proposed actions. 

To the end, in two decision trials (see Fig. 4.16) the group of physical agents has 
agree which one is the most suitable to execute each role taking into account their 
suitability rates for the proposed set of roles, such that, (pa1 → r3, pa2 → r1, pa3 → r2). 
However, in this example the role r4 is not selected by any physical agent due to fact 
that all the agents have estimated a low suitability rate for such role (it means that their 
suitability rates are not enough to perform correctly such role).  

4.7 Decision Algorithm for Multi-agent Coordination 

The diffusion of information or ideas in a common format (i.e., language) to make 
sure and reliable agreements between humans is one of the most important aspects of 
the interaction. Likewise, artificial intelligence has several approaches showing 
advantages by applying such process in the agents’ coordinated processes [Mudasir et 
al., 07], [Yong and Bo, 06], [Luck et al., 05] aiming to increase the multi-agent 
interaction’s performance. One of the most important physical agents’ jobs is therefore 
to make decisions, that is, to commit to execute a particular action. In this sense, an 
important criterion for the development of any complex problem within cooperative 
environments is therefore, that agents are capable to transfer the proper information 
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(i.e., their situation) in an appropriate and common way. In this sense, to accomplish a 
collective action, a group of agents must establish communication to coordinate them. 
On such coordination agents must “converse” among them to agree who is who within 
the group. To the end, agents must agree to define who agent is the best to execute a 
certain action. The use of a communication language is then needed to strengthen the 
interaction between agents. Such language aims to be useful improving the 
communication between supervisor agents by divulging information about their 
desires and allows reach common agreements. Also, it is useful for the physical agents 
due to allows them inform their suitability to execute any proposed action, and so, they 
can reach community agreements. For thus, following the BDI philosophy [Shoham, 
93] and the KQML specification [Finin et al., 97] a model of language is described as 
follow: 

)s,,A,A(request ji αΦ  

Where an agent Ai (or group of agents) proposes to other agent Aj (or group of 
agents) its beliefs Ф to solve a complex problem in a scene sα. 

)s,,A,A(orminf ij αΘ  

Where an agent Aj (or group of agents) tells to other agent Ai (or group of agents) its 
answers Θ about the proposition before proposed. 

Once defined the language, it is necessary determine how agents can reach 
agreements among them. Such event occurs when agents have a structure which allow 
them estimate the way to reach an efficient cooperation. To that end, this thesis argues 
that an effective way to achieve successful and reliable coordinated performance can be 
reached by using a decision algorithm. A decision algorithm is based on a 
communication among agents in which they can compare and analyze their situation in 
the environment and by which can reach decision that benefit the overall systems 
performance. Such algorithm aims to improve the agents’ choice which allows them to 
agree which is the most suitable agent to execute the proposed action. In this sense, 
along this chapter has been devoted to study the effect of the cooperation based on the 
agents’ situation in two collaborative scenarios, this thesis has defined decision 
algorithm to solve complex problems at two kinds of coordination, such that, 
coordinated task and task allocation. To follow, a brief description about how agents 
(both supervisor and physical) can reach agreements in each scenario is presented. 
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4.7.1 Coordinated Task problem-solving Algorithm 

 The execution of a coordinated task performed by multi-agent systems estimates 
will be inexact for a number of reasons, including interaction faults, general 
uncertainty and environmental change. These unavoidable characteristics of the multi-
agent scenarios will necessarily limit the efficiency with which coordination can be 
achieved. For illustrative reasons, let us to consider an agreement between a 
cooperative group of two supervisor agents, such that, Gsa = {sa1, sa2}, supervising the 
scenes s1 and s2 respectively, aiming at performing a set of actions to a cooperative 
group of three physical agents, such that, Gpa = {pa1, pa2, pa3}, to solve a complex 
problem as is depicted in (Fig. 4.17). To follow, the scheme of the coordinated task 
algorithm is concisely explained.  

Definition - The sa1 sends to sa2 its higher goals (based on the priority indexes of its 
goals). Then, the sa2 analyzes the information dispatched by sa1 and evaluates this 
proposal (comparing the priority of its goals with the information provided by sa1). In 
case that sa2 has a higher goal than sa1, sa2 informs a new proposal for sa1. So, sa1 
analyzes and evaluates this proposal. This process assumes that sa1 agree that sa2 will 
selected. In this sense, sa1 informs its decision to sa2 and sa2 continues with the decision 
algorithm. 

Proposition – Once the sa2 knows it is the elected supervisor, it must analyses which 
tasks must execute. sa2 schedules their involved tasks according with the priority of 
each task. So, the tasks in each scene are scheduled. In this sense, each task involves 
several roles for its fulfilment. Therefore, sa2 uses the priority of the roles to schedule 
the execution of them. Once, sa2 defines the roles must be executed, informs this items 
(i.e., the roles) in order of relevance, to the group of physical agents. 

Decision – Here, it is assumed that each physical agent can self-calculates its 
suitability rate for every one of the informed roles of which it can play in the current 
scene.  With the suitability rates, each physical agent is able to generate its knowledge 
bases, it means, the physical agents can internally establish, in a decreasing order, the 
roles they can play. In this sense, a physical agent could be capable execute more than 
one role, but it only execute those roles for which it is the most suitable physical agent. 
To the end, using the information of their knowledge bases, each physical agent 
informs to the other physicals, the suitability rates for the roles it can plays. So, each 
physical evaluates who is the most suitable agent to execute each role.  

Agreement – When the physicals have agreed which role will play each one, each 
physical agent informs to the supervisor sa2 of the current scene s2 which role has to 
execute. In addition, the physical that cannot execute any role in the current scene must 
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also inform such event. So, the sa2 can communicate that there are some physical 
available to the remaining supervisor sa1. So, sa1 must begin the process to inform the 
involved roles for its supervised scene s1. 

Execution & Supervision – The physicals that has agreed to play a role, must execute 
such role. At the same time, while physical agents execute the adopted role, the 
supervisor of the scene must supervise to evaluate if each physical agent has execute in 
a positive way the selected role. 

 

Fig. 4.17. General Scheme of the coordinated task solving-problem algorithm. 

4.7.2 Task Allocation problem-solving Algorithm 

Multiple tasks allocation is nowadays, one of the problems more studied by the 
researches focused on cooperative multi-agent systems [Tang and Parker, 07], [Gerkey 
and Matarić, 03], [Krothapalli, 03], [Matarić et al., 03]. Such approaches mainly are 
based on utility/cost functions to achieve simple task allocation using domain 
knowledge in the agents’ decision-making. In this sense, such approach lacks of an 
appropriate reasoning on others agents’ sources that define more detailed the agents’ 
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situation. So, a group of agents must analyse their capabilities and knowledge to decide 
if they are able to perform the proposed action. In fact, agent must communicate such 
self-analysis to other agents in order to achieve a collective agreement to work jointly 
in the development of a collective task. To facilitate such process, the decision process 
executed by the agents for the execution of a particular set of action in a task allocation 
scenario is performed as is described in (Fig. 4.18). For instance, let us to consider a 
cooperative group of two supervisor agents, such that, Gsa = {sa1, sa2} aiming at 
allocating an amount of action to a cooperative group of three physical agents Gpa = 
{pa1, pa2, pa3}, to solve a cooperative problem. 

Definition - The sa1 sends to sa2 its higher goals (based on the priority indexes of its 
goals). Then, the sa2 analyzes the information dispatched by sa1 and evaluates this 
proposal (comparing the priority of its goals with the information provided by sa1).  In 
case that sa2 has a higher goal than sa1, sa2 informs a new proposal for sa1. So, sa1 
analyzes and evaluates this proposal. This process assumes that sa1 agree that sa2 will 
selected. In this sense, sa1 informs its decision to sa2 and sa2 continues with the decision 
algorithm.  

Proposition – Once the sa2 knows it is the elected supervisor, it must analyses which 
tasks must execute. sa2 schedules their involved tasks according with the priority of 
each task. So, the tasks in each scene are scheduled. In this sense, each task involves 
several roles for its fulfilment. Therefore, sa2 uses the priority of the roles to schedule 
the execution of them. Once, sa2 defines the roles must be executed, sends a request for 
the each physical agent, of the group of physical agents, in order to obtain the 
suitability rates of each physical agent to execute each role.  

Answer – Here, it is assumed that each physical agent can self-calculates its 
suitability rate for every one of the requested roles of which it can play in the current 
scene. With the suitability rates, each physical agent is able to generate its knowledge 
bases, it means, the physical agents can internally establish, in a decreasing order, the 
roles they can play. In this sense, a physical agent could be capable execute more than 
one role, but it only execute those roles for which it is the most suitable physical agents. 
To the end, the physical agents inform this information to the supervisor of the scene. 

Decision – Analyzing the information provided by the physical agents, the 
supervisor can evaluate and choose who physical agents is the most capable to execute 
each role. Such chooses are performed allocating the roles for the physical agent with 
higher suitability rate for each role. 

Agreement – Insomuch as the supervisor has chosen, it must to inform the allocated 
role for each selected physical agent. On the other hand, the supervisor also must 
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inform to the physical that cannot execute any role in scene under its supervision. In 
this sense, such physical agents must to inform to the remaining supervisor sa1 that 

some physical agents are available to interact with it. So, sa1 must begin the process to 
inform the involved roles for its supervised scene s1 (proposition). 

Execution & Supervision – The physicals that has agreed to play a role, must execute 
such role. At the same time, while physical agents execute the adopted role, the 
supervisor of the scene must supervise to evaluate if each physical agent has execute in 
a positive its role. 

 

Fig. 4.18. General Scheme of the task allocation solving-problem algorithm. 

4.8 Final Remarks 

This chapter has been focused on the basic questions argued in this thesis to 
embrace the formalization of a framework to decision support for situated agents (see 
Fig. 4.19). Such formalization undertakes cooperation, to solve complex problems in 
dynamics and competitive environments, using the adaptation of the e-Institution 
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methodology. The formal notions discussed in this chapter aims to formalize a decision 
support that empower autonomous agent to achieve cooperative behavior over 
temporal meeting (i.e., scenes) in typically dynamic and cooperative environments. In 
this light, the thesis argues the need for a formal representation of the agents’ situation 
for physically situated agents (i.e., physical agents or robots) based on the information 
provided by the three decision axes. In this sense, the thesis claims the relevance of the 
knowledge introduced in the decision axes for the correct fulfilment both individual 
and cooperative decision between groups of agents. Here, such axes have been related 
to embody the situation of the physical agents in order to provide them with the 
needed and useful knowledge to solve any proposed action. Therefore, environmental 
conditions (world), physical knowledge (awareness) and trust value (interaction) arise as 
a new paradigm to lead intelligent agent system in direction of reaching sure and 
trustworthy collective commitments, to prevent and to avoid undesirable situation, 
which could reflect in a lower overall system performance.  

To make safer decisions, each physical agent must base its decision (both individual 
as collective) mainly in the knowledge of its situation related to the proposed actions. 
For this, each physical agent has its knowledge base, which means all the information 
which embodies it in a physical real environment. Therefore, physical agents can 
behave intelligently when they interact with other agents or humans. In this light, 
intelligence is understood as the appropriate exploitation of the knowledge about its 
situation involved in the execution of any proposed action, to perform better 
commitments and to enhance the performance and autonomy levels in multi-agent 
systems. 

The chapter also considers an adaptation based on e-Institutions to state the 
manner in which agents with different aptitudes and capabilities can interact in a better 
way, increasing the performance of systems composed by diverse kind of agents. 
Likewise, the supervisor agent introduced by [Stone, 00] is, here, defined a software 
entity capable to perceive the intentions of a real environment and able to supervise the 
execution of such intentions both in coordinated approaches (where it is only an 
observer and communicator of the expected action) as in allocated approaches (where 
it has the ability to interact with physical entities in order to allocate the expected 
actions to increase the cooperative performance of any multi-agent systems placed on 
real environments). In this case, agents can at any time switch (i.e., choose) between 
different actions based on the external embodiment of their situation (based on the 
elements of the decision axes) and the requirement and constraints proposed for the 
execution of any determined action. Thus, it is reached by means of a “match” which 
allows agents compare critically their actions’ capability rate for the execution of any 
action and the requirements and conditions under which action must be executed. 
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Coordination is then, the result of the different agents performing actions 
corresponding to their proposed role. Indeed, the role assignment also defines the 
coordination structure. So, the formalism presented in this dissertation is based on the 
agents’ situation which defines the information of the decision axes that specify the 
needed kind of knowledge for a specific proposed cooperative and complex problem. 
This makes it helps to fulfil the aims of cooperative systems and also be a contribution 
to agent-based computing theory and practice. To the end, the following chapter 
presents the experimental phases, in which the main issues introduced in this 
dissertation has been implemented. 

 

Fig. 4.19. General scheme of the Framework for Situated Agents 
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Chapter 5  

Implementation and Results 
This chapter is devoted to the application of the proposed approach on coordinated 

environments. It describes how multi-agent systems can work jointly to solve complex problems 
by mean of coordinated actions and task allocation on the robot soccer test bed. Specifically, 
these cooperative scenarios have been used as test bed to solve situations such as: the execution 
of dynamic actions and team-work problems. Finally, the chapter presents the empirical 
experiments and testing that have been carried out for the proposed test bed. The results 
depicted in this chapter demonstrate and corroborate the utility, feasibility and reliability of the 
overall proposed approach presented in the previous chapter. 

5.1 The Test Bed 

Autonomous, cooperating mobile robots represent multi-agent systems. The robot 
soccer test bed is a challenge for autonomous mobile cooperating robots [Burkhard et 
al., 02]. This test bed is a rich domain for the study of topics related to multi-agent 
systems [Kim and Vadakkepat, 00]. Robot soccer has many features found in a real 
world system such as complexity, dynamism, uncertainty and goal variability, together 
with both cooperating and competing robots [Oller et al., 97]. In addition, working 
with robot soccer is a great opportunity to deal with a lot of different kinds of technical 
subject areas. It is possible to deal with every technology, which is necessary for an 
autonomous system [Novak, 02]. The emergence of robot soccer competitions as 
RoboCup (http://www.robocup.org/) and FIRA (http://www.fira.net/) is then an 
interesting trend that agents’ researchers have explored for developing new 
approaches. In this case, stronger links with the AI community should be explored, 

http://www.robocup.org
http://www.fira.net
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because that community is currently at the forefront of many of these applications 
[Murray et al., 03]. In particular, the agent paradigm is commonly proposed as a 
solution to controlling a robot community [De la Rosa et al., 97] [Rocher and Duhaut, 
98]. The global behavior problem of a robot soccer team provides the opportunity to 
apply agent theory because of the distributed architecture of the mobile robots. The 
problem itself implies coordination, competition and cooperation by means of 
communication between the robot soccer players. Specifically, the multi-agent 
cooperative algorithm, in such active environment, must then comprise a low level 
kinematics and dynamics and high level decision-making. Robot soccer has been used 
as the main test bed for these reasons. Robots employed in disaster control and 
response operations, household activities, traffic control and industrial operations can 
profit from the results gained by researching and enhancing the game of these small 
mobile robots. In order to validate the decision support for situated agents presented 
throughout this research work, the thesis continue with the presentation of a set of 
implementation both in simulate as in real robot soccer scenarios. 

5.2 Robot Soccer for Situated Agents 

Robot soccer arises as initiative to generate and to enhance the research in the 
artificial intelligence and robotic areas [Mackworth et al., 95], turning this in a common 
challenge that allows to study and to develop new technologies [Kim and Vadakkepat, 
00] with a performance at human level. Several authors [Johnson et al., 98], [Stone and 
Veloso, 00], [Kim and Vadakkepat, 00] affirm the idea that robot soccer test bed is a 
good benchmark for the study and implementation of artificial intelligence techniques, 
reinforcing the usefulness of the agent decision-making paradigm as a good tool to 
increase the correct execution of the actions within dynamic, unpredictable and 
competitive scenarios. In particular, this thesis argues that robot soccer is a powerful 
experimental environment for the evaluation and corroboration of its proposed aims. 
Aside, although the robot soccer is considered as a simple game, seemingly a toy-
example; many real complexities are preserved from the comparative with the human 
soccer. In this light, a key aspect in the mentioned complexity refers to the need that 
agents should not only consider their physical body to execute one action, but also they 
should consider their environmental conditions and their interaction with other agents 
in order to execute the proposed action in a more suitable and reliable manner. 
Moreover, two cooperative scenarios from the robot soccer test bed have been selected 
to evaluate the proposed approach: coordinated tasks and task allocation. 
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Here, a coordinated task is focused to the process which allows to a group of agents 
agree among them to perform a defined set of action. On the other hand, a task 
allocation refers the process which a supervisor agent decides who is the most suitable 
physical agent to perform a proposed action. In this sense, these presented scenarios 
try to demonstrate the feasibility and utility of the proposed decision support for 
situated agents to perform the exposed actions in collaborative environment at 
different levels of cooperation. 

5.2.1 Simulated Robot Soccer 

A simulated environment has been selected as a test bed to evaluate and to 
corroborate the usefulness of the framework proposed in this dissertation. A simulated 
robot soccer game is a scenario where agents must interact and cooperate to achieve 
the expected system performance. In this light, the simuroSOT has been used to apply 
the main ideas of the formalization for multi-agent systems here proposed (see Fig. 
5.1). Such simulator facilitates extensive training and testing for the proposal of this 
dissertation. Generally speaking, the simuroSOT3 simulates soccer games where players 
(i.e., agents) must interact between them in order to reach the systems’ goals. So, this 
simulator allows working with two teams constituted by five (5) physical agents 
(where one of them is the goalkeeper) which play in a simulated field along only one 
time of five minutes. The agents are currently represented by squares with a simple 
kicking device. SimuroSot also consists of a server which has the soccer game 
environments (playground, robots, score board, etc.) and two client programs with the 
game strategies. A 3D color graphic screen displays the match. Teams can make their 
own strategies and compete with each other without hardware. The 3D simulation 
platform for 5 vs. 5 and 11 vs. 11 games are available at FIRA4 web site. 

 

Fig. 5.1. Overall robot soccer system. 
                                                           
3 http://www.fira.net/soccer/simurosot/overview.html 
4 http://www.fira.net/ 

http://www.fira.net/soccer/simurosot/overview.html
http://www.fira.net
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5.2.2 Simulated Features for Soccer Implementation 

The features for the simulated soccer tournaments are here described as follow: a 
group of three supervisor agents, such that, Gsa = {sa1, sa2, sa3} and a group of five 
physical agents, such that, Gpa = {pa1, pa2, pa3, pa4, pa5} are involved in the cooperative 
actions related to game a set of soccer matches. In this sense, each physical agent has an 
obstacle-free movement trajectory controller to move them in the environment. In 
addition, the supervisor agents must identify the spatial region that will supervise in 
the soccer environment. To the end, there are three (3) scenes, such that, S = {s1=attack; 
s2=midfield; s3=defense} which represent the zones in such environment as it shows in 
Fig. 5.2. 

 

Fig. 5.2. Supervisor Agents, Scenes and Physical Agents in the simulated robot soccer scenario. 

Here, a scene refers to any spatial region in the soccer field, supervised by a 
supervisor agent, where a group of physical agents must meet and must work jointly 
to execute a set of actions pre-defined in such scene. Therefore, a scene is established 
“active” when the current ball position is into the region assigned to this scene. For 
sake of simplicity, the main role that each physical agent must play in each scene is to 
kick the ball; however, other relevant roles will be defined more ahead in detail. To 
mention, the global goal in a robot soccer games is scoring the major amount of goals 
to win the match. The remaining actions are related to other specific targets (e.g., to 
move the ball towards the opposite goal; to defend their own goal, etc). In this sense, 
the defined supervisor agents must agree between them to establish the sequence in 
which they will solve the actions involved in their scenes. So, each supervisor is able to 
provide information to the physical agents, about the requirements involved in the 
scene under its supervision. Besides, the physical agents must coordinate between 
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them by using several coordination parameters in their decision-making to agree 
among them, who is the most suitable physical to execute the most prior action based 
on the established strategy for the current scene. In addition, the physical agents that 
cannot execute any action in this scene must inform to the remaining supervisors, that 
they are available to play roles in their scenes. For illustrative reasons, in Fig. 5.3 shows 
an example of this simulated case study for the achievement of the “kick the ball” action. 

 

Fig. 5.3.Example of the execution of a cooperative action in the simulated robot soccer. 

5.2.2.1 Scenario 1: Coordinated Task 

Using the simulated features presented in Section 5.2.2 the coordinated task 
experiments are then developed using the coordinated task solving-problem algorithm 
(see Section 4.7.1) as is described in (Fig. 5.4). The first step in the execution of a 
coordinated task is when each supervisor agent, from the supervision agents’ group, 
observes and analyzes the scene that it must supervise trying to get all the involved 
scene’s issues (i.e., the supervisor agent’s knowledge base) (see Fig. 5.4a). Thereby, 
each supervisor agent is able to generate its knowledge base, where additionally, each 
issue (i.e., the goals, the tasks and the roles) has assigned a priority index which defines 
the relevance in the execution of such issue. It means the sequence in which the 
supervisor agent solves the actions in the scene. Moreover, the group of supervisor must 
follow the stated norms to establish which supervisor has the more priority action 
(definition). In this sense, only a supervisor must be selected at the time, to begin the 
communication process with the group of physical agents in order to inform them the 



Chapter 5: Implementation and Results 

76 

set of actions required for the current scene (see Fig. 5.4b). In this light, the selected 
supervisor agent only informs the roles (attending the priority indexes of every role); in 
order to advice to the physical agents the actions that must be performed and the 
sequence of them. In addition, the selected supervisor must inform (proposition) to each 
physical agent the result of its previous interaction. This information allows physical 
agent takes into account its relation with the supervisor, at the moment to generate its 
knowledge base and suitability rates for the roles proposed by such supervisor. To the 
end, the supervisor also informs the influence that each parameter from the decision 
axes, has over each role. 

Once the supervisor advices such information, each physical agent from the physical 
agents’ group is capable to generate its knowledge base to evaluate (i.e., to calculate the 
match) its situation related to the roles proposed by the supervisor agent in the scene 
that it supervise. So, each physical agent calculates and evaluates its suitability rates for 
all the proposed roles that it can play in the current scene. This fact allows physical 
agents to esteem if they have a chance or not to execute any action within the current 
scene. Such information is then represented as the situation of each agent meaning its 
suitability rate for the execution of the roles, and using these knowledge the physical 
agents can agree among them in order to decide which agent is the most suitable to 
execute each role (decision) within the hotness scene (see Fig. 5.4c). This process is 
carried out by using the communication process. So, each physical agent informs to the 
other physicals which roles can play and its suitability rate to perform each one of the 
mentioned roles. In this sense, each physical can discriminate among the roles that it 
cannot play in a suitable way. For thus, the physical agents can dispose what action 
perform each physical agent without the implicit intervention of the supervisor agent 
in the roles’ selection process. To the end, the physicals must inform to the supervisor 
in-charge, which role will play each one. Besides, if some physical agent cannot do any 
role (due to a low estimation of their suitability rates for the proposed roles) in the 
current scene must to inform this to the active supervisor (agreement). In addition, 
such supervisor must inform to the other supervisors that there are some physical 
agents available to work in their scenes (see Fig. 5.4d). In this sense, the remaining 
supervisors must begin the process of the coordinated algorithm. To follow, each 
physical executes its selected role. Besides, the supervisor of the scene must supervise 
the performance of such role to validate if the tasks (and the goals) were fulfilment in a 
good way. Likewise, the supervisor must update its relation with the physicals that have 
work in its scene. 
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Fig. 5.4. General scheme of the execution of a set of coordinated tasks – simuroSOT. 

5.2.2.2 Scenario 2: Task Allocation 

The simulated features introduced in Section 5.2.2 have been used to face a task 
allocation experimental phase as is described in (Fig. 5.5) using the task allocation 
solving-problem algorithm described in Section 4.7.2. So, at the beginning of the 
execution, and similarly to the coordinated task algorithm, each supervisor agent, from 
the supervision agents’ group, observes and analyzes the scene that it must supervise 
trying to get all the involved scene’s issues (i.e., the supervisor agent’s knowledge 
base) (see Fig. 5.5a). Each supervisor agent then generates its knowledge base, where 
additionally, each issue (i.e., the goals, the tasks and the roles) has assigned a priority 
index which defines the relevance of the execution of such issue. It means the sequence 
in that the supervisor agents solve the actions in the scene. Hereby, the group of 
supervisor agents must follow the stated norms to establish which supervisor has the 
more priority action (definition). In this light, only a supervisor must be selected at the 
time (see Fig. 5.5a), to begin the interaction with the group of physical agents in order 
to claim them their suitability rates for the set of roles involved in the current scene (see 
Fig. 5.5b). In this light, the selected supervisor agent only informs the roles (attending 
the priority indexes of the set of roles) in order to request the suitability rates of the 
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physical agents to perform these particular roles (proposition). In addition, the selected 
supervisor must inform to each physical agent the result of its previous interaction. This 
information allows to each physical agent takes into account its relation with the 
supervisor, at the moment to generate its knowledge base and suitability rates for the 
roles proposed by such supervisor. To the end, the supervisor also informs the 
influence that each parameter from the decision axes, has over each role.  

Once the supervisor advices such information, each physical agent from the 
physical agent group is capable to perform a self-analysis to generate its knowledge 
base (i.e., to calculate the match) its situation related to the roles proposed by the 
supervisor agent in the scene that it supervise. So, each physical agent calculates and 
knows its suitability rates for all the proposed roles that it can play in the current scene. 
This fact allows physical agents to esteem if they have a chance or not to execute any 
action within the current scene. Such information is then represented as the situation 
of each physical meaning its knowledge base. Unlike to the coordinated task process, in 
task allocation process the physical agents cannot self-select their actions. In this sense, 
physical agents must inform to the supervisor agent (answer) their suitability rates for 
the proposed roles (see Fig. 5.5c). So, each physical agent informs to the supervisor 
agent which roles can play and its suitability rate to perform each one of the mentioned 
roles. In this sense, each physical can discriminate among the roles that it cannot play in 
a suitable way.  

Using the above information, the supervisor can decides and choose the most 
suitable physical to plays each role comparing the suitability rates of these agents for 
the same role in the scene under its supervision (decision). After it, the supervisor agent 
decides and allocates the roles for the better physical agents and informs to the 
remaining physical agents that they are no qualified (due to a low estimation of their 
suitability rates for the proposed roles) to execute any role in its scene (agreement). 
This process is carried out by the supervisor agents until finishing with the roles or that 
the physical agents with an appropriate suitability rate will not enough. To the end, the 
current supervisor must inform to the other supervisors that there are physical agents 
available to work in their scenes. In this sense, the remaining supervisors must begin the 
process of the allocated algorithm. To follow, each physical executes its allocated role. 
Besides, the supervisor of the scene must supervise the performance of such role to 
validate if the tasks (and the goals) were fulfilment in a good way. Likewise, the 
supervisor must update its relation with the physicals that have work in its scene.  
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Fig. 5.5. General scheme of the execution of a set of task allocation – simuroSOT. 

5.2.3 Simulated Features for the Passing a ball  

The features of the passing a ball experiments are here described as follows: one 
supervisor agent (sa1) and four physical agents, such that one of they must be the passer 
and three shooters, such that, Gshooter = {shooter1, shooter2, shooter3} are involved in the 
passing a ball task. Each physical agent has an obstacle-free movement trajectory 
controller to move in the environment. The supervisor agent must supervise the area of 
the zone where the passing a ball task will be performed. In this sense, there is only 
one (1) pre-defined scene, such that, S = {s1: to do a pass}. In (Fig. 5.6) are showed the 
feature of the passing a ball task.  

The passer must strike the ball towards the interception point (ip) in a suitable way. 
The shooters must intercept and shoot the ball with the intentions of scoring in the 
opposite goal. Thus, the shooters must coordinate them to execute the task 
successfully. Passing a ball is then represented as follow: the distance (dball) between the 
ball and the interception point (ip), the initial velocity of the ball (V0) and the distance 
between each shooter (ds1, ds2, ds3) and the ip. For sake of simplicity, the passer and the 
shooters are not moving at the beginning of the task. The IP is arbitrarily selected in a 
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region near to the opposite goal. The V0 determines the behavior of the ball and 
depends on the impact of the passer. Additionally, this task takes into account dynamic 
and non-holonomic constraints inherent to the physical agents’ bodies, and movement 
constraints of the physical agents’ control design. Time constraints are then considered 
because the environment’s dynamics impose time limitations on passing a ball. 

 

Fig. 5.6. General scheme of the simulated passing a ball features. 

Here, the defined scene (i.e., to do a pass) refers to a spatial region on the opposite 
field where a group of physical agents must work jointly to execute the proposed 
actions (i.e., passing the ball) in a time t of the current scene s1. In this sense, the passer 
strikes the ball towards the ip then; the shooters must self-calculate their suitability rate 
to try to kick the ball towards the opposite goal. Explicitly, only one shooter can try to 
perform the task, the remaining shooters do not any movement. In Fig. 5.7 is showed an 
example of a simulated case for the achievement of the “passing the ball” task. 

For sake of simplicity, the strategy to execute the passing a ball task is is stated as 
follow:  

}goal_opposite_the_in_scoreg{)s(G 1todoapass ==  

)ball_the_gsinpast{)g(T 11 ==  

}ball_the_kickr,ball_the_passr{)t(R 211 ===  
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Fig. 5.7. Example of the execution of the passing a ball task in the simulated robot soccer. 

To the end, the passing a ball execution both in the coordinated task as in task 
allocation scenarios is described as follow: 

5.2.3.1 Scenario 1: Coordinated Tasks 

Using the simulated features presented in Section 5.2.3 the coordinated task features 
performing the passing a ball are described in (Fig. 5.8). The supervisor agent must 
observe and analyze the scene that it must supervise trying to get all the involved 
scene’s requirements (i.e., the supervisor agent’s knowledge base) (see Fig. 5.8a). In this 
case, such requirements are the implicated events in the passing a ball problem, such 
that, the roles (e.g., role1 and role2) are defined to be executed in the established 
scheduling for the current scene. Therefore, the supervisor follows the stated norms to 
define what role has more priority, in this case, the events’ scheduling to perform a 
pass between two physical agents. Then, the supervisor advices what physical agent 
will play the role1 (see Fig. 5.8b). Likewise, the passer advices to the shooters group the ip 
and the role2. Using the information provided by the passer, each shooter can self-
calculate its situation (i.e., its suitability rate) to execute the proposed role2. This fact 
allows shooters esteem if they have a chance or not to execute the proposed role in the 
current scene. Such information is then represented as the situation and, using this 
knowledge the shooters agree among them to choose which agent is the most suitable to 
play the proposed role2 in hotness scene (see Fig. 5.8c), (i.e., to kick the ball towards the 
opposite goal). To the end, shooters have agreed who plays the role2 (see Fig. 5.8d). In 



Chapter 5: Implementation and Results 

82 

addition, the selected shooter informs to the supervisor that it plays the proposed role2. 
So, the shooters can select the best shooter for this pass situation without the implicit 
intervention of the supervisor agent in the role selection process. 

 

Fig. 5.8. General scheme of the passing a ball implementation as a Coordinated Task. 

5.2.3.2 Scenario 2: Task Allocation 

The simulated features introduced in Section 5.2.2 have been used to face a task 
allocation passing a ball experiment as is described in (Fig. 5.9). The supervisor agent 
observes and analyzes the scene that it must supervise trying to get all the involved 
scene’s requirements (i.e., the supervisor agent’s knowledge base) (see Fig. 5.9a). Such 
supervisor obtains then its knowledge base, where additionally; the roles (e.g., role1 and 
role2) are defined to be executed in an established scheduling for the current scene. To 
do this, the supervisor agent obeys the stated rules for the passing a ball task. Besides, the 
supervisor advices what physical agent will be the passer, in such case, the selected 
physical agent will plays the role1 (see Fig. 5.9b). In this sense, the passer informs to the 
supervisor its situation to do the pass in a suitable way and then, the supervisor requests 
to the shooters their suitability rates to play the defined role2. The shooters can self-
calculate their suitability rates for the proposed role2 and they inform this information 
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to the supervisor (see Fig. 5.9c). So, the supervisor can choose the most suitable shooter to 
play the role2. Once the supervisor chooses a shooter, it advices to the selected shooter that 
it must perform the proposed action (i.e., kick_the_ball). Finally, the selected shooter 
execute the action and the supervisor evaluates the result of the action (i.e., if the shooter 
scores in the opposite goal). 

 

Fig. 5.9. General scheme of the passing a ball implementation as a Task Allocation. 

5.2.4 Robot Soccer System 

Robot soccer is a high-tech scientific sport. Following this philosophy, the miroSOT5 
arises as a multi-purpose testing ground for learning and application of high-tech 
technology field such as image analysis, artificial intelligence, sensors, communication, 
electronic precision control, dive motors as well as software and hardware. Since then 
and until now it has grown steadily as more and more young scientists participate. 
Basically, robots, a vision system, a host computer and a communication system are 
needed for a robot soccer game. A vision-based soccer robot system has been used as 
operating method implemented as a remote-brainless soccer robot system [Kim and 
Vadakkepat, 00]. Each robot has its own driving mechanism, communication board 

                                                           
5 http://www.fira.net/soccer/mirosot/overview.html 
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and CPU board in the remote-brainless soccer robot system. The computacional part 
controls the robot’s velocity according to the command data received from a host 
computer. All calculations on vision data processing, decision-making, strategies, 
position control of robots, are done in a host computer which controls the robots via 
radio communication. In robot soccer different kinds of system configurations exist. 

Here, the miroSOT has been used to apply the main ideas of the formalization for 
cooperating multi-agent systems proposed in this dissertation. Such test bed facilitates 
the testing and implementation of the main ideas to execute cooperative actions aiming 
to improve the expected performance of multi-agent systems. So, in this experimental 
test bed (i.e., the middle league miroSOT) each team consists of five (5) robots, which 
they shall be limited to (7.5cm, 7.5cm and 7.5cm). The playing field has the size of a 
table-tennis table which is about (220cm) in width and (180cm) in length. An orange 
golf ball shall be used as the ball, with (42.7mm) in diameter and (46g) in weight. A 
separate computer, which receives a global view of the field from an overhead camera, 
controls the different robots. Research areas which are important for this test bed 
include those of the Middle Size League, but because of the global control the focus is 
more on strategy development. Fig. 5.10 shows the team of real MiroSOT robots used 
in the experiments. 

 

Fig. 5.10. Team of real MiroSOT robots. 

5.2.4.1 Robot Modeling 

The state S(t) of the MiroSOT robots can be established by any set of the following 
representations: (see Fig. 5.11).  
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}v,v,,y,x()t(Sor}w,v,,y,x{)t(Sor}v,v,,y,x{)t(S yxrl θ=θ=θ=  

The relation among the different representations is established from the following 
kinematics relations: 

rr1l Rwv;Rv =ω=  

 

Fig. 5.11. Variables that describe the robots’ state, L=7.5 cm, R=2.25 cm, G: geometric center. 

Where vl and vr are the linear velocities of the wheels left and right respectively, ωl 
and ωr are the angular velocities of the wheels left and right respectively and R is the 
radius of the wheels. Also, it can be shown that: 

L
vv

and
2

vv
v rlrl −

=ω
+

=  

Where v is the linear velocity of the mobile robot; ω is the robot’s angular velocity 
and L is the distance between the wheels. The projections of the linear velocity on the X 
and Y axes are given by:  

)sin(vvand)cos(vv yx θ=θ=  

From the above relations is observed the need of controlling the linear velocities of 
each wheel (vl , vr) to be able of controlling the movement of the geometrical center of 
the robot (G) represented by means of the coordinates (x, y, θ).  

A mobile robot is then a MIMO (Multi-Input Multi-Output) system and its control is 
typically too complex to be developed and operated when it must include the 
specifications of the system’s response. These specifications must take into account the 
dynamical limitations and the non-holonomic features of the mobile robot and the 
geometric and kinematics properties of the movement path. In this sense, Equation 
(5.1) provides the robot model used. 
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Other higher order transfer functions, non-linearities and other variables will be 
analysed in future work. 

5.2.4.2 Real Features 

The real case study has several similarities with the above simulated features, such 
that: there is a group of three supervisor agents, such that, Gsa = {sa1, sa2, sa3} and a 
group of three physical agents, such that, Gpa = {pa1, pa2, pa3} to play a game against 
other team robot. Each supervisor agent is in charge to manage a zone (scene) on the 
field. In this sense, there are three (3) pre-defined scenes, such that, S = {s1=attack; 
s2=midfield; s3=defense} that represent the zones in such environment as it shows in 
Fig. 5.12. In addition, each physical agent has an obstacle-free movement trajectory 
controller to move in the environment. For sake of simplicity, the main action for each 
physical agent in each scene is to kick the ball with the overall intention of scoring in 
the opposite goal to win the match. The remaining actions are related to other specific 
aims (e.g., move the ball towards the opposite goal; defend their own goal, etc) that 
form part of the game strategy. In addition, the information between the physical 
agents (i.e., the robots) is broadcast by using a frequency of 133 MHz or 433 MHz to 
communicate with the central host. In this sense, the supervisor agents must agree 
between them to establish how they will manage the overall intentions in order to 
provide physical agents with the information about the requirements involved in the 
scene under their supervision.  

Besides, physical agents must coordinate between them by using several 
coordination parameters in their decision-making to select the most suitable agent for 
the main action according with the established strategy. The other reaming agents 
follow the same process to select their actions according with the conditions 
established for the current scene. Fig. 5.13 shows an example of this experimented case 
study for the achievement of the “kick the ball” action. Finally, the coordinated task and 
task allocation cases studies in the real robot soccer are using the same features 
introduced by the simulated robot soccer as is described in Sections 5.2.2.1 and 5.2.2.2 
respectively.  
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Fig. 5.12. Supervisor agents, physical agents and scenes in the real robot soccer scenario. 

 

Fig. 5.13. Example of the execution of a cooperative action in the real robot soccer. 

5.3 Implementations in Robot Soccer 

In all the implementations, each physical agent has a movement controller to 
execute a proposed action. Thus, four different PID controllers (each one represents 
each physical agent’ movement controller) have been designed using a set of suitable 
control laws to put into a practice the team of physical agents used in the experimental 
phases. In this light, each physical agent can be denoted by its behavior showed when 
they try to perform a trajectory, such that: pa2 is “precise”; pa3 is “disturbed”; pa4 is 
“fast” and pa5 is “fast and disturbed”. Table 5.1 shows the dependence of each 
designed physical agent according to the four selected control design criteria. Thus, 
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speediness refers to the velocity response of the physical agents to reach any desired target. 
Such criteria represent an indicator of the controlled system’s response when it reaches the set 
point.  

precision refers to the capability of the agents to achieve their goals with a minimal error. 
This represents the skills of the controlled systems to follow the changes of the set point. 

persistence refers to the capability of the agents to follow the set point when there are 
external signals affecting the aims’ value of the agents. The persistence is related to the 
capability of the controlled system to reject disturbances and maintain their performance at a 
suitable value. 

control effort represents the energy consumes present in each physical agent when tries to 
achieve its goals.  

Table 5.1. Physical agents’ criteria design dependence 

 (↑: great dependence; ↓: minor dependence) 

 
speediness precision persistence 

control 

effort 

pa2 ↓ ↑ ↑ ↓ 

pa3 ↓ ↓ ↓ ↑ 

pa4 ↑ ↓ ↑ ↑ 

pa5 ↑ ↓ ↓ ↑ 

 

Fig. 5.14 shows how in dependence of consider each criteria; it produces different 
dynamics in the free movements of the physical agent in the execution of the any 
proposed trajectory. The result of the actions’ executions will be different; due to the 
physical agents have different control laws under the same environmental condition 
and actions requirements. Thus, it is possible to obtain a capability associated with the 
controller assigned for each physical agent. In fact, these capabilities describe the 
dynamic features of the system during the execution of the actions. For instance, Fig. 
5.15 shows the spatial evolution of each physical agent under some specific movement 
constraints, such that: (initial position ip = (10cm, 10cm, 0º); set point sp = (180cm, 90cm, 
180º). 
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Fig. 5.14. Spatial evolution of the physical agents. 

Such physical agents’ movement behavior was intentionally designed with idea to 
generate diversity (i.e., heterogeneity) in the dynamic of the controlled system. Thus, it 
should be noted that the correct management of such diversity is quite relevant for 
physical agents to avoid undesirable situations and to fulfil correctly the proposed 
actions. 

 

Fig. 5.15. Spatial evolution of the physical agents under geographic requirements; from initial point (10cm, 10cm, 0º) 
to the set point (180cm, 90cm, 180º). 

As the Fig. 5.12 and 5.13 show, in real robot soccer those only three physical agents 
have been implemented. In this case, such physical agents are denoted by its behavior 
such that, pa1 is “precise”, pa2 is “disturbed” and pa3 is “fast”. 
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5.3.1 The Game Strategy 

In a soccer game, a strategy refers to the statement of a determined set of actions 
that must be executed in a particular area of the field. In this sense, the strategy aims to 
provide supervisor agents with the adequate knowledge about which are the expected 
issues (i.e., goals, tasks or roles) in each scene according with the features of the game. 
In addition, Table 5.2 shows the game strategy that has been defined to be 
implemented in the experiment that will performed in this dissertation. In particular, 
such strategy defines the selected set of goals, tasks and roles to define the specific 
expected actions in each scene. In addition, some roles can be recurrent in the 
execution of some tasks, such that in (task4). It is due to the importance of covering a 
great area of the defense zone, and to give to the goalkeeper of the team. 

Table 5.2.  General classification of the goals, tasks and roles for each scene. 

Supervisor 
agent Scene Goals Tasks Roles 

sa1 s1 
g1 : score a 

goal 

t1 : To do a pass r1 : Kick the ball 
r2 : Take a position 

t2 : Shooting towards the goal r1 : Kick the ball 
r2 : Take a position 

sa2 s2 
g2 : to carry 

the ball 

t3 : To mark a player 
r3 : Go towards the player 
r4 : Cover an area 
r2 : Take a position 

t2 : Shooting towards the goal r1 : Kick the ball 
r2 : Take a position 

sa3 s3 
g3 : to 

defend 

t4 : Goal-kick 
r1 : Kick the ball 
r2_1 : Take a position 
r2_2 : Take a position 

t5 : to protect the goal 
r1 : kick the ball 
r4 : Cover an area 
r2 : Take a position 

 

 To the end, the Fig. 5.16, 5.17 and 5.18 show a simulated representation of the 
strategy proposed for the experiments. Here, the current ball position (cbp) indicates 
the priority index ω of the actions involved in each scene. It means, if the ball is inside 
an established area indicates the goal or task that must be executed, where the shaded 
zone determines the spatial region not consider in each case. 
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Fig. 5.16. Simulated representation of the Strategy in the scene attack. a) General scheme of the t1; b) General scheme 
of the t2. 

 

Fig. 5.17. Simulated representation of the Strategy in the scene midfield. General scheme of the t2; b) General scheme 
of the t3. 

 

Fig. 5.18. Simulated representation of the Strategy in the scene defense. a) General scheme of the t4; b) General 
scheme of t5. 
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5.3.2 Decision Axes in the Robot Soccer Environment 

In the literature, there are several coordination parameters to take into account in 
the decision-making process for multi-agent coordination. However, this 
implementation introduces a proper calculation for the three decision axes proposed in 
Section 4.3. 

5.3.2.1 Axis 1 – Environmental Conditions Calculation 

Environment condition refers to the physical situation of each agent within an 
environment and, here is related to the distance between the current location of a 
physical agent and the current location of the proposed actions in a scene in a 
determined time. Such situation is called proximity. The proximity parameter P is 
related to the distance between the current location of the physical agent pai and the 
proposed position for the role rj involved in the scene sk at the time t as is described in 
(5.2) 

)2.5(
maxd

)r,pa(d
1)r,pa(P

ks
k

ks
ts

ji
tji ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=  

]1,0[)r,pa(P}3,2,1{k}r,...,3,2,1{j}4,3,2,1{i
kstiq ∈=== ϕ  

Where 
kstji )r,pa(d is the distance between the physical agent pai and the role rj in a 

determine time t in the scene sk and 
ksmaxd establishes the distance between all the 

physical agents and the actions proposed by the current supervisor agent, such that: 

)3.5())r,pa(d,...,)r,pa(dmax(maxd
ksksk tjitj1s =  

Fig. 5.19 depicts a scheme of the physical agents’ state for the proximity calculation. 
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Fig. 5.19. General scheme of the robot soccer environment for the proximity calculation. 

5.3.2.2 Axis 2 - Physical Knowledge Calculation 

Physical knowledge refers to the cognitive ability of each physical agent to estimate 
the knowledge related to the capabilities of its body involved in the execution of a 
proposed action in a scene in determined time. Such ability is called introspection. The 
introspection parameter I is calculated implementing feed-forward back-propagation 
neural networks. Such networks give the capabilities of a physical agent pai to execute a 
proposed role rj in determined scene sk in the time t. In particular, each physical agent 
calculates its introspection value to the execution of all the proposed actions as is 
described in (5.4). 

)4.5()))r,pa(I(max()r,pa(I
ksks tjitji =  

]1,0[)r,pa(I}3,2,1{k}r,...,3,2,1{j}4,3,2,1{i
kstiq ∈=== ϕ  

A higher introspection value 
kstji )r,pa(I represents that the physical agent pai is the 

most suitable agent for the execution of the proposed role rj in a time t of the scene sk. 
Likewise, a low introspection value indicates that the agent cannot perform the action 
in a reliable way. So, Fig. 5.20 shows the general scheme of the physical agents’ 
introspection reasoning in the execution of a particular action (e.g., kick the ball). 
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Fig. 5.20. General scheme of the robot soccer environment for the introspection calculation. 

5.3.2.3 Axis 3 – Trust Value Calculation 

Trust value refers to the social relationship among agents taking into account the 
result of previous interactions in a scene in determined time. Such relationship is here 
called trust. The Trust parameter T is estimated by the outcome of the previous 
interaction between physical agents. Such parameter rules the interaction and behavior 
expected for each physical agent. The execution of the proposed action rj in the scene sk 
in a time t is then evaluated based on this parameter, such that: equation (5.5) shows 
the reinforcement calculus when actions are correctly reached by the physical agent. 
Otherwise, the equation (5.6) shows the calculus when the actions are not reached in a 
correct way. 

)5.5()a)pa()r,pa(T()r,pa(T
kskks tsijitji Δ+=  

)6.5()p)pa()r,pa(T()r,pa(T
kskks tsijitji Δ−=  

]1,0[)r,pa(T}3,2,1{k}r,...,3,2,1{j}4,3,2,1{i
kstiq ∈=== ϕ  

Where 
ksji a)r,pa(Δ and 

ksji a)r,pa(Δ are the awards and punishments given to pai in 

the roles rj in a time t within the scene sk respectively. For sake of simplicity, an action 
is correctly performed by a physical agent when it kicks the ball towards the opposite 
goal or it arrives to the fixed set point of the strategy. The physical agents are then 
awarded. Else, the physical agent is punished due to a possible failure in the execution 
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of the actions. In addition, when a physical agent has a higher 
kstji )r,pa(T value, it 

represents a more trusted physical agent in the action. Specifically, different trust 
values have been established for each physical agent depending on the scene as is 
depicted in Fig. 5.21.  

 

Fig. 5.21. General scheme of the robot soccer environment for the trust calculation. 

Asides, appropriate values for the awards and punishments have been empirically 
selected for each scene. In particular, Table 5.3 shows such values. It means that all the 
experiments both coordinated tasks and task allocation use the same values in their 
Trust calculation, such that: 

Table 5.3. Empirical values for the awards and punishments within the scenes. 

Scene Award Punishment 
s1 1.0a)pa(

1si =Δ  05.0p)pa(
1si =Δ  

s2 04.0a)pa(
2si =Δ  08.0p)pa(

2si =Δ  

s3 05.0a)pa(
3si =Δ  1.0p)pa(

3si =Δ  

 

● Norms’ Statement 

Two norms are introduced for the experimental soccer games. In this light, the table 
5.4 depicts the mentioned rules. Therefore, the first norm N1 is useful by the supervisors 
to define which goal must be solved. On the other hand, the norm N2 helps supervisors 
to schedule the execution of the tasks involved in its supervised scene. In particular, 
both norms are related to the current ball position (cbp) at each moment of each 
simulation. Here, the priority of such issues (i.e., goals or tasks) operate as an 
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activation flag which is (1) when the ball is in the assigned area for such issue and (0) 
when the position of the ball is in other region, such as follow: 

⎩
⎨
⎧

ω
γ

γ
γ gofrangetheinnotiscpbif0

gtheofrangetheiniscpbif1
)g(      

⎩
⎨
⎧

ω
δ

δ
δ tofrangetheinnotiscpbif0

ttheofrangetheiniscpbif1
)t(  

Table 5.4. Rules’ Statement for the experimental phases. 

N1: 
if current ball position (cbp) is into the spatial region assigned to 
particular goal,  the supervisor in-charge must activate it. 

N2: 
if current ball position (cbp) is into the spatial region assigned to a 
particular task, such task must be performed, therefore, its roles must be 
executed. 

 

For illustrative reasons, using the task allocation problem-solving algorithm, let us 
suppose a group of three supervisor agents, such that, Gsa = {sa1, sa2, sa3} supervising 
three scenes, such that, S = {s1, s2, s3} respectively. For sake of simplicity, each scene 
only has one goal, such that, s1→g1, s2→g2, s3→g3. So, supervisors must agree among 
them to select which supervisor begins to interact with the physical agents. Such 
supervisors’ interaction is here, ruled by the norm N1. In this sense, in the developed 
experiments in the robot soccer test bed the supervisors are, in all moment, look for the 
current position of the ball. In this case, when a supervisor knows that the position of 
the ball is into its area, inform this to the other supervisors as follow: 

)s]},1[)g({},sa,sa{,sa(orminf 11321 =ω  

Then, the other supervisors (sa2, sa3) must evaluate if this information is correct (they 
know that the ball is not in its area, therefore, ω(g2)=[0] and ω(g3)=[0]) and response 
that they are agree in that sa1 solves the goal involved in its scene,  as follow: 

)s,ok)g(,sa},sa,sa({request 11132 →ω  

Once supervisors are agree in the execution of the goals, the agreed supervisor must 
self-analyze and define the execution sequence of the tasks involved in its defined 
goals. Using the priority order (ω) established for the proposed tasks, the supervisor 
must follow the norm norm2 such that, 

}taskexecute{do])1or0{[)t((if δδ =ω  

In this sense, the current supervisor looks for and evaluates the priority (ω) of the 
roles involved in the active task. In fact, this process allows supervisor to schedule the 
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order of the role allocation. So, supervisor sa1 requests information from the physical 
agents to search for the most suitable physical for the execution of every role.  

5.3.3 The Influence Degrees 

The influence degrees for the experiments developed in this dissertation are 
summarized in Table 5.5. In this sense, the binary combination of the three parameters 
defined in the decision axes enhances the relevance that each parameter represents in 
each case study. In this light, such classification defines how the relevance of each one 
of the decision axes can be reflected in the selection/allocation of the actions within 
determine scene. In this sense, eight combinations (cases studies) have been obtained. 
For sake of simplicity, the relevance of the parameters are related to is consideration or 
not in each case. Moreover, in all the experiments, the three scenes are using the same 
combination of elements at same time in each simulation. In particular, each case study 
determines the relevance of the axes in each one of the agents-team used in the 
developed experiments. 

Table 5.5. Combination of the Decision Axes  

(0 → it  is not taken into account; 1 → it is taken into account) 

Case Study Proximity Introspection Trust 

0 0 0 0 

1 0 0 1 

2 0 1 0 

3 0 1 1 

4 1 0 0 

5 1 0 1 

6 1 1 0 

7 1 1 1 

 

To the end, for illustrative reasons, let us to show how a group of four physical 
agents, such that, Gpa = {pa2,pa3, pa4, pa5}, uses the proposed calculation for the three 
decision axes (see Section 5.3.2) introduced in this dissertation. So, in Fig. 5.22 is 
depicted a real possible situation in the robot soccer environment, where the 
supervisor agent sa1 must manage the scene s1 to the execution of three actions, such 
that: 

lpositioncurrentbalcbp)y_cbp;x_cbp(lkickthebal:r1 =  
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)cm66,cm27(takeaposs:r 1_2  )cm112,cm67(takeaposs:r 2_2  

 

Fig. 5.22. Possible situation of the robot soccer environment. 

In this sense, according with the coordinated task solving-problem algorithms, the 
supervisor sa1 informs to the group of physical agent the roles involved in its scene s1. 
So, each physical agent looks for and evaluates its situation related to the three 
proposed roles in the current scene. So, the Table 5.6 shows the values of the distance 
between the physical agents and the target for the proximity calculation. In addition, 
the tables 5.7, 5.8 and 5.9 show the values of the proximity, introspection and trust 
respectively for each agent for each action, highlighting and selecting the nearest role 
that each physical agent can execute taking into account an empirical threshold fixed in 
π=0.65. Likewise, one physical agent could be able to execute more than one role but it 
will execute the role for which it has a higher suitability rate. 

Table 5.6. Distances between physical agents and the proposed target. 

Physical agent role1 role2 role3 
pa2 92.1954 128.1913 96.2549 
pa3 76.4853 144.6342 65.00 
pa4 21.9545 55.0364 46.4866 
pa5 37.7359 75.5844 30.8707 

 
Table 5.7. Values of the Proximity parameter (Case Study 4) 

Physical agent role1 role2 role3 Selected role 
pa2 0 0 0 pa2 cannot perform any role 

pa3 0.1704 0.1058 0.3247 pa3 cannot perform any role 

pa4 0.7619 0.5707 0.4104 { role1 } 

pa5 0.5907 0.4104 0.6793 { role3 } 
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Table 5.8. Values of the Introspection Parameter (Case Study 2) 

Physical agent role1 role2 role3 Selected role 
pa2 0.4163 0.0347 0.4954 pa2 cannot perform any role 

pa3 0.3698 0.5103 0.1085 pa3 cannot perform any role 

pa4 0.8517 0.6921 0.6035 { role1, role2 } 

pa5 0.7944 0.6537 0.784 { role1, role3, role2} 
 

Table 5.9. Values of the Trust Parameter (Case Study 1) 

Physical agent role1 role2 role3 Selected role 
pa2  0.35 0.15 0.4 pa2 cannot perform any role 

pa3 0.25 0.3 0.5 pa3 cannot perform any role 

pa4 0.65 0.6 0.85 { role3, role1 } 

pa5 0.75 0.6 0.65 { role1, role3 } 

 
On the other hand, Tables 5.10, 5.11, 5.12 and 5.13 show the data for the others cases 

study presented in this dissertation. Following the above idea, in these tables, the 
selected roles for each physical agent are also highlighting. In this case, to obtain such 
value, the physical agents perform a combination of the three parameters of the 
decision axes by using the equation (4.12) introduced in the Section 4.7.1. Such 
equation allows physical agents to perform a match between its capabilities to perform 
the action and the influence degree ψ used in each case to calculate its suitability rates 
for the proposed set of roles. 

Table 5.10. Physical Agents’ selection for the Case Study 3 (Introspection + Trust) 

Physical agent role1 role2 role3 Selected role 
pa2 0.3832 0.0924 0.4477 pa2 cannot perform any role 

pa3 0.3099 0.4052 0.3043 pa3 cannot perform any role 

pa4 0.7509 0.6461 0.7268 { role1, role3 } 

pa5 0.7722 0.6269 0.7170 { role1, role3 } 

 
Table 5.11. Physical Agents’ selection for the Case Study 5 (Proximity + Trust) 

Physical agent role1 role2 role3 Selected role 
pa2 0.1750 0.0750 0.2000 pa2 cannot perform any role 
pa3 0.2102 0.2029 0.4124 pa3 cannot perform any role 
pa4 0.7060 0.5854 0.6302 { role1 } 
pa5 0.6704 0.5052 0.6647 { role1, role3 } 
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Table 5.12. Physical Agents’ selection for the Case Study 6 (Proximity + Introspection) 

Physical agent role1 role2 role3 Selected role 
pa2 0.2082 0.0174 0.2477 pa2 cannot perform any role 

pa3 0.2701 0.3081 0.2166 pa3 cannot perform any role 

pa4 0.8068 0.6314 0.5070 { role1 } 

pa5 0.6926 0.5321 0.7317 { role3, role1} 
 

Table 5.13. Physical Agents’ selection for the Case Study 7 (Proximity + Introspection + Trust) 

Physical agent role1 role2 role3 Selected role 
pa2 0.2554 0.0616 0.2985 pa2 cannot perform any role 

pa3 0.2634 0.3054 0.3111 pa3 cannot perform any role 

pa4 0.7545 0.6209 0.6213 { role1 } 

pa5 0.7117 0.5547 0.7044 { role1, role3 } 

 

These tables show that each physical agent sorts the actions that it can perform in an 
increasing order based on the match performed to compare critically their action 
capability against the actions’ requirements by considering the threshold implicated in 
the current scene. Therefore, each physical agent performs the action for which it is the 
most suitable. However, if there is more than one physical agent able to perform the 
same action, the selected agent is the one with the highest suitability rate while the 
other agents go to perform the next action in their ranking, deleting the action selected 
by other agent with a highest suitability rate. Besides, if there are physical agents with 
no one action in their scheduling rank, then these agents look for and evaluate actions 
involved in other scene. It means that these physical agents should calculate their 
suitability rates for the actions proposed by other supervisor agent. So, this approach 
guarantees that physical agents try to execute at least one action in any scene. This fact 
aims to increase the cooperative multi-agent performance in cooperative and dynamics 
environments due to the physical agents are aware of their capabilities which reflect in 
a more reliable decision-making. Agents can discriminate between the tasks in which 
they have no chance of correct performing and those in which they have no chance. 

5.4 Simulated Experimental Results 

Empirical experiments featuring simulated cooperative scenarios have been 
established in order to put into practice the formalization of the framework to decision 
support for situated agents described in this dissertation. In addition, two experimental 
implementations have been selected: soccer games and the passing a ball. Moreover, such 
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implementations are tested in two different scenarios, such that, coordinated task and 
task allocation. Both scenarios have been individually tested in each implementation. 
In particular, the soccer games implementation is tested in two different tournaments. 
The first tournament is related to a set of soccer games between agents-teams against a 
blind opponent. Meanwhile, the second tournament is devoted to perform a set of 
games where the above agent-teams compete among themselves. In addition, each 
agent-team is personified by means of its consideration (or not) of the each parameter 
of the influence degree (see Section 5.3.3). So, there are eight agent-teams as well as 
case studies. For illustrative reasons, in all the experiments developed in this 
implementation, the game strategy (see Section 5.3.1); the decision axes’ calculation 
(see Section 5.3.2) and the stated norms (see Section 5.3.2) have been used. Likewise, 
the relevance of the actions is based on each one of the cases study defined by the 
influence degrees presented (see Section 5.3.3). In particular, for successful reasons in 
the agents’ collective decision an empirical decision threshold (th=0.65) is established. 
In addition, the results are analyzed by showing the average (AVE) of each case study 
(CS) calculated by (5.7) taking into account the total number of successful points (or 
trials) Π compared with the total of the possible points (or trials) Γ in each experiment. 
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To the end, the improvement rate (IR) is calculated taking as benchmark the worst 
case (Α) and comparing it critically with the other cases (Β). So, the IR is obtained by 
(5.8). 
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5.4.1 Implementation 1: Soccer Tournaments 

The first tournament is constituted by a predefined number of championships (10), 
each one with a predefined number of thirty (30) games, where each agents-team plays 
versus a default opponent robotic team provided by the simulator where the initial 
state of each physical agent in the playground was randomly set at ever game. 
Moreover, the performance is measured as a ratio between the total points (won game: 3 
points; tied game: 1 points) achieved by the proposed teams in each championship. In 
addition, in all the experiments the initial state of the physical agents was randomly 
changed after each kick-off (due to a goal scored by any team). Aside, the second 
tournament was predefined with (10) championships, each one with a predefined 
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number of twenty-eight (28) games, where each agent-team plays against the other 
agents-teams. In total, each agent-team plays (280) match and its performance is 
calculates in a radius of (won game: 3 point; tied game: 1 point). In fact, in all the 
experiments the initial state of the physical agents was randomly changed after each 
kick-off (due to a goal scored by any team). 

5.4.1.1 Simulated Tournament 1 

This section is devoted to present the obtained results in the first simulated 
tournament both for its implementation in the coordinated task scenario as in task 
allocation scenario. In fact, the teams are ranked by considering the total number of 
point obtained along the championships. Such rank is sorted in a decreasing order 
taking into account the number of obtained points to highlight the case with higher 
performance. In light of stressing the relevance of the agents’ situation in the agents’ 
decision making, the analysis has been focused on the influence of consider each one of 
the decision axes or their possible combination at the moment to decide (in the 
coordinated task scenario) or to allocate (in the task allocation scenario) which is the 
most suitable physical agent for any proposed action. So, a comparison used the 
obtained results has been performed in order to note how the system performance 
improves when agents take into account their situation regard the proposed actions.  

 Scenario 1 - Coordinated Task 

The table 5.14 shows the results obtained in the performed experiments (for more 
information sees Appendix A, Table A1 → A14). 

Table 5.14. Ranking of the Tournament – Coordinated Task. 

Rank Case 
Study JJ WG TG LG G+ G- PTS AVE 

(%) 
IR 
(%) 

1 P+I+T 100 58 5 37 346 184 179 59.67 +51.40 
2 P+I 100 52 8 40 366 182 164 54.67 +46.95 

3 I 100 49 4 47 346 189 151 50.33 +42.38 

4 P 100 42 8 50 268 195 134 44.67 +36.07 

5 I+T 100 41 7 52 261 201 130 43.33 +33.07 

6 P+T 100 39 6 55 248 201 123 41 +29.27 

7 T 100 38 6 56 316 231 120 40 +27.5 

8 R 100 26 9 65 143 273 87 29  
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In addition, the Fig. 5.23 and 5.24 illustrate the systems’ performance of each case 
study taking into account the successful number of the obtained points based on the 
won and tied games along the championships. In fact, the Fig. 5.23 shows a comparison 
between the worst case (case0: random) the simple cases (case1: trust, case2: 
introspection and case4: proximity) and the best case (case7: P+I+T).  

 

Fig. 5.23. Performance comparison between the cases 0,1,2,4 and 7. 

On the other hand, the Fig. 5.24 shows a comparison between the worst case (case0: 
random) the composed cases (case3: I+T, case5: P+T and case6: P+I) and the best case 
(case7: P+I+T).  

 
Fig. 5.24. Performance comparison between the cases 0,3,5,6 and 7. 
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 Scenario 2 – Task Allocation 

The table 5.15 shows the results obtained in the performed experiments (for more 
information sees Appendix A, Table A15 → A28). 

Table 5.15. Ranking of the Tournament - Task Allocation. 

Rank Case 
Study JJ WG TG LG G+ G- PTS AVE 

(%) 
IR 
(%) 

1 P+I+T 100 61 29 10 363 174 212 70.67 +55.18 
2 P+I 100 55 12 33 379 218 177 59 +46.32 

3 I 100 52 8 40 355 193 164 54.67 +42.07 

4 P 100 47 11 42 276 202 152 50.67 +37.50 

5 T+I 100 43 15 42 283 214 144 48 +34.02 

6 T+P 100 41 12 47 239 176 135 45 +29.63 

7 T 100 39 10 51 275 206 127 43.33 +25.19 

8 R 100 27 14 59 193 294 95 31.67  

 

In addition, the Fig. 5.25 and 5.26 illustrate the systems’ performance of each case 
study taking into account the successful number of points obtained based on the won 
and tied games along the championships. In fact, the Fig. 5.25 shows a comparison 
between the worst case (case0: random) the simple cases (case1: trust, case2: 
introspection and case4: proximity) and the best case (case7: P+I+T). 

 

Fig. 5.25. Performance comparison between the cases 0,1,2,4 and 7. 

On the other hand, the Fig. 5.26 shows a comparison between the worst case (case0: 
random) the composed cases (case3: I+T, case5: P+T and case6: P+I) and the best case 
(case7: P+I+T). 
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Fig. 5.26. Performance comparison between the cases 0,3,5,6 and 7. 

The above statistical results demonstrate clearly how agents (both supervisor as 
physical) can make sure decisions that carry a better performance when they use 
knowledge related to their situation to perform the proposed action. The performance 
does not improve significantly beyond about the 6 championship to both examples. 
The number of trials (championships) to initially confirm the systems performance will 
be fixed in 10 championships. In particular, there is an improvement rate of around a 
51% in the coordinated task scenario and an improvement rate of around a 55% in the 
task allocation scenario. A preliminary conclusion of these results is how the system 
performance improves when the agents become more “conscious” about which kind of 
information must be included in their knowledge bases when they must define their 
situation to execute a proposed action. Reasonable decision performance is achieved 
when agents includes such knowledge in their reasoning process when they must 
work jointly. But more importantly, the system performance (successful performance) 
is significantly better when the agents increase the information (i.e., when the agents 
use grater amount of knowledge) involved in their decision-making to perform any 
action. Concluding, the Fig. 5.27 illustrates a comparison between the higher 
performances of the two tested scenarios. Such analysis discloses how task allocation 
reaches a higher performance than the reached by the agents using the coordinated 
task solving-problem algorithm. In such case, both performances are the best one in 
their stages. 
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Fig. 5.27. Comparison between the case 7 in the Coordinated Task and Task Allocation scenarios. 

5.4.1.2 Simulated Tournament 2 

This section is devoted to present the obtained results in the second simulated 
tournament both for its implementation in the coordinated task scenario as in task 
allocation scenario. In fact, the teams are ranked by considering the total number of 
point obtained along the championships. Such rank is sorted in a decreasing order 
taking into account the number of obtained points to highlight the case with higher 
performance. In light of stressing the relevance of the agents’ situation in the agents’ 
decision making, the analysis has been focused on the influence of consider each one of 
the decision axes or their possible combination at the moment to decide (in the 
coordinated task scenario) or to allocate (in the task allocation scenario) which is the 
most suitable physical agent for any proposed action. So, a comparison using the 
obtained results has been performed in order to note how the system performance 
improves when agents take into account their situation regard the proposed actions. 
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 Scenario 1 – Coordinated Task 

The table 5.16 shows the results obtained in the performed experiments.  

Table 5.16. Ranking of the Tournament – Coordinated Task 

Rank Case 
Study 

280 Games 
G+ G- PTS 

(840) 
AVE 
(%) 

IR 
(%) WG TG LG 

1 P+I+T 241 2 37 308 176 725 86.31 89.93 

2 P+I 219 3 58 269 164 660 78.57 88.94 

3 I 170 3 107 196 177 513 61.07 85.77 

4 P 156 3 121 251 193 471 56.07 84.50 

5 P+T 121 3 156 215 208 366 43.57 80.06 

6 I+T 95 3 182 192 288 288 34.29 74.66 

7 T 71 4 205 193 223 217 25.83 66.36 

8 R 23 4 253 121 316 73 8.69  

 

In particular, the Fig. 5.28 and 5.29 illustrate the systems’ performance of each case 
study taking into account the successful number of points obtained based on the won 
and tied games along the championships. In fact, the Fig. 5.28 shows a comparison 
between the worst case (case0: random) the simple cases (case1: trust, case2: 
introspection and case4: proximity) and the best case (case7: P+I+T).  

 

Fig. 5.28. Performance comparison between the cases 0,1,2,4 and 7. 

On the other hand, the Fig. 5.29 shows a comparison between the worst case (case0: 
random) the composed cases (case3: I+T, case5: P+T and case6: P+I) and the best case 
(case7: P+I+T). 



Chapter 5: Implementation and Results 

108 

 

Fig. 5.29. Performance comparison between the cases 0,3,5,6 and 7. 

 Scenario 2 – Task Allocation 

 The table 5.17 shows the results obtained in the performed experiments.  

Table 5.17. Ranking of the Tournament – Task Allocation. 

Rank Case 
Study 

280 Games 
G+ G- PTS 

(840) 
AVE 
(%) 

IR 
(%) WG TG LG 

1 P+I+T 230 1 49 308 176 691 82.26 86.25 

2 P+I 208 2 70 269 164 626 74.52 84.82 

3 I 165 4 111 196 177 499 59.40 80.96 

4 P 156 2 122 251 193 470 55.95 79.79 

5 P+T 121 2 157 215 208 365 43.45 73.97 

6 I+T 106 3 171 192 288 321 38.21 70.40 

7 T 82 3 195 193 223 249 29.64 61.84 

8 R 30 5 245 121 316 95 11.31  

 

The Fig. 5.30 and 5.31 illustrate the systems’ performance of each case study taking 
into account the successful number of points obtained based on the won and tied 
games along the championships. In fact, the Fig. 5.30 shows a comparison between the 
worst case (case0: random) the simple cases (case1: trust, case2: introspection and case4: 
proximity) and the best case (case7: P+I+T).  
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Fig. 5.30. Performance comparison between the cases 0,1,2,4 and 7. 

On the other hand, the Fig. 5.31 shows a comparison between the worst case (case 0: 
random) the composed cases (case3: I+T, case5: P+T and case6: P+I) and the best case 
(case7: P+I+T). 

 

Fig. 5.31. Performance comparison between the cases 0,3,5,6 and 7. 

The above statistical results show clearly how agents (both supervisor as physical) 
can make sure decisions that carry a better performance when they use knowledge 
related to their situation to perform the proposed action. The performance does not 
improve significantly beyond about the 6 championship to both examples. The number 
of trials (championships) to initially confirm the systems performance will be fixed in 
10 championships. In particular, there is an improvement rate of around a 90% in the 
coordinated task scenario and an improvement rate of around an 86% in the task 
allocation scenario. Summarizing, this preliminary deduction argues how the system 
performance improves when the agents become more “conscious” about which kind of 
information must be included in their knowledge bases when they must define their 
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capabilities to execute a proposed action. Reasonable decision performance is achieved 
when agents includes such knowledge in their reasoning process when they must 
work jointly. But more importantly, the system performance (successful performance) 
is significantly better when the agents increase the information (i.e., when the agents 
use the greater amount of knowledge) involved in their decision-making to perform 
any action. In addition, the Fig. 5.32 illustrates a comparison between the higher 
performances of the two tested scenarios. Such analysis discloses how task allocation 
reaches a higher performance than the reached by the agents using the coordinated 
task solving-problem algorithm. In such case, both performances are the best one in 
their stages. 

 

Fig. 5.32. Comparison between the case 7 in the Coordinated Task and Task Allocation scenarios. 

5.4.2 Implementation 2: Passing a ball 

In the experiments performed in the passing a ball implementation, the game the 
decision axes calculation (see Section 5.3.2) has been used. Likewise, the relevance of 
the actions is based on each one of the case study defined by the influence degrees 
presented (see Section 5.3.3). To the end, for successful reasons in the agents’ collective 
decision an empirical decision threshold (π=0.65) is established. Only one rule has been 
defined for the passing a ball implementation, such that, the role2 can be performed only 
if the shooter chosen shooter fulfils with the proposed threshold for the role2.  

For sake of simplicity, the role1→pass_the_ball is, in all the cases, assigned to the 
physical agent pa2. In such case, the remaining physical agents compete to play the 
remaining role r2 forming the shooters group Gshooters = {shooter1, shooter2, shooter3} 
kick_the_ball. Besides, the shooter performance has been tested with a large number of 
examples (500 for each case study).  
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Likewise, this is devoted to present the obtained results in the implementation 2 
both for its implementation in the coordinated task scenario as in task allocation 
scenario. In fact, the teams are ranked by considering the total number of successful 
scores obtained along the trials (500). Such rank is sorted in a decreasing order taking 
into account the number of obtained points to highlight the case with higher 
performance. In light of stressing the relevance of the agents’ situation in the agents’ 
decision making, the analysis has been focused on the influence of consider each one of 
the decision axes or their possible combination at the moment to decide (in the 
coordinated task scenario) or to allocate (in the task allocation scenario) which is the 
most suitable shooter. So, a comparison using the obtained results has been performed 
in order to note how the system performance improves when agents take into account 
their situation regard the proposed actions. 

5.4.2.1 Scenario 1: Coordinated Task 

The table 5.18 shows the results obtained in the performed experiments.  

Table 5.18. Results in the Passing a ball experiment – Coordinated Task. 

Rank Case Study Trial Score AVE 
(%) 

IR 
(%) 

1 P+I+T 500 324 64.8 +75.31 

2 P+I 500 257 51.4 +68.87 

3 I 500 226 45.1 +64.52 

4 P 500 189 37.8 +57.67 

5 P+T 500 132 26.40 +39.39 

6 I+T 500 129 25.8 +37.98 

7 T 500 100 20.0 +20.0 

8 Random 500 80 16.0  

 

The Fig. 5.33 and 5.34 depict the results of the cases where in each curve is 
computed the algorithm mean of success (scores) of the most recent trails using a 
sliding window up to the current trial. In fact, the Fig. 5.33 shows a comparison 
between the worst case (case0: random) the simple cases (case1: trust, case2: 
introspection and case4: proximity) and the best case (case7: P+I+T). 
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Fig. 5.33. Performance comparison between the cases 0,1,2,4 and 7. 

On the other hand, the Fig. 5.34 shows a comparison between the worst case (case0: 
random) the composed cases (case3: I+T, case5: P+T and case6: P+I) and the best case 
(case7: P+I+T). 

 

Fig. 5.34. Performance comparison between the cases 0,3,5,6 and 7. 
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5.4.2.2 Scenario 2: Task Allocation 

The table 5.19 shows the results obtained in the performed experiments.  

Table 5.19. Results in the Passing a ball experiment – Task Allocation. 

Rank Case Study Trial Score AVE 
(%) 

IR 
(%) 

1 P+I+T 500 316 65.0 +70.15 

2 P+I 500 305 61.4 +68.40 

3 I 500 276 60.6 +67.99 

4 P 500 259 57.8 +66.44 

5 T+I 500 173 38.0 +48.95 

6 T+P 500 153 32.0 +39.38 

7 T 500 121 21.4 +9.35 

8 Random 500 100 19.4  

 

The Fig. 5.35 and 5.36 depict the results of the cases where in each curve is 
computed the algorithm mean of success (scores) of the most recent trails using a 
sliding window up to the current trial. In fact, the Fig. 5.35 shows a comparison 
between the worst case (case0: random) the simple cases (case1: trust, case2: 
introspection and case4: proximity) and the best case (case7: P+I+T). 

 

Fig. 5.35. Performance comparison between the cases 0,1,2,4 and 7. 

On the other hand, the Fig. 5.36 shows a comparison between the worst case (case0: 
random) the composed cases (case3: I+T, case5: P+T and case6: P+I) and the best case 
(case7: P+I+T). 
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Fig. 5.36. Performance comparison between the cases 0,3,5,6 and 7. 

The above results show clearly how agents (both supervisor as physical) can make 
sure decisions that carry a better performance when they use knowledge related to 
their situation to perform the proposed action. The performance does not improve 
significantly beyond about the 150 trials to both examples. This number of trials is 
therefore used initially to confirm the task performance. In particular, there is an 
improvement rate of around a 75% in the coordinated task scenario and an 
improvement rate of around a 70% in the task allocation scenario. In addition, the Fig. 
5.37 illustrates a comparison between the higher performances of the two tested 
scenarios. Such analysis discloses how coordinated task reaches a higher performance 
than the reached by the agents using the task allocation solving problem algorithm. 

 

Fig. 5.37. Comparison between the case 7 in the Coordinated Task and Task Allocation scenarios. 
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5.5 Real Experimental Results 

Empirical experiments featuring real robot soccer matches have been established in 
order to emulate and corroborate the usefulness of the approach before tested in the 
simulated robot soccer test bed. In particular, two experimental features are presented. 
In this sense, the main goal of this real experimental phase is to test whether the 
successful results obtained through simulation are also obtained with the real robot 
soccer environment. In theory, this would be the case, so only some modifications as 
the consideration of the system’s vision and the radio-frequency communication are 
needed to perform such experiments. However, carrying from the simulated to the real 
robot soccer test bed is not so easy at all, as many problems arise when working with 
physical robots which were not present on the simulated world, in spite of that the 
simulator is very close to the reality. Moreover, undesirable situation related to the 
variation of the lights due to changes in illumination or interference, radio-frequency 
failures, details of design in the field, physical damages in the team-robot (e.g., an 
unscrewed wheel), battery discharge, are between other, the most concurrent situations 
that there does of the experiments with real robots an extremely difficult, complicated 
and laborious task of carrying out. In spite of this, both real experimental phases was 
developed to solve cooperative task and task allocation situation using the framework 
for situated agents presented in this dissertation. To the end, the game strategy (see 
Section 5.3.1); the decision axes’ calculation (see Section 5.3.2) and the stated norms (see 
Section 5.3.2) have been used. In addition, the agents’ teams use the influence degree 
introduced in Section 5.3.3. Besides, for successful reasons in the agents’ decisions an 
empirical decision threshold (th=0.65) is established. 

5.5.1 Experimental Results in the Implicit Opponent Benchmark 

In the first experiment, agents-teams (using the influence degree showed in the 
Section 5.3.3) play a predefined number of (10) episodes, each one with a predefine 
period of 5 minutes, where the robots (see Appendix B) face to a fictitious (implicit) 
opponent [Muñoz, 02], [Johnson et al., 98]. Such opponent is modelled by a pre-
meditated inclination (0.3cm) of the field (see Fig. 5.38). In such case, the expected 
teams’ performance is related to achieve the greater number of scores in the opposite 
goal along the (10) episodes. 
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Fig. 5.38. Proposed benchmark set-up. 

5.5.1.1 Scenario 1: Coordinated Task 

In particular, the Table 5.20 shows the successful number of goals achieved by each 
case study along the test-time for the coordinated task problem-solving approach.  

Table 5.20. Successful scores for the first experimental phase. 

Rank Case Goals 

1 P + I + T 45 

2 P + I 38 

3 I 34 

4 P 32 

5 P + T 27 

5 P + I 27 

7 T 22 

8 R 5 
 

In addition, the Fig. 5.39 depicts a statistical analysis of the achieved results where 
compare critically between the worst case (case0: random), the simple cases (case1: 
trust; case2: introspection and case4: proximity) and the best case (case7: P+I+T).  
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Fig. 5.39. Performance comparison between the cases 0,1,2,4 and 7. 

Besides, in Fig. 5.40 the worst case (case0: random), the coupled cases (c case3: I+T, 
case5: P+T and case6: P+I) and the best case (case7: P+I+T) have been also compared. 

 
Fig. 5.40. Performance comparison between the cases 0,3,5,6 and 7. 

5.5.1.2 Scenario 2: Task Allocation 

The Table 5.21 shows the successful number of scores achieved by each case along 
the test-time, for the task allocation problem-solving approach.  
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Table 5.21. Successful scores for the second experimental phase. 

Rank Case Goals 

1 P + I + T 48 

2 P + I 36 

3 P 32 

4 I 30 

5 P + I 27 

6 P + T 26 

7 T 23 

8 R 4 
 

In addition, the Fig. 5.41 depicts a statistical analysis of the achieved results where 
compare critically between the worst case (case0: random), the simple cases (case1: 
trust; case2: introspection and case4: proximity) and the best case (case7: P+I+T). 

 
Fig. 5.41. Performance comparison between the  cases 0,1,2,4 and 7. 

In addition, in Fig. 5.42 the worst case (case0: random), the coupled cases (c case3: 
I+T, case5: P+T and case6: P+I) and the best case (case7: P+I+T) have been also 
compared. 
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Fig. 5.42. Performance comparison between the cases 0,3,5,6 and 7. 

The real obtained results show how agents (both supervisor as physical) can make 
sure decisions that carry a better performance when they use knowledge related to 
their situation to perform the proposed action. The performance does not improve 
significantly beyond about the 6 episode to both examples. This number of episodes is 
therefore used initially to confirm the task performance. In particular, there is an 
improvement rate of around an 88% in the coordinated task scenario and an 
improvement rate of around a 91.6% in the task allocation scenario. The above results 
confirm clearly the results obtained in the simulated experiments where the task 
allocation scenario obtains a higher performance than the obtained in the coordinated 
task scenario. In this light, the Fig. 5.43 illustrates a comparison between the higher 
performances of the two tested scenarios. Such analysis discloses the above 
affirmation. In such case, both performances are the best one in their stages. 

 

Fig. 5.43. Comparison between the case 7 in the Coordinated Task and Task Allocation scenarios. 
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5.5.2 Experimental Results in the Robot Soccer League 

In the second experiment, agents-teams using the influence degree introduced in 
Section 5.3.3 compete among themselves in only one game with a predefined period of 
(5) minutes. In particular, the overall expected team’s performance is related to do the 
greater number of goals. So, the next sections present the obtained results of this 
experiment facing both cooperative actions as task allocation situations. Here, the 
overall expected performance is measured by the goal average (GAVE) obtained by each 
team robot. In particular, the goal average is calculated by the difference between the 
obtained goals (G+) and the received goals (G-).In addition, the agents-teams  

5.5.2.1 Scenario 1: Coordinated Task 

In Table 5.22 shows the scores resulting of the experiment at each match performed. 
In this sense, the Table 5.23 exposes the rank obtained for this experimental stage.  

Table 5.22. Information about the performance in the performed matches. 

 R T I IT P PT PI PIT 

R  7-7 3-6 7-7 3-9 7-10 5-9 2-9 

T 7-7  4-7 3-7 5-7 8-8 3-7 6-8 

I 6-3 7-4  9-5 4-4 9-6 6-6 7-7 

IT 7-7 7-3 5-9  6-6 6-6 5-7 2-5 

P 9-3 7-2 4-4 6-6  7-2 8-8 5-9 

PT 10-7 8-8 6-9 6-6 3-7  5-6 4-7 

PI 9-5 7-5 6-6 7-5 8-8 6-5  5-5 

PIT 9-2 8-6 7-7 5-2 9-5 7-4 5-5  
 
 

Table 5.23. Ranking of the results achieved in the real games. 

Rank Case Points G+ G- GAVE 

1 P+I+T 17 50 31 +19 

2 I 15 48 39 +9 

3 P + I 15 48 37 +11 

4 P 12 46 34 +12 

5 I+T 6 38 43 -5 

6 P+T 5 42 50 -8 

7 T 2 36 51 -15 

8 R 2 35 57 -22 
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5.5.2.2 Scenario 2: Task Allocation 

In Table 5.24 shows the scores resulting of the experiment at each match performed. 
In this sense, the Table 5.25 exposes the rank obtained for this experimental stage.  

Table 5.24. Information about the performance in the performed matches. 

 R T I IT P PT PI PIT 

R  4-4 4-9 3-7 3-6 5-5 2-5 0-4 

T 4-4  4-9 4-9 3-8 5-4 1-7 1-6 

I 9-4 9-4  4--4 4-1 6-6 5-5 6-7 

IT 7-3 9-4 4-4  7-8 7-4 5-6 2-5 

P 6-3 8-3 1-4 8-7  5-6 4-4 4-6 

PT 5-5 4-5 6-6 4-7 6-5  4-7 1-7 

PI 5-2 7-1 5-5 6-5 5-2 7-4  3-3 

PIT 4-0 6-1 7-6 5-2 6-4 7-1 3-3  
 

Table 5.25. Ranking of the results achieved in the real games. 

Rank Case Points G+ G- GAVE 

1 P+I+T 19 38 17 +21 

2 P+I 15 37 24 +13 

3 I 12 43 31 +12 

4 P 10 36 33 +3 

5 I+T 7 41 34 +7 

6 P+T 5 30 42 -12 

7 T 4 22 48 -26 

8 R 2 21 40 -19 
 

Concluding, these results confirm the idea that agents (both supervisor as physical) 
can make sure decisions that carry a better performance when they use knowledge 
related to their situation to perform the proposed action. Due to difficult of the 
development of these experiments, the number of games is smaller but not less 
important for the aims of this dissertation. So, the exposed results confirm clearly the 
difference between the system performances where it uses task allocation or 
coordinated task problem-solving algorithm. In particular, there is an improvement 
rate of around an 88% in the coordinated task scenario and an improvement rate of 
around an 89% in the task allocation scenario. The Table 5.26 shows a comparison 
emphasizing such difference. 
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Table 5.26. Comparison between the case 7 in the Coordinated Task and Task Allocation scenarios. 

Scenario Case Points G+ G- GAVE 

TA P+I+T 19 38 17 +21 

CT P+I+T 17 50 31 +19 

5.6 Final Remarks 

 
The decision performance (successful decisions) of each agent (both supervisor as 

physical) is better when they are able to estimate their situation (i.e., their knowledge 
base) related to the execution of any proposed actions than when the agents does not 
use it. Successful decisions in all the experimental phases are related to the radio 
between the number of successful tasks performed by the agent and the total number 
of decided actions by the same agent.  According to this, the agents (both supervisor as 
physical) increase the number of successful decision if they are embodies their situation 
based on the decision axes considered over the environment. The data from the 
experiments discloses that the implementation of the three parameters of the decision 
axes combined in the agents’ decision-making produces best performance in all the 
experiments. However, the remaining cases show interesting results but not an optimal 
strategy for the present domains at all. Such fact illustrates that the choice of a strategy 
for include knowledge in the agents’ decision-making is far from trivial. In this case, 
the obtained results are significant, and show the need for further investigation about 
the agents’ situation and its effect in the performance of complex problems in dynamic 
and cooperative environments. To the end, the system performance is better using task 
allocation than using coordinated task solving-problem when agents must face 
dynamic and competitive environments. This fact is in response to the high level of 
interaction present in the above environments. In this sense, MAS using task allocation 
decision-making can reach a more suitable way to solve complex problems in 
competitive and dynamic scenarios. Against, to perform a steady and more complex 
action (e.g., the passing a ball task), MAS using coordinated task solving-problem 
present a feasible and successfully way to achieve higher levels of interaction. This fact 
is reinforced by the obtained results in the real test bed. In this sense, in real as well as 
in simulated test bed task allocation presents better performance than coordinated task 
in the developed soccer games. As was stated previously, the goal of this thesis is not 
to compare the results obtained in the two scenarios, but rather insight into to confirm 
that the proposed formalization of decision support in the framework for situated 
agents can face different kinds of coordinated and collaborative scenarios in a suitable 
way by reaching reliable and successful system performance. 
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Chapter 6  

Conclusions and Future Work 
This chapter summarizes the main contributions arisen of the analysis and discussion of the 

results reported in this work. The chapter also reviews the dissertation’s scientific contributions 
and then discusses promising directions for future research and application in certain topics in 
which the work of this thesis can continue. Finally, some concluding remarks are drawn. 

6.1 Revisiting Objectives 

The work and results presented in Chapters 4 and 5, show that a good framework 
for situated agent based on the knowledge of the introduced decision axes can increase 
the autonomy and self-control of agent in cooperative actions and allows obtaining 
reliable capabilities/requirements function in the agent cooperative resolution for 
coordinated task and task allocation problems. Such decision axes aid agents 
increasing their organizational control by improving their individual efficiency. It 
utilizes information, provides an easy-to-use method, and allows for the decision 
maker's own insights. 

Collaboration enables different entities to work more efficiently and to complete 
activities that they are not able to accomplish individually. However, in order to work 
jointly agents should coordinate their actions to benefit their temporal group achieving 
the common goal. Such coordination must be based on a regulation which defines how 
agents must interact and with whom must they do it. In this light, e-Institutions features 
facilitate an appropriate coordination and provide good levels of interaction among 
agents. In addition, the developed e-Institutions adaption has given the answer to solve 
complex situation involved in a robot soccer environment where agents, both 
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supervisor and physicals, must form temporal groups in determined regions of the 
field. To the end, the main goal of this thesis was to develop and formalize a multi-
agent decision support system for supporting the distributed planning of collective 
tasks performance in dynamic and cooperative environments. 

This is a complicated process because the number of action grows exponentially and 
an increase of the number of agents could be a new situation, and each agent takes 
individual decisions of which the outcome can be influenced by the actions performed 
by the other agents. For thus, each agent is capable of perceive and interpret the 
information involved in the proposed actions and include such information in its 
knowledge base. This fact, allow agents to be only focused in those particular actions 
that it can execute taking into account its calculated estimation (suitability rate) regards 
such actions. Redundancy in the tasks performance is then avoided. 

This new and effective approach contributes to improve multi-agent efficiency and 
performance in dynamic and cooperative environments because the agents can know if 
they can perform any proposed action. If agents cannot perform any action, the agents 
can make another decision depending on the general interest of the multi-agent 
system. Thus, the agents’ situation is based on the elements of the three decision axes 
and is useful in the agent’s decision-making aiming to increase the general system 
performance. 

This thesis has reported the research carried out in order to accomplish the main 
goal argued. For achieving it, a study about multi-agent coordination, a formal 
framework, an implementation stage and experimental results both simulated and real 
robot soccer test bed have been development. In light of this, the objective of this 
thesis was to have a formal multi-agent decision support as the framework for 
situated agents in dynamic and cooperative environments. 

6.2 Conclusion and Contributions 

This thesis presents the outline of a multi-agent decision support system that 
contributes with a powerful method, independent of particular implementation 
technologies, for building intelligent agents with strong and useful capability to 
perceive and include knowledge mainly related to their situation on the environment, 
aiming at a correct performance of collective tasks in cooperative environments. In 
particular, this thesis presents an appropriate alternative to get more reliable 
knowledge about the agents’ situation which is influencing the agent’s individual 
reasoning process reflecting in the collective decision-making. 
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Much work still remains to be done on the decision support for situated agents. The 
thesis has identified some limitations of the current coordination methods/techniques, 
but these suggest in turn some natural extensions which will let the proposed 
framework to cover a wide range of intelligent knowledge that, it believe, will prove 
difficult to achieve in a traditional architectural background. It is also interesting to 
compare this approach with other techniques, in order to evaluate the usefulness and 
advantages of the proposal here. 

The main contributions of this thesis are summarized as follow: 

An study and definition of decision axes based on world representation (proximity), 
awareness (introspection) and interaction (trust), to be considered in the embodiment 
of the agents’ situation. 

The thesis reported a suitable way to embody agents by means of the knowledge 
involved in the agents’ actions rates. Such knowledge is then represented in the agents’ 
knowledge base meaning all the information that agents have available at moment to 
decide if they are able or not to execute the action required. 

A formal design framework for coordination of multi-agent systems within 
cooperative environments using the claimed decision axes. 

The thesis reported a good and feasible way to taking advantages of the 
combination of three kinds of knowledge related to the agents’ actions rates and 
outlined the way of including such knowledge in the agents’ decision-making. For 
thus, a formal multi-agent decision support based on the information of the three 
decision axes aforementioned was proposed. Such axes are seen a proper alternative 
used by the physical agents to include the knowledge of their situation related to any 
proposed actions. More specifically, these axes consist in parameters that embody the 
agent capability to perform any proposed action. 

A decision-maker tool as a bridge to the gap between the actions’ requirements and 
the agents’ capabilities to perform such actions. 

In this sense, the thesis argues the need to define that agent will be able (or not) to 
accomplish a certain action according to its individual capabilities. Indeed, the overall 
system performance increases if agents can perform individual actions in a better and 
more reliable way. It utility and feasibility of this approach on several coordinated 
cases and task allocation examples have been demonstrated. 

A taxonomy for classification of approaches related to coordinated activities both 
in physical multi-agent systems as in multi-robot systems. 
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Finally, a classification by considering the three decision axes in the agents’ 
decision-making is introduced. Such consideration determines the information selected 
to the agents. These elements therefore, have been ranked aiming to enhance future 
trends on the research on multi-agent and multi-robot systems.  

6.3 Related Publications 

The work developed for this thesis has lead to several contributions presented and 
discussed in different conference and congress. The most relevant works are listed and 
briefly commented below. 

Ibarra M., Salvador, Quintero, C.G., Ramon, J., De la Rosa, J. Ll. and Castán, J.A., “Confianza 
entre Agentes. Un Estudio para Asignación de Tareas en Robot Soccer”, In Proc. of the 7ma 
Conferencia Iberoamericana en Sistemas, Cibernética e Informática CISCI 2008, to appear. 

A proposal for task allocation in physical multi-agent systems by means of trust parameters in the 
task capabilities/requirements function is presented. The consideration of the agents’ ability to reach 
cooperative agreements increases the performance of temporal groups of physical agents. Empirical 
results are presented in the successful performing of tasks by cooperative mobile robots in a 
simulated robot soccer environment. 

De la Rosa J. Ll., Figueras A., Quintero C. G., Ramon J. A., Ibarra M. Salvador, and Esteva S. 
“Outline of Modofication Systems”,·Studies in Computational Intelligence, vol. 57, pp. 55-69 
Spring-Verlag, ISSN: 1860-949X, 2007. 

New hints for engineers to design control systems are presented. This work proposes that control 
engineers may keep KISS design in the control dimension, by explicitly introducing awareness 
(introspection) and interaction (trust) that let improve the performance of a machine while keeping 
the design simplicity. 

Ibarra M. Salvador, Quintero C. G., Ramon J. A., De la Rosa J. Ll. and Castán J. A. “PAULA: 
Multi-agent Architecture for Coordination of Intelligent Agent Systems”, In Proceeding of the 
European Control Conference 2007, vol. 1, pp. 2185-2192, ISBN: 978-960-89028-5-5, Kos - 
Grecee, July 2, 2007. 

An architecture for coordination of multi-agent systems by means of knowledge based on the agents’ 
situation within dynamic environments is presented. Agents are classified into two categories: 
Supervisor agents and Physical agents. Such classification allows agent to differentiate between 
them aiming to improve the cooperative task allocation in dynamic and competitive environment. 
Indeed, preliminary results in the simulated robot soocer test bet are presented. 

Ibarra M. Salvador, Quintero C. G., De la Rosa J. Ll. “Physical Multi-agent Systems: A new 
Taxonomy aimed on Coordination”, In Proceedings of the 2nd Spanish Congress on Computer 
Science CEDI 2007, vol. 1, pp. 97 – 104, Thomson-Paraninfo Press, ISBN: 978-84-9732-597-4. 
Zaragoza – Spain, September 11, 2007. 
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A survey of the work most early in cooperative physical multi-agent systems is presented by 
examining several ways of cooperation and coordination performed on such systems. In particular, 
the work proposes a new taxonomy based on three parameters related to awareness (introspection), 
interaction (trust) and world representation (proximity) for the classification of approaches on 
coordination in physical multi-agent and multi-robot systems and describes some systems, which it 
considers representative in the taxonomy.  

Quintero C. G., Ibarra M. Salvador, De la Rosa J. Ll., Vehí J. “Introspection on Control-
grounded Capabilities. A Task Allocation Study Case in Robot Soccer”, In Proceedings of the 
4th International Conference on Informatics in Control, Automation and Robotics 2007, vol. 
2, pp.  461– 467, ISBN: 978-972-8865-87-0, Angers – France, May 9, 2007. 

A proposal for task allocation in physical multi-agent systems by means of novel coordination 
parameters in the task utility/cost functions is presented. The composition of any parameters with 
introspection increases the performance as the result of most suitable task allocation. This proposal 
is demonstrated in the successful performing of tasks by cooperative mobile robots in a simulated 
robot soccer environment. 

Quintero C. G., Ibarra M. Salvador, De la Rosa J. Ll. “A Coordination Approach for Task 
Allocation. Case Study in Robot Soccer”, In Proceedings of the 2nd Spanish Congress on 
Computer Science CEDI 2007, vol. 1, pp. 35 – 42, Thomson-Paraninfo Press, ISBN: 978-84-9732-
597-4. Zaragoza – Spain, September 11, 2007. 

An illustrative example in robot soccer of new coordination parameters to improve the coordination 
among physical agents in task allocation problems is shown. The approach proposes introspection, 
proximity and trust as key in the utility/cost functions to achieve the above aim. These parameters 
were managed in a holistic manner to select the most suitable agent to perform the proposed task. 

Ibarra Salvador, Quintero C. G., Ramón J. A., De la Rosa J. Ll. and Castán J. A. “Studies About 
Multi-agent Team work Coordination in the Robot Soccer Environment”, In Proceeding of the 
11th Fira Robot Worl Congress 2006, vol. 1, pp. 63 - 67, ISBN: 3-00-019061-9, Dortmund – 
Germany, Jun. 30 – Jul. 1, 2006. 

A mechanism based on a characteristic of physical agent named “degrees of situation” that aids to 
improve the coordination among heterogeneous agents is suggested. These systems can be 
represented by means of the “physical agent” paradigm. This work has studied how the team work 
can be improved by the “degree of situation” management in robot soccer environment. 

Ibarra Salvador, Quintero C. G., Busquets D., Ramón J. A., De la Rosa J. Ll. and Castán J. A. 
“Improving the Team-work in Heterogeneous Multi-agent Systems: Situation Matching 
Approach”, Frontiers in Artificial Intelligence and Applications – AI Research & 
Development, vol. 146, pp. 275 – 282, IOS Press ISSN: 0922-6389, Amsterdam – Netherlands, 
October, 2006. 

A “situation matching” method that aims at improving cooperative tasks in heterogeneous multi-
agent systems is proposed. The situation matching represents a match between the systems 
requirements and the agents’ capabilities. This work has studied how the heterogeneous agents’ 
performance improves by means of such “situation matching” in the robot soccer test bed. 
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Ibarra M. Salvador, Quintero C. G., De la Rosa J. Ll. and Castán J. A. “An Approach based on 
New Coordination Mechanisms to Improve the Teamwork of Cooperative Intelligent Agents”,  
In Proceedings of the IEEE Seventh Mexican International Conference on Computer Science 
ENC 2006, vol. 1, pp. 164 -172, IOS Press ISSN: 1550-4069, San Luis Potosí – Mexico, Sept. 2006. 

The impact of the agents’ situation study to include knowledge involved directly in the agents’ task 
requirements in the decision-making of physical heterogeneous agents is highlighted. This approach 
allows to each agent a reliable self-knowledge which concludes in achieving sure commitments and 
intelligent task acceptance in dynamic and cooperative scenarios. 

Quintero C. G., Ibarra M. Salvador, De la Rosa J. Ll. and Vehí Josep, “Dynamics Features on 
Robots Decisions. A Perspective based on Control-grounded Capabilities”, In Proceedings of 
the 5th IEEE International Symposium on Robotics and Automation ISRA 2006, vol. 1, pp. 199 
– 206, ISBN: 970-769-070-4, Hidalgo – Mexico, Ago. 25, 2006. 

Theoretical and practical groundwork based on control-grounded capabilities to include dynamics 
features on the decision-making of cooperative mobile robots from a control-oriented viewpoint is 
presented. This work stresses the advantages of the proposed approach in coordinated tasks of robot 
soccer. 

Quintero C. G., Ibarra M. Salvador, De la Rosa J. Ll. and Vehí J. “Exploring the Physical Agents' 
Behaviors to Improve Collective Decisions in Multi-Agent Environments”, In Proceedings of the 
1st Spanish Congress on Computer Science CEDI 2005, vol. 1, pp. 9 – 15, Thomson-Paraninfo 
Press, ISBN: 84-9732-435-8. Granada– Spain, September 16, 2005. 

This paper presents a machine learning perspective to include environment-oriented knowledge in 
the decisions making structure of physical agents. This approach solves the opposite team’s 
behaviors problem, improving our team decisions based on the CBR methodology in a robotic soccer 
test bed. It is provided the outline of the research applied to strategy decisions in robotic soccer. 
Examples and conclusions are presented, emphasising the advantages of our proposal in the 
improvement of the multi-agent performance in cooperative systems. 

Ibarra M. Salvador, Christian G. Quintero M., Josep A. Ramon., Josep Ll. De La Rosa, A. 
Figueras., “Generación y Gestión de Diversidad Dinámica En Agentes Físicos”, 26th Spanish 
Congress on Automation JA 2005, vol. 1, pp. 157 – 163, ISBN: 84-689-0730-8, Alicante – Spain, 
Septiembre 7, 2005. 

An approach to show how artificial intelligence techniques improve the coordination of dynamic 
systems (physical agents) is presented. In particular, the physical agent uses introspection about 
their physical bodies to get a better self-knowledge increase the agent performance in cooperative 
scenarios. Some preliminary results emphasizing the advantages of this approach by improving the 
performance of cooperative systems are shown.  

6.4 Future Trends 

Agent technology is studied by several research groups and is commonly useful to 
solve complex problems of the real world in a wide range of industrial and commercial 
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applications that are beyond human systems. Specially, in applications that require 
autonomy and cooperation as key properties for the proper development of the 
system’s goals. Many interesting fields for the application of the multi-agent systems 
are vaguely mentioned in [Luck et al., 05] where the most predominant area is related 
to industrial applications (e.g., manufacturing process, telecommunications, aircraft 
and transport systems). While the industrial applications tend to be highly complex, 
there are indications about agent systems working in areas less complex oriented to 
commercial application (e.g., information management, e-commerce, etc) as well as 
leisure implementations (e.g., games). However, an increasing area in the artificial 
intelligence is the application of agents in medical procedures. Such area aims to being 
one of the most relevant applications of the agent technology [Luck et al., 05].  

Because there are many approaches to decision-making and because of the wide 
range of domains in which decisions are made, the idea of multi-agent decision 
support is very broad. Along the research developed in this thesis; the agents’ 
situation on multi-agent cooperation has been extensively studied in the robot soccer 
domain. The obtained results present some features that could be extended to other 
domains and applications that may also benefit from the explicit knowledge on the 
decision axes mentioned in this work. In this sense, a novel application of the proposed 
approach could be applied in other simulated test beds where teams of autonomous 
mobile agents must take cooperative decision in real time within dynamics and 
hazardous environments such as rescue scenarios [Quintero et al., 07b], [Murphy, 04]. 
Agents can reflect their situation regarding to each possible danger condition in their 
knowledge bases. Such information lets agents to be aware about the set of actions that 
they can do and to establish a certainty index about their success in the task that they 
will perform. While agents can identify and include more and more useful information 
in their situation, they can increase the task performance impacting positively in the 
overall system. 

The current efforts and results showed in this thesis emphasising that the decision 
axes notion is very useful for cooperative multi-agent systems. However, it is still 
difficult to choose the needed information to be included in the decision axes as well as 
the most suitable particular implementation technologies for imitating awareness in 
physical agents. In this direction, the thesis has reported some preliminary steps, 
showing some results obtained by using different machine learning and soft-
computing techniques for building the world representation (proximity), the awareness 
(introspection), and the interaction (trust). In this light, more extensive studies on these 
topics should be carried out to guarantee a better agent-oriented representation of the 
agents’ situation regarded to the environment and other relevant details that can 
increase and benefit the cooperative multi-agent performance. 



Chapter 6: Conclusions 

130 

Multi-agent decision support has been studied in this thesis mainly in the context of 
the agents’ situation resulting from the knowledge of the three decision axes. The 
relevance of this new approach has been shown especially in cooperative mobile 
robots, but the agents’ situation concept in other interesting types of application should 
be explored more in depth to enrich the agents’ decision-making with information 
directly related to the agents’ embodiment and other aspects of cooperation. In 
addition, the contribution presented in this thesis reveals the possible emergence of a 
new line of research mainly related to the quantity and quality of the information that 
agents can conceive in their knowledge bases in order to be situated once they are 
placed in a cooperative environment. 

De la Rosa et al., [De la Rosa et al., 07] introduces a new paradigm in the research 
field of the agents called Modification Systems which are designed as a generalization of 
control systems and situated agents, where anybody does not control a system but 
modifies a system by some multidimensional change of its original behavior toward a 
desired target behavior. In this sense, modification systems refer to the property of one 
machine to have three modifiers of its behavior (Fig. 6.1) and it can modify its behavior 
by increasing or decreasing its consideration in each dimension. 

 

Fig. 6.1. General scheme of modifiers in the Modification System approach. 

The thesis argues that a promising line of research could be the Modification 
Degrees approach (see Fig. 6.2). It can adopt the principle of the modification systems 
to generate a new perspective to increase the agents’ situation. Such modification 
degrees can influence the amount of information that agents include in their 
knowledge bases aiming to improve the cooperative performance of this systems due 
to the agents can added more o less information in any dimension. In this sense, it new 
application aims to improve the cooperative global performance in systems where the 
information proposed for the agents will more representative in one specific 
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dimension. Decision axes can change as for complexity, interest or usefulness, however 
a deeper study on how deciding the relevance of information for the agents’ situation, 
would be very interesting in order to strengthen and to stimulate the agents’ decision-
making in dynamic and cooperative environments. 

 

Fig. 6.2. General scheme of the Situation Degree proposed for future research work.  

6.5 Final Remarks 

This thesis was intended to bring the agents research community one step closer to 
an understanding how information involved in the execution of the action can embody 
the agents’ situation. Such embodiment allows agents to be sure about what action can 
perform in a more reliable way. In addition, the thesis argues the need for a 
formalization of decision axes for physically situated agents to improve the agents’ 
decision-making performance in both individual and cooperative decisions and close 
the gap between the requirements involved in the execution of any action and the 
agents’ capabilities to perform such actions.  

Decision axes in the framework of the decision support for situated agents allows 
agents to achieve sure and trustworthy individual decisions in cooperative systems, 
improving the performance of agents in coordinated task and task allocation scenarios. 
The thesis has shown how the decision support for situated agents helps to prevent 
undesirable situation, to make safer decisions, to increase the coordinated 
organizational control, to facilitate interpersonal communication, to expedite a proper 
problem solving path and to obtain enhanced levels of performance and autonomy in 
any group of cooperating agents. 
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Appendix A 

Other Interesting Results 
In order to strength the results showed in the chapter 5, this appendix includes information 

related to the experimental results. 

A.1   Simulated Results - Implementation 1 

In order to provide the reader with more information related to the simulated 
experimental results obtained in the implementation 1; this section presents a study of 
the successful action for each case study. In this light, the tables depict the goals and 
tasks trials and their successful performance; as well as the relation between the 
physical agent and the roles, analyzing the occasions in which each physical agent 
decide to play a role, and its effectiveness to perform such selected role, respectively. 

A.1.1  Scenario 1: Coordinated Task 

Case 1: Trust [ 0, 0, 1 ] 

The table A1 summarizes the goals and tasks performance rates. Such information is 
studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A2 shows the successful performance 
of each physical agent in the execution of the roles. In particular, the overall individual 
performance of each physical agent is obtained by estimating the successful rates of all 
its executed actions. 
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Table A1. Successful decisions using the Trust parameter. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 441298 42.05 
task1 183403 41.56 40.53 

task2 257895 58.44 46.88 

scene2 goal2 739105 66.83 
task2 382386 51.73 39.41 

task3 356809 48.27 42.52 

scene3 goal3 565239 41.67 
task4 305681 54.08 33.57 

task5 259558 45,92 43.70 
 

Table A2. Physical agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
Trial (%) trial (%) trial (%) trial (%) 

pa2 1388923 421260 50.23 455112 42.56 116570 52.84 211969 36.18 45.11 

pa3 174572 224589 48.56 460000 48.52 96909 46.78 161735 48.56 48.36 

pa4 356809 335841 51.86 458080 39,55 71754 55,34 139176 42.39 45.20 

pa5 616367 407232 52.24 372539 40.67 71576 48.56 103488 24.75 44.47 
 

Case 2: Introspection [ 0, 1, 0 ] 

The table A3 summarizes the goals and tasks performance rates. Such information is 
studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A4 shows the successful performance 
of each physical agent in the execution of the roles. In particular, the overall individual 
performance of each physical agent is obtained by estimating the successful rates of all 
its executed actions. 

Table A3. Successful decisions using the Introspection parameter. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 510375 49.05 
task1 187104 36.66 60.02 

task2 323272 63.34 48.93 

scene2 goal2 758204 69.37 
task2 463869 61.18 43.29 

task3 294335 38.82 54.21 

scene3 goal3 548349 50.32 
task4 327748 59.77 54.56 

task5 220601 40.23 58.66 
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Table A4. Physical agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
Trial (%) trial (%) trial (%) trial (%) 

pa2 1107495 392220 60.66 468586 61.32 95865 58.94 150825 45.43 58.72 

pa3 1021546 366488 51.35 449871 56.29 74290 50.21 130897 50.77 53.37 

pa4 1055561 382323 61.94 484393 54.78 61398 58.47 127447 53.22 57.40 

pa5 964189 381562 54.11 414078 58.43 62782 56.78 105768 49.56 55.64 
 

Case 3: Introspection + Trust [ 0, 1, 1 ] 

The table A5 summarizes the goals and tasks performance rates. Such information is 
studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A6 shows the successful performance 
of each physical agent in the execution of the roles. In particular, the overall individual 
performance of each physical agent is obtained by estimating the successful rates of all 
its executed actions. 

Table A5. Successful decisions using the Trust and Introspection parameter. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 438423 32.61 
task1 238151 54.32 29.43 

task2 200272 45.68 27.32 

scene2 goal2 759440 29.44 
task2 407515 53.66 30.45 

task3 351924 46.34 32.66 

scene3 goal3 605604 28.13 
task4 317518 52.43 29.87 

task5 288086 47.57 31.98 
 
 

Table A6. Physical agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
trial (%) trial (%) trial (%) trial (%) 

pa2 1451543 108912 33.2 427061 34.65 89741 31.99 156803 40.12 34.79 

pa3 1803467 358096 36.54 444915 31.22 90445 33.75 170883 30.55 33.12 

pa4 351924 366660 34.12 469803 34.9 92556 31.5 162563 30.44 33.69 

pa5 640010 398739 38.5 461688 33.64 79183 29.76 149762 29.43 34.56 
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Case 4: Proximity [ 1, 0, 0 ] 

The table A7 summarizes the goals and tasks performance rates. Such information is 
studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A8 shows the successful performance 
of each physical agent in the execution of the roles. In particular, the overall individual 
performance of each physical agent is obtained by estimating the successful rates of all 
its executed actions. 

Table A7. Successful decisions using the Trust parameter. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 428900 54,33 
task1 198581 46.30 37.38 

task2 230319 53.70 58.34 

scene2 goal2 804738 75.65 
task2 465782 57.88 27.46 

task3 338956 42.12 48.03 

scene3 goal3 529205 63.58 
task4 319852 60.44 51.37 

task5 209353 39.56 40.34 
 

Table A8. Physical Agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
trial (%) trial (%) trial (%) trial (%) 

pa2 1133908 308747 50.23 498995 42.56 103619 52.84 161587 36.18 45.17 

pa3 1022998 300298 48.56 475439 48.52 96806 46.78 150456 48.56 48.37 

pa4 986264 362664 51.86 416560 39,55 72265 55,34 134774 42.39 45.64 

pa5 930825 380178 52.24 382889 40.67 66266 48.56 101492 24.75 44.22 
 

Case 5: Proximity + Trust [ 1, 0, 1 ] 

The table A9 summarizes the goals and tasks performance rates. Such information is 
studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A10 shows the successful 
performance of each physical agent in the execution of the roles. In particular, the 
overall individual performance of each physical agent is obtained by estimating the 
successful rates of all its executed actions. 
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Table A9. Successful decisions using the Trust and Proximity parameter. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 452230 40.31 
task1 259218 57.32 41.13 

task2 193012 42.68 47.22 

scene2 goal2 739531 49.12 
task2 377678 51.07 41.07 

task3 361852 48.93 43.76 

scene3 goal3 574072 39.68 
task4 317864 55.37 35.44 

task5 256208 44.63 45.01 
 
 

Table A10. Physical agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
trial (%) trial (%) trial (%) trial (%) 

pa2 978559 300733 33.2 418149 34.65 95891 31.99 163786 40.12 34.86 

pa3 1042360 357453 36.54 435631 31.22 96615 33.75 152661 30.55 33.18 

pa4 1072651 371353 34.12 459999 34.9 84312 31.5 156987 30.44 33.71 

pa5 1056156 374442 38.5 452053 33.64 85035 29.76 144626 29.43 34.47 
 
 

Case 6: Proximity + Introspection [ 1, 1, 0 ] 

The table A11 summarizes the goals and tasks performance rates. Such information 
is studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A12 shows the successful 
performance of each physical agent in the execution of the roles. In particular, the 
overall individual performance of each physical agent is obtained by estimating the 
successful rates of all its executed actions. 

Table A11. Successful decisions using the Introspection and Proximity parameter. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 489920 59.66 
task1 284252 58.02 69.88 

task2 205669 41.98 56.47 

scene2 goal2 704877 64.75 
task2 382959 54.33 59.32 

task3 321917 45.67 61.76 

scene3 goal3 534537 66.72 
task4 310994 58.18 60.43 

task5 223543 41.82 66.32 
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Table A12. Physical agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
trial (%) trial (%) trial (%) trial (%) 

pa2 1027196 313010 61.22 443401 62.43 94547 60.35 176238 47.11 59.24 

pa3 988672 329758 53.44 421957 57.37 88592 53.44 148365 51.23 54.79 

pa4 997991 375217 60.23 436484 58.02 67925 59.43 118365 54.66 58.55 

pa5 990270 389432 56.22 427491 59.55 70854 57.13 102492 51.08 57.19 
 

Case 7: Proximity + Introspection + Trust [ 1, 1, 1 ] 

The table A13 summarizes the goals and tasks performance rates. Such information 
is studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A14 shows the successful 
performance of each physical agent in the execution of the roles. In particular, the 
overall individual performance of each physical agent is obtained by estimating the 
successful rates of all its executed actions. 

Table A13. Successful decisions using the Trust and Introspection and Proximity parameter. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 557374 63.71 
task1 317870 57.03 70.59 

task2 239504 42.97 64.6 

scene2 goal2 679556 64.59 
task2 385784 56.77 66.55 

task3 293772 43.23 61.27 

scene3 goal3 628445 68.44 
task4 368583 58.65 60.13 

task5 259862 41.35 58.92 
 

Table A14. Physical agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
trial (%) trial (%) trial (%) trial (%) 

pa2 1078824 390857 61.39 453472 58.67 72944 60.33 161550 64.36 60.62 

pa3 1066961 403116 68.35 438923 60.24 77380 59.66 147543 62.41 63.56 

pa4 1075692 389600 71.33 490966 72.45 74765 66.8 120360 63.45 70.64 

pa5 1062905 388029 77.39 482013 71.33 68684 65.4 124180 68.04 72.77 
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A.1.2  Scenario 2: Task Allocation 

Case 1: Trust [ 0, 0, 1 ] 

The table A15 summarizes the goals and tasks performance rates. Such information 
is studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A16 shows the successful 
performance of each physical agent in the execution of the roles. In particular, the 
overall individual performance of each physical agent is obtained by estimating the 
successful rates of all its executed actions. 

Table A15. Successful decisions using the Trust parameter. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 493389 41.94 
task1 269736 54,67 41.2 

task2 223653 45,33 45.72 

scene2 goal2 758830 66.59 
task2 445206 58,67 40.1 

task3 313624 41,33 41.87 

scene3 goal3 613145 41.08 
task4 369972 60,34 33.76 

task5 243173 39,66 42.45 
 

Table A16. Physical agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
trial (%) trial (%) trial (%) trial (%) 

pa2 1215548 443177 33.56 512042 30.49 98133 31.04 162195 30.76 31.69 

pa3 1083427 380797 29.46 466901 31.24 89069 30.08 146661 28.49 30.15 

pa4 1039706 374435 31.34 469512 29.3 66582 28.95 129177 29.57 30.05 

pa5 948844 353331 31.28 416909 33.84 59840 25.79 118765 24.05 31.15 
 

Case 2: Introspection [ 0, 1, 0 ] 

The table A17 summarizes the goals and tasks performance rates. Such information 
is studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A18 shows the successful 
performance of each physical agent in the execution of the roles. In particular, the 
overall individual performance of each physical agent is obtained by estimating the 
successful rates of all its executed actions. 

 



Appendix A 

150 

Table A17. Successful decisions using the Introspection parameter. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 
588784 

 48.69 
task1 325715 55,32 58.67 

task2 263069 44,68 49.72 

scene2 goal2 
816049 

 69.55 
task2 479510 58,76 45.03 

task3 336538 41,24 53.55 

scene3 goal3 
617091 

 51.73 
task4 422399 68,45 52.65 

task5 194692 31,55 59.34 
 

Table A18. Physical Agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
trial (%) trial (%) trial (%) trial (%) 

pa2 1281522 464661 61.76 534799 60.35 109678 65.98 172384 59.76 61.26 

pa3 1182534 417976 67.54 521859 69.09 92043 64.95 150657 61.44 67.25 

pa4 1097957 410223 63.13 495978 70.24 69361 60.51 122396 55.09 66.4 

pa5 1013065 392526 71.3 469289 67.08 65457 62.43 85794 69,64 68.63 
 

Case 3: Introspection +Trust [ 0, 1, 1 ] 

The table A19 summarizes the goals and tasks performance rates. Such information 
is studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A20 shows the successful 
performance of each physical agent in the execution of the roles. In particular, the 
overall individual performance of each physical agent is obtained by estimating the 
successful rates of all its executed actions. 

Table A19. Successful decisions using the Trust and Introspection parameters. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 477475 30.28 
task1 255401 53,49 28.74 

task2 222074 46,51 29.11 

scene2 goal2 851657 27.45 
task2 499156 58,61 31.44 

task3 352501 41,39 33.48 

scene3 goal3 545525 29.4 
task4 319896 58,64 31.02 

task5 225629 41,36 29.33 
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Table A20. Physical agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
trial (%) trial (%) trial (%) trial (%) 

pa2 1233518 416005 33.05 527528 33.79 112730 31.88 177255 41.35 34.45 

pa3 1096199 403219 36.38 444481 30.69 103388 34.04 145111 30.76 33.11 

pa4 1055473 370188 34.5 489473 33.67 66658 32 129154 29.8 33.38 

pa5 942253 332743 39.44 413174 34.11 69725 28.49 126610 30.02 35.03 
 

Case 4: Proximity [ 1, 0, 0 ] 

The table A21 summarizes the goals and tasks performance rates. Such information 
is studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A22 shows the successful 
performance of each physical agent in the execution of the roles. In particular, the 
overall individual performance of each physical agent is obtained by estimating the 
successful rates of all its executed actions. 

Table A21. Successful decisions using the Proximity parameter. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 515849 52.84 
task1 279642 54.21 36.85 

task2 236207 45.79 57.77 

scene2 goal2 812063 69.43 
task2 488212 60.12 31.6 

task3 323851 39.88 50.43 

scene3 goal3 615753 65.23 
task4 353996 57.49 52.09 

task5 261757 42.51 38.76 
 

Table A22. Physical Agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
trial (%) trial (%) trial (%) trial (%) 

pa2 1098657 371099 36.54 454818 36.84 97058 37.44 175682 36.21 36.69 

pa3 1142926 397340 38.61 491747 30.87 89869 32.45 163970 38.9 34.84 

pa4 1129997 414025 29.78 499522 32.44 70049 27.12 146402 38.88 31.97 

pa5 1101357 437350 33.55 497578 36.09 66875 33.19 99553 32.75 34.60 
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Case 5: Proximity + Trust [ 1, 0, 1 ] 

The table A23 summarizes the goals and tasks performance rates. Such information 
is studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A24 shows the successful 
performance of each physical agent in the execution of the roles. In particular, the 
overall individual performance of each physical agent is obtained by estimating the 
successful rates of all its executed actions. 

Table A23. Successful decisions using the Trust and Proximity parameters. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 537356 38.56 
task1 273299 50,86 42.34 

task2 264057 49,14 46.55 

scene2 goal2 841904 43.76 
task2 516255 61,32 39.54 

task3 325648 38,68 40.97 

scene3 goal3 575474 41.4 
task4 342062 59,44 39.75 

task5 233412 40,56 45.21 
 

Table A24. Physical agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
trial (%) trial (%) trial (%) trial (%) 

pa2 1189087 401570 32.45 519177 34.87 109288 32.09 159053 41.48 34.68 

pa3 1147106 436106 35.94 488293 31.77 90042 34.04 132665 29.68 33.29 

pa4 1136570 413951 35.11 522109 35.75 65553 32.14 134957 29.66 34.59 

pa5 995765 377459 37.65 425155 32.4 60766 30.43 132386 31.01 34.09 
 

Case 6: Proximity + Introspection + [ 1, 1, 0 ] 

The table A25 summarizes the goals and tasks performance rates. Such information 
is studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A26 shows the successful 
performance of each physical agent in the execution of the roles. In particular, the 
overall individual performance of each physical agent is obtained by estimating the 
successful rates of all its executed actions. 
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Table A25. Successful decisions using the Introspection and Proximity parameters. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 
548349 

 61.04 
task1 291776 53,21 68.56 

task2 256572 46,79 61.33 

scene2 goal2 
785854 

 61.43 
task2 474184 60,34 60.21 

task3 311670 39,66 59.87 

scene3 goal3 
653288 

 64.49 
task4 379365 58,07 68.56 

task5 273924 41,93 60.43 
 

Table A26. Physical Agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
trial (%) trial (%) trial (%) trial (%) 

pa2 1228650 463532 64.56 480774 70.13 102165 69.54 182178 61.3 66.67 

pa3 1243287 453980 61.45 529468 66.9 88670 68.76 171169 66.04 64.92 

pa4 1044662 373708 70.34 486140 70.01 63830 66.78 120984 65.71 69.43 

pa5 1043977 384601 71.1 491109 66.02 57004 68.4 111263 61.33 67.52 
 

Case 7: Proximity + Introspection + Trust [ 1, 1, 1 ] 

The table A27 summarizes the goals and tasks performance rates. Such information 
is studied taking into account the average of the achieved successful actions at the 
simulated championships. In addition, the Table A28 shows the successful 
performance of each physical agent in the execution of the roles. In particular, the 
overall individual performance of each physical agent is obtained by estimating the 
successful rates of all its executed actions. 

Table A27. Successful decisions using the Trust and Introspection and Proximity parameters. 

Scene Goals Trials 
Successful 

Performance 
(%) 

Tasks Trials Trials 
(%) 

Successful 
Performance 

(%) 

scene1 goal1 575700 64.33 
task1 330624 57,43 69.32 

task2 245075 42,57 66.47 

scene2 goal2 770988 66.18 
task2 423118 54,88 70.32 

task3 347870 45,12 65.42 

scene3 goal3 608150 67.85 
task4 318184 52,32 59.65 

task5 289966 47,68 59.18 
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 Table A28. Physical agents’ successful roles’ performance. 

Physical 
Agent Trials 

Roles Overall 
Successful 
Rate (%) 

role1 role2 role3 role4 
trial (%) trial (%) trial (%) trial (%) 

pa2 1269178 438702 61.32 527806 60.33 111318 66.95 191351 60.4 61.26 

pa3 1166499 424240 66.24 469161 64.23 100882 60.01 172216 55.67 63.33 

pa4 1090658 385672 69.45 488710 70.33 69574 72.4 146702 53.76 67.92 

pa5 1021177 358354 79.68 469161 74.32 66095 62.04 127567 58.43 73.42 
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Appendix B 

The Robots 
This appendix is devoted to show the more transcendent aspects of the robots used in the real 

experiments developed in this dissertation. 

B.1.   Team Robots’ Description 

The robots used in the experimentation are the Yujin Robot Soccer6 official robots. In 
this sense, two models of robot have been used along the real experimental phases: the 
YSR-A and the VICTO robots. The physical description of each model of robot and 
vision systems are here, described as follow. 

B.1.1  YSR-A Robot 

The team-robot1 is constituted by three (3) YSR-A robots (some pictures of the robots 
are shown in Fig. B1). They are a 2-wheel robots, equipped with a radio frequency 
module RADIOMATIX BIM 418 or 433 MHz. The dimensions of the robots are 7.5 x 7.5 
x 7.5 (in cm, length × width × height) and 600 gr. in weight. They body was entirely done 
of duralumin to prevent the internal shock and maintain stability. Each robot has a 
cover (on the top of its body) makes out of a steel to protect the board form powerful 
exterior impact in the robot soccer. 

                                                           
6 http://www.yujinrobot.com/ 

http://www.yujinrobot.com
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In this sense, each robot has a CPU board micro-controller Intel 80C296SA with 
ROM (29C010) using a L298 drive board to control two with one chip. The motors are 
SWISS MINIMOTS with and integral encoder IE2- 512 and its resolution is 512 pulses / 
revolution. Besides, the wheels are of silicon tired mounted with gear on, material of 
aluminium. Finally, the robots’ power is provided by a re-chargeable lithium-ion 
battery of 7.4v, 1200mA.   

 

Fig. B1. YSR-A robot. 

 

Fig. B2. Part of the YSR-A robot; a) the battery; b) RF antenna; c) CPU board 

6.5.1.1 B.1.1.1  Vision System 

A frame grabber card is required for the vision program. The, a METEOR-II/4 from 
MATROX have been used. And the computer system runs over Windows 98. In the 
vision system, a CCD camera with zoom lens should be used for the playground to fit 
into the view area of screen. SAMSUNG Digital Color CCD Camera may be used as the 
CCD camera (see Fig. B3). The model number is SDC-410ND. The camera stand is 2 m 
or higher in height, and to display the whole area of the playground on the screen at 
this height, a lens with a zoom function has to be used. The length of the focus of the 
zoom lens must be between 3.5mm and 8.0mm and it must have a manually 
controllable iris. By controlling the iris, the brightness of the image on the screen can be 



Appendix B 

157 

set to a proper level of brightness even though the brightness of the surrounding 
environment around the game field is changed.  

 

Fig. B3. Camera 

 

Fig. B4. YSR-A Vision System – General Scheme. 
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Fig. B5. YSR-A Vision System – The Game. 

B.2   VICTO Robot 

The team-robot2 is constituted by three (3) VICTO robots (some pictures of the robots 
are shown in Fig. B6). They are 2-wheel robots, equipped with a radio frequency 
module SRF-418 or 433 MHz multi-channel developed by Yujin Robotics Co. The 
dimensions of the robots are 7.5 x 7.5 x 7.5 (in cm, length × width × height) and 450 gr. in 
weight. They body was entirely done of die casting to prevent the inner shock and 
keep solid shape. Each robot has a cover (on the top of its body) made of a plastic to 
prevent outer shock and inside noise. 

Moreover, each robot has a CPU board micro-controller ATMEGA 163 from 
ATMEL, and a Flash ROM (inside). Each robot also has two motors of 6v-DC motor of 
7400 rpm endowed with encoders of 144 pulses per revolution. Besides, the wheels are 
of silicon tired mounted with gear on, material of aluminium. Finally, the robots’ 
power is provided by a re-chargeable lithium-ion battery of 7.4v, 1000mA. 
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Fig. B6. The VICTO robot. 

 

 

Fig. B7. Part of the VICTO robot; a) the battery; b) RF antenna; c) CPU board 

6.5.1.2 B.2.1  Vision System 

A frame grabber card is required for the vision program. The, a METEOR-II/4 from 
MATROX have been used. And the computer system runs over Windows 2000. For the 
camera, a CCD camera with zoom lens should be used for the playground to fit into 
the view area of screen. SAMSUNG Digital Color CCD Camera may be used as the 
CCD camera. The model number is SDC-410ND. The camera stand is 2 m or higher in 
height, and to display the whole area of the playground on the screen at this height, a 
lens with a zoom function has to be used. The length of the focus of the zoom lens must 
be between 3.5mm and 8.0mm and it must have a manually controllable iris. By 
controlling the iris, the brightness of the image on the screen can be set to a proper 
level of brightness even though the brightness of the surrounding environment around 
the game field is changed. 
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Fig. B8. Robot Soccer Vision System – General Scheme 

 

Fig. B9. VICTO Vision System – The Game. 
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Fig. B10. VICTO Vision System – RoboTest. 
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