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Chapter 1

General Introduction

1.1 Motivation

Dynamic optimization methods have become increasingly important over the last 30

years in economics, and form the methodological cornerstone for particular economic

areas such as macro-economics or environmental and resource economics. Within

the dynamic optimization techniques employed, optimal control has emerged as the

most powerful tool for the theoretical economic analysis. However, there is the need

to advance further and take account that many dynamic economic processes are, in

addition, dependent on some other parameter different than time. In other words,

the decision variables as well as the state variables may depend not only one argu-

ment such as time or space but also on other aspects. One can think of relaxing the

assumption of a representative (homogeneous) agent in macro- and micro-economic

applications allowing for heterogeneity among the agents. For instance, the optimal

adaptation and diffusion of a new technology over time, may depend on income

or age of the person that adopted the new technology. Therefore, there are many

fields, such as health economics, epidemiology, vintage capital theory, or demogra-

phy, where the quality of the economic analysis would be enriched substantially by

1



Chapter 1. General Introduction

introducing heterogeneity in the economic models.

Likewise, it is easy to imagine that accounting for heterogeneity in natural re-

sources enhances the quality of the economic analysis in a substantial manner. One

can think of quality- or size- or age- distributed resources. In this case, it is necessary

to take account of the heterogeneity of natural resources in the design of environ-

mental policies. For example, in the case of agriculture, agricultural production is

as a major contributor to numerous environmental problems, such as soil erosion,

build-up of pesticide resistance, water logging, and the contamination of groundwa-

ter and surface waters (EPA, 1998). Most of these problems have a dynamic aspect,

therefore, dynamic models have to be introduced to design efficient policies that aim

to establish the socially optimal outcome. However, the magnitude of these environ-

mental problems depends also on the distribution of the characteristics of the land

within the relevant area, and on the type and intensity of the economic activities at

each location. Therefore, policies designed to establish the social outcome need to

be simultaneously targeted site-specifically and time-specifically.

Another example can be found on the optimal management of age- or size-

dependent populations, such as forests or fishery. The evolution of an heterogeneous

population depends not only on time, but on the distribution of the resource, because

it influences the growth process of each individual. For example, in a size-distributed

forest, the growth rate of trees does depend on the size of the neighboring trees. For

instance, given the same size of the biomass, a forest with a high share of big trees

leaves less space, light and nutrients in comparison with a forest with a high share

of young and small trees. Likewise the reproduction rate of a fish population varies

with the age distribution.

Despite the great potential of dynamic optimization problems that are struc-

tured in some additional dimension, such as age or space, the existing economic

applications are very scarce. The reason could be the high complexity of this type

of systems, generally characterized by integral equations or partial differential equa-

2



1.2. Objectives

tions. Moreover, optimization problems where the control variables depend on two

or more arguments are difficult to solve analytically, and thus, numerical meth-

ods have to be employed to solve these type of problems. Given this context, the

objectives of the thesis are defined in the following section.

1.2 Objectives

This thesis intends to accomplish two goals. The first goal is to analyze and revise

existing environmental policies that focus on defining the optimal management of

natural resources over time, by taking account of the heterogeneity of environmen-

tal conditions. Thus, the thesis makes a policy orientated contribution in the field

of environmental policy by defining the necessary changes to transform an environ-

mental policy based on the assumption of homogeneity into an environmental policy

which takes account of heterogeneity. As a result the newly defined environmental

policy will not only be more efficient but most likely also politically more acceptable

since it is tailored more specifically to the heterogeneous environmental conditions.

Additionally to its policy orientated contribution, this thesis aims making a method-

ological contribution by applying a new optimization technique for solving problems

where the control variables depend on two or more arguments — the so-called two-

stage solution approach —, and by applying a numerical method — the Escalator

Boxcar Train Method — for solving distributed optimal control problems, i.e., prob-

lems where the state variables, in addition to the control variables, depend on two

or more arguments.

The next chapter presents a theoretical framework to determine optimal re-

source allocation over time for the production of a good by heterogeneous producers,

who generate a stock externality. It is assumed that producers differ with respect

to the quality of the assets. It is analyzed the optimal intertemporal and qual-

ity specific combination of abatement strategies at the source (source abatement)

3



Chapter 1. General Introduction

given by a change in the intensity (intensive margin) of production, by the choice

of technology (extensive margin), and/or by the removal of existing pollution stock

(stock abatement). The framework presented in chapter 2 can be utilized in vari-

ous contexts, for instance, agricultural production where the heterogeneity resides

in varying land quality, manufacturing where the heterogeneity is generated by the

different characteristics of the capital goods (different machines or different plants)

or the energy sector with plants of different characteristics. Chapter 3 illustrates the

method in a more specific context, and integrates the aspects of quality and time,

presenting a theoretical model that allows to determine the socially optimal out-

come over time and space for the problem of waterlogging in irrigated agricultural

production. Moreover, the applicability of the theoretical approach is demonstrated

by reformulating the mathematical model such that it can be solved with standard

mathematical software. For this purpose, an empirical study based on the cotton

produced in the San Joaquin Valley in California is presented, and it is determined

the socially optimal water price in the presence of a common bad, i.e. waterlogging.

Another issue where the consideration of heterogeneity can have considerable

implications is the optimal management of heterogenous populations. In particular

one can think of age- or size-distributed populations such as fishes, animal herds,

forests, or one can think of it in a broad concept of biodiversity which includes the

distribution of age/size of the population. Chapter 4 of this thesis concentrates

on forestry resources, where the optimal management of a size-distributed forest

is analyzed. The consideration of size-distributed forest growth allows to come up

with an yet unavailable economic model to determine the optimal selective cutting

regime. A regime which is nowadays gaining more and more importance in forest

management due to its lower environmental impact than the previously analyzed

clear-cutting regime.

4



1.3. Methodology

1.3 Methodology

The modern economic analysis of natural resource problems considers the seminal

article by Hotelling (1931) as the starting point of its field. It identified the need

for an intertemporal approach to exhaustible resource economics. Certainly, most of

the studies that intend to find the optimal management of natural resources have a

common feature: They are confronted with dynamical systems, that is, systems that

evolve over time. The current state of the system results as a consequence of the

overall past decisions, and the present decisions will condition its future evolution.

Thus, dynamic optimization methods have become increasingly utilized over the

last decades in economics, to solve these type of problems. Within the dynamic

optimization techniques employed, optimal control, developed by Pontryagin et al.

(1961), has turned into the most powerful tool for the theoretical economic analysis.

To describe the methodology utilized in this thesis, a classification scheme

for the different optimal control methods employed in dynamic economic analysis

is presented in Table 1.1. The set of essential properties or characteristics of a

dynamic system is called “the state of the system”, where x = (x1, x2, ..., xn) is

a vector denoting the n “state variables” of the system. The rate of change of

the state variables with respect to time may depend on the present state of the

system, as well as on variables that can be modified voluntarily, i.e., they are under

control. These variables are called “control variables”, and are denoted by u =

(u1, u2, ..., um). Thus, the law of motion or state equation is a differential equation

governing the evolution of the system, denoted by ẋ(t) = g(x(·), u(·), ·), g(·) ∈ C(2).

The objective function of the decision maker is to maximize or minimize a certain

function f(x(·), u(·), ·), f(·) ∈ C(2), which is influenced by the control variables, u,

both directly, and/or indirectly through its impact on the evolution of the state of

the system, x. In economic analysis, the argument of the state and control variables

is often unique, and it stands for calendar time, denoted by t.
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Chapter 1. General Introduction

Table 1.1: Classification Scheme for Dynamic Optimization Problems*

Number of arguments of the decision variables

1 2

Optimal Control Two-Stage Optimal Control

N
u
m

b
er

of
ar

gu
m

en
ts

of
th

e
re

st
ri

ct
ed

va
ri

-

ab
le

s
w

h
ic

h
in

fl
u
en

ce
th

e
re

st
ri

ct
io

n
fu

n
ct

io
n

max
u(t)

∫ ∞

0

f(x(t), u(t), t) dt max
u(t, ε)

∫ ∞

0

∫ ε1

ε0

f(x(t), u(t, ε), t, ε) dε dt

1 subject to subject to

dx(t)

dt
= g(x(t), u(t), t)

dx(t)

dt
=

∫ ε1

ε0

g(x(t), u(t, ε), t, ε) dε

Distributed Optimal Control

max
u(t, ε)

∫ ∞

0

∫ ε1

ε0

f(x(t, ε), u(t, ε), t, ε) dε dt

2 does not exist subject to

∂x(t, ε)

∂t
= g(x(t, ε), u(t, ε),

∂x(t, ε)

∂ε
, t, ε)

*Based on Calvo and Goetz (2001).

However, only recently the restriction that physical of bio-physical attributes

of the variables of interest are homogeneous has been relaxed. In other words, the

decision variables as well as the state variables may depend not only on time but

also on other aspects, denoted by ε. For instance, space, age or size. In this context,

one can distinguish two different cases. In the case where the decision variables

depend on two arguments, for instance time and one-dimensional space, but the

state variables depend only on one argument one may utilize two stage optimal

control (Goetz and Zilberman, 2000). However, often the state variables are also

6



1.3. Methodology

structured over a particular characteristic, which leads to a distribution of the state

variables for every moment of time over the characteristic ε, e.g., quality, age, size.

In the case where both, decision and state variables, depend on two arguments one

need to employ distributed optimal control.

Chapter 2 and 3 of this thesis modify the framework initially described by

Goetz and Zilberman (2000) to find the optimal management of natural resources

when the state variable is an aggregate that only depends on time. In this situation,

it is possible to utilize two-stages optimal control to find an analytical solution. A

general outline of a two stage optimal control problem is described in Table 1.1. For

its analytical solution, let start out from its definition given by

max
u(t,ε)

∫ ∞

0

e−δt

∫ ε1

ε0

f(x(t), u(t, ε), t, ε) dε dt, (S)

subject to

ẋ(t) =

∫ ε1

ε0

g(x(t), u(t, ε), t, ε) dε, x(0) = x0.

Utilizing Pontryagin’s Maximum Principle, the current Hamiltonian of prob-

lem (S) is given by

H ≡
∫ ε1

ε0

f(x(t), u(t, ε), t, ε) dε − µ(t)
(∫ ε1

ε0

g(x(t), u(t, ε), t, ε) dε
)
,

The solution of problem (S) has to satisfy the following necessary conditions

stated in accordance with Theorem 1, page 276, Seierstad and Sydsæter (1987)

Hu ≡ fu − µ(t)gu = 0, (1.1)

µ̇(t) = δµ(t) + Hx = µ(t)(δ + gx) + fx, (1.2)

ẋ(t) =

∫ ε1

ε0

g(x(t), u(t, ε), t, ε) dε, x(0) = x0, (1.3)

where the subscript of a function with respect to a variable denotes its partial

derivative. The analytical solution of the necessary conditions (1.1) - (1.3) is difficult,

7



Chapter 1. General Introduction

since the law of motion is determined by an integral equation. Thus, to solve problem

(S), a solution technique in two stages is proposed. Due to the structure of problem

(S), one is able to decompose part of the problem into a static, and another part

into a dynamic control problem. The static control problem optimizes the use of

resources over the heterogeneous characteristic ε, for example, vintage or space. The

solution to the static problem is then plugged into the dynamic control problem to

determine the optimal solution over time. Separating the problem in two stages

is possible because the state variable, x(t), is an aggregate function that depends

exclusively on time.

In the first stage the solution of the static problem is given by the value function

V (z, x) defined as:

V (z, x) ≡ max
u(ε)

∫ ε1

ε0

f(x, u(ε), ε) dε (S1)

subject to

z =

∫ ε1

ε0

g(x, u(ε), ε) dε,

where z denotes a predetermined level of the aggregate characteristic over the entire

range of ε, from ε0 to ε1. Thus, the newly introduced variable z as well as the state

variable x of problem (S) turn into parameters in the first stage. Taking account of

the constraint leads to the Lagrangian

L1 ≡
∫ ε1

ε0

f(x, u(ε), ε) dε + λ
(
z −

∫ ε1

ε0

g(x, u(ε), ε) dε
)

A solution of the problem has to satisfy the following necessary conditions:

L1u ≡ fu − λgu = 0, (1.4)

L1λ ≡ z −
∫ ε1

ε0

g(x, u, ε) dε = 0. (1.5)

8



1.3. Methodology

To analyze how the optimal solution is affected over time, the value function

V obtained in the first stage is maximized over time. Hence, the dynamic decision

problem is given by:

max
z(t)

∫ ∞

0

e−δtV (z(t), x(t)) dt (S2)

subject to

ẋ(t) = z(t), x(0) = x0.

The parameter z of the first-stage problem, which denotes the aggregate char-

acteristic over the entire range of quality ε becomes the decision variable in the

second stage. The current value Hamiltonian of the second stage is given by:

H2 = V (z(t), x(t)) − ϕ(t)z(t), where ϕ denotes the costate variable. The first-

order conditions read as follows:

H2z ≡ Vz − ϕ = 0, ⇒ λ = ϕ (1.6)

ϕ̇ = δϕ + H2x = δϕ + Vx = (δ + fx)ϕ + gx, (1.7)

ẋ = z, x(0) = x0, (1.8)

where the envelope theorem (Sydsaeter and Hammond, 1995) has been used in

equations (1.6) and (1.7). Assume that problems (S1) and (S2) have been solved.

That is, the functions u∗ and z∗ that solve equations (1.4) to (1.7) have been found.

Given that:

- Equation (1.4) of problem (S1) is parallel to equation (1.1) of the main prob-

lem.

- Equation (1.7) of problem (S2) is equivalent to equation (1.2) of problem (S).

- Equation (1.5) is the definition of the aggregate characteristic that has been

introduced and, thus, its substitution into equation (1.8) leads to equation

(1.3) of problem (S).

9
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- Equation (1.6) links the two stages. The change in the value function of the

static problem (S1) resulting from a marginal increment of the aggregate char-

acteristic z, by the envelope theorem, is given by Vz = dV/dz = ∂L1/∂z = λ∗.

Thus, it is obtained that λ∗(t) = ϕ∗(t). Furthermore, envelope theorem also

allows to calculate the change in the value function resulting from a marginal

increment of x, given by Vx = dV/dx = ∂L1/∂x = fx + λ∗ gx = fx + ϕ∗ gx.
1

It can be concluded that these functions will also maximize the problem (S),

with the costate variables µ∗(t) = λ∗(t) = ϕ∗(t).

Chapter 4 presents an optimization model where the state variable, in addition

to the control variables, is also structured over a particular characteristic, ε. These

type of problems include a system of partial differential equations in the necessary

conditions, and thus they are difficult to solve analytically. Consequently, it might

be necessary to implement numerical methods to find the optimal solutions to these

problems. Thus, Chapter 4 utilizes the Escalator Boxcar Train Method developed by

de Roos (1988), in Biology, for the study of dynamics of structured populations. This

method consists on the partition of the domain of the structuring variable, ε — age

or size — in small subdomains, such that individuals whose characteristic ε pertains

to the same subdomain can be considered rather homogeneous and thus they can

be grouped into the same cohort. Each cohort is characterized by the number of

individuals it contains and its intensity/level of the particular characteristic, that

evolve over time. In this way, the PDE governing the restriction function, can

be decoupled into a system of Ordinary Differential Equations on the number of

individuals an on the characteristic.

1It is assumed that Vz and Vx exist.
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Chapter 2

Optimal Control of a Stock

Externality

2.1 Introduction

Major environmental policy problems, including climate change and water-quality

deterioration, are stock externality problems (Farzin, 1996; Baudry, 2000). The

accumulating pollutants are frequently the result of inputs (water, chemicals, fossil

fuels) by heterogeneous producers. Run-off of both family and corporate farms

contribute to the contamination of bodies of water, and emission of small producers

and large factories contribute to climate change. Thus, the design of policies to

control stock externalities should consider both time and heterogeneity dimensions

of these problems and the technologies that affect accumulation of pollutants.

The buildup of the externality stock can be modified either through changes

in production practices (source abatement) or, when possible, by removal of existing

pollution stock (stock abatement). Source abatement can be achieved by reducing

input use levels (control at the intensive margin), by retiring production units (ex-

tensive margin), and through adoption of precision technologies and management

11
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practices (Khanna and Zilberman, 1997). This is a broad category of technologies

that includes conservation technologies (Fuglie and Kascak, 2001) and consists of

technologies and practices that improve technical efficiency of variable inputs and

reduce the associated pollution. Examples include insulation, fuel-efficient engines

and stoves, and improved quality fuels that reduce the pollution intensity of energy

generation, transportation, temperature control, and cooking. Drip, sprinkler, and

computerized irrigation and high precision chemical applications are agricultural

examples of technologies that improve variable input productivity and reduce dam-

aging residues. Stock abatement reduces pollution once it has been generated, for

example, by catalytic converters, barriers (e.g., plants, containing walls), wetland

buffers and vegetative practices such as filter strips nearby surface waters (Mitsch

et al., 1999), or various sequestration activities.

This chapter develops a framework to determine the optimal resource alloca-

tion over time for the production of a good by heterogeneous producers who generate

accumulating pollutant. The chapter also derives government policies to modify the

behavior of competitive producers, which leads to optimality. This framework con-

siders the adoption of precision technologies and use of stock abatement activities,

and can be applied to a wide variety of settings. For instance, agricultural pollu-

tion where the heterogeneity results from varying land quality, manufacturing where

the heterogeneity is generated by the different characteristics of the capital goods

(different machines or different plants) employed for distinct production processes1

or the energy sector with plants of different characteristics and a long economic

life. In this way, the chapter expands the results of studies that analyze control

of stock externalities of production activities with either precision technologies or

stock abatement.

1It is assumed that producers consider investment as a fixed variable and only determine the

intensity of the production and the extent and form of the use of the capital good. In other words

producers follow a putty clay approach and no differential equation describing investment and

depreciations is required.
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A major contribution of this thesis is the decomposition of the complex social

optimization problems that encompass time and heterogeneity dimensions to a man-

ageable two-stage procedure. The two-stage solution allows to derive the qualitative

characteristics of the solution in more detail and more easily than a single-stage

solution. The first stage consists of static optimization of resource allocation by

heterogeneous producers, given aggregate pollution. The results of this optimiza-

tion feed into an optimal intertemporal resource allocation problem determining

aggregate production and pollution accumulation over time. The two stages are

linked by a common shadow price of the externality stock that is derived in the

temporal optimization and is used to derive individually tailored incentives based

on rules determined by solving the temporal optimization problems.

With these techniques, the optimal resource allocation is derived, and it is

find that it may be attained by technology-differentiated input taxes and taxes

or subsidies on fixed assets that allow optimal adjustments in the intensive and

extensive margins. These incentives are designed to favor adopters of precision

technologies, and thus trigger their adoption.

To address both heterogeneity and dynamic considerations, it is assumed no

production uncertainty. The results show that the optimal interim policy depends

on the curvature of the convex abatement cost and damage functions. When the

pollution stock accumulation leads to significant increments of the abatement and/or

damage cost, it is optimal to decrease the stock abatement and to reinforce source

abatement, according to the specific conditions for each producer. In contrast,

if the marginal stock abatement cost increases slowly, the optimal intertemporal

policy is characterized by high stock abatement. The results also demonstrate that

a policy, which is solely targeting reduction of input use, may not be socially optimal

since it produces a distortion at the extensive margin and, therefore, it needs to be

complemented by incentives based on the technology choice.

The chapter is organized as follows. Section 2.2 reviews the literature, section
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2.3 describes the basic features of the model, and section 2.4 establishes the optimal

environmental policy, consisting of the optimal static and intertemporal solution.

Section 2.5 defines individually tailored and intertemporal policies with respect to

input and technology choices that can establish the social optimum. Section 2.6

presents some conclusions.

2.2 Review of the Literature

There is a wide array of cases where aggregate pollution, in stock externality prob-

lems, is the result of the input utilization in economic processes by heterogeneous

producers. Some examples are summarized in Table 2.1. One can distinguish four

different strands in the existing literature. The first relates to the question of whether

an when to adopt a precision technology in solving stock externality problems. Ex-

amples include the use of efficiency enhancing technologies in the energy-generating

sector (Siegel and Temchin, 1991; Khanna and Zilberman, 1999), and energy-saving

appliances (Hausman, 1979; Jaffe and Stavins, 1995). Similar benefits of precision

technologies have been established in other economic sectors, for example in agricul-

ture, the adoption of modern agricultural irrigation technologies in order to reduce

the amount of water applied and hence the leaching of pollutants (Caswell and Zil-

berman, 1985; Caswell, Lichtenberg, and Zilberman, 1990; Green et al., 1996), and

the adoption of soil nitrogen testing to adjust the input application more precisely to

crop needs to reduce potential N-losses (Fuglie and Bosch, 1995). Lal et al. (1998)

show that the use of minimum tillage increases carbon sequestration rates which,

in turn, contribute to moderate global warming. Likewise, in the transportation

sector, the use of cleaner fuels demonstrated the advantages of precision technolo-

gies in reducing urban pollution and greenhouse gas emissions (Khazzoom, 1995;

Nakata, 2000). Most of these studies support the finding that the heterogeneity of

producing units is a crucial issue in answering the question of whether or not to
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adopt a technology.

A second strand of papers focuses on regulations at the extensive margin to

reduce the stock of pollutant once it has been generated. These includes the estab-

lishment of funds to purchase environmental goods and to conserve natural resources,

such as the use of land retirement programs to reduce water contamination. Wu,

Zilberman, and Babcock (2001) analyze alternative targeting strategies for resource

conservation programs when aimed at reducing pollution, accounting for heterogene-

ity in the targeted resource. Another example of this strand of literature is Ribaudo,

Osborn, and Konyar (1994), where they study crop land retirement as an option

for reducing water pollution. Their results show that land retirement as a primary

pollution control tool is expensive. However, if it is appropriately tailored to the

individual producer, benefits may outweigh costs.

Another strand of papers focuses on economics of reduction of pollution stocks.

For example, Zhao and Zilberman (2001) identify conditions when the use of min-

imum tillage increases carbon sequestration rates, which, in turn, contribute to

moderate global warming.

A forth line of research analyzes the optimal combination of source abate-

ment versus stock abatement. Shah, Zilberman, and Lichtenberg (1995) present

a dynamic framework to analyze the optimal combination of on-farm and off-farm

pollution abatement strategies with respect to the problem of water logging, how-

ever, assuming constant land quality. Ribaudo et al. (2001) evaluate empirically

the impacts of alternative strategies to achieve reduced nitrogen concentrations in

the Mississippi Basin. Similarly Farzin (1996) in a more general context develops

a dynamic framework to analyze in which way static policy instruments need to be

modified in the presence of a stock externality.

The existing papers either establish the optimal intertemporal policy assuming

homogeneity with respect to the production units, or neglect the intertemporal

15
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Table 2.1: Examples of Stock Externalities

Decision Variables
Source Type of Problem Technology Products Inputs State Variable
Agriculture Soil erosion and

siltation of rivers,
canals, reservoirs

Abatement technology capital (terracing, machin-
ery with special tires, dams); cultivation tech-
niques (minimum tillage, conventional tillage, work-
ing along isohight lines)

Crops, cover crops Intensity of
tillage

Sedimentation layer

Water logging Irrigation technologies (furrow irrigation, drip irri-
gation, sprinkler irrigation)

Crops Water use Height of the water ta-
ble, conc. of salt

Phosphorus and Ni-
trogen emissions

Cultivation techniques(N min method of fertiliza-
tion, frequency of N applications, application ma-
chinery); type of fertilizer (organic, inorganic)

Crops, number and
types of animals,
catch crops

Nitrogen
and Phos-
phorus

Concentration of Ni-
trogen or Phosphorus

GHG emissions Cultivation techniques (minimum tillage, conven-
tional tillage)

Agriculture (crop-
land, permanent
grass land), af-
forestation,

Intensity of
tillage

Concentration of GHG
in the atmosphere

Households GHG emissions Building structure (thermal insulation, chromogenic
glazings, reduction of air leakage), refrigerators and
freezers (vacuum insulation panels), lighting (high
efficiency fluorescent lamps, compact fluorescent
and halogen lamps, electronic ballasts), type of fuel

Energy use Concentration of GHG
in the atmosphere

Indoor air pollution
from cooking stoves

Biomass based fuels (wood, charcoal) electricity,
kerosene, gas

Type of meals Fuel use Concentration of CO
and Benzopyrene

Vehicles GHG emissions Type of fuel (gas, ethanol, electric vehicles) Fuel use Concentration of GHG
in the atmosphere

Electricity
genera-
tion

GHG emissions Natural gas, clean coal technologies Fuel use Concentration of GHG
in the atmosphere

SO2, NOx Low sulphur fuels, low NOx boilers and emission
control catalysts

Fuel use Concentration of SO2

and NOx in the atmo-
sphere

Paper GHG emissions Dry sheet forming, new pressing techniques (press
drying, condensing belt drying, impulse drying, air
impingement drying), latent heat recovery systems
(steam impingement drying, airless drying)

Writing paper, tis-
sue, paperboard

Fuel use Concentration of GHG
in the atmosphere

Iron and
steel

GHG emissions Type of furnace (blast furnace, basic oxygen fur-
nace, electric arc furnace), technologies of scrap
melting

Spray casted prod-
ucts

Fuel use Concentration of GHG
in the atmosphere
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aspect of the pollution problem if they consider heterogeneity of the production

units. In this chapter both aspects are integrated, and a model that incorporates

simultaneously heterogeneity and time is developed. In considering heterogeneity,

the effects of a change in the quality of the fixed asset at the extensive and intensive

margins will be determined. In contrast to the previous literature, for example, by

Pan and Hodge (1994) or Glaeser and Shleifer (2001), it is shown that regulations

at the extensive and intensive margins should not be considered as a substitute but,

rather, as complements. Moreover, the dynamic framework, makes it possible to

evaluate the incentives for source abatement versus stock abatement. As a result,

this chapter present the formulation of individually tailored, dynamic policies that

act separately or in combination at the intensive and extensive margin, to induce

socially optimal behavior by the individual agents.

2.3 The Modelling Framework

Consider a competitive industry made of heterogeneous production units (farm,

plants), which produce a good using fixed assets (land, machines) and variable inputs

(water, chemicals, fossil fuels) with one of two technologies. The production units

differ by the quality of asset they use, when ε ∈ [ε0, ε1] is a measure of quality (where

higher ε corresponds to higher quality). Total assets with quality ε are denoted by

X(ε).

Let i be a technology indicator, i = 1 for the precision technology and i = 2 for

a traditional technology. The amount of assets of quality ε allocated to technology i

at time t is denoted by xi(t, ε). Each technology is assumed to have constant returns-

to-scale production function using the fixed asset and variable input. Let ui(t, ε) be

variable input per unit of fixed asset (pesticides per acre, fuel per unit of machine

capacity). Output per unit of fixed asset with technology i is yi = hi(ε)f(βiui(t, ε)),

i = 1, 2. It is assumed that asset quality and precision technology affect productivity
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through a multiplicative fixed asset effect, represented by hi(ε), where h(·) is C2,

hi(ε0) = 0, hi(ε1) = 1. With each technology, assets of higher quality are more

productive (dhi/dε > 0) and adoption of precision technology tends to increase

fixed asset productivity (h1(ε) > h2(ε)). It is also assumed that precision technology

increases the productivity of variable input, represented by βi, β1 > β2.
2

The product and input price of the industry are p and c, respectively. Each

technology requires a per asset fee for the technology, denoted by Ii (rent or an-

nualized cost of the technology). It is assumed that I1 > I2, that is, the precision

technology is more costly.

The pollutant is assumed to emanate from variable input use. Potential pol-

lution per asset per unit of time is g(ui(t, ε)), a convex function of applied input,

gui
> 0, guiui

≥ 0. High quality asset and/or precision technology consumes much

of the variable input and reduces leakage, so actual pollution per asset unit per

unit of time is αi(ε)g(ui(t, ε)), where the pollution coefficient αi(ε) is a fraction of

potential pollution that is realized. It is assumed (i) that no pollution occurs with

highest quality asset, that is, αi(ε1) = 0, (ii) the pollution coefficient is declining

with quality, i.e., dαi/dε < 0, and (iii) that precision technology has lower pollution

coefficient than the traditional one, i.e., α2(ε) > α1(ε) for ε < ε1.

The aggregate pollution stock at time t is s(t), and the temporal economic loss

of pollution stock per period is given by the damage function d(s(t)) with d(0) = 0,

ds > 0 and dss > 0. The pollution stock may be reduced by various abatement

activities (e.g., carbon sequestration by forestry and/or in deep oceans). Let η(t)

denote stock abatement at time t and k(η(t), s(t)) be stock abatement cost. It

is assumed that marginal cost of stock abatement is positive and increasing with

η, kη > 0, kηη > 0, but decreasing with the pollutant stock, kηs < 0. A higher

pollutant stock is assumed to increase total abatement cost, ks > 0, and kss > 0.

2For example, drip irrigation may have 0.95 irrigation efficiency, while irrigation efficiency of

traditional methods is 0.6 (Hanemann et al., 1987).
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2.3. The Modelling Framework

Figure 2.1 presents a possible scheme of the key variables and their relationships in

the production process.

Figure 2.1: Scheme of the Production Process

The dynamics of the pollutant stock can now be stated as

ṡ(t) =

∫ ε1

ε0

( 2∑
i=1

αi(ε)g(ui(t, ε))xi(t, ε)
)

dε − η(t) − ζs(t), (2.1)
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where a dot over a variable denotes the operator d
dt

. Following Clasen et al. (1989),

the concentration of the pollutant over time is described as a linear function in s.

The parameter ζ, 0 < ζ < 1 represents the decay rate of the pollutant stock.

2.4 Dynamics of the pollution stock problem

It is assumed that a social planner exists and maximizes the present discounted value

of the net benefits from production, while taking into account the social economic

losses due to the accumulation of the pollutant.3 Thus, the social planner’s decision

problem is given by

max
ui(t,ε), xi(t,ε), η(t)

∫ ∞

0

e−δt

[ ∫ ε1

ε0

( 2∑
i=1

(
phi(ε)f(βiui(t, ε)) −

−cui(t, ε) − Ii

)
xi(t, ε)

)
dε −

(
d(s(t)) + k(η(t), s(t))

)]
dt,

(S)

3Given the regional focus of the analysis, it is assumed that the product prices are not influ-

enced by regional production decisions and, therefore, they are taken as given. Thus, the output

price is also not influenced by the production of the externality. It is assumed that there are no

transportation costs, and the utility function of the consumers is quasilinear with respect to the

traded goods and the externality. Thus, the optimal level of the externality is independent of

the consumers’ expenditures, and it is possible to derive a utility function which depends only on

the externality s (Mas-Colell, Whinston, and Green, 1995). To discuss the results of our model

in a practical setting, it is proposed that the derived utility function can be represented by the

damage function d(s(t)) and the abatement cost function k(η(t), s(t)). Additionally, it is also as-

sumed that there are no cost of public funds, and lump-sum transfers are available to redistribute

income so that input taxes, technology taxes, or subsidies are not distortionary (Sandmo, 1995).

The assumptions made with respect to the quasilinearity of the utility function and the existence

of costless public funds help to keep the model simple. It allows to concentrate the analysis on

answering the question of whether or not it is socially optimal to abate at the source or to abate

the pollution stock and which is the optimal policy to achieve the socially optimal outcome.
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subject to

ṡ(t) =

∫ ε1

ε0

( 2∑
i=1

αi(ε)g(ui(t, ε))xi(t, ε)
)

dε − η(t) − ζs(t),

s(0) = s0, ui(t, ε) ≥ 0, i = 1, 2, xi(t, ε) ≥ 0, i = 1, 2,

x1(t, ε) + x2(t, ε) ≤ X(ε) η(t) ∈ [0, s(t)],

where s0 denotes the amount of pollution stock at the initial point of calendar time,

and the parameter δ > 0 denotes the social discount rate.

Utilizing Pontryagin’s Maximum Principle, the current Hamiltonian of the

optimal pollution restoration strategy (S) is given by

H ≡
∫ ε1

ε0

( 2∑
i=1

(
phi(ε)f(βiui(t, ε)) − cui(t, ε) − Ii

)
xi(t, ε)

)
dε

−
(
d(s(t)) + k(η(t), s(t))

)

−µ(t)
(∫ ε1

ε0

( 2∑
i=1

αi(ε)g(ui(t, ε))xi(t, ε)
)

dε − η(t) + ζs(t)
)
.

To facilitate the interpretations of the costate variable µ, it has been multiplied

by minus one. In this way µ has a positive value. The arguments ε and t of the

variables and the Lagrange multipliers ωi, i = 1, · · · , 7, to be introduced later, will

be suppressed to simplify the notation unless it is required for an unambiguous

notation. Taking account of the constrains on the control variables leads to the

Lagrangian: L ≡ H+ω1u1 +ω2u2 +ω3x1 +ω4x2 +ω5(X−x1−x2)+ω6η +ω7(s−η),

where ω1, . . . , ω7 denote Lagrange multipliers. The solution of problem (S) has to

satisfy the following necessary conditions stated in accordance with Theorem 1, page

276, Seierstad and Sydsæter (1987)
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Lu1 ≡ (ph1β1fu1 − c − µα1gu1)x1(t, ε) + ω1 = 0, (2.2)

Lu2 ≡ (ph2β2fu2 − c − µα2gu2)x2(t, ε) + ω2 = 0, (2.3)

Lx1 ≡ py1 − cu1(t, ε) − I1 − µα1g(u1(t, ε)) + ω3 − ω5 = 0, (2.4)

Lx2 ≡ py2 − cu2(t, ε) − I2 − µα2g(u2(t, ε)) + ω4 − ω5 = 0, (2.5)

Lη ≡ −kη + µ + ω6 − ω7 = 0, (2.6)

µ̇(t) = δµ + Ls = µ(δ + ζ) − ds − ks + ω7, (2.7)

ṡ(t) =

∫ ε1

ε0

( 2∑
i=1

αig(ui(t, ε))xi(t, ε)
)

dε − η(t) + ζs(t),

s(0) = s0. (2.8)

The analytical solution of the necessary conditions (2.2) - (2.8) is difficult.

Thus, to solve problem (S), it is proposed a solution technique in two stages described

in the following proposition.

Proposition 1: The dynamic optimization problem S is equivalent to specifying

and solving two sequential problems, S1 and S2. In the first stage (problem S1),

the model is maximized over ε subject to a prespecified level of aggregate emissions

z, obtaining the optimal trajectories of u(ε) and x(ε). In the second stage (problem

S2), the parameter z becomes a decision variable; and the optimal trajectories of z(t)

and, consequently, of the functions u(t, ε), x(t, ε), and η(t) over time are obtained.

Following the optimization procedure described in the introduction — two

stages optimal control, Proposition 1 can be verified. Due to the structure of problem

(S), one is able to decompose part of the problem into a static, and another part

into a dynamic control problem. The static control problem optimizes the use of

resources over the heterogeneous characteristic of the production units, for example,

vintage or space. The solution to the static problem is then plugged into the dynamic

control problem to determine the optimal combination of source abatement, leading

to a particular level of aggregate emissions and stock abatement.
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Separating the problem in two stages is possible because the state variable is an

aggregate function that depends exclusively on time. In the first stage the socially

optimal solution over ε is determined, i.e., for every quality ε, it is determined the

individually tailored optimal level of input applied, and the individually tailored

optimal choice of technology for each production unit, including the option of not

to produce. In the second stage the obtained optimal static solution is maximized

with respect to time, by determining the optimal combination of source abatement

versus stock abatement.

2.4.1 The Solution to the Static Optimization Problem

In the first stage the solution of the social planner’s decision problem is given by

the value function V (z) defined as:

V (z) ≡ max
ui(ε), xi(ε)

∫ ε1

ε0

( 2∑
i=1

(
phi(ε)f(βiui(ε)) − cui(ε) − Ii

)
xi(ε)

)
dε (S1)

subject to

z =

∫ ε1

ε0

( 2∑
i=1

αi(ε)g(ui(ε))xi(ε)
)

dε,

ui(ε) ≥ 0, i = 1, 2, xi(ε) ≥ 0, i = 1, 2, x1(ε) + x2(ε) ≤ X(ε),

where z denotes the aggregate emissions over the entire range of ε, from ε0 to ε1.

The argument ε of the variables and the Lagrange multipliers υi, i = 1, · · · , 5, to be

introduced later, will be suppressed to simplify the notation unless it is required for

an unambiguous notation. Taking account of the constraints on the control variables

leads to the Lagrangian
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L1 ≡
∫ ε1

ε0

( 2∑
i=1

(
phif(βiui) − cui − Ii

)
xi

)
dε

+λ
(
z −

∫ ε1

ε0

( 2∑
i=1

αig(ui)xi

)
dε

)

+υ1u1 + υ2u2 + υ3x1 + υ4x2 + υ5

(
X − x1 − x2

)
.

To facilitate the interpretations of the costate variable λ, it has been multiplied

by minus one, leading to a positive value for λ.

A solution of the problem has to satisfy the following necessary conditions:

L1u1 ≡ (ph1β1fu1 − c − λα1gu1)x1 + υ1 = 0, (2.9)

L1u2 ≡ (ph2β2fu2 − c − λα2gu2)x2 + υ2 = 0, (2.10)

L1x1 ≡ py1 − cu1 − I1 − λα1g(u1) + υ3 − υ5 = 0, (2.11)

L1x2 ≡ py2 − cu2 − I2 − λα2g(u2) + υ4 − υ5 = 0, (2.12)

L1λ ≡ z −
∫ ε1

ε0

( 2∑
i=1

αig(ui)xi

)
dε = 0. (2.13)

The Lagrange multiplier λ is interpreted as the shadow costs of the prespecified

level of aggregate emissions, z. Please note that z does not depend on ε, and

thus λ is constant over ε. For an interior solution, given quality ε and given a

particular technology, necessary conditions (2.9) and (2.10) indicate that the value

of the marginal product of applied input per unit of asset should equal the sum of the

marginal cost of input use and the marginal cost of pollution per unit of asset. In the

case of a boundary solution, the Lagrange multiplier of the binding constraint reflects

the difference between the value of the marginal product and the sum of the marginal

costs. The necessary conditions (2.11) and (2.12) indicate that the marginal net

benefits of production per unit of asset with quality ε, given a particular technology,

should equal the marginal cost of pollution per unit of asset. However, since both

the production and emission functions are linear in the fixed asset, the technology
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that leads to a higher social quasirent, defined as Π∗
i ≡ pyi − cui − Ii − λαig(ui),

will be completely preferred to the technology with the lower quasirent, implying

that the entire asset with quality ε should be combined in the production process

with the technology that yields the highest quasirent. Hence, boundary solutions

are exclusively obtained for every quality ε, given by x1(ε) = X(ε), x2(ε) = X(ε),

or x1(ε) = x2(ε) = 0. In this case, the Lagrange multiplier of the binding constraint

reflects the difference between the value of the marginal net benefits and the marginal

pollution cost. However, the maximal quasirent for technology i, Π∗
i depends on the

asset quality and, thus, it will change over ε.

The next proposition explains how the optimal level of the key variables

changes with a change in quality ε.

Proposition 2: For a given technology, an increase in the quality of the asset leads

to an increase in the input use and, consequently, to an increase in the output and

in the quasirent.

∂u∗
i

∂ε
> 0,

∂y∗
i

∂ε
> 0,

∂Π∗
i

∂ε
> 0.

Proof: To determine the effect of a change in asset quality on the level of applied

input, equations (2.9) and (2.10) are differentiated with respect to ε and solve for

∂ui/∂ε. Hence, it results in:

∂ui

∂ε
=

−(ph′
iβifui

− λα′
igui

)

phiβ2
i fuiui

− λαiguiui

> 0. (2.14)

Since the production function has regular, neoclassical properties, it is ob-

tained:

∂y∗
i

∂ε
= h′

if(βiu
∗
i ) + fui

∂u∗
i

∂ε
> 0. (2.15)

The changes in the allocation of the technologies are determined by differenti-

ating equations (2.11) and (2.12) with respect to ε:
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Π∗
iε = [ph′

if(βiui)] − [λα′
ig(ui)] > 0, (2.16)

where the first term in brackets presents the value of the change in production per

unit of asset due to an increase in the productivity of the asset, and the second term

in brackets measures the monetary value of the changes in the actual emissions per

unit of asset. Since h′
i > 0, f(βiui) > 0, and λα′

ig(ui) < 0, the quasirent of activity

i, i = 1, 2, is upward sloping with an increase in ε. �

The concavity/convexity of the quasirent is shown in the second derivative,

given by

Π∗
iεε

=
[
ph′′

i f(βiui) − λα′′
i g(ui)

]
−

[
(ph′

iβifui
− λα′

igui
)
∂ui

∂ε

]
� 0. (2.17)

Equation (2.17) shows that the quasirent is more likely to be convex Π∗
iεε

> 0

in low qualities due to the observation that, if the input use is low, production

and pollution are low while the derivatives fui
and gui

are large. As the asset

quality increases, the first term in brackets increases while the second decreases

and, therefore, the quasirent is more likely to be concave, i.e., Π∗
iεε

< 0.

Equation (2.14) implies that an increase in the asset quality increases the

optimal intensity of input use of either technology, since it increases the productivity

of the marginal unit of the applied input and decreases the marginal pollution level.

When the effectiveness of input use, βi, depends on ε, as in Caswell and Zilberman

(1986), the sign of ∂u∗
i /∂ε will depend on the elasticity of marginal productivity.

In a parallel manner, equation (2.16) shows that the quasirent for each tech-

nology increases with an increase in the quality ε, since it increases the asset pro-

ductivity and decreases the amount of generated emissions. The adoption of the

precision technology is optimal when its associated quasirent is positive and higher

than that of the traditional technology. The difference in quasirent per unit of asset

with quality ε with the modern and traditional technologies can be written as:
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2.4. Dynamics of the pollution stock problem

Π∗
1 − Π∗

2 = p�y∗ − c�u∗ −�I − λ(α1g(u∗
1) − α2g(u∗

2)), (2.18)

where � represents the difference in the level of the different variables with the

two technologies. Equation (2.18) implies that the precision technology should be

adopted if the resulting increase in output, decrease in the level of input use, and

decrease in pollution compensates the higher fixed cost required to implement the

new technology, that is, the higher annual costs per unit of asset.

In order to gain more insight into the analysis, let us assume that the new

technology only has the input quality augmenting effect, but it does not increase

the productivity of the fixed asset, i.e., β1 = β2 = 1. Although this assumption

does not change the dynamic aspect of the model, it will be useful to derive some

characteristics of the adoption pattern. With quality at its maximum, ε1, the tra-

ditional technology will be preferred to precision technology since it has lower costs

of adoption (Π∗
1(ε1) < Π∗

2(ε1)). As the asset quality declines, the precision technol-

ogy becomes socially more profitable because activity 2 exacerbates the potential

emissions. When the order of the inequality is reversed, we know that the social

quasirent functions intersect, and it is optimal to diversify the technology choice.

The switching point is given by ε∗ where Π∗
1(ε

∗) = Π∗
2(ε

∗). This case is depicted in

Figure 2.2 for the quasirents Π∗
1 and Π∗

2, where the traditional technology is optimal

for higher levels of ε.4 The advantage of the traditional technology is the lower an-

nualized fixed costs of adoption per unit of asset. However, this advantage gets lost

as quality declines and, therefore, potential emissions increase. Thus, for ε < ε∗, the

precision technology will be optimal due to higher productivity and lower emissions.

Additionally, Figure 2.2 also presents the case where both quasirents Π∗′
1 and

Π∗′
2 turn negative for qualities below ε̄, ε̄ ∈ [ε0, ε1]. Hence, no production will take

4Even though X(ε) presents the total of the asset of quality ε, and it varies over ε, the graphical

presentation of the results is simplified by considering X(ε) to be constant over ε.
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Figure 2.2: Optimal Technology Choice when It Is Optimal to Diversify the Use of

the Fixed Asset

Π

Π

Π

Π

( )

( ) ( )=

( )

28



2.4. Dynamics of the pollution stock problem

place in the interval between ε0 and ε̄.

If the order of the inequality (Π∗
1(ε1) < Π∗

2(ε1)) is not reversed if evaluated at ε0,

the quasirents of activities 1 and 2 do not intersect and, therefore, it is optimal not

to diversify the technology choice. Figure 2.3 presents the case where the traditional

technology will be preferred over the entire range of quality because the lower costs

of adoption are not outweighed by an increase in the social cost of pollution and

output of the precision technology. Like in Figure 2.2, Figure 2.3 shows that there

may exist an ε̄ below that no production takes place.

Next, the previous assumption of β1 = β2 = 1 will be relaxed, and it is assumed

that the new technology enhances the productivity of the fixed asset, to see how

the neutral multiplicative effect can affect the adoption pattern. Given the highest

quality, precision technology will be preferred to the traditional technology if the

decrease in the input use exceeds the higher costs of adoption, that is, if

(β2

β1

− 1
)
cu∗

2 > I1 − I2. (2.19)

In this case precision technology will be preferred over the entire range of ε.

2.4.2 The Optimal Dynamic Solution

In the first stage, the socially optimal, quality-differentiated, however static, solution

was derived, given by the optimal allocation of the technologies and the optimal level

of input use. To analyze how the optimal solution is affected over time, the value

function V obtained in the first stage is maximized over time. Hence, the social

planner’s decision problem is given by:

max
z(t), η(t)

∫ ∞

0

e−δt
(
V (z(t)) − d(s(t)) − k(η(t), s(t))

)
dt (S2)
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Figure 2.3: Optimal Technology Choice when It Is Not Optimal to Diversify the Use

of the Fixed Asset
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2.4. Dynamics of the pollution stock problem

subject to

ṡ(t) = z(t) − η(t) − ζ s(t),

s(0) = s0, η(t) ∈ [0, s(t)], z(t) ≥ 0.

The parameter z of the first-stage problem, which denotes aggregate emissions

over the entire range of quality ε becomes the decision variable in the second stage.

However, it now depends on t. Thus, the decision variables in the intertemporal

allocation problem are given by the aggregate emissions z(t) and the stock abatement

effort η(t). Hence, it will be able to analyze the optimal mix of abatement effort

at the source versus stock abatement. The current value Hamiltonian of the second

stage is given by: H2 = V (z(t))− d(s(t))− k(η(t), s(t))−ϕ(t)
(
z(t)− η(t)− ζs(t)

)
,

where ϕ denotes the costate variable. The first-order conditions for an interior

solution read as follows:

H2z ≡ Vz − ϕ = 0, ⇒ λ = ϕ (2.20)

H2η ≡ −kη + ϕ = 0, (2.21)

ϕ̇ = δϕ + H2s =
(
δ + ζ

)
ϕ − ds − ks, (2.22)

ṡ = z − η − ζs, s(0) = s0, (2.23)

where the dynamic envelope theorem has been used in equation (2.20). This

equation states that the marginal value of the aggregate emissions of the production

units, should equal its marginal shadow cost ϕ, which, in turn, is equal to the shadow

cost of the static allocation problem λ. Equation (2.21) indicates that the marginal

cost of stock abatement should equal the shadow cost of pollution stock. Equation

(2.22) suggests that the cost of a one-period delay in the generation of marginal unit

of pollutant stock will be the extra discounting and depreciation cost (δ+ζ)ϕ minus

the temporal marginal social cost of the pollutant stock ds plus the marginal effect

of pollutant stock on stock abatement costs −ks.
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For a sustainable environmental policy, the social planner is particularly inter-

ested in the achievement of a steady state, defined by equations (2.22) and (2.23)

by ϕ̇ = ṡ = 0. Assuming an interior solution, equations (2.20) and (2.21) can be

solved globally and uniquely by using Theorem 6 in Gale and Nikaidô (1965) for

z = ẑ(ϕ, s) and η = η̂(ϕ, s). In order to analyze the effect of a change in the shadow

cost or in the stock of pollution on aggregate emissions (source abatement) and

stock abatement a comparative static analysis is conducted. Hence, by the implicit

function theorem, it is obtained


 L2zz L2zη

L2ηz L2ηη





 ∂ẑ

∂ϕ
∂ẑ
∂s

∂η̂
∂ϕ

∂η̂
∂s


 +


 L2zϕ L2zs

L2ηϕ L2ηs


 =


 0 0

0 0


 . (2.24)

The application of Cramer’s rule yields that

∂ẑ

∂ϕ
=

1

Vzz

≤ 0,
∂ẑ

∂s
= 0,

∂η̂

∂ϕ
=

1

kηη

≥ 0,
∂η̂

∂s
= −kηs

kηη

≥ 0. (2.25)

For the purposes of a qualitative analysis, the necessary conditions (2.20) -

(2.23) are reduced to a pair of differential equations in ϕ and s by substituting

z = ẑ(ϕ, s) and η = η̂(ϕ, s) into (2.22) and (2.23) to obtain

ϕ̇ =
(
δ + ζ

)
ϕ − ds − ks(η̂(ϕ, s), s), (2.22 ′)

ṡ = ẑ(ϕ, s) − η̂(ϕ, s) − ζs, s(0) = s0. (2.23 ′)

A linearization of the canonical system of differential equations around the

steady-state values of ϕ and s results in
 ϕ̇

ṡ


 =


 ∂ϕ̇

∂ϕ
∂ϕ̇
∂s

∂ṡ
∂ϕ

∂ṡ
∂s





 ϕ − ϕ∞

s − s∞


 . (2.26)

The implicit function theorem is also used to calculate the elements of the

Jacobian matrix evaluated at the steady-state equilibrium with ϕ̇ = ṡ = 0, leading

to
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J̃ =


 ∂ϕ̇

∂ϕ
= δ + ζ − kηs

∂η
∂ϕ

> 0 ∂ϕ̇
∂s

= −kηs
∂η
∂s

− dss − kss � 0

∂ṡ
∂ϕ

= ∂z
∂ϕ

− ∂η
∂ϕ

< 0 ∂ṡ
∂s

= −ζ − ∂η
∂s

< 0


 . (2.27)

Since the trace of the Jacobian matrix, trJ is equal to δ > 0, employing the

fact that trJ equals the sum of its eigenvalues assures that at least one eigenvalue is

positive. First, it is considered the case that ∂ϕ̇
∂s

< 0. In this case, the determinant of

the Jacobian matrix is negative and, thus, the eigenvalues have opposite signs and

the steady-state equilibrium is locally characterized by a saddle point. However, in

the case that ∂ϕ̇
∂s

> 0, the determinant of the Jacobian matrix may be negative or

positive. If it is negative, the steady-state equilibrium is locally characterized by a

saddle point. However, in the case that the expression ∂ϕ̇
∂s

> 0 leads to a positive

determinant of J̃ , the steady state is characterized by an unstable equilibrium.

Nevertheless, the abatement and damage cost functions need to take on very extreme

values in order to lead to a positive determinant of J̃ . Thus, this particular case is

unlikely to happen in practice and, therefore, the analysis concentrates on the first

two cases.

For any initial value of s within the neighborhood of s∞, where the superscript

∞ indicates the steady-state equilibrium value, it is possible to find a corresponding

value of the shadow cost, which assures that the optimal environmental abatement

policy leads toward the long-run optimum.5

The sign of ∂ϕ̇/∂s = −kηs
∂η
∂s
−dss−kss of equation (2.27) depends on the effect

of an increase in one unit of the pollutant stock on the marginal damage cost, and

on the marginal abatement cost. By the given definitions and by equation (2.25)

the first term of ∂ϕ̇/∂s is positive, while the second and third terms are negative.

Thus, the overall sign of ∂ϕ̇/∂s depends on the magnitude of these opposing effects.

Given this setup, the following proposition can be formulated.

5This results holds only for values within a certain neighborhood of the steady state as the

steady-state analysis has local character.
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Proposition 3: The sign of the slope of the stable path depends on the curvature

of the convex abatement cost and damage functions. When the direct effect in the

form of an increase in the marginal abatement cost and marginal damage exceeds the

indirect effect, i.e., kss + dss > |kηs
∂η
∂s
|, the shadow cost ϕ increases with an increase

in the stock of pollution. In the opposite case, where the indirect effect exceeds the

direct effect, i.e., kss + dss < |kηs
∂η
∂s
|, the shadow cost decreases with an increase in

the stock of pollution.

Proof: The first step in analyzing a system of differential equations is to find the

eigenvalues and eigenvectors of the Jacobian matrix

J̃ =


 J11 J12

J21 J22


 , (2.28)

where the elements of J̃ are given in equation (2.27). The eigenvalues of J̃ are

determined by solving |J̃ − γI| = 0, leading to

γ1, γ2 =
trJ ±√

trJ2 − 4detJ

2
, (2.29)

where trJ is the trace of J̃ and detJ denotes the determinant of the Jacobian matrix.

According to Angel de la Fuente (2000) p. 476, the slope of the stable path leading to

the steady state is the same as the slope of the eigenvector e2 = (e12, e22) associated

to the stable root, i.e., the negative eigenvalue γ2. The eigenvector e2 is given by

J̃e2 = γ2e2, normalizing its second component to 1, one has that J21e21 + J22 = γ2,

implying that the slope of the stable path is determined by the sign of the following

equation

e21 =
γ2 − J22

J21

. (2.30)

In the model, J21 = ∂ṡ/∂ϕ < 0, thus, the slope of the stable path leading to

the steady state will be positive when:

γ2 − J22 < 0. (2.31)
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Substituting the expression of γ2 presented in equation (2.29) into inequality

(2.31) leads to

trJ −√
trJ2 − 4detJ

2
− J22 < 0. (2.32)

Knowing that trJ = J11 + J22, it is obtained

√
trJ2 − 4detJ2 > J11 − J22, (2.33)

and after some transformations it is obtained that the slope of the shadow path will

be positive if J12J21 > 0. Thus, J12 = ∂ϕ̇/∂s has to be negative given the fact that

J21 = ∂ṡ/∂ϕ is also negative. On the contrary, when J12 = ∂ϕ̇/∂s is positive, the

slope of the stable path leading to the steady state is negative. �

Proposition 3 is illustrated in Figures 2.4 and 2.5. If dss + kss > |kηs
∂η
∂s
|, the

slopes of the ϕ̇ = 0 and ṡ = 0 isoclines of the phase diagram in the (s, ϕ) space are

given by

dϕ

ds

∣∣∣
ϕ̇=0

= −
∂ϕ̇
∂s
∂ϕ̇
∂ϕ

> 0,
dϕ

ds

∣∣∣
ṡ=0

= −
∂ṡ
∂s
∂ṡ
∂ϕ

< 0. (2.34)

The resulting phase diagram, depicted in Figure 2.4, shows that the stable path

leading to the steady state is upward sloping, while the unstable path is downward

sloping. In this case the pollution stock and its shadow cost evolve in the same

direction. Therefore, any pollution abatement policy is characterized by a decrease

in the shadow cost.

On the contrary, if dss + kss < |kηs
∂η
∂s
|, the pollution stock and its shadow cost

evolve in the opposite direction. Therefore, any pollution abatement policy can be

depicted by an increase in the shadow cost. In this case the slopes of the ϕ̇ = 0 and

ṡ = 0 isoclines are both negatives, and it holds that

dϕ

ds

∣∣∣
ϕ̇=0

= −
∂ϕ̇
∂s
∂ϕ̇
∂ϕ

>
dϕ

ds

∣∣∣
ṡ=0

= −
∂ṡ
∂s
∂ṡ
∂ϕ

. (2.35)
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Figure 2.4: The Phase Diagram in the (s, ϕ) Space, where the Stable Path Is Upward

Slopping (The direct effect dominates the indirect effect)
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ϕ

•
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∞

The resulting phase diagram is depicted in Figure 2.5. It shows that the stable

path leading to the steady state is downward sloping.

In the case where stock abatement is not possible (η(t) = 0, ∀t) or the abate-

ment cost does not depend on the pollution stock (k = k(η)), the phase diagram is

exclusively given by Figure 2.4.

As the curvature of the convex damage and abatement cost functions deter-

mines the slope of the stable path, it also establishes the intertemporal optimal
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2.4. Dynamics of the pollution stock problem

Figure 2.5: The Phase Diagram in the (s, ϕ) Space, where the Stable Path Is Down-

ward Slopping (The indirect effect dominates the direct effect)
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combination of source abatement versus stock abatement. Moreover, it allows to

determine the evolution of the optimal input demand function over time. Hence,

one can derive the optimal relationship between short-run and long-run input de-

mand functions. The results are summarized in the following proposition.

Proposition 4: The evolution of aggregate emissions z(t) and abatement η(t) in the

optimal dynamic policy is determined by the curvature of the damage and abatement

cost functions and the initial stock of pollution s0 compared to its steady state value

s∞. The following cases can be distinguished, summarized in Table 2.2.
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1. If dss +kss > |kηs
∂η
∂s
| and the initial stock of pollution s0 is greater (smaller) than s∞,

the optimal dynamic policy consists in the initial choice of aggregate emissions z0 and

the initial choice of the input use u0
i , i = 1, 2, below (above) their steady-state values

z∞ and u∞
i , and in their gradual increase (decrease) until the steady-state values are

reached. The initial stock abatement η0 is above (below) its steady-state value η∞,

and it decreases (increases) gradually until the steady-state value is reached.

2. If dss + kss < |kηs
∂η
∂s
| and the initial stock of pollution s0 is greater (smaller) than

s∞, the optimal dynamic spatially differentiated policy consists in the initial choice

of aggregate emissions z0 and the initial choice of the input use u0
i , i = 1, 2, above

(below) their steady-state values z∞ and u∞, and in their gradual decrease (increase)

until the steady-state values are reached. However, the sign of dη̂/dt is undetermined.

Table 2.2: Optimal Trajectories of the Decision Variables

dss + kss > |kηs
∂η
∂s
| dss + kss < |kηs

∂η
∂s
|

z0 < z∞ z0 > z∞

s0 > s∞ u0
i < u∞

i u0
i > u∞

i

η0 > η∞ η0 � η∞

z0 > z∞ z0 < z∞

s0 < s∞ u0
i > u∞

i u0
i < u∞

i

η0 < η∞ η0 � η∞

Proof: To find the optimal intertemporal path of z(t) and η(t), the variables are

totally differentiated with respect to time, obtaining

dẑ

dt
=

∂ẑ

∂ϕ

dϕ

dt
+

∂ẑ

∂s

ds

dt
=

1

Vzz

dϕ

dt
, (2.36)

dη̂

dt
=

∂η̂

∂ϕ

dϕ

dt
+

∂η̂

∂s

ds

dt
=

1

kηη

dϕ

dt
− kηs

kηη

ds

dt
. (2.37)
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Additionally, a comparative static analysis is conducted to determine the effect

of a change in the shadow cost on the level of input use. Since neither V nor λ depend

on ε, it is assumed that the technologies are located optimally and the amount of

pollution is chosen optimally, that is, one is moving along the optimal path. The sign

of ∂u∗
i /∂λ can be determined by solving the first-order equations (2.9) and (2.10)

for ui = u∗
i (λ), i = 1, 2. Hence by the implicit function theorem, it is obtained

 L1u1u1 L1u1u2

L1u2u1 L1u2u2





 ∂u∗

1

∂λ

∂u∗
2

∂λ


 +


 L1u1λ

L1u2λ


 =


 0

0


 . (2.38)

Like before, applying Cramer’s rule it is obtained

∂u∗
1

∂λ
=

α1gu1

ph1fu1u1 − λα1gu1u1

< 0,
∂u∗

2

∂λ
=

α2gu2

ph2fu2u2 − λα2gu2u2

< 0. (2.39)

Using equations (2.36), (2.37), (2.39), the fact that λ = ϕ, and that the slope

of the stable path is determined by the sign of ∂ϕ̇/∂s, Proposition 4 can be verified.�

Suppose that the initial pollution stock is greater than its steady-state value,

and the implementation of a pollution abatement policy is required. The inequality

given in part 1 of Proposition 4 holds if the indirect effect of an increase in pollution

on marginal abatement cost is of a minor order, either because the value of the

cross derivative kηs is low or because the curvature of the convex abatement cost

function in the level of abatement is highly pronounced (for kηη large, see equation

2.25). Additionally, it has to be the case that an increase in pollution has to be

accompanied by a sharp increase in the marginal damage and marginal abatement

cost. Under these conditions, initial stock abatement η0 is not sufficient to reduce

the stock of pollution, and it has to be reinforced with a high abatement effort at

the source. Consequently, the initial level of input use has to be low. As the stock

of pollution falls, the shadow price according to Proposition 3 decreases as well,

which, in turn, leads to a decline in the stock abatement effort, and to an increase

in aggregate emissions and input use. Therefore, an intertemporally and quality-
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differentiated optimal pollution abatement policy, for s0 > s∞, can be characterized

by choosing the levels of applied input initially below their steady-state values. As

time passes, they increase until their steady-state values are reached. This case is

depicted in Figure 2.6.

Figure 2.6: Optimal Intertemporal Restoration Policy, where the Direct Effect Dom-

inates the Indirect Effect
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∞
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However, according to part 2 of Proposition 4, it may be the case that the

change in the marginal damage, and abatement costs with respect to s, as a result of

an increase in the pollution stock is smaller than a change in the marginal abatement
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cost with respect to η. In this case, the optimal intertemporal abatement policy is

characterized by a high initial stock abatement effort η0, and aggregate emissions

z, like the level of input ui, i = 1, 2, decrease gradually towards their steady-state

values. This case is illustrated in Figure 2.7.

Figure 2.7: Optimal Intertemporal Restoration Policy where the Indirect Effect

Dominates the Direct Effect

ε

∞

∞

∞

Therefore, the curvature of the convex damage and abatement cost functions

limits the possibility to abate pollution once it has been generated. In the case

that the pollutant causes severe damages to human health or the environment (for
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example, substances that form part of the Toxic Release Inventory of the EPA

such as Benzene, lead compounds, Methyl Ethyl Ketone, etc.) beyond low levels of

concentration, the convexity of the damage function is highly pronounced, and the

optimal policy will require high abatement effort at the source. The same optimal

policy may be required if an increase in the pollution stock leads to a very high

increase of the marginal abatement cost with respect to s, making stock abatement

prohibitively expensive.

An especial case occurs if k = k(s(t)) η(t), that is, abatement costs are pro-

portional to the amount of abated pollution stock. As abatement enters the model

linearly, the restoration policy will be given either exclusively by source abatement

or stock abatement depending on what policy has the lowest cost. During the early

stages, when the pollution stock is high, source abatement is expected to be a dom-

inant strategy, until pollution has decreased sufficiently and the unitary abatement

cost has fallen below the marginal value of pollution, i.e., k(s(t)) < Vz. After this

point in time, there will be no source abatement, and the pollution will be abated

once it has been generated.

The pattern of adoption of the precision technology will also change over time

as a decrease (increase) of shadow cost along the optimal path results in an increase

(decrease) in the quasirent for both activities. In the case where the quasirents

of different activities intersect, this increase will also lead to a different optimal

technology adoption. In the case where quasirents of the different activities do not

intersect along the entire optimal path, the optimal technology choice pattern does

not change at all. However, the quasirent of the different technologies might intersect

along some part of the optimal path, leading to a change in the optimal technology

choice pattern during this time and constancy otherwise.
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2.5. Optimal Quality Differentiated and Intertemporal Policies

2.5 Optimal Quality Differentiated and Intertem-

poral Policies

The social optimum, characterized by the equations (2.9) - (2.13), however, is not

equivalent to the private optimum since producers do not consider the externality.

Their decision problem is simply given by

V (P ) ≡ max
xi, ui

∫ ε1

ε0

( 2∑
i=1

(phi(ε)f(βiui) − cui − Ii)xi

)
dε (P1)

subject to

xi(ε) ≥ 0, i = 1, 2, x1(ε) + x2(ε) ≤ X(ε), ui(ε) ≥ 0, i = 1, 2.

The optimality conditions without pollution are similar to the ones in the op-

timal case. The only difference is that the shadow price of pollution stock, ϕ, is

zero. Thus, the variable input is determined for each microunit, where the value

of its marginal product is equal to its price. The model suggests some adoption

of precision technologies even without pollution consideration. Precision technolo-

gies are adopted without pollution pricing if at the microunit level the gains from

increased output and input cost savings exceed the extra cost of the technology.

Taking explicitly into account the shadow cost of pollution stock will provide an

extra incentive to adopt precision technology. The reality is that even without envi-

ronmental considerations, there is significant adoption of precision technologies such

as drip, modern irrigation technologies, insulation, soil carbon sequestration, etc.

In the case without intervention in the pollution stock, the assumption about

fixed prices of output and input results in the same choices of input use and tech-

nology at all periods. Only the pollution stock evolves over time, and it may be

growing very fast. Thus, the analysis of the social optimum suggests that explicit

pricing of the environmental side effect is a triggering gradual adoption process over
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time and introduces dynamics in the behavior of individual firms that would not

exist without it.

The private behavior will lead to aggregate emissions above the socially optimal

level. A first-best policy calls for a tax on individual emissions. However, individual

emissions cannot be observed due to high costs or technical infeasibility (Knopman

and Smith, 1993); therefore, policymakers must resort to other policy measures

where the key variables have to be observable and correlate as close as possible to the

individual emissions (Braden and Segerson, 1993). These selection criteria are met

by individually tailored input taxes supported by individually tailored technology

taxes or subsidies. Since the pollution function is linear with respect to the fixed

asset, the following proposition establishes policies that lead to optimal input use

and technology adoption.

Proposition 5: Provided that input use and technology choices can be observed at

each unit with quality ε, an optimal policy can be obtained by

- a quality differentiated input tax τi, i = 1, 2, given by τi(ε) = λ∗αigui
(u∗

i (ε)), i =

1, 2, together with

- a quality differentiated technology subsidy or tax per unit of asset σi, i = 1, 2,

given by σi(ε) = −τi(ε)u
∗
i (ε) + λ∗αig(u∗

i (ε)) � 0.

Proof: The private decision problem, in the presence of an input tax and a tech-

nology subsidy / tax, is given by: maxxi, ui

∫ ε1
ε0

(∑2
i=1(phi(ε)f(βiui)− cui − Ii)xi

)
−( ∑2

i=1(τiuixi + σixi)
)

dε. Analyzing the necessary conditions of the problem, one

can see that the private optimum coincides with the social optimum given by equa-

tions (2.9) to (2.13), thus the input tax τi, i = 1, 2, together with the technology

subsidy or tax σi, i = 1, 2, establishes the quality-differentiated optimal input use

and technology adoption for every quality ε. �
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An input tax alone, however, is not sufficient to achieve the social optimum

since it only establishes equations (2.9) and (2.10) but not equations (2.11) and

(2.12), that is, the introduction of a tax on the intensive margin causes a distortion

on the extensive margin, thus the social optimum is not realized. To establish the

socially efficient allocation of technologies, the input tax needs to be complemented

by a technology policy. The yet undetermined sign of σi, i = 1, 2, defines if one has

a technology subsidy or tax. In the case where it is positive, one have a technology

tax. If it is negative, one have in fact a subsidy. Substituting the value of the quality

differentiated input tax τi, i = 1, 2, into σi, i = 1, 2, it is obtained:

σi = λ∗αi

(
g(u∗

i ) − gui
u∗

i

)
� 0. (2.40)

Utilizing Theorem 2.17, page 258, de la Fuente (2000), allows to conclude

that if g(ui) is strictly convex, i.e., the marginal contribution of applied input to

pollution is increasing, σi, i = 1, 2, is negative. In other words σi, i = 1, 2, turns

into a technology subsidy. However, if g(ui) is strictly concave, σi, i = 1, 2, turns

into a technology tax, and if g(ui) is linear σi, i = 1, 2, is zero. The latter case

implies that a quality-differentiated input tax alone is able to establish the social

optimum and does not need to be complemented by a technology tax or subsidy.

In this model, the emission function is assumed to be convex, thus, input taxes

need to be complemented by technology subsidies. The introduction of an input tax

leads to a different optimal intensity which, in turn, affects the technology adoption

decision and, as a result of these two adjustments, the generated amount of pollution

changes. Since the emission function is convex, the pollution expenditures per unit

of asset (τiu
∗
i = λ∗αigui

u∗
i ) are higher than the shadow value of the emissions per

unit of asset (λiαig(u∗
i )). Therefore, it is necessary to apply a technology subsidy

equal to the difference between the pollution expenditures and its shadow cost per

unit of asset.

The specific design of policy instruments based on input and/or technology

choices has to simultaneously take into account the varying quality of the asset
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and the aspect of time. In this way the policies can be adjusted according to

the characteristics of the potential emissions of the production unit. Moreover,

technology and input use are easy to monitor so that the policies can be enforced

in practice as well.

These taxes are also adjusted over time in line with the changes of the shadow

cost of the pollutant that varies according to the development of the stock of pollu-

tant over time.

2.6 Summary and Conclusions

This chapter presents a modelling approach for the socially optimal management of

an accumulating pollutant generated by heterogeneous producers. Source abatement

is considered by reduction of input use, exit, and adoption of precision technologies,

and stock abatement is also considered. The problem is analyzed in a general frame-

work, that can be applied in different contexts, for instance in relation to carbon

emissions, water logging, or accumulation of toxic chemicals. The solution proce-

dure decomposes the optimization problem to a static optimization problem that

determines the allocation of resources by heterogeneous production units subject to

aggregate emission constraints.

The socially optimal intertemporal equilibrium is determined in the second

stage where the optimal solution of the first stage is optimized over time. This

sequential procedure to solve the problem within a quality-differentiated, intertem-

poral framework enhances the analytical tractability of the problem, and allows to

obtain analytical results more easily. It turns out that the optimal intertemporal

change in the shadow price towards the long-run equilibrium depends on the cur-

vature of the convex abatement cost and damage functions. Since the shadow price

of the first stage and the second stage are identical, the curvature of the abatement
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cost and damage functions also establishes the link between the short-run and long-

run input demand and technology demand functions. Moreover, it determines the

optimal mix of source abatement and stock abatement.

Due to the presence of an externality, the private net benefit-maximizing strat-

egy of the producers does not produce the socially optimal outcome. Thus, environ-

mental policies in the form of individually tailored input taxes (intensive margin)

and individually tailored technology taxes or subsidies (extensive margin) are pro-

posed to induce individual differentiated responses rather than uniform responses.

The results show that regulations at the extensive margin should not be consid-

ered as a substitute for regulations at intensive margin but, rather, as complements.

Moreover, regulations at the extensive margin may require the payment of subsidies

to achieve the socially optimal outcome.

Considering the aspect of time and quality simultaneously permits us to for-

mulate the necessary changes to transform an individually tailored optimal, yet

static, environmental policy analysis to an intertemporally and individually tailored

optimal policy. In particular, the temporal aspect of the regulation is of great im-

portance, since it determines the optimal mix of degree of severity and the time

schedule of the policy measures.

With the advent of geographic information systems, reduced computation cost,

and improved monitoring technologies, the discriminatory policies presented here

are becoming feasible. It is shown that optimality can be attained by incentives

even without direct measurement of pollution at the microlevel. Good estimates of

production and pollution generation functions and information on microlevel and

input use at the microlevel are sufficient to yield optimal outcomes.

One of the main contributions of this chapter is to show that in the man-

agement of stock pollution, explored in chapters 2 and 3, introduction of pollution

control policies will trigger a dynamic adoption. To simplify the analysis, other
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dynamic forces that may affect the adoption of new technologies have not been

incorporated (see survey by Sunding and Zilberman (2001)). Some can be incorpo-

rated into the existing framework without altering the main results of this thesis.

For example, learning by doing (reduction in cost of new technologies as manufac-

turers learn from experience) may be introduced by having I1(t) with ∂I1/∂t < 0,

∂2I1/∂t2 ≥ 0. Learning by using (improvement in the use of technology or users

learning from their and others’ experience) may be presented when the produc-

tion function with the modern technology is h1(ε, t)f(·) when ∂h1/∂t > 0 or by

h1(ε, L1, t)f(·) when L1(t) is a second stock variable measuring aggregate acreage

with modern technology over time, again with ∂h1/∂t > 0. The framework can be

also modified to accommodate production risk and risk-averse behavior as long as

the random elements do not affect pollution generation. It can also be expanded

to industries that face negatively sloped demand. As demand is more inelastic, it

serves to slow the adoption process. Therefore, the analytical techniques introduced

in Proposition 1 can be extended and applied. However, two stage optimal control

may have some problems in the situations where there is different accumulation of

stocks at different locations, for instance soil erosion, or in situations where there is

uncertainty in irreversibility, e.g. climate change, and one needs to apply the real

option framework to understand the dynamics of adoption. The extension of the

model for this situation is a challenge of future research.
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Chapter 3

Optimal Control of Waterlogging

Caused by Irrigated Agriculture

3.1 Introduction

The problem of waterlogging occurs in impermeable or poorly drained soils when

salt-laden waters accumulate at the subsurface. As a result, the water table may

rise up to the crop-root zone where it leads to a reduction of crop yields. Figure 3.1

presents an scheme of the waterlogging problem. In the case of irrigated agriculture,

individual farmers, however, do not take into account the extent to which their

individual irrigation practices will lead to a rise in the water table of the entire

irrigated land in the region. In this way, the water-storage capacity of the land can

be considered as a shared good of all farmers located in the region, and optimal

private depletion of the water-storage capacity does not coincide with the socially

optimal depletion strategy (Hartwick and Olewiler, 1998). To establish the socially

optimal outcome, corrective policies are required, assuring that privately optimal

irrigation practices coincide with the socially optimal irrigation practices. These

policies introduce policy for water management activities that recognize their impact
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Figure 3.1: Scheme of the Waterlogging Process

on the waterlogging problem. Given the dynamic nature of water-storage, it is

plausible that corrective policies should vary over time. Moreover, since land quality

varies over space, the corrective policies should be tailored specifically to site, i.e.

vary over space.

However, most of the waterlogging and drainage literature considers policies

that either establish the socially optimal intertemporal solution — but assume that

land quality is homogeneously distributed over space (Knapp et al., 1990; Shah,

Zilberman, and Lichtenberg, 1995), — or neglect the intertemporal aspect of the

waterlogging and take only the spatial heterogeneity of the land quality into account

(Khanna, Isik, and Zilberman, 2002).

In this chapter the aspects of time and space are integrated in the economic

analysis to find the optimal policies for the case of waterlogging problem in agri-

culture. To find the socially optimal allocation over space and time, it is utilized

optimal control in two stages presented in the previous chapter. In the first, the

optimal irrigation technology choice and the optimal level of irrigation for each lo-
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cation within the agricultural region are determined. Moreover, it is allowed for the

possibility of restoring the water-storage capacity by lowering the water table of the

entire irrigated area, for instance, by operating a drainwater disposal facility. The

result of the spatial but static optimization is captured by a value function which,

in turn, becomes the objective function for the intertemporal optimization, i.e., the

second stage of the overall optimization procedure. The results of overall optimiza-

tion allows to determine the socially optimal spatial and intertemporal adoption of

irrigation technologies, the amount of water used for irrigation, and the disposal of

drainwater. As a corrective measure to achieve the socially optimal outcome, the

alteration of the price of water is proposed, by imposing a tax that is technologi-

cally, spatially, and temporally differentiated on the use of water. The two stages

are linked by the common shadow cost (user costs) of the water-storage capacity.

It allows to transform an optimal spatially targeted water-pricing policy, yet static,

into an optimal, temporally, and spatially targeted water-pricing policy.

To demonstrate the applicability of the theoretical approach, two stages op-

timal control, the socially optimal water price in the presence of waterlogging is

determined empirically for the case of cotton produced in the San Joaquin Valley

in California. For this purpose, the mathematical model of the approach of opti-

mal control is reformulated such that it can be solved numerically with commercial

mathematical software programs on a desktop computer.

The results show that the welfare of the private optimum compared to the

social optimum reduces by 1.4% to 3.8% for a water-storage capacity of 25 feet and

by 9% to 37% for a water-storage capacity of 5 feet. The optimal tax imposed

on applied water increases from the initial year to the final year of consideration

by approximately 15. Likewise, the optimal tax is spatially and technologically

differentiated. Depending on the two considered technologies, the optimal tax is

approximately either 9 or 14 times higher for the lowest land quality compared to

the highest land quality. As a result, one obtains an optimal water-pricing structure
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that is technologically, spatially, and temporally differentiated.

This chapter is organized as follows. Section 3.2 introduces the economic

model, and section 3.3 presents the theoretical approach of optimal control in two

stages together with the optimal outcome from a social point of view. Section

3.4 contrasts this result with the optimal outcome from a private point of view.

The following section demonstrates the applicability of the theoretical model with

a particular case study and discusses the empirically obtained results. The chapter

ends with a summary and some conclusions.

3.2 The Economic Model

Consider an agricultural region where a single crop is produced. Production is based

exclusively on the use of water, supplied by irrigation, and land. Each location

within the region is classified according to its biophysical attributes, such that it

can be characterized by a single number ε, ε ∈ [ε0, ε1] that presents its land quality.

According to this concept of space, land quality stands for the capacity of the land to

retain the applied water such that it is available for crop uptake and does not reach

the impermeable layer where it leads to a depletion of the water-storage capacity.

In this way, flat and heavy soils correspond to a high value of ε while steeper lands

and sandy soils have a lower value of ε.

The number of acres with the same quality ε available at each location is

denoted by X(ε). For simplicity, but without loss of generalization, it is assumed

that there are two different irrigation technologies i, i = 1, 2 available. The subscript

i = 1 represents a precision technology (drip irrigation), and i = 2 the traditional

technology (furrow irrigation). The number of acres cultivated with technology

i, i = 1, 2, at any moment of time t at location ε is denoted by xi(t, ε).

The model assumes constant returns to scale with respect to the land. Thus,
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the production function per acre is presented by f(βi(ε)ui(t, ε)), i = 1, 2, where

ui(t, ε) denotes the amount of applied water per acre associated with technology

i, and βi(ε) the irrigation effectiveness, that is, the fraction of the applied water

that is effectively utilized by the crop. The irrigation effectiveness βi(ε) depends

on the land quality ε and is specific for each technology i. It is assumed that

the precision technology has a higher irrigation effectiveness for every ε, that is,

1 ≥ β1(ε̄) ≥ β2(ε̄) > 0, ∀ε̄ ∈ (ε0, ε1). Additionally, it is also assumed that the soil

quality increases the effectiveness of water use for every technology i, i.e., dβi/dε >

0, i = 1, 2. The production function has regular neoclassical properties, that is,

fui
> 0 and fuiui

< 0.

The product and water prices, denoted by p and c, respectively, are exogenously

determined. It is assumed that the annualized fixed costs per acre I are larger for

technology 1 than for technology 2, i.e., I1 > I2, as specialized equipment is needed.

The part of the applied water that is not utilized by the crop can percolate

below the crop-root zone. The percolation per acre, specific for each particular

irrigation technology i, i = 1, 2, is given by αi(ε) ui(t, ε), where αi(ε) is the drainage

coefficient per unit of applied water with technology i given land quality ε. It is

assumed, irrespective of the technology, that the drainage coefficient is zero when

land quality is at its maximum, i.e., α1(ε1) = α2(ε1) = 0; and that dαi/dε < 0, i =

1, 2. The later assumption implies that the drainwater generated per unit of applied

water increases as land quality declines. Since the modern technology increases the

input-use efficiency, it is also assumed that it decreases the drainage coefficient, that

is, α2(ε̄) > α1(ε̄), for ∀ε̄, (ε0 < ε̄ < ε1).

The irrigated area is characterized by an impermeable soil layer that impedes

the percolation of the irrigated water (drainwater) below a certain depth. Thus, the

drainwater will accumulate above this soil layer leading to a rise in the water table.

It is assumed that the production function is independent of the stock of drainwater

s(t), while the top level of the stock is below the crop-root zone. Above this level,
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where s > s̄, the soil is not productive anymore and f(·) = 0 for s(t) > s̄. In order to

mitigate the negative effects of the accumulation of the drainwater, there exists the

possibility to employ a disposal technique of the drainwater that lowers the water

level. The disposal costs are given by k η(t), where k is a constant and denotes the

disposal costs per acre-foot for the entire irrigated area. The variable η(t) denotes

the quantity of acre-feet (AF) of water removed from the irrigated area. As it refers

to the entire area of irrigated land, it does not depend on land quality ε.

3.3 The Socially Optimal Outcome

It is assumed that a social planner exists, for example, a local government body

or an irrigation district body. Furthermore, it is assumed that the social planner

maximizes the present discounted net benefits from agricultural production over time

while taking into account the social economic losses due to the accumulation of the

drainwater stock, that is, the foregone profits of the decrease in future production.

Given the regional focus of the analysis, it is assumed that the product and input

prices are not influenced by regional production decisions and, therefore, they are

taken as given.

The social planner’s decision problem reads as

max
ui(t,ε), xi(t,ε), η(t)

∫ ∞

0

e−δt
( ∫ ε1

ε0

( 2∑
i=1

(
pf(βi(ε)ui(t, ε))

−cui(t, ε) − Ii

)
xi(t, ε)

)
dε − kη(t)

)
dt,

(S)

subject to

ṡ(t) =

∫ ε1

ε0

( 2∑
i=1

αi(ε)ui(t, ε)xi(t, ε)
)
dε − η(t),

s(0) = s0, s(t) ≤ s̄, 0 ≤ η(t) ≤ s(t), ui(t, ε) ≥ 0, i = 1, 2,

xi(t, ε) ≥ 0, i = 1, 2, x1(t, ε) + x2(t, ε) ≤ X(ε),
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where s0 denotes the stock of drainwater at the initial point of calendar time, and

δ > 0 the social discount rate.

Utilizing Pontryagin’s Maximum Principle, the current Hamiltonian of prob-

lem (S) is given by

H ≡
∫ ε1

ε0

( 2∑
i=1

(
pf(βi(ε)ui(t, ε)) − cui(t, ε) − Ii

)
xi(t, ε)

)
dε − kη(t)

−µ(t)
(∫ ε1

ε0

( 2∑
i=1

αi(ε)ui(t, ε)xi(t, ε)
)

dε − η(t)
)
.

To facilitate the interpretations of the costate variable µ, it has been multiplied by

minus one. In this way µ has a positive value. As in the previous chapter, the

arguments ε and t of the variables and of the Lagrange multipliers ω1, ..., ω8, to be

introduced later, will be suppressed to simplify the notation unless it is required for

an unambiguous notation. Taking account of the constraints on the control vari-

ables leads to the Lagrangian: L ≡ H + ω1u1 + ω2u2 + ω3x1 + ω4x2 + ω5(X − x1 −
x2)+ω6η +ω7(s− η)−ω8s. The solution of problem (S) has to satisfy the following

necessary conditions stated in accordance with Theorem 1, page 276, Seierstad and

Sydsæter (1987):

Lu1 ≡ (pβ1fu1 − c)x1 − µα1u1x1 + ω1 = 0, (3.1)

Lu2 ≡ (pβ2fu2 − c)x2 − µα2u2x2 + ω2 = 0, (3.2)

Lx1 ≡ py1 − cu1 − I1 − µα1u1 + ω3 − ω5 = 0, (3.3)

Lx2 ≡ py2 − cu2 − I2 − µα2u2 + ω4 − ω5 = 0, (3.4)

Lη ≡ k + µ + ω6 − ω7 = 0, (3.5)

µ̇(t) = δµ + Ls = δµ + ω7 − ω8, (3.6)

ṡ(t) =

∫ ε1

ε0

( 2∑
i=1

αiuixi

)
dε − η(t), s(0) = s0. (3.7)

Modifying the framework described in chapter 2, problem (S) is solved in two stages.

In the first stage it is analyzed the optimal spatial solution given by the optimal

55



Chapter 3. Optimal Control of Waterlogging

level of applied water and the optimal technology choice is analyzed. More pre-

cisely, it is determined, at every location ε, the optimal irrigation technology, the

optimal amount of applied water, and the optimal size of the idle land given by

X(ε) − (
x1(ε) + x2(ε)

)
. In the second stage the optimal intertemporal solution of

the previously obtained optimal spatial solution is derived.

3.3.1 The Optimal Spatial Solution

In the first stage the solution of the spatial social planner’s decision problem is given

by the value function V (z) defined as:

V (z) ≡ max
ui(ε), xi(ε)

∫ ε1

ε0

( 2∑
i=1

(
pf(βi(ε)ui(ε)) − cui(ε) − Ii

)
xi(ε)

)
dε (S1)

subject to

z =

∫ ε1

ε0

( 2∑
i=1

αi(ε)ui(ε)xi(ε)
)

dε,

ui(ε) ≥ 0, i = 1, 2, xi(ε) ≥ 0, i = 1, 2, x1(ε) + x2(ε) ≤ X(ε),

where z denotes the flow of drainwater, generated over the entire range of ε, from

ε0 to ε1, that accumulates above an impermeable soil layer.

Taking account of the constraints on the control variables, the Lagrangian of

the spatial maximization problem (S1) is given by

L1 ≡
∫ ε1

ε0

( 2∑
i=1

(
pf(βiui) − cui − Ii

)
xi

)
dε + λ

(
z −

∫ ε1

ε0

( 2∑
i=1

αiuixi

)
dε

)

+υ1u1 + υ2u2 + υ3x1 + υ4x2 + υ5

(
X − x1 − x2

)
.

A solution of the problem has to satisfy the following necessary conditions:
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L1u1 ≡ (pfu1 − c − λα1u1)x1 + υ1 = 0, (3.8)

L1u2 ≡ (pfu2 − c − λα2u2)x2 + υ2 = 0, (3.9)

L1x1 ≡ pf(β1u1) − cu1 − I1 − λα1u1 + υ3 − υ5 = 0, (3.10)

L1x2 ≡ pf(β2u2) − cu2 − I2 − λα2u2 + υ4 − υ5 = 0, (3.11)

L1λ ≡ z −
∫ ε1

ε0

( 2∑
i=1

αiuixi

)
dε = 0. (3.12)

The Lagrange multiplier λ is interpreted as the shadow costs of the prespecified level

of the flow of drainwater, z. Please note that z does not depend on ε. Thus, λ is

constant over space. Given the interpretation of λ, the necessary conditions (3.8)

and (3.9) indicate for ui > 0 i = 1, 2, that at every location and for each technology,

water should be applied up to the point where the value of the marginal product

per acre equals the sum of the marginal cost of water and of the marginal cost of

generated drainwater per acre. Equations (3.10) and (3.11) govern the optimal choice

of technology at every location ε. Since the production function and drainwater

generation function are linear in land, the irrigation technology that leads to a higher

quasirent per acre, say, L1xi
−υi+2+υ5 ≡ pf(βiui)−cui−Ii−λαiui, will be completely

preferred to the technology with the lower quasirent. Hence, the technology that

yields the highest quasirent should be adopted on the entire land available at location

ε. Consequently, for every location ε, boundary solutions are exclusively obtained,

given either by x1(ε) = X(ε), x2(ε) = X(ε), or x1(ε) = x2(ε) = 0. In this case,

the Lagrange multipliers of the binding constraint reflect the difference between the

value of the marginal net benefits and the marginal drainwater generation cost. The

adoption of the conservation technology will take place when the quasirent of the

precision technology is positive and larger than the traditional technology.
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3.3.2 The Optimal Allocation over Space and Time

In the first stage, the socially optimal spatial technology choice and input use from a

static point of view were derived. To analyze how this optimal allocation is affected

over time, the value function V , obtained in the first stage, is maximized over time.

Hence, the social planner’s decision problem is given by:

W S(z∗(t), η∗(t); s̄) ≡ max
z(t), η(t)

∫ ∞

0

e−δt
(
V (z(t)) − kη(t)

)
dt (S2)

subject to

ṡ(t) = z(t) − η(t), s(0) = s0, s(t) ≤ s̄, 0 ≤ η(t) ≤ s(t).

The total amount of generated drainwater of the entire irrigated area, presented by

the parameter z in the first stage, becomes a decision variable in the second stage.

Thus, it now depends on t. Another decision variable is given by the amount of

disposed drainwater η(t). These two decision variables allow to analyze the optimal

mix of on-farm and off-farm measures to control waterlogging.

The current value Hamiltonian of the second stage is given by: H2 = V (z(t))−
kη(t)−ϕ(t) (z(t)− η(t)), where ϕ denotes the shadow cost of the drainwater stock.

Taking account of the constraints on the control variables leads to the Lagrangian:

L2 ≡ H2 + υ6η + υ7(s − η) − υ8s. The first-order conditions read as

L2z ≡ Vz − ϕ = 0 ⇒ λ(t) = ϕ(t), (3.13)

L2η ≡ ϕ(t) − k + υ6 − υ7 = 0, (3.14)

ϕ̇ = δϕ + L2s = δϕ + υ7 − υ8, (3.15)

ṡ = z − η, s(0) = s0. (3.16)
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Equation (3.13) indicates that the marginal value of the generated drainwater

in the irrigated area should equal its marginal shadow cost, ϕ, which, in turn, is equal

to the shadow cost of the spatial allocation problem, λ. Equation (3.15) states that,

as long as s < s̄ and η < s̄, the shadow cost ϕ will increase at the rate of discount,

as a consequence of the depletion of the subsurface storage capacity. Given that

disposal η(t) enters linearly in the model, the evaluation of equation (3.14) allows

to determine the optimal choice of η as a function of k, υ6, and υ7. Thus, equation

(3.14) yields

ϕ < k ⇒ η(t) = 0,

ϕ > k ⇒ η(t) = s(t), (3.17)

ϕ = k ⇒ 0 ≤ η(t) ≤ s(t).

At the maximum there are two possible candidates for the most rapid approach

path towards the steady state. If disposal of the drainwater is not available or it is

very costly, production will end when s = s̄. However, in the case where disposal cost

is reasonably low, one may distinguish two periods. In the first period where t < t1,

the shadow cost of the stock of drainwater ϕ is lower than the drainwater disposal

costs k. Thus, no disposal takes place and the water accumulates in the subsurface

until it reaches the crop-root zone. Equation (3.13) is solved globally and uniquely

for z = z∗(φ) provided that Vzz does not vanish over its entire domain. Hence, the

optimal evolution of the generated drainwater over time can be determined. The

substitution of z = z∗(φ) into equation (3.16) describes the change of the stock of

drainwater ṡ, given that η = 0, ∀t < t1. After a certain point in time, t1, where

the stock of drainwater has reached s̄, the disposal of drainwater exceeding s̄ will

take place in order to maintain agricultural production at the previous level. This

outcome leads to a steady state where z(t) = η(t), that is, for t > t1, the amount of

generated drainwaater is removed form the agricultural region.
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3.4 The Common Access Outcome

Let now assume that there are many competitive farmers in the area, and the stock

of drainwater is a result of the flow of drainwater of every individual farmer. Thus,

the stock of drainwater is a bad with common access to all farmers. As established in

the literature (Hartwick and Olewiler, 1998), the private optimum is not equivalent

to the social optimum, characterized by equations (3.8) - (3.12) since the individual

farmer will not take user costs into account. Therefore, with private costs lower

than social costs, the private depletion of the water-storage capacity will be higher

compared to the optimal depletion from a social point of view. Consequently, the

water-storage capacity will be depleted optimally earlier from a private, rather than

social, viewpoint. These considerations suggest that a government intervention or a

concerted action of the farmers is necessary to achieve efficiency.

A first-best policy would call for a tax on the individual generation of drain-

water. However, the individual contribution to the common stock of drainwater

cannot be observed and policymakers have to rely on other policy measures that

need to be observable and need to correlate as closely as possible to the individual

contribution to the stock of drainwater (Braden and Segerson, 1993). These criteria

are met by technologically, spatially, and temporally-differentiated input taxes, pro-

vided they are based on site-specific information. The following proposition defines

a policy that assures the optimal amount of applied water and the optimal choice

of technology at every location ε.

Proposition 6: For a given amount of generated drainwater z, and provided that

the amount of applied water and technology choices can be observed at each location

ε, an optimal policy can be obtained by a technologically and spatially-differentiated

input tax τ ∗
i (ε), i = 1, 2, given by τ ∗

i (ε) = λ∗(z)αi(ε), i = 1, 2.

Proof: In the case of an input tax on applied water, the private decision problem
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(T1) is given by:

FNM(τi(ε)) ≡ max
xi(ε), ui(ε)

∫ ε1

ε0

( 2∑
i=1

(
pf(βi(ε)ui(ε)) − cui(ε) − Ii

)
xi(ε)

−
2∑

i=1

τi(ε)ui(ε)xi(ε)
)

dε,

(T1)

subject to

ui(ε) ≥ 0, i = 1, 2, xi(ε) ≥ 0, i = 1, 2, x1(ε) + x2(ε) ≤ X(ε).

The first-order conditions read as

(pfui
− c − τiui)xi + υi = 0, i = 1, 2, (3.18)

pf(βiui) − cui − Ii − τiui + υi+2 − υ5 = 0, i = 1, 2. (3.19)

Analyzing the first-order conditions of the private problem (T1) and of the

social problem (S1) shows that the optimal private choice of the technology employed

xi(ε) and of the amount of applied water ui(ε) coincide with the socially optimal

value of x∗
i (ε) and u∗

i (ε), provided that the tax on applied water τi(ε) is set equal to

λ∗(z) αi(ε), i = 1, 2. �

The optimal input taxes are specific for each employed technology and depend

on land quality ε. Since the optimal shadow cost of drainwater λ∗ changes over time,

according to the stock of drainwater, the input taxes also need to be temporally dif-

ferentiated. The following proposition establishes how the tax τ ∗
i evolves optimally

over time.

Proposition 7: Provided that the amount of applied water and technology choices

can be observed at any point in time t, at each location ε, the optimal technologically,

spatially and temporally differentiated tax on applied water τ ∗
i (t, ε), i = 1, 2, is given

by τ ∗
i (t, ε) = φ∗(t) αi(ε), i = 1, 2.
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Proof: Define T (τi(t, ε)) as the amount of collected taxes, that is given by

T (τi(t, ε)) =

∫ ε1

ε0

( 2∑
i=1

τi(t, ε)αi(ε)ui(t, ε)xi(t, ε))
)

dε.

Moreover, social welfare where a tax on applied water is introduced W T (τ ∗
i (t, ε), η∗(t)),

is defined as the sum of the present value of farm net margin, FNM(τi(t, ε)), and

of the collected taxes, T (τi(t, ε)), minus the present value of the disposal costs of

drainwater k η(t).1 Thus, the private problem in the presence of taxes is given in

the second stage by

W T (τ ∗
i (t, ε), η∗(t)) ≡ max

τi(t,ε),η(t)

∫ ∞

0

exp−δ t
(
FNM(τi(t, ε))

+T (τi(t, ε)) − k η(t)
)

dt

(T2)

subject to

ṡ(t) = z(τi(t, ε)) − η(t), s(0) = s0, s(t) ≤ s̄, 0 ≤ η(t) ≤ s(t).

Since the shadow cost of the spatial allocation problem λ(t) is equal to the shadow

cost of the stock of drainwater in the intertemporal allocation problem φ(t) by equa-

tion (3.13), the input tax τ ∗
i (t, ε) = ϕ∗(t)αi(ε), i = 1, 2, assures the optimal choice of

technology and the amount of applied water at every location ε from a social point

of view. A comparison of the first-order conditions, corresponding to the problems

(T2) and (S2), shows that the optimal intertemporal solution are identical. Thus,

the level of welfare W T (τ ∗(t, ε), η∗(t)) obtained by imposing a technologically, spa-

tially, and temporally differentiated input tax on applied water τ ∗
i (t, ε) is identical

to the level of welfare of the socially optimal solution W S(z∗(t), η∗(t); s̄). �

The input taxes depend on the employed technology, on space, and on time. The use

of information on land quality allows one to target specific locations so that policies

based on the applied water and a chosen irrigation technology can be adjusted to the

1Consumer surplus is taken to be zero because the study focuses on a small agricultural region,

and, therefore, it is assumed that product prices are not influenced by changes in output. It is also

assumed that consumer surplus is not affected by a rise in the production externality.
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site-specific potential with respect to the generation of drainwater. These spatially

optimal taxes are adjusted over time according to the evolution of the shadow cost

of the stock of drainwater. Since the employed irrigation technology and the actual

use of water are easy to monitor, the policies can be implemented in practice as well.

3.5 Empirical Study

The empirical part of the chapter demonstrates on the one hand how the theo-

retical model presented above can be applied in empirical work. For his purpose,

the theoretical model has to be reformulated such that it can be solved numeri-

cally with standard mathematical software. On the other hand, the empirical part

of the analysis demonstrates the magnitude of the inefficiency of the private ver-

sus the social outcome. In this way it clarifies whether the inefficiency, derived in

economic literature (Hartwick and Olewiler, 1998), has importance in a real-world

study. Additionally, the empirical study shows to which extent the proposed policy

is technology specific and to which extent it changes over time and space.

The empirical study is based on the cotton produced on 400,000 irrigated acres

in the San Joaquin Valley in California. In order to simplify the study, it is assumed

that there are only two irrigation technologies available, furrow and drip irrigation.2

The specification of the production function is given by yi(ε) = Max[−1589 +

2311(βi(ε) ui(ε)) − 462(βi(ε) ui(ε))
2, 0], where i = 1 denotes drip irrigation, and

i = 2 accounts for furrow irrigation (Caswell, Lichtenberg, and Zilberman, 1990).

The value of the parameters of the production function are obtained from a study

by Hanemann et al. (1987). The land quality index is calibrated such that it

coincides with the irrigation effectiveness of the traditional technology, i.e., β2(ε)

is the identity function β2(ε) = ε. In this way, the quality of the land of the

2An extension of the study by including more than two technologies is straightforward within

the context of this numerical analysis.
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Chapter 3. Optimal Control of Waterlogging

irrigated area under consideration ranges from 0.2 (steep and sandy soils) to 0.8

(flat and heavy soils). It is assumed that the quality of the land is distributed

uniformly, with an average land quality of 0.5. Hanemann et al. (1987) show that

the efficiency of drip irrigation reaches 0.95 in soils where the efficiency of furrow is

0.6. This information is used to calibrate the efficiency function of drip irrigation

with constant elasticity. It is given by β1(ε) = ε0.1. The information in Hanemann

et al. (1987) is also utilized to calibrate the drainage functions for the different

technologies, resulting in α1(ε) = (1 − β1)
1.074 and α2(ε) = (1 − β2)

1.092. Cotton

price is assumed to be $0.60 (U.S.) per pound and water price is $55 (U.S.) per

acre-foot. The fixed cost of adoption of furrow is taken to be $500 (U.S.) per acre

while the fixed cost of drip is $633 (U.S.) per acre (Khanna, Isik, and Zilberman,

2002). The social discount rate is set equal to 0.04.

As described in the theoretical part of this chapter, the social optimization

problem is solved in two successive stages. In the first stage, the optimal spatial

allocation is determined by solving problem (S1) numerically. As noted in the proof

of Proposition 6, the solutions of the first-order conditions of problem (S1) and of

problem (T1) are identical if the socially optimal tax τ ∗
i (ε) is set equal to λ∗ αi(ε). To

obtain the numerical solutions of the first-order conditions of equations (3.18) and

(3.19), these two equations are formulated in Mathematica�, with τ ∗
i (ε) replaced by

λ∗ αi(ε). The programming code is available upon request. For a preestablished λ∗,

the solution provides the optimal choices of irrigation technologies (x∗
i ), the amount

of applied water (u∗
i ), and the amount of produced cotton (f(βiu

∗
i )) at each location

ε. The generated drainwater in the entire irrigated area, z, associated with the

predetermined λ∗ is obtained based on equation (3.12). Thereafter, this procedure

is repeated for different values of λ∗, which was systematically incremented starting

with zero.

Thus, it was able to obtain a series of u∗
i , x∗

i , f(βiu
∗
i ) and λ∗ that goes together

with a particular z. Moreover, it allowed to estimate the function z(ϕ(t)) = z(λ),
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3.5. Empirical Study

with the software package SPSS, that is required in problem (S2) to determine the

optimal evolution of the stock of drainwater. The function z(ϕ(t)) was plugged into

equation (3.16) of problem (S2). Furthermore, it is known from equation (3.17)

that the disposal of drainwater, η, is equal to zero until the water-storage capacity

is completely depleted. Thus, equations (3.15) and (3.16) simplify to a system

of two ordinary differential equations in ϕ and s that can be solved easily with

Mathematica�. The solution of the two differential equations provides the optimal

time paths of the shadow cost and of the stock of drainwater, together with the point

in time t1 where the resource should be depleted. Knowing the value of the shadow

cost at each point in time allows to retrieve the optimal values of the variables of

the spatial problem and examine their evolution over time.

The empirical analysis is started by calculating the socially optimal outcome

given a water-storage capacity of 10 feet. The results are summarized in Tables 3.1

and 3.2. Table 3.1 presents the case where disposal of drainwater is available at a

cost of $100/AF, and Table 3.2 presents the case where the disposal of drainwater

is not available.

The results show that with disposal costs of $100/AF, the shadow cost starts

out with $13.23 and increases by 4% until it reaches $100 in the 50th year. That

is, in the 50th year a further depletion of the water-storage capacity will lead to

foregone profits of $100. At this point in time, the shadow costs are equal to the

disposal cost of $100/AF. Thereafter, as the shadow cost raises annually by 4%,

depletion would be more expensive than disposal. For this particular reason the

shadow cost increases up to $100 exactly in the moment where the water storage

is completely depleted. The increase in the shadow cost continuously decreases the

share of land where a particular technology is employed, for instance drip irrigation

turns unprofitable after the 24th year. The disposal of drainwater allows to maintain

31.6% of the agricultural land in production; however, this is only 56% of the land

that was cultivated initially.
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Table 3.1: Results of the Social Optimization for the Entire Irrigated Area (where the water-storage capacity is 10 feet and

the disposal cost is $100/AF)

Technology adoption(a) Applied Drainwater Drainwater Social welfare Social welfare

Shadow water flow stock Yield (current (discounted

Year Cost Drip Furrow Idle Land (103 AF)(b) (103 AF)(b) (103 AF)(b) (in 106 lb) value, 103 $) value, 103 $)

0 13.23 7.11 % 49.61 % 43.28 % 798 113 0 293 14431 14431

10 19.73 4.71 % 47.63 % 47.66 % 737 102 1031 270 14251 9553

20 29.43 1.57 % 44.99 % 53.44 % 657 88 1960 240 13924 6256

30 43.91 - 41.69 % 58.31 % 580 74 2769 214 13394 4034

40 65.51 - 37.01 % 62.99 % 506 59 3444 191 12576 2539

50 97.72 - 31.80 % 68.20 % 424 44 3974 164 11389 1541

50.6+ 100.00 - 31.61 % 68.39 % 421 43(c) 4000 163 7043(c) 7043 exp(−0.04t)

(a) Indicates the share of land where a particular technology is adopted.

(b) To compute the mean water use per acre, drainwater flow and drainwater stock per acre, we must divide those values

by 400, since the region under analysis comprises 400,000 irrigated acres.

(c) From year 50.6 onwards, drainwater disposal comes into operation and, therefore, η(t) = z(t) = 43, ∀t ≥ 50.6. The

current value of the drainwater disposal costs, $4.3 million, leads to substantial loss in social welfare. For this reason, V

drops from 16,389 thousand dollars to 7,043 thousand dollars.
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Table 3.2: Results of the Social Optimization for the Entire Irrigated Area (where the water-storage capacity is 10

feet and disposal is not available)

Technology adoption Applied Drainwater Drainwater Social welfare Social welfare

Shadow water flow stock Yield (current (discounted

Year Cost Drip Furrow Idle Land (103 AF) (103 AF) (103 AF) (in 106 lb) value, 103 $) value, 103 $)

0 18.42 5.17 % 48.02 % 46.81 % 749 104 0 274 14290 14920

10 27.49 2.16 % 45.49 % 52.35 % 672 91 948 246 13994 9380

20 41.01 - 42.14 % 57.86 % 591 76 1778 217 13501 6066

30 61.18 - 37.83 % 62.17 % 519 61 2477 195 12741 3838

40 91.27 - 32.74 % 67.26 % 438 46 3032 169 11620 2346

50 136.16 - 27.02 % 72.98 % 352 33 3442 139 10102 1367

60 203.13 - 20.91 % 79.09 % 264 21 3717 108 8208 745

70 303.04 - 14.67 % 85.33 % 180 12 3879 75 6016 366

80 452.08 - 8.56 % 91.44 % 102 6 3961 44 3641 148

90 674.42 - 2.77 % 97.23 % 32 2 3993 14 1215 33

95.1 826 - - 100.00 % - - 4000 - - -
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Chapter 3. Optimal Control of Waterlogging

In contrast, when the disposal of drainwater is not feasible (Table 3.2), the

initial shadow costs ($18.42) are higher, and complete depletion of the water-storage

capacity is delayed until year 95. Surprisingly, the share of land where drip irrigation

is employed is lower than in Table 3.1, and it already vanishes completely after the

16th year. These land-use changes are due to the high fixed cost per acre of drip

irrigation, making it not viable if water prices are relatively high. However, these

land-use changes do not imply an expansion of the land cultivated with furrow

irrigation instead. The nonavailability of the disposal of the stock of drainwater

increases the initial share of idle land from 43.28% (Table 3.1) to 46.81% (Table

3.2). The output and input prices and the fixed cost per acre for each technology

shows that on-farm control of waterlogging is mainly achieved by leaving the land

fallow. This result is consistent with reality where some land of the San Joaquin

Valley is not utilized, due to a poor water-storage capacity.

The following section presents a sensitivity analysis with respect to the pa-

rameters of the model, i.e. with respect to the price of cotton, p, the water price, c,

the disposal costs, k, and the heterogeneity of the land.

3.5.1 Effect of Parameter Changes on the Optimal Tech-

nology Allocation

The sensitivity analysis evaluates the changes in the share of land where a particular

irrigation technology is adopted, as a result of a change in a parameter of the model.

To measure the heterogeneity of the land quality the beta distribution is chosen,

since it allows a wide variety of different shapes of the distribution.

Table 3.3 presents the different distributions used in the numerical analysis.

Besides 1 uniform distribution of the land quality, where the two parameters of the

beta distribution, denoted by γ and φ are identical and are equal to 1, 3 n-shaped

distributions (γ = φ > 1), and 3 u-shaped distributions (γ = φ < 1) were used. In
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order to attribute the resulting changes in land-use exclusively to a change in the

heterogeneity of the land quality the mean of the different distributions is maintained

constant. Thus the maximum possible variance of the land quality is given by 0.09,

that is where half of the land has the lowest land quality and the other half has the

highest land quality. To facilitate the graphical presentation of the results, an index

of the heterogeneity of the land quality has been constructed, and it is denoted by

ξ. It is constructed by dividing the variance of each distribution by the highest

variance (0.09). In this way, the most heterogeneous distribution of the land quality

is associated with the index 1, and the heterogeneity of the land quality declines as

the index number decreases.3

Table 3.3: Properties of the Beta Distributions

Parameters mean variance index of land

heterogeneity ξ

(0.1,0.1) 0.5 0.075 0.83

(0.5,0.5) 0.5 0.045 0.5

(0.8,0.8) 0.5 0.035 0.38

(1,1) 0.5 0.03 0.33

(2,2) 0.5 0.018 0.20

(3,3) 0.5 0.013 0.14

(5,5) 0.5 0.008 0.09

Figure 3.2 a-c) shows the effect of a successive increase in the price of cot-

ton from $0.60/lb to $0.70/lb on the share of land where a particular irrigation

3The socially optimal solution of the agricultural allocation problem with an index of land

heterogeneity of 1 is not calculated because the distribution is not continuous and therefore its

computation presents some numerical difficulties. The more heterogeneous considered land is a

beta distribution with parameters γ = φ = 0.1, which has an index of heterogeneity of 0.83.
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technology is adopted. The calculations are based on the case where the initial

water-storage capacity of 10 feet, and the disposal of draiwater is not available. Fig-

ure 3.2 a-b) shows that an increase of the price of cotton from $0.60/lb to $0.70/lb

in the first year leads to a decrease in the share of land with furrow irrigation from

42% to 32%. Yet, the share of land with drip irrigation increases from 5% to 67%.

This pattern of increase, however, is maintained only until the 31st year. Thereafter

the continuous increase in the shadow cost of the drainwater leads also to a decrease

of the share of land with drip irrigation. In the 31st year the share of land with drip

irrigation reaches 84%, with furrow irrigation 16%, and with no agricultural activity

0%. The decrease of the share of land with drip irrigation, however, does no lead

to an increase of the share of land with furrow irrigation, but to an increase of the

land that is taken out of production (Figure 3.2 c). The increase of the share of idle

land is the only way that some part on the land can be maintained in agricultural

production.

Figure 3.3 a-c) shows how the share of land, where a particular technology is

adopted, changes as a response to a change in the district water price, given s̄ = 10

feet and p =$0.60/lb. Figure 3.3 shows that drip irrigation is more sensitive to

changes in the water price than furrow irrigation (Figures 3.3 a-b). For example, a

decrease in the district water price from $60/AF to $45/AF leads in the first year

to an increase in the share of land with drip irrigation from 0% to 54%. The share

of land with drip irrigation declines faster over time if the district water price is

intermediate than if it is low. However, the share of land with furrow irrigation

declines slightly faster over time if the district water price is low. A decrease in

the district water price from $60/AF to $45/AF advances the cease of agricultural

production by 24 years (see Figure 3.3 c).

Figure 3.4 a-c) shows the effect of an increase in the disposal costs on the share

of land where a particular technology is adopted, given s̄ = 10 feet and p =$0.65/lb.

For a cotton price of $0.65/lb, disposal costs of $100/AF maintain the entire irrigated
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Figure 3.2: The Share of Cultivated Land as a Result of a Variation in Cotton Price

for a Given Technology
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Figure 3.3: The Share of Cultivated Land as a Result of a Variation in District

Water Price for a Given Technology
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Figure 3.4: The Share of Cultivated Land as a Result of a Variation in Disposal

Costs for a Given Technology
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area in agricultural production for most of the time horizon. The share of cultivated

land drops to 48% if disposal costs are 500$/AF, and to 20% if disposal costs are

$1000/AF. The share of land with drip or furrow irrigation basically declines slightly

over time for low disposal costs and strongly over time for high disposal costs. The

share of land with drip irrigation even increases over time if the disposal costs are

sufficiently low. Provided that disposal costs are not very high Figure 3.4 a-c) shows

that some part of the land can be maintained in agricultural production.

Figure 3.5 a-c) shows the effect of an increase in the heterogeneity of the

land quality on the share of land where a particular technology is adopted, given

s̄ = 10 feet and p =$0.65/lb. In the first year, the share of land with drip or furrow

irrigation does not vary with the heterogeneity ξ. However, for more heterogeneously

distributed land quality, furrow irrigation declines over time slower than for less

heterogeneously distributed land quality. The stronger decline of furrow irrigation

for a low ξ is compensated for a certain time period by an increase in the share of

land with drip irrigation. However, after approximately 80 years the share of land

with drip and furrow irrigation has declined to zero, and agricultural production

does not take place anymore.

3.5.2 Comparison Between Social and Common Access Out-

comes

Since the water-storage capacity is a good with common access to all farmers located

within the irrigated area, the optimal private behavior will not coincide with the

optimal social behavior. More precisely, economic theory has established that goods

with common access are privately overutilized in comparison with their optimal

utilization from a social point of view. The numerical analysis helps to determine

whether this theoretically established inefficiency in terms of social welfare loss is of

significant magnitude, or whether it can be neglected.
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3.5. Empirical Study

Figure 3.5: The Share of Cultivated Land as a Result of a Variation in Land Het-

erogeneity for a Given Technology
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Chapter 3. Optimal Control of Waterlogging

To determine the social welfare loss, the private maximization problem (T1)

and (T2) is solved, where τi(t, ε) is set to zero, and this outcome is compared with

the optimal outcome of the social maximization problem (S). That is, it is calculated

the difference between W S(z∗(t), η∗(t); s̄) − W T (0, η̃(t)).

Tables 3.4 and 3.5 present the results of the social and private optimizations,

respectively. These tables show that the depletion of the resource occurs earlier in

the case of private-maximizing behavior since the farmers do not take into account

the scarcity rent associated with the resource use. The difference between the social

and the private outcome is even more pronounced if the possibility of disposal of the

drainwater does not exist and the water-storage capacity is small. For instance, if

s̄ = 5, the depletion will occur five times faster than the socially optimal depletion.

In this case, the welfare losses are very accentuated and signify nearly 40% of the

social welfare, as shown in Figure 3.6.

Figure 3.6: Welfare Losses of the Private Equilibrium in Percentage over the Social

Welfare
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3.5. Empirical Study

Table 3.4: Results of the Social Optimization.*

Disposal Initial water-storage capacity s̄

cost 5 feet 10 feet 15 feet 20 feet 25 feet

Time (years) 30.1 50.6 68.1 84.2 99.5

Farm net margin(a) 222.759 270.033 303.020 325.069 339.568

$100/AF Collected taxes(a) 91.408 67.678 47.424 32.130 21.286

Disposal costs(a) -32.294 -14.247 -7.072 -3.713 -2.011

Welfare(a) 281.911 323.464 343.384 353.488 358.843

Time (years) 44.7 67 85.3 101.8 117.3

Farm net margin 176.309 244.511 287.855 315.805 333.838

$250/AF Collected taxes 98.682 75.400 53.643 36.713 24.494

Disposal costs -17.175 -7.037 -3.392 -1.754 -0.942

Welfare 257.816 312.887 338.106 350.765 357.390

Time (years) 59.9 82.8 101.2 117.8 133.4

Farm net margin 161.460 236.991 283.551 313.225 332.261

$500/AF Collected taxes 94.912 75.092 54.175 37.346 25.029

Disposal costs -5.422 -2.173 -1.039 -535 -287

Welfare 250.950 309.911 336.688 350.036 357.009

Time (years) 72.1 95.1 113.6 130.2 145.8

Disposal not Farm net margin 158.839 235.680 282.800 312.774 331.984

available Collected taxes 90.856 73.704 53.632 37.131 24.949

or k > 826 Disposal costs 0 0 0 0 0

Welfare 249.695 309.384 336.432 349.905 356.933

* based on the uniform land distribution, and a cotton price of $0.6/lb.

(a) Indicates the present value of those variables, in thousand dollars.

77



Chapter 3. Optimal Control of Waterlogging

Table 3.5: Results of the Private Optimization*

Disposal Initial water-storage capacity s̄

cost 5 feet 10 feet 15 feet 20 feet 25 feet

Time (years) 14 28 42 56.1 70.1

$100/AF Farm net margin 256.704 303.346 329.971 345.171 353.848

Welfare 256.704 303.346 329.972 345.171 353.848

Welfare losses 8.94% 6.22% 3.91% 2.35% 1.39%

Time (years) 14 28 42 56.1 70.1

$250/AF Farm net margin 199.462 270.669 311.318 334.523 347.769

Welfare 199.462 270.669 311.318 334.523 347.769

Welfare losses 22.63% 13.49% 7.92% 4.63% 2.69%

Time (years) 14 28 42 56.1 70.1

$500/AF Farm net margin 166.023 251.581 300.421 328.302 344.218

Welfare 166.023 251.581 300.421 328.302 344.218

Welfare losses 33.84% 18.82% 10.77% 6.21% 3.58%

Disposal Time (years) 14 28 42 56.1 70.1

not available Farm net margin 156.806 246.318 297.418 326.588 343.239

or k > 826 Welfare 156.806 246.318 297.418 326.588 343.239

Welfare losses 37.20% 20.38% 11.60% 6.66% 3.84%

* based on the uniform land distribution, and a cotton price of $0.6/lb.
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Table 3.6: Optimal Taxes on Applied Water (in $/AF)

Drip irrigation

Year Land quality ε

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 5.96 4.45 3.37 2.53 1.84 1.26 0.77

10 8.88 6.64 5.03 3.77 2.74 1.88 1.14

20 13.25 9.91 7.50 5.63 4.09 2.81 1.71

30 19.77 14.79 11.19 8.39 6.11 4.18 2.55

40 29.50 22.06 16.70 12.52 9.11 6.24 3.80

50 44.00 32.91 24.91 18.68 13.59 9.31 5.67

60 65.65 49.09 37.17 27.87 20.27 13.89 8.45

70 97.93 73.23 55.45 41.57 30.24 20.73 12.61

Furrow irrigation

Year Land quality ε

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 30.20 23.43 17.47 12.35 8.08 4.67 2.16

10 45.05 34.95 26.07 18.43 12.05 6.97 3.22

20 67.21 52.14 38.89 27.49 17.98 10.40 4.81

30 100.27 77.78 58.01 41.01 26.83 15.52 7.18

40 149.59 116.03 86.54 61.18 40.02 23.15 10.71

50 223.15 173.10 129.11 91.27 59.70 34.54 15.97

60 332.91 258.23 192.60 136.16 89.06 51.53 23.83

70 496.64 385.24 287.33 203.13 132.87 76.87 35.55
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Chapter 3. Optimal Control of Waterlogging

To induce farmers to behave optimally from a social point of view, the social

planner could impose a spatially and temporally differentiated tax on the applied

water. It is given by λ(t) (1 − ε0.1)1.07448 and λ(t) (1 − ε)1.9022 for drip and furrow

irrigation respectively, where the optimal value of the shadow cost at each point

in time is known for a predetermined set of parameters. For example, when the

water-storage capacity is 25 feet, the optimal shadow cost is λ(t) = 2.42 exp0.04t

and, for a water-storage capacity of 5 feet, it is λ(t) = 46.17 exp0.04t. For the case

of s̄ = 5, p =$60/lb, a uniform distribution of the land quality, and no availability

of drainwater disposal, Table 3.6 presents the socially optimal intertemporal tax

scheme as a function of land quality ε. It shows that the optimal taxes on water

applied with furrow irrigation are more sensitive to a change in land quality than the

taxes on water applied with drip irrigation. In this way, the taxes on water applied

with furrow irrigation are about 14 times higher at locations with a poor land quality

in comparison with the taxes at locations with a high land quality. Moreover, the

optimal taxes increase over time by the rate of discount, which exacerbates the

difference between taxes imposed on low- and high-quality lands.

Figure 3.7 shows how the social cost of water changes as a function of time

and land quality for drip (Figure 3.7 a) and furrow irrigation (Figure 3.7 b). The

social cost of water consists of the water price that is charged by the water district4

plus the optimal technologically, spatially, and temporally differentiated taxes on

the applied water. Figure 3.7 shows for both available technologies that the tax for

high-quality lands is never as high as the water price. However, the share of the

tax in social water price increases as land quality declines. Moreover, the socially

optimal tax increases exponentially over time, so that the proportion of the social

water price that corresponds to the tax increases as time goes by. For instance, in

land with average quality, the tax on water, applied with furrow irrigation, exceeds

the water price from the 38th year onwards and, in land with low quality, from the

4Figure 3.7 is based on a water price of $55/AF.
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15th year (furrow irrigation) and from the 55th (drip irrigation) year onwards. At the

end of the planning horizon, the social cost of water applied with furrow irrigation

reaches $600/AF on the lowest quality land.

Figure 3.7: Evolution of the District Water Price and the Social Cost of Water

(Water price plus the socially optimal tax) over Time and Land Quality ε
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To see how a change in the price of water, charged by the water district, affects

the optimal tax the social optimal outcome based on district prices of $45/AF,
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$50/AF and $60/AF was calculated. Additionally, it was analyzed to which extent

the change in the optimal tax, as a result of a change in the district water price,

varies over time and over land quality. For example, given a water-storage capacity

of 5 feet, a decrease in the district water price from $55/AF to $50/AF leads, in the

first year, to an increase in the socially optimal taxes from $2.53/AF to $3.69/AF

(drip irrigation) and from $12.35/AF to $18.06/AF (furrow irrigation) for a site

with average land quality (ε = 0.5).5

Figure 3.8 shows how the share of the tax of the district water price changes

in the first year of the planning horizon as a function of land quality for different

district water prices, for drip irrigation (Figure 3.8 a), and furrow irrigation (Figure

3.8 b). Likewise Figure 3.9 shows the evolution of the share of the tax of the district

water price over time for different district water prices, for drip irrigation (Figure

3.9 a), and furrow irrigation (Figure 3.9 b), on land with average land quality. The

results presented in Figure 3.8 and 3.9 are based on calculations with a water-storage

capacity of 5 feet, a cotton price of $0.60/lb and no availability of disposal of the

drainwater.

Figure 3.8 a-b) shows that the share of the tax of the district water price

increases with a rise in the district water price. This effect exacerbates as the

quality of the land declines. For instance, in the case of drip irrigation a reduction

of the district water price from $60/AF to $45/AF, causes the share of the tax of

the district water price to increase from 0.9 to 3.1% on high-quality lands, and from

7.1 to 24.67% on low-quality lands. The same effect is even more pronounced in the

case of furrow irrigation since more drainwater is generated. The share of the tax

of the district water price, on water applied with furrow irrigation, on low quality

land reaches up 125% when the district water price is $45/AF.

5For a decrease in the district water price from $55/AF to $50/AF the change of the socially

optimal taxes as a function of ε are given in general by 46.17 exp0.04t αi(ε), and 67.48 exp0.04t αi(ε)

respectively.
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3.5. Empirical Study

Figure 3.8: Variation in the Share of the Optimal Tax of the District Water Price

as a Function of Land Quality ε for Different District Water Prices
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Chapter 3. Optimal Control of Waterlogging

Figure 3.9: Variation in the Share of the Optimal Tax of the District Water Price

as a Function of Time for Different District Water Prices
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Figure 3.9 shows that the share of the optimal tax of the district water price

increases over time. The increase is even stronger the lower is the district water price.

Thus, for land with average quality, the tax on water applied with drip irrigation

constitutes the principal share of the district water price if it is below $50/AF. In

the case of furrow irrigation the share of the tax of the district water price increase

even more sharply over time. At the end of the planning horizon the tax corresponds

to 300% of the district water price if the district water price is $60/AF and to 600%

of the district water price if the price is $45/AF.

The elasticities of the socially optimal tax with respect to the district water are

−1.41, −3.23, −4.53 and −1.91 given a district water price of $45/AF, $50/AF,

$55/AF, $60/AF respectively. These elasticities are identical for drip irrigation

and furrow irrigation. For medium water prices (50 and $55/AF) a decrease in the

district water price produces a strong increase in the socially optimal tax. This result

is due to the fact that a decrease in the district water prices increases the private

profitability of the land, and therefore, land that had been idle before, comes into

production leading to an overall increase in drainwater generation. However, if the

district water prices are either low or high a decrease in the price produces a less

stronger increase in the socially optimal tax (see also Figure 3.3). In the case of low

prices this reduced effect is a consequence of the exhausted possibility to bring in

more land into agricultural production. In the case of high district water prices one

observes that no additional land will be put into production, thereby limiting the

generation of drainwater.

3.6 Implementation of Uniform Policies

Considering the heterogeneity of land implies that one should take into account

both the spatial allocation and the temporal allocation in designing the correct

policies to lead to the social optimum. Ignoring any of these aspects will lead
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to inefficient outcomes. This section explores the magnitude of the inefficiencies

resulting from a deviation of the socially optimal solution, when imposing a second-

best uniform policy under heterogeneous conditions. With this purpose, the land

allocation problem is modelled in the case that the regulator does not posses all the

necessary information to design a spatially and temporally differentiated policy, or

even having it, the administrative costs of a differentiated policy are considered too

high. Firstly, it is considered the case where the social planner does not know the

whole distribution of the land quality over the region, making necessary to implement

a uniform policy over space. Afterwards it is considered the case in which the policy

maker does not know the optimal timing of the problem or she is not able to change

the policy over time due to unaffordable administration costs.

3.6.1 Uniform Policies over Space

Assume the farmers know the physical attributes of their own land in making their

decisions, but the social planner does not know the whole distribution of the land

quality in the region, she only knows the mean land quality ε̄. Therefore, the social

planner does not possess all the necessary information to implement a targeted

policy over space and must implement a uniform policy instead. In that case it is

not possible to regulate the private behavior to lead to the social optimum, producing

as a consequence, a loss in social welfare.

When a constant tax over space τ̂i(t, ε̄) = τ(t) αi(ε̄) is levied on the applied water,

each farmer will choose the application rate that maximizes the farm net margin

after the tax, given by:

FNM(τ̂i(t, ε̄)) ≡ max
xi, ui

∫ ε1

ε0

( 2∑
i=1

(
pf(βi(ε)ui) − cui − Ii − ταi(ε̄)ui

)
xi

)
dε (Uε̄)

subject to
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3.6. Implementation of Uniform Policies

xi(ε) ≥ 0, i = 1, 2, x1(ε) + x2(ε) ≤ X(ε), ui(ε) ≥ 0, i = 1, 2

The objective of the social planner is then, to find the constant tax rate over

space that maximizes the social welfare over time. The theory suggest that the dis-

counted social welfare obtained with a uniform policy over space, W (τ̂i(t, ε̄), η̂(t)),

will be inferior than the social welfare obtained with the spatially and temporally-

differentiated optimal policy, W (τ ∗
i (t, ε), η∗(t)), as the allocation of technologies and

water use differs from those of the socially optimal outcome. To investigate the ex-

tent of these inefficiencies, the solution of the uniform policy over space is computed

for the case of the cotton produced in the San Joaquin Valley in California.6

To examine empirically the inefficiency resulting from applying a spatially-

uniform policy over the agricultural region, it is assumed that the social planner

only knows that the mean land quality is 0.5, but she does not know the whole

distribution of the land quality. As a consequence, she is not able to impose the

optimal differentiated tax, and she fixes instead a uniform tax on the applied water

with drip irrigation equal to τ(t) (1 − 0.50.1)1.074, and a tax τ(t) (1 − 0.5)1.092 on

the applied water with furrow irrigation, selecting τ(t) in each period to maximize

the social welfare. This policy favors the use of low quality and more polluting

lands against the lands with higher quality, since the tax is fixed on the base of the

drainwater generated on the mean-quality lands. The optimization was carried out

for the land quality distributions defined in Table 3.3.

Table 3.7 summarizes the results of the uniform optimization over space, and

Figure 3.10 depicts the welfare losses due to the implementation of the uniform tax

over space as a function of the land heterogeneity ξ. One can observe from Table

3.7 that heterogeneity of land has a considerable influence on the magnitude of the

6To keep the analysis simple, the solutions were only computed for the exhaustible resource

scenario, but the inefficiencies could also be evaluated for the case in which drainwater disposal is

feasible.
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Table 3.7: Results of the Optimization with Constant Taxes over Space*

Index of land Initial water-storage capacity s̄

heterogeneity ξ 5 10 15 20 25

Farm net margin 194.737 495.909 708.233 821.283 878.373

0.83 Collected taxes 312.547 274.279 159.069 84.209 42.756

Welfare 507.281 770.187 867.302 905.492 921.129

Welfare losses 26.91% 7.45% 3.01% 1.20% 0.49%

Farm net margin 239.741 526.529 708.133 825.929 902.369

0.50 Collected taxes 327.228 275.547 203.760 143.449 98.761

Welfare 566.969 802.075 911.893 969.378 1000.000

Welfare losses 13.28% 4.83% 2.30% 1.18% 0.62%

Farm net margin 265.605 527.125 687.641 792.049 863.106

0.38 Collected taxes 301.134 249.264 189.603 140.150 100.826

Welfare 566.738 776.388 877.244 932.199 963.932

Welfare losses 7.42% 2.80% 1.40% 0.77% 0.45%

Farm net margin 276.832 523.360 675.135 774.721 843.746

0.33 Collected taxes 285.719 238.719 184.327 138.777 101.553

Welfare 562.551 762.079 859.462 913.497 945.299

Welfare losses 5.29% 2.03% 1.04% 0.59% 0.35%

Farm net margin 290.685 506.758 635.707 723.144 783.930

0.20 Collected taxes 249.449 208.190 168.063 132.372 103.717

Welfare 540.134 714.948 803.770 855.517 887.647

Welfare losses 1.30% 0.53% 0.28% 0.17% 0.10%

Farm net margin 298.844 496.847 614.324 695.020 752.739

0.14 Collected taxes 225.827 191.475 158.744 128.657 103.157

Welfare 524.671 688.323 773.069 823.677 855.896

Welfare losses 0.41% 0.17% 0.09% 0.06% 0.03%

*For a cotton price of $0.65/lb, and where drainwater disposal is not available.
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deadweight losses from a uniform policy over space. The divergence between the

outcome of the uniform policy and the social optimum becomes more pronounced

when the water logging capacity falls to less than 10 feet. When the land is rather

homogeneous, the implementation of a uniform tax on the applied water can be

considered as a substitute of an heterogeneous policy, for instance, if the variance

of the land quality is lower than 0.018 (ξ = 0.20), the deadweight loss is less than

1% of social welfare. However, as heterogeneity of land increases and the water

logging capacity gets smaller, one can not utilize uniform policies to achieve the

social optimum.

Figure 3.10: Welfare Losses of a Uniform Tax over Space as a Percentage over the

Social Welfare
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Contrary to the results by Helfand and House (1995), it is find that there are

cases in where the welfare loses of a uniform policy measure can be very significative.
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For example, when the subsurface storage capacity is 5 feet and the soil is uniformly

distributed (ξ = 0.33), there will be a loss in social welfare of 5%, and the welfare

loss reaches 27% with an index of land heterogeneity of 0.83.

3.6.2 Uniform Policies over Time

The maximization of the social welfare requires to impose an increasing tax over

time, as the water-storage capacity declines. However, in many occasions, the gov-

ernment is not able to change the policy continuously. Instead, she implements a

static policy, imposing a specific tax schedule over space and maintaining it in the

overall time period, or changing the tax after some time (almost static). The welfare

obtained in this case should be clearly inferior (Perman et al., 1999). The median

shadow price of the drainwater flow, that is, the shadow price at half the temporal

horizon of the optimization problem, is denoted by ϕ̃, and it is assumed that the

authority imposes a tax τ̃i(t̄, ε) = ϕ̃ αi(ε). The farmer will choose the technology

and the level of applied water to maximize

FNM(τ̃i(t̄, ε)) ≡ max
xi, ui

∫ ε1

ε0

( 2∑
i=1

(
pf(βi(ε)ui) − cui − Ii − ϕ̃αi(ε)ui

)
xi

)
dε (Ut̄)

subject to

xi(ε) ≥ 0, i = 1, 2, x1(ε) + x2(ε) ≤ X(ε), ui(ε) ≥ 0, i = 1, 2

Given that Proposition 7 states that the optimal input taxes should be fixed ac-

cording to τ ∗
i (t, ε) = ϕ(t) αi(ε), i = 1, 2, and knowing that the optimal shadow

price of the drainwater stock increases over time at the discount rate, one ob-

tains that these taxes must increase at the same rate. Thus, the imposition of

static or almost static taxes should result in a loss of the social welfare, given by

W (τ ∗
i (t, ε), η∗(t)) − W (τ̃i(t̄, ε), η̃(t)).

To analyze empirically the inefficiencies resulting from applying a static policy
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over time, 4 different optimizations were computed.7 In the fist one, the median

shadow price was taken to calculate the water taxes, and those taxes were maintained

constant in the overall period. In the second, the temporal horizon was divided in

two periods and the median shadow price of each period was taken to compute

the corresponding taxes, applying each tax half of the time frame. The third and

fourth optimizations were performed by dividing the time frame in 4 and 10 periods

respectively. To facilitate the representation of results, an index of dynamicity

is constructed, defined as θ ≡ 1 − 1/n, where n denotes the number of periods

considered. In this way, an index θ = 0 corresponds to a totally static policy, while

an index θ = 1 stands for a totally dynamic policy. The last one is equivalent to

the socially optimal solution. Table 3.8 presents the results of these optimization

problems, and Figure 3.11 depicts the welfare losses of the static policy as a function

of the index of dynamicity. One can see from Table 3.8 that the welfare losses

increase as a more static policy is applied, reaching a deadweight loss of 27% of

the social welfare if a constant tax over time is imposed, when the water storage

capacity is only 5 feet. However, the welfare losses decrease significatively when the

planning horizon is divided in more than 1 period (index of dinamicity θ = 0.5).

Comparing the uniform policy over space with the static policy over time, one

also observes that not taking into account heterogeneity of land and thus imple-

menting uniform taxes over space can lead, if the land is rather heterogeneous, to a

greater deadweight loss than an almost static policy (considering only two different

periods). Surprisingly, it could also be the case that a second-best uniform policy

is in some situations worse than the private solution, given that it leads to a lower

social welfare.

7The result of the static policy is also computed only for the exhaustible resource scenario.
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Figure 3.11: Welfare Losses of a Static Tax
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3.7 Summary and Conclusions

This chapter presents a theoretical model that allows to determine the intertempo-

rally optimal amount of water use and intertemporally optimal technology choice

in the presence of spatial heterogeneity of land. To determine the optimal spatial

and temporal decision two stage optimal control is utilized, where the first stage

serves to determine the optimal spatial allocation of the resources, and the second

stage to determine the optimal intertemporal development of the already optimal

spatial decision problem. The method is presented in the context of the problem of

waterlogging. Due to the common property character of the available water-storage

capacity of the entire irrigated agricultural area, the optimal private outcome does

not coincide with the optimal social outcome. Therefore, a corrective price policy is

required that takes account of the spatial heterogeneity of the land, of the different
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Table 3.8: Results of the Optimization with Static Taxes*

Index of Initial water-storage capacity s̄

Dynamicity θ 5 10 15 20 25

Farm net margin 158.871 285.358 390.314 478.663 556.192

0 Collected taxes 257.630 317.108 337.901 339.926 328.905

Welfare 416.501 602.465 728.216 818.590 885.096

Welfare losses 29.88% 22.55% 16.15% 10.91% 6.69%

Farm net margin 299.241 477.780 677.805 779.259 843.410

0.5 Collected taxes 269.947 281.010 174.953 124.588 91.976

Welfare 569.188 758.790 852.757 903.847 935.386

Welfare losses 4.17% 2.45% 1.81% 1.63% 1.39%

Farm net margin 320.934 556.676 691.017 797.031 860.895

0.75 Collected taxes 267.509 216.180 173.205 118.669 84.713

Welfare 588.443 772.856 864.221 915.700 945.608

Welfare losses 0.93% 0.65% 0.49% 0.35% 0.32%

Farm net margin 328.994 559.739 707.469 801.533 865.512

0.9 Taxes 264.165 217.391 160.352 116.763 82.625

Welfare 593.159 777.130 867.821 918.296 948.136

Welfare losses 0.13% 0.10% 0.08% 0.06% 0.05%

Farm net margin 332.320 562.569 709.233 803.732 866.320

1 Collected taxes 261.633 215.321 159.240 115.142 82.282

Welfare 593.952 777.891 868.473 918.874 948.602

Welfare losses - - - - -

*For a cotton price of $0.65/lb and where drainwater disposal is not available.
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technologies, and of the dynamic aspects of the depletion of the water-storage capac-

ity. Consequently optimal water prices are spatially, technologically, and temporally

differentiated.

To demonstrate the applicability of this approach an empirical illustration is

presented for the case of cotton produced in the San Joaquin Valley in California,

USA. The theoretical model is reformulated such that it can be solved numerically

with standard mathematical software. The empirical part of the chapter shows to

which extent the inefficiency of the private versus the social outcome is relevant

in an empirical context. With a water-storage capacity of 5 feet, for instance, the

depletion will occur five times faster than the socially optimal depletion leading to

an overall welfare loss of 40%. The simultaneous consideration of technology, time

and space permits to show to which extent the changes in water prices are attributed

to a change in the technology, in time or in land quality. Moreover, the empirical

study demonstrates the sensitivity of the optimal water pricing policy with respect

to changes in land quality given a certain irrigation technology. For example, the

optimal tax on water applied with drip irrigation is approximately 9 times higher

for the lowest land quality compared to the highest land quality, while the optimal

tax on water applied with furrow irrigation is 14 times higher.

The analysis suggests that site and technology specific information is needed

in every moment of time to design optimal pricing policies. With the development of

new technologies, such as remote sensing and geographic information systems, and

the enhancing of monitoring practices, these differentiated policies are becoming

feasible. The analysis is expanded to cases where policymakers are not able to

distinguish between land qualities, and therefore, the pricing policy can only be

technologically and temporally differentiated, and to cases were policymakers are

not able to change the policies continously over time. In this cases, the model serves

to determine to which extent uniform policies over space or static taxes can be a

substitute for the optimal policies.
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Chapter 4

Optimal Control of

Size-Distributed Forests

4.1 Introduction

Interest in forests has grown significatively in many countries over the last years.

The United Nations Economic and Social Council, in its decision 1995/226, endorsed

the recommendation of the third session of the Commission on Sustainable Devel-

opment to establish the Intergovernmental Panel on Forests (IPF). Its objective was

to pursue consensus and coordinated proposals for action to support conservation,

management, and sustainable development of forests. The implementation of the

proposals for action has been approved by the United Nations, and the European

Union. Therefore, it becomes necessary to design forest policies that support the

sustainable management of forests.

Forests provide a large variety of services such as: timber production; recre-

ation and landscape; natural habitat for numerous species; protection of watersheds;

protection of villages from avalanches and landslides; buffering and carbon seques-

tration (Rojas, 1996). Thus, from a social point of view the optimal management
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of forests must take these multiple services into account. The variety of services is

especially pronounced in Catalan forests, where principal benefits from forestry are

in form of by-products (mushrooms, truffles, hunting, ...). These benefits account

for 65% of the commercial value of forest products, and only 35% are attributed to

timber and firewood sale (Raddi, 1997). One of the most important instruments to

support and reinforce the multiple services provided by the forest is the selective-

logging regime. However, previous economic literature has either ignored completely

the possibility of a selective-logging regime, or this logging regime has been treated

without an explicit recognition of the complex growth process driven by time and

size of the tree.

Optimal tree rotation of a forest where all trees have the same age was solved

by Faustmann (1849), Pressler (1860), and Ohlin (1921) (Conrad and Clark, 1987).

However, if the multiple services that forest provides are taken into account, the

Faustmann solution is not optimal, as is originated from focusing exclusively on

timber production. Moreover, the Faustmann approach is limited as it does not

allow to analyze the optimal management of a size-distributed forest. To determine

the optimal management of such forest it is necessary to consider, in addition to

time, the size of the trees.

This chapter presents a theoretical model to find the optimal selective-logging

regime of a size-distributed forest. The law of motion of the economic model is

governed by a partial differential equation that describes the evolution of the forest

stock over time. To find the solution of the resulting distributed optimal control

problem a numerical solution technique known as “Escalator Boxcar Train” is pro-

posed. The empirical part of the chapter determines the optimal selective-logging

regime of a forest that consists of pinus sylvestris from a private and social perspec-

tive. Additionally, the optimal logging regime that converts an even-sized forest

into an uneven-sized or size-distributed forest is analyzed. The analysis allows to

compare the optimal selective-logging regime with the optimal clear-cutting of the
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Faustmann model. The results show that the clear-cutting regime leads to lower ben-

efits than the selective-logging regime. This is due to the rigidity of the Faustmann

model with respect to thinning and planting. Finally, the effect of incorporating

a monetary value of diversity on the optimal management regime of the forest is

analyzed.

The chapter is organized as follows. The following section describes the basic

features of the model. Section 4.3 defines the distributed optimal control problem. In

section 4.4, a numerical method for solving the distributed optimal control problem

is presented. Section 4.5 determines the selective-logging regime of a size-distributed

forest. Finally, section 4.6 presents some conclusions.

4.2 The Economic Model

In order to specify the economic model, one has to determine initially how the size

of a tree is measured. In forestry, the size of a tree, and consequently the size of a

forest, is usually measured by the diameter at breast height, that is, the diameter

of the trunk at a height of 1.30 m above the ground. Adopting this measurement,

distributed optimal control emerges as the most suitable tool to determine the op-

timal selective-logging regime of a privately owned size-distributed forest. Apart

from defining size and time as the relevant exogenous determinants for the growth

process, it is also taken into account that timber prices per m3 increase with the

diameter of the tree. More specifically, time, denoted by t, and diameter, denoted

by l ∈ Ω, Ω ≡ [l0, lm), are incorporated as the domain of the control and state

variables. The upper boundary of the diameter domain, lm, can be interpreted as

the maximum diameter that a tree can reach under perfect environmental condi-

tions. It is assumed that a diameter-distributed forest can be fully characterized by

its number of trees and by the distribution of the diameter of the trees. In other

words, the spatial distribution or particular location of the trees is not accounted
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for. It is assumed that all individuals have the same environmental conditions and

the same amount of space. Moreover, given that the diameter of a tree lies in the

interval [l0, lm), and that the number of trees is large by assumption, the forest can

be represented by a density function. It is denoted by x(t, l) and indicates the pop-

ulation distribution with respect to the structuring variable, l, at time t. Given this

definition, the number of trees in the forest at time t is given by

X(t) =

∫ lm

l0

x(t, l) dl. (4.1)

In order to model the dynamics of the forest, the four processes: growth, repro-

duction, mortality and the influence of the individual tree on in the vital functions

of other individuals have to be determined. Let define g(E, l) as the rate of change

in the diameter of a tree as a function of its current diameter, and of a collection of

environmental characteristics, E, that affect individual growth. These environmen-

tal characteristics can be given, for example, by the total number of trees, or the

basal area1 of the forest. A large basal area decreases the rate of growth of a single

tree, since, for instance, less light is available for photosynthesis. Thus, the change

in the diameter over time of a single tree is given by

dl

dt
= g(E, l). (4.2)

The instantaneous mortality rate, that is, the rate at which the probability of

survival of a tree with diameter l, given the environment E decreases with time, is

defined by d(E, l). This chapter concentrates on the case where the forest is man-

aged in form of a plantation, i.e., all young trees are planted with diameter l0 and no

biological reproduction takes place. Thus, the control variables of the forest owner

are given by u1(t, l) and u2(t; l0) and denote cutting density at time t with diame-

ter l, and planting density at time t with diameter l0 respectively. These features

1Basal area is the area of the cross section of a tree at a height of 1.30 m above the ground.

Basal area is often used to measure and describe the density of trees in the forest, using the sum

of the basal area of all trees expressed per unit of land area (e.g., square meters per hectare).
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are typical for time and diameter dependent optimal control problems where a dis-

tributed control u1 (distributed over l) is complemented by a boundary control u2.

Following Tuljapurkar and Caswell (1997), the partial differential equation (PDE)

that governs the dynamics of the forest, complemented by the variable u1(t, l) can

be written as:

∂x(t, l)

∂t
+

∂g(E, l) x(t, l)

∂l
= −d(E, l)x(t, l) − u1(t, l). (4.3)

4.3 The Distributed Optimal Control Problem

The optimal management of a diameter-distributed forest can be formulated as a

distributed optimal control problem (Calvo and Goetz, 2001). Using the definitions

given in the preceding section, the formal decision problem of the forest owner can

be stated as:

max
u1(t,l),u2(t;l0)

∫ ∞

0

∫ lm

l0

V1(x(t, l), u1(t, l), l)e
−rt dl dt

−
∫ ∞

0

V2(x(t, l0), u2(t; l0), l0)e
−rt dt,

(P)

subject to the constraints

∂x(t, l)

∂t
= f(E, t, l) = −∂g(E, l) x(t, l)

∂l
− d(E, l)x(t, l) − u1(t, l),

x(t0, l) = x0(l), x(t, l0) = u2(t; l0), u1 ∈ U1, u2 ∈ U2,

where r denotes the discount rate. The function V1(·)e−rt presents the discounted

net margin of the timber, i.e. the revenue of the timber sale minus cutting and

maintenance costs. The function V2(·)e−rt captures the discounted cost of planting

trees with diameter l0. The term x0(l) denotes the initial diameter distribution of

the trees, and the restriction x(t, l0) = u2(t; l0) requires that the planted density

coincides with the density of the stock variable with diameter l0.
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The expressions U1, U2 denote some bounded control sets, such as bio-physical

or non-negativity constraints. Using Pontryagins Maximum Principle the present

value Hamiltonian is given by

H ≡
∫ lm

l0

[
V1(·)e−rt + λ(t, l)f(·) ]

dl − V2(·)e−rt + λ0(t)
[
u2(t; l0) − x(t, l0)

]

≡
∫ lm

l0

H1 dl + H2,

where H1 stands for V1(·)e−rt+λ(t, l)f(E, t, l), and H2 for −V2(·)e−rt+λ0(t)
[
u2(t; l0)−

x(t, l0)
]
. The variables λ(t, l) and λ0(t) denote the costate variable and a Lagrange

multiplier respectively. The term H1 is associated with the distributed optimal con-

trol part of the problem, and the term H2 with the boundary optimal control part

(Feichtinger and Hartl, 1986), and (Muzicant, 1980). That is why H1 is integrated

over the range of l but not H2. In other words H2 is similar to a standard optimal

control problem (lumped optimal control) since it is valid for all moments of time

but only for a single value of l, i.e. l0 (lumped). However, it is not a proper opti-

mal control problem as the constraint u2(t; l0) − x(t, l0) = 0 is constant over time.

As a result, the first order conditions associated with this part of the problem do

not involve a system of canonical differential equations. Taking into account the

constraints of the control sets U1 and U2, leads to the Langrangian L given by

L ≡
∫ lm

l0

H1 dl + H2 + µ1U1 + µ2U2,

where µ1 and µ2 are Langrange multipliers.

For an interior solution the following necessary conditions (Sage, 1968) are

obtained, and it is assumed that they are also sufficient.2

2In the literature very little is said about sufficient conditions. Robson (1985) shows that the

necessary conditions for a specific quasi-linear distributed control problem are also sufficient if the

maximized Hamiltonian is concave in the state variable. As the thesis is primarily concerned with

the presentation of a numerical solution technique, sufficient conditions are of minor importance.
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∂H1

∂u1

≡ V1u1
e−rt + λ(t, l) = 0, ∀t, ∀l (4.4)

∂H2

∂u2

≡ −V2u2
e−rt + λ0(t) = 0, ∀t (4.5)

∂H2

∂λ0

≡ u2(t; l0) − x(t, l0) = 0, ∀t (4.6)

−∂H1

∂x
=

∂λ(t, l)

∂t
+

∂
(
g(E, l)λ(t, l)

)
∂l

(4.7)

∂x(t, l)

∂t
= −∂

(
g(E, l) x(t, l)

)
∂l

− d(E, l)x(t, l) − u1(t, l). (4.8)

The first necessary condition, equation (4.4), states that along the optimal

path the discounted marginal net margin of the timber should equal the shadow

price of the forest stock for every t and l, since the thinning variable is equivalent to

a reduction of the forest density. In contrast to lumped optimal control, distributed

optimal control requires that this equation holds along the optimal path not only

with respect to time, but also with respect to diameter. Thus, the private owner

maximizes his/her benefits not only over time but also over diameter at every instant

of time. In other words, the private owner practices selective logging. Equation (4.5)

states that the discounted marginal cost of planting trees with diameter l0 should

equal at very moment of time the discounted marginal benefits of planting this tree,

e.g. the discounted marginal net benefits that accrue from time t to t1. Hence, in

correspondence with the first necessary condition the private owner also practices

to some extent selective planting by choosing the time and the number of trees to

be planted, however not their diameter. Equation (4.6) reproduces the constraint

associated with λ0(t) and reflects the fact that the number of planted trees has to

coincide with the stock variable at diameter l0. Necessary condition (4.7) shows that

the marginal change in the overall discounted net benefits of selective logging due

to a decrease in the stock, captured by −∂H1

∂x
, has to equal the marginal change in

the shadow price with respect to time plus the marginal change of the product of

the growth rate by the shadow price with respect to diameter. The last necessary
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condition is just a restatement of the law of motion, and therefore, it will not be

discussed here.

4.4 The Numerical Approach

In practice, the necessary conditions, including a system of partial differential equa-

tions, can only be solved analytically under severe restrictions with respect to the

specification of the mathematical problem, basically linearity of the state and con-

trol variables (Muzicant, 1980). Therefore, numerical methods have to be used to

solve most distributed optimal control problems encountered in economics. The dif-

ferent available numerical techniques can be distinguished by their approximation

approach.

The first type of approximation is based on Finite Differences. This method

discretizes the diameter-domain3 of the variables, Ω, into a number m of cells. In

this way, the PDE governing the dynamics of the model results in a set of difference

equations. In the optimal control problem, these difference equations will contain

the control functions evaluated at the grid points, and the problem is to adjust these

values so as to minimize the given criterion function while satisfying all the differ-

ence equations. This problem can be solved by linear or non-linear programming

techniques. However, different discretization schemes produce distinct temporal and

diameter-distributed pattern formation yielding different regions of stability (Gang

and Zhaojun, 1994).

Another type of approximation, known as the method of Galerkin, consists

of proposing specific functional forms for x∗(t, l) and λ∗(t, l) that approximate the

unknown true functions. The parameters of the approximation function x∗(t, l) and

3The discretization must be done in the domain of the distributed parameter, in this case, the

diameter. In other problems it could be, for instance, age or space.
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λ∗(t, l) are the unknowns to be determined. The substitution of the approximation

functions in equations (4.7) and (4.8) in comparison with the true functions, leads

to an error term. Thus, the unknowns are chosen to minimize the weighted error

over the entire domain of the state equations. Introducing the approximation func-

tions into equations (4.7) and (4.8) and integrating each with respect to l eliminates

this variable and allows to obtain a system of ordinary differential equations in t

(Tzafestas, 1980). This method assumes implicitly that each approximation func-

tion is defined by a single expression which is valid throughout the entire domain

Ω. A further development of the method of Garlekin, known as the Finite Elements

Method divides the region Ω into a number of non-overlapping subdomains or el-

ements Ωe, and approximates the underlying function in a piecewise manner over

each subdomain.

Alternatively, in order to reduce the numerical complexity, one can transform

the distributed optimal control into a classic optimal control problem by transform-

ing the independent variable, l, into a state variable of the system l(t). The numerical

approach is based on the work by de Roos (1988), who developed a special numerical

method called the “Escalator Boxcar Train” for solving physiologically structured

population models. The principal idea of this method is to group individuals into

cohorts with a low heterogeneity between the trees of each cohort. In this way, each

cohort can be characterized by the number of trees and their average diameter. By

assumption, cohorts of trees stay together as isolated groups. The number of trees

of a cohort diminishes only if trees die or are cut. The range Ω = [l0, lm) is divided

into m small intervals Ωi = [li, li+1), i = 1...m, such that all trees with a diameter

within the interval Ωi can be considered approximately identical, and are presented

by a single cohort with index i.

The total number of trees with a diameter within the interval Ωi is given by

Xi(t) =

∫ li+1

li

x(t, l) dl, (4.9)
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and the average diameter of these individuals by

Li(t) =
1

Xi

∫ li+1

li

l x(t, l) dl. (4.10)

The cohort with index i is assumed to be fully characterized by its number

of trees, Xi, and average diameter of the trees, Li. This assumption allows to

approximate the density function x(t, l) by a collection of cohorts with Xi trees and

diameter Li. Following de Roos, (1988), integrals over the entire range [l0, lm) can

be approximated up to second-order precision by the following sum:

∫ lm

l0

ϕ(l) x(t, l) dl =
m∑

i=1

ϕ(Li(t)) Xi(t), (4.11)

where ϕ(l) is a measurable characteristic of the stand. Therefore, all stand charac-

teristics of interest, such as the stand basal area or stand volume, can be computed

as a weighted sum over the cohort characteristics. For example, the stand basal area

can be approximated by
∑m

i=1 π
(

Li(t)
2

)2
Xi(t).

The variable U1i(t) is defined as the number of thinned trees in the interval

[li(t), li+1(t)) at time t, that is

U1i(t) =

∫ li+1(t)

li(t)

u1(t, l) dl. (4.12)

Once the diameter domain is divided, the dynamics of the population deter-

mines the evolution of the diameter distribution. Since the trees do not switch from

one cohort to another, the expression ∂g(E, l) x(t, l)/∂l of equation (4.3) is zero

over time and thus, the change of x with respect to time is exclusively given by

−d(E, l)x(t, l) − u1(t, l). Hence, for a cohort i one has

dXi

dt
= −d(E,Li)Xi − U1i, i = 1, · · · ,m. (4.13)

Although the trees of cohort i, i.e. where Ωi ≡ [li, li+1), do not switch over time

to another cohort, the diameter of the trees is growing with time. Additionally, since
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the trees of cohort i are considered approximately identical, the diameter of each

tree is given by the average diameter Li of the cohort. Hence, to capture the growth

effect of the diameter over time equation (4.2) has to be considered additionally. In

terms of a cohort, this equation is given by

dLi

dt
= g(E,Li), i = 1, · · · ,m. (4.14)

As a result, the PDE governing the evolution of the forest can be decoupled

into a system of 2m ordinary differential equations in Xi(t) and Li(t).

It is only left to define the planting variable within this context. Planted

density over time, u2(t; l0), cannot be added only to the first cohort, since it would

cause the range of Ω1 to increase continuously over time. Consequently the average

diameter of the cohort, L1, would grow continuously over time and it would become

a poor approximation of the diameter of the individual trees of this cohort. Hence,

the approximation would break down. Therefore, new cohorts of individuals must

be created at regular time intervals or time periods �t, that consist of the planted

trees within the range [t, t + �t). It is considered that planted trees within the

range [t, t + �t), for a sufficiently small �t, can be considered homogeneous and

thus, belong to the same cohort. In this way, U2j is defined as the number of planted

trees from time (j − 1)�t to j�t, that is

U2j =

∫ j�t

(j−1)�t

u2(t; l0) dl. (4.15)

Thus, every time period, �t, a new cohort j is set up. It evolves over time

exactly like cohorts i that were established at the beginning of the planning horizon.

Additionally, cohorts j have to comply with the boundary condition Xi+j(t) = U2j.

Since the optimization problem presented in section 4.3 has an infinite time

horizon, the numerical technique “Escalator Boxcar Train” would require an infinite

number of variables, making its solution unfeasible. However, Getz and Haight
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(1989) state that is possible to approximate an infinite time horizon problem by

repeatedly solving a finite time horizon problem. Let t1 denote the terminal point

in time of a finite time horizon problem. The resulting value function of the resource

at time t1 corresponds to the net margin of the timber of the whole stand. Hence, for

a sufficiently large planning horizon and a positive discount rate, the net margin of

timber at the end of the planning horizon, defined by
∑m

i=1 V3(Xi(t1), Li(t1))e
−rt1 ,

does not affect the optimal solution of the key variables for the first periods, since the

discounted value of the terminal stock is insignificant (Haight, Brodie, and Adams,

1985). Thus, the infinite time horizon problem can be broken apart into a sequence

of overlapping finite horizon problems. The first finite horizon problem, for example

where t1 = 200, is solved and the optimal values, U1i and U2, in the initial time

period are accepted as the optimal values of the infinite horizon problem of the first

period �t. Thereafter, the value of the state variables Xi and Li for each cohort at

time �t are taken as the starting value of the numerical solution of the second finite

horizon problem, from �t to t1 + �t. The optimal values of the control variables,

U1i and U2, in the initial time period �t of the second finite horizon problem are

now taken as the optimal values of the infinite horizon problem of the period 2�t.

This procedure is repeated (t1 + 100)/�t times to obtain the optimal values of the

control variables, U1i and U2, and of the state variables, Xi and Li, over 300 years.

Following this procedure, each finite time horizon problem has m initial cohorts and

n ≡ t1
�t

additional or planted cohorts.

Given these transformations, the formal decision problem can be restated as:

max
U1i(t),U2j

∫ t1

0

V1(X̄(t), Ū1(t), L̄(t))e−rt dt

−
n∑

j=1

V2(U2j) e−rj�t dt + V3(X̄(t1), L̄(t1))e
−rt1 ,

(P′)

subject to the constraints
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dXi(t)

dt
= −d(E,Li)Xi(t) − U1i(t) i = 1, · · · ,m + n,

Xi(t0) = X0i i = 1, · · · ,m,

Xi+j(t) = U2j(t) i + j = m + 1, · · · ,m + n,

dLi(t)

dt
= g(E,Li) i = 1, · · · ,m + n,

Li(t0) = L0i i = 1, · · · ,m,

Li+j(t) = L0j(t) i + j = m + 1, · · · ,m + n,

U1i ∈ U1, U2j ∈ U2,

where X̄, Ū1, and L̄ denote the vectors X̄ = (X1, · · · , Xm+n), Ū1 = (U11, · · · , U1 m+n),

and L̄ = (L1, · · · , Lm+n) respectively.

4.5 Empirical Study

The purpose of the empirical analysis is to determine the optimal selective-logging

regime of a diameter-distributed forest, that is, the selective logging that maximizes

the discounted net benefits from timber production of a stand of pinus sylvestris

(Scots pine), over an infinite time horizon, and compare the selective logging with

the clear-cutting regime.

4.5.1 Data and Specification of Functions

For given specifications of the economic and biophysical functions of the model,

and a given initial diameter distribution of the trees, X0i, a numerical solution of

the decision problem (P′) can be obtained. To proceed with the empirical study,

different initial diameter distributions of a forest have been chosen, specified on the

base of a transformed beta density function h(l) with shape parameters γ and φ

(Mendenhall, Wackerly and Scheaffer, 1990). To be more concrete, the initial forest
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consists of a population of trees over the interval 5 cm ≤ l ≤ 30 cm. The distribution

of the diameter of the trees is given by:

h(l; γ, φ) =




1

25

Γ(γ + φ)

Γ(γ)Γ(φ)

( l

25

)γ−1(
1 − l

25

)φ−1

, γ, φ > 0; 5 ≤ l ≤ 30,

0, elsewhere,

(4.16)

where h(l; γ, φ) denotes the density function of the diameter of trees. Thus, the

integral
∫ li+1

li
h(l; γ, φ) dl gives the proportion of trees lying within the range [li, li+1).

The beta density function is utilized because it is defined over a closed interval and

allows to define a great variety of distinct shapes of the initial distributions of the

diameter of the trees. The interval [5, 30] is divided into 10 initial subintervals of

identical length. In this way, each cohort comprises trees that differ in their diameter

by a maximum of 2.5 cm, and thus, they can be considered homogeneous. The initial

number of trees in each cohort, Xi0, i = 1, · · · ,m, is calculated in such a way that

the basal area of the stand is constant (20 m2/ha) in order to allow for comparisons

between the results of the different optimization outcomes. Figure 4.1, cases a-d),

presents four different initial distributions obtained by varying the parameters γ and

φ of the beta density function.

The function V1(X̄(t), Ū1(t), L̄(t)) accounts for the net margin of the timber at

time t, and is defined as:
[∑m+n

i=0

(
p(Li) V (Li) WP (Li) − C1

)
U1i(t)

] − [C2(X(t))].

The first term in square brackets denotes the sum of the revenue of the timber sale

minus the cutting costs of each cohort i, and second term C2(X(t)), accounts for the

maintenance costs. The parameter p(Li) denotes timber price per cubic meter of

wood as a function of the diameter, V T (Li) the total volume of a tree as a function

of its diameter, V M(Li) the part of the total volume of the tree that is marketable,

and C1 cutting costs.
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Figure 4.1: Types of Initial Distributions of the Diameter of the Trees

a) γ = φ = 1 b) γ = φ = 5
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Data about costs and prices was provided by Tecnosylva.4 This data shows

that timber price per cubic meter is an increasing function of the diameter of the tree,

but its second derivative is negative. Thus, a quadratic price function was estimated,

given by p(L) = −23.02 + 4.35L − 0.049L2. Thinning costs comprise logging and

pruning, and the costs of collecting and removing the residues. These costs are set

equal to �0.60/stem. It is assumed that maintenance cost is an increasing function

4Tecnolylva is a private firm, and it elaborates forest management plans in many places of the

national territory.
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Chapter 4. Optimal Control of Size-Distributed Forests

of the number of stems per hectare, and it is given by C2(X) = 0.07X+1.18 10−5X2.

Finally, planting costs, V2(U2j) are assumed to be linear in the amount of planted

trees. The planting cost per tree is denoted by C3, and it is set equal to �0.60.

The value of the parameters of tree volume, V T (Li), and the marketable part

of the tree volume, V M(Li), are estimated using the information in the study by

Can̄ellas, Martinez, and Montero (2000). The tree volume is assumed to follow

the allometric relation V T (L) = 0.0002949L2.167563, and it is assumed that the

marketable part of the volume of timber in each tree is an increasing function of the

diameter, given by V M(L) = 0.699 + 0.000411L. As a tree specie pinus sylvestris

has been chosen since it occupies most of the catalan forest territory. The thinning

and planting period, �t, is set equal to 10 years, which is a common practice for a

pinus sylvestris forest (Can̄ellas, Martinez and Montero, 2000).

To determine the dynamics of the forest, the growth of a diameter-distributed

stand of pinus sylvestris without thinning was simulated with the bio-physical sim-

ulation model GOTILWA (Growth Of Trees Is Limited by Water).5 The model sim-

ulates the biophysical growth processes and allows to explore how these processes

are influenced by the climate, the trees itself and the composition of the stand. The

model is defined by 11 input files specifying more than 90 parameters related to site,

soil composition, tree species, photosynthesis, stomatal conductance, composition of

the forest, canopy hydrology and to climate. To generate a wide variety of possible

initial distributions, 103 pairs of γ and φ were used, where the values of γ and φ are

taken from the set M, M={ 0, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, 10}.6 Fourteen of the

103 simulations were rejected because their stand density (stems per ha) was too

high.

5This program has been developed by C. Gracia and S. Sabaté at the Department of Ecol-

ogy, University of Barcelona, and CREAF (Centre de Recerca Ecolgica i Aplicacions Forestals),

Autonomous University of Barcelona respectively.
6The set M allows to generate 121 possible pairs of γ and φ, but some of them give rise to

equivalent initial distributions.
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The results of the simulation were utilized to estimate the function g(E,Li),

which describes the rate of diameter change. It was specified a von Bertalanffy

growth curve (von Bertalanffy, 1957), generalized by Millar and Myers (1990) by

allowing the rate of diameter growth to vary with some environmental variables.

Thus, the function g(E,Li) = (lm −Li)(β0 −β1 BA) is estimated by OLS, where β0

and β1 are proportionality constants, and BA is the stand basal area. The estimation

yielded the following growth function: g(E,L) = (80 − L)(0.00702 − 0.000043BA).

Other functional forms of g(E,L) were evaluated as well, but explained the observed

variables to a lesser degree. Figure 4.2 shows the evolution of the diameter, Li of

each cohort i, i = 1, · · · , m, over time for the initial distribution of the diameter

of the trees as shown in Figure 4.1, case a), in the case of a non-managed forest.

Although the potential for the maximum diameter is 80 cm, the simulated diameter

seems to reach a maximum at about 50 cm. This is due to the fact that the increase

of the stand basal area causes a decline in the rate of diameter change, slowing the

growth process. In this model, the maximum basal area that the simulated forest

can support is 163.25 m2/ha.

As Gotilwa only simulates the survival or death of an entire cohort but not of

an individual tree, it was not possible to obtain an adequate estimation of the func-

tion d(E,Li) describing the mortality of the forest. Nevertheless, the information

obtained from Tecnosylva suggests that in a managed forest, the mortality rate can

be considered almost constant over time and independent of the diameter. Thus,

according to the data supplied by Tecnosylva, d(E,Li) was chosen to be constant

over time and equal to 0.01 for each cohort.

4.5.2 Optimization Results

The optimizations were carried out with the Conopt2 solver that is available in

the optimization package GAMS (General Algebraic Modelling System) (Brooke,
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Figure 4.2: Evolution of the Diameter Distribution of Each Cohort over Time in a

Non-Managed Forest
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Kendrick and Meeraus, 1992). The programming code can be obtained from the

author upon request.

For a given initial distribution, the numerical solution of the decision problem

determines the optimal thinning, U1i, and planting, U2j, at every 10 year period, the

optimal values of the state variables, Xi and Li, and in consequence of the economic

variables, such as the revenue from timber sale, cutting costs, planting costs, and

maintenance costs, in each period. Various optimizations with different random

initializations of the control variables were carried to assure that the numerical

method provides robust solutions, i.e., solutions that are independent of the initially

chosen values to start the numerical optimization.

All the optimizations were carried out on a per-hectare basis. Given the initial
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Table 4.1: Optimal Selective-Logging Regime (where the initial diameter distribution is determined by γ = φ = 1)

Thinning Maintenance Planting Net Discounted

Number Planted Thinned BA Volume Timber Revenue - thin- costs costs benefit net benefit

Year of trees(a) trees trees (m2/ha) (m3/ha) (m3/ha) ning costs (�/ha) (�/ha) (�/ha) (�/ha) (�/ha)

0 710 0 0 0 0 0 0 566.32 0 -566.32 -566.32

10 1089 386 141 10.44 69.64 49.61 3129.43 783.31 232.17 2113.95 1730.76

20 1079 140 123 8.42 55.78 39.71 2432.37 790.33 83.90 1558.13 1044.45

30 1080 133 95 6.55 43.40 30.89 1893.86 817.27 80.08 996.51 546.90

40 1130 155 127 8.67 57.40 40.86 2499.19 834.75 93.13 1571.31 706.03

50 1155 161 136 8.96 59.15 42.08 2532.93 849.00 97.03 1586.90 583.79

60 1183 175 177 10.35 67.71 48.13 2764.79 837.60 105.06 1822.14 548.82

70 1207 211 254 16.98 112.21 79.84 4839.31 787.79 126.82 3924.70 967.82

80 1093 149 131 8.77 57.91 41.21 2493.57 795.60 89.72 1608.25 324.70

90 1103 151 125 8.33 55.01 39.14 2364.86 810.35 90.57 1463.94 241.99

100 1131 163 146 9.67 63.85 45.43 2742.45 817.73 98.25 1826.48 247.19
...

...
...

...
...

...
...

...
...

...
...

...

200 1124 161 148 9.80 64.69 46.03 2780.72 809.90 97.05 1873.76 34.32

300 1138 168 159 10.56 69.75 49.63 2998.18 812.44 101.01 2084.74 5.17

(a) The number of trees in the forest is calculated just after the trees are planted, and before the thinning takes place.
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diameter distribution of the trees in Figure 4.1, case a), Table 4.1 summarizes the

results of the optimization, that are based on calculations with a rate of discount of

2%. The discount rate corresponds to the loan rate minus the inflation rate. It is

shown that, with a discount rate of 2%, the first thinning is delayed until the end of

the first 10 year period, since the initial amount of trees is smaller than the number

of trees in the long-run distribution. Consequently, the forest owner has to wait 10

years to obtain the first benefits from the forest, supporting a total of maintenance

cost of �566 per hectare in the first 10 year period. The optimal management is

also characterized by a large plantation at the beginning of the time horizon.7 It

can be observed that all economic, as well as biophysical variables, show a cyclical

pattern over time. However, this cyclical pattern decreases as time goes by. In the

long-run, the forest consists of approximately 1138 trees, and approximately 159 of

these trees are cut each 10 year period. The thinned volume is 70 m3, corresponding

to a timber volume of 50 m3. This amount of timber generates a current revenue

from timber sale net of thinning costs, of about �3000 per hectare. The current

net benefits of the forest in the long-run are over about �2000. The total sum of

discounted net benefits of the forest over 300 years are �7634 per hectare.

Figure 4.3 a-f), depicts the number of trees in each cohort together with their

corresponding average diameter, at different years of the planning horizon, to illus-

trate the optimal evolution of the forest over time.8 Each bar account for one cohort,

the grey bars present the optimal thinning in each 10 year period, while the dark

bars stand for the number of trees that remain in the stand after thinning. Figure

4.3 shows that it takes more than 100 years to reach a diameter distribution of the

trees which is relatively stable over time.

7The process of plantation is assumed to start not before the end of the first 10 year period.
8In order to simplify the analysis, the initial average diameter of each cohort is set to the mid-

value of class instead of the weighted average diameter. Since the intervals have a wide of 2.5

cm, the simulated data shows that the difference between the simple and weighted average is not

significative.
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Figure 4.3: Evolution of the Optimal Diameter Distribution where δ = 0.02
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Table 4.2: Conversion From an Even-Diameter Forest into an Uneven-Diameter Forest

Thinning Maintenance Planting Net Discounted

Number Planted Thinned BA Volume Timber Revenue - thin- costs costs benefit net benefit

Year of trees(a) trees trees (m2/ha) (m3/ha) (m3/ha) ning costs (�/ha) (�/ha) (�/ha) (�/ha) (�/ha)

0 1137 0 0 0 0 0 0 964.11 0 -964.11 -964.11

10 1126 0 0 0 0 0 0 952.96 0 -952.96 -780.22

20 1114 0 0 0 0 0 0 941.95 0 -941.95 -631.41

30 1103 0 0 0 0 0 0 931.08 0 -931.08 -510.99

40 1280 188 432 18.05 114.66 81.29 3920.36 689.99 112.87 3117.50 1400.78

50 1144 304 395 21.57 140.12 99.54 5521.35 600.62 182.99 4737.74 1742.92

60 1039 297 256 17.77 117.80 83.86 5156.91 631.18 178.74 4346.99 1309.29

70 775 0 0 0 0 0 0 624.15 0 -624.15 -153.91

80 811 44 0 0 0 0 0 656.80 26.44 -683.24 -137.94

90 997 194 179 9.94 64.69 45.96 2572.42 663.21 116.47 1792.73 296.34

100 1053 243 290 16.29 106.13 75.41 4242.30 613.80 145.95 3482.55 471.31
...

...
...

...
...

...
...

...
...

...
...

...

200 995 186 196 11.03 71.82 51.03 2873.46 645.78 111.55 2116.13 38.76

300 970 170 166 9.37 61.04 43.37 2441.02 650.01 101.90 1689.10 4.19

11
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4.5. Empirical Study

In the cases where forests were managed following a clear-cutting regime, it

is necessary to transform an even-diameter forest (where all trees have the same

diameter) into an uneven-diameter forest. Table 4.2 presents the results of the

optimal management regime of the conversion of an even-diameter forest into an

uneven-diameter forest, where the entire initial forest consists of 1138 trees with a

diameter of 6.25 cm. Table 4.2 shows that it is optimal to let the forest grow without

any intervention until the 40th year. At this point in time, 432 trees are thinned, and

188 new trees are planted. In the long-run, the number of trees decreases slightly

compared to the initial forest density. The total sum of discounted net benefits of

the forest is �2941/ha. The evolution of the diameter distribution of the trees is

depicted in Figure 4.4, where it can be observed that 200 years are necessary to

achieve a diameter distribution of the trees which is stable over time.

Alternatively to adopting a selective-logging management, the forest owner

could continue with the clear-cutting regime, that is, thinning the entire stand at

regular time periods. In this case, the optimal rotation period can be calculated

directly via the Faustmann formula. However, in order to allow comparing the

different outcomes, the Faustmann model needs to be adapted to the formulation

given in this chapter. Additionally, it is necessary to assume that, contrary to the

Faustmann model, no trees are planted at time 0 and the initial diameter distribution

of the trees is valid for the Faustmann model and for the selective-logging model,

i.e., 1138 trees, with a diameter of 6.25 cm. The Faustmann model maximizes the

net present value of the perpetual returns from the forest. Its solution is given by

the solution of the following optimization problem:

max
T

F (T )

1 − e(−δ T )
, (F )

where F (T ) denotes the discounted net benefits obtained from cutting the entire

stand at time T , i.e., the rotation period. In this model, F (T ) accounts for the
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Figure 4.4: Transformation from an Even-Diameter Forest into an Uneven-Diameter

Forest

a) t=0 b) t=10

diameter �cm�

s
t
e
m
s
�
h
a

6.2

200

400

600

800

1000

1200

diameter �cm�

s
t
e
m
s
�
h
a

11.3

200

400

600

800

1000

1200

c) t=50 d) t=100

diameter �cm�

s
t
e
m
s
�
h
a

6.2 10.5 26.4

200

400

600

800

1000

1200

diameter �cm�

s
t
e
m
s
�
h
a

6.2 10.7 14.9 23.2 26.8

200

400

600

800

1000

1200

e) t=200 f) t=300

diameter �cm�

s
t
e
m
s
�
h
a

6.2 10.9 15.2 19.3 23.2 26.8

200

400

600

800

1000

1200

diameter �cm�

s
t
e
m
s
�
h
a

6.2 10.9 15.3 19.4 23.2 26.8

200

400

600

800

1000

1200

118



4.5. Empirical Study

revenue from the timber sale minus thinning, maintenance9 and planting costs, that

is:

F (T ) =
(
p(L(T )) V T (L(T )) V M(L(T )) − C1

)
X e−δ T

−C2(X)e−δT − C2(X)

e−10δ − 1
− C3X e−δ T

The resulting optimal rotation length is 62 years. In must be noted that trees

are planted with a diameter of 6.25 cm and, thus, they are approximately 15 years

old. The total sum of the discounted net benefits obtained from a clear-cutting

regime are about �1800/ha. Therefore, using the same parameter values for the

clear-cutting and the selective-logging regime, the clear-cutting regime generates

lower discounted net benefits than the selective-logging regime. That is, the rigidity

of clear felling, given by the requirement of cutting the whole stand instead of only a

proportion of it at different time periods, together with the unfeasibility of choosing

the plantation levels, causes a loss of the clear-cutting regime of approximately 38%

compared to the selective-logging regime.

The benefits of clear felling could only be superior to selective logging if timber

prices increase with the amount of timber offered. A clear-cutting regime allows to

offer a large amount of timber planks of a particular size. Consequently, the obtained

timber prices per m3 may be higher than with selective logging. While this is true

for the case of a small forest area, it may not be true for the case of a large forest

area, where the volume obtained from selective logging may be sufficiently large to

achieve high timber prices per m3.

9In selective logging, forest owner incurs in maintenance costs every 10 year period. In order

to account for these costs adequately in the Faustmann model, the maintenance costs cannot be

added simply at time T since they incur every 10 years. Thus, the correct maintenance cost that is

added as a single payment to the Faustmann model is calculated as the sum of discounted periodic

payments of the maintenance costs.
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4.5.3 Effects of a Change in the Rate of Discount on the

Optimal Selective-Logging Regime

In this section a sensitivity analysis is presented in order to evaluate how the optimal

management of the forest changes as a result of a variation in the discount rate. The

results of the optimizations with discount rates of 1.5, 2.5 and 3% are presented in

Figures 4.5, 4.6, and 4.7 respectively. Figures 4.5, 4.6, and 4.7 show that the discount

rate has a significant influence on the chosen optimal selective-logging regime. When

the discount rate increases from 1.5% to 3%, it is optimal to decrease the amount

of trees that the forest sustains in the long-run, from 1424 to 669, and the average

diameter at which the trees are cut decreases from 28.5 cm to 27 cm. Therefore,

with a discount rate of 3% the trees are cut earlier than with a rate of discount of

1.5%. In a parallel manner, the amount of planted trees in the initial period is also

influenced by the rate of discount. Thus, an increase in the discount rate from 1.5%

to 3% causes the optimal number of planted trees to decrease by 84% in the first 10

year period.

4.5.4 Effects of a Change in the Initial Diameter Distribu-

tion of the Trees on the Selective-Logging Regime

To illustrate how the initial diameter distribution of the trees alter the choice of the

optimal selective-logging regime, problem (P’) is solved additionally for the initial

distributions of the diameter of the trees shown in Figure 4.1, cases b-d). The

results of the optimizations with a rate of discount of 3% are presented in Figures

4.8, 4.9, and 4.10. The underlying initial distribution in Figure 4.8 corresponds to

the pattern of the initial distribution presented in Figure 4.1, case b). Likewise, the

underlying initial distributions in Figures 4.9, and 4.10 correspond to the patterns

shown in 4.1, cases c) and d) respectively.
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Figure 4.5: Evolution of the Optimal Diameter Distribution where δ = 0.015
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Chapter 4. Optimal Control of Size-Distributed Forests

Figure 4.6: Evolution of the Optimal Diameter Distribution where δ = 0.025
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4.5. Empirical Study

Figure 4.7: Evolution of the Optimal Diameter Distribution where δ = 0.03
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Chapter 4. Optimal Control of Size-Distributed Forests

Figure 4.8: Evolution of the Optimal Diameter Distribution where γ = φ = 5
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4.5. Empirical Study

Figure 4.9: Evolution of the Optimal Diameter Distribution where γ = 0.8, φ = 2
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Chapter 4. Optimal Control of Size-Distributed Forests

Figure 4.10: Evolution of the Optimal Diameter Distribution where γ = 2, φ = 0.8
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4.5. Empirical Study

A comparison of the Figures 4.7, 4.8, 4.9, and 4.10, shows that in the long-run,

the optimal forest structure tends to a uniform distribution of the diameter of the

trees. However, it takes more than 200 years to reach a steady-state distribution.

One can observe that forests with a large proportion of big trees (Figure 4.10) require

a large number of newly planted trees in the first 10 year period, in order to reach

the optimal structure in the long-run. In Figure 4.8, however, one can observe that

there is no plantation in the first 10 year period, since the share of small trees is

higher than in the steady-state distribution.

Figure 4.11 depicts the optimal evolution of the weighted average and variance

of the diameter distribution over time, for the differen analyzed initial distributions.

Figure 4.11 shows that the average diameter of the different distributions tends to

converge after approximately 200 years, as the amplitude and phase of the cyclical

behavior decreases. Additionally, Figure 4.11 shows that the variance of the distri-

butions is governed by the same cyclical pattern. When the initial variance of the

diameter distribution is similar to that of the steady-state, for instance, for the case

where the parameters are γ = φ = 1, the cyclical pattern of the mean and variance

of the diameter is less pronounced, implying that the benefits will be more stable

over time. In general, it can be observed that the long-run mean and variance tend

to the values of 17 and 52 respectively, for all considered parameter values of γ and

φ of the diameter distribution. Hence, the steady-state distribution of the diameter

of the trees is independent of the initial distribution of the trees.

4.5.5 Accounting for Biological Diversity

The previous section established the optimal selective-logging regime that maximizes

the discounted sum of net private profits. However, the supplementary services that

forests provide to the society have not been taken into account. One of the most

important service that forest supply is natural habitat for numerous animal and plant
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Chapter 4. Optimal Control of Size-Distributed Forests

Figure 4.11: Evolution of the Weighted Average Diameter and Variance of the

Diameter Distribution Over Time
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4.5. Empirical Study

species, and therefore the distribution of the diameter of the trees that maximizes the

private profits does not necessarily maximizes the social net benefits of the forest,

i.e., the net benefits where a monetary value of the habitat is considered in the

decision problem. For instance, deers need small trees to feed on, and require large

trees where they can hide. Taking these aspects into account supposedly leads to a

higher weighted average and variance of the diameter of the trees. The measurement

of these additional services is difficult. As a proxy one can measure diversity, as it is

closely related with these services. Moreover putting a monetary value on diversity

allows to consider the benefits of these services in the objective function of the

decision problem, i.e. one determines the optimal selective-logging regime from a

social point of view.

One of the most utilized indices for describing diversity is Shannon’s H index

(Marrugan, 1988). It is defined, for a general context, as:

H(t) ≡ −
s(t)∑
i=1

Xi(t)

X(t)
ln

(
Xi(t)

X(t)

)
(4.17)

The maximum value that Shannon’s index can reach is achieved when the number

of trees in each cohort is identical. It is given by ln(s(t)), where s(t) denotes the

number of cohorts at time t. However, the number of cohorts is not constant over

time, since a new cohort, consisting of the newly planted trees, is added every 10

year period. As a consequence, Shannon’s index increases over time. For instance,

Shannon’s index in the first 10 year period can reach a maximum value of 2.3, while

the index in the final 10 year period (considering a time horizon of 200 years) can

reach a maximum value of 3.4. Thus, in order to correct for this fact, a modification

of the Shannon’s index is proposed. The modified Shannon’s index, denoted by H̃(t),

is obtained by dividing H(t) by the natural logarithm of the potential maximum

number of cohorts in each period, i.e., H̃(t) = H(t)/ ln(m + t/�t). In this way, the

modified Shannon’s index lyes within the range [0, 1].

One of the major problems of considering non-timber services to determine the
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Chapter 4. Optimal Control of Size-Distributed Forests

optimal management of the forest is to find a correct monetary value for these non

market services. For instance, the revenue from hunting licences, or from the sale of

by-products such as mushrooms could be used to estimate the value of non-timber

services. However, since this specific question is not of primary interest for the

thesis, the exact amount of this monetary value is considered as a parameter which

may vary accordingly to the question at hand. To demonstrate the applicability of

the proposed methodological approach a particular value, derived form the timber

value, was chosen. According to the data utilized in the empirical study, the timber

value of the stand at time 0 is approximately �3000 per hectare. Assuming that

non-timber services of the stand have a value of 20% of the timber value, a value of

non-timber services of �600/ha is introduced in the model.

The optimal selective-logging regime where diversity is taken into account is

calculated for the initial distribution of the diameter of the trees given in Figure

4.1, case b), that corresponds to a low variance diameter distribution, that is, 80%

of trees pertain to the 4 central cohorts. Figure 4.12 depicts the evolution of the

optimal diameter distribution when the diversity is taken into account. Thereafter

a comparison of Figures 4.12 and 4.8 demonstrate the differences in the evolution

of the diameter distribution of the trees when diversity is accounted for and when

it is not. It shows that if diversity is accounted for the distribution of the diameter

of the trees is more even than if diversity is disregarded. That is, in the case of

considering diversity, the number of trees in each cohort from the beginning of the

planning horizon is nearly the same, while in the case of no considering diversity,

almost 200 years are needed to achieve a distribution of the diameter which is stable

over time. Furthermore, Figure 4.12 illustrates that the introduction of diversity in

the objective function, increases the number of cohorts present in the forest in the

long-run. Although the number of trees in the steady state is slightly inferior, the

average diameter of the forest increases from 14.9 to 16.1 cm, and the variance of

the distribution increases from 37.8 to 45.4.
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Figure 4.12: Evolution of the Optimal Diameter Distribution where Diversity is

Taken into Account.
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Table 4.3: Comparison of the Optimal Selective-Logging Regime where Diversity Value Is/Is Not Considered

Optimal selective-logging regime when diversity is taken into account
Net benefit Discounted net Discounted net Discounted

Number Planted Thinned of timber benefits of timber Shannon’s benefits of non-timber social
Year of trees(a) trees trees services (�/ha) services (�/ha) index services (�/ha) benefit (�/ha)

0 794 0 0 -641.18 -641.18 0.88 529.95 -111.23
10 874 88 165 1647.54 1220.53 0.83 367.23 1587.76
20 780 83 233 2647.08 1452.75 0.85 280.06 1732.81
30 622 82 180 2460.30 1000.28 0.86 209.94 1210.22
40 523 85 109 1763.25 531.08 0.82 148.39 679.47
50 500 89 61 1015.70 226.63 0.77 102.98 329.61
60 525 91 61 727.09 120.19 0.75 74.71 194.90
70 549 91 84 1149.29 140.74 0.74 54.16 194.90
80 553 92 82 1125.73 102.12 0.72 39.07 141.19
90 561 94 83 1119.67 75.25 0.70 28.26 103.51
100 568 93 85 1143.66 56.94 0.69 20.56 77.50

Sum over 300 years 4452 1911 6363
Optimal selective-logging regime when diversity is not taken into account

0 794 0 54 7.74 7.74 0.84 502.80 510.54
10 752 19 157 1453.69 1076.92 0.74 327.19 1404.11
20 760 170 181 1921.22 1054.39 0.72 235.49 1289.88
30 742 169 192 2485.51 1010.53 0.70 170.68 1181.21
40 693 148 176 2601.10 783.44 0.61 110.74 894.18
50 560 49 15 -176.06 -39.28 0.63 83.69 44.41
60 606 67 18 -219.80 -36.33 0.64 63.52 27.19
70 739 157 162 1975.71 241.94 0.63 46.22 288.16
80 700 130 182 2244.05 203.58 0.63 34.32 237.90
90 675 141 141 1710.58 114.96 0.61 24.79 139.75
100 601 72 46 248.50 12.37 0.61 18.28 30.65

Sum over 300 years 4594 1810 6262

13
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4.6. Summary and Conclusions

Table 4.3 summarizes the numerical results of both optimizations for the first

100 years of the planning horizon. It shows that the number of planted and thinned

trees in the case where diversity is accounted for correspond each other more over

time than in the case where diversity is not considered. The sum of discounted social

benefits of forest management over 300 years, when non-timber services are taken

into account, are �6363/ha, where the sum of discounted net benefits of timber

services are �4452/ha, and the sum of the discounted net benefits of non-timber

services are �1911/ha. If non-timber services are not taken into account, the for-

est owner obtains a sum of discounted private net benefits of timber services of

�4594/ha. In this case, the forest management leads to a sum of discounted net

benefits from diversity of �1810/ha, that can be considered as a by-product of the

forest management in form of a public good. The sum of discounted social benefits

is �6262/ha. Thus, ignoring diversity leads to a lower social benefits. However,

discounted net benefits of timber services decrease if non-timber services are con-

sidered. Therefore, it is plausible to assume that forest owner will not follow the

social management rules, since they lead to lower private net benefits. Thus, it is

necessary to design policies that induce forest owners to take account of the multiple

services that forest provides to the society.

4.6 Summary and Conclusions

This chapter presents a theoretical model that allows determining the optimal man-

agement of a diameter-distributed forest. The theoretical model can be formulated

as a distributed optimal control problem where the control variables and the state

variable depend on the two arguments, time and diameter of the tree. The re-

sulting necessary conditions of this problem include a system of partial differential

equations that usually cannot be solved analytically. For this reason, a numerical

method (Escalator Boxcar Train) that is new to the economic literature and that can
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be programmed and handled easily is proposed. The numerical approach allows to

transform the distributed optimal control problem into a classic optimization prob-

lem by transforming the independent argument, i.e., diameter, into a state variable

of the problem that evolves over time, such that the resulting optimization problem

can be solved utilizing standard mathematical programming techniques.

To find the optimal management of a diameter-distributed forest, an empir-

ical analysis is conducted to determine the optimal selective logging, that is, the

selective-logging regime that maximizes the discounted net benefits from timber

production of a privately owned forest of pinus sylvestris. The study is character-

ized by a rigorous assessment of the complex growth process of trees. The empirical

analysis shows that the clear-cutting regime, given by the Faustmann solution, leads

to lower private benefits than the selective-logging regime. This is due to the fact

that the selective logging permits the possibility of thinning some part of the forest

at the 40th year, while with clear-cutting the forest owner must wait until year 62

to cut the whole stand. Thus, the owner obtains the first benefits with a time lag of

22 years. As a result, the clear-cutting regime leads to a loss of approximately 38%

of the benefits of the selective-logging regime.

It is also shown that the optimal long-run distribution of the diameter of the

trees is unaffected by the initial distribution, provided that the initial basal area of

the stand is the same. However, in most cases, more than 200 years are necessary

to achieve a nearly stable distribution of the diameter of the trees.

Moreover, the study demonstrates how the optimal management of the forest

changes when other than timber services are taken into account. It results in a more

uniform distribution right from the beginning and throughout the planning horizon,

and a higher average and variance of the diameter of the trees in the long-run. The

sum of the discounted social net benefits obtained from the optimal management,

if a monetary value of diversity is included in the objective function, are higher

than the sum of the discounted benefits obtained when diversity is not considered.
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4.6. Summary and Conclusions

However, the net benefits from timber services, that is, excluding the non-timber

values, are lower in the first case and, therefore, it is easy to assume that forest

owner will not follow the social management rules. Thus, it is necessary to design

policies that induce forest owners to take account of the multiple services that forest

offers to the society.
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