

MANIFOLD CLUSTERING FOR MOTION
SEGMENTATION

Luca ZAPPELLA

Dipòsit legal: GI-1083-2011
 http://hdl.handle.net/10803/34765

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX ha estat autoritzada pels titulars dels
drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i
docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a
disposició des d’un lloc aliè al servei TDX. No s’autoritza la presentació del seu contingut en una
finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la
tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la
persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR ha sido autorizada por los
titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en
actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su
difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su
contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis
es obligado indicar el nombre de la persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions: Spreading
this thesis by the TDX service has been authorized by the titular of the intellectual property rights only
for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading and availability from a site foreign to the TDX service. Introducing its
content in a window or frame foreign to the TDX service is not authorized (framing). This rights affect
to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of
the thesis it’s obliged to indicate the name of the author.

Ph.D. Thesis

Manifold Clustering for
Motion Segmentation

Luca Zappella

2011

Thesis submitted for the degree of

Ph.D. in Technology

Thesis Supervisors: Dr. Xavier Lladó and Prof. Joaquim Salvi

Authorship Declaration

I hereby declare that his thesis contains no material which has been accepted for the
award of any other degree or diploma in any university. To the best of my knowledge and
belief, this thesis contains no material previously published or written by another person,
except where due reference has been made.

Luca Zappella

Abstract

In this study the problem of motion segmentation is discussed. Motion segmentation aims
to decompose a video into the different objects that move throughout the sequence. In
many computer vision algorithms this decomposition is the first fundamental step. It
is an essential building block for robotics, inspection, video surveillance, video indexing,
traffic monitoring and many other applications. The vast amount of literature on motion
segmentation testifies to the relevance of the topic. However, the performance of most of
the algorithms still falls far behind human perception.

In this thesis a review of the main motion segmentation approaches is presented. The
main features of motion segmentation algorithms are analysed and a classification of the
recent and most important techniques is proposed.

Specific attention is given to the motion segmentation algorithms that use feature tra-
jectories. These algorithms assume the position of tracked points (features) in each frame
of the video sequence as an input. The aim is to group together features that belong to
the same motion. The main principle at the base of the proposed algorithms is that trajec-
tories that belong to different motions span different subspaces. Therefore, if the subspace
generated by each trajectory could be estimated, and if the different subspaces could be
efficiently compared to measure their similarity, the segmentation problem could be cast
into a manifold clustering problem.

In this study some of the most challenging issues related to trajectory motion segmen-
tation via manifold clustering are tackled. Specifically, new algorithms for the estimation
of the rank of the trajectory matrix are proposed. A new measure of similarity between
subspaces is presented. Some problems related to the behaviour of principal angles are
discussed. Furthermore, a generic tool for the estimation of the number of motions is also
developed. The final algorithms that combine the previous proposals are among the very
few in motion segmentation literature that do not require any prior knowledge nor manual
tuning of their parameters.

Finally, the last part of the study is dedicated to the development of an algorithm for
the correction of an initial motion segmentation solution. Such a correction is achieved
by bringing together the motion segmentation and the structure from motion problems.
The proposed solution not only assigns the trajectories to the correct motion, but it also
estimates the 3D structure of the objects and fills the missing entries in the trajectory
matrix.

All of the proposed algorithms are tested and compared with state of the art techniques
on synthetic and real sequences. Tests show robust behaviour of the proposed algorithms
and constant improvements over the state of the art.

Resum

En aquesta tesi s’estudia el problema de la segmentació del moviment (motion segmenta-
tion). L’objectiu de la segmentació del moviment és descompondre un v́ıdeo en els diferents
objectes que es mouen al llarg de la seqüència. Aquesta descomposició és un primer pas
fonamental per a molts algoritmes de visió per computador, convertint-se en una part essen-
cial de la robtica, la inspecció, la vdeo vigiláncia, la v́ıdeo indexació, el seguiment de tráfic
i moltes altres aplicacions. La gran quantitat de literatura en segmentació del moviment
en testifica la seva relleváncia, sense oblidar peró, que la percepció humana encara ofereix
més garanties que els algoritmes existents.

La tesi presenta una revisió dels principals algoritmes de segmentació del moviment,
s’analitzen les caracteŕıstiques principals i també es proposa una classificació de les
tècniques més recents i importants.

S’ha donat una atenció especial als algoritmes de segmentació del moviment que util-
itzen trajectòrias. Les trajectòrias estan formadas per punts de seguiments a cada imatge
de la seqüència de v́ıdeo. L’objectiu és agrupar trajectòrias que pertanyen al mateix movi-
ment. Per tal d’aconseguir-ho, els algoritmes proposat utilitzen el fet que trajectòries que
pertanyen a moviments diferents generen subespais diferents. Llavors, si s’estima el sube-
spai generat per cada trajectòria i es mesura la similitud, el problema de la segmentació
es pot entendre com un problema d’agrupament d’espais (manifold clustering).

Aquest estudi aborda alguns dels reptes més dif́ıcils pel que fa a la segmentació de tra-
jectòries a través de l’agrupament d’espais. Concretament, s’han proposat nous algoritmes
per a l’estimació del rang de la matriu de trajectòries, s’ha presenta una nova mesura de
similitud entre subespais, s’han abordat problemes relacionats amb el comportament dels
angles canònics i, també s’ha desenvolupat una eina genèrica per estimar quants moviments
apareixen en una seqüència. Els algoritmes finals combinen les propostes prèvies, por lo
tanto son uns dels pocs algoritmes, dins el camp de segmentació del moviment, que no
requereixen cap coneixement a priori ni cap ajust manual.

Lúltima part de l’estudi es dedica a la correcció de l’estimació inicial d’una segmentació
del moviment. Aquesta correcció es du a terme ajuntant els problemes de la segmentació
del moviment i de l’estructura a partir del moviment. La solució proposada no només
assigna las trajectòrias als moviments correctes, sinó que també estima l’estructura 3D
dels objectes i ompla les entrades buides dins la matriu de trajectòries.

Els algoritmes proposats han estat analitzats i comparats amb tècniques de l’estat de
l’art utilitzant seqüències sintètiques i reals. Els resultats demostrem un comportament
robust dels algoritmes proposats i una constant millora respecte l’estat de l’art.

Resumen

Esta tesis estudia el problema de la segmentación del movimiento (motion segmentation).
La segmentación del movimiento tiene como objetivo principal la descomposición de un
v́ıdeo en los diferentes objetos que se mueven a lo largo de la secuencia. Esta descom-
posición es un primer paso fundamental para muchos algoritmos de visión por computador,
convirtiéndose en una parte esencial de la robótica, la inspección, la video vigilancia, la
video indexación, el seguimiento del tráfico y muchas otras aplicaciones. La gran cantidad
de literatura en segmentación del movimiento demuestra la relevancia del tema, aunque la
percepción humana sigue ofreciendo más garant́ıas que los algoritmos existentes.

En la presente tesis se realiza una revisión de los principales algoritmos de segmentación
del movimiento, se analizan las caractersticas principales y se propone una clasificación de
las técnicas más recientes e importantes.

Se ha prestado especial atención a los algoritmos de segmentación del movimiento que
utilizan trayectorias. Dichas trayectorias están formadas por puntos de seguimiento en
cada imagen de la secuencia de v́ıdeo. El objetivo es agrupar trayectorias que pertenecen
al mismo movimiento. Los algoritmos propuestos se basan en el hecho de que las trayecto-
rias que pertenecen a diferentes movimientos generan subespacios diferentes. Estimando
el subespacio generado por cada trayectoria y midiendo su similitud el problema de la
segmentación del movimiento se puede entender como un problema de agrupamiento de
espacios (manifold clustering).

En este estudio se analizan algunos de los retos más dif́ıciles relacionados con la seg-
mentación de trayectorias a través de la agrupación de espacios. En concreto, se proponen
nuevos algoritmos para la estimación del rango de la matriz de trayectorias, se presenta
una nueva medida de similitud entre subespacios, se abordan problemas relacionados con el
comportamiento de los ángulos cannicos y, además, se desarrolla una herramienta genérica
para estimar cuantos movimientos aparecen en una secuencia. Los algoritmos finales com-
binan las propuestas previas, por lo cual son unos de los pocos, dentro del campo de la
segmentación del movimiento, que no requieren ningún conocimiento a priori ni ningún
ajustamiento manual.

La última parte del estudio se centra en la corrección de la estimación inicial de una
segmentación del movimiento. Esta corrección se lleva a cabo juntando los problemas
de segmentación y de estructura a partir del movimiento. La solución final no solamente
clasifica las trayectorias correctamente, sino que también estima la estructura 3D de objetos
y llena las entradas vaćıas en la matriz de trayectorias.

Los algoritmos propuestos han sido probados y comparados con técnicas del estado
del arte, utilizando tanto secuencias sintéticas como reales. Los resultados demuestran un
comportamiento robusto de los algoritmos y una constante mejora sobre el estado del arte.

Acknowledgements

This thesis was made possible thanks to the contribution of many persons.
The help and guidance of my Ph.D. supervisors Dr. Xavier Lladó and Prof. Joaquim

Salvi was essential for the completion of this work. I would like to thank also the reviewers
who helped me to improve this thesis with precise and meaningful suggestions. An impor-
tant role was played by Dr. Alessio Del Bue who supervised my work during the wonderful
six months I spent in Lisbon, and then kept advising me after I moved back to Girona. A
special thanks goes to Dr. Edoardo Provenzi whose friendship, mathematical knowledge,
scientific advice, ping-pong thinking, awesome cooking, and brilliant film suggestions made
this thesis more sound and fun.

I would like to thank also all the VICOROB group, especially the people of the P-IV lab.
You have always been very kind and made me feel at home since the beginning. During
these three years I have always felt “in my place” also thanks to the very good friends I
made in Girona, inside and outside the lab. I really hope I will be able to keep in touch
with you all.

I am grateful to all of the VIBOT family: secretaries, professors and students. Ev-
erything started back then during the masters, and this thesis is also the result of that
experience. Among all of the students, I would like to thank especially Josep for his kind-
ness (please you should swear sometimes, and without saying that’s a joke!) and for sharing
with me this masters plus Ph.D. experience, Mario, Stephen and Chloe for having made
the masters so much fun and the Kiwis also for showing me the wonderful land of New
Zealand.

Thanks to my flatmates Fanny and Jan for keeping up with my crazy rules in the house,
and a special thanks to Jan for teaching me how to look at life with a positive light and
do not start every sentence with “The problem is...”.

I am so glad to thank Rebecca for bringing peace, warmness, love and a smile into
my life. I have also to thank you for your infinite patience with my constant requests for
English advice. After all your English is not that bad.

Without being very original I conclude my acknowledgements thanking my parents and
my little brother for all their help, support and love. To you I dedicate this thesis.

Contents

1 Introduction 1

1.1 From image segmentation to video segmentation 1

1.2 Motivation . 2

1.3 Context . 7

1.4 Problem definition . 8

1.5 Objectives . 12

1.6 Structure of the thesis . 12

2 State of the Art 15

2.1 Problems and attributes . 15

2.2 Classification . 22

2.3 Main techniques . 26

2.3.1 Image difference . 26

2.3.2 Statistics . 28

2.3.3 Wavelets . 33

2.3.4 Optical Flow . 34

2.3.5 Layers . 38

2.3.6 Manifold Clustering . 41

2.4 Analysis of the state of the art . 55

2.5 Databases . 59

2.5.1 The Hopkins155 database . 60

3 Motion Segmentation 65

3.1 Local Subspace Affinity (LSA) . 65

3.1.1 The algorithm . 67

3.1.2 Problems . 71

3.2 Enhanced Model Selection (EMS) . 74

3.2.1 Affinity matrix as a function of the estimated rank 76

3.2.2 How to choose a good affinity matrix 82

3.2.3 How to speed up the choice . 86

3.2.4 Size estimation of the local subspaces 88

3.2.5 Experiments . 89

3.3 Adaptive Subspace Affinity . 96

3.3.1 Notation . 97

3.3.2 Issues regarding the behaviour of principal angles 98

3.3.3 Rank selection via Principal Angles Clusterization (PAC) 100

3.3.4 Sum of Clusterization-based Affinity (SCbA) 105

3.3.5 Experiments . 111

3.4 Estimation of the number of motions . 117

3.4.1 Experiments . 121

3.5 Conclusion . 130

i

CONTENTS

4 Joint Estimation of Segmentation and Structure from Motion 133
4.1 Introduction . 134
4.2 Single versus multi-body SfM . 137
4.3 Structure from motion with missing data 139

4.3.1 Single shape SfM with missing data 139
4.3.2 Multi-body SfM with missing data 140

4.4 Motion segmentation and SfM: the missing constraint 141
4.4.1 Projections of subspaces . 143

4.5 The JESS algorithm . 146
4.5.1 Multi-body metric constraints . 147
4.5.2 Sparsity of the matrix S . 148
4.5.3 Identifying candidate errors . 149
4.5.4 Stop condition . 149
4.5.5 Reclassification . 150

4.6 Experiments . 151
4.6.1 Fixed number of iterations . 153
4.6.2 Stop condition . 155
4.6.3 Missing data . 157
4.6.4 Reclassification strategy . 160
4.6.5 ASA and JESS . 161
4.6.6 House and Hotel test . 165
4.6.7 3D Reconstruction . 168

4.7 Conclusion . 171

5 Conclusion 177
5.1 Summary and contributions . 177
5.2 Future directions . 180

5.2.1 Immediate future work . 180
5.3 Publications and Code . 183
5.4 Remarks . 184
5.5 Code . 185

A Principal Angles, Affinity and Entropy Appendix 187

Bibliography 207

ii

List of Figures

1.1 Example of motion segmentation . 2
1.2 General concept of SfM . 3
1.3 Examples of action recognition . 5
1.4 Difference between block-based and object-based coding 7
1.5 Sequence articulated from Hopkins155 database 9
1.6 Pictorial representation of the trajectory matrix 11

2.1 Intrinsic and extrinsic isometries . 18
2.2 Two examples of non-rigid motions . 19
2.3 Sequence two cranes from Hopkins155 database 21
2.4 Example of image difference . 26
2.5 Example of optical flow . 35
2.6 Example of layers representation . 39
2.7 Basic idea of structure from motion . 48
2.8 Structure from motion decomposition . 48
2.9 Structure from motion constraints . 49
2.10 Interaction matrix . 50
2.11 Examples of the Hopkins155 sequences . 61
2.12 Examples of synthetic sequences . 63

3.1 Example of an LSA result applied to a video sequence 66
3.2 Example of trajectories that belong to two different subspaces of dimension

2 projected onto a R
3 unit sphere . 68

3.3 Example of affinity matrix . 71
3.4 Summary of the Local Subspace Affinity algorithm 72
3.5 Affinity matrices computed with different kg values 75
3.6 Description of what happens to matrix V when the rank of the global space

is estimated . 78
3.7 Trend of the largest principal angles, of the affinity and of the entropy . . . 79
3.8 Example of the entropy trend experienced with all the sequences used in the

experiments . 84
3.9 Three examples of affinity matrices . 85
3.10 Error of EMS rank estimation with different number of motions and noise

levels . 86
3.11 The only entropy trends with oscillations found on the whole Hopkins155

database . 88
3.12 Mean and variance of the misclassification rate on the Hopkins155 database

(number of motions known and local subspace size fixed to 4) 91
3.13 Mean and variance of the misclassification rate on the Hopkins155 database

(number of motions known and local subspace size estimated) 94
3.14 Overview of the notation . 98
3.15 Small random subset of the PAs of ΘM of the sequence 1R2RCT A 99
3.16 Small random subset of the PAs of ΘM of some Hopkins155 sequences . . . 102
3.17 γ(σ) function used in the PAC formula . 104
3.18 Example of PAC selection . 105

iii

LIST OF FIGURES

3.19 Comparison between cos2 and CbA functions 107
3.20 Mean and variance of the misclassification rate on the Hopkins155 database

(number of motions known) . 113
3.21 Histogram of the misclassification rate of ASA on the Hopkins155 database 115
3.22 Pie chart that shows the distribution of the time spent by each of the ASA

steps . 116
3.23 Eigenvalues spectrum of L and Lsym . 118
3.24 Boxplots of the error of the estimation of the number of motions 123
3.25 Mean and variance of the misclassification rate on the Hopkins155 database

without any prior knowledge . 126
3.26 Histogram of the misclassification rate of ALC and ELSA on the Hopkins155

database . 128
3.27 Mean misclassification rate and variance versus noise level for synthetic ex-

periments . 130

4.1 An example of SfM . 134
4.2 An example of motion segmentation as a pre-processing step of SfM 135
4.3 Example of what happens when the misclassification is not correct 135
4.4 An example of two non orthogonal subspaces 144
4.5 Summary of the JESS algorithm . 146
4.6 Example of the House sequence. 153
4.7 Example of the Hotel sequence. 153
4.8 Average results of JESS-R with a fixed amount of iterations applied to the

synthetic database . 154
4.9 Average results of JESS with fixed number of iterations applied to the Hop-

kins155 database . 155
4.10 Average results of JESS-R with stop condition applied to the synthetic

database . 156
4.11 Average results of JESS with stop condition applied to the Hopkins155

database . 157
4.12 Average results of JESS-R with stop condition and 10% of missing data

applied to the synthetic database . 158
4.13 Average results of JESS with stop condition and 10% of missing data applied

to the Hopkins155 database . 159
4.14 Mean and variance misclassification rate of ASA before and after application

of JESS. 163
4.15 Histogram of the misclassification of ASA+JESS 165
4.16 Average results of JESS with stop condition applied to the House and Hotel

Sequence . 167
4.17 Average results of JESS with stop condition applied to the House and Hotel

sequence with an initial amount of misclassification equal to 10% 168
4.18 Average results of JESS with stop condition applied to the synthetic database169
4.19 3D reconstruction of JESS . 170
4.20 3D reconstruction of JESS . 171
4.21 3D reconstruction of JESS . 172
4.22 3D reconstruction of JESS . 173

iv

LIST OF FIGURES

4.23 3D reconstruction of JESS . 174

A.1 Trend of the largest principal angles, of the affinity and of the entropy . . . 188
A.2 Trend of the largest principal angles, of the affinity and of the entropy . . . 189
A.3 Trend of the largest principal angles, of the affinity and of the entropy . . . 190
A.4 Trend of the largest principal angles, of the affinity and of the entropy . . . 191
A.5 Trend of the largest principal angles, of the affinity and of the entropy . . . 192
A.6 Trend of the largest principal angles, of the affinity and of the entropy . . . 193
A.7 Trend of the largest principal angles, of the affinity and of the entropy . . . 194

v

List of Tables

2.1 Summary of the state of the art 1/2 . 24
2.2 Summary of the state of the art 2/2 . 25
2.3 Generalisation of pros and cons of each class of techniques 58
2.4 Summary of the Hopkins155 database . 62

3.1 Computational time comparison between ALC and EMS+ on the Hop-
kins155 database . 95

3.2 State of the art performance comparison 114
3.3 Computational time comparison between ALC, EMS+ and ASA on the

Hopkins155 database . 115
3.4 ASA misclassification rates on synthetic sequences 117
3.5 Mean and variance of the absolute value error of the estimation of the num-

ber of motions on the Hopkins155 database 122
3.6 State of the art comparison. Misclassification rates on the Hopkins155

database without prior information . 127
3.7 Comparison of the estimation of the number of motions on the Hopkins155

database . 129

4.1 Average results of JESS applied on the results of the GPCA and SSC algo-
rithms on the Hopkins12 database . 160

4.2 Misclassification rates on the Hopkins155 database of ASA with JESS-R (no
reclassification) and JESS. 164

5.1 Updated summary of the manifold clustering-based techniques including the
algorithms proposed in this thesis . 181

vii

Abbreviations and Notation

In alphabetical order.

• A: affinity matrix, usually of size P × P

• ALC: Agglomerative Lossy Compression

• ASA: Adaptive Subspace Affinity

• A-ASA: Automatic-ASA

• ELSA: Enhaned Local Subspace Affinity

• EMS: Enhanced Model Selection

• F : total number of frames

• Gn: binary mask matrix; entries equal to 0 correspond to missing data, entries equal
to 1 corresponds to known data

• GMC: Grassmannian Maximum Consensus

• GPCA: Generalized Principal Component Analysis

• k: parameter of the model selection formula

• kg: parameter of the model selection formula for global space size estimation

• ks: parameter of the model selection formula for local space size estimation

• LDA: Linear Discriminative Analysis

• LSA: Local Subspace Affinity

• M : minimum dimension between two subspaces

• M: aggregate motion matrix

• ~M: aggregate affine motion matrix

• Mn: motion matrix of object n

• N : total number of motions

• NNs: Near Neighbours

• NSI: Normalized Subspace Inclusion

• P : total number of tracked points

• Pn: number of tracked points for object n, note that P =
∑N

n=1 Pn

• PA: Principal Angle

ix

• PAC: Principal Angles Clusterization

• r: rank of W

• rh: highest local subspace size

• Rfn: rotation matrix of object n in frame f

• S: aggregate structure matrix

• ~S: aggregate affine structure matrix

• Sm: structure matrix of object n

• S(j): subspace generated by a generic trajectory j

• SCbA: Sum of the Clusterization-based Affinity

• SVD: Singular Value Decomposition

• SSC: Sparce Subspace Clustering

• W: trajectory matrix, usually of size 2F × P

• W̄: registered trajectory matrix W̄ = [W̄1| . . . |W̄N]

• Wn: trajectory matrix that contains only points of motion n, note that W = [W1| . . . |WN]

• W̄n: registered trajetory matrix of object n, i.e. Wn minus the centroid of object n

• A: number of attempts given to the JESS algorithm

• M: number of misclassified points

• P : parameter of the ASA algorithm that indicates the percentage of PAs used to
compute the µPAC for the PAC function

• F : parameter of the ASA algorithm used as boosting factor of the auto tuned β
parameter in the SCbA measure

• θi(r) same as θr
i : ith generic PA given rank of W = r

• θr
i (Sj, Si): ith PA between the subspaces Sj and Sl given rank of W = r

• Θr
i : is the collection of PAs such that Θr

i = {θr
i (Sj, Sl), j, l = 1, . . . , P}

• Θi: is the collection of PAs such that Θi =
⋃rmax

r=1 Θr
i

x

1
Introduction

This chapter provides an introduction to the motion segmentation problem. The difference

between image segmentation and motion segmentation is explained in Section 1.1, the im-

portance of motion segmentation and research motivations are highlighted in Section 1.2.

In Section 1.3 a brief presentation of the laboratory where this thesis was developed is pro-

vided. The problem of motion segmentation is defined in Section 1.4, while the objectives

of this thesis are presented in Section 1.5. Finally the structure of the thesis is described

in Section 1.6.

1.1 From image segmentation to video segmentation

This thesis is focused on the motion segmentation problem. Motion segmentation belongs

to a wider, and more generic, category of algorithms known as segmentation. The ideal

goal of segmentation is to divide the image into semantically meaningful components. Typ-

ically, such a task is performed on still images, taking into account clues like: colours, edges,

shapes and textures (or, in general, statistical descriptors). The list of segmentation ap-

proaches on still images is fairly long: region growing [1], split and merge [1], watershed [2],

histogram-based algorithms [1], neural networks [3], active contours [4], graph partition-

ing [5], and level sets [6, 7], are only some of the most famous.

1

CHAPTER 1. Introduction

Figure 1.1: An example of motion segmentation. On the first row different frames of a
video sequence where 2D image points in the background (which is not still due to the
camera motion) and on the moving object (the car) are tracked. On the second row the
same frames where the 2D points have been grouped according to their motion are shown.
Figure adapted from [8].

When the subject of the segmentation is not a still image but a video sequence, new

information becomes available: the motion. In motion segmentation a meaningful compo-

nent is a group of pixels that follow a similar motion. Segmentation of moving objects in

video sequences plays an important role in image processing and computer vision. In fact,

once the moving objects are extracted, they can serve a wide variety of purposes.

1.2 Motivation

In many computer vision tasks the decomposition of the video into moving objects and

background is the first fundamental step. It is an essential building block for robotics,

inspection, metrology, video surveillance, video indexing, traffic monitoring and many other

applications. An example of motion segmentation is shown in Figure 1.1. In the figure it

is possible to see three frames of a sequence in which there is a moving car. Note that the

background is also moving (the trees on the left of the first frame do not appear in the

last frame) due to the camera motion. The aim of motion segmentation is to provide a

2

1.2. Motivation

Figure 1.2: General concept of SfM. Some 2D points on the projected surface of a moving
object (a dinosaur) are tracked and the image trajectories that they generate are shown on
the top right plot. Using these trajectories SfM algorithms are able to recover the apparent
motion M of the camera and the 3D structure S of the object. Figure adapted from [9].

classification of which 2D points follow the same motion. In the example of Figure 1.1 the

points tracked throughout the sequence (the red dots on the images of the first row) are

correctly segmented as shown in the second row, where the points that belong to the car

are all represented with green dots, while the points in the background are all represented

with blue dots.

One of the applications that has played an important role in the development of motion

segmentation algorithms is Structure from Motion (SfM). SfM algorithms can recover the

3D structure of a moving object and a description of the motion in each frame, as shown in

Figure 1.2. The first requirement of SfM algorithms is to track a group of 2D points on the

projected surface of a moving object. By doing so a set of image trajectories are obtained.

In the example of Figure 1.2 the little dinosaur is on a rotating platform and the image

trajectories of the points tracked during the rotation of the platform are shown in the plot

on the top right of the image. By using only the information of these image trajectories,

3

CHAPTER 1. Introduction

SfM algorithms are able to recover the apparent motion of the camera in each of the frames,

as shown in the plot on the bottom left of the image. In addition, SfM algorithms recover

also the 3D structure of the moving object, as shown in the plot on the bottom right of the

image. Ever since Tomasi and Kanade [10] introduced a technique for recovering structure

and motion of a moving object, the field of SfM has become very popular and the amount

of SfM techniques has rocketed. While a lot of effort has been spent on reconstruction of

a single object that moves throughout the video sequence (single-body SfM), very little

has been done in the case of multiple objects (multi-body SfM). Therefore, most of SfM

techniques rely on the ability of a motion segmentation algorithm to decompose the video

into independently moving objects, so that the SfM algorithm can be fed with one object

at a time.

Another important application of motion segmentation is in a very active research

area at the moment: action recognition and interpretation [11, 12]. Recognition of un-

usual or dangerous actions is important for public safety, and the existence of a high

number of CCTV cameras makes automated activity recognition a natural extension to

human operated surveillance [13]. Automatic classification of human behaviour involves:

the understanding of bodily motion, gestures and signs, analysis of facial expressions, and

interpretation of affective signals [13]. Examples of action recognition are shown in Fig-

ure 1.3. In Figure 1.3(a) an automatic system is able to identify a man that is walking

dangerously towards the railway, or in Figure 1.3(b) a person that is walking too closely to

the metro line. Figure 1.3(c) shows another example where a person has climbed a fence

and, therefore, the system recognises the anomaly and keeps track of the subject. Finally,

in Figure 1.3(d) different anomalous behaviours are depicted, some of them like face or

graffiti detection are not related with motion, but others like a person falling or loitering

require a motion analysis of the scene. In all of these situations the anomalous behaviour

is automatically detected and the area connected to the anomaly is highlighted so that a

human operator can be alerted and, if it is required, he can raise an alarm. In order for

action recognition to take place one common problem has to be solved: inside one video

4

1.2. Motivation

(a) www.integoo.cz (b) www.security-technologynews.com

(c) cctv.boschsecuritynews.us (d) iomniscient.com

Figure 1.3: Examples of action recognition. Images adapted from the cited websites (ac-
cessed in February 2011).

sequence there is a vast amount of information (scalability problem) and there can be a

variety of subjects. To be able to deal efficiently with these situations the information con-

tained in the video must be filtered: each of the subjects should be treated as a separate

entity in order to analyse, through pattern recognition techniques, its behaviour and its

interaction with other entities. Therefore, the ability of an algorithm to segment different

entities in a video sequence and extract relevant information about them, like their motion,

is a fundamental step for the success of these applications.

A last example of the importance of motion segmentation is visual communication. The

importance of video compression and streaming in visual communication has been increas-

ing tremendously. Current standards of compression and streaming, like the extended

profile of MPEG-4, from the Moving Pictures Experts Group (MPEG), heavily relies on

the ability of an algorithm to perform motion estimation and segmentation. In fact, in

5

CHAPTER 1. Introduction

video compression the basic idea, in order to reduce the load of data, is to store (or transmit

in the case of video streaming) only the pixels, or block of pixels like in MPEG-1 and 2,

that have changed from one frame to the previous, rather than the whole new frame [14].

This way of coding a video is known as block-based coding. Figure 1.4(a) shows an exam-

ple of three frames in which one car is moving from right to left and a person is moving

from left to right. The idea on which MPEG-1 and 2 relies, consists of dividing the image

into block units and perform a block association from one frame to the previous in order

to be able to estimate the motion occurred in each of the units. This concept is shown

in Figure 1.4(b). Once this step is accomplished only the blocks that have changed will

be compressed and transmitted. However, this technique suffers from different problems,

among which, the fact that videos become affected by artifacts and that the association of

the blocks can be ambiguous, as shown in Figure 1.4(c). Better results could be reached by

pushing this concept further and not considering any more pixels, or block of pixels, but

objects. The idea is that each video scene (let us focus only on the visual components and

avoid other components like the audio) can be decomposed in Video Object Planes (VOPs),

which are planes that contain only one object of interest [15]. Typically, each object of

interest is an object that has its own motion, different than other VOPs. The encoder and

the decoder should be able to decompose and recompose the scene by using a hierarchi-

cal relation between VOPs. This way of coding a video is known as object-based coding.

An example of how an MPEG-4 scene is decomposed is shown in Figure 1.4(d), while an

example of object-based coding generation can be found in [16]. Once this set up is built

not only a better compression can be reached, but also a series of features can be added

to the streaming service. Thanks to the advances in the field of visual communication and

to the high velocities of the Internet, applications such as 3D video conferencing [17, 18]

are becoming a reality. These services are beyond the scope of this thesis, however, it is

evident that an efficient motion segmentation algorithm is an essential key for the success

of these applications.

SfM, action recognition and video communication are only some of the applications of

6

1.3. Context

Figure 1.4: Difference between block-based and object-based coding. Figure taken
from [19].

motion segmentation. The importance of this field of research is evident by reviewing its

vast literature. However, algorithm performances still fall far behind human perception.

This thesis scope is to provide a contribution towards filling the gap between motion

segmentation algorithms and human ability to differentiate objects with different motion.

1.3 Context

This thesis was carried out in the VICOROB laboratory at the University of Girona. One of

the research interests of VICOROB is 3D perception (DPI2007-66796-C03-02). As already

7

CHAPTER 1. Introduction

explained, one group of techniques for 3D reconstruction, the SfM group, is mainly able

to deal with the presence of one moving object. From this, it is easy to understand the

necessity of developing a motion segmentation algorithm that could feed a single-body SfM

approach with the trajectories of one object at a time. Nevertheless, motion segmentation

is a low level generic step that can find applications in a variety of contexts. For example,

among the interests of the VICOROB group it is possible to find also the construction

of multi-modal maps (CTM2010-15216) and the development of autonomous underwater

vehicles (robots) for multi-purpose intervention missions (DPI2008-06548-C03-03 and 7PM-

STREP). Both these tasks require a system able to fuse together images of the explored

area in order to build a large map. Once a map of the area of interest is built, higher level

tasks can take place, like: identifying changes in the marine environment, or monitoring

human crafted structures that may need maintenance. However, during the exploration of

the target area other moving objects, which do not belong to the sea-bed or the structure

under analysis, may be encountered. For example fish, other underwater vehicles, humans

or weeds may enter into the field of view of the cameras carried by the robot. All these

moving objects have to be removed so that the final map does not contain any other

element than the one under analysis. For the accomplishment of this removal step a

motion segmentation algorithm is again required.

1.4 Problem definition

In this section a more precise and formal definition of the motion segmentation problem is

presented. The aim of this definition is to provide the reader with clear information about

what motion segmentation is, what the input and the output of the motion segmentation

algorithms developed in this thesis are, and which typical assumptions motion segmentation

techniques make. The definition and the assumptions explained in this section are not

common to every motion segmentation algorithm, they refer to the specific category to

which the algorithms proposed in this thesis belong: the motion segmentation from feature

trajectories.

8

1.4. Problem definition

(a) Dense-based segmentation (b) Feature-based segmentation

Figure 1.5: Example of the same frame sequence (sequence articulated from the Hopkins155
database [22]) segmented by using a dense-based approach and by using a feature-based
approach.

There are two categories of motion segmentation algorithms [20, 21]: dense-based seg-

mentation and feature-based segmentation. Dense-based motion segmentation algorithms

provide a classification (i.e. a segmentation) for each individual pixel, whereas feature-

based motion segmentation algorithms focus on the classification of selected features that

are tracked throughout a video sequence. An example of dense-based and feature-based

segmentation results are shown in Figure 1.5, where each motion group is colour labelled.

The frame presented in the figure is taken from the Hopkins155 database [22], more infor-

mation about this database can be found in Section 2.5. While dense-based approaches

classify all the pixels of the moving objects, feature-based approaches classify only the se-

lected features (shown as pink dots). For more details about dense-based and feature-based

motion segmentation the reader is referred to Chapter 2. The algorithms developed in this

thesis belong to the feature-based group.

Feature-based motion segmentation algorithms assume that a pre-processing step, the

tracking, has already been performed. The field of feature selection and association (track-

ing) has experienced a very active research period during the last decades. One of the first

famous feature trackers is the Kanade-Lucas-Tomasi (KLT) [23] algorithm. Since then

many more tracking algorithms based on features have been proposed, among which are

algorithms based on the Scale-Invariant Feature Transform (SIFT) [24] and the Speeded

9

CHAPTER 1. Introduction

Up Robust Features (SURF) [25]. Nowadays, feature trackers have become very robust and

tasks like motion segmentation can greatly benefit from them. In fact, one of the problems

of motion segmentation has always been the heavy computation required. However, the

possibility to deal with only a “small”, but representative, amount of feature points re-

duces dramatically the amount of data to be processed. In summary, feature-based motion

segmentation algorithms do not deal with feature selection and tracking. Such a problem is

assumed to be solved by a pre-processing step. The input of a generic feature-based motion

segmentation algorithm is the position u (x-axis) and v (y-axis) in each frame of all of the

tracked points. Given F frames and P points the typical structure used to represent the

input is called trajectory matrix which is a 2F × P matrix:

W =

u11 . . . u1P

v11 . . . v1P

...
...

...

uF1 . . . uFP

vF1 . . . vFP

.
�

�

�

�1.1

In Figure 1.6(a) a pictorial representation of the trajectory matrix is presented. If one

column p of W is analysed, it is possible to identify for each frame the position of the point

p, therefore, each column of W defines a trajectory. On the other hand, if a couple of rows

f and f + 1 (f being any odd index from 1 to 2F) are taken into account, the positions of

all of the tracked points inside the frame f are defined. These two concepts are illustrated

in Figure 1.6(b).

Another common assumption of most feature-based motion segmentation algorithms

concerns the camera model. Often, an orthographic camera model is assumed. The choice

of assuming an orthographic camera model is rather popular also in the Structure from

Motion field as it eases the mathematical tractability of the problem. The orthographic

camera model is a simplified model of the real perspective camera [26]. The simplification

relies on the fact that the rays captured by the camera are supposed to hit the image plane

10

1.4. Problem definition

(a) The position of each tracked point is
stored in the trajectory matrix.

(b) If one column of the trajectory matrix is anal-
ysed the trajectory generated by one point can be
drawn. If two rows of the trajectory matrix are anal-
ysed all the points in a given frame can be drawn.

Figure 1.6: Pictorial representation of the trajectory matrix.

perpendicularly. For the orthographic camera to be a realistic model the focal length has to

be long enough that the depth of the objects do not create any perspective distortion. Most

of the time, especially for segmentation problems, the assumption of this simple model is

sufficiently respected. Given the simplicity of the orthographic camera model, and given

the applications targeted in this thesis, the proposed algorithms assume an orthographic

camera model.

Finally, assuming an orthographic camera model, and given a trajectory matrix W, the

goal of the feature-based motion segmentation algorithms presented in this thesis is to

group together features (i.e. trajectories) that follow a similar motion.

11

CHAPTER 1. Introduction

1.5 Objectives

The aim of this thesis is to

propose new motion segmentation algorithms that overcome some typical

limitations of current approaches, and that do not require tuning steps

nor prior knowledge. Moreover, a first step towards the unification of

the motion segmentation and structure from motion problems should be

investigated.

In more detail this thesis should:

• provide a complete review of the state of the art of motion segmentation;

• identify in the state of the art which approach seems the most suitable for further

investigation;

• propose new motion segmentation algorithms that do not require tedious tuning

processes and whose performances must be comparable with or exceed the state of

art;

• study the relation between the problems of motion segmentation and structure from

motion with the intent to jointly solve them and provide a first step towards merging

the two research fields;

• point out future directions connected to this work.

1.6 Structure of the thesis

The remainder of the thesis is structured as follows.

• In Chapter 2 the state of the art of motion segmentation is reviewed and a classifica-

tion is suggested.

12

1.6. Structure of the thesis

• In Chapter 3 new algorithms for motion segmentation are presented. The first is

called Enhanced Model Selection+ (EMS+) and relies on a new and robust estimation

of the rank of the trajectory matrix. The second is called Adaptive Subspace Affinity

(ASA). ASA is composed of two main algorithms: the Principal Angle Clusterization

(PAC) and the Sum of Clusterization-based Affinity (SCbA). PAC is a new way of

estimating and interpreting the rank of the trajectory matrix. The second step, SCbA,

is a new way of computing the affinity between two subspaces. SCbA tackles some

of the issues that so far have been neglected and is a geometrically correct measure.

In the same chapter an algorithm for the estimation of the number of motions is

also presented. The estimation is based on a dynamic analysis of the eigenvalue

spectrum of a matrix involved in the clustering step. The combination of EMS+ and

of ASA with the automatic estimation of the number of motions creates two new

automatic algorithms called respectively: Enhanced Local Subspace Affinity (ELSA)

and Automatic-Adaptive Subspace Affinity (A-ASA).

• In Chapter 4 the problem of motion segmentation is compared with the problem

of structure from motion. With the aim of merging those two problems, a novel

framework, which is able to correct an initial erroneous segmentation and to provide

the 3D structure of the moving objects, is described. The new framework is called

Joint Estimation of Segmentation and Structure from Motion (JESS). JESS exploits

some constraints that are largely used in SfM, but that have never been adopted to

solve the segmentation problem.

• To complete the thesis, in Chapter 5 a summary is presented, conclusions are drawn

and future directions are discussed.

13

2
State of the Art

In this chapter a complete state of the art review of motion segmentation methods is pre-

sented. The main problems and the most important attributes of motion segmentation

algorithms are described in Section 2.1. Afterwards, a possible classification of motion seg-

mentation algorithms is proposed in Section 2.2. Some of the most recent and important

techniques for each class are reviewed in Section 2.3, and considerations are discussed in

Section 2.4. Finally, the databases used throughout the whole thesis for the evaluation of

the proposed algorithms are presented in Section 2.5

2.1 Problems and attributes

In this section the common problems and the most important attributes of motion segmen-

tation algorithms are analysed. Attributes describe in a compact way the assumptions on

which algorithms are based, as well as their limitations and strengths. These attributes

will then be used to summarise each of the analysed techniques.

One of the first choices that has to be taken when developing a motion segmentation

algorithm is the representation of the motions: there are feature-based and dense-based

approaches. An example of both groups is shown in Figure 1.5. In feature-based methods,

objects are represented by a limited number of salient points, like KLT [23], SIFT [24]

15

CHAPTER 2. State of the Art

or SURF [25] features, previously extracted and tracked throughout the video sequence.

Features represent only part of an object, hence, the object can be tracked even in cases

of partial occlusions. In opposition to feature-based methods there are dense-based meth-

ods, which do not use sparse points but compute a pixel-wise motion. The result is a

more precise segmentation of object contours, but the occlusion problem becomes harder

to solve [27]. Moreover, the main drawback of dense-based methods is the heavy computa-

tional time required to process such a big amount of data.

Motion segmentation algorithms usually exploit temporal continuity: each point, that

belongs to a moving object, changes its position smoothly from one frame to the following.

However, when using only temporal clues a rather big piece of the available information is

discarded and this lack of information can easily lead to problems. This is the reason why

some techniques exploit also spatial continuity. In these cases each pixel is not considered as

a single point but the information provided by its neighbours (in terms of spacial proximity)

is taken into account. For example, one of the problems that is sometimes caused by the

use of temporal information only, is the difficulty to deal with temporary stopping. In fact,

many techniques lose the segmentation when the objects stop moving even if for a limited

amount of time.

Another common issue that has to be tackled by motion segmentation algorithms is the

fact that moving objects may not be always visible. The ability to deal with missing data

is one of the most difficult problems. Missing data can be caused by many factors: small

random variation in image brightness (noise) that may induce the tracker to loose some

feature points, occlusions, or points (either pixels or features) that are not in the scene for

the whole length of the sequence.

Missing points due to image noise is the most extreme consequence of the presence of

noise in tracking systems. Nevertheless, even when the points are not lost, noise can affect

the accuracy of the positions of the tracked features. Hence, robustness of the algorithms

against noise (from now on when talking about noise it will be always referred to as the

perturbations of the tracked feature positions) is as an essential factor to take into account.

16

2.1. Problems and attributes

However, robustness is not affected only by the presence of noise. A robust algorithm

should be able to deal also with the presence of outliers, i.e. points erroneously tracked

(as in wrong associations made by the tracker algorithm). Finally, for iterative algorithms

that require an initialisation, robustness is related to the ability to converge to the right

solution even when the initialisation is not close to the final solution.

Another important attribute that has to be analysed is the ability to deal with different

types of motion. There is a bit of confusion in the literature when it comes to “types of

motion” as people tend to use different adjectives to describe the same property or the

same adjective to describe different properties. Hence, it is important to clarify which is

the exact meaning that is given to each adjective in this work. A motion can be described

in terms of: dependency and kind.

The dependency is an attribute that describes the relationship between a pair of motions

and is not a property of one single motion. Motions can be independent or dependent. Two

motions are dependent if, somehow, they have some degree of similarity. For example, two

cars that proceed in parallel with a similar speed (but not equal, otherwise they would

be the same motion) are an example of dependent motions. Vice versa, a car that turns

at ninety degrees and another car that comes from the opposite direction and continues

straight are an example of independent motions.

The kindness of motion is related to the nature of the motion, which can be: rigid, non-

rigid and articulated. To present the different kinds of motion the concepts of extrinsic and

intrinsic properties defined in [28] are used. The extrinsic property refers to how the object

is laid out in the space, while the intrinsic property refers to the metric structure of an object

and it is invariant to the object deformations. If a shape is regarded to as a metric space,

its extrinsic properties are described by the 3D Euclidean metric, while intrinsic properties

are described by geodesic metric, which measures distances between points as the lengths

of the shortest path on the 3D shape. In Figure 2.1(a) it is possible to find an example

of extrinsic and intrinsic properties. Shape transformations that preserve the metric are

called isometries; extrinsic isometries are rigid motions and intrinsic isometries are inelastic

17

CHAPTER 2. State of the Art

(a) Examples of an extrinsic property
(Euclidean distance) and of an intrin-
sic property (geodesic distance)

(b) Extrinsic isometry

(c) Intrinsic isometry

Figure 2.1: Extrinsic and intrinsic properties. Images adapted from [28].

deformations, i.e. non-rigid and articulated motions. In Figure 2.1(b) an object (a hand)

underwent a rigid transformation and it is possible to see that the Euclidean distance (an

extrinsic property) between the same pair of points remains the same. On the other hand,

in Figure 2.1(c) the object underwent a non-rigid transformation. In this latter case the

Euclidean distance between the same pair of points is very different, however, the geodesic

distance (an intrinsic property) remains similar.

The fact that a motion is rigid or non-rigid is an attribute of the single motion, while

an articulated motion is actually a specific class of dependent motions. A motion is rigid

if the moving object is not deformable. In terms of shape transformation, the different

views of the object in the sequence can be described by extrinsic isometries. For instance,

the motion of a car is a rigid motion. The mathematical definition of a rigid motion is

relatively simple. Given an initial set of point p0 that describes an object, its evolution in

time can be modelled as a rotation matrix R(t) ∈ SO(3) and a translation vector t ∈ R3,

such that p(t) = R(t)p0 + t(t) [29].

18

2.1. Problems and attributes

Figure 2.2: Two examples of non-rigid motions. On the left the face of a person who smiles.
On the right a pillow that is being compressed. Images adapted from [30].

A non-rigid motion is the motion of an object that can be deformed, compressed or

extended. Therefore, in terms of shape transformation, the different views of the object

could be extrinsically dissimilar but, under mild topological assumptions, they can be

described by intrinsic isometries. For example, the face of a person who is talking and is

moving his or her head from left to right is a non-rigid motion. In fact, all his or her facial

points are moving from left to right, but at the same time the relative Euclidean distance

between some of the points (like the corners of the lips, the corners of the eyes, or the nose)

changes because they are influenced also by another motion. Two examples of non-rigid

motions are shown in Figure 2.2. While the mathematical definition of a rigid motion

is relatively simple, the definition of non-rigid motion is more challenging. Intuitively, a

non-rigid motion can be seen as the composition of an overall motion and a deformation.

Following this intuitive definition, a deformation f can be described as the composition of a

rigid motion and a deformation function h(·, t), so that p(g) = h(R(t)p0 +t(t), t). However,

it is always possible to find infinitely many different choices h̃(·, t), R̃(t), t̃(t) that give rise to

the same overall deformation f . Therefore, by this intuitive definition, the motion, which

is unique to the observed scene, would have an ambiguous description [29]. In order to

provide a unique description of a non-rigid motion it is necessary to couple the concept

of motion with the notion of “shape average” as explained in [29]. The shape average is

19

CHAPTER 2. State of the Art

defined as the shape that minimises the object deformations observed. Therefore, a non-

rigid motion at time t can be modelled as the rigid motion g(·, t) performed by the shape

average µ, on top of which a local deformation h(·, t) is applied: p(t) = h(µ, t) ◦ g(µ, t).

The reader is referred to [29] for the details of the formalisation of non-rigid motions.

In terms of segmentation all of the points that belong to a non-rigid motion should be

considered as one motion. It has to be noted that the ability to deal with non-rigid motions

(i.e. the ability to consider points that belong to a non-rigid body as points that belong

to one non-rigid motion) is constrained to the cases when, besides local deformations, it is

possible to extract a shape average whose motion is rigid. When this is not the case, for

example if the person who is talking is keeping his or her head completely still, each group

of points that undergo a different motion cannot be distinguished from the case when there

are different objects that move independently.

Finally, there are articulated motions. Articulated motions can be considered as a spe-

cific case of non-rigid motions. In fact, like non-rigid motions, also articulated motions are

intrinsic isometries. Moreover, also an articulated motion is composed of more than one

dependent motion, like for the non-rigid case, but with the constraint that the motions

are usually rigid. In addition, the different part of an articulated motion are linked to-

gether by joints. Thanks to this specification, as far as motion segmentation is concerned,

each segment (this is how each part that creates an articulated motion is called) has to

be segmented separately. Articulated motions are highly dependent motions as they are

characterised by the dominant motion of the whole body and by segments that follow their

own motion. In Figure 2.3 an example of an articulated motion is shown. On the left of

the image an excavator is moving forward without moving its arm, hence, its motion is

correctly classified as one simple (rigid) motion. On the right, another excavator is rotat-

ing and at the same time is moving its arm, hence, this is an articulated motion correctly

segmented in its two (rigid) motions. In Section 2.3.6 a more formal algebraic definition

of motion dependency and kind is provided.

These are all the attributes, related with motion, that will be taken into account in

20

2.1. Problems and attributes

Figure 2.3: On the left an example of a rigid motion: an excavator is moving forward
without moving its arm, hence, its motion is correctly classified as one motion (blue dots).
On the right another excavator is rotating and at the same time is moving its arm, hence,
this is an articulated motion correctly segmented in its two motion components (yellow
and red dots). Image adapted from [31].

the summary presented in Table 2.1 and 2.2. However, authors do not always clearly state

under which conditions their algorithms work, therefore, the table is filled to the best of

our knowledge given the information provided in the cited papers.

Furthermore, if the aim is to develop a generic algorithm able to deal in many unpre-

dictable situations, there are some features that may be considered as drawbacks. For

instance, one important aspect is the amount of prior knowledge required. In particular,

prior knowledge that is commonly required includes: the number of moving objects, and

the dimension of the generated subspaces.

For the sake of completeness a word about transparent motions should be spent here.

Transparent motions are motion generated by transparent objects. This class of motions

is particularly difficult to segment for all those methods that use image distance between

points as discriminant feature for the segmentation. However, the small presence of inter-

esting transparent motions in real life, and the difficulty that any tracking algorithm would

face when dealing in such a situation, make this class of motions of secondary importance.

Nevertheless, the algorithms developed in this thesis would have no problems to segment

21

CHAPTER 2. State of the Art

transparent motions (given that the tracking of the features is provided) as they are not

based on image distances.

In this section an overview of the main attributes and problems that should be taken

into account when developing a motion segmentation algorithm were presented. In the

next section a classification of the most important algorithms is proposed.

2.2 Classification

As motion segmentation has been a hot topic for many years its literature is particularly vo-

luminous. In order to make the overview easier to read and to create order, the approaches

will be divided into categories which represent the main principle underlying each algo-

rithm. For each category some articles, among the most representative and recent, are

provided. The division is not meant to be restrictive, in fact, some of the algorithms could

be placed in more than one category. The classes identified are:

• Image Difference

• Statistics, further divided into:

– Maximum A posteriori Probability (MAP)

– Particle Filter (PF)

– Maximum Likelihood (ML)

• Optical Flow (OF)

• Wavelets

• Layers

• Manifolds Clustering, further divided into:

– Iterative

– Statistics

22

2.2. Classification

– Sparse representation

– Factorisation

– Subspaces estimation

The main techniques described in the next section are summarised in Tables 2.1 and 2.2,

which offer a compact at-a-glance overview with respect to the proposed classification and

the attributes described in the previous section. Table 2.1 summaries all the techniques

based on: image difference, statistics, wavelets, optical flow, and layers. Table 2.2 sum-

maries all of the manifold-based techniques.

23

CHAPTER 2. State of the Art
Im

a
g
e

D
iff

e
r Cavallaro et al. 2005 [32] F/D X X X X−− RN X

Cheng et al. 2006 [33] D X X X−− RN X X
Li et al. 2007 [34] D X X X−− RN X X
Colombari et al. 2007 [35] D X X X X−− RN X

S
ta

ti
st

ic
s

M
A

P Rasmussen et al. 2001 [36] D X X X X−− X X CX
Cremers et al. 2005 [37] D X X X X−− X RA X
Shen et al. 2007 [38] D X X X X−− X X CX

PF Rathi et al. 2007 [39] D X X X X−− X RN X

ML
Stolkin et al. 2008 [40] D X X X X−− X R CX
Thakoor et al. 2010 [41] F X X X−− X R X

Wavelets
Wiskott 1997 [42] F X X−− I R
Kong et al. 1998 [43] F X X X−− I R X

OF

Trucco et al. 2005 [44] F/D X X−− X RA
Zhang et al. 2007 [45] F X X−− X RA C
Li Xu et al. 2008 [46] D X X X X−− X X

Klappstein et al. 2009 [47] F X X X−− X RA X
Bugeau et al. 2009 [48] F/D X X X−− I R
Ommer et al. 2009 [49] F X X X−− I R
Brox et al. 2010 [50] F X X X X−− I RA

L
a
y
e
rs

Kumar et al. 2008 [27] F/D X X X X−X X X X
Min et al. 2008 [51] D X X X X−X X X X
Nordberg et al. 2010 [52] F X X X−X I R CX
Zografos et al. 2010 [53] F X X X−X X RA CX
Xu et. al. 2011 [54] F/D X X X X−− I R X
Wang et al. 2011 [55] F/D X X XX− I R X

Features (F) / Dense (D)
Occlusion or Missing Data
Spatial Continuity
Temporary Stopping
Robustness (Noise, Outliers, Initialisation: Xyes, Xno, - not related)
Dependency (Independent, Dependent, Xall)
Kind (Rigid, Non-rigid, Articulated, Xall)
Prior knowledge (C Number of clusters, D Subspace dimensions, X Other)

Table 2.1: Summary of the techniques not based on manifold clustering with respect to
the attributes described in Section 2.1.

24

2.2. Classification

M
a
n
if
o
ld

C
lu

st
e
ri

n
g

It
er

Ho et al. 2003 [56] F X XXX X X CD
da Silva et al. 2008 [57] F X XXX X X CD
da Silva et al. 2009 [58] F X XXX X X CD

S
ta

t

Fishler et al. 1981 [59] F X XX− I RA C
Kanatani et al. 2002 [60] F X XXX I R
Sugaya et al. 2004 [61] F X XXX I R C
Gruber et al. 2004 [62] F X X XXX I R X
Gruber et al. 2006 [63] F X X X XXX I R X
Sugaya et al. 2010 [64] F X XXX I R C

Sparse
Rao et al. 2008/2010 [65, 66] F X X XX− I R
Elhamifar et al. 2009 [67] F X X XX− X X DX

F
ac

t Costeira et al. 1998 [68] F X XX− I R
Ichimura et al. 2000 [69] F X XX− I R
Zelnik-Manor et al. 2003 [70] F X XX− X RA CD

S
u
b
sp

ac
es

Vidal et al. 2004 [71] F X X XX− X R C
Yan et al. 2006/08 [31, 72] F X XX− X X CDX
Goh et al. 2007 [73] F X XX− X R CD
Julià et al. 2008 [74] F X X XX− I R D
Vidal et al. 2008 [75] F X X XX− X R C
Goh et al. 2008 [76] F X XX− X R CD
Chen et al. 2009 [77, 78] F X XX− X X CD
Kim et al. 2009 [79] F X XX− X R C
Yang et al. 2009 [80] D X XX− I R CD
Lauren et al. 2009 [81] F X XX− X X CD

Features (F) / Dense (D)
Occlusion or Missing Data
Spatial Continuity
Temporary Stopping
Robustness (Noise, Outliers, Initialisation: Xyes, Xno, - not related)
Dependency (Independent, Dependent, Xall)
Kind (Rigid, Non-rigid, Articulated, Xall)
Prior knowledge (C Number of clusters, D Subspace dimensions, X Other)

Table 2.2: Summary of the manifold clustering-based techniques examined with respect to
the attributes described in Section 2.1.

25

CHAPTER 2. State of the Art

Figure 2.4: Example of an image sequence and its image difference result. Sequence taken
from [82].

2.3 Main techniques

2.3.1 Image difference

Image difference techniques are some of the simplest and most used for detecting changes.

They consist of thresholding the pixel-wise intensity difference of two consecutive frames.

The result is a coarse map of temporal changes. An example of an image sequence and the

image difference result is shown in Figure 2.4. A brief presentation of some of the recent

techniques, which improved the basic concept of image difference, follows.

Cavallaro et al. (2005) [32] reinforce the motion difference using a probability-based

test in order to change the threshold locally. As previously explained, this first step allows

a coarse map of the moving objects. Each blob is then decomposed into non-overlapping

regions. From each region spatial and temporal features are extracted. The spatial features

used are: colour (in the CIE lab space), textures and variance. The temporal features are

the displacement vectors from the optical flow computed via block matching. The idea is

that spatial features are more uncertain near edges, whereas temporal features are more

uncertain on uniform areas, however, the union of the two should guarantee a more robust

behaviour. The tracking is performed by minimisation of the distance between feature

26

2.3. Main techniques

descriptors, and the same criteria is also responsible for the merge and split decision. This

technique is capable of dealing with multiple objects, occlusions and non-rigid objects.

Unfortunately, the region segmentation stage is based on an iterative process which makes

the algorithm time consuming. Another limitation is due to the initialisation performed

when a group of objects enter in the scene, in such cases the algorithm assigns them a

unique label rather than treating them as separated objects.

Cheng and Chen (2006) [33] perform image difference on the low frequency sub-image

of the third level of a the discrete wavelet transform. On the extracted blobs they perform

some morphological operations and extract the colour and spatial information. In this

way each blob is associated with a descriptor that is used to track the objects throughout

the sequence. In this approach the wavelet transform is only exploited for noise reduction.

The authors focus on segmenting and tracking human beings, hence, they pay particular

attention to selecting features that could help to solve this task; specifically, they introduce

some prior information about human being silhouettes. By doing so, they can successfully

track humans, but of course the method loses its generality. Furthermore, no motion

compensation or statistical background is built which makes the method not suitable for

moving camera applications.

Li et al. (2007) [34] use image difference in order to localise moving objects. The

noise problem is attenuated by decomposing the image in non-overlapping blocks and

working on its average intensity value. They also use an inertia compensation to avoid

loosing tracked objects when the objects temporarily stop. Simultaneously, the watershed

algorithm [2] is performed in order to extract the gradient of the image. Finally, the

temporal and the spatial information are fused together so that the coarse map is refined

using an anisotropic morphological dilation that follows the gradient of the image. This

technique deals successfully with the temporary stopping problem, but its main drawbacks

are the high number of parameters that require tuning and the inability to deal with moving

cameras.

27

CHAPTER 2. State of the Art

Colombari et al. (2007) [35] propose a robust statistic to model the background. For

each frame a mosaic of the background is back-warped onto the frame. A binary image

that indicates for each pixel whether it belongs to a moving object or not is obtained.

Then, the binary image is cleaned and regions are merged and define blobs. By exploiting

temporal coherence the blobs are tracked throughout the sequence. This technique is able

to deal with occlusions, appearing and disappearing objects. The background mosaic is

done off-line and in order to recover the motion of the camera it is necessary to extract

many features in the non-moving area.

As can be seen from Table 2.1, image difference is mainly based on dense representation

of objects. It combines simplicity and good overall results because it is able to deal with

occlusions, multiple objects, independent motions, non-rigid objects. Image difference

alone cannot perform segmentation, it is able to detect motions. Spatial considerations

need to be done in order to obtain the segmentation. The main problem of this group

of techniques is the difficulty they have in dealing with temporary stopping and moving

cameras. In order to be successful in these situations a history model of the background

needs to be built. Furthermore, image difference algorithms are still very sensitive to

noise and to light changes, hence, they cannot be considered an ideal choice in the case

of a cluttered background. Finally, these techniques cannot usually distinguish among the

different components of an articulated object when the whole object is also influenced by

an overall rigid motion.

2.3.2 Statistics

Statistical theory is widely used in the motion segmentation field. In fact, a first level

of motion segmentation can be seen as a classification problem where each pixel has to

be classified as background or foreground. Statistical approaches can be further divided

depending on the framework used. Common frameworks are Maximum A posteriori Prob-

ability (MAP), Particle Filter (PF) and Maximum Likelihood (ML). Statistical approaches

provide a general tool that can be used in a very different way depending on the specific

28

2.3. Main techniques

technique.

Maximum A posteriori Probability

MAP is based on the Bayes rule:

P (cj|x) =
p(x|cj)P (cj)

∑C
i=1 p(x|ci)P (ci)

,
�

�

�

�2.1

where x is the object to be classified (usually the pixel), c1 . . . cC are the C classes (usually

background or foreground), P (cj|x) is the “a posteriori probability”, p(x|cj) is the con-

ditional density, P (cj) is the “a priori probability” and
∑C

i=1 p(x|ci)P (ci) is the “density

function”. MAP classifies x as belonging to the class ĉ that maximises the “a posteriori

probability”:

ĉ = arg max
cj

P (cj|x).
�

�

�

�2.2

Rasmussen and Hager (2001) [36] use a MAP framework, namely they use the Kalman

Filter [83] (and the Probabilistic Data Association Filter) to predict the most likely loca-

tion of a known target in order to initialise the segmentation process. They also discuss

an extension for tracking multiple objects but without estimating the number of them.

Depending on the noise level the authors use different clues for tracking, such as colours,

shapes, textures and edges. Unfortunately, the choice of which information should be used

is not automatised.

Cremers and Soatto (2005) [37] use level sets [6] in order to incorporate motion informa-

tion. The idea is to avoid the computation of the motion field, which is usually inaccurate

at boundaries. Instead, they jointly estimate the segmentation and the motion by min-

imising a functional that depends on parametric motion models of each of the segments,

and on the boundaries that separate the segments. The algorithm is based on a geometric

model of the motion, therefore, if the motion of the objects deviates from the model hy-

pothesis the segmentation gradually degrades. The main limitation of this model is that

it is based on the assumption that objects do not change their brightness throughout time.

29

CHAPTER 2. State of the Art

This assumption is often violated especially in cluttered backgrounds. This method is able

to deal with multiple objects but it requires knowledge of the maximum number of objects,

and it has problems with new objects that enter the scene.

Shen et al. (2007) [38] use the MAP framework to combine and exploit the inter-

dependence between motion estimation, segmentation and super resolution. The authors

observe that when the scene contains multiple independently moving objects the estimated

motion vectors are prone to be inaccurate around boundaries and occlusion regions, thus

the reconstructed high-resolution image contains artifacts. On the other hand, a sub-pixel

accuracy would facilitate an accurate motion field estimation and, hence, a better segmen-

tation. They propose a MAP formulation to iteratively update the motion fields and the

segmentation fields along with the high-resolution image. The formulation is solved by a

cyclic coordinate descent process that treats motion, segmentation and the high-resolution

image as unknowns, and estimates them jointly using the available data. The presented

results show that the algorithm is able to segment multiple objects and construct a high-

resolution image. Though theoretically the algorithm should be able to deal with non-rigid

objects and moving cameras, in the paper there are no experiments that show results in

these situations. The algorithm has quite a few parameters, six, to be tuned and one of

them is the number of iterations to be performed, unfortunately there is not other termina-

tion criteria. Probably, the main drawback of the method is the required prior knowledge

of the number of motions that compose the image. The fact that the number of moving

objects is a required prior information is a common assumption in motion segmentation

algorithms. The authors of this paper state that the estimation of the number of objects

is still an open and challenging problem.

Particle Filter

Another widely used statistical method is the PF. Whenever the posterior probability can

be approximated by a gaussian function, methods like Kalman Filter are optimal choices.

However, when the posterior probability has multi-modal or heavily skewed probability

30

2.3. Main techniques

density function, PF becomes a better choice. The key idea is to represent the required

posterior density function by a set of random samples with associated weights and to

compute estimates based on these samples and weights. It has been shown that as the

number of samples approaches infinity, the sample set converges to the true posterior [84].

Let {ci
0:k, w

i
k}M

i=1 denote a random measure that characterises the posterior probability

p(c0:k|x1:k), where {ci
0:k, 1 = 1, . . . ,M} is a set of support points with associated weights

{wi
k, i = 1, . . . ,M}, c0:k = {cj, j = 1, . . . , k} is the set of all states up to time k, x1:k is

the set of measurements up to time k. The weights are normalised such that
∑M

i=1 wi
k = 1.

Then, the posterior density at time k can be approximated as:

p(c0:k|x1:k) ≈
M∑

i=1

wi
kδ(c0:k − ci

0:k).
�

�

�

�2.3

Key points of PF are the choices of the weights and of the samples. These choices are driven

by the principle of importance sampling [85]. Ideally, the particles should be sampled from

the posterior probability, which is unknown. Hence, the samples has to be taken from the

prior estimate of the posterior probability, which is known. Then, the weight of each of the

samples is updated according to the observations. At this point the particles are re-sampled

in order to provide a finer sampling near particles with higher weight, while particles with

small weights are eliminated [86]. At each iteration the prediction of the variable c can

be chosen as the one corresponding to the maximum weight (MAP-like choice) or the one

corresponding to the weighted mean.

Rathi et al. (2007) [39] unify some well known algorithms for object segmentation

that use spatial information, such as geometric active contours [4] and level sets, with the

PF framework. The PF is used to estimate the conditional probability distribution of a

group of motions and the contour at each time. The algorithm requires the knowledge of

the object shapes in order to deal with major occlusions. By exploiting a fast level set

implementation [87] the authors claim that the algorithm can be used in near real-time

speeds (no further indications are provided).

31

CHAPTER 2. State of the Art

Maximum Likelihood

ML is also a frequently exploited tool especially when in presence of missing data. In ML

the aim is to estimate the model parameter(s) c to which the observed data x is most likely

to belong:

ĉ = arg max
c

p(x|c).
�

�

�

�2.4

ML differs from MAP in that MAP assumes that the estimated parameter c is also a

random variable which has a prior distribution P (c). ML is often obtained by using the

Expectation Maximization (EM) algorithm. Each iteration of the EM algorithm consists of

an E-step and an M-step. In the E-step, by using the conditional expectation, the missing

data is estimated. In the M-step the likelihood function is maximised. Convergence is

assured since the algorithm is guaranteed to increase the likelihood at each iteration [88]

Stolkin et al. (2008) [40] present a new algorithm which uses EM and Extended-Markov

Random Field (E-MRF). The authors developed this method for poor visibility environ-

ments, specifically for underwater. The algorithm merges the observed data (the current

image) with the prediction derived from prior knowledge about the object being viewed,

in order to track the camera trajectory. The merging step is driven by the E-MRFs within

a statistical framework. The importance of the observed image rather than the predicted

model is decided by means of two weights. In this way it is possible to have an ad hoc

behaviour depending on the degree of noise: if the visibility is good it is desirable to rely on

observed data, while if the visibility is bad it is necessary to make greater use of predicted

information. This latter feature is an interesting ability to adapt to different conditions

but in this implementation parameters are selected once and they do not change dynam-

ically if conditions change. The ability to work in environments with very poor visibility

requires the use of some prior information like: the knowledge of the model of the object

being viewed and the parameters of the camera. The authors admit that the algorithm is

computationally expensive.

Thakoor et al. (2010) [41] present a framework for two-view segmentation. They gen-

32

2.3. Main techniques

erate hypotheses for the estimation of the fundamental matrices by local sampling. Once

the hypotheses are generated a combinatorial optimisation model is created and the opti-

misation is performed by the branch-and-bound technique (B&B). The B&B optimisation

searches for the solution that minimises the cost of the model given the current set of

hypotheses. The problem of the estimation of the number of clusters is tackled by using

the Bayesian information criterion (BIC) defined in [89]. As the authors of the paper say,

the outcome of the method heavily depends on the initial set of hypotheses. In fact, the

B&B algorithm guaranties optimality over the current set of hypotheses, however, if the

set does not explore and represent the solution space correctly the final segmentation is

negatively affected.

Statistical approaches mainly use dense-based representation. They work well with

multiple objects and can deal with occlusions and temporary stopping. In general they are

robust as long as the model reflects the actual situation, but they degrade quickly as the

model fails to represent reality. Moreover, most of the statistic approaches require some

kind of prior knowledge.

2.3.3 Wavelets

Another group of motion segmentation algorithms is the one based on the wavelet transform.

These methods exploit the ability of wavelets to perform analysis of the different frequency

components of images, and then study each component with a resolution matched to its

scale. Usually wavelet multi-scale decomposition is used as a pre-processing step in order

to reduce the noise. These approaches rely on other techniques, such as optical flow, to

perform the actual segmentation. However, some examples of wavelet-based algorithms

used to solve the segmentation problem can be found.

Wiskott (1997) [42] combines both the Gabor and the Mallat wavelet transforms to

overcome the aperture problem. The former transform is used to estimate the motion field

and roughly cluster the image, while the latter is used to refine the clustering. The main

limitation of this model is that it assumes that objects only translate in front of the camera.

33

CHAPTER 2. State of the Art

A different approach is presented by Kong et al. (1998) [43] where the motion segmen-

tation algorithm is based on Galilean wavelets. These wavelets behave as matched filters

and perform minimum mean-squared error estimations of velocity, orientation, scale and

spatio-temporal position. These pieces of information are finally used for tracking and

segmenting objects. The authors claim that the algorithm is robust, it can deal with tem-

porary occlusions and by tuning a threshold it can estimate the number of moving objects

in the scene.

Wavelet-based solutions seem to provide good overall results but are limited to simple

cases (such as translation in front of the camera). Wavelets were in fashion during the

90s, nowadays the research interest seems to be less active, at least in relation to motion

segmentation.

2.3.4 Optical Flow

Optical flow (OF) is the distribution of apparent velocities estimated by the analysis of

the brightness changes of an image sequence. An example of OF is shown in Figure 2.5.

Like image difference, OF is an old concept greatly exploited in computer vision. It was

first formalised and computed for image sequences by Horn and Schunck in 1980 [90].

However, the idea of using discontinuities in the OF in order to segment moving objects

is even older, in [90] there is a list of older methods based on this idea but they all

assume the OF is already known. Since the work of Horn and Schunck, many other

approaches have been proposed. In the past, the main limitations of such methods were

high sensitivity to noise and expensive computational cost. Nowadays, thanks to the high

process speed of computers and to improvements made by research, OF is widely used. As

an example, Trucco et al. (2005) [44] merge image difference with OF. Specifically, they

propose to estimate the OF only at pixels where motion is significant. The image difference

is responsible for identification of areas where significant motion occurs. The map produced

by the image difference is called in the paper “disturbance field” and is computed as the

difference between the current frame and an exponentially-weighted average of the past

34

2.3. Main techniques

Figure 2.5: Example of OF, the platform under the cube rotates and in the bottom image
the vector field that describes such a motion is shown. Image adapted from [91].

frames. The OF is based on a recursive-filter formulation. This technique assumes that

flow is smooth and changes slowly over time. Thanks to the fact that the OF is computed

only when it is necessary the algorithm is faster than most of OF-based solutions.

Zhang et al. (2007) [45] propose a method to segment multiple rigid-body motions

using Line OF [92]. In contrast to classical OF algorithms (which are based on points),

the line OF algorithm can work also when the moving object has a homogeneous surface,

provided that the object edges can be identified and used as pieces of straight lines. The

limitation of this method is that it is not able to deal with non-rigid motions because it

requires straight lines in order to compute the OF. This approach uses K-means in order

to build the final clusters, hence, it also assumes that the number of moving objects (i.e.

the number K of clusters) is known a priori.

Xu et al. (2008) [46] propose a variational formulation of OF combined with colour

segmentation obtained by the Mean-Shift [93] algorithm. Moreover, in order to deal with

non-rigidity a confidence map is built to measure the confidence of whether the segmenta-

tion and the corresponding motion model suit the flow estimation or not. This technique

35

CHAPTER 2. State of the Art

is also able to deal with partial occlusions.

Klappstein et al. (2009) [47] exploit OF in order to build a robust obstacle detection

for driver assistance purposes. The work is done both with monocular (exploiting some

motion constraints) and stereo (using Extended Kalman Filter) approaches. The idea

is to compute a map of likelihood of each tracked feature to belong to the background

or to a moving object. The tracked features are then used as seed points for a dense

segmentation. The main limitation of this technique is that it assumes a specific type of

motion (camera moving forward) and a particular environment (for example they try to

localise the street in order to exploit some additional constraints). Moreover, it is only

able to distinguish between background (static objects) and foreground (moving objects)

and not among different motion directions.

Bugeau and Pérez (2009) [48] address the segmentation problem by combining motion

information, spatial continuity and photometric information. The first step of the algo-

rithm consists of extracting a rough map of moving areas (foreground), this is done by an

estimation of the camera motion. The points considered as foreground are then selected

in order to have an evenly sparse grid, and each of them is characterised by position, mo-

tion (vector flow computed by tracking the point with KLT) and photometric parameters

(texture for grey scale images, YUV for coloured images). Mean-Shift algorithm is used to

create clusters from those points. At the end they use a graph-cut minimisation algorithm

in order to perform a dense segmentation of the whole image (again using position, motion

and colour). The algorithm assumes prior knowledge about the number of clusters and

that each moving object has at least one representative among the created clusters. One

of the problems of this technique is that the segmentation is computed every two or three

frames, hence if during this amount of time the motion is not completely different, it does

not help to distinguish between dependent motions.

Ommer et al. (2009) [49] present an algorithm for segmentation, tracking and object

recognition. The segmentation and tracking parts are done by OF (using salient features

and KLT tracking). The algorithm is based on grouping together salient features that follow

36

2.3. Main techniques

a proximity criteria. By KLT, the features are tracked and the mean flow is computed.

The position of the group of features is predicted using the previous mean flow in order to

constrain the tracking area. At every iteration the mean flow is updated taking into account

the old flows with an exponential decay over time. In order to extend the segmentation from

features to dense representation the authors build an assignment matrix that associates

every pixel to one of the moving groups. The assignment matrix is built by an EM algorithm

which also estimates the transformation matrix by minimising the difference between the

estimated transformation and the mean flow computed by OF. The authors say that the

algorithm is competitive for situations where background subtraction works. In fact, this

technique has problems with noisy images and light changes and it can only segment rigid

independent motions.

Brox and Malik (2010) [50] propose to compute a dense OF field and extract measures

of similarity between each pair of trajectories. The similarity involves Euclidean distances

between trajectories in given windows of time and the average flow variation of the local

field (as a negative contribution to the similarity). The authors also propose a spectral

clustering method that includes a spatial regularity constraint. By exploiting such a regu-

larity constraints the algorithm is able to estimate the number of clusters in the scene by

model selection. The results presented in this work show accurate segmentations. However,

the fact that the algorithm relies on 2D image spatial distances may create some problems

when dealing with non-rigid motions. Furthermore, as a consequence of the use of 2D

image distances, it seems that the algorithm requires long sequences in order to be able to

perform the segmentation accurately. In fact, if two object are close and they undergo two

different, but not long, motions they are likely to be given a high similarity and, therefore,

be clustered as the same object.

OF, theoretically, can provide useful information to segment motions. However, OF

alone cannot deal with occlusions or temporary stopping. Moreover, in its most simple

version it is very sensitive to noise and light changes. Often, statistical techniques or

spatial analysis (like colour or texture) are required to increase OF robustness.

37

CHAPTER 2. State of the Art

2.3.5 Layers

One of the first layer techniques was proposed by Wang and Adelson (1993) in [94]. The key

idea of layer-based techniques is to divide the image into layers with uniform motion, and

establish some geometrical relations between them. Furthermore, the most refined tech-

niques, associate each layer with a depth level and a “transparency” level that determines

the behaviour of the layers in case of overlap. This approach is often used in stereo vision

as it is easier to compute depth distances. However, even without computing the exact

depth it is possible to estimate which objects move on similar planes. This is extremely

useful as it helps to solve the occlusion problem. Another of the earliest techniques based

on layers was proposed by Criminisi et al. (2006) in [95]. In their proposal the authors

probabilistically fuse together motion, colour and contrast cues with spatial and temporal

priors to infer layers accurately. They use an efficient motion vs non-motion trained clas-

sifier to operate directly and jointly on intensity-change and contrast. Its output is then

fused with colour information. The prior on segmentation is represented by a second order,

temporal, Hidden Markov Model, together with a spatial Markov Random Field favouring

coherence except where contrast is high. Finally, accurate layer segmentation and explicit

occlusion detection are achieved by binary graph cut. This technique works well when

the final aim is to segment foreground from background, but there is no evidence that the

same accuracy could be maintained in presence of more than two motions or with a moving

camera.

Kumar et al. (2008) [27] propose a method for learning a layered representation of the

scene. They initialise the method by first finding coarse moving components between every

pair of frames. They divide the image into patches and find the rigid transformation that

moves the patch from frame j to frame j +1. The initial estimate is then refined using αβ-

swap and α-expansion algorithms [96]. Figure 2.6 gives an example of how a sequence of

frames can be used to learn layers, and the segments (objects or part of an object) that lie

in a specific layer. The method performs very well in terms of quality of the segmentation

38

2.3. Main techniques

Figure 2.6: Example of layers representation. Image taken from [27].

and is able to deal with occlusions and non-rigid motion. The authors also reported

one sequence with moving (translating) camera. Unfortunately, there is no additional

information regarding the performance of the algorithm with moving cameras and non

static background. The main drawback of this method is its complexity. Furthermore the

accuracy of the model degrades if the parameters are not tuned properly.

Min and Medioni (2008) [51] present a spatio-temporal approach to produce motion

segmentation and dense temporal trajectories. The first step of the algorithm consists

of finding matches simply by cross correlation. Then, for all the matches a 5D token is

generated with the information of the 2D position in the frame, time and 2D velocity. The

5D token can be seen as extension of a 3D fibre bundle. Each token, and its neighbours

in terms of spatial vicinity (spatial smoothness is also assumed), are used to estimate the

generated layer. The layer is a 3D variety described by three tangents and two normals

which can be extracted by the 5D tensor built by the tokens. Next step is an outlier rejection

and a “densification” process (in order to fill missing data), this is again done by tensor

voting. In order to produce more accurate results the last two steps are constrained within

pre-segmented areas based on colour segmentation (performed by Mean-Shift). The final

step consists of segmenting the layers depending on their normals and on the velocities of

the points at the border of the layers. The authors explain that even though, theoretically,

this technique should work with any kind of motion, in some circumstances the cross-

correlation match may fail, leading to a wrong segmentation. The algorithm seems to have

39

CHAPTER 2. State of the Art

a very good performance but has similar problems to the previously explained technique.

As an example this algorithm has seven parameters that have to be tuned depending on

the type of sequence. Another weak point is the strong dependency on the initial colour

segmentation: in order to work the colour segmentation has to over-segment the image so

that in each segment there is only one motion.

Nordberg and Zografos (2010) [52] present a method based on the geometry of the 6

points [97]. The method finds initial cluster seeds in the spatial domain, and then classifies

points as belonging to the cluster that minimises a motion consistency score. The score

is based on a geometric matching error measured in the image, implicitly describing how

consistent the motion trajectories of 6 points are relative to a rigid 3D motion. Finally,

the resulting clusters are merged by agglomerative clustering using a similarity criterion.

The method is extended by Zografos et al. (2010) [53] to adopt a new matching score

and a modified classification algorithm. These changes improve the performance and allow

the algorithm to produce one of the lowest misclassification rate in the state of the art

of motion segmentation when tested on the Hopkins155 database. However, in order to

obtain such a result the parameters of the algorithm have to be tuned per each sequence

and a good initialisation remains crucial. Furthermore, the number of motions is a required

prior knowledge.

Xu et al. (2011) [54] present a layer-based technique that merges temporal and spatial

information. The authors estimate 2D motion features by SIFT matches and simultane-

ously perform, on each frame, colour segmentation (tuned to over-segment) by graph-cut [5].

After this step an iterative routine merges the over-segmented areas according to the analy-

sis of the 2D motion features that are contained in each segment. Assuming that there are

points tracked also in the background, and that the camera is not moving, they estimate

the camera parameters in order to compute the 3D shape of the objects. Finally, they

use a Hidden Markov Model-based algorithm [98] in order to refine the segmentation. The

results presented in the paper show the high quality of the segmentation obtained, however,

almost all of the results contain only one moving object per sequence. As per most of the

40

2.3. Main techniques

layer-based techniques, this one also requires the tuning of many parameters. Moreover, as

it is presented in the paper, the algorithm can only cope with rigid motions and assumes

that the camera does not move.

Wang et al. (2011) [55] propose an approach to extract motion layers from a pair of

images with large disparity motion. First, motion models are established by SIFT matches

and by a topological clustering algorithm described in the paper. Then, the motion of each

cluster, with no less than three matches, is modelled by an affine transformation. With the

obtained motion models, a graph cut-based algorithm is employed to segment the scene

into several motion layers. This technique seems to have more of a problem than other

layer-based techniques to handle occlusions and is sensitive to change in the illumination

of the scene.

Layers solutions are very interesting. It is probably the most natural solution for

occlusions: human beings also use depth concept to solve this problem. The main drawback

is the level of complexity of these algorithms and the number of parameters that have to

be tuned manually.

2.3.6 Manifold Clustering

Manifold clustering aims to define a low-dimensional embedding of the data points (tra-

jectories in motion segmentation) that preserves some properties of the high-dimensional

data set, such as geodesic distance or local relationships. The manifolds are then clustered

in the projected subspace. The projection is usually performed to reduce the amount of

computation and to exploits properties of the manifolds that become more evident in the

low-dimensional embedding.

Nowadays, manifold clustering is a popular technique applied in many fields. Motion

segmentation seems one of the most natural applications. In fact, from structure from

motion theory, it is known that the column vectors of the trajectory matrix form an

algebraic subspace (here called global subspace) whose dimension is equal to the rank of

the trajectory matrix. Within this global subspace, the trajectories that belong to the

41

CHAPTER 2. State of the Art

same motion span a low-dimensional linear subspace (called local subspace). Specifically,

the trajectories generated by the points of a rigid object form a linear subspace of no more

than 4 dimensions [10]. While the trajectories generated by the points of a non-rigid object

can be approximated by a combination of k weighted key basis shapes, and they form a

linear subspace of no more than 3k + 1 dimensions [99,100].

Finally, motions can be articulated. There are two types of articulated motions de-

pending on their joint. When two objects (in an articulated motion also called segments)

are linked by a two or three degree of freedom universal joint, the position of one body

with respect to the other is constrained but their rotations are independent. In these cases

(assuming the two segments are rigid) two 4D subspaces have a 1D intersection, therefore,

rank(W) = 7 [101]. When segments are linked by a hinge, their relative orientation is also

constrained since their coordinate frames have a common axis that is parallel to the axis

of rotation. In this case, all points on the rotation axis satisfy both motions such that the

subspaces have a 2D intersection and rank(W) = 6 [101].

Given this definition of rigid, non-rigid and articulated motions, it is possible to define

also more formally independent and dependent motions. From an algebraic point of view,

two motions are independent if the pairwise intersection of the two subspaces generated by

their trajectory vectors is empty. On the other hand, motions are dependent if the pairwise

intersection of the subspaces is not the zero vector. The dependency can be partial (which

means that the subspaces intersect in some points) or complete (which means that one

subspace is completely inside the other) [65].

At this point it is also possible to introduce one more attribute that, for the sake of

completeness is described here, but that is not considered in the table because very few

authors clearly explain this aspect. In this review it is called “degeneracy”. Many authors

use it when they refer to dependent motions or non-rigid and articulated motions, but it

is used here with a different meaning. Degeneracy is another aspect of a single motion.

Non-degenerate motion is a motion whose subspace dimension is maximum (i.e. 4 for a

rigid motion, 3k + 1 for a non-rigid motion, etc.). Whereas, degenerate motion is a motion

42

2.3. Main techniques

whose subspace has a dimension which is lower than its theoretical maximum. To provide

an intuitive example of a degenerate motion one could think of a car moving on a straight

street. The motion of the car is described only by a translation with no rotation. Therefore,

the generated subspace has size 1 instead of being size 4 (rigid motion). A formal discussion

of degenerate deformations can be found in [102].

Techniques that belong to the manifold clustering category, in general, try to estimate

the subspaces generated by each motion in order to obtain the segmentation. Manifold

clustering comprises a large number of different techniques, and a further classification

can help in giving some order. Manifold clustering can be divided into, iterative solutions,

statistical solutions (solutions that fall inside this category could be placed in the previous

statistics group) sparse-based algorithms, factorisation solutions and subspace estimation

solutions.

Iterative

Iterative algorithms work by starting from an initial solution and iteratively refining the

clusters in order to fit a model which describes the manifolds.

Ho et al. (2003) [56] present an algorithm called “K-Subspace Clustering” for face

clustering. However, the same idea could be adopted to solve the motion segmentation

problem. K-Subspace can be seen as a variant of K-means. K-Subspace iteratively assigns

points to the nearest subspace, which, after having gained a new member, is updated by

computing its new basis. The basis is estimated such that the sum of the square distances

from the basis to all the points of that cluster is minimum. The algorithm ends after

a finite number of iterations. The main drawback of this algorithm is that it needs an

initialisation of the clusters. Moreover, depending on the quality of the initialisation, the

algorithm may converge to a local solution which could be far from the optimal solution.

A different strategy is presented by da Silva and Costeira (2008) [57]. The authors of

this work propose a subspace segmentation algorithm based on a Grassmannian minimi-

sation approach. The technique consists of estimating the subspace with the maximum

43

CHAPTER 2. State of the Art

consensus (GMC): maximum number of data that are inside the subspace. Then the al-

gorithm is recursively applied to the data inside the subspace in order to look for smaller

subspaces embedded in it. This algorithm works with any kind of motion and it is very

robust against outliers thanks to the way the subspaces are constructed. Moreover, it does

not require any rank estimation of the trajectory matrix, however, the local subspace size

generated by each object is required. The main drawbacks are: the parameters that have

to be tuned in the presence of noise, and the non convergence to the optimal solution

in the cases where the initialisation is not good. The same authors further extended the

algorithm by adopting a new similarity measure between subspaces [58]: the Normalized

Subspace Inclusion (NSI). By exploiting NSI the authors reduce the sensitivity of GMC to

the estimation of the local subspace size dimension. In fact, now only an underestimation

of the local subspace size is required. Then, embedded subspaces with high NSI similarity

can be merged. In this paper they also explain that common similarity measures adopted

for subspace clustering are ambiguous or geometrically incorrect. Both of the algorithms

assume that the number of motions is known.

Iterative approaches are in general robust to noise and outliers, and they provide good

solutions if the number of clusters and the dimensions of the local subspaces are known.

This prior knowledge can be clearly seen as their limitation as this information is not

always available. Moreover, they require an initial estimation and are not robust against

bad initialisations and hence, are not guaranteed to converge.

Statistics

Statistical theory can be used also in the case of manifold clustering. In this section a few

techniques that employ statical tools are presented.

Fishler and Bolles (1981) [59] present the RANdom SAmple Consensus (RANSAC)

algorithm. RANSAC tries to fit a model to the data randomly sampling n points, then

it computes the residual of each point to the model and those points whose residual is

below a threshold are considered inliers. The procedure is repeated until the number of

44

2.3. Main techniques

inliers is above a threshold, or enough samples have been drawn [22]. This algorithm can

be applied to motion segmentation by assuming that dimension of subspaces is d = 4

and using PCA for basis estimation of the subspaces. Hence, RANSAC is able to handle

a relatively high presence of outliers. On the other hand, the fact that it uses a fixed

dimension makes RANSAC not suitable to deal with degenerate, non-rigid or articulated

motions. Moreover, when the number of clusters increases, the probability of sampling n

points of the same motion decreases and so does the performance.

Kanatani and Matsunaga (2002) [60] use a statistical framework for detecting degen-

eracies of a geometric model. They use the geometric Akaike information criterion (AIC),

defined in [89], in order to evaluate whether two clouds of points should be merged or not.

Doing so they can segment without any estimation about the number of moving objects.

However, rigid independent motions are assumed. Moreover, this technique works well only

when it is free of noise.

Sugaya and Kanatani (2004) [61] analyse the geometric structure of dependent motions,

and suggest a multi-stage unsupervised learning scheme. They use EM by progressively

assuming motion models from particular to general. Once the tested motion fits the motion

under analysis the segmentation does not change. This technique works with rigid motions

and it assumes that the number of motions is known. Moreover, a good initialisation is the

key to obtain a good performance. The same authors extended this proposal in [64] (2010)

where they substitute the previous initialisation model, which was based on a heuristic

scheme, with an analytic computation based on the Generalized Principal Component

Analysis [103] (GPCA). GPCA is used to fit 2D affine spaces in 3D by the method of

Taubin [104]. This method with such an improved initialisation outperforms the previous

proposal.

Gruber and Weiss (2004) [62] extend the EM algorithm already proposed in [105] for

the single object case in order to deal with multiple objects and missing data. In [63]

(2006) they further extend the method incorporating non-motion clues (such as spatial

coherence) into the M step of the algorithm. This technique can successfully deal with

45

CHAPTER 2. State of the Art

noise and missing data and has the advantage of not requiring assumptions on the rank

of the trajectory matrix. However, the minimisation problem used is convex only in the

case of one or two moving objects, while for more objects it becomes non convex and the

results depend on the initialisation.

Statistical solutions have more or less the same strengths and weaknesses of iterative

techniques. They are robust against noise whenever the statistical model is built taking

the noise explicitly into account. However, when noise is not considered, or is not modelled

properly, their performances degenerate rapidly. As previously stated for general statistical

approaches: they are robust as long as the model reflects the actual situation.

Sparse representation

Lately, some techniques that take advantage of the compressed sensing [106] field have

been proposed. The general idea is to use the smallest amount of information in order to

represent the subspaces generated by each motion.

Rao et al. (2008/2010) [65, 66] propose a framework for motion segmentation of tra-

jectories in the presence of corrupted trajectories and missing data. The framework uses

the Agglomerative Lossy Compression algorithm [107] (ALC). This algorithm consists of

minimising a cost function by grouping together trajectories. Roughly speaking, the cost

function is given by the amount of information required to represent each manifold (it could

be for example the number of bits), summed over all of the manifolds. This technique has

very good performance, however, its greedy implementation does not guarantee to find the

global maximum. Another problem is the need to tune a parameter, which depends on the

noise level of the input sequence and on the number of clusters of the video. Although, the

tuning can be automated by trying many different values and choosing at the end the solu-

tion with the lowest cost, this process is highly time-consuming. Finally, ALC performance

seems to degrade in the presence of more than 3 motions, as shown in [108].

Elhamifar and Vidal (2009) [67] propose a new way for describing subspaces called

Sparse Subspace Clustering (SSC). The authors exploit the fact that each point (in the

46

2.3. Main techniques

global subspace) can be described by a sparse representation that uses the information

of the remaining points. By using ℓ1 optimisation, and under mild assumptions, they

estimate the subspaces and they build a similarity matrix which is used to obtain the

final segmentation by spectral clustering. SSC has a very good performance (one of the

best on the Hopkins155 database) and it is able to deal with a small amount of missing

data. In order to deal with missing data SSC requires that, once the rows and columns

of the interrupted trajectories are removed, there is enough information left in order to

perform the segmentation and then to fill the missing data entries. Theoretically, SSC is

able to segment also without knowing the number of motions, however, in [67] there is

no experiment under this condition. The main drawback of SSC is the presence of some

parameters that should be tuned for each sequence, especially the parameter that controls

the degree of sparsity in the ℓ1 optimisation. This parameter seems to play an important

role. The results presented in [67] cannot be reached if the tuning process is not performed

for every sequence.

Techniques based on sparse representation provide a connection between coding theory

and motion segmentation. They perform extremely well with a variety of motions, however,

they tend to depend on parameters that have to be tuned per each sequence according to

the number of motions and the amount of noise.

Factorisation methods

Since Tomasi and Kanade (1992) [10] introduced a factorisation technique to recover struc-

ture and motion (structure from motion problem) using features tracked throughout a se-

quence of images, factorisation methods have become very popular especially thanks to

their simplicity. The idea is to factorise the trajectory matrix W into two matrices, motion

M and structure S, under the assumption that the object is rigid and the camera is ortho-

graphic. Such a factorisation is shown in Figure 2.7. Before the factorisation the origin of

the world coordinate system is moved at the centroid of all the feature points. This corre-

sponds to compute the translation of the object (or of the camera if the object is stationary

47

CHAPTER 2. State of the Art

Figure 2.7: Basic idea of structure from motion: factorise matrix W into matrices M and S.

and the camera is moving) and remove its influence. Therefore, after the factorisation the

motion matrix M is composed by two rows for each frame f , for f = 1, . . . , F , that define

the first two rows of a rotation matrix Rf of size 2×3. Rf describe the rotation of the object

from an initial reference framework to the to position in the frame f . The matrix S contains

the metric coordinates of the 3-D points. Therefore, in the absence of noise, the trajectory

matrix is at most rank r = 3. By exploiting this constraint, W can be decomposed and

truncated using the singular value decomposition (SVD), as shown in Figure 2.8. Because

Figure 2.8: W can be decomposed and truncated using SVD and exploiting its rank defi-
ciency.

the rows of the rotation matrices Rf are orthonormal, matrix D can be identified using the

orthogonality constraints: RfR
T
f = I2, for f = 1, . . . , F , I2 being the identity matrix of size

2 × 2. Finally, W can be decomposed, up to a scale factor, as shown in figure 2.9. This

algorithm works for one static object viewed from a moving camera which is modelled with

the simplest affine camera model: the orthographic projection. Despite the fact that this

method gives the 3D structure of the object and the motion of the camera, it has evident

limits: it cannot really segment (it assumes that the features belong to the same object),

48

2.3. Main techniques

Figure 2.9: Exploiting orthogonality constraints of the motion matrix and assuming rank
r = 3, W can be decomposed into motion and structure, up to a scale factor.

it can deal only with a single rigid object, it is very sensitive to noise and it is not able to

deal with missing data and outliers. However, it was the first method of this family and the

solution is mathematically elegant. From this initial structure from motion approach, and

following the same idea of forcing the rank constraint, more approaches were proposed with

the aim to improve the original technique [109–111]. Others pointed out some weaknesses

of the original method. Anandan and Irani (2002) [112] point out that SVD is powerful at

finding the global solution of the associated least-square-error minimisation problem only

when the errors in the position of the tracked features are uncorrelated and identically

distributed. This is rarely the case in real images. Hence, they propose a method that

is based on transforming the raw-data into a covariance-weighted data space, where the

components of noise in the different directions are uncorrelated and identically distributed.

Okatani and Deguchi (2007) [113] present another factorisation approach. They use

the Gauss-Newton method, originally proposed by Wiberg [114], to factorise the trajectory

matrix. The idea is to separate the variables of the problem into two sets and estimate

them alternatively, similarly to what is done in the EM algorithm. Hartley and Schaffalizky

(2003) [115] introduce the PowerFactorization algorithm. PowerFactorization is an iterative

factorisation algorithm which is guaranteed to converge from any random initialisation. It

may be applied to a variety of 3D reconstruction problems, but most importantly it can

cope also with missing data by filling missing entries.

Even if none of the previous methods can be directly used for segmentation, they

49

CHAPTER 2. State of the Art

Figure 2.10: [68] computes the interaction matrix Q and finds the permutation of rows and
columns that gives a block diagonal matrix. Image taken from [68].

started a new field of research: structure from motion based on factorisation. This new

field eventually led to solutions also for the segmentation problem. In the following a review

on factorisation methods that can be used to solve the motion segmentation problem is

presented. A comprehensive survey on factorisation methods, with more detail of some of

these techniques, can be found in [9].

Costeira and Kanade (1998) [68], use the same factorisation technique presented in [10]

and then they compute the shape interaction matrix Q = VVT , where V is the right singular

vectors matrix of size P × r, P being the total number of tracked features and r the

rank of the trajectory matrix. The shape interaction matrix, among other properties,

has zero entries if the two indices represent features that belong to different objects, non-

zero otherwise. Hence, the algorithm focuses on finding the permutation of the interaction

matrix that gives a block diagonal matrix structure, as shown in Figure 2.10. Unfortunately,

this process is time consuming and in the presence of noise the interaction matrix may have

non-zero values, even when it should have zero entries. Moreover, this technique works

only if the subspaces to which each features belong do not intersect (i.e. the subspaces are

independent).

Ichimura and Tomita (2000) [69] also exploit the shape interaction matrix, however, Q

is built differently than in [68]. Their idea is that if in the shape interaction matrix there

are all of the P tracked features the optimisation problem becomes non-linear. Their ob-

50

2.3. Main techniques

servation is that, if the rank of the trajectory matrix is r then there are only r independent

features, therefore, only those r features should be selected to build the shape interaction

matrix. For example if there are N rigid objects only 4 features per object should be used.

The problem is how to select features from different objects without knowing the segmen-

tation. First, the rank r of the trajectory matrix is estimated by SVD, which provides also

the right singular vectors V. Then QR decomposition [116] is used so that VTΠ = QQRRQR,

where Π is a permutation matrix. At this point the matrix QQR (note that this is not the

shape interaction matrix but it is the matrix obtained by the QR decomposition) contains

the basis vectors of the “shape space”. By using the first r vectors of QQR it is possible to

know which are the r independent features that should be used in order to compute the

shape interaction matrix Q. Note that the mapping from the shape space to the vectors of

V is kept by the permutation matrix. At this point the algorithm becomes similar to [68]

and the segmentation of the first r features is obtained by permutation of Q. Then the

existing segmentation can be exploited to estimate the basis of the subspace generated

by each of the motions, and any subspace classification method can be used in order to

classify the remaining P − r features. This technique is very sensitive to noise, besides,

rank estimation is known to be a very challenging problem.

All of the previous techniques assume that objects follow independent motions. Zelnik-

Manor and Irani (2003) [70] study the degeneracy in cases of dependent motions. They

propose a factorisation method that consists of building an affinity matrix by using only the

dominant eigenvector of the trajectory matrix and estimating the rank r of the trajectory

matrix by studying the ratio between the eigenvalues. The results presented in the paper

are obtained from forcing the number of objects and the local subspace dimensions.

The following technique, Zelnik-Manor and Irani (2004) [117], cannot be considered

as a motion segmentation algorithm, however, it is worth to mention it as it introduces a

dual approach to the usual factorisation strategies. Traditionally, factorisation approaches

provide spatial clustering by grouping together points that move with consistent motions.

In [117] the authors propose a temporal clustering by grouping together frames to capture

51

CHAPTER 2. State of the Art

consistent shapes. The advantages are the smaller quantity of tracked points required and

the smaller dimensionality of the data. They also show that any of the existing algorithms

for column factorisation can be transformed in row factorisation.

Factorisation techniques are based on a very simple and elegant framework. However,

factorisation methods are particularly sensitive to noise and cannot deal very well with out-

liers and missing data. Moreover, most of these techniques assume rigid and independent

motions.

Subspace estimation

Subspace estimation approaches exploit algebraic tools for the estimation of the subspace

bases generated by each motion.

Vidal and Hartley (2004) [71] present an algebraic geometric approach that uses Pow-

erFactorization [115] and GPCA [103]. First, by exploiting the fact that trajectories of a

rigid and independent motion generate subspaces at most of dimension 4, they project the

trajectories onto a 5 dimensional space using PowerFactorization. Then, GPCA is used

to fit a polynomial of degree N , where N is the number of subspaces (i.e. the number

of motions), through the data and estimate the bases of the subspaces using the deriva-

tives of the polynomial. Then common measure of distance between subspaces, such as

principal angles [118] (refer to Section 3.1.1 for a formal definition of principal angles), are

used to compute the similarity between the generated subspaces. This algorithm is able

to deal with missing data. As explained by the authors, the main drawback of GPCA

is that the performance degrades when the number of objects and the dimension of the

largest underlying subspace increase. More recently, Vidal et al. (2008) [75] extend the

previous explained framework using RANSAC in order to be able to deal with outliers.

Theoretically, these two techniques can estimate the number of motions in the scene and

the size of the subspaces, however, these estimations are not robust in the presence of noise.

In general, a weakness of GPCA-based techniques is that, the required number of sample

points per each motion grows exponentially with the total number of motions. Specifically,

52

2.3. Main techniques

given N motions and d being size of the largest generated subspace, the number of trajec-

tories required in order to estimate correctly the subspaces is O((d+1)N). In practise, the

number of trajectories can hardly satisfy GPCA’s requirement for it to handle more than

3 rigid motions [31].

Yan and Pollefeys (2006/2008) [31,72] present an algorithm known as Local Subspace

Affinity (LSA) for segmentation of different types of motion: independent, articulated,

rigid, non-rigid, degenerate and non-degenerate. The key idea is to estimate and compare

the local subspaces in which each trajectory lies. Thus, the subspaces generated by each

trajectory, and its nearest neighbours, are estimated. An affinity matrix that compares the

subspaces is built by using principal angles as a measure of distance between subspaces.

The final segmentation is obtained by computing the spectral clustering of the affinity

matrix. This algorithm seems promising, though there are a few issues that need to be

solved. Usually the knowledge of the number of moving objects is required, moreover, the

dimensions of the global subspace (i.e. the rank of the trajectory matrix) and of each local

subspace are crucial information for the algorithm, but their estimation is a particularly

difficult task. Tron and Vidal in [22] present a benchmark that compares GPCA [71],

a RANSAC-based approach [119] and LSA [31]. They conclude that LSA is the best

performing algorithm in the case of non-missing data, however, they also state that tuning

the parameter that controls the rank estimation was a difficult task and the number of

moving objects was known a priori.

Goh and Vidal (2007) [73], by starting from the Locally Linear Embedding algo-

rithm [120], propose the Locally Linear Manifold Clustering algorithm (LLMC). With

LLMC the authors try to deal with linear and non-linear manifolds. The same authors

extend this idea to Riemannian manifolds (2008) [76]; they project the data from the

Euclidean space to a Riemannian space and reduce the clustering to a central clustering

problem. The main problem of these techniques is what is known as the “curse of dimen-

sionality” (i.e. the higher the number of motions, the more data is required to be able to

perform the segmentation, and at the same time the more the data to process, the longer

53

CHAPTER 2. State of the Art

the time required for completion). Moreover, similarly to LSA, the number of objects and

the dimension of the subspaces can be theoretically estimated, however, the estimation is

not very robust in the presence of noise.

Julià et el. (2008) [74] propose a method similar to LSA in order to perform the

segmentation in the case of missing data. The idea is to fill the missing data using a

frequency spectra representation for the matrix estimation. When a full trajectory matrix

is obtained, a clustering algorithm based on normalized cuts is applied in order to provide

the segmentation. Even though the method can estimate also the number of moving objects,

it assumes only the presence of rigid and non-degenerate motions.

Chen and Lerman (2009) [77, 78] present the Spectral Curvature Clustering (SCC),

which is a generalisation of Yan and Pollefeys’ method (LSA). SCC differs from LSA for

two main reasons. The first is related to the way the subspaces are compared, SCC uses

polar curvature while LSA uses principal angles. The second reason is how they select

which trajectories have to be combined together in order to estimate the local subspaces.

SCC uses an iterative solution based on random sampling, while LSA uses a Nearest

Neighbours (NN) solution. The iterative solution proposed in SCC seems to be more

robust than LSA in the case of dependent motions. In fact, in such a case a NN selection

may choose trajectories that belong to different manifolds, while SCC should be able to

refine its choice and eliminate outliers within a few iterations.

Kim and Agapito (2009) [79] propose to compute different shape interaction matri-

ces [68] that are built assuming an increasing dimension of the global subspace. The

interaction matrices are then merged together by the Hadamard product (the entry-wise

product) to compose the final affinity matrix that is clustered by K-means. This algorithm

is simple and very effective, as proved by the results on the Hopkins155 database. The

limitation of this technique is in the lack of ability to deal with articulated motions, as

the authors explain in the paper. Moreover, the number of motions is an assumed prior

knowledge.

54

2.4. Analysis of the state of the art

Yang et al. (2009) [80] exploit the same idea of LSA but instead of 2D flow fields

they use 1D pixel intensities as the input measurements. Specifically, they introduce the

notion of the “pixel intensity trajectory”, a vector that represents the intensity changes

of a specific pixel over multiple frames. Like 2D feature trajectories, intensity trajectories

of pixels associated with the same motion span a low-dimensional linear subspace. They

formulate the problem of motion segmentation as that of clustering local subspaces. This

technique has the advantage over LSA of not requiring a tracking step and of being less

sensitive to noise. However, it suffers from all of the other weak points of LSA. Moreover,

in [80] only rigid motion experiments are presented.

Lauren and Schnörr [81] use the same idea of LSA but with a few changes. Firstly, the

authors show that the dimension of the global subspace is a critical choice, and that the

dimensions chosen in prior works [65, 103, 121] do not offer sufficient separability between

subspaces. Therefore, they suggest lower and upper bounds of this dimension. Then,

they compute the affinity between subspaces using angular information (more efficiently

than LSA as they do not compute PA between local subspaces, but normal dot products

between points). Finally, they use spectral clustering of the affinity matrix to obtain the

final segmentation. This technique is faster than LSA as it does not require estimation of

each local subspace, however, it does require knowledge of the dimensions of the expected

local subspaces and the number of motions.

Subspace estimation techniques can deal with intersection of subspaces and generally

they do not need any initialisation. However, all of these techniques suffer from common

problems: curse of dimensionality, weak estimation of the number of motions and of sub-

space dimensions. The curse of dimensionality is mainly solved in two ways: projection into

smaller subspaces or random sampling. Whereas the number of motions and the subspace

dimension estimations remain two open issues.

2.4 Analysis of the state of the art

In this section a brief summary of each of the classes analysed is presented.

55

CHAPTER 2. State of the Art

Techniques that rely on image difference typically employ a dense-based representation

of objects. This class of algorithms is based on a simple idea but it provides good overall

results. Image difference can deal with occlusions, multiple objects and non-rigid objects.

The issues of this class are related with the difficulty to deal with non-still cameras and

with temporary stopping. Moreover, high sensitivity to noise and light changes are also

problems that need to be taken into account. A common solution to some of these issues

requires the use of history models of the background.

Another class that mainly uses a dense-based representation is the statistics. Techniques

that belong to this class can deal with multiple objects, occlusions and temporary stopping.

When the model on which they rely is a good approximation of the actual situation, these

algorithms are very robust. However, when the model does not reflect the actual situation

their performances degrade quickly. In order to build a realistic model, typically, some sort

of prior knowledge is required.

At present, wavelets techniques are mainly used for noise reduction. However, it is

possible to find some approaches that use wavelets as a tool for segmentation. Techniques

that employ wavelets for segmentation provide good results, but in limited scenarios and

with simple motions. Even if, recently, the research community of motion segmentation

seems to have lost interest in wavelets, their ability to perform multi resolution analysis

could be exploited to extract information about the different depth planes.

The optical flow class of techniques suffers from similar problems that affect the image

difference class. OF has always been considered a very important clue for motion segmen-

tation. Nevertheless, OF, alone, is still very sensitive to noise and light changes. Other

approaches, such as statistical tools or spatial analysis, need to be merged with OF in order

to increase its robustness.

Layer-based solutions seem the most natural way for solving the occlusion problem. In

addition, Table 2.1 shows that they are among the most complete techniques. However,

the price to pay for being this thorough is a high complexity of the algorithms, which often

involve a high number of parameters that have to be tuned for each sequence.

56

2.4. Analysis of the state of the art

Manifold clustering can easily tackle temporary stopping and provides good overall

results. This class of solutions is usually based on feature points, and therefore, the algo-

rithms can be easily extended to recover the 3D structure of moving objects. The intense

work done on manifold clustering for motion segmentation has led to satisfactory perfor-

mances, which make these solutions appealing. However, more work has to be done in order

to have a motion segmentation algorithm that is completely automatic and independent

from prior knowledge. A common drawback to all these techniques is that they can deal

very well when the assumptions of rigid, independent and non degenerate motions, are re-

spected, but if one of these assumptions fails, then problems start to arise as the properties

of motions have to be explicitly taken into account. Within the manifold clustering group

five sub-classes were identified: iterative, statistics, sparse, factorisation and subspace.

When information about number of motions and dimension of the subspace generated

by each motion is known, iterative solutions are very robust to noise and outliers. However,

when these pieces of information, or when a good initialisation, are not available their

performances tend to degrade rapidly.

For statistical solutions the same conclusions drawn for general statistical approaches

hold. They can deal well with any situation that was properly modelled, however, when

this is not the case their solutions become unreliable.

Recently, a new class has emerged: the sparse-based approaches. This class takes advan-

tage of the knowledge gained in the compression and sparse representation communities.

Their main drawback is that they suffer from the curse of dimensionality problem and,

typically, their results are influenced by the presence of parameters that require tuning.

Factorisation approaches rely on a simple and elegant mathematical framework. Their

limitation is their high sensitivity to noise and to the presence of outliers and missing data.

Finally, in recent years, the subspace estimation class has been one of the most prolific.

These algorithms can deal with different kinds of motion, provided that local and global

subspace dimensions are known. Unfortunately, this estimation is very difficult and most

of the time the dimensions are assumed to be known. Another drawback is the assumed

57

CHAPTER 2. State of the Art

Techniques Pros Cons

Image - Simple - Dependency - Sensitive to noise - Moving camera
Diff. - Occlusions - Kind of motion - Temporary stopping

Statistical
- Occlusions - Sensitive to model - Dependency
- Temporary stopping - Prior knowledge

Wavelets - Depth estimation - Dependency - Multiple motions - Kind of motion

O.F.
- Simple - Dependency - Sensitive to noise

- Non-rigid motions

Layers - Occlusions - Complexity - Many Parameters

M
a
n
if
o
ld

C
lu

s
t
e
r
in

g It
er

- Extension to SfM - Prior knowledge - Occlusions
- Temporary stopping - Sensitive to initialisation - Dependency

- Kind of motion

S
ta

t - Extension to SfM - Prior knowledge - Occlusions
- Temporary stopping - Dependency - Sensitive to model

- Kind of motion

Sparse
- Extension to SfM - Occlusions - Time consuming - No justification
- Temporary stopping - Misclassification - Dependency - Curse of dimensionality

F
a
ct

- Extension to SfM - Elegant - Prior knowledge - Occlusions
- Temporary stopping - Dependency - Sensitive to noise

- Kind of motion

S
u
b - Extension to SfM - Misclassification - Prior knowledge - Occlusions

- Temporary stopping - Curse of dimensionality

Table 2.3: Summary and generalisation of pros and cons of each class of techniques.

knowledge about the number of motions. As stated also by Shen et al. in [38] the estimation

of the number of motions is a practical open issue.

Table 2.3 summarises and generalises the advantages and disadvantages of each class

of techniques. This review should have given an idea of how vast the motion segmentation

literature is. The fact that research in this field is still active (most of the papers presented

here were published after 2005) is a sign of the importance of this problem. On the other

hand, effervescent research activity signifies also that many problems have still to be solved

and there is not yet an outstanding solution.

Manifold clustering algorithms, specifically the sub-category of subspace estimation,

seem to have room for improvement despite that the performance of some of the algorithms

is already good. A quick glance at Table 2.2 may draw attention to the fact that the

price to pay in order to be able to deal with different kinds of motion is a higher prior

knowledge (in particular about the dimension of the generated subspaces). Specifically,

the estimation of global and local subspace dimensions is a crucial step as pointed out

by many authors [22, 81, 108, 122, 123]. Moreover, another weak point of subspace-based

segmentation algorithms is the use of an appropriate similarity measure, in fact, as pointed

58

2.5. Databases

out in [58,124] most of the similarity measures used so far are ambiguous or geometrically

incorrect. Another observation is that, with the exception of [63], spatial continuity is

not exploited. This may suggest that the use of this information could help to improve

the performance of motion segmentation algorithms, especially in terms of robustness and

ability to deal with occlusions and missing data.

Considering the aspects that have emerged in this review, a manifold clustering ap-

proach could be a good starting point for proposing a novel segmentation technique. Among

the manifold clustering techniques reviewed, the Local Subspace Affinity method, proposed

by Yan and Pollefeys [31, 72], seems a promising approach. LSA is able to segment differ-

ent types of motion (independent, dependent, articulated, rigid, non-rigid, degenerate and

non-degenerate), and it is also able to deal with a small amount of outliers produced by

a wrong association of the tracked features. Differently from other techniques, like GPCA

that requires O(d + 1)N trajectories (N being the number of motions and d the dimension

of the largest underlying subspace), LSA is able to compute the segmentation with just

O(d × N) trajectories. This is the reason why LSA can handle, not only a higher number

of motions, but also motions that generate subspaces of a higher dimension. Furthermore,

it is based on a relatively simple framework that does not require tuning of a high number

of parameters. As already concluded by Tron and Vidal in [22] LSA is the best performing

algorithm among LSA, GPCA and a RANSAC-based solution, in the case of non-missing

data. Nevertheless, it does present some weaknesses that could be further investigated and

strengthened. Moreover, the LSA framework is built in such a way that it can be extended

to include more information.

The LSA algorithm is the starting point of this thesis. In the next chapter LSA is

explained in detail and its strengths and weaknesses are pointed out.

2.5 Databases

The algorithms proposed in this thesis will be tested and compared with the best state of

the art techniques: GPCA [103], LSA [72], ALC [65,66], GMC+NSI [57,58], and SSC [67].

59

CHAPTER 2. State of the Art

The comparisons will be performed on two databases that are now presented.

2.5.1 The Hopkins155 database

The main database used in this thesis is the reference benchmark database for motion

segmentation algorithms based on feature trajectories. It was proposed by Tron and Vidal

in 2007 [22]. The database contains 155 real video sequences: 120 with 2 motions and

35 with 3 motions. There are different types of sequences: Checkerboards, Traffic and

Articulated/non-rigid, as shown in Table 2.4. In Figure 2.11 some frames of each group of

sequence are shown.

The following description is adapted from the original paper [22] that introduced the

database. The Checkerboard group consists of 104 sequences of indoor scenes taken with

a hand-held camera under controlled conditions. The checkerboard pattern on the objects,

Figure 2.11(a) and 2.11(b), is used to assure a large number of tracked points. Sequences

1R2RC–2T3RTCR contain three motions: two objects (identified by the numbers 1 and 2,

or 2 and 3) and the camera itself (identified by the letter C). The type of motion of each

object is indicated by a letter: R for rotation, T for translation and RT for both rotation

and translation. If there is no letter after the C, this signifies that the camera is fixed. For

example, if a sequence is called 1R2TC it means that the first object rotates, the second

translates and the camera is fixed. Sequence three-cars is taken from [125] and contains

three motions of two toy cars and a box moving on a table taken by a fixed camera [22].

The Traffic group consists of 38 sequences of outdoor traffic scenes taken by a moving

hand-held camera. Sequences carsX–truckX have vehicles moving on a street. Sequences

kanatani1 and kanatani2 are taken from [61] and present a car moving in a car park. Most

scenes contain degenerate motions, particularly linear and planar motions [22].

The Articulated/non-rigid group contains 13 sequences that display motions con-

strained by joints, head and face motions, and people walking. Sequences arm and ar-

ticulated contain checkerboard objects connected by arm articulations and by strings, re-

spectively. Sequences people1 and people2 display people walking, thus one of the two

60

2.5. Databases

(a) 1R2RCR (b) 2RT3RC

(c) cars1 (d) cars3

(e) arm (f) poeple1

Figure 2.11: Examples of the Hopkins155 sequences. The first two frames are taken from
the Checkerboards group, then second two frames are taken from the Traffic group and the
last two frames are taken from the Articulated/non-rigid group.

61

CHAPTER 2. State of the Art

2 motions 3 motions
Seq. Points Frames Seq. Points Frames

Checkerboards 78 291 28 26 437 28
Traffic 31 241 30 7 332 31
Articulated 11 155 40 2 122 31
All 120 266 30 35 398 29

Table 2.4: Summary of the Hopkins155 database. Data taken from [22].

motions (the person walking) is partially non-rigid. Sequence kanatani3 is taken from [61]

and contains a moving camera tracking a person who is moving his head. Sequences head

and two cranes are taken from [31] and contain two and three articulated objects, respec-

tively [22].

For the sequences taken from [31, 61, 125], the point trajectories were provided in the

respective datasets. For all the remaining sequences, the authors of [22] used a tracking

algorithm implemented in OpenCV. The ground-truth segmentation was obtained in a

semi-automatic manner. First, the tool was used to extract feature points in the first

frame and to track them in the following frames. Then an operator removed obviously

wrong trajectories (e.g., points disappearing in the middle of the sequence due to occlusion

by another object) and manually assigned each point to its corresponding cluster [22]. The

number of points per sequence ranges from 39 to 556, and the number of frames from 15

to 100. All the trajectories of the Hopkins155 database are complete, hence, no missing

data cases exist. Details of the Hopkins155 database are shown in Table 2.4.

Synthetic database

Besides the Hopkins155 database, also a synthetic database was built and used. Specifi-

cally, the database contains synthetic sequences composed of 50 frames, with rotating and

translating cubes. Each cube has 56 tracked features. The synthetic database contains 10

sequences with 2 moving cubes, 10 sequences with 3 moving cubes, and so forth up to 5

moving cubes. Examples of synthetic frames (for plotting reasons with just a few tracked

features) is shown in Figure 2.12. In order to make the synthetic database a more chal-

62

2.5. Databases

(a) 2 motions (b) 3 motions

(c) 4 motions (d) 5 motions

Figure 2.12: Examples of synthetic sequences with different numbers of motion.

lenging test 4 databases were derived by adding noise with different standard deviations

(from 0.5 to 2 pixels) to the original database for a total of 200 synthetic sequences. As

for the Hopkins155 database, also the synthetic database does not contain sequences with

missing data.

63

3
Motion Segmentation

In this chapter the LSA algorithm [31,72] is analysed in more detail with the aim of finding

its weaknesses, Section 3.1. To follow this, some of the weaknesses of LSA are strength-

ened, leading to new robust and efficient algorithms whose performances are comparable to,

or exceed, the best state of the art techniques. Specifically, two algorithms proposed in this

chapter are related to the rank estimation of the trajectory matrix: Section 3.2 and Sec-

tion 3.3. An issue regarding the affinity measure will be tackled in Section 3.3.4. Finally,

a technique to estimate the number of motions will be presented in Section 3.4. For each

of the proposed algorithms results that show the robustness and the improvements of the

proposals are presented.

3.1 Local Subspace Affinity (LSA)

The analysis of the motion segmentation state of the art revealed that this problem has

been tackled using a variety of techniques. Among all of the studied algorithms the LSA

emerged as a very elegant and promising solution. The elegance and the efficiency of

LSA, together with the possibility to work on its open issues, make this algorithm very

interesting and appealing.

LSA, as well as all of the motion segmentation algorithms based on feature trajectories,

65

CHAPTER 3. Motion Segmentation

Figure 3.1: Example of an LSA result applied to a video sequence. Blue and red represent
different labels, and therefore, different motions. The pink dots are the tracked features
extracted from the first video frame. Sequence cars2 06 g12 of the Hopkins155 database.

assumes that a tracking step has already been performed. Therefore, the input data of

LSA is the position (u, v) of each tracked feature in each frame. Usually, this data is stored

in a trajectory matrix W2F×P , where F is the number of frames of the input sequence and

P is the number of tracked features. Note that W has to be full, this means that no missing

data is allowed. Given W, LSA performs its segmentation and provides as output a motion

label for each trajectory p = 1 . . . P , where trajectories with the same label should belong

to the same motion. A typical output of the LSA algorithm is shown in Figure 3.1

The general idea of LSA is that different motion trajectories, which mathematically

are vectors in R
2F , when projected onto an opportune lower dimension, generate different

algebraic subspaces. This is the common idea of manifold clustering algorithms and it

was first introduced by Tomasi and Kanade in [10] (refer to Section 2.3.6 for a detailed

explanation). Ideally, trajectories of two independent motions should lie on two orthogonal

subspaces, while trajectories of the same motion should lie on the same subspace. Thus,

the segmentation can be obtained by studying which trajectory lies on which subspace.

Following this idea, LSA estimates the subspace generated by each trajectory and builds

an affinity matrix. The affinity measure between two trajectories is inversely proportional

66

3.1. Local Subspace Affinity (LSA)

to the distance between the two generated subspaces. The final segmentation is obtained

by clustering together trajectories with high affinity.

3.1.1 The algorithm

Given P feature points tracked throughout a video sequence of F frames LSA can be

summarised in 5 fundamental steps. At the end of this section the algorithm flow is

presented in Figure 3.4.

Rank estimation

The first step of the algorithm consists of estimating the rank of W. Theoretically the

number of singular values different from zero gives the rank of a matrix. Often the analysis

is slightly more complex. In fact, due to the presence of noise, singular values that were

supposed to be zero may assume small values. Therefore, the rank could be estimated

as the number of singular value above a certain threshold. In the case of the trajectory

matrix the estimation is even more challenging. Due to the presence of partially dependent

motions, singular values that were supposed to be high become smaller. The combination

of these two phenomena makes the singular value spectrum smooth, and the selection of a

threshold becomes not obvious.

In LSA such a task is performed by using the Model Selection (MS) technique proposed

in [126]. The rank is estimated as shown in equation (3.1):

r = argmin
r

(
λ2

r+1
∑r

i=1 λ2
i

+ kr

)

,
�

�

�

�3.1

λi being the ith singular value of W, and k a parameter that depends on the noise of the

tracked point positions: the higher the noise level is, the larger k should be [72]. For

simplicity, from now on this rank estimation will be referred to as MS.

67

CHAPTER 3. Motion Segmentation

Figure 3.2: Example of trajectories that belong to two different subspaces of dimension 2
projected onto a R

3 unit sphere. The two big circles are the 2 underlying local subspaces.
Each of the smaller circles (white and black) represents a trajectory in the new reduced
global subspace. White circles represent trajectories that belong to one motion, while black
circles represent trajectories that belong to another motion. Image adapted from [31].

Data transformation: projection onto the global subspace

Given the trajectory matrix W and its estimated rank r it is possible to perform a data

transformation. The idea is to consider each of the P columns of W as a vector in R
2F

and to project them onto an R
r unit hypersphere. This data transformation provides a

dimensionality reduction, a data normalisation and a preparation for next step: the local

subspace estimations. Figure 3.2 shows an example of trajectories that belong to two

different local subspaces of dimension 2 embedded in a global subspace of dimension 3.

Note that in the projected subspace each trajectory is represented by one single point

(small circle). White circles represent trajectories that belong to one motion, while the

black circles represent trajectories that belong to another motion. As it can be seen the

small circles that represent trajectories of the same motion lie on the same (or very close to)

subspace (one of the two bigger circles). In this example the two subspaces are orthogonal,

therefore, the two motions are completely independent.

Such a projection can be performed by singular value decomposition (SVD) and trun-

cation to the first r components of the right singular vectors. Specifically, SVD is applied

68

3.1. Local Subspace Affinity (LSA)

to the matrix W, which is decomposed as follows: W = U2F×2FD2F×PV
T
P×P . Dimensionality

reduction is achieved by considering only the first r columns of V. Hence, after truncation,

each row of the matrix VP×r is normalised. An example of this truncation is shown in

Figure 3.6(b) on page 78.

Local subspace estimations

In the projected global subspace most trajectories (of the same motion) and their closest

neighbours lie on the same subspace. The underlying subspace of a trajectory j can be

estimated by local samples from the trajectory j and its n nearest neighbours (NNs),

being n + 1 ≥ rh, where rh is the highest dimension of the linear subspace generated by

the trajectories.

This result can be achieved by SVD. The estimation of the local subspace dimension

rh is required again in order to truncate the SVD result; such an estimation can be done

by MS as illustrated in Equation (3.1). The basis of the local subspace generated by each

trajectory j are estimated by computing the SVD of the matrix VT
n+1×r, that is composed

of only the trajectory j and its n NNs. The first rh left singular vectors are the estimated

basis of the subspace generated by j.

If the kind of motion is known, n can be tuned knowing that, for example, for rigid

motion rh ≤ 4, for an articulated motion with one joint rh ≤ 7 and so on. If the motion is

not known the highest dimension (i.e. rh = 7, those n ≥ 6) should be considered [31].

Affinity matrix

The affinity between two generic trajectories j and l depends on the distance between

their local subspaces, which in LSA is computed through the principal angles (PAs). Let

us recall that PAs between two subspaces Sj and Sl are defined recursively as a series of

angles 0 ≤ θ1 ≤, . . . ,≤ θM ≤ π/2, where M = min{rank(Sj), rank(Sl)} [118]:

cos(θ1) = max
u∈Sj ,v∈Sl

uT v = uT
1 v1,

�

�

�

�3.2

69

CHAPTER 3. Motion Segmentation

while

cos(θk) = max
u∈Sj ,v∈Sl

uT v = uT
k vk, ∀k = 2, . . . ,M,

s.t. : ‖u‖ = ‖v‖ = 1, uT uq = 0, vT vq = 0 ∀q = 1, . . . , k − 1.

�

�

�

�3.3

The vectors u1, . . . , uk and v1, . . . , vk are called principal vectors (u and v being two generic

principal vectors). Intuitively, the first pair of principal vectors corresponds to the most

similar modes of variation of the two subspaces. Every next pair corresponds to the most

similar modes orthogonal to all of the previous ones.

Once PAs have been computed an affinity matrix can be built. The affinity measure

used in LSA is the following:

A(r)(Sj ,Sl) = e−
PM

i=1
sin2(θi)

�

�

�

�3.4

where, r is the estimated rank of W, Sj and Sl are two generic subspaces, M is the minimum

dimension between the size of Sj and Sl and θi is the ith principal angle between the

subspaces Sj and Sl. From this definition it can be deduced that A is a symmetric matrix

and its entries take positive values from almost 0 to 1, The closer to 1 is an entry the

more similar the local subspaces identified by the entry indices are. Figure 3.3(a) shows

the affinity matrix of trajectories that belong to three different motions; the diagonal is

white as all the values are equal to 1 (being any subspace identical to itself) while black

spots represent subspace pairs with low similarity.

Clustering

Now that the affinity matrix A has been computed the idea is to group together subspaces

with high degree of similarity. Any clustering algorithm can be applied, Yan and Pollefeys

suggested to use the recursive 2-way spectral clustering technique (Normalized Cuts, or

simply N-cuts) proposed by Shi and Malik [5].

Figure 3.3(b) shows the same affinity matrix shown in Figure 3.3(a) rearranged after

the spectral clustering algorithm. In the rearranged affinity matrix it is easy to see the

70

3.1. Local Subspace Affinity (LSA)

(a) Pre-clustering (b) Post-clustering

Figure 3.3: Example of affinity matrix (sequence with three motions).

block diagonal structure where each of the three clusters is represented by a bright square

which signifies high affinity between the trajectories clustered together.

In Figure 3.4 the LSA algorithm is summarised. Starting from a trajectory matrix W

LSA steps are:

1. perform rank estimation r of W

2. project the data onto a unit hypersphere;

3. estimate the local subspace bases by local sampling of n NNs of each trajectory;

4. compute the PAs and build an affinity matrix;

5. perform spectral clustering on the affinity matrix in order to obtain the final segmen-

tation.

3.1.2 Problems

LSA provides an elegant solution for the manifold clustering problem, however, it is possible

to identify some weaknesses of the algorithm.

The first weakness is that LSA is able to deal only with full trajectories, no missing data

is allowed. This is a strong assumption because it means that no occlusions are allowed

71

CHAPTER 3. Motion Segmentation

Figure 3.4: LSA flow, starting from a sequence of tracked features (red dots) via the five
steps that end with the final result where the features that belong to the two motions are
segmented (blue and green dots). Image adapted from [127].

72

3.1. Local Subspace Affinity (LSA)

and that the tracker must be very robust. However, some authors have already pointed

out possible solutions [121,128].

A second issue is related with the rank estimation of the trajectory matrix. In order to

accomplish this task LSA uses a MS technique, Equation (3.1), that relies on a parameter k

which has to be tuned depending on the noise level and on the number of motions (steps 1

and 3). Hence, MS requires previous knowledge about the amount of noise and the number

of motions. Moreover, MS is very sensitive to the parameter k, to the extent that Tron

and Vidal, in their implementation of LSA [22], claim that they had problems in finding

a k value that was good for all of the sequences of the Hopkins155 database. Therefore,

in [22] the authors avoided rank estimations and preferred to fix the global and the local

space sizes. They chose to fix the global space dimension to 4N (step 1), where N is the

number of motions. They also fixed the dimension of the local subspaces generated by

each trajectory to 4 (step 3). The estimation of the local subspace size is not required to

be particularly precise, moreover, the variance of the local subspace size is limited. On

the other hand, the global space size requires a much more precise estimation, as shown

in Section 3.2, and fixing it to a specific value greatly reduces the ability of LSA to deal

with different types of motion. In fact, only fully independent, rigid, and non-degenerate

motions ensure a rank equal to 4N [10]. Besides, in order to fix the global subspace size

(4N) the amount of motions (N) is also required, but such information is not always

available.

In step 4 of the LSA algorithm there is also another potential source of problems. The

affinity formula suggested by the authors is a well known and used measure, however,

when applied to the principal angles between subspaces it may not be the most suitable

measure. Some of the problems of the sin2-based measures have been already pointed out

in [58, 124]. In Section 3.3.4 more details, and some, so far neglected issues about this

measure are highlighted.

A final problem of LSA consists of the fact that Normalized Cuts (as well as other

clustering techniques like K-means) does not provide a reliable instrument for estimating

73

CHAPTER 3. Motion Segmentation

the number of clusters (in the case of motion segmentation, a cluster is equivalent to a

motion). Shi and Malik in [5] suggest to use the Cheeger constant [129] or the cost of

the last cut as an indication of whether or not it is worth to continue the cutting process.

However, these two constants are highly sensitive to noise and they require the use of

thresholds that may change depending on the input sequence. This is the reason why most

of the available implementations of Normalized Cuts assume the final number of clusters

as known data.

The elegance of the framework and the good performance provided by LSA, together

with the possibility to work on some of the weaknesses just discussed make this algorithm

very interesting and appealing for further studies. Of all of its problems one of the most

recognised is surely the rank estimation step [22,108]. A better rank estimation will be the

aim of two of the algorithms proposed in this thesis: the Enhanced Model Selection (EMS),

Section 3.2 and the Principal Angles Clusterization (PAC), Section 3.3.3. A new affinity

measure between subspaces, based on principal angles, is presented in Section 3.3.4. Finally,

an automatic tool for the estimation of the number of motions is proposed in Section 3.4.

3.2 Enhanced Model Selection (EMS)

The EMS technique is an improved version of the MS technique. As explained in Sec-

tion 3.1.2 MS is very sensitive to the parameter k. EMS automatically finds a good k value

for Equation (3.1), so that the amount of noise and the number of motions are not required

as prior knowledge. As Equation (3.1) is used in step 1 and step 3 of LSA, the estimated

k for the global space (step 1) is called kg, while the k for the local subspaces (step 3) is

called ks.

EMS is first applied to step 1 for the rank estimation of the matrix W. For the moment,

the dimension of the local subspace generated by each trajectory is fixed to 4, the extension

of EMS to step 3 is explained in Section 3.2.4. The key idea of EMS lies in the discovered

relationship between the rank of W estimated by MS (Equation 3.1), and the computed

affinity matrix A (step 4). A more rigorous explanation of such a relationship will be

74

3.2. Enhanced Model Selection (EMS)

(a) kg=10−12; r=57 (b) kg=10−10; r=21 (c) kg=10−7.5; r=10

(d) kg=10−6; r=6 (e) kg=10−5; r=5 (f) kg=10−4; r=4

Figure 3.5: Affinity matrices computed with different kg values; real sequence 1R2RC
from the Hopkins155 database, theoretical maximum rank of W is 12; black is minimum
affinity, white is maximum affinity and r is the estimated rank. Note that the block
diagonal structure of the affinity matrices is due to the fact that the trajectories had been
previously ordered according to the ground truth of the segmentation.

presented in Section 3.2.1. To offer a pictorial understanding an example is shown in

Figure 3.5(a) to 3.5(f), where the affinity matrices, obtained after estimating the rank

with different kg values, are shown. Note that, for plotting convenience, the trajectories

had been previously ordered so that trajectories of the same motion would appear next

to each other. This explains the block structure of the affinity matrices, however, such a

structure could not always be guaranteed before the final clustering step. The sequence

used in this example has 3 rigid motions (from structure from motion theory it is known

that the trajectory matrix composed of 3 rigid motions is at most 12 [10], 4 dimensions for

each motion). When the rank of W2F×P is estimated using an inappropriate kg value, the

affinity matrix does not provide any useful information, as in Figure 3.5(a) and 3.5(b) (rank

overestimated) and Figure 3.5(d) to 3.5(f) (rank underestimated). Qualitatively speaking,

the “best affinity matrix” for a successful clustering step, which is the affinity matrix where

the values between similar and different subspaces are well distinguished, is obtained with

75

CHAPTER 3. Motion Segmentation

kg = 10−7.5. When such a value for kg is used the estimated rank is 10, Figure 3.5(c). The

example of Figure 3.5 is also useful to understand how difficult the tuning process of the

kg parameter is. The variations of the kg values are minimal but they still produce very

different rank estimations. This is due to the extremely smooth singular value spectrum

of the trajectory matrix, as explained in Section 3.1.1.

The relationship between the chosen kg and the computed affinity matrix clarifies why

a wrong choice of kg can greatly affect the final segmentation. It is crucial for LSA to have

a good rank estimation of the trajectory matrix in order to perform a correct segmentation.

On the other hand, this relationship gives additional information: by looking at the affinity

matrix it is possible to assess the accuracy of the rank estimation. In Section 3.2.1 a deep

analysis of such a relationship is presented, and in Section 3.2.2 it is explained that, without

knowing the number of motions and without assuming any order of the tracked features,

the entropy can be used as a measure of the “reliability” of the affinity matrix, and hence

of the estimated rank. Moreover, in Section 3.2.3 a speed up algorithm is proposed in

order to quickly obtain an affinity matrix with high entropy, avoiding an exhaustive search

among a big range of kg values. Finally, the extension of EMS for the estimation of the

size of the local subspaces is presented in Section 3.2.4.

3.2.1 Affinity matrix as a function of the estimated rank

In order to exploit the pattern shown in Figure 3.5 it is necessary to understand its nature

and be sure that such a pattern exists independently from the specific input sequence

analysed. Before getting into details about how the relationship between the affinity matrix

and the kg value (and hence the estimated rank r) could be used, let us analyse more deeply

the behaviour of the affinity matrix in relation to the estimated rank r.

As there are many factors that influence the final affinity matrix, it is easier to start

with a simplified problem and extend it later to the real case. Assume for the moment that

there is no noise in the tracked feature positions, and that the ground truth set of NNs of

each trajectory is known. Also, assume that the local subspaces generated by trajectories

76

3.2. Enhanced Model Selection (EMS)

of different motions are orthogonal (ideal case).

The affinity between two generic trajectories j and l depends on the distance between

their local subspaces, which in LSA is computed via PAs. In the ideal case and with a

correct rank estimation, all the PAs θi (for i = 1, . . . ,M) between two local subspaces

generated by trajectories of the same motion should be 0. On the other hand, when j and

l belong to different motions, all the θi should be close to π/2. Let us now discuss the

behavioural trend of PAs as a function of r (the rank of the global subspace) in the cases

of under and overestimation.

The analysis in the case of underestimation is quite easy to develop. In fact, in this

case the components of the lost dimensions are projected onto the remaining dimensions,

artificially forcing two local subspaces towards each other, to the point when they collapse

onto exactly the same local subspace. As a consequence, two local subspaces tend to

become closer as r decreases.

On the other hand, the behaviour of PAs when r is an overestimation is less intuitive.

In fact, in [130] it is explained that the problem of computing principal angles and princi-

pal vectors when the rank of the global space is overestimated is an ill-posed problem. To

these authors’ knowledge, the most helpful mathematical result for the case under analysis

is presented in [131]. The authors study the probability density function of the largest prin-

cipal angle between two subspaces chosen from a uniform distribution on the Grassmann

manifold of t-planes embedded in R
n. They show that, when n is appreciably bigger than

t (precisely n > 2t − 1), the probability density function is close to zero for small angles

and rapidly increases to reach a global maximum in π/2.

The resemblance between this abstract mathematical situation and the practical case

under analysis is represented by the fact that, when the rank is overestimated, the extra

components added to the trajectory vectors (in the global space) are sampled from the

basis vectors of the null space of W. In fact, the projection onto the global space is done

as follows. The matrix W is decomposed by SVD as: W = UDVT . Hence, if the rank of W is

rreal, the first rreal columns of V correspond to the basis of the row space of W, whereas the

77

CHAPTER 3. Motion Segmentation

Figure 3.6: Pictorial description of what happens when the rank of the global space is
estimated. traji stands for the ith trajectory.

remaining P − rreal columns of V correspond to the basis of the null space of W. In this new

global subspace the first rreal components of each row i of V (for i = 1, . . . P) represent the

trajectory i. In Figure 3.6(a) the meaning of each column and row of V is summarised in

the case that the estimated rank of W is rest = rreal. However, if the estimated rank of W is

rest > rreal, each trajectory i will be represented by its true rreal components (taken from

the first rreal components of row i of matrix V) plus rest − rreal extra components that are

taken from row i of the rest − rreal basis of the null space of W. These extra components are

unrelated to the trajectory i, hence they are random with respect to that trajectory. This

second case is summarised in Figure 3.6(b). Note that the projection of the trajectories

onto the global space is oblique, for this reason the components that exceed the real rank

are not eliminated and they act as random values.

Finally, note that all of the reasoning holds true even in the case of no noise, and it

does not involve the selection of the NNs. Hence, when rest is sufficiently big the work

of [131] applies to the case under analysis. Therefore, the higher the overestimation, the

closer the resemblance to a uniform distribution.

From the result presented in [131], it can be inferred that PAs, as a function of the

estimated rank, have an increasing trend 1. To support this inference, in Figure 3.7(a)

1To these authors’ knowledge, no information is known about the precise analytical behaviour of such
functions.

78

3.2. Enhanced Model Selection (EMS)

Figure 3.7: Trend of the largest principal angle (Figure 3.7(a) to 3.7(h)), and of the affinity
(Figure 3.7(i) to 3.7(p)), between two pairs of trajectories of the same motion (blue) and
two pairs of trajectories of different motions (red). The trajectories are randomly taken
from synthetic sequences (first and third rows are sequences with no noise, second and
fourth rows are same sequences with Gaussian noise σ = 0.5) with two rigid motions,
hence the maximum rank is 8 (NNs are estimated). Last row shows the entropy trend of
A(r) related to the sequences with Gaussian noise σ = 0.5.

79

CHAPTER 3. Motion Segmentation

to 3.7(d) the trend of the largest PA of synthetic sequences with 2 rigid motions (hence the

maximum rank is 8) and no noise is presented. As the test is performed using the first part

of the LSA algorithm the NNs are estimated as explained in step 3 of the LSA summary

(Section 3.1). For each sequence four angles are compared: two angles between trajectories

of the same motion (blue lines) and two angles between trajectories of different motions

(red lines). These results are just a few samples of a large number of experiments performed

on the whole synthetic and the Hopkins155 databases. In Appendix A more trends could

be found with synthetic sequences and a noise level up to σ = 3.0 pixels, and some of

the Hopkins155 sequences. All the experiments show the same pattern, i.e. when the

rank is very small all PAs tend towards zero, while when the rank is heavily overestimated

all of the angles tend towards π/2. For simplicity, only the largest PA is shown in the

examples. However, smaller angles also follow the same trend. These experiments confirm

the increasing trend inferred from [131]. Moreover, from Figure 3.7(a) to 3.7(d) it is

possible to appreciate that when the estimation of the rank is close to the correct rank,

then PAs between local subspaces generated by trajectories of different motions are higher

than those between local subspaces generated by trajectories of the same motion.

From now on, the behaviour of the PA θi with respect to rank r will be referred to

as the function θi(r) or simply θr
i . Let us now analyse how this behaviour is reflected in

the affinity value between two generic trajectories j and l, where the affinity is defined as

in Equation (3.4) on page 70. In the ideal case, and with a correct rank estimation, the

affinity between trajectories of the same motion is maximum (i.e. 1), whereas the affinity

between trajectories of different motions is minimum (i.e. close to 0). Similarly to what

was done for PAs, it is interesting to understand the global behaviour of the function A(r).

In order to do so, the first derivative of A(r) is studied:

dA(r)

dr
= −e−

PM
i=1

sin2(θr
i))

M∑

i=1

2 sin(θr
i) cos(θr

i)θ
′r
i .

�

�

�

�3.5

All of the functions appearing in the derivative (3.5) are non negative for all values of r,

80

3.2. Enhanced Model Selection (EMS)

except for θ′ri (the first derivative of θr
i). However, it has been shown that θr

i displays an

overall increase, so θ′ri ≥ 0 for the majority of the values of r. The presence of the minus

sign implies that dA(r)
dr

≤ 0 for the majority of the values of r, i.e. A(r) has a decreasing

trend. Specifically, when r is an underestimation all of the affinities tend towards the

maximum value, whereas when r is an overestimation they tend towards the minimum

value. Figures 3.7(i) to 3.7(l) show the affinity values of the same pairs of trajectories used

in Figures 3.7(a) to 3.7(d), confirming that the affinity function has a decreasing trend as

concluded in the analysis just performed.

So far, the case without noise and with perfectly orthogonal local subspaces was con-

sidered . The effect of the presence of noise and the estimation of the NNs is that there

may be oscillations in the functions of the PAs (as in Figure 3.7(e) to 3.7(h)), and so,

potentially, also in the affinity functions. However, it will be shown later in this section

why this, in turn, does not lead to big oscillations of the affinity values (as confirmed in

Figure 3.7(m) to 3.7(p)).

So far, in this theoretical discussion the local subspaces were assumed to be orthogonal.

In real sequences, however, local subspaces are not always perfectly orthogonal. The effect

of non perfect orthogonality is that, even in the case of overestimation, some pairs of trajec-

tories may have low, but not exactly zero, affinity. The effects of non perfect orthogonality

and of the estimation of the NNs can be seen in Figure 3.7(a) to 3.7(d): despite the fact

that there is no noise, it is possible to notice small oscillations in the θr
i .

The main consequence of moving from an ideal to a real situation is, therefore, that the

θr
i may have wider oscillations. However, such oscillations rarely lead to oscillations of the

affinity values. In fact, the oscillations in one of the M PAs between two subspaces may

be compensated by the remaining M − 1 PAs (especially if the oscillation affects one of

the smallest angles). To this end, note that with the affinity measure used, Equation (3.4),

all the sin(θi)
2 are summed together. Moreover, the highly non linear behaviour of the

decreasing exponential used to define the affinity tends to smooth the effect of small changes.

Even in the worst case scenario, it is very unlikely that all of the affinity values oscillate

81

CHAPTER 3. Motion Segmentation

in the same manner. Hence, it is highly probable that the trend of A(r) remains overall

decreasing. Let us stress that Figures 3.7(m) to 3.7(p) testify that, even when the presence

of noise induces considerable oscillations in the θr
i , the affinities are not dissimilar to those

of the case without noise (Figure 3.7(i) to 3.7(l)).

In summary, even without the assumptions made at the beginning (i.e. no noise, perfect

NNs estimation and perfect orthogonality between the subspaces), the affinity between

every pair of trajectories is maximum when the rank of the global subspace is highly

underestimated and is minimum when the rank is highly overestimated. In between, the

affinities have a decreasing trend. Due to particularly big oscillations in the PAs, specific

pairs may present oscillations in their affinity, but the majority of the affinities remain,

overall, decreasing functions of r. This analysis justifies the pattern initially shown in

Figure 3.5 and it is now possible to expect a similar behaviour for any input sequence.

3.2.2 How to choose a good affinity matrix

Now that the relationship between the affinity function and the estimated rank has been

clarified, it is possible to exploit it. Intuitively: many affinity matrices could be built

using different rank estimations and “the most reliable” affinity matrix could be selected

for the clustering step. However, in order to do so, it is necessary to find a measure of

the “reliability” of the affinity matrix. Let us recall here that the affinity matrix A(r)P×P

is a symmetric matrix that contains the affinity values between every pair of subspaces

(generated by each of the P trajectories) computed assuming a trajectory matrix of rank

r (i.e. a global subspace of size r). It is reminded to the reader that the block structure of

the affinity matrices shown in Figure 3.5 is due to the fact that, for plotting convenience,

the trajectories had been previously ordered so that trajectories of the same motion would

appear next to each other. However, such a structure is usually the result of the clustering

step and, therefore, cannot be used during the decision process of which matrix should be

selected.

The ideal criterion for the selection of the affinity would be to choose the rank r that

82

3.2. Enhanced Model Selection (EMS)

leads to an affinity matrix that results in the minimum misclassification rate. However, the

ground truth of the segmentation is not always known. In real cases a convenient criterion

could be to choose a high contrasted affinity matrix, because the higher the contrast the

higher the quantity of information that can be used to compare the trajectories. A well

known measure of contrast, and of quantity of information, is the entropy [132]:

E(A(r)) = −
1∑

i=0

hA(r)(i) log2(hA(r)(i)),
�

�

�

�3.6

where hA(r)(i) is the histogram count in the bin i (in all of the experiments 256 bins

were used). As stated in the previous section, when r is an underestimation, all of the

affinities tend to be clustered around 1, leading to a uniform A and, therefore, to a very

low entropy value. As r approaches the correct rank, the affinities between trajectories

of the same motion tend to diverge from those between trajectories of different motions,

hence, A starts to contain heterogeneous values and as a consequence its entropy increases.

Note that, theoretically, it is not possible to exclude that the entropy, as a function of

r, can have oscillations, but regardless at this stage it is more interesting to focus on

its overall behaviour. The more r is increased, becoming an overestimation, the more

the affinities tend to converge around 0, consequently A becomes more uniform and its

entropy decreases again. Figure 3.7(q) to 3.7(t) show the trend of the entropy for the

same synthetic sequences used to show θr
i and A(r) in the presence of noise (Figure 3.7(e)

to 3.7(p)). Similarly, Figure 3.8 shows the entropy trend of the real sequence 1R2RCR

(Hopkins155 database) used to compute the affinity matrices shown in Figure 3.5.

Note that the entropy would not be maximum in the case of a perfect affinity matrix

with only two values (maximum and minimum). In Figure 3.9 there is an example where

it is possible to see that a perfect affinity matrix (Figure 3.9(b)) would have a smaller

entropy than the other two suboptimal cases (Figure 3.9(a) and 3.9(c)). However, such

a situation is extremely rare in real sequences. Also in synthetic sequences with no noise

a perfect affinity matrix is obtained only when the motions are completely independent.

83

CHAPTER 3. Motion Segmentation

Figure 3.8: Example of the entropy trend experienced with all the sequences used in the
experiments. This specific example refers to the same sequence used to show the affinity
matrices in Figure 3.5.

In practical cases, without having a clear indication about which affinity matrix is the

most suitable, the choice of the affinity matrix with the highest entropy has the interesting

property of discarding uniform (and thus useless) matrices. In the examples shown in

Figure 3.7(q) to 3.7(t) the highest entropy always corresponds to a rank value where the

affinities between trajectories of the same motion are higher than those between trajectories

of different motions (Figure 3.7(m) to 3.7(p)). In the example of Figure 3.8 the maximum

corresponds to the affinity matrix of Figure 3.5(c), which is the one where the 3 blocks

corresponding to the 3 motions are more clearly distinguished. Moreover, the entropy does

not depend on the position of the affinity values inside the matrix. This independence is

fundamental, as there is no control of the evaluation order of the subspaces. This new way

of estimating the rank of the trajectory matrix by using the maximum entropy criteria, is

called the Enhanced Model Selection.

As stated before, it is not possible to ensure that the affinity matrix with the maximum

entropy corresponds to a correct estimation of the rank. Although it is expected to provide

a good estimation of the rank, and it contains enough information for a successful clustering

step, the rank could be slightly over- or underestimated. Unfortunately, it is also not

84

3.2. Enhanced Model Selection (EMS)

(a) Rank overestimated,
Entropy: 1.9034

(b) Correct rank estima-
tion, Entropy: 1.0360

(c) Rank underestimated,
Entropy: 2.1470

Figure 3.9: Three examples of affinity matrices. The affinity matrix built using the correct
rank estimation has a smaller entropy value than the other two suboptimal cases. This
example shows that the entropy is not an optimal measure, however, such a situation is
extremely rare in real sequences.

possible to assume that the maximum entropy has always a fixed bias. In fact the distance

between the correct rank and the rank estimated with the maximum entropy observation

depends on the trajectories of each specific video sequence. Clearly the correct estimation is

the most desirable outcome, however, even a small overestimation is acceptable. The least

desirable outcome would be an underestimation as this corresponds to cutting important

information. In Figure 3.7(i) to 3.7(p) it can be appreciated how all the affinities go to 1

very quickly when the rank is underestimated.

In order to prevent a possible underestimation, or reduce its effects, it may be safer to

increase the estimated rank by a small amount. Our experiments have shown that there is a

correlation between the number of motions (or the amount of noise) and the position of the

maximum entropy: the greater the number of motions (or the higher the noise) the lower

the estimation of the rank. In Figure 3.10 the error of the EMS rank estimation is shown

in relation to the number of motions and the noise level. These results are computed on

the synthetic database described in Section 2.5. Each point in the plot corresponds to the

average error over 10 synthetic sequences for each number of motions and each noise level.

As can be seen, when the number of motions increases EMS becomes biased and tends

to have a negative error (i.e. tends to underestimate the rank). Similarly, the higher the

noise the lower the rank estimation. As a preliminary study, a possible way to correct the

85

CHAPTER 3. Motion Segmentation

Figure 3.10: Error of EMS rank estimation with different number of motions and noise
levels. Each value is obtained as an average of the error over 10 different sequences.

estimated rank could be to add 1 for each motion to the previous EMS estimated rank. By

adding only 1 unit for each motion, even if the maximum entropy already corresponds to an

overestimation or a correct estimate, the correction does not introduce too much random

information, whereas if the maximum is an underestimation some important information

is added.

EMS with correction is called EMS+, in Section 3.2.5 the performances between EMS

and EMS+ are compared.

3.2.3 How to speed up the choice

In the previous section it was shown that a good choice for the affinity matrix corresponds

to the matrix with the highest entropy value. However, this may require to build a large

number of affinity matrices and, therefore, the algorithm would be computationally expen-

sive. A speed up technique that can be used in order to quickly find an affinity matrix with

a high entropy is here proposed. In order to have a fast but good estimation of the rank,

the concavity of the overall entropy behaviour is exploited. As explained in the previous

section, the entropy may have oscillations. However, by taking opportune safety measures

it is possible to quickly find an affinity matrix with an entropy very close to the highest

86

3.2. Enhanced Model Selection (EMS)

value. One can always renounce to speed in favour of a better estimation, however in

Section 3.2.5 it is shown that even with this approximated (but faster) choice good results

are obtained.

Assuming that there may be small oscillations in the entropy function, in order to

avoid to select a local maximum it is sufficient to use a large sampling step (in all of the

experiments the step is ∆kg = 10). Moreover, to establish the gradient of the entropy

3 samples are considered in preference to only 2. When a minimum is encountered the

sampling can be extended towards the two extremes until a choice can be made. Once the

gradient is established, the search is shifted towards the increasing gradient repeating the

sampling process until the maximum is found. It should be remarked that in all of the

tests performed, when the entropy was sampled in the way just explained, no fluctuations

in the entropy trend were encountered. However, when the entropy is computed with a

finer sampling step, in some sequences a very small oscillation may be found close to the

maximum values. On the whole Hopkins155 database an oscillation can be found only

in the following sequences: 1RT2TC g13, 2R3RTCRT, 2T3RCTP, articulated, cars1 and

cars8. As shown in Figure 3.11 the oscillations are very small and occur very close to the

maximum entropy anyway. Hence, even if in these few cases EMS had selected a local

maximum, the built affinity matrices would have had a very high entropy. One can always

argue that there may be a particularly unlucky situation where the combination of bad

estimation of NNs and noise generates a very big oscillation, to the point that even with

the kind of sampling just described, EMS would choose a local maximum. However, the

oscillations are more likely to be around the correct rank, hence there is a chance that the

selected affinity matrix can provide enough information anyway. Moreover, in such extreme

conditions the assumptions of the LSA framework would probably be violated leading to

bad segmentation even if the rank is correctly estimated.

87

CHAPTER 3. Motion Segmentation

Figure 3.11: The only entropy trends with oscillations (always only one oscillation in
correspondence to the maximum of the function) found on the whole Hopkins155 database.
In these plots the rank was sampled from 2 to 20 with a step of 2, and from 20 to 50 with
a step of 5.

3.2.4 Size estimation of the local subspaces

So far it was assumed that the size of the local subspaces (step 3) was fixed to 4. Once,

the value kg has been found equal to 10x, ks can be set to 10x/2. This corresponds to the

choice made by the authors of LSA. In fact, Yan and Pollefeys explain in [72] that when

estimating the rank of the local subspaces, due to a small number of samples, the noise

level may play a more relevant role, so it is desirable that ks > kg. Therefore, after all

of the trajectories have been projected onto the normalised hypersphere of size rg each

local subspace size is estimated using the MS formula and the ks parameter equal to 10x/2.

This should provide a more precise estimation of the basis of the local subspaces. When

all the local subspace bases have been estimated the PAs between each pair of subspaces

are computed and the affinity matrix can be built. The last remaining step is just an

application of any spectral clustering algorithm that will provide the final segmentation.

88

3.2. Enhanced Model Selection (EMS)

Algorithm 3.1 EMS algorithm

1: Build a trajectory matrix W;
2: kg1 = 10−7.0, kg2 = 10−7.5 and kg3 = 10−8.0 {this initial range values were suggested

in [31]};
3: repeat
4: for i = 1 . . . 3 do
5: compute global rgi rank by MS using kgi;
6: project every trajectory, which can be seen as a vector in R

2F , onto an R
r
gi unit

sphere by SVD and truncation to the first rgi components of the right singular
vectors;

7: exploit the fact that in the new space (global subspaces) most of the points and
their closest neighbours lie in the same subspace, to compute by SVD the local
subspaces generated by each trajectory;

8: compute PAs between all of the subspaces assuming local subspace size 4;
9: compute affinity matrix Ai;

10: compute entropy E of Ai;
11: end for
12: shift kgi values towards the positive gradient as in Section 3.2.3
13: until maximum entropy found
14: compute local subspace sizes using MS with ks(kg);
15: re-estimate the subspaces and compute final affinity matrix Aopt;
16: cluster Aopt using any spectral clustering technique;

In summary, EMS exploits the relationship between the rank estimation of the trajec-

tory matrix and the affinity matrix to automatically tune the value of k for the global and

local dimension estimation without requiring knowledge about the number of motions nor

the amount of noise. Better rank estimations result in a better motion segmentation and,

as EMS does not make any assumption regarding the type of motions, it can be used under

any condition. EMS+ is a small extension of EMS that should compensate the biased esti-

mation of EMS at the cost of knowing the number of motions of the scene. In Section 3.4 a

technique for the estimation of the number of motions will be discussed so that also EMS+

will not required any prior knowledge. A pseudo-code of the EMS algorithm is presented

in Algorithm 3.1.

3.2.5 Experiments

In Section 3.2 it was explained how EMS and EMS+ are able to automatically adjust

the parameter k, Equation (3.1), in accordance to different noise conditions and different

89

CHAPTER 3. Motion Segmentation

number of motions in the sequence. In this section the results of the misclassification of

EMS and EMS+ on the Hopkins155 database are shown in comparison with other LSA-

based techniques.

In these first sets of experiments the knowledge about the number of motions is assumed

so that it is possible to assess the model selection techniques (MS, EMS and EMS+)

independently from the accuracy of the estimation of the number of motions.

To evaluate the model selection the results of LSA with EMS and LSA with EMS+ are

compared with the results obtained with: LSA fixing the global subspace size to 5 and 4N

(where N is the number of motions), LSA estimating the global subspace size with MS

using the best k per each sequence (i.e. the k that provided the lowest misclassification

rate per each sequence of the Hopkins155 database), and LSA with MS using the overall

best k (i.e. the k value, common for the whole database, that provided the lowest mean

misclassification rate on the Hopkins155 database: k = 10−7.5). Notice that for LSA with

MS, the best overall k and the best k per sequence were previously computed by estimating

both the global and the local subspace size (k for the local subspace sizes were determined

as explained in Section 3.2.4 for EMS) and not by fixing the local subspace sizes to 4. This

may seem a little detail but later it will be shown how this detail will play a relevant role

in terms of misclassification. For all of the algorithms the Recursive Two-Way N-cut [5]

is used for the final clustering step, as originally proposed by the authors of LSA. For

EMS and EMS+ the misclassification rate obtained by clustering the affinity matrix by

K-means is also presented (results obtained with 200 random initialisations). Two sets of

experiments were performed: in the first set the global subspace size was estimated and the

local subspace sizes were fixed to 4, while in the second set both global and local subspace

sizes were estimated.

Local subspace sizes fixed and number of motions known

In Figure 3.12 the results on the Hopkins155 database where the local subspace sizes were

fixed to 4 are shown in terms of mean and variance of the misclassification rate. The highest

90

3.2. Enhanced Model Selection (EMS)

(a) 2 Motions

(b) 3 Motions

(c) 2 and 3 Motions

Figure 3.12: Mean and variance of the misclassification rate on the Hopkins155 database
(number of motions known and local subspace size fixed to 4).

91

CHAPTER 3. Motion Segmentation

error rate is obtained when the global subspace size is fixed to 5 (10.09% with 2 motions

and 30.95% with 3 motions), this happens because a dimension of 5 corresponds, for most

of the global subspaces, to a considerable underestimation of their size. The performance

of LSA with best overall k, best k per sequence, and where the global subspace sizes were

fixed to 4N are very similar to each other (around 6% with 2 motions and 21% with 3

motions). Both EMS and EMS+, independently from the clustering algorithm, perform

much better than any other technique, with EMS+ proving to be more solid than EMS

when the number of motions increases. EMS and EMS+ perform even better than MS with

best k per sequence. This may seem counter-intuitive as one would expect that the best k

per sequence leads to the best misclassification rate. However, it has to be remembered that

the best k values were computed when also the local subspace sizes were estimated and not

fixed to 4. This small difference clearly changes which are the best k values that have to be

used, and shows once again how unstable the MS is (the value of best k changes even if only

the local subspace size is changed). Moreover, EMS and EMS+ perform better than LSA

4N because when the global subspace size is fixed to 4N the motions are considered rigid

and fully independent even when this assumption is not verified. Finally, the difference

between the performances of EMS and EMS+ using N-cuts or K-means is little. For 2

motions EMS with N-cuts has a misclassification rate of 2.72% while EMS with K-means

has a misclassification rate of 3.58%, while EMS+ with N-cuts has a misclassification rate

of 3.82% and EMS+ with K-means has a misclassification rate of 2.75%. In the case of

sequences with 3 motions EMS with N-cuts has an error rate of 18.23% and EMS with

K-means has a misclassification rate of 11.04% (biggest difference between N-cuts and K-

means). Finally, EMS+ with N-cuts scored a 9.58% of misclassification rate while EMS+

with K-means scored a 6.42%. In general, K-means seems to be slightly better than N-cuts.

Nevertheless, considering that EMS/EMS+ are being compared against the original MS

used in LSA (whose suggested clustering technique is N-cuts), in the remainder of this

section the results of EMS and EMS+ will be presented using N-cuts, as suggested by the

authors of LSA.

92

3.2. Enhanced Model Selection (EMS)

Overall, these experiments show that a good model selection leads to better results

than when the global subspace size is fixed. Moreover, MS proved to be very sensitive

to the chosen dimension of the local subspaces, in addition to noise and changes in the

number of motions. MS requires manual tuning in order to cope successfully with a variety

of cases and in unknown scenarios. To conclude the comments on this set of experiments,

it should be noted how much the performances degrade when the number of motions is

increased from 2 to 3 showing one common weak point of all of these motion segmentation

algorithms.

Local subspace size estimated and number of motions known

The following set of experiments is obtained when the local subspace sizes were also esti-

mated instead of fixed to 4. As LSA 5 and LSA 4N do not use any instrument to estimate

the local subspace size they are not included in this set of experiments. The results are

shown in Figure 3.13.

As expected, the lowest misclassification rate is obtained when k is manually tuned

for each sequence, the error rate in this case is of 0.67% with sequences that contain 2

motions and 6.37% with sequences that contain 3 motions. This result sets the lower

bound of the misclassification when using LSA-based techniques. Naturally, both EMS

and EMS+ perform worse than MS with the best k per sequence, their misclassification

is respectively: 3.24% and 3.08% with 2 motions, and 13.37% and 8.15% with 3 motions.

However, EMS and EMS+ do better than MS with the best overall k: 4.96% with 2 motions

and 17.94% with 3 motions. As in the previous set of experiments, the misclassification

rate of EMS+ is lower than that of EMS. With 2 motions the performances are very similar.

However, with 3 motions the compensation strategy plays an important role. In fact, the

performances of EMS+ are quite close to the one of LSA with best k per sequence. If

the plots of Figure 3.12 and Figure 3.13 are compared, it is possible to notice that, given

a technique, the misclassification when the local subspace sizes are estimated are almost

always better than when the local subspace sizes are fixed to 4. Such a result shows that

93

CHAPTER 3. Motion Segmentation

(a) 2 Motions

(b) 3 Motions

(c) 2 and 3 Motions

Figure 3.13: Mean and variance of the misclassification rate on the Hopkins155 database
(number of motions known and local subspace size estimated).

94

3.2. Enhanced Model Selection (EMS)

Computational time (in seconds) ALC EMS+
Total with 2 motions 55625 2807
Avg. with 2 motions 464 23
Total with 3 motions 33205 1902
Avg. with 3 motions 949 56
Total overall 88831 4709
Avg. overall 573 31

Table 3.1: Computational time comparison between ALC and EMS+ on the Hopkins155
database. The two algorithms were implemented in Matlab and ran on an Intel Core2 Duo
CPU @ 2.66GHz with 16 GB RAM.

a correct estimation of the size of the local subspaces also plays a role, albeit a minor one,

in providing a better segmentation. For the sake of completeness, the misclassification of

EMS with K-means (instead of N-cuts) is of 3.15% with 2 motions and 10.68% with 3

motions, whereas the misclassification of EMS+ with K-means is of 3.11% with 2 motions

and 6.14% with 3 motions. Once again this shows that K-means has a slightly better

performance than N-cuts.

It was shown that EMS/EMS+ outperform all practical LSA-based techniques (trying

all possible values of k and taking the one with the lowest misclassification rate is only

useful for theoretical reasoning but it is not a practical solution). At the time when EMS

and EMS+ were developed the best performing algorithm on the Hopkins155 database

was the Agglomerative Lossy Compression (ALC) [66]. Its average misclassification rate

with 2 motions is 2.40% and with 3 motions is 6.69%. The difference between ALC and

EMS+ performances is only of 0.68% with 2 motions and 1.46% with 3 motions in favour

of ALC. However, the price that ALC has to pay in order to gain this little advantage on

the misclassification side is a much heavier computational time. Table 3.1 shows the com-

putational time required by the two algorithms. When the two algorithms, implemented in

Matlab, were run on the same computer, EMS+ processed the whole Hopkins155 database

more than 18 times faster than ALC.

In summary, these results show that EMS and EMS+ are able to provide a good

estimation of the rank of the trajectory matrix in an automatic fashion. They do not

95

CHAPTER 3. Motion Segmentation

require any prior knowledge and are able to deal successfully with different noise levels. As

it is not necessary for EMS and EMS+ to know in advance any subspace dimension, they

are able to deal with different types of motion, which is not possible when the subspace

size is fixed. Moreover, despite the fact that EMS already provides very good results,

the simple correction strategy of EMS+ allows an even better performance to be reached.

EMS+ has a very similar performance to one of the best state of the art algorithms, the

ALC, however, ALC is around 18 times slower than EMS+. In all of these experiments the

only information provided for EMS/EMS+ and ALC was the total number of motions in

the scene. In Section 3.4.1 EMS+ and ALC are tested without the need for any information

at all, and more details about their performances are explained. Furthermore, the results

of EMS+ and ALC on the synthetic database are also presented.

3.3 Adaptive Subspace Affinity

In the previous section it was shown how the MS proposed in LSA can be greatly improved

by EMS/EMS+. EMS takes advantage of the relationship between the estimated rank of

the trajectory matrix and the entropy of the affinity matrix and, without any tuning

process, is able to automatically discard homogeneous, and therefore not useful, affinity

matrices. The experiments show that EMS and EMS+ have a much better performance

than LSA with the classic MS. Nevertheless, EMS is not optimal as it would discard a

perfectly binary affinity matrix (as shown in the examples of Figure 3.9) and it tends to

underestimate the rank (as explained in Section 3.2.2). Moreover, the results in terms

of misclassification rate, can be dramatically different when the estimated rank changes

even from only r to r ± 1. As the real exact rank of the trajectory matrix is not known

and it is necessary to rely on estimations, it would be desirable to have a more stable

behaviour (i.e. small changes in the estimated rank should correspond to small changes in

the misclassification rate). Finally, as explained in Section 3.1.2, the affinity measure used

in LSA is not ideal and even if EMS has increased the performances of LSA, it is still using

the same sin2-based measure.

96

3.3. Adaptive Subspace Affinity

In this section three main contributions are provided: one issue related with the use of

PAs, which partially solves the instability problem, is identify and tackled, a new interpreta-

tion of the global subspace size estimation is proposed, and finally a new similarity measure

between subspaces is presented. The new subspace size estimation does not depend on any

sensitive parameter, and it is able to select the dimension of the global subspace where

the distribution of the PAs is the most suitable for the clustering step. Moreover, the new

similarity measure is able to dynamically adapt to the distribution of the PAs.

3.3.1 Notation

Let us recall the notation that was used until now and that will be used also in this

section. Given a collection of N subspaces, the PAs between two subspaces Sj and Sl, for

j, l = 1, . . . , N , are defined recursively as a series of angles, as shown in Equation (3.2)

and (3.3). The ith PA between the subspaces Sj and Sl, computed when the estimated size

of the global subspace is r, is denoted as:

θr
i (Sj, Sl).

�

�

�

�3.7

As j and l vary the set of PAs are defined as:

Θr
i = {θr

i (Sj, Sl), j, l = 1, . . . , P}.
�

�

�

�3.8

Finally, the collection of all the Θr
i , for a given dimension i is defined as:

Θi =
rmax⋃

r=1

Θr
i ,

�

�

�

�3.9

where rmax is the upper bound of the global subspace size. For an at-a-glance overview of

the notation refer to Figure 3.14.

97

CHAPTER 3. Motion Segmentation

Figure 3.14: Overview of the notation. Random subset of the PAs of ΘM (largest PAs) of
a generic input sequence. PA between similar subspaces are represented with blue squares,
PAs between different subspaces are represented with red asterisks.

3.3.2 Issues regarding the behaviour of principal angles

PAs between two subspaces are an efficient measure of orthogonality when the exact sub-

space bases are known. However, when the bases are estimated there are some issues that

should be taken into account, especially when the exact size of the global subspace is un-

known. In Section 3.2.1 the behaviour of PAs (computed following the LSA algorithm) as

functions of r (the estimated size of the global subspace) was studied. It was shown that

the overall trend of PAs, going from an underestimation to an overestimation of r, increases,

typically starting from 0 radians and ending in π/2 radians, as shown in Figure 3.15. It

was also explained that despite the increasing trend, PAs may have oscillations, as shown

in Figure 3.15(a), due to the fact that when the rank is underestimated the bases are not

well defined, while when the rank is overestimated the extra components introduced act

like noise. Such an unstable trend of PAs results in a very different final segmentation

when using the set of PAs Θr
i rather than Θr±1

i , independently of which technique is used

for the rest of the algorithm.

98

3.3. Adaptive Subspace Affinity

0 5 10 15 20
0

0.5

1

1.5

global rank

ra
d

(a) Original PAs

0 5 10 15 20
0

0.5

1

1.5

global rank

ra
d

(b) Interpolated PAs

Figure 3.15: Small random subset of the PAs of ΘM (largest PAs) of the sequence
1R2RCT A taken from the Hopkins155 database. PAs between similar subspaces are
represented with blue squares, PAs between different subspaces are represented with red
asterisks.

99

CHAPTER 3. Motion Segmentation

In order to reduce the influence of these oscillations a polynomial interpolation of the

PAs across the different ranks is here proposed. The trivially useless interpolation of order

1 can be discarded. The interpolation of order 2 is decreasing after its maximum, this does

not fit with the increasing behaviour of the PAs. The interpolation of order 3 is able to

smoothly follow the PAs trend, as shown in Figure 3.15(b). Interpolation of higher degrees

would adhere too much to the data making the interpolation not effective. Different tests

conducted on synthetic and real sequences confirmed PAs behaviour and the reliability of

the interpolation of order 3.

This simple “pre-processing” step greatly reduces the oscillations of the PAs, as shown

in the example of Figure 3.15(b). The choice about which rank to use becomes less critical

now that the trend of each PA is smoother. In fact, now the differences between the sets

Θr
i and Θr±1

i are not as big as they were in the original configuration. From now on, all

the plots of the PAs will show the post-processed angles.

3.3.3 Rank selection via Principal Angles Clusterization (PAC)

Let us recall once again that one of the most recognised weaknesses of LSA is the lack of

robustness of the MS procedure for the estimation of the rank r, Equation (3.1), page 67.

Equation (3.1), is extremely sensitive to changes of the parameter k. On the other hand, k

is necessary in order to deal with sequences with different amounts of noise and number of

motions. In order to solve this problem an algorithm named EMS/EMS+ was presented.

EMS+ consists of computing different affinity matrices, by using different k values with the

MS formula, and selecting the affinity matrix with the maximum entropy. This technique

allows homogeneous affinity matrices (which correspond to over- or underestimation of the

rank) to be discarded, and to use an affinity matrix with the highest content of information.

Nevertheless, it was shown that EMS+ tends to underestimate the rank and it fails in the

ideal case when the affinity matrix is binary.

Typically, if one wants to avoid the use of complex and unstable algorithms for rank

estimation, the simplest way is to study the singular value spectrum of the matrix under

100

3.3. Adaptive Subspace Affinity

analysis, as explained in Section 3.1.1. Theoretically the number of singular values different

from zero gives the rank of the matrix. Often the analysis is slightly more complex as

the singular values may not be exactly equal to zero but they may assume small values.

Therefore, the rank is given by the number of singular value above a certain threshold.

However, the problem of the trajectory matrix rank estimation in real cases, with noise

and dependent motions, is very challenging because the singular value spectrum of W tends

to become smooth and the selection of a threshold becomes a difficult task.

Taking into account all of these problems and that the considerable amount of work

already done for the rank estimation of the trajectory matrix has not led to satisfactory

results, it was decided to renounce to the computation of the rank by the study of the

singular value spectrum. Instead, the distribution of PAs in each set Θi (all the ith PAs

computed using different rank values) was studied. The fundamental idea on which this

proposal is based is that the rank r should be selected, for each dimension i, as the one that

maximises the clusterization level of the PAs in the set Θi. By clusterization is meant that

the angles between similar and different local subspaces have to be well separated. In the

ideal case (no noise and perfectly orthogonal local subspaces) PAs would cluster around 0

and π/2. In real cases PAs are not perfectly clustered, however, it is possible to evaluate

the clusterization level for each Θr
i and select the one with the highest clusterization level

for each i. For example, in Figure 3.16 some set of ΘM are shown for different sequences.

Note that PAs are plotted in different colours according to the classes of the angles (blue for

angles between similar subspaces and red for angles between different subspaces). Clearly,

the classification between “red” and “blue” angles is not known but it helps to illustrate

the idea. In each set ΘM it is possible to point out a small range of rank values, highlighted

in yellow, where there is a good separation between “big” angles (red) and “small” angles

(blue). Note that within this range, the rank with the maximum separation between

big and small angles is actually always compatible with the theoretical maximum. Such

separation is what is here called clusterization.

The measure of clusterization of each Θr
i could be performed by using a function in-

101

CHAPTER 3. Motion Segmentation

(a) 1R2RC (b) 1R2RCT A (c) 1R2RCT B

(d) 1R2TCR (e) 1R2TCRT (f) 1R2RCR

Figure 3.16: Small random subset of the PAs of ΘM (largest PAs) of some Hopkins155
sequences. PA between similar subspaces are represented with blue squares, PAs between
different subspaces are represented with red asterisks. Note that in all of the cases the
ranks highlighted by the yellow square are characterised by the presence of a gap between
blue and red angles.

spired by the Linear Discriminant Analysis, such a function is here called Principal Angles

Clusterization (PAC):

PAC(Θr
i) =

(µa − µPAC)2 + (µb − µPAC)2

σ
γ(σa)
a + σ

γ(σb)
b

,
�

�

�

�3.10

where µPAC is the centre of Θr
i computed as the mean of the P largest and smallest angles,

µa, σa and µb, σb are the arithmetic means and the standard deviations of the PAs that are

above and below µPAC, respectively. Tests on a random subset of the Hopkins155 database

(70 sequences) have shown that P = 25% of the Θr
i , gives a µPAC that is robust with respect

to the presence of outliers (due to the few remaining oscillations of the PAs). Therefore,

the belonging of each angle θr
i to the class of “small” or “big” angles is determined by the

position of the angle with respect to µPAC. Note that µPAC is not computed as the mean

of all the PAs to avoid biases due to the unbalanced number of representatives of one or

the other class (the number of pair combinations between trajectories of different motions

102

3.3. Adaptive Subspace Affinity

is higher than the number of pair combinations between trajectories of the same motion).

In the experiments r ranged from 2 to 8N (such a range guarantees to include the rank

with the maximum PAs separation as 8N is above any theoretical maximum rank). The

aim is to find the Θr
i with the maximum PAC value. In fact maximising the PAC value

requires a maximisation of the numerator of Equation (3.10), which means to maximise

the distance between the centre of the two classes, and minimising the denominator which

implies minimising the spread of the angles in the two classes.

An important component of the formula is the functional exponent γ(σ). If γ(σ) ≡ 2

was used, as in the LDA formulation, the maximum of the PAC function would always

be in the extremes of its domain. In fact, it was explained in Section 3.3.2 that when

r ≃ 2 the PAs tend to cluster around 0, hence the tiny values of the σ’s that appear in

the denominator of Equation (3.10) would boost the PAC value, despite the fact that the

µ’s are very close to each other. At the other extreme, when r ≃ rmax, the µ’s increase

and become well separated even though the two classes partially overlap. However, as the

σ’s remain smaller than 1, the global effect would be a magnification of the already big

numerator, boosting again the PAC value. Hence, it is necessary to use a variable exponent

that takes small values at the extremes while approaching to 2 for middle values. As one of

the aims of this work was to avoid algorithms with any manual tuning process, a functional

variable γ(σ) that can accomplish this task automatically was built.

A simple function that complies with these requirements is the following:

γ(σ) =

a1σ
2 + a2σ if σ ≤ π/8,

0.1 if σ > π/8.

�

�

�

�3.11

The numerical coefficients a1 and a2 are not chosen after a tuning procedure but are

determined through the following reasoning. Assuming an average case with PAs uniformly

distributed, µPAC = π/4, µa = 3π/8 while µb = π/8. Therefore, the upper bound of

σa, σb < π/8. The numerical coefficients a1 = −50.63 and a2 = 20.13 define a function

that fulfils the previous request by making the parabola pass through the points A ≡ (0, 0),

103

CHAPTER 3. Motion Segmentation

Figure 3.17: γ(σ) function used in the PAC formula.

B ≡ (π/16, 2) and C ≡ (π/8, 0.1), as shown in Figure 3.17. When σs > π/8 the angles are

excessively spread and the two classes are likely to overlap. For this reason, after π/8 the

function becomes constant: γ(σ) ≡ 0.1. By adopting the γ(σ) defined in Equation (3.11)

small PAC values are ensured when the angles in the Θi are overlapping, either due to

underestimation of the rank (cases in which σs are very small) or to overestimation of

the rank (cases in which µs and σs are very big). Note that in the ideal case of PAs

perfectly divided (which would lead to perfect affinity matrices like the one in Figure 3.9(b))

σa = σb = 0, therefore, the PAC value would be infinitely big. Hence, the selection of the

rank via the PAC function does not suffer from the problem of not being able to exploit

the ideal case, as previously described for the EMS/EMS+ technique.

To summarise, instead of selecting a dimension of the global space (i.e. estimating the

rank of the trajectory matrix) through a model selection technique, the set of angles Θr
i

with the highest PAC value for each i is chosen. Note that the selected rank may be different

for each set Θi. This is a new interpretation of the size of the global subspace: the “most

expressive” dimension for each set Θi in terms of clusterization level is identified, without

estimating the rank of W. In Figure 3.18 is possible to see an example of PAC selection

applied to ΘM of the sequence 1R2RCT A taken from the Hopkins155 database. The

104

3.3. Adaptive Subspace Affinity

Figure 3.18: Example of PAC selection. In green the PAC function, the yellow column
highlights the set of PAs that should be used according to the PAC selection.

PAC function, green line, has low values at positions that correspond to the ranks where

there is a considerable overlap between the two classes of angles. The maximum of the

PAC function occurs for rank 10 where there is a good separation between the two classes.

This choice is also compatible with the theoretical maximum rank, in fact, the sequence

analysed has 3 rigid motions, therefore, the maximum rank allowed is 12.

3.3.4 Sum of Clusterization-based Affinity (SCbA)

In the analysis of the state of the art, Chapter 2, it was explained that manifold clustering

based algorithms often rely on the ability to compare the subspaces in order to assess the

similarity between them. In the literature it is possible to find many affinity measures with

different characteristics. A discussion of different affinity measures can be found in [58].

For many years accepted affinity measures have been based on the sin or the cos functions

of the angles between subspaces. Even the LSA algorithm [72] uses an affinity measure

based on the sin2 function, Equation (3.4).

105

CHAPTER 3. Motion Segmentation

While in [58] some general weaknesses of sin2-based affinity measures have been already

pointed out, to our knowledge, no one has ever taken into account the specific issues of

such an affinity measure in relation to the nature and the behaviour of the PAs. All affinity

measures applied to PAs share a common assumption: the angles between similar subspaces

are always close to zero, and the angles between different subspaces are always close to π/2.

None of them takes into account that the recursive definition of the PAs tends to force the

angle between two subspaces to increase when moving from Θr
i to Θr

i+1. Moreover, none

of them take into account that the angles tend to increase also when moving from Θr
i to

Θr+1
i , as explained in Section 3.3.2.

To illustrate this concept a simple example can be used. In Figure 3.19(a) PAs of ΘM

of the sequence 1R2RCR (Hopkins155 database) were randomly plotted. In black the cos2

function is plotted swapping the x with the y axis (note that the shape of the −sin2 or

the cos2 functions are exactly the same, the two functions are only shifted on the y-axis).

The cos2 function always has the same shape, and the inflection point (magenta cross) is

always in the same position, regardless of the rank to which it is applied. As a consequence

of this rigidity, if the estimated rank is r = 6 all of the PAs have an affinity value that falls

prior to the inflection point. Opposite cases are when r = 10 and r = 16, in which most of

the PAs have an affinity value after the inflection point. Therefore, the cos2 function, as

well as any other rigid function, is very sensitive to the rank estimation.

An ideal, and better suited, affinity measure applied to PAs should be flexible and

change its shape according to the rank to which it is applied or, generally, to the data to

which it is applied. The affinity measure that is here proposed is able to adapt itself to the

distribution of the PAs in any set Θr
i , so that it minimises the negative effects of a wrong

rank estimation and it emphasises the difference between similar and different subspaces.

The not normalised Clustering-based Affinity (CbA) between two generic subspaces Sj, Sl,

for j, l = 1, . . . , P , for a given Θr
i is defined as the function CbA : Θr

i → R
+,

CbA(θr
i (Sj, Sl)) = exp

(

−β − 1

β

(
θr

i (Sj, Sl)

α

)β
)

,
�

�

�

�3.12

106

3.3. Adaptive Subspace Affinity

(a) cos2 functions (black)

(b) CbA functions (black)

Figure 3.19: Comparison between cos2 and CbA functions on a random subset of the PAs
of ΘM (largest PAs, 3 rigid independent motions, hence maximum rank 12). PAs between
similar subspaces are represented with blue squares, PAs between different subspaces are
represented with red asterisks. The affinity functions computed at the rank r = 6, 10, 16,
appear in black. In Figure 3.19(a) the inflection point of the function is denoted with a
magenta cross. In Figure 3.19(b) the magenta dotted line is µPAC (which for every r is also
the inflection point of the CbA function), the green line-dot-line is the value of the PAC
function.

107

CHAPTER 3. Motion Segmentation

where θr
i is the ith principal angle computed at rank r. α and β are the two positive

parameters (α > 0, β ≥ 2) that allow the function to change in relation to the distribution

of the PAs.

The arrangement of the parameters of Equation (3.12) has been chosen so that CbA

has a negative first derivative over all its domain, while its second derivative is negative

for θ < α, positive for θ > α and equal to zero for θ = α. Once again, one of the

objectives of the thesis is to avoid parameters that the user has to manually tune. In

fact, a solution is to set α = µPAC, used also in Equation (3.10), so that the inflexion

point occurs at the estimated centre of the distribution. In this way the function is always

stretched or compressed in order to fit the distribution of PAs. The β parameter is used in

order to emphasise the differences between similar and different subspaces in an automatic

fashion. In fact, β controls the slope of the function: the higher the β the steeper the slope.

Ideally, an affinity function should have a steep slope when PAs are well clustered and a

more gentle slope when the clusterization is not clear. As the PAC function provides a

measure of the clusterization level, β should be proportional to the PAC value. Specifically,

β = F ×PAC(Θr
i), where F is a constant, a boosting factor, used in order to give more or

less importance to β. In all of the experiments F = 5, which has been empirically shown

(on a random subset of 70 sequences of the Hopkins155 database) to be a suitable factor.

It is now possible to define the normalised Clustering-based Affinity (CbA) as follows:

CbA(θr
i (Sj, Sl)) =

CbA(θr
i (Sj, Sl)) − min(CbA)

max(CbA) − min(CbA)
.

�

�

�

�3.13

This simple normalisation ensures that the affinity values of CbA are defined between 0

and 1. In Figure 3.19(b) three CbA functions were plotted (as for the cos2 function the

x and the y axes were swapped) applied to different ranks r within the set ΘM . In this

picture it is possible to appreciate that, thanks to the parameter α, the inflection point

(magenta cross) changes so that it always corresponds to the µPAC value (magenta line),

hence minimising the effect of possible errors in the choice of the rank r. Moreover, thanks

108

3.3. Adaptive Subspace Affinity

to the parameter β the slope of CbA changes depending on how well the small angles are

separated from the large angles: for example it is possible to appreciate that if the selected

rank is 6 or 10 the two classes of angles are well separated and the slope is steep, on the

other hand, when the selected rank is 16 the two classes tend to overlap and there is not a

clear division, therefore, the slope is more gentle. A gentle slope is desirable when the two

classes of angles are not well separated because giving an average affinity value does not

compromise the final classification. The use of a gentle slope postpones the classification

of the angles until after the analysis of the remaining M − 1 angles (remember that for

each pair of subspaces there are M angles, but so far the analysis was focused only on one

generic angle i).

The affinity between two subspaces has to take into account all of the M angles. There-

fore, the final affinity is defined as the normalised weighted Sum of CbA (SCbA):

SCbA(Sj, Sl) =

∑M
i=1 CbA(θr

i (Sj, Sl))PAC(Θr
i)

∑M
i=1 PAC(Θr

i)
,

�

�

�

�3.14

M being the minimum size between subspaces Sj and Sl. Note that by weighting the

CbA values by the PAC function more importance is given to the set Θr
i where the angles

between similar and different subspaces are better separated.

In the case of the EMS algorithm also the size M of the local subspaces was estimated.

In this case there is no information to perform such estimation, hence, M was fixed to 4.

This is not a weak choice. In fact, subspaces with a real dimension bigger than 4 are not

very common and even if a pair of subspaces have more than 4 dimensions the method is

taking their 4 most representative ones (note that both of the subspaces have to be bigger

than 4 in order to really loose some data). More often it may happen that the smallest

of the two subspaces is actually smaller than 4, therefore, some extra information may be

included.

However, the affinity of the first larger angles and the presence of the weighting system

(that gives more emphasis to the set of Θi where angles are better separated) should

109

CHAPTER 3. Motion Segmentation

compensate for the extra random information included.

Finally, let us analyse some theoretical properties of the SCbA measure. SCbA respects

the axioms of an affinity function proposed in [58]:

• basis independent: even if principal vectors are not uniquely defined, PAs always

are [130];

• symmetry: from Equation (3.14) it is possible to see that SCbA(Sj, Sl) =

SCbA(Sl, Sj);

• normalised: from Equation (3.12) and (3.14) it is possible to see that both CbA

and SCbA are normalised, therefore, 0 ≤SCbA≤ 1;

• orthogonality consistency: given that

Sj ⊥ Sl ⇐⇒ θr
i (Sj, Sl) = π/2,

�

�

�

�3.15

∀i = 1, . . . ,M , from Equation (3.12), (3.13) and (3.14) it follows that:

SCbA(Sj, Sl) = 0;
�

�

�

�3.16

• inclusion consistency: given that

Sj ⊆ Sl ⇐⇒ θr
i (Sj, Sl) = 0,

�

�

�

�3.17

∀i = 1, . . . ,M , from Equation (3.12), (3.13) CbA(0) = 1 and from Equation (3.14)

it follows that:

SCbA(Sj, Sl) = 1.
�

�

�

�3.18

In the remainder of the thesis the use of PAC and SCbA together will be referred to as

the Adaptive Subspace Affinity (ASA) algorithm. The ASA algorithm is summarised in

Algorithm 3.2. ASA does not have any sensitive parameter that should be manually tuned.

110

3.3. Adaptive Subspace Affinity

All the necessary parameters are designed to be automatically tuned by the algorithm itself.

The few other parameters, namely P (the percentage of PAs used to compute the µPAC for

the PAC function) and F (the boosting factor of the auto tuned β parameter in the SCbA

measure) that are not automatically tuned are fixed to the provided constants that were

empirically found using a subset of 70 random sequences of the Hopkins155 database and

are not changed in any of the experiments. When the term ASA is used without specifying

any clustering algorithm it will be intended as ASA using K-means, nevertheless, in the

experiments also the N-cuts algorithm is tested.

Algorithm 3.2 ASA algorithm

1: Build a trajectory matrix W;
2: for r = 2 to rmax {in our tests rmax = 8N} do
3: project every trajectory, which can be seen as a vector in R

2F , onto an R
r unit sphere

by singular value decomposition (SVD) and truncate to the first r components of
the right singular vectors;

4: exploit the fact that in the new space (global subspace) most of the points and their
closest neighbours lie in the same subspace, to compute by SVD the local subspaces
generated by each trajectory and its nearest neighbours (NNs);

5: compute PAs between all of the subspaces;
6: end for
7: smooth the PAs;
8: apply PAC to find the best r for each Θi (i = 1 . . . M);
9: apply SCbA to build the affinity matrix A;

10: cluster A by any spectral clustering technique;

3.3.5 Experiments

The ASA algorithm was tested on the same databases described in Section 2.5. As for the

EMS+ case, the main state of the art techniques were compared: LSA best k (k = 10−7.5),

EMS+ and ALC (results taken from [58]). In addition, new algorithms had been proposed

during the development of the ASA technique, therefore, the most important and successful

were also compared: the Grassmannian Maximum Consensus (GMC) [57] combined with

the Normalized Subspace Inclusion (GMS+NSI, results taken from [58]), and the Sparse

Subspace Clustering technique (SSC) (results taken from [67]).

111

CHAPTER 3. Motion Segmentation

In this section ASA is compared using N-cuts and K-means. Moreover, in order to

evaluate separately the PAC function (for the rank selection) and the SCbA function (for

the affinity estimation) PAC was initially tested using the old affinity function (sin2-based)

described in Equation (3.4).

Figure 3.20 shows the average misclassification rates and the variance of each method,

while Table 3.2 shows the details of the misclassification rates for each type of video se-

quence (checkerboards, articulated and traffic). Firstly, it is possible to see that ASA

proposal outperforms every LSA-based technique (LSA and EMS+), proving that ASA

further improved the already good performances of EMS+. Moreover, if with EMS+ there

was a considerable gap between the performances with 2 and 3 motions, ASA has closed

this gap to a difference of only about 1%. When also the other techniques are taken into

account, ASA, together with SSC, has the lowest misclassification rates both with 2 and

3 motions. Let us take a deeper look at these results. The ability of PAC to estimate

the global subspace size is proved by the fact that the results of EMS+ are improved (the

misclassification rates were halved) simply by using PAC together with the old sin2-based

affinity function. On the other hand, when PAC was used together with the new affinity

function SCbA (in the plots this combination is called ASA) the misclassification rates

were further halved leading to one of the lowest error rates in the state of the art of mo-

tion segmentation: 0.96% with 2 motions and 2.23% with 3 motions. This result testifies

that, when the subspaces generated by each motion are almost orthogonal (i.e. the mo-

tions are independent), then the assumption of the classical affinity functions (angles are

well separated) is verified and good performance can be obtained. For example, Table 3.2

shows that PAC with sin2-based affinity function has a very low misclassification rate in

the checkerboard sequences (2 motions): 0.85% against 1.00% of ASA. However, when the

input sequence become more challenging and the motions become partially dependent, like

in the articulated case or when more than 2 motions are present, then the sin2-based affin-

ity function is not so effective anymore. In fact, the misclassification rate of PAC with sin2

on the articulated sequences is 5.48% with 2 motions and 21.81% with 3 motions, whereas

112

3.3. Adaptive Subspace Affinity

(a) 2 Motions

(b) 3 Motions

(c) 2 and 3 Motions

Figure 3.20: Mean and variance of the misclassification rate on the Hopkins155 database
(number of motions known).

113

CHAPTER 3. Motion Segmentation

2 Motions Checkerboards(78) Articulated(11) Traffic(31) All types(120)
Method % Avg % Var % Avg % Var % Avg % Var % Avg % Var

LSA best k 5.15 0.93 3.65 0.18 4.95 0.75 4.96 0.80
ALC 1.49 0.21 10.70 2.25 1.75 0.03 2.40 0.40
EMS+ 2.20 0.52 2.32 0.15 5.58 1.19 3.08 0.68
GMC&NSI 3.75 0.62 8.05 0.72 1.69 0.49 3.61 0.62
SSC 1.12 NA 0.62 NA 0.02 NA 0.82 NA
PAC&sin2 0.85 0.20 5.48 1.53 2.02 0.39 1.58 0.37
ASA 1.00 0.324 1.75 0.10 0.57 0.016 0.96 0.22
ASA N-cuts 0.69 0.164 2.47 0.28 0.57 0.02 0.82 0.13

3 Motions Checkerboards(26) Articulated(2) Traffic(7) All types(35)
Method % Avg % Var % Avg % Var % Avg % Var % Avg % Var

LSA best k 19.09 1.70 9.57 1.83 16.06 0.33 17.94 1.42
ALC 5.00 0.84 21.08 8.34 8.86 1.73 6.69 1.32
EMS+ 8.76 2.30 6.38 0.82 6.354 1.53 8.15 2.00
GMC&NSI 2.29 0.33 6.38 0.82 1.67 0.02 2.87 0.28
SSC 2.97 NA 1.42 NA 0.58 NA 2.45 NA
PAC&sin2 4.47 1.26 21.81 9.51 0.96 0.01 4.76 1.41
ASA 2.41 0.65 3.72 0.28 1.11 0.04 2.23 0.50
ASA N-cuts 4.27 0.81 4.79 0.46 1.11 0.03 3.67 0.63

Table 3.2: State of the art performance comparison. Misclassification rates on the Hop-
kins155 database. In brackets the number of sequences for each type of video. NA stands
for value not available.

ASA is able to reach rates of 1.75% and 3.72% respectively. Only SSC is comparable to

ASA scoring a misclassification rate of 0.82% with 2 motions and 2.45% with 3 motions.

However, it should be remarked that for ASA the only two free parameters, P and F , were

fixed for the whole database whereas the results of SSC were obtained by tuning some of its

parameters per each sequence of the database. GMC with NSI also preforms well, however,

with 2 motions its misclassification rate is higher than ASA and SSC: 3.61%. Finally, the

misclassification rate of ASA using N-cuts is very similar to ASA (which uses K-means),

however, K-means tends to be slightly faster than N-cuts. For this reasons from now on

ASA will be used only with K-means as final spectral clustering algorithm.

In Figure 3.21 the histogram of the misclassification rates of ASA is presented. The

majority of the 155 sequences, 134, has a misclassification rate between 0% and 1%, and

the total number of sequences with a misclassification rate below 5% is 145. The median

114

3.3. Adaptive Subspace Affinity

Figure 3.21: Histogram of the misclassification rate of ASA on the Hopkins155 database;
each bin has a width of 1%.

Computational time (in seconds) ALC EMS+ ASA
Total with 2 motions 55625 2807 59066
Avg. with 2 motions 464 23 492
Total with 3 motions 33205 1902 35557
Avg. with 3 motions 949 56 1016
Total overall 88831 4709 94623
Avg. overall 573 31 610

Table 3.3: Computational time comparison between ALC, EMS+ and ASA on the Hop-
kins155 database. The three algorithms were implemented in Matlab and ran on an Intel
Core2 Duo CPU @ 2.66GHz with 16 GB RAM.

misclassification of every group is always 0% with the exception of the articulated with 3

motions group where the median is equal to the mean (due to the presence in this group

of only 2 sequences).

Table 3.3 extends the previously shown Table 3.1 with the computational time of ASA.

Clearly, the computational time is the main drawback of ASA which performs (in terms of

time) similarly to ALC. Despite the fact that ASA has a much better misclassification rate

than both ALC and EMS+, such a long computational time requires further analysis. In

Figure 3.22 a pie chart shows the average time (in percentage) spent by ASA on the whole

Hopkins155 database. The different steps included in the plot are: the time required to

115

CHAPTER 3. Motion Segmentation

Figure 3.22: Pie chart that shows the distribution of the time spent by each of the ASA
steps.

compute all the PAs for all the ranks, the time required to perform the polynomial fitting,

the time required to compute the affinity and the time required to perform the spectral

clustering. As the pie chart shows 96% of the total time is spent on the polynomial fitting

routine, only 3% is spent on the computation of the PAs and less than 1% is spent on both

the affinity computation (PAC and SCbA functions) and on the clustering step. This plot

explains why ASA is so demanding in terms of computational power. Nevertheless, this

is also a clear indication that the bottle neck is not in the method itself (PAC or SCbA),

therefore, the computational time could easily be reduced by adopting a faster and simpler

Median Filter or Savitzky-Golay filter [133] instead of using a polynomial fitting.

Synthetic database: extension to 4 and 5 motions

In order to verify how ASA performs on a different database, when the number of motions

and noise increase, further tests on synthetic sequences with 2, 3, 4 and 5 motions (10 dif-

ferent sequences for each number of motions) and an increasing noise level were performed

(from 0 to 2 pixels of standard deviation). In total 200 synthetic sequences were used. The

misclassification rates are shown in Table 3.4. All the misclassification rates are smaller

than 1%. For a given number of motions the misclassification rate remains rather stable

even when the noise level increases. Moreover, the behaviour of ASA even with 4 and 5

motions (more than the motions in the Hopkins155 database) is very satisfactory.

By pointing out and tackling the instability of the PAs, introducing a new way of

116

3.4. Estimation of the number of motions

Motions 2(10) 3(10) 4(10) 5(10)
Our Proposal % Avg % Avg % Avg % Avg
σnoise = 0 0.00 0.30 0.36 0.68
σnoise = 0.5 0.09 0.12 0.28 0.75
σnoise = 1 0.09 0.24 0.31 0.64
σnoise = 1.5 0.37 0.42 0.40 0.79
σnoise = 2 0.63 0.24 0.49 0.89

Table 3.4: ASA misclassification rates on synthetic sequences with 2, 3, 4 and 5 motions
and increasing noise level. In brackets the number of sequences for each type of video.
Variance was omitted as always very close to zero.

selecting the set of PAs to use (PAC function), and presenting a new adaptive affinity

measure (the SCbA), ASA has reached one of the best results on the Hopkins155 database

without requiring any tuning process or any prior information about rank or noise. The

synthetic results have confirmed the good performance of ASA which has proved to be

robust also in presence of 4 and 5 motions. The only prior information that remains

necessary is about the number of moving objects in the scene. In the next section a

technique for estimating this data is presented and in Section 3.4.1 the results of ALC,

EMS+ and ASA are compared when dealing with no priors at all.

3.4 Estimation of the number of motions

In the literature review presented in Chapter 2 it has emerged that very few of the existing

algorithms are able to estimate how many objects are moving in a scene. Such an estimation

is actually very challenging, as stated in [38], to the extent that the number of moving

objects is usually assumed to be known information. However, this is a strong assumption

that greatly limits the use of motion segmentation algorithms in real applications, where

the number of objects is typically an unknown variable.

Theoretically, LSA does not require this information. However, the performance of the

algorithm when the number of motions is not known degrade rapidly. This information is

vital for the final step of the algorithm: the spectral clustering of the affinity matrix. Yan

and Pollefeys in [72] suggest to use Normalized Cuts [5]. Normalized Cuts, however, is

117

CHAPTER 3. Motion Segmentation

Figure 3.23: Eigenvalues spectrum of L (first row) and of Lsym (second row) for a synthetic
sequence with 3 rotating and translating cubes and increasing Gaussian noise level.

only a good solution when the number of motions is known. When this information is not

available, at every iteration the decision whether to terminate the process or not has to be

taken. The authors of Normalized Cuts suggest to use the Cheeger constant [129] or the cost

of the last cut in order to take this decision. The Cheeger constant and the cost of the last

cut are both clues of how difficult is to split the graph by removing a specific edge. When,

after finding the minimum cut, one of these two values is “high” it becomes worthless to

split the graph any further and the process should stop. Therefore, these indicators need a

threshold to decide when the value is “high enough”. The problem is that such a threshold

is strongly influenced by the noise level and the number of motions. This explains why

most of the Normalized Cuts implementations require advance knowledge of the number

of motions.

Having tested the difficulty of using the Cheeger constant or the cost of the last cut, a

different way was taken by exploiting some spectral graph theory theorems. Specifically

118

3.4. Estimation of the number of motions

the following proposition.

Proposition (Number of connected components) Let G be an undirected graph with

non-negative weights. Then, the multiplicity n of the eigenvalue 0 of the Laplacian matrix

equals the number of connected components in the graph [134].

In [5] it is shown that finding the minimum cut for splitting the graph, is equivalent to

thresholding the values of the second smallest eigenvector of the Laplacian matrix L:

L = D− A,
�

�

�

�3.19

where A is the adjacency matrix (specifically, in our case it corresponds to the affinity

matrix), and D is a P ×P diagonal matrix, P being the number of tracked features. Every

entry D(i, i) contains the sum of the weights that connect node i to all of the others. Hence,

matrix L and the proposition could be used in order to estimate the number of connected

components, which is also the number of motions. The proposition refers to an ideal case

where the eigenvalues that correspond to the connected components are exactly equal to 0

(which means no noise and fully independent motions). However, perturbation theory says

that, in practical cases, when there is not an ideal situation, the last n eigenvalues may

not be equal to 0, nevertheless, they should be very close to those of the ideal case [134].

Naturally, in motion segmentation, especially with real sequences, the ideal situation is

not expected, but theoretically it should be possible to identify the threshold between the

eigenvalues that correspond to the connected components and the remaining eigenvalues.

The proposition holds true also when using the eigenvalue spectrum of the Symmetric

Normalised Laplacian matrix Lsym [134,135] instead of the Laplacian matrix L:

Lsym = D−1/2LD−1/2.
�

�

�

�3.20

Figure 3.23 shows the eigenvalues of L (first row) and of Lsym (second row) of a synthetic

119

CHAPTER 3. Motion Segmentation

sequence with 3 motions and with an increasing noise level. The last 3 eigenvalues, which

should suggest the number of motions, are plotted in red. In the plots all the eigenvalues

are normalised in order to allow an easier comparison between L and Lsym. As can be seen,

when the noise increases the difference between the red eigenvalues and the others decreases.

However, the difference between the fourth to last and the third to last eigenvalues remains

rather large in the Lsym spectrum, while it becomes really small in the L spectrum. In the

next section the experimental results of the estimation of the number of motions using L

and Lsym are compared.

As was previously stated, when the Cheeger constant or the cost of the last cut are

used, the main problem is the choice of a robust threshold. The same problem is present

when using the spectrum of the eigenvalues, regardless of the choice of L or Lsym. However,

with the Cheeger constant or the cost of the last cut there is not much information that

can be used in order to take such a decision, while with the eigenvalues the information of

the whole spectrum could be exploited in order to gain more knowledge about that specific

video sequence. Nevertheless, the threshold cannot be fixed as the noise greatly influences

the differences between eigenvalues, as shown in Figure 3.23. In order to dynamically find

a threshold for every case, different techniques were implemented and tested.

In general, estimating the number of motions using the eigenvalue spectrum can be

seen as a two class classification problem: class 1 is the class of the eigenvalues above the

threshold, while class 2 is the class of the eigenvalues below the threshold. The number

of eigenvalues inside class 2 provides the estimation of the number of motions. The first

tested technique is the Fuzzy c-means clustering (FCM) [136]. This technique returns a

probability of belonging to class 1 and to class 2 for every element of the set. The second

technique is the Otsu’s method [137] which chooses the threshold that minimises the intra-

class variance. As in this particular case it seems that the inter-class variance is also playing

an important role, a trade-off between the intra and the inter-class variance was sought.

Similarly to the case of the PAC function (Section 3.3.3), inspiration was again taken from

the Linear Discriminant Analysis (LDA), which minimises the intra-class variance while

120

3.4. Estimation of the number of motions

maximising the inter-class variance. With LDA the chosen threshold t is given as:

t = argmax
t

Q1(µ1(t) − µall)
2 + (1 − Q1)(µ2(t) − µall)

2

Q1σ2
1(t) + (1 − Q1)σ2

2(t)
,

�

�

�

�3.21

where µ1 and σ1 are the mean and the variance of class 1 given a certain threshold t, µ2

and σ2 are the mean and the variance of class 2, and µall is the mean of all the eigenvalues

spectrum. In the original formulation of LDA, Q1 is the probability of belonging to class

1. However, in this context this probability is unknown (knowing the probability means

knowing already the number of motions). At the same time, not providing any weight for

the two classes would mean that both classes are equally likely even though this is not true

(the number of eigenvalues of class 1 should be much bigger than the number of eigenvalues

of class 2). Therefore, Q1 should be seen as a weight that has to favour class 1 over class

2.

The nominator of Equation (3.21) measures the inter-class dissimilarity, whereas the

denominator measures the intra-class dissimilarity. Therefore, choosing the threshold that

maximises this ratio is like choosing the threshold that maximises the inter-class dissimi-

larity and minimises the intra-class dissimilarity.

In the next section, one of the experiments presented is about the estimation of the

number of motions using the eigenvalue spectrum of L and of Lsym, and thresholding them

with FCM, OTSU and LDA.

3.4.1 Experiments

As explained in Section 3.4, different thresholding techniques were tested in order to per-

form the estimation by exploiting the eigenvalues spectrum of either the Laplacian matrix

L or the Symmetric Normalised Laplacian Lsym. In both cases the Laplacian matrices are

built after EMS has been used in order to estimate the dimension of the global space.

Concerning the setting of the thresholding algorithms, different values were tried and here

the sets that obtain the best results on a random subset of the Hopkins155 database (70

121

CHAPTER 3. Motion Segmentation

|Error| FCM OTSU LDA
L µ 0.6 0.8 0.7

σ 0.6 0.9 0.9
Lsym µ 0.23 0.47 0.37

σ 0.19 0.48 0.42

Table 3.5: Mean and variance of the absolute value error of the estimation of the number
of motions on the Hopkins155 database.

sequences) are presented. For the estimation using FCM, the best results are obtained by

counting the eigenvalues with a probability of belonging to class 2 equal to or greater than

0.9. For OTSU the best results are obtained using only the last 20 eigenvalues. For LDA

the best results are obtained with Q1 = 0.8.

A first qualitative study suggests that Lsym is more robust against noise, as previously

shown in Figure 3.23. Quantitative tests were also performed estimating the number of mo-

tions on the Hopkins155 database using both L and Lsym with the thresholding techniques

explained in the previous section. Table 3.5 shows mean and standard deviation of the error

of the estimated number of motions for the tested thresholding techniques (the absolute

value of the error is considered). As expected, independently of the technique, mean and

standard deviation are always considerably smaller when using Lsym than when using L.

As the Symmetric Normalised Laplacian spectrum seems to be more robust against noise,

Lsym was chosen in order to estimate the number of motions.

From the results of Table 3.5, OTSU seems to be the weakest measure, while FCM and

LDA have very similar performances. In order to perform a deeper test, extra noise was

added to the Hopkins155 sequences. Another six databases derived from the Hopkins155

were created by adding random Gaussian noise with standard deviations of 0.5, 1, 1.5, 2,

2.5 and 3 pixels, to the tracked point positions. The original database plus the six derived

from it composes a bigger database with 1085 video sequences. The estimation of the

number of motions performed on all of the six databases confirmed the weakness of OTSU,

as shown in Figure 3.24. The numbers on each boxplot correspond to the percentage of

sequences where the error in the number of cluster estimation was (from bottom to top)

122

3.4. Estimation of the number of motions

Figure 3.24: Boxplots of the error of the estimation of the number of motions.

0, ±1, ±2 or greater than 2 (in absolute value). From these boxplots it is possible to see

that FCM and LDA both have very high percentage of correct estimation and their first

and second quartile collapse on the median.

FCM and LDA have similar performances. A deeper analysis reveals that FCM is

particularly good with 2 motions: on the original database it has a percentage of correct

estimation equal to 84.2% against 75.0% of LDA. However, when the number of motions

increases, FCM appears to be less robust than LDA: with 3 motions the percentage of

correct estimation of FCM is equal to 54.3% against 57.1% of LDA. The fact that the

Hopkins155 database has more sequences with 2 motions tends to favour FCM. A similar

conclusion can be drawn when the noise level increases, in fact the difference between

the correct estimation of FCM and LDA drops from 6.4%, in the original Hopkins155

(considering all the sequences), to only 1.3%, in the database with 3 pixels of noise level,

despite that the sequences with 2 motions are still over-represented in the Hopkins155

database.

In order to verify the reliability of these clues, an experiment with synthetic sequences

with 4 and 5 motions, and different noise levels, was performed comparing FCM and LDA.

The results of this experiment, shown in Figure 3.24(b), confirmed the conclusions drawn

from the results on the Hopkins155 database and show that LDA outperforms FCM in

terms of percentage of correct estimation (40.7% against 27.9%). If one wants to focus

only on the Hopkins155 database, which has a majority of sequences with 2 motions, on

123

CHAPTER 3. Motion Segmentation

average FCM would have a slightly better performance than LDA. However, given the

results just presented, if one wants to develop a motion segmentation algorithm for generic

purposes (and not specialised on the Hopkins155 database) it would be better to use LDA.

As the aim of this work is not to find the best tuning for the Hopkins155 but is to have

a generally good motion segmentation algorithm, LDA will be used as the thresholding

technique of the Lsym eigenvalue spectrum.

EMS+ combined with the LDA estimation of the number of motions is called Enhanced

Local Subspace Affinity (ELSA), while ASA combined with the LDA estimation of the

number of motions is called Automatic-ASA (A-ASA). In the following section ELSA, A-

ASA and ALC [66] are compared when applied to the Hopkins155 database and to the

synthetic database without requiring any other data than the trajectory matrix.

Segmentation without any prior information

Finally, the misclassification rate when segmenting without any prior knowledge is pre-

sented. To the best of our knowledge, besides ELSA and A-ASA, the only technique which

is able to provide satisfactory results without prior knowledge is the ALC [66]. Theoreti-

cally, also SSC [67] should be able to estimate the number of motions, however, no results

were provided under this scenario. Moreover, SSC should be tuned for each sequence in

order to obtain good performances, while ALC, ELSA and A-ASA can be run with the

same set of parameters on the whole database.

In Section 3.2 it was shown that EMS+ performs better than the simpler EMS. However,

the dimension of the global space (i.e. the final rank used) and the spectrum of the

eigenvalues of Lsym have a mutual influence on each other. Thus, after the first estimation

of the rank performed with EMS an iterative procedure is used. In an alternating fashion

the number of motions and the rank are estimated. This alternation is iterated until one

of the following conditions is verified: the estimated number of motions does not change,

a loop is detected, or a maximum number of iterations is reached (for the experiments

the maximum number of iterations is set to 5, however this condition is never verified

124

3.4. Estimation of the number of motions

in our tests). Summarising, the results presented in this section for ELSA are obtained

using: EMS+ for the model selection, and the eigenvalue spectrum of Lsym thresholded

dynamically by LDA for the estimation of the number of motions. As far as A-ASA is

concerned, the number estimation can simply be performed by thresholding with LDA the

eigenvalue spectrum of the matrix Lsym, built using the affinity matrix computed after the

SCbA step. As for ALC, it can be forced to select the segmentation with the smallest

coding length, in this way the number of motions is not required.

In order to compare the three techniques an upper bound in the number of motions

estimated equal to 5 was imposed. It should be noted that computing the misclassification

rate when the number of estimated motions does not match with the real number could be

done in different ways. In fact the error due to overestimation of the number of motions

could be somehow corrected in a post-processing step with a merging strategy. On the other

hand, an underestimation usually means that points from at least two different motions are

considered as the same one, so it can be seen as a more crucial error. However, also in this

case one could argue that for each cluster a deeper analysis could be performed in order

to correct the segmentation with a splitting approach rather than a merging one. In these

experiments the misclassification rate when the number of motions is wrongly estimated

is as follows. All the possible one-to-one associations between the estimated groups of

trajectories and the ground truth groups of trajectories are taken into account (clearly,

some groups will not be associated). The association that minimises the error, computed

by summing the error of the associated groups and the number of features that belong to

non-associated groups, is selected.

Figure 3.25 shows mean and variance of ALC, ELSA and A-ASA when using no prior

information about the number of motions in the scene. Table 3.6 shows mean and variance

of the misclassification rate divided by number of motions and per type of sequence. The

overall mean misclassification rate is similar for the three algorithms: 12.86% for ALC,

10.75% for ELSA, and 9.75% for A-ASA. However, if the median is taken into account

the differences among the algorithms become more remarkable: the median of ALC is

125

CHAPTER 3. Motion Segmentation

(a) 2 Motions

(b) 3 Motions

(c) 2 and 3 Motions

Figure 3.25: Mean and variance of the misclassification rate on the Hopkins155 database
without any prior knowledge.

126

3.4. Estimation of the number of motions

2 Motions Checkerboards(78) Articulated(11) Traffic(31) All types(120)
Method % Avg % Var % Avg % Var % Avg % Var % Avg % Var

ALC 14.15 1.86 5.27 1.67 12.03 2.06 12.73 1.93
ELSA 8.90 2.48 10.36 2.41 12.82 3.91 10.15 2.86
A-ASA 11.08 2.69 6.80 1.85 5.60 1.76 9.27 2.40

3 Motions Checkerboards(26) Articulated(2) Traffic(7) All types(35)
Method % Avg % Var % Avg % Var % Avg % Var % Avg % Var

ALC 12.51 1.04 6.72 0.73 17.46 2.03 13.31 1.25
ELSA 10.71 1.53 11.17 2.50 19.84 4.29 12.82 2.19
A-ASA 11.37 1.92 3.72 0.28 8.04 1.44 10.27 1.72

Table 3.6: State of the art comparison. Misclassification rates on the Hopkins155 database
without prior information. In brackets the number of sequences for each type of video.

10.23%, the median of ELSA is only 1.31%, whereas the median of A-ASA is strikingly

low: 0.27% . This suggests that ELSA, and especially A-ASA, perform very well in most

of the sequences and they fail in only a few of them. This is confirmed also by the results

shown in Figure 3.26 where the histogram of the misclassification is presented. From the

histogram it is possible to appreciate that the number of sequences with a misclassification

rate between 0 and 1% are 97 for A-ASA, 77 for ELSA and around 45 for ALC.

The reason why A-ASA and ELSA are generally better than ALC, but when they fail

the misclassification is higher than ALC, could be explained by Figure 3.7(i) to 3.7(p),

page 79. From these plots it is possible to notice that if the rank is not well estimated

(especially if it is underestimated) the affinity values quickly collapse to 1 (in the case of

underestimation) or to 0 (in the case of overestimation). When this happens the clustering

process becomes very noisy, hence the segmentation result is greatly affected.

To conclude, in this chapter the performance of these three algorithms, in terms of

number estimation, is analysed. Table 3.7 shows the mean error in absolute value and the

percentage of correct estimation. Both these pieces of information are important, as a small

mean error is desirable in terms of good estimation of the number of motions, however,

in terms of misclassification rate when even a small mistake is made in the estimation

the segmentation could be dramatically affected. Therefore, a high percentage of correct

127

CHAPTER 3. Motion Segmentation

Figure 3.26: Histogram of the misclassification rate of ALC and ELSA on the Hopkins155
database; misclassifications from 0% to 5% are sub-sampled with bins of 1%, misclassifica-
tions greater than 5% are sub-sampled with bins of 5%.

estimation rate is even more important than a low mean error (although the majority of

the times these two values are connected). The table shows that ALC estimation is not

very efficient, on the whole database only 25.81% of the time it is able to estimate correctly

the number of motions, with an average error of 1.16. On the other hand, ELSA and A-

ASA perform much better with ELSA being slightly more precise: on the whole database

ELSA correct estimation happens 70.97% of the time, with an average error of 0.37, while

A-ASA correct estimation happens 67.10% of the time with an average error of 0.42. This

small difference between ELSA and A-ASA may be due to the iterative refined estimation

of ELSA while A-ASA performs the estimation only one time without any refining process.

Nevertheless, A-ASA has a better performance in terms of misclassification rates, proving

once again the robustness of the algorithm.

Synthetic database: extension to 4 and 5 motions

As the Hopkins155 database contains a maximum of 3 motions, some synthetic experiments

were also done in order to have an idea of the behaviour of the three algorithms when the

128

3.4. Estimation of the number of motions

2 Motions µ(|error|) % correct estimation

ALC 1.13 30.00
ELSA 0.33 75.00
A-ASA 0.39 70.00

3 Motions µ(|error|) % correct estimation

ALC 1.25 11.43
ELSA 0.49 57.14
A-ASA 0.51 57.14

Whole DB µ(|error|) % correct estimation

ALC 1.16 25.81
ELSA 0.37 70.97
A-ASA 0.42 67.10

Table 3.7: Comparison of the estimation of the number of motions on the Hopkins155
database.

number of motions increases. Figure 3.27 shows the mean of misclassification rates for

any given number of motions. In all of the cases the three algorithms have very low

misclassification rates (always below 6.5%). With 2 motions the three algorithms have

very similar performances and have a misclassification rate below 1%, independently from

the noise level. When the number of motions becomes higher, with 3 and 4 moving objects,

ELSA and A-ASA are more stable than ALC. In the challenging case of 5 motions ELSA

and ALC performances degrade faster than the ones of A-ASA, and their misclassification

rates change depending on the noise level. Note that the oscillations of the misclassification

rate are rather big for ELSA and ALC, nevertheless, in the plot the y-axis goes only from

0% to 6% giving the illusion of an even bigger change. Despite of the scale, A-ASA shows

a very robust behaviour keeping its misclassification rate always below 1%.

In terms of estimation of the number of motions the three algorithms perform almost

perfectly: ELSA and A-ASA have 100% of correct estimation while ALC scores a correct

estimation rate of 99.5% (in one sequence with 3 motions and 2 pixels of standard deviation

noise it estimates only 2 motions, this can be seen in Figure 3.27(b) where ALC has for

this case a high misclassification rate).

The behaviour of the three algorithms in these synthetic experiments is coherent with

129

CHAPTER 3. Motion Segmentation

(a) 2 Motions (b) 3 Motions

(c) 4 Motions (d) 5 Motions

Figure 3.27: Mean misclassification rate and variance versus noise level for synthetic ex-
periments.

that on the Hopkins155 database and confirm the robustness and the efficiency of the

A-ASA algorithm.

3.5 Conclusion

In this chapter new algorithms for the motion segmentation problem were proposed. From

the analysis of the state of the art performed in Chapter 2 the LSA algorithm [22] emerged

as one of the best performing techniques and also one of the most promising, as LSA is

able to deal with a variety of types of motions. Therefore, this chapter was opened with a

more detailed explanation of the LSA. From the study of LSA some weaknesses emerged,

in particular the difficult and unstable rank estimation step, the assumptions implied by

the use of the sin2-based affinity function and the required knowledge about the number

of motions.

In Section 3.2 a much more robust rank estimation was proposed: the Enhanced Model

130

3.5. Conclusion

Selection+ (EMS+). EMS+ is based on the fact that principal angles follow a specific

pattern when the rank of the trajectory matrix is increased. EMS+ exploits such a pattern

in order to identify which rank leads to the affinity matrix with the highest information

content (i.e. the highest entropy). Results showed that EMS+ outperforms every LSA-

based technique without requiring any prior information, besides the number of motions,

and without any tuning of its parameters. Moreover, EMS+ performs similarly to the

Agglomerative Lossy Compression algorithm (ALC) [66], but EMS+ is more than 18 times

faster than ALC.

Despite the very good performance, EMS+ still has few drawbacks that were pointed

out at the beginning of Section 3.3. While the first of its weaknesses is mainly theoretical,

in that EMS+ is suboptimal because it would never choose a perfectly binary affinity

matrix (which is an ideal and not existing case, anyway), the second weakness is much more

relevant: due to the behaviour of the principal angles the choice of using a rank size equal to

r rather than r±1 can lead to very different misclassification rates. Given that the real rank

of the trajectory matrix is unknown such a behaviour is quite undesirable. Firstly, in order

to obtain a more robust behaviour the principal angles trends were smoothed. Then, a new

way of selecting the rank based on the analysis of the principal angles clusterization (PAC)

was proposed. PAC selects the rank where the principal angles between similar and different

subspaces are best separated. PAC not only performs a robust estimation (as shown by

the results), but it also introduces a new way of interpreting the selection of the rank: in

fact the selected rank was allowed to change for each principal axes of the local subspaces.

Finally, PAC would have a maximum value in the ideal case, solving also the theoretical

issue emerged with EMS+. The results showed that PAC has better performance than

EMS+. However, the new proposed algorithm, Adaptive Subspace Affinity (ASA), does

not include only the smoothing of the principal angles and the PAC function. ASA contains

also a completely new affinity measure that is automatically able to adapt itself in order

to fit the distribution of the principal angles. The major achievement of this measure

is that it can deal with every distribution of principal angles minimising the effect of an

131

CHAPTER 3. Motion Segmentation

erroneous rank estimation of the trajectory matrix while maximising the distance between

similar and different local subspaces. Results of the experiments show that, even without

changing the value of the only two free parameters of ASA, its misclassification rates are

among the lowest in the literature.

Finally, in Section 3.4 a technique for estimating the number of motions in the scene

was presented. The estimation of the number of motion is a challenging task and it is

considered one of the open issues of motion segmentation [38]. The estimation of the

number of motions presented in this thesis is based on the analysis of the eigenvalue

spectrum of the Symmetric Normalised Laplacian matrix. The final number of motions

is automatically estimated by finding a threshold dynamically computed using an LDA

inspired approach. The combination of EMS+ and the estimation of the number of motions

is called Enhanced Local Subspace Affinity (ELSA). The combination between ASA and

the estimation of the number of motions is called Automatic ASA (A-ASA). ELSA and A-

ASA were compared with one of the best performing techniques for motion segmentation

without prior knowledge: the ALC. Results showed that both ELSA and A-ASA have

better performances than ALC, with A-ASA scoring the lowest misclassification rate both

with 2 and with 3 motions.

Future work should aim to reduce the computational time of ASA by adopting other

ways for reducing the principal angles oscillations (this task took 96% of the total compu-

tational time of ASA). For example, instead of performing a time-expensive polynomial

fitting, a simple and faster Median Filter or the Savitzky-Golay filter [133] could be enough

to reduce the oscillations of the principal angles. Moreover, instead of selecting one spe-

cific rank it may be possible to use the whole set of ranks exploiting also the information

contained in the derivative of the principal angles trend. In fact, angles between differ-

ent subspaces tend to increase faster and earlier than angles between similar subspaces.

The use of the whole trend could provide the extra information necessary to solve am-

biguous cases, whilst simultaneously removing the rank estimation (and all the connected

problems).

132

4
Joint Estimation of Segmentation and

Structure from Motion

In this chapter a generic framework that can be applied to correct the result of any motion

segmentation algorithm is proposed. The proposed solution not only assigns the trajectories

to the correct motion (motion segmentation) but it also solves the 3D location of multi-body

shape and fills the missing entries in the measurement matrix. Such a solution is based

on two fundamental principles widely used in SfM but never applied, so far, to motion

segmentation: the multi-body motion is subject to a set of metric constraints given by the

specific camera model, and the shape matrix describing the 3D shape is generally sparse.

The chapter is organised as follows. In Section 4.1 there is an introduction, followed

in Section 4.2 by a brief overview about multi-body SfM. In Section 4.3 an explanation

of the single and multi-body SfM problem with missing data is offered. In Section 4.4

one theoretical approach and its limits are presented, while the final proposed algorithm is

described in Section 4.5. The experiments on synthetic and real data sets, which validate

the proposed algorithm, are shown in Section 4.6. In Section 4.7 conclusions are drawn

and future work is discussed.

133

CHAPTER 4. JESS

Figure 4.1: An example of SfM: different views of the same object are taken and a SfM
algorithm can recover the 3D structure of the object and the position of the camera for
each view. Image taken from [138].

4.1 Introduction

SfM is a problem closely connected to motion segmentation. SfM algorithms can recover

the 3D structure of a moving object and the description of the motion for each frame.

Figure 4.1 provides an example of SfM: given different views of the same book, a SfM

algorithm can recover the 3D structure of the book and the position of the camera for

each of the views. The input of SfM algorithms is a trajectory matrix where, very often,

it is assumed that only the trajectories of one object are stored. However, most of the

time a simple tracker cannot focus on one single object, therefore, it is more likely that

the tracked points belong to different objects with different motions. Hence, in order

to apply canonical SfM algorithms a motion segmentation algorithm should first group

together trajectories that follow the same motion (i.e. trajectories that belong to the same

object). The use of motion segmentation algorithms as a pre-processing step for SfM seems

a straightforward application. In Figure 4.2 an example of how motion segmentation can

be used as a pre-processing step of SfM is shown. If the segmentation is correct SfM can

recover the 3D structure and the motion of the objects. However, SfM requires that no

outliers are present in the trajectories of the segmented objects. This means that the

motion segmentation algorithm has to provide a perfect segmentation. In Figure 4.3 one of

134

4.1. Introduction

Figure 4.2: An example of motion segmentation as a pre-processing step of SfM.

Figure 4.3: When the segmentation result has even only one single error, like the trajectory
of W2 wrongly associated to W3, the 3D reconstruction S3 may not be correct. On the other
hand, the motion description M3 is still reliable as it is influenced by all of the points of W3

and only one single error plays a minor role.

the trajectories of W2 is wrongly classified as belonging to W3, this mistake leads to a possibly

wrong reconstruction of the 3D shape generated by W3. The motion description of W3 should

be reliable in spite of the error, in fact the motion is influenced by the all of the points

and if the majority is correctly classified the influence of one error plays a minor role [139].

In the previous chapters the motion segmentation problem was deeply investigated. The

final algorithm proposed, ASA/A-ASA, solves part of the common problems of motion

segmentation algorithms and proved to lead to very competitive results. Nevertheless, for

some video sequences the final segmentation is still not perfect.

In this chapter, rather than trying to propose a further algorithm or a further improve-

135

CHAPTER 4. JESS

ment of ASA, a deeper connection between motion segmentation and SfM is drawn. A

generic framework that can be applied to correct the result of any motion segmentation

algorithm is proposed. It is a novel optimisation framework for the estimation of the

multi-body motion segmentation and 3D reconstruction of a set of image trajectories in

the presence of missing data. The proposed solution not only assigns the trajectories to

the correct motion (motion segmentation) but it also solves the 3D location of multi-body

shape and fills the missing entries in the measurement matrix.

The problem of missing entries it is popular not only in motion segmentation or SfM.

In many practical problems of interest, one would like to recover a matrix from a sampling

of its entries. In general, this is impossible without some additional information. In many

instances, however, the matrix we wish to recover is known to be structured in the sense

that it is low-rank or approximately low-rank [140] (as in the case of the trajectory matrix).

An example of a problem in which the missing entries has to be recovered could be the

Netflix problem [141]. Users (rows of the data matrix) are asked to rate movies (columns

of the data matrix), but users typically rate only very few movies. Yet one would like

to complete this matrix so that the vendor (here Netflix) might recommend titles that

any particular user is likely to be willing to order. In this case, the data matrix of all

user-ratings may be approximately low-rank because it is commonly believed that only a

few factors contribute to an individual’s tastes or preferences [140]. Triangulation from

incomplete data is another case in which given a scattered matrix it is necessary to recover

the missing entries. Despite its popularity, the problem of finding a matrix of minimum

rank that satisfies a set of affine constraints is NP-hard [142]. Nevertheless, if the problem

is opportunely relaxed solutions can be found.

Thanks to the way the JESS algorithm is built, the missing entries of the trajectory

matrix can be recovered while computing the segmentation and the 3D reconstruction.

Such a solution is based on two fundamental principles widely used in SfM but never

applied, so far, to motion segmentation: the multi-body motion is subject to a set of metric

constraints given by the specific camera model, and the shape matrix that describes the 3D

136

4.2. Single versus multi-body SfM

shape is generally sparse. Such constraints are jointly included in a unique optimisation

framework which iteratively enforces these constraints in three stages. First, given an initial

(almost correct) segmentation, metric constraints are used to estimate the 3D metric shape

and to fill the missing entries according to an orthographic camera model. Then, wrong

assignment of the trajectories to each motion are detected using sparse optimisation of

the shape matrix. A final reclassification strategy assigns the detected points to the right

motion or discards them as outliers. Experiments which show consistent improvements to

previous approaches both on synthetic and real data are provided.

4.2 Single versus multi-body SfM

In recent years several works have presented solutions to the 2D trajectories motion segmen-

tation problem of a video sequence [58,67,71,81,108,124]. Most of the motion segmentation

methods assume that the complete feature trajectories are visible throughout the sequence

and do not deal with outliers introduced by a wrong association of the tracker. Recently,

some approaches [65,67,75,143] have also tackled these issues providing promising results.

Once a segmentation of the image trajectories is available other higher level tasks such

as 3D reconstruction can take place. For instance, SfM methods may be applied to the

2D tracked features with the aim of recovering both the 3D coordinates of the points and

the motion of the whole structure for each frame. Numerous techniques have proposed

extensions to Tomasi and Kanade’s SfM algorithm (refer to Chapter 2, Section 2.3.6 for

an explanation of the Tomasi and Kanade SfM technique) in order to deal with rigid,

articulated and also non-rigid objects [10, 144, 145]. Furthermore, different methods deal

with the SfM problem in the case of missing data in the original 2D feature trajectories [146,

147]. However, all of these techniques share the common assumption that there is a single

object moving in the scene.

Several attempts have been made to directly solve the multi-body SfM problem. Most of

them tried to compute the motion segmentation intrinsically, exploiting epipolar geometry

and mixing algebraic and statistical tools [148–151]. The main limitation of these methods

137

CHAPTER 4. JESS

is the sensitivity to noise and outliers. Moreover, to the authors knowledge, the work

presented in [152] is the only multi-body reconstruction approach that is able to deal with

missing data. The main idea of [152] is to enforce two-view constraints between consecutive

frames and to use a model selection strategy to perform the segmentation. However, this

strategy can lead to under and over segmentation results if the model selection is not

properly fed with the right candidates. As stated in [151] a practical multi-body SfM

algorithm which can handle realistic sequences is still missing.

The large amount of successful single-body SfM algorithms and the weaknesses of the

multi-body SfM algorithms mean that the link between motion segmentation and SfM

is essential and requires strengthening. If the multi-body SfM problem is to be solved, a

successful motion segmentation algorithm has to be applied as a pre-processing step in order

to feed the single-body SfM algorithms with the trajectories of one object at a time. So

far, this is how motion segmentation and SfM have been related to each other. However,

SfM theory provides some constraints that motion segmentation algorithms have never

exploited. Specifically, the metric constraints that have to be satisfied by each estimated

motion, and the fact that the shape matrix that describe the 3D shape of the multi-body

case is sparse. The aim of the work described in this chapter is to bring the motion

segmentation and SfM problems closer by trying to use SfM constraints in order to solve

the motion segmentation problem. If this would be possible, then motion segmentation

and SfM could be solved simultaneously by the same algorithm.

Unfortunately, as will be described in Section 4.4, the constraints provided by SfM

are useful but do not provide a unique solution for the multi-body case. Nevertheless,

it was possible to develop an iterative bilinear optimisation strategy that, using the SfM

constraints, corrects an initial (and possibly erroneous) solution given by any motion seg-

mentation algorithm. Furthermore, the algorithm achieves a 3D multi-body reconstruction

and it fills the missing entries according to an orthographic camera model. These con-

straints are particularly effective in the presence of missing data, since metric constraints

are the key to obtain effective matrix completion of the 2D trajectories as demonstrated

138

4.3. Structure from motion with missing data

in [147]. Hence, an initial segmentation is exploited to solve the multi-body SfM problem,

which, in turn, provides unexploited constraints to correct the segmentation. Once a stop

condition is verified a reclassification strategy can take place in order to reclassify the re-

moved points. The proposed approach, Joint Estimation of Segmentation and Structure

from motion (JESS), is a generic framework that can be applied to correct the result of

any motion segmentation algorithm and it contributes towards the challenging direction of

merging the problems of motion segmentation and SfM.

In the following section the theory for the single and multi-body SfM cases are developed.

During this analysis the two constraints used, the metric constraints and the sparsity of

the multi-body shape matrix, will be highlighted.

4.3 Structure from motion with missing data

First the bilinear SfM problem with missing data is introduced for the single object shape

case. The solution to this problem provides the metric constraints given by an orthographic

camera model. This formulation will then be extended to the multi-body case showing

explicitly the sparsity constraint.

4.3.1 Single shape SfM with missing data

Consider a set of Pn image point trajectories extracted from an object n that rigidly moves

in F frames. By stacking each image trajectory in a single matrix Wn of size 2F × Pn, it is

possible to express the global motion and the 3D shape matrices of the single object n in

bilinear form as:

Wn = MnSn =

R1n t1n

...
...

RFn tFn

Sn,
�

�

�

�4.1

where Mn is a 2F × 4 motion matrix and Sn is a 4 × Pn shape matrix in homogeneous

coordinates. Each frame-wise element Rfn, for f = 1, . . . , F , is a 2×3 orthographic camera

139

CHAPTER 4. JESS

matrix that has to satisfy the metric constraints of the model (i.e. RfnR
T
fn = I2×2). The

2-vector tfn represents the 2D translation of the rigid object. Here also the registered W̄n

measurement matrix is introduced, such that W̄n = Wn − t1T
Pn

where 1T
Pn

is a vector of Pn

ones and t = [tT
1 , . . . , tT

F]T . Thus, one of the bilinear factors includes a set of non-linear

constraints given by the camera matrix, i.e. Mn resides in a specific motion manifold [147].

In the case of missing data given by occlusions or interrupted image tracks, the binary

mask matrix Gn of size 2F × Pn can be introduced such that a 1 represents a known entry

and a 0 a missing one. In order to solve the bilinear components, and thus the SfM problem,

the equivalent optimisation problem [146] can be defined as:

minimize ‖Gn ⊙ (Wn − MnSn)‖2

subject to RfnR
T
fn = I2×2, f = 1, . . . , F.

�

�

�

�4.2

This problem requires not only the estimation of the camera motion Mn and the 3D shape

Sn, but also the imputation (filling) of the missing entries in Wn. The reader is referred to

Buchanan and Fitzgibbon’s work [146] for an extensive review of the approaches able to

solve the missing data SfM problem.

4.3.2 Multi-body SfM with missing data

If the 2D image tracks belong to a set of N independently moving objects, it is still possible

to formalise the problem in bilinear form. For the moment, the segmentation of each image

trajectory is considered as given. Thus, by grouping the measurement in a single W it is

possible to write:

W = [W1|W2| . . . |WN],
�

�

�

�4.3

where Wn ∈ R
2F×Pn , for n = 1, . . . , N , is the trajectory matrix that contains only the Pn

points of motion n (i.e. P =
∑N

n=1 Pn). Consequently, the 2F × 4N aggregate motion

140

4.4. Motion segmentation and SfM: the missing constraint

matrix M and the 4N × P aggregate shape matrix S are written as:

M = [M1|M2| . . . |MN−1|MN] and S =

S1 0 . . . 0

0 S2 0 . . . 0

... 0
. . . 0

...

0 0 SN−1 0

0 . . . 0 SN

,
�

�

�

�4.4

so that:

W = MS.
�

�

�

�4.5

It is now possible to note that the aggregate shape matrix S is remarkably sparse.

Finally, the optimisation problem with missing data is defined as:

minimize ‖G⊙ (W− MS)‖2

subject to RfnR
T
fn = I2×2, f = 1, . . . , F,

n = 1, . . . , N,

�

�

�

�4.6

where the matrix G of size 2F ×P defines the overall missing entries mask matrix. Solving

this problem not only requires the estimation of the bilinear components, but also the

classification of each 2D point to the correct moving body.

4.4 Motion segmentation and SfM: the missing constraint

In this section the attempt to solve the motion segmentation and SfM problems simultane-

ously is described. The missing constraint that would allow the complete merging of the

two problems is highlighted.

In principle, each strategy that decreases the reprojection error of Equation (4.6) is

appropriate to the task. However, the bilinear formulation W = MS has a wide set of

solutions, which greatly increases the chance to fall into a local minima. In order to

give a qualitative evaluation of the solution space, let us consider M̂ and Ŝ solutions that

141

CHAPTER 4. JESS

correspond to a minimum of Equation (4.6). In this case, if the metric constraints are not

considered, any non-singular matrix Q4N×4N could be interposed between the factors, such

that:

W = M̂QQ−1Ŝ = ~M~S,
�

�

�

�4.7

would provide another valid solution. This happens in the case of non missing data. When

some image trajectory points are missing the problem becomes even more complicated.

From now on, let us focus on the reconstruction, without considering the translation.

This means that from now on only the registered trajectory matrix will be used and each

matrix Mfn = Rfn. This simplification corresponds with the assumption that the objects

are rigid. Therefore, for the object n, matrix Mn can be written as:

Mn =

R1n

...

RFn

=

M1n

...

MFn

.
�

�

�

�4.8

In the single-body case, an affine reconstruction ~M1 of the motion matrix, and an affine

reconstruction ~S1 of the shape matrix can be obtained by SVD:

SVD(W) = UDVT = ~M1~S1.
�

�

�

�4.9

Then, in order to obtain the final valid motion and structure of the object, metric con-

straints of Equation (4.2) are imposed, so that matrix Q3×3 can be uniquely identified:

~M1QQ
−1~S1 = M1S1

subject to M̃f1QQ
T M̃f1

T
= I2 ∀f = 1, . . . , F.

�

�

�

�4.10

If a similar approach is followed also for the multi-body case, it becomes necessary to

deal with N matrices of the form Q3N×3 (one for each moving object). A solution could be

142

4.4. Motion segmentation and SfM: the missing constraint

found by solving N times the problem:

Mn = M̃Qn

subject to MfnM
T
fn = I2 ∀f = 1, . . . , F,

∀n = 1, . . . , N.

�

�

�

�4.11

Note that M̃ is the whole affine matrix of size 2F × 3N , which means that it contains the

motions of all of the objects. Equation (4.11) can be solved by a non-linear least-square

algorithm but only for one object. However, without any additional constraint, at each

iteration n the same components used to recover the first object could be reused in order

to recover the remaining N − 1 objects. The optimisation would constantly fall inside the

same minima unless an additional constraint is found, or the motion of the reconstructed

object is “removed” from M̃.

4.4.1 Projections of subspaces

Finding the additional missing constraint on the motions is more challenging that antici-

pated. Hence, a different direction was initially followed: once an object n is reconstructed

by a non-linear least-square optimisation, the idea was to “subtract” Mn from M̃. Note that

it is not possible to perform a simple matrix subtraction because M̃ is affine, therefore, Mn

is spread throughout the whole M̃ matrix. Besides, the dimensions of the two matrices do

not match.

Nevertheless, projectors may help to perform such a subtraction. For the sake of clarity

a case with only 2 moving objects is considered. Specifically, Q1 such that M1 = M̃Q1 can be

obtained by solving Equation (4.11). If there is a way to “extract” M1 from M̃, then it should

be possible to apply the same procedure in order to obtain M2 (and so on recursively in case

of more motions) without the issue that the non-linear optimisation used for Equation (4.11)

may give back always M1 (as M1 has been “deleted”).

143

CHAPTER 4. JESS

Figure 4.4: An example of two non orthogonal subspaces MM1
and MM2

. When MM2
is

projected onto MM⊥

1

it “looses” some of its components. Specifically, during the projection
PM1

M is lost. However, PM1
M does not contains only MM1

but also part of MM2
.

Let us define the orthogonal projector operator PM1
: M̃ → M̃M1

[153] as:

PM1
= M1(M1

TM1)
−1M1

T ,
�

�

�

�4.12

where M̃M1
represents motion 1 within the subspace generated by M̃. Therefore, the orthog-

onal complement of PM1
[153] is another projector that projects from the subspace M̃ to

the subspace M̃M⊥

1

that should contain all of the remaining motions (in this example the

motion 2) except motion 1:

PM⊥

1

= I− PM1
.

�

�

�

�4.13

If the subspaces spanned by the columns of M1 and M2 (let us call them MM1
and MM2

) were

orthogonal, then the non-linear least-square optimisation could be applied directly to M̃M⊥

1

in order to get M2. In fact, in such a space the components of M1 are completely suppressed.

Unfortunately, the subspaces are rarely completely orthogonal hence the components

of M2 are spread between M̃M⊥

1

and M̃M1
as shown in Figure 4.4.

In order to reconstruct correctly M2 it is not sufficient to consider MM⊥

1

, instead it is

144

4.4. Motion segmentation and SfM: the missing constraint

necessary to take into account also the subspace MM1
. Given this, motion 2 has to be

written as a composition between the components projected onto MM⊥

1

and onto MM1
:

M2 =

how much of M2 is on M1

︷ ︸︸ ︷

M̃M1
Q2M1

+ M̃M⊥

1

Q2M⊥

1
︸ ︷︷ ︸

how much of M2 is on M⊥

1

�

�

�

�4.14

Note that the ambiguity is not yet solved. In fact, while Q2M⊥

1

is now completely

unrelated to the first motion, Q2M1
is operating within the subspace of M1. This means that

there is a matrix Q1M1
that can recover M1 from M̃M1

. Hence, it is still necessary to avoid

the solution Q2M1
= Q1M1

that would give M1 = M̃M1
Q2M1

. The problem can be written as:

M2 = M̃M1
Q2M1

+ M̃M⊥

1

Q2M⊥

1

�

�

�

�4.15

subject to

Mf2M
T
f2 = I2 ∀f = 1, . . . , F.

�

�

�

�4.16

Q2M1
Q2M⊥

1

T 6= 0
�

�

�

�4.17

The constraint of Equation (4.16) guarantees a metric solution, while the constraint of

Equation (4.17) guarantees that the two matrices are not zero. This automatically avoids

the solution Q2M1
= Q1M1

. In fact, note that if Q2M1
= Q1M1

then M1 = M̃M1
Q2M1

, hence, in

order to satisfy the constraint of Equation (4.16): M1 = M̃M1
Q2M1

+ M̃M⊥

1

0. What is obtained

with this double projection is to constrain the issue only to the components of M2 that are

shared with M1, nevertheless the problem is still open.

The projector idea would work in an ideal case with perfectly orthogonal subspaces,

but in real situations it does not solve the problem. One additional constraint, which

would lead to a simultaneous solution of the motion segmentation and the SfM problems,

is still missing, and at present it remains an open issue. In the next section a different

approach is presented. The idea is to compensate for the missing constraint by relaxing

the problem. Hence, instead of starting from a completely unknown segmentation, an

initialisation provided by a motion segmentation algorithm can be adopted. The initial

145

CHAPTER 4. JESS

Figure 4.5: Summary of the JESS algorithm.

segmentation will be corrected by forcing metric and sparse constraints, moreover, the 3D

reconstruction of the objects will be provided.

4.5 The JESS algorithm

In the previous chapters it was shown that, at present, state of the art motion segmentation

algorithms provide very good results with very low misclassification rates (but yet not

perfectly correct). Furthermore, in the previous sections of this chapter two constraints

that have never been used in motion segmentation were highlighted. In this section, an

optimisation procedure able to correct an initial segmentation is presented. The flow of the

proposed algorithm is shown in Figure 4.5. Such a procedure starts from an initial solution

to the multi-body motion segmentation problem (MS block in Figure 4.5), then exploits

the constraints of multi-body SfM (SfM block in Figure 4.5) to iteratively correct the

segmentation (Error detection block in Figure 4.5). The key idea is that misclassified points

tend to disobey the motion model to which they are assigned and, therefore, contribute to

the final reprojection error. The question is how to define an approach that can select the

points that contribute the most to the error and remove them. Optionally, the algorithm

could then be extended so that, once the segmentation is corrected, the removed points

may be assigned to the proper group or discarded in the case that they are outliers (Reclass.

block in Figure 4.5).

In the next section, two constraints that appear in the multi-body SfM problem are

presented: metric constraints and sparsity of the shape matrix S. After enforcing these

constraints, the algorithm detects wrongly classified points and reclassifies them into the

146

4.5. The JESS algorithm

correct motion group.

4.5.1 Multi-body metric constraints

Each motion is subject to the respective constraints given by the chosen camera model,

as already shown in Equation (4.1). Specifically, the matrix M cannot assume arbitrary

values but it lies on a particular motion manifold [147]. When missing data affect the

measurements, this constraint can be used both to design specific optimisation algorithms,

and to reduce the chance of computing solutions that correctly minimise the reprojection

error but that lead to inaccurate 3D reconstructions [147]. In the context of this approach,

a SfM problem has to be solved for each of the N registered measurement matrices W̄ =

[W̄1| . . . |W̄N], possibly with missing data. Note that this step, not only finds S and M by

enforcing the metric constraints, but it also fills in the missing entries of W̄ by exploiting

the motion description and the 3D shape of the moving objects. This is a new way of filling

missing entries. In fact, other approaches, like [67], perform this step by removing rows

and columns that correspond to trajectories with missing data from W̄ (and, therefore, they

renounce to the information provided by these trajectories). Following this, they estimate

the segmentation, and only at this point they fill the missing data. Even in the cases where

there is no removal, like in [71, 128], only the 2D data is considered, while in [147] it is

shown that missing data are filled more effectively using 3D information.

For this SfM step the Bilinear Augmented Lagrangian Multipliers (BALM) [154] method

was used. BALM has the property of enforcing exact metric constraints and the ability to

deal with a high ratio of missing data. Besides, it is a generic bilinear optimiser, thus it

could be used also for non-rigid and articulated SfM.

Therefore, an initial segmentation result is used to divide the trajectory matrix in N

trajectory matrices. For each trajectory matrix n the BALM algorithm is applied providing

the motion matrix Mn and the structure matrix Sn. At the end of this step the aggregate

matrices described in Equation (4.4) can be created.

Clearly, as the initial segmentation may contain errors this result needs to be corrected.

147

CHAPTER 4. JESS

The correction is performed by exploiting the sparse constraint of the aggregate shape

matrix S, as explained in the following section.

4.5.2 Sparsity of the matrix S

The sparse pattern of the aggregate shape matrix can be used in order to estimate the

matrix S which best satisfies such a constraint. In order to make this problem tractable,

the ℓ1 norm can be used as a surrogate for sparsity. In such terms, the optimisation problem

becomes solving, for each point p in S, a basis pursuit denoising problem [155]:

min
s̄p

1

2
||w̄p − M s̄p||22 + τ ||̄sp||1,

�

�

�

�4.18

where τ ∈ R
+ is a regularisation parameter, w̄p is the registered trajectory vector p, and the

3N×P matrix S̄ = [̄s1 . . . |̄sP] represents the collection of non-homogeneous 3D coordinates.

Accordingly, the matrix M of size 2F ×3N is the motion matrix minus the translation vector

at each frame. Each 3N -vector s̄p contains 3(N − 1) zeros, thus the image trajectory w̄p

can be described by a (small) subset of the 3D points. The sparse optimisation is initialised

so that S̄ = S, where S is the aggregate shape matrix obtained at the end of the previous

SfM step. Note that the resulting S̄ from the sparse optimisation may not satisfy the 3D

metric structure of the objects. However, the result of the minimisation can be used to

detect points which do not comply with the previously estimated metric constraints.

For the sparse minimisation step the Sparse Reconstruction by Separable Approxima-

tion (SpaRSA) algorithm [156] was used. SpaRSA is able to solve large-scale optimisation

problems efficiently and it requires only the tuning of the regularisation term τ (Equa-

tion (4.18)). The parameter τ was empirically tuned on 50% of the synthetic database.

During this tuning process a correlation between the value of τ and the number of motions

in the sequence was noted. Specifically, an increase in the number of motions requires

an increase in values of τ . Such a correlation can be explained by the fact that in the

presence of many motions the overall reprojection error tends to be higher, therefore, the

148

4.5. The JESS algorithm

sparse contribution has to be weighted accordingly. In all of the experiments the following

τ values were used: for 2 motions τ = 0.9, for 3 motions τ = 1.6, for 4 motions τ = 2.5

and for 5 motions τ = 3.2.

At the end of this step it is possible to define two different reconstructed trajectory

matrices, the one obtained after imposing the metric constraints:

W̃ = [M1S1| . . . |MNSN],
�

�

�

�4.19

and the one obtained by optimising the reprojection error while imposing the sparsity

constraint:

Ŵ = [M1S̄1| . . . |MN S̄N].
�

�

�

�4.20

4.5.3 Identifying candidate errors

In order to identify the candidate errors the trajectory matrices W̃, obtained after the SfM

stage, and Ŵ, obtained after the sparse minimisation stage, are compared. Since SfM and

sparse optimisation perform arbitrary normalisations on W̃ and Ŵ, aligning the matrices so

that the image centroids are at the respective origins, and the mean distance of all of the

points from the origin is
√

2, is a necessary step.

After registration, the 2D distance between W̃ and Ŵ, for each point p and for each frame

f is computed. Two measures to identify the candidates are used: a) the point pa with

the highest 2D reprojection difference for any of the F frames, b) the point pb with the

highest mean 2D reprojection difference over all the F frames. Therefore, at each iteration

the points pa and pb are removed from W̄.

4.5.4 Stop condition

Once the candidate errors are removed the algorithm can iterate again from the beginning

until a stop condition is verified. Note that if JESS is applied to an algorithm that is known

to have an average misclassification rate of x% a valid stop condition would be to let JESS

149

CHAPTER 4. JESS

iterate for M = Px% (P being the total number of points, hence, M is the expected

number of misclassified points). If one wants to be cautious more than one attempt could

be given for any expected error. Therefore, the number of iterations would become AM,

where A is the number of attempts for each error. Note also that, if desired, the last step of

the algorithm can reclassify all the removed points that were considered candidate errors,

so that no information is lost.

Nevertheless, JESS is provided also with another stop condition for those cases when

there is no prior information about the expected misclassification rate. The most intuitive

condition is to use the reprojection error of Equation (4.6): when the error decreases below

a threshold, then the algorithm should stop. However, tests showed that such an error

could have a non increasing behaviour when the number of errors in the segmentation

increases. On the other hand, it was also noted that when the segmentation is correct

the reprojection error tends to become stable. Hence, one useful condition is that the

difference in the reprojection error between one iteration and the following has to be less

than a threshold for a fixed amount of iterations. Specifically, it was empirically chosen

that the reprojection error has to be smaller than 5× 10−7 for at least 3 consecutive JESS

iterations. Moreover, this first condition was associated with a second that is: the 2D

reprojection difference of the candidate point pa (or pb) has to be smaller than 0.5. When

both conditions are satisfied the algorithm can terminate. The conditions are purposely

very strict as it is better to perform more iterations and remove as many errors as possible

rather than to stop the algorithm too early and leave some errors in the segmentation.

However, to avoid the algorithm running indefinitely a maximum number of iterations can

also be defined.

4.5.5 Reclassification

Once the stop condition is satisfied all of the removed points can be reclassified to the

correct motion. For this task, the NSI algorithm [58] is used. NSI was chosen because it

provides a fast and correct measure of similarity. Moreover, such a measure can also be

150

4.6. Experiments

used to detect outliers which, by definition, do not belong to any of the motions.

A summary of JESS is shown in Algorithm 4.1. Starting from an initial motion segmen-

tation solution, the main building blocks of JESS are the computation of SfM with missing

data, which enforces the metric constraints, the sparse minimisation, which detects candi-

date errors, and the reclassification step, which enables the reassignment of the detected

misclassified points to the correct motion.

Algorithm 4.1 JESS

1: Compute an initial mot. segm., arrange W as in Equation (4.3) and build W̄.
2: repeat
3: ∀ motion n = 1, . . . , N compute SfM: ~Wn = MnSn.
4: Perform sparse minimisation, Equation (4.18), and obtain S̄.
5: Compute W̃, Equation (4.19), and Ŵ, Equation (4.20), and register them.
6: ∀ points p = 1, . . . , P and ∀ frames f = 1, . . . , F compute 2D distance Dist(p, f)

between W̃ and Ŵ.
7: Find pa = maxp(Dist(f, p)) ∀f = 1 . . . F .

8: Find pb = maxp(
∑F

f=1 Dist(f, p)/F).
9: Remove pa and pb (if pb 6= pa) from W̄.

10: until stop condition satisfied
11: Reclassify removed points

4.6 Experiments

Different features of the algorithm were evaluated: the validity of JESS independently from

the stop condition, the results using the stop condition, the ability of the algorithm to deal

with missing data (using the stop condition), performances of the reclassification strategy

and quality of the final 3D reconstruction. For simplicity, whenever JESS is stopped

before the reclassification strategy it will be called JESS-R, whereas the name JESS will

be referred to the complete algorithm (including the reclassification step). Experiments

were performed on four different datasets: the synthetic and the Hopkins155 databases,

already described in Section 2.5, a new database composed of 12 sequences published

in [103] by the same authors of the Hopkins155 database (for simplicity these additional

set is called Hopkins12 database), and a new sequence composed of two known videos used

in SfM.

151

CHAPTER 4. JESS

The databases are now described briefly as a reminder. The proposed synthetic se-

quences contain a set of moving cubes, with 56 tracked features each, that randomly rotate

and translate. The database includes different sequences of 50 frames each with a varying

number of independent motions and amount of noise. Specifically, 10 randomly generated

motions were tested with 2, 3, 4 and 5 independently moving objects (cubes) giving a total

of 40 sequences. Gaussian noise with standard deviation of 0, 0.5, 1, 1.5 and 2.0 pixels was

added to each sequence (for a total of 200 sequences).

The Hopkins155 database contains 104 checkerboard sequences, 38 traffic sequences

and 13 other sequences (among which are sequences with articulated motions). As JESS

assumes independence of the motions, the Hopkins155 database is a very challenging test.

The Hopkins12 is a similar database with 12 checkerboard sequences in the presence of

missing data due to occlusions. The database contains 3 sequences with 3 motions and 9

sequences with 2 motions. The average number of feature points is 418, while the average

number of frames is 35. The average amount of missing data is 8.33%.

Different tests were performed with an increasing numbers of misclassified points (ran-

domly selected). In order to check algorithmic convergence the simplest case with only

1 misclassified point per sequence was tested. Further tests were performed with higher

numbers of misclassified points: 1%, 2%, 3%, 4%, 5% and 10% of the total number of

points in each sequence. In the previous chapter it was shown that current motion segmen-

tation algorithms have an average misclassification rate smaller than 10% so these tests go

beyond the expected real scenario. Moreover, in order to simulate occlusions in one of the

tests 10% of the data of each sequence was randomly removed.

The Hopkins155 and Hopkins12 databases are well known benchmarks among the MS

community, however, as JESS involves SfM constraints these databases are not the best test

sets. In fact not all of the sequences contain enough motion to satisfy SfM requirements.

For this reason JESS was also tested on a sequence, called House and Hotel, obtained by

merging two known sequences, used in SfM, in one single video with two moving objects.

One frame of the House sequence and its trajectories are shown in Figure 4.6, while one

152

4.6. Experiments

(a) First frame (b) Trajectories

Figure 4.6: Example of the House sequence.

(a) First frame (b) Trajectories

Figure 4.7: Example of the Hotel sequence.

frame of the Hotel sequence and its trajectories are shown in Figure 4.7. The two sets of

trajectories were unified in a unique sequence and translated apart so that the whole set

of points could be seen as a new real sequence that contains two moving objects. The new

sequence is composed of 30 frames, the House object contains 672 points while the Hotel

object contains 133 points for a total of 805 trajectories.

4.6.1 Fixed number of iterations

The first set of experiments evaluated the ability of JESS-R to converge to the correct seg-

mentation. Accordingly, the algorithm was allowed to run for a fixed number of iterations

without imposing a stop condition. The number of iterations was 3 ×M, where M was

the number of initially misclassified points.

In Figure 4.8 it is possible to observe the percentage of identified errors (i.e. how many

153

CHAPTER 4. JESS

Figure 4.8: Average results of JESS-R with a fixed amount of iterations applied to the
synthetic database that contains different numbers of motion (from 2 to 5). On the x-
axis the initial amount of misclassified points is shown, on the y-axis the percentage of
detected errors is shown. © is the percentage of the removed misclassified points over all
the misclassified points.

of the initially misclassified points were identified as a percentage of all of the original

misclassified points, a line with © symbol) for each different number of motions and level

of noise. The results show a very robust behaviour of JESS-R against different numbers

of motion. JESS-R is robust also in the presence of an increasing amount of noise and

initial errors: the percentage of error detection is 100% for almost all of the cases. Also, it

is worth to stress the importance of the tests with only 1 misclassified point, in fact these

tests showed that even in the presence of only 1 error, JESS-R was always able to detect

it (among all of the 56 × N points of each sequence) within only 3 iterations, proving the

validity of the algorithm.

The same experiment was repeated on the real sequences of the Hopkins155 database

where initial misclassified points were randomly selected. Averaged results are shown in

Figure 4.9. Similarly to the results on the synthetic database, the real test demonstrates

154

4.6. Experiments

Figure 4.9: Average results of JESS with fixed number of iterations applied to the Hop-
kins155 database. On the x-axis the initial amount of misclassified points is shown, on the
y-axis the percentage of detected errors over all the misclassified points is shown (JESS-R).
On the bottom of the plots the bars show from left to right and for each percentage of
misclassified points: initial misclassification, misclassification after removal of errors by
JESS-R, misclassification after removal and reclassification by JESS.

the stability of the behaviour of JESS-R against the initial misclassification rate: the

percentage of error detection is stable between 70 and 80%.

This first set of tests shows that JESS-R is able to greatly reduce the misclassification

rate of the input sequences. On the synthetic database correction is almost perfect while

on the challenging sequences of the Hopkins155 database any of the initial misclassification

rates is reduced, at least, by 70%.

4.6.2 Stop condition

The aim of the second set of experiments was to verify the proposed stop condition (Sec-

tion 4.5.4). The maximum number of iterations was set to be (x+3)% of the points of the

sequence, x being the percentage of initial misclassification.

Results on the synthetic database are shown in Figure 4.10. The detection of the errors

is very similar to the case with a fix amount of iterations. In this set of experiments also

the amount of false positives, as a percentage of all of the points of the sequence, are

155

CHAPTER 4. JESS

Figure 4.10: Average results of JESS-R with stop condition applied to the synthetic
database that contains different numbers of motion (from 2 to 5). On the x-axis the initial
amount of misclassified points is shown, on the y-axis the percentage of detected errors is
shown. © is the percentage of the removed misclassified points over all the misclassified
points. False positives as a percentage of the total amount of points of each sequence are
shown in a red ×.

reported (a line with × symbol). False positives are points that were removed by JESS-R

even if they were correctly classified. As shown in Figure 4.10 the amount of false positives

ranges between 5% to 15%. An almost perfect error detection behaviour testifies that the

condition is not usually satisfied until all of the errors have been removed. On the other

hand, a small amount of false positives indicates that the algorithm terminates the loop

not too long after detection of the last error. All of the removed points, including the false

positives, will be reassigned to the correct motion by the reclassification strategy.

Results on the Hopkins155 database are shown in Figure 4.11. The results are very

stable and show only a slight decreasing trend when the misclassification rate increases.

This may suggest that the stop condition may be too strict in the presence of high misclas-

sification rates and not completely independent motions. Nevertheless, even when a tuning

156

4.6. Experiments

Figure 4.11: Average results of JESS with stop condition applied to the Hopkins155
database. On the x-axis the initial amount of misclassified points is shown, on the y-
axis the percentage of detected errors over all the misclassified points is shown (JESS-R).
False positives as a percentage of the total amount of points of each sequence are shown
in a red ×. On the bottom of the plots the bars show from left to right and for each
percentage of misclassified points: initial misclassification, misclassification after removal
of errors by JESS-R, misclassification after removal and reclassification by JESS.

process for the stop condition is avoided, JESS-R is able to reduce the initial misclassifica-

tion rate by 70%, with 1% up to 3% of initial error rate. With a higher amount of initially

misclassified points, the error detection is reduced of about 60% for misclassification rates

of 4% and 5%, and to above 50% with a misclassification rate of 10%. Similarly to the

results on the synthetic database, the amount of false positives is stable, in the case of the

Hopkins155 database is around 4%.

4.6.3 Missing data

This set of experiments was performed on synthetic and real sequences with missing data

in order to demonstrate the algorithm performance on such challenging cases. Tests on

the synthetic and the Hopkins155 databases were performed with 10% of missing data

(randomly selected) and using the proposed stop condition. Figure 4.12 shows the results

of JESS-R on the synthetic database. The behaviour of JESS-R is very robust and the

percentage of error detection is almost always 100% and never less than 80%. On the

157

CHAPTER 4. JESS

Figure 4.12: Average results of JESS-R with stop condition and 10% of missing data
applied to the synthetic database that contains different numbers of motion (from 2 to
5). On the x-axis the initial amount of misclassified points is shown, on the y-axis the
percentage of detected errors is shown. © is the percentage of the removed misclassified
points over all the misclassified points. False positives as a percentage of the total amount
of points of each sequence are shown in a red ×.

Hopkins155 database JESS-R is able to keep an error detection rate of approximately 60%

for all of the amounts of initial misclassification tested, as shown in Figure 4.13.

A further test on real sequences was performed on the Hopkins12 database. In this case

the missing data were not simulated but were due to occlusions, while the misclassified

points were given by the errors of the GPCA [103] and SSC [67] segmentation algorithms1.

The results are summarised in Table 4.1. Amount of missing data varied from 0.96% to

22.20% of the total points, with an average rate of 8.33%, while initial misclassification was

between 0% and 48.6%. In this test the imposed maximum number of iterations (in case

the stop condition is not satisfied before) was equal to 10% of the points of the sequence

(clearly much less than the initial misclassification of some of the sequences). Considering

1GPCA and SSC implementations available at vision.jhu.edu; SSC parameters used were: τ = 0.01,
subspace size equal to 4, cluster step performed by Random Walks [157].

158

4.6. Experiments

Figure 4.13: Average results of JESS with stop condition and 10% of missing data applied
to the Hopkins155 database. On the x-axis the initial amount of misclassified points is
shown, on the y-axis the percentage of detected errors over all the misclassified points is
shown (JESS-R). False positives as a percentage of the total amount of points of each
sequence are shown in a red ×. On the bottom of the plots the bars show from left to right
and for each percentage of misclassified points: initial misclassification, misclassification
after removal of errors by JESS-R, misclassification after removal and reclassification by
JESS.

all of the sequences with an initial error rate not higher than 10%, JESS-R is able to detect

the errors and decrease the initial misclassification in the majority of the cases.

When the initial misclassification level is above 10% results are not significant as JESS-

R assumes an almost correct initial segmentation, therefore, those cases are not consid-

ered in the following discussion. The misclassification rate of JESS-R applied to GPCA

did not improve the initial rate (excluding of course the cases when the initial misclas-

sification was already 0%) only in three sequences (oc1R2RC g23 whose misclassification

remained constant, oc2R3RCRT g13 whose misclassification became worse by 0.32%, and

oc2R3RCRT g23 whose misclassification became worse by 1.07%). In all of the three cases

this is due to the fact that the stop condition was prematurely verified. Similarly, when

JESS-R is applied to the results of SSC, only in one case JESS-R did not improve the

initial segmentation (oc1R2RC g13, whose misclassification became worse by 0.01%).

Overall, the results of these tests showed that JESS-R can deal successfully also with

159

CHAPTER 4. JESS

Name MD GPCA JESS-R JESS SSC JESS-R JESS

oc1R2RC 4.8% 34.30% 35.76% 34.45% 0.46% 0.00% 0.00%

oc1R2RCT 4.5% 12.36% 9.67% 11.82% 2.36% 0.22% 1.27%

oc1R2RCT g12 10.1% 4.33% 0.00% 2.16% 0.00% 0.00% 0.00%

oc1R2RCT g13 5.2% 3.52% 1.02% 1.64% 3.05% 1.28% 1.41%

oc1R2RCT g23 1.0% 3.16% 0.00% 0.00% 0.00% 0.00% 0.23%

oc1R2RC g12 10.0% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

oc1R2RC g13 6.0% 2.24% 0.00% 0.00% 0.41% 0.42% 0.41%

oc1R2RC g23 0.6% 0.78% 0.78% 0.78% 0.00% 0.00% 0.00%

oc2R3RCRT 13.1% 38.33% 35.71% 33.62% 48.61% 50.00% 49.68%

oc2R3RCRT g12 22.2% 4.94% 4.29% 3.70% 0.00% 0.00% 0.00%

oc2R3RCRT g13 9.7% 5.37% 5.69% 5.37% 39.13% 39.05% 38.62%

oc2R3RCRT g23 12.7% 9.97% 11.04% 9.71% 44.09% 47.32% 41.73%

Table 4.1: Average results of JESS applied on the results of the GPCA and SSC algorithms
on the Hopkins12 database. MD: Missing Data; GPCA/SSC: misclassification of GPCA
or SSC algorithm; JESS-R: misclassification of the JESS algorithm before reclassification;
JESS: misclassification of the complete JESS algorithm.

sequences that contain missing data. Also when JESS-R was tested on the Hopkins12 and

Hopkins155, which are composed by sequences that are not ideal for the application of

SfM constraints, JESS-R was able to reduce the initial misclassification rate in most of the

cases. Moreover, in those few cases where the misclassification was not improved, the error

introduced by JESS-R was only marginal.

4.6.4 Reclassification strategy

All of the results discussed until here have concerned the detection and removal of seg-

mentation errors. If it is required, once the segmentation has been improved, the removed

points can be reintroduced using a reclassification strategy, as explained in Section 4.5.5.

The reclassification strategy on the synthetic database with a fixed number of iterations

shows a success rate, on average, of 99.99%. When the stop condition is used, and more

points are removed, the success rate remains very high: 99.95%. The same result was

confirmed also with the missing data, with a success rate of 99.97%.

Results of the reclassification strategy on the Hopkins155 database are shown on the

bottom of the plots of Figures 4.9, 4.11 and 4.13. The first bar shows the initial misclassi-

160

4.6. Experiments

fication while the second presents the misclassification after the removal of the points and

the third gives the misclassification after the reclassification strategy. Often the misclas-

sification before and after the reclassification remains the same (i.e. the reclassification

works perfectly in most of the cases), only in a few occasions the misclassification after

the reclassification is slightly increased. This small increment that happens in some cases

also testifies that the SfM constraints used by JESS, and never exploited before, can solve

some of the cases where rules (like NSI) used in classical motion segmentation algorithms

would fail.

Overall, these results confirm that if the segmentation is mostly correct the reclassi-

fication strategy is able to reclassify the removed points (both errors and false positives)

correctly. The same test was also applied in the case of missing data on the Hopkins12

database and the results are shown in the JESS column of Table 4.1. Even in this case, it

is possible to appreciate that misclassification rates before and after the reclassification are

very similar. Moreover, in none of the relevant cases JESS had a worse misclassification

than GPCA and only in one case (oc1R2RCT 23) JESS had a worse misclassification than

SSC by only 0.23%. In all of the remaining cases (when the initial misclassification was

not already equal to 0%) the final misclassification is always equal or smaller than the one

provided by the tested MS algorithms.

As far as the computational time is concerned, on the whole Hopkins155 database with

1 error per sequence JESS (including reclassification) required on average approximately

20 seconds per sequence (Matlab implementation on Quad-Core @ 2.4GHz, with 16 GB

RAM). Note that the stage of the algorithm that was most time consuming was the sparse

optimisation. This time could be shortened by adopting high performance implementations

of sparse optimisation on Graphic Processing Units [158].

4.6.5 ASA and JESS

In this section the results presented in Section 3.3.5 of ASA applied to the Hopkins155

database are used as an input for JESS (using the stop condition with a maximum limit

161

CHAPTER 4. JESS

of iterations equal to 10% of the total number of points per each sequence). The results

are presented before the reclassification step (JESS-R), which is an optional step, and after

the reclassification step (JESS).

In Figure 4.14 the misclassification rate of ASA, JESS-R and JESS are shown. Note that

JESS-R improves the performance of ASA both with 2 (from 0.96% to 0.76%) and 3 motions

(from 2.23% to 1.85%). Also JESS improves the misclassification rate of ASA, however,

some of the detected errors are wrongly reintroduced by the reclassification strategy, this

leads to a slightly higher error rate than JESS-R. Nevertheless, the error rate of JESS is

never worse than the one of ASA (from 0.96 to 0.86 with 2 motions, while for 3 motions

the error remains constant).

In general the improvement may seem small (or absent in the case of SSC with 3

motions), however, the initial misclassification rates were already small, hence, it is not

possible to note big improvements. Moreover, the aim of JESS-R/JESS is mainly to elimi-

nate errors left in an already good segmentation. It is difficult to appreciate this result in

terms of final average misclassification rate, because those few sequences that have a high

misclassification rate, and therefore that contribute heavily to the final rate, do not satisfy

the assumption of JESS-R/JESS. While the sequences that JESS-R/JESS can correct are

those whose misclassification rate is small but not zero. Table 4.2 offers a detail of the

misclassification rates. As already stated, the improvement is small, sometime there is

no improvement in the misclassification rate. Particularly interesting is that the checker-

board sequences are those where the correction has been less effective, whereas articulated

and traffic sequences show a better correction rate. The reason for this difference relies

probably on the fact that checkerboard sequences contain objects that perform very small

motions, while in the other two groups the motions performed are bigger, and therefore,

the ability of the SfM step to impose camera constraints is more effective. This result gives

also more significance to the previous results of JESS shown on the Hopkins155 database

and on Hopkins12 database, which is composed exclusively by checkerboard sequences.

Another interesting analysis comes from the study of the histograms of the misclassifi-

162

4.6. Experiments

(a) 2 Motions

(b) 3 Motions

(c) 2 and 3 Motions

Figure 4.14: Mean and variance misclassification rate of ASA before and after application
of JESS.

163

CHAPTER 4. JESS

2 Motions Check.(78) Artic.(11) Traffic(31) All(120)
Method %Avg %Var %Avg %Var %Avg %Var %Avg %Var

ASA 1.00 0.32 1.75 0.10 0.57 0.01 0.96 0.22
ASA + JESS-R 0.96 0.33 1.47 0.16 0.00 0.00 0.76 0.23

ASA + JESS 1.04 0.32 1.92 0.10 0.03 0.00 0.86 0.22

3 Motions Check.(26) Artic.(2) Traffic(7) All(35)
Method %Avg %Var %Avg %Var %Avg %Var %Avg %Var

ASA 2.41 0.65 3.72 0.28 1.11 0.03 2.23 0.49
ASA + JESS-R 2.39 0.67 1.19 0.03 0.03 0.00 1.85 0.51

ASA + JESS 2.68 0.64 3.19 0.20 0.27 0.00 2.23 0.49

Table 4.2: Misclassification rates on the Hopkins155 database of ASA with JESS-R (no
reclassification) and JESS.

cation rates shown in Figure 4.15. From this histogram the effectiveness of JESS-R/JESS

can be appreciated much more than from the overall misclassification rates. Note that

JESS-R and JESS improved mainly the sequences with an initial rate below 5% (as ex-

pected), while for sequences with a higher initial rate the improvement was little. On the

other hand, the number of sequences with no error at all increased from from 101 of ASA

to 128 of JESS-R (then to 115 of JESS).

This final test showed that, under the assumption of an almost correct misclassification,

JESS-R/JESS can successfully correct errors left by a MS algorithm. The reclassification

strategy is able to reclassify correctly almost all of the removed points. However, in few

cases the reclassification may fail. This proves that the constraints imposed by JESS are

a key feature for improving the performances of classical MS algorithms. Moreover, note

that when it is possible (i.e. when the remaining points after JESS-R removal are still

sufficient for the desired task) the reclassification is not necessary. The reclassification

strategy is also one of the steps where further investigation could lead to even better

results. The final misclassification rate obtained combining ASA with JESS-R is one of the

smallest in the state of the art of MS among techniques that do not require a tuning stage.

More importantly, JESS produces one of the highest number of perfect segmentations (128

sequences over 156), which is essential for SfM to take place.

164

4.6. Experiments

Figure 4.15: Histogram of the misclassification rate of ASA with JESS-R and JESS on the
Hopkins155 database; misclassification rates from 0% to 5% are sub-sampled with bins of
1%, misclassification rates greater than 5% are sub-sampled with bins of 5%.

4.6.6 House and Hotel test

At the beginning of the Experiments section it was anticipated that the Hopkins155 and

the Hopkins12 databases were not ideal test sets for JESS as they are designed for pure

MS algorithms. As JESS merges MS with SfM, it is required that the tested sequences

satisfy SfM constraints. The tests presented on GPCA, SSC and ASA showed this issue

explicitly. In fact, the checkerboards sequences, which theoretically are among the easiest

sequences in terms of MS, are those in which the improvement gained with JESS is smaller.

Nevertheless, in the test presented in this section a case in which the motions are suitable

for SfM reconstruction is presented. The aim of this test is to verify if the ability to correct

the segmentation is more effective when SfM constraints are satisfied.

Different tests were performed on the House and Hotel dataset. First JESS-R and JESS

were tested with a variable amount of initial misclassification (1 point, 1%, %2%, 3%, 4%,

5%, 10%, 15%, 20%) and no missing data. The results shown in Figure 4.16(a) are the

165

CHAPTER 4. JESS

average results of 10 different runs; each run consisted in a different random selection of the

misclassified points. Until a misclassification of 10% the error detection is perfect and the

reclassification is able to reintroduce all of the removed points correctly. With 15% of initial

misclassification the error detection becomes of 88.35% and therefore the misclassification

rate goes from the initial 15% to 4.2% of JESS-R and finally to 8.6% of JESS. When the

misclassification rate becomes of 20% around 56% of the errors are detected. These results

are very important because they show that when the input sequence contains enough

motion in order to impose correctly SfM constraints, then JESS becomes very effective.

Moreover, it is shown that if the reclassification strategy can count on a perfect initial

segmentation, then the removed points can be correctly reintroduced.

The second experiment was performed with 10% of missing data (randomly selected).

Results are shown in Figure 4.16(b). As expected performances are slightly worse than the

previous case, however, the trend of the error detection is still very similar.

In order to investigate further the ability to cope with missing data, another experiment

was performed with an initial misclassification rate fixed to 10% and variable missing data

from 0% to 40%. The average results of 10 runs are shown in Figure 4.17. In this test it

is possible to appreciate the robustness of JESS with respect to missing data. In fact in

all of the tests JESS is able to identify almost perfectly the 10% of initially misclassified

points, remove them and reclassify them correctly.

Tests performed on the House and Hotel sequence confirmed the conclusions drawn from

the analysis of the results on the Hopkins155 and Hopkins12. Specifically, JESS requires

that the input sequence has enough motion so that SfM constraints can be imposed. When

this happens JESS is able to remove the initially misclassified points very effectively even

in presence of a high percentage of missing data. When the input sequence is not long

enough, like in the Hopkins155 and the Hopkins12 database, JESS is still able to correct

an initial misclassification, however, in this case an exceptional improvement cannot be

expected.

166

4.6. Experiments

(a) No missing data

(b) 10% of missing data

Figure 4.16: Average results of JESS with stop condition applied to the House and Hotel
sequence. On the x-axis the initial amount of misclassified points is shown, on the y-axis
the percentage of detected errors over all the misclassified points is shown (JESS-R). False
positives as a percentage of the total amount of points of each sequence are shown in a red
×. On the bottom of the plots the bars show from left to right and for each percentage
of misclassified points: initial misclassification, misclassification after removal of errors by
JESS-R, misclassification after removal and reclassification by JESS.

167

CHAPTER 4. JESS

Figure 4.17: Average results of JESS with stop condition applied to the House and Hotel
sequence with an initial amount of misclassification equal to 10%. On the x-axis the amount
of missing data, points is shown, on the y-axis the percentage of detected errors over all the
misclassified points is shown (JESS-R). False positives as a percentage of the total amount
of points of each sequence are shown in a red ×. On the bottom of the plots the bars show
from left to right and for each percentage of misclassified points: initial misclassification,
misclassification after removal of errors by JESS-R, misclassification after removal and
reclassification by JESS.

4.6.7 3D Reconstruction

An additional aspect left to evaluate is the quality of the 3D reconstruction with synthetic

experiments (whose 3D ground truth is known). Therefore, the 3D Euclidean error between

the 3D estimation of JESS and the ground truth shape was computed. Errors are always

shown as a percentage of the ground truth depth size. Results on the synthetic database

with different number of motions, a noise level of σ = 1.0 pixel, and 10% of missing data

are shown. Each cube had an edge size of 1 unit in the metric space. Figure 4.18 shows

on the first row the error detection rate, and on the second row the average 3D error

(+) and the median error (�) per point after performing the Procrustes analysis (which

aligns the reconstructed 3D shape to the ground truth). With two motions, the mean error

values remain very stable even when the amount of misclassification increases. With more

motions, the mean error is slightly higher, however, the trends with 3, 4 and 5 motions

remain similar. When the amount of misclassification rises the chances of leaving some

168

4.6. Experiments

Figure 4.18: Average results of JESS with stop condition applied to the synthetic database
with noise of σ = 1.0 and 10% of missing data per sequence. On the x-axis the initial
amount of misclassified points is shown, on the y-axis a percentage value is shown. On the
first row: © is the percentage of the removed misclassified points over all the misclassified
points.False positives as a percentage of the total amount of points of each sequence are
shown in a red ×. On the second row: + is the average 3D error per point, while � is the
median 3D error per point. Errors shown as a percentage of the ground truth depth size.

errors in the segmentation becomes higher, consequently, the 3D reconstruction quality

may be affected.

In Figure 4.19 two examples of 3D reconstructions compared to the ground truth are

shown. Figure 4.19(a) presents the reconstruction of a cube with 8.96% of missing data and

with a final segmentation completely corrected by JESS. It is possible to appreciate the

accurate reconstruction with an average 3D error per point of only 0.80%. In Figure 4.19(b)

a case with 9.32% of missing data, but with 1 error left in the segmentation, is presented.

In this case it is possible to appreciate that the presence of even only 1 misclassified point

greatly affects the reconstruction. The final average 3D error becomes of 7.34%.

Finally, the last test was performed on the House and Hotel sequence. In this case

there is no ground truth of the 3D reconstruction, therefore, the reconstruction of the

two buildings when there is no error in the segmentation is used as main reference. The

3D reconstruction of each of the two buildings is shown when the cloud of points of each

object contained 10%, 5% and 0% of misclassified points. Only the points that belong

to the correct object are then taken into account for the Procrustes analysis in order to

169

CHAPTER 4. JESS

(a) 0 error left (b) 1 error left

Figure 4.19: 3D reconstruction of JESS. © are the ground truth point positions, + are the
JESS estimation point positions. (a) 8.96% MD, avg. 3D error: 0.80%. (b) 9.32% MD,
avg. 3D error: 7.34%. Errors shown as a percentage of the ground truth depth size.

align the reference reconstruction with the one obtained by JESS. The results are shown

in Figure 4.20 to 4.23. These results confirm the test on the synthetic cubes: the presence

of even only few misclassified points greatly affect the 3D reconstruction. Moreover, in

these examples the misclassified points were removed from the analysis because the ground

truth of the segmentation was known. However, in an unknown scenario it is not possible

to rely on prior knowledge and therefore the ability of JESS to remove misclassified points

is vital. For both buildings JESS was able to completely correct the segmentation and

finally provide the reconstructions shown in Figure 4.20(d), 4.21(d), and Figure 4.22(d),

4.23(d).

Note that the 3D error is always higher for the House sequence. This is due to the small

amount of motion contained in this sequence (refer to Figure 4.6 and Figure 4.7 to compare

respectively the House and the Hotel motions). This shows once again that if the amount

of motion is not sufficiently long, metric constraints cannot be satisfied. In the case of

the House and Hotel sequence the presence of a long motion of one of the two objects was

sufficient for the JESS algorithm to detect misclassified points. However, in cases when

none of the motions are long enough, like for the Hopkins155 and Hopkins12 databases,

170

4.7. Conclusion

(a) Original lateral view (b) 3D with 10% mp, avg. 3D error 0.47%

(c) 3D with 5% mp, avg. 3D error 1.30% (d) 3D after JESS, avg. 3D error 0.00%

Figure 4.20: 3D reconstruction of JESS on the House and Hotel sequence with different
amount of misclassified points (mp). Metric size of House ground truth is 3.88 × 6.25 ×
7.67. Lateral view of House. © are the ground truth point positions, + are the 3D
reconstructions. Errors shown as a percentage of the ground truth depth size.

metric constraints are greatly effected and this is reflected by JESS performance.

4.7 Conclusion

In this chapter a generic optimisation framework, JESS, has been presented. JESS is able

to estimate the multi-body motion segmentation and the 3D reconstruction from image

trajectories even in the presence of missing data. This approach takes advantage of an

initial segmentation to jointly include the metric constraints, given by an orthographic

camera model, and the constraint that arises from the fact that the shape matrix that

describes the multi-body 3D shape is generally sparse. The metric constraints are used to

compute the 3D metric shapes and to fill the missing entries, while the sparse optimisation

of the shape matrix detects wrong assignments of the trajectories and reclassifies them

171

CHAPTER 4. JESS

(a) Original lateral view (b) 3D with 10% mp, avg. 3D error 0.47%

(c) 3D with 5% mp, avg. 3D error 1.30% (d) 3D after JESS, avg. 3D error 0.00%

Figure 4.21: 3D reconstruction of JESS on the House and Hotel sequence with different
amount of misclassified points (mp). Metric size of House ground truth is 3.88×6.25×7.67.
Back view of House © are the ground truth point positions, + are the 3D reconstructions.
Errors shown as a percentage of the ground truth depth size.

172

4.7. Conclusion

(a) Original frontal view (b) 3D with 10% mp, avg. 3D error 8.84%

(c) 3D with 5% mp, avg. 3D error 6.25% (d) 3D after JESS, avg. 3D error 0.00%

Figure 4.22: 3D reconstruction of JESS on the House and Hotel sequence with different
amount of misclassified points (mp). Metric size of Hotel ground truth is 3.32×3.80×4.64.
Lateral view of Hotel. © are the ground truth point positions, + are the 3D reconstructions.
Errors shown as a percentage of the ground truth depth size.

173

CHAPTER 4. JESS

(a) Original top view (b) 3D with 10% mp, avg. 3D
error 8.84%

(c) 3D with 5% mp, avg. 3D
error 6.25%

(d) 3D after JESS, avg. 3D er-
ror 0.00%

Figure 4.23: 3D reconstruction of JESS on the House and Hotel sequence with different
amount of misclassified points (mp). Metric size of Hotel ground truth is 3.32×3.80×4.64.
Top view of Hotel. © are the ground truth point positions, + are the 3D reconstructions.
Errors shown as a percentage of the ground truth depth size.

174

4.7. Conclusion

to the correct motion. Note that while camera matrix and sparsity constraint have been

previously used in SfM and multi-body SfM, they have never been used to solve the motion

segmentation problem. Moreover, to these authors knowledge, JESS is unique in this field

as there is no previous framework able to correct the results of a motion segmentation

algorithm and, simultaneously, to compute the 3D structure of the moving objects.

The experiments proved the validity of JESS in spite of the fact that two of the three

databases used, the Hopkins155 and the Hopkins12, are mainly composed by sequences that

contain very small motions, and therefore, they may not guarantee the effectiveness of the

camera constraints. Moreover, JESS could be improved by taking into account the specific

nature of each motion. In fact, in the SfM step all the motions were treated as if they were

rigid, even if in the Hopkins155 database there are some articulated and non-rigid motions.

Therefore, by treating non-rigid and articulated motions properly the performance of JESS

could be further improved. Moreover, as explained in Section 4.6.4 also the performance

in terms of computational time could be boosted by adopting implementations of sparse

optimisation on Graphic Processing Units [158].

175

5
Conclusion

In this final chapter a summary of the thesis and its main contributions are presented.

Future directions connected to this work are also pointed out. The chapter is ended with a

summary of publications and remarks related to this thesis.

5.1 Summary and contributions

In this thesis the problem of motion segmentation has been discussed.

• The analysis of the state of the art, Chapter 2, showed how big the effort that the

research community has invested in this field is. A possible classification of the

state of the art has been proposed and the most important attributes of motion

segmentation algorithms have been described. Among all of the different techniques

presented one category, the motion segmentation by manifold clustering, has emerged

as particularly promising. One of the advantages of manifold clustering techniques

is that they are usually based on features, therefore they are faster than dense-based

approaches. Moreover, they can deal with different kinds of motion, provided that

the dimension of the global space is known or can be estimated. Finally, manifold

clustering can be easily extended to structure from motion. Within this group, the

Local Subspace Affinity (LSA) [72] algorithm has been studied in more detail because

177

CHAPTER 5. Conclusion

of the elegance of its framework and its good performance.

• In Chapter 3 the weaknesses of LSA have been pointed out and two new algorithms

that fix some of those weaknesses have been presented. The first algorithm, the

Enhanced Model Selection+ (EMS+), solves the difficult task of estimating the rank

of the trajectory matrix by analysing the relationship between the estimated rank

and the affinity matrix. EMS+ uses the affinity matrix with the highest entropy

value. This choice has the property of discarding homogeneous, and thus, not useful

matrices while selecting the matrix with the highest content of information. The

second algorithm, the Adaptive Subspace Affinity (ASA) takes a step further and

studies the trend of the principal angles (PAs) in order to be able to select the rank

that provides the best separation between angles of different motions. Moreover,

ASA uses a new affinity measure that takes into account, so far neglected, issues

related to the use of PAs as a measure of distance between subspaces. Both EMS+

and ASA outperformed any other LSA-based technique. EMS+ scored on the whole

Hopkins155 database a misclassification rate of 4.23%, while ASA is one of the best

performing algorithms of the state of the art as its misclassification rate is only 1.47%.

• The last contribution presented in Chapter 3, is an algorithm for the estimation

of the number of motions. Such estimation is performed by exploiting a property

that comes from the spectral graph theory. Specifically, the Symmetric Normalised

Laplacian matrix is built using the value of the estimated affinity matrix. Hence, the

eigenvalue spectrum of the Symmetric Normalised Laplacian matrix is thresholded

using a formula inspired by the Linear Discriminative Analysis (LDA). The number of

eigenvalues below the threshold indicates the number of connected components of the

graph described by the matrix, and therefore, the number of motions. EMS+ with

the automatic estimation of the number of motions is named Enhance Local Subspace

Affinity (ELSA), while ASA with the automatic estimation is called Automatic-ASA

(A-ASA). Thanks to this estimation ELSA and A-ASA, differently from most of

178

5.1. Summary and contributions

the techniques in the state of the art of motion segmentation, are able to perform

their task without requiring any additional parameter than the trajectory matrix. In

fact, the few free parameters of ELSA and A-ASA are either fixed or automatically

tuned by the algorithms themselves. ELSA and A-ASA have been compared, on the

Hopkins155 database and on a synthetic database, with the only known robust algo-

rithm able to perform the segmentation without any parameter: the Agglomerative

Lossy Compression [65] (ALC). Both ELSA and A-ASA performed better than ALC

in terms of final misclassification rate but also in terms of correct estimation of the

number of motions. In fact, on the Hopkins155 database, ALC had a misclassification

rate of 12.86%, while ELSA had a rate of 10.75% and A-ASA of 9.50%. In addition,

the average error in absolute value of the estimation of the number of motions was

1.16 with ALC, but only 0.37 and 0.42 for ELSA and A-ASA respectively.

• Given the already good performance of motion segmentation algorithms, in Chapter 4,

a slightly different approach has been followed. This approach aimed to bring the

problems of motion segmentation and Structure from Motion (SfM) closer. These

two problems are related by the fact that motion segmentation can be seen as a pre-

processing step that has to be applied before SfM. In this thesis the two problems have

been connected by exploiting some constraints usually employed in SfM, but never

used in motion segmentation: the camera matrix constraints and the sparse structure

of the aggregate shape matrix. Therefore, the proposed Joint Estimation of Motion

Segmentation and Structure from Motion (JESS) framework, begins with an initial

almost-correct segmentation, and by imposing these mentioned constraints, is able to

correct the misclassified points and provide the 3D shape of all of the moving objects

in the scene. The combination of ASA and JESS provided the one of the lowest

misclassification rates in the state of the art on the Hopkins155 database (among

techniques that do not require tuning of parameters): 0.97%. More importantly, of

the 155 sequences, 128 were segmented without any error. Moreover, for these cases,

a 3D reconstruction also became available. To the knowledge of these authors, JESS

179

CHAPTER 5. Conclusion

is the first framework simultaneously able to correct the segmentation of any motion

segmentation algorithm and to provide the 3D reconstruction of the moving objects.

Before continuing, Table 2.2 with the summary of manifold clustering algorithms pre-

sented in Chapter 2 is extended with the algorithms presented in this thesis. The new

Table 5.1 should allow the reader to quickly understand which are the benefits and the

drawbacks of the proposed techniques in comparison with the rest of the state of the art.

5.2 Future directions

Future work connected to this thesis is now presented. Future work can be divided into

immediate future work, which can be accomplished by extending the work presented in

this thesis, and further future work, which can be seen as long term objectives.

5.2.1 Immediate future work

• Nowadays the misclassification rates, when the number of motions is known, are al-

ready good. Despite the fact that the misclassification rate could be further improved,

future work should focus on the ability to estimate the number of motions in a more

efficient way. ALC, ELSA and A-ASA already provide satisfactory results without

having this information, however, there is room for improvement especially when the

motions become dependant.

• The ability of JESS to recover missing data by exploiting 3D information has been

described. However, the overall performance, including the estimation of missing

data, could be improved by a better initialisation of the missing entries. Currently,

the initialisation is performed by computing the central point of the group of trajecto-

ries to which each missing entry is associated. However, a more precise initialisation

could be used [121, 128] and it could lead to better reconstruction and also a more

effective ability of the framework to detect errors in the initial segmentation.

180

5.2. Future directions

M
a
n
if
o
ld

C
lu

st
e
ri

n
g

It
er

Ho et al. 2003 [56] F X XXX X X CD
da Silva et al. 2008 [57] F X XXX X X CD
da Silva et al. 2009 [58] F X XXX X X CD

S
ta

t
Fishler et al. 1981 [59] F X XX− I RA C
Kanatani et al. 2002 [60] F X XXX I R
Sugaya et al. 2004 [61] F X XXX I R C
Gruber et al. 2004 [62] F X X XXX I R X
Gruber et al. 2006 [63] F X X X XXX I R X
Sugaya et al. 2010 [64] F X XXX I R C

Sparse
Rao et al. 2008/2010 [65, 66] F X X XX− I R
Elhamifar et al. 2009 [67] F X X XX− X X DX

F
ac

t Costeira et al. 1998 [68] F X XX− I R
Ichimura et al. 2000 [69] F X XX− I R
Zelnik-Manor et al. 2003 [70] F X XX− X RA CD

S
u
b
sp

ac
es

Vidal et al. 2004 [71] F X X XX− X R C
Yan et al. 2006/08 [31, 72] F X XX− X X CDX
Goh et al. 2007 [73] F X XX− X R CD
Julià et al. 2008 [74] F X X XX− I R D
Vidal et al. 2008 [75] F X X XX− X R C
Goh et al. 2008 [76] F X XX− X R CD
Chen et al. 2009 [77, 78] F X XX− X X CD
Kim et al. 2009 [79] F X XX− X R C
Yang et al. 2009 [80] D X XX− I R CD
Lauren et al. 2009 [81] F X XX− X X CD
This Thesis: ELSA F X XX− X X

This Thesis: A-ASA F X XX− X X

This Thesis: ASA+JESS F X X XXX X X C

Features (F) / Dense (D)
Occlusion or Missing Data
Spatial Continuity
Temporary Stopping
Robustness (Noise, Outliers, Initialisation: Xyes, Xno, - not related)
Dependency (Independent, Dependent, Xall)
Kind (Rigid, Non-rigid, Articulated, Xall)
Prior knowledge (C Number of clusters, D Subspace dimensions, X Other)

Table 5.1: Updated summary of the manifold clustering-based techniques including the
algorithms proposed in this thesis.

181

CHAPTER 5. Conclusion

• Another improvement related to JESS is to take into account the kind of motion of

each sequence. This information could be derived by the global space size estimated

by EMS+, or by ASA, and the number of motions of the scene. Once this information

has been recovered the specific kind of motion could be used in the structure from

motion step, which at this stage, assumes rigid motions.

Further future work

• From the analysis of the state of the art it has emerged that very few approaches

in the manifold clustering group exploit spatial information. However, when the

motion of two objects become dependent the only possibility of distinguishing the

two objects is via spatial information. Spatial information could be included in the

affinity matrix, so that this additional information could help the clustering step and

solve cases of dependant motions.

• As seen in the state of the art discussion, in general, feature-based techniques, such

as manifold clustering, have the advantage over dense-based approaches of reducing

dramatically the computational cost. However, feature-based techniques have to

rely on the ability of the tracker to find salient points and track them successfully

throughout the video sequence. Nowadays, such an assumption is not unrealistic,

however, it would be important to develop algorithms able to deal with only a few

points per motion instead of requiring larger amounts of them.

• A motion segmentation system, useful in real time applications, should work incre-

mentally. An ideal incremental algorithm should be able to refine the segmentation

at every new frame (or every small group of frames) without recomputing the whole

solution from the beginning. In this respect, a bigger framework could be designed,

where not only motion segmentation and SfM are merged, but also the tracking step

is included. In such a framework the initial estimation of the segmentation could be

used to predict where the points are moving so that the tracker could limit its area

182

5.3. Publications and Code

of research, and outliers could be automatically discarded. Furthermore, in this ideal

framework interrupted trajectories (i.e. missing data) could be managed more easily

as their contribution could be exploited while the points are visible and temporarily

frozen when they disappear. The frozen points could then be discarded if they do

not appear within a predefined number of frames.

• Finally, a very ambitious aim is to complete the merging between motion segmenta-

tion and SfM problems that was started in this thesis. Currently, an initial motion

segmentation is required so that, by imposing SfM constraints, the segmentation can

be corrected. However, as explained in Chapter 4, if one additional constraint is

found, the segmentation could be computed from scratch without requiring any ini-

tialisation. This would be an extraordinary advance as the two problems would be

solved simultaneously by the same algorithm.

5.3 Publications and Code

The work developed in this thesis led to the following publications.

Journals articles

[CVIU2011] L. Zappella, A. Del Bue, X. Lladó, J. Salvi: Joint Estimation of Segmen-

tation and Structure from Motion with Missing Data. In: Computer Vision and Image

Understanding (2011). Under Review.

[PR2011] L. Zappella, X. Lladó, E. Provenzi, J. Salvi: Enhanced Local Subspace Affinity

for Feature-Based Motion Segmentation. In: Pattern Recognition Ed. Elsevier (2011)

Volume 44, Pages 454-470.

[EL2009] L. Zappella, X. Lladó, J. Salvi: Rank estimation of trajectory matrix in motion

segmentation. In: Electronic Letters (2009) Volume 45, Number 11, Pages 540-541.

183

CHAPTER 5. Conclusion

Books

[LAP2011] L. Zappella, X. Lladó, J. Salvi: Motion Segmentation From Tracked Features.

LAP LAMBERT Academic Publish. GmbH & Co. KG. (2011), ISBN: 978-3-8443-0060-4.

Book Chapters

[PR2009] L. Zappella, X. Lladó, J. Salvi: New Trends in Motion Segmentation. In:

Pattern Recognition book In-TECH, Ed. Intechweb.org. In-TECH, Ed. Intechweb.org

(2009), ISBN: 978-953-307-014-8, Pages 31-46.

Conferences

[WMVC2011] L. Zappella, A. Del Bue, X. Lladó, J. Salvi: Simultaneous Motion Segmen-

tation and Structure from Motion. In: Proceedings of the IEEE workshop on Motion and

Video Computing, Kona, Hawaii, US (2011), Pages 679–684.

[ACCV2010] L. Zappella, E. Provenzi, X. Lladó, J. Salvi: Adaptive Motion Segmentation

Algorithm Based on the Principal Angles Configuration. Lecture Notes Computer Science

(ACCV, Queenstown, New Zealand 2010), Volume 6494/2011, Pages 15–26.

[ICIP2009] L. Zappella, X. Lladó, J. Salvi: Enhanced model selection for motion segmen-

tation. In: Proceedings of the International Conference on Image Processing, Cairo, Egypt

(2009), Pages 4053–4056.

[CCIA2008] L. Zappella, X. Lladó, J. Salvi: Motion Segmentation: A Review. In: Pro-

ceedings of the 11th International Conference of the Catalan Association for Artificial

Intelligence, Sant Mart́ı d’Empúries, Spain (2008), Pages 398–407.

5.4 Remarks

Part of the work of this thesis has been realised during a stage (1st October 2009 to 1st

April 2010) in the Institute for Systems and Robotics laboratories coordinated by Professor

184

5.5. Code

João Paulo Costeira at the University of Lisbon, Portugal. During this stage, thanks to

the collaboration with Doctor Alessio Del Bue, the initial study of the JESS algorithm has

been performed.

5.5 Code

The Matlab source code of the developed algorithms are publicly available at: http://eia.

udg.edu/∼zappella. Specifically, the code available is described in this section.

• Enhanced Model Selection (EMS) is a novel rank estimation technique for trajectory

matrices that can be used within the Local Subspace Affinity (LSA) framework. EMS

is based on the relationship between the rank estimated by a model selection tech-

nique and the affinity matrix built with LSA. The result is a more robust and precise

model selection by which it is possible to automate LSA without requiring any a

priori knowledge (about the kind of motion) and to improve the final segmentation.

Link: http://eia.udg.edu/∼zappella/code/EMS v0.1.tgz

• Enhanced Local Subspace Affinity (ELSA) is a new feature-based motion segmentation

technique. Unlike LSA, ELSA is robust in a variety of conditions even without

manual tuning of its parameters. This result is achieved thanks to two improvements.

The first is the EMS+ technique for the estimation of the trajectory matrix rank.

The second is an estimation of the number of motions based on the analysis of the

eigenvalue spectrum of the Symmetric Normalized Laplacian matrix.

Link: http://eia.udg.edu/∼zappella/code/ELSA v0.1.tgz

• Adaptive Subspace Affinity (ASA). This motion segmentation algorithm is a manifold

clustering-based technique. The two most important steps are: the new rank estima-

tion of the trajectory matrix (PAC) and the new similarity measure adopted (SCbA).

Both these two techniques take into account the trend of the principal angles when the

rank estimation of the trajectory matrix changes. The rank estimation is performed

185

CHAPTER 5. Conclusion

by analysing which rank leads to a configuration where small and large angles are

best separated. The affinity measure is a new function automatically parametrised

so that it is able to adapt to the actual configuration of the principal angles.

Link: http://eia.udg.edu/∼zappella/code/ASA v1.1.tgz

• Jointly Estimation of Segmentation and Structure from Motion (JESS) is a frame-

work that partially merges the problems of motion segmentation and Structure from

Motion. JESS exploits an initial, possibly wrong, motion segmentation result and

corrects it by imposing constraints that arise from the Structure from Motion theory:

the camera matrix constraints and the sparse structure of the aggregate shape matrix.

The final JESS result is a corrected segmentation, the 3D structure of each of the

moving objects and a motion description of each object.

Link: http://eia.udg.edu/∼zappella/code/JESS v0.1.tgz

186

A
Principal Angles, Affinity and Entropy

Appendix

In Section 3.2.1 the trends of PAs, affinity, and entropy were discussed. In this appendix

more examples are provided for a synthetic sequence with 2 motions and a noise level from

σ = 1.0 up to σ = 3.0 pixels. The same trends are also provided for some sequences of the

Hopkins155 database.

187

CHAPTER A. Principal Angles, Affinity and Entropy Appendix

(a) θ1(r) SeqA σ = 1.0 (b) θ1(r) SeqB σ = 1.0 (c) θ1(r) SeqC σ = 1.0 (d) θ1(r) SeqD σ = 1.0

(e) A(r) SeqA σ = 1.0 (f) A(r) SeqB σ = 1.0 (g) A(r) SeqC σ = 1.0 (h) A(r) SeqD σ = 1.0

(i) E(A(r)) SeqA σ =
1.0

(j) E(A(r)) SeqB σ =
1.0

(k) E(A(r)) SeqC σ =
1.0

(l) E(A(r)) SeqD σ =
1.0

Figure A.1: First row: trend of the largest principal angle between two pairs of trajectories
of the same motion (blue) and two pairs of trajectories of different motions (red). The pairs
of trajectories are randomly taken from synthetic sequences with Gaussian noise σ = 1.0)
with two rigid motions, hence the maximum rank is 8 (NNs are estimated). Second row:
trend of the affinity value for the same pairs of trajectories showed in the first row. Third
row: trend of the entropy value of the whole affinity matrix.

188

(a) θ1(r) SeqA σ = 1.5 (b) θ1(r) SeqB σ = 1.5 (c) θ1(r) SeqC σ = 1.5 (d) θ1(r) SeqD σ = 1.5

(e) A(r) SeqA σ = 1.5 (f) A(r) SeqB σ = 1.5 (g) A(r) SeqC σ = 1.5 (h) A(r) SeqD σ = 1.5

(i) E(A(r)) SeqA σ =
1.5

(j) E(A(r)) SeqB σ =
1.5

(k) E(A(r)) SeqC σ =
1.5

(l) E(A(r)) SeqD σ =
1.5

Figure A.2: First row: trend of the largest principal angle between two pairs of trajectories
of the same motion (blue) and two pairs of trajectories of different motions (red). The pairs
of trajectories are randomly taken from synthetic sequences with Gaussian noise σ = 1.5)
with two rigid motions, hence the maximum rank is 8 (NNs are estimated). Second row:
trend of the affinity value for the same pairs of trajectories showed in the first row. Third
row: trend of the entropy value of the whole affinity matrix.

189

CHAPTER A. Principal Angles, Affinity and Entropy Appendix

(a) θ1(r) SeqA σ = 2.0 (b) θ1(r) SeqB σ = 2.0 (c) θ1(r) SeqC σ = 2.0 (d) θ1(r) SeqD σ = 2.0

(e) A(r) SeqA σ = 2.0 (f) A(r) SeqB σ = 2.0 (g) A(r) SeqC σ = 2.0 (h) A(r) SeqD σ = 2.0

(i) E(A(r)) SeqA σ =
2.0

(j) E(A(r)) SeqB σ =
2.0

(k) E(A(r)) SeqC σ =
2.0

(l) E(A(r)) SeqD σ =
2.0

Figure A.3: First row: trend of the largest principal angle between two pairs of trajectories
of the same motion (blue) and two pairs of trajectories of different motions (red). The pairs
of trajectories are randomly taken from synthetic sequences with Gaussian noise σ = 2.0)
with two rigid motions, hence the maximum rank is 8 (NNs are estimated). Second row:
trend of the affinity value for the same pairs of trajectories showed in the first row. Third
row: trend of the entropy value of the whole affinity matrix.

190

(a) θ1(r) SeqA σ = 2.5 (b) θ1(r) SeqB σ = 2.5 (c) θ1(r) SeqC σ = 2.5 (d) θ1(r) SeqD σ = 2.5

(e) A(r) SeqA σ = 2.5 (f) A(r) SeqB σ = 2.5 (g) A(r) SeqC σ = 2.5 (h) A(r) SeqD σ = 2.5

(i) E(A(r)) SeqA σ =
2.5

(j) E(A(r)) SeqB σ =
2.5

(k) E(A(r)) SeqC σ =
2.5

(l) E(A(r)) SeqD σ =
2.5

Figure A.4: First row: trend of the largest principal angle between two pairs of trajectories
of the same motion (blue) and two pairs of trajectories of different motions (red). The pairs
of trajectories are randomly taken from synthetic sequences with Gaussian noise σ = 2.5)
with two rigid motions, hence the maximum rank is 8 (NNs are estimated). Second row:
trend of the affinity value for the same pairs of trajectories showed in the first row. Third
row: trend of the entropy value of the whole affinity matrix.

191

CHAPTER A. Principal Angles, Affinity and Entropy Appendix

(a) θ1(r) SeqA σ = 3.0 (b) θ1(r) SeqB σ = 3.0 (c) θ1(r) SeqC σ = 3.0 (d) θ1(r) SeqD σ = 3.0

(e) A(r) SeqA σ = 3.0 (f) A(r) SeqB σ = 3.0 (g) A(r) SeqC σ = 3.0 (h) A(r) SeqD σ = 3.0

(i) E(A(r)) SeqA σ =
3.0

(j) E(A(r)) SeqB σ =
3.0

(k) E(A(r)) SeqC σ =
3.0

(l) E(A(r)) SeqD σ =
3.0

Figure A.5: First row: trend of the largest principal angle between two pairs of trajectories
of the same motion (blue) and two pairs of trajectories of different motions (red). The pairs
of trajectories are randomly taken from synthetic sequences with Gaussian noise σ = 3.0)
with two rigid motions, hence the maximum rank is 8 (NNs are estimated). Second row:
trend of the affinity value for the same pairs of trajectories showed in the first row. Third
row: trend of the entropy value of the whole affinity matrix.

192

(a) θ1(r) 1R2RC (b) θ1(r) 1R2RCR (c) θ1(r) 1R2RCT A (d) θ1(r) 2R3RTC

(e) A(r) 1R2RC (f) A(r) 1R2RCR (g) A(r) 1R2RCT A (h) A(r) 2R3RTC

(i) E(A(r)) 1R2RC (j) E(A(r)) 1R2RCR (k) E(A(r)) 1R2RCT A (l) E(A(r)) 2R3RTC

Figure A.6: First row: trend of the largest principal angle between two pairs of trajectories
of the same motion (blue) and two pairs of trajectories of different motions (red). The
pairs of trajectories are randomly taken from some sequences of the Hopkins155 database.
Second row: trend of the affinity value for the same pairs of trajectories showed in the first
row. Third row: trend of the entropy value of the whole affinity matrix.

193

CHAPTER A. Principal Angles, Affinity and Entropy Appendix

(a) θ1(r) arm (b) θ1(r) cars1 (c) θ1(r) kanatani1 (d) θ1(r) two cranes

(e) A(r) arm (f) A(r) cars1 (g) A(r) kanatani1 (h) A(r) two cranes

(i) E(A(r)) arm (j) E(A(r)) cars1 (k) E(A(r)) kanatani1 (l) E(A(r)) two cranes

Figure A.7: First row: trend of the largest principal angle between two pairs of trajectories
of the same motion (blue) and two pairs of trajectories of different motions (red). The
pairs of trajectories are randomly taken from some sequences of the Hopkins155 database.
Second row: trend of the affinity value for the same pairs of trajectories showed in the first
row. Third row: trend of the entropy value of the whole affinity matrix.

194

Bibliography

[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition). Addison-

Wesley Pub, 2007.

[2] S. Beucher and C. Lantuéjoul, “Use of watersheds in contour detection,” in Proc.

Intern. Workshop on Image Proc.: Real-time Edge and Motion Detection/Estimation,

1979.

[3] F. G. Smith, K. R. Jepsen, and P. F. Lichtenwalner, “Comparison of neural network

and markov random field image segmentation techniques,” in Proc. of the 18th An-

nual Review of progress in quantitative nondestructive evaluation, vol. 11, 1992, pp.

717–724.

[4] A. Blake, “Active contours,” Robotica, vol. 17, no. 4, pp. 459–462, 1999.

[5] J. Shi and J. Malik, “Normalized cuts and image segmentation,” in IEEE Trans.

Pattern Analysis Machine Intell., 2000, pp. 888–905.

[6] J. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in

Computational Geometry. Fluid Mechanics, Computer Vision and Materials Sciences.

Cambridge University Press, 1999.

[7] D. Cremers, M. Rousson, and R. Deriche, “A review of statistical approaches to level

set segmentation: Integrating color, texture, motion and shape,” Int. J. Comput.

Vision, vol. 72, no. 2, pp. 195–215, 2007.

[8] Y. Sugaya and K. Kanatani, “Multi-stage optimization for multi-body motion seg-

mentation,” IEICE Trans. on Information and Syst., vol. E87-D(7), pp. 1935–1942,

2004.

[9] J. Carme, “Missing data matrix factorization addressing the structure from motion

problem,” PhD in Computer Science, Universitat Autònoma de Barcelona, 2007.

[10] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthog-

raphy: a factorization method,” Int. J. Comput. Vision, vol. 9, no. 2, pp. 137–154,

1992.

[11] B. Raducanu, J. Vitria, and D. Gatica-Perez, “You are fired! nonverbal role analysis

in competitive meetings,” in IEEE Conf. on Acoustics, Speech and Signal Proc., 2009,

pp. 1949–1952.

195

BIBLIOGRAPHY

[12] S. Escalera, R. Martnez, J. Vitriá, and T. Radeva P., Anguera, “Dominance detec-

tion in face-to-face conversations,” in CVPR Workshop on Human communicative

Behavior analysis, 2009, pp. 97–102.

[13] A. A. Salah, T. Gevers, N. Sebe, and A. Vinciarelli, “Challenges of human behavior

understanding,” in Lect. Notes Comput. Sc., vol. 6219, 2010, pp. 1–12.

[14] D. Zhang and G. Lu, “Segmentation of moving objects in image sequence: a review,”

Circ. Syst. Signal Proc., vol. 20, no. 2, pp. 143–183, 2001.

[15] MPEG, “Coding of audio-visual objects: visual, final draft international standard,”

ISO/IEC JTC1/SC29/WG11, vol. N2502, pp. 1–318, 1998.

[16] A. Del Bue, D. Comaniciu, V. Ramesh, and C. Regazzoni, “Smart cameras with

real-time video object generation,” in Proc. ICIP IEEE, vol. 3, 2002, pp. 429–432.

[17] E. Trucco, K. Plakas, N. Brandenburg, P. Kauff, M. Karl, and O. Schreer, “Real-

time disparity analysis for immersive 3-d teleconferencing,” in IEEE ICCV Workshop

Video Regist., 2001.

[18] F. Isgrò, E. Trucco, P. Kauff, and O. Schreer, “3-d image processing in the future of

immersive media,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, pp. 288–303,

2004.

[19] M. Li and S. Drew, Fundamentals of Multimedia. Prentice Hall, 2003.

[20] L. Zappella, X. Lladó, and J. Salvi, “Motion segmentation: A review,” in Proc. of

the Intern. Conf. of the Cat. Assoc. for Art. Intell., 2008, pp. 398–407.

[21] L. Zappella, X. Lladó, and J. Salvi, “New trends in motion segmentation,” in Pattern

Recognition, P.-Y. Yin, Ed. INTECH, 2009, pp. 31–46.

[22] R. Tron and R. Vidal, “A benchmark for the comparison of 3-d motion segmentation

algorithms,” in Proc. CVPR IEEE, 2007, pp. 1–8.

[23] J. Shi and C. Tomasi, “Good features to track,” in Proc. CVPR IEEE, 1994, pp.

593–600.

[24] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. CVPR

IEEE, 1999, pp. 1150–1157.

[25] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust features,”

Comput. Vis. Image Und., vol. 110, no. 3, pp. 346–359, 2008.

196

BIBLIOGRAPHY

[26] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cam-

bridge University Press, 2000.

[27] M. P. Kumar, P. H. Torr, and A. Zisserman, “Learning layered motion segmentations

of video,” Int. J. Comput. Vision, vol. 76, no. 3, pp. 301–319, 2008.

[28] A. Bronstein, M. Bronstein, M. Bronstein, and R. Kimmel, Numerical geometry of

non-rigid shapes. Springer-Verlag New York Inc, 2008.

[29] A. Yezzi and S. Soatto, “Deformotion: Deforming motion, shape average and the

joint registration and approximation of structures in images,” Int. J. Comput. Vision,

vol. 53, no. 2, pp. 153–167, 2003.

[30] X. Lladó, A. Del Bue, and L. Agapito, “Non-rigid metric reconstruction from per-

spective cameras,” Image Vision Comput., vol. 28, no. 9, pp. 1339–1353, 2010.

[31] J. Yan and M. Pollefeys, “A general framework for motion segmentation: Indepen-

dent, articulated, rigid, non-rigid, degenerate and non-degenerate,” in Lect. Notes

Comput. Sc. (ECCV), vol. 3954, 2006, pp. 94–106.

[32] A. Cavallaro, O. Steiger, and T. Ebrahimi, “Tracking Video Objects in Cluttered

Background,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 4, pp. 575–584,

2005.

[33] F.-H. Cheng and Y.-L. Chen, “Real time multiple objects tracking and identification

based on discrete wavelet transform,” Pattern Recogn., vol. 39, no. 6, pp. 1126–1139,

2006.

[34] R. Li, S. Yu, and X. Yang, “Efficient spatio-temporal segmentation for extracting

moving objects in video sequences,” IEEE Transactions on Consumer Electronics,

vol. 53, no. 3, pp. 1161–1167, 2007.

[35] A. Colombari, A. Fusiello, and V. Murino, “Segmentation and tracking of multiple

video objects,” Pattern Recogn., vol. 40, no. 4, pp. 1307–1317, 2007.

[36] C. Rasmussen and G. D. Hager, “Probabilistic data association methods for tracking

complex visual objects,” IEEE Trans. Pattern Analysis Machine Intell., vol. 23, no. 6,

pp. 560–576, 2001.

[37] D. Cremers and S. Soatto, “Motion competition: A variational approach to piecewise

parametric motion segmentation,” Int. J. Comput. Vision, vol. 62, no. 3, pp. 249–265,

2005.

197

BIBLIOGRAPHY

[38] H. Shen, L. Zhang, B. Huang, and P. Li, “A map approach for joint motion estimation,

segmentation, and super resolution,” IEEE Trans. Image Processing, vol. 16, no. 2,

pp. 479–490, 2007.

[39] N. Vaswani, A. Tannenbaum, and A. Yezzi, “Tracking deforming objects using par-

ticle filtering for geometric active contours,” IEEE Trans. Pattern Analysis Machine

Intell., vol. 29, no. 8, pp. 1470–1475, 2007.

[40] R. Stolkin, A. Greig, M. Hodgetts, and J. Gilby, “An em/e-mrf algorithm for adaptive

model based tracking in extremely poor visibility.” Image Vision Comput., vol. 26,

no. 4, pp. 480–495, 2008.

[41] N. Thakoor, J. Gao, and V. Devarajan, “Multibody structure-and-motion segmen-

tation by branch-and-bound model selection,” IEEE Trans. on Image Proc., vol. 19,

no. 6, pp. 1393–1402, 2010.

[42] L. Wiskott, “Segmentation from motion: Combining Gabor- and Mallat-wavelets to

overcome aperture and correspondence problem,” in Lect. Notes Comput. Sc. (CAIP),

vol. 1296, 1997, pp. 329–336.

[43] M. Kong, J.-P. Leduc, B. Ghosh, and V. Wickerhauser, “Spatio-temporal continuous

wavelet transforms for motion-based segmentation in real image sequences,” in Proc.

ICIP IEEE, vol. 2, 1998, pp. 662–666.

[44] E. Trucco, T. Tommasini, and V. Roberto, “Near-recursive optical flow from weighted

image differences,” IEEE Trans. Syst., Man, Cybern., vol. 35, no. 1, pp. 124–129,

2005.

[45] J. Zhang, F. Shi, J. Wang, and Y. Liu, “3d motion segmentation from straight-line

optical flow,” in Multimedia Content Analysis and Mining, 2007, pp. 85–94.

[46] L. Xu, J. Chen, and J. Jia, “A segmentation based variational model for accurate

optical flow estimation,” in Lect. Notes Comput. Sc. (ECCV), 2008, pp. 671–684.

[47] J. Klappstein, T. Vaudrey, C. Rabe, A. Wedel, and R. Klette, “Moving object seg-

mentation using optical flow and depth information,” in Pacific-Rim Symposium on

Image and Video Technology, 2009, p. 611623.

[48] A. Bugeau and P. Pérez, “Detection and segmentation of moving objects in complex

scenes,” Comput. Vis. Image Und., vol. 113, pp. 459–476, 2009.

198

BIBLIOGRAPHY

[49] B. Ommer, T. Mader, and J. M. Buhmann, “Seeing the objects behind the dots:

Recognition in videos from a moving camera,” Int. J. Comput. Vision, vol. 83, pp.

57–71, 2009.

[50] T. Brox and J. Malik, “Object segmentation by long term analysis of point trajecto-

ries,” in Lect. Notes Comput. Sc. (ECCV). Springer, 2010, pp. 282–295.

[51] C. Min and G. Medioni, “Inferring segmented dense motion layers using 5d tensor

voting,” IEEE Trans. Pattern Analysis Machine Intell., vol. 30, no. 9, pp. 1589–1602,

2008.

[52] K. Nordberg and V. Zografos, “Multibody motion segmentation using the geometry

of 6 points in 2d images,” in Proc. Int. C. Patt. Recog., 2010, pp. 1783–1787.

[53] V. Zografos, K. Nordberg, and L. Ellis, “Sparse motion segmentation using multiple

six-point consistencies,” in VECTaR workshop (ACCV), 2010.

[54] F. Xu, K.-M. Lam, and Q. Dai, “Video-object segmentation and 3d-trajectory esti-

mation for monocular video sequences,” Image and Vision Computing, vol. 29, no.

2-3, pp. 190–205, 2011.

[55] Y. Wang, J. Gong, D. Zhang, C. Gao, J. Tian, and H. Zeng, “Large disparity motion

layer extraction via topological clustering,” IEEE Trans. on Image Proc., vol. 20,

no. 1, pp. 43–52, 2011.

[56] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman, “Clustering appearances of

objects under varying illumination conditions,” in Proc. CVPR IEEE, vol. 1, 2003,

pp. 11–18.

[57] N. Pinho da Silva and J. Costeira, “Subspace segmentation with outliers: a grassman-

nian approach to the maximum consensus subspace,” in Proc. CVPR IEEE, 2008,

pp. 1–6.

[58] N. Pinho da Silva and J. Costeira, “The normalized subspace inclusion: Robust

clustering of motion subspaces,” in Proc. ICCV IEEE, 2009, pp. 1444–1450.

[59] M. A. Fischler and R. C. Bolles, “Ransac random sample consensus: A paradigm

for model fitting with applications to image analysis and automated cartography,”

Commun. ACM, vol. 24, pp. 381–395, 1981.

[60] K. Kanatani and C. Matsunaga, “Estimating the number of independent motions for

multibody motion segmentation,” in Proceedings of the Fifth Asian Conference on

Computer Vision, vol. 1, 2002, pp. 7–12.

199

BIBLIOGRAPHY

[61] Y. Sugaya and K. Kanatani, “Geometric structure of degeneracy for multi-body

motion segmentation,” in Lect. Notes Comput. Sc., 2004, pp. 13–25.

[62] A. Gruber and Y. Weiss, “Multibody factorization with uncertainty and missing data

using the em algorithm,” in Proc. CVPR IEEE, vol. 1, 2004, pp. 707–714.

[63] A. Gruber and Y. Weiss, “Incorporating non-motion cues into 3d motion segmenta-

tion,” in Lect. Notes Comput. Sc. (ECCV), 2006, pp. 84–97.

[64] Y. Sugaya and K. Kanatani, “Improved multistage learning for multibody motion

segmentation,” in Proc. of Int. Conf. Computer Vision Theory and App., vol. 1, 2010,

pp. 199–206.

[65] S. R. Rao, R. Tron, R. Vidal, and Y. Ma, “Motion segmentation via robust subspace

separation in the presence of outlying, incomplete, or corrupted trajectories,” in Proc.

CVPR IEEE, 2008, pp. 1–8.

[66] S. Rao, R. Tron, R. Vidal, and Y. Ma, “Motion segmentation in the presence of out-

lying, incomplete, or corrupted trajectories,” IEEE Trans. Pattern Analysis Machine

Intell., vol. 32, pp. 1832–1845, 2010.

[67] E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in Proc. CVPR IEEE, 2009,

pp. 2790–2797.

[68] J. P. Costeira and T. Kanade, “A multibody factorization method for independently

moving objects,” Int. J. Comput. Vision, vol. 29, no. 3, pp. 159–179, 1998.

[69] N. Ichimura and F. Tomita, “Motion segmentation based on feature selection from

shape matrix,” Syst. Comput. Jpn., vol. 31, no. 4, pp. 32–42, 2000.

[70] L. Zelnik-Manor and M. Irani, “Degeneracies, dependencies and their implications in

multi-body and multi-sequence factorizations,” in Proc. CVPR IEEE, vol. 2, 2003,

pp. 287–93.

[71] R. Vidal and R. Hartley, “Motion segmentation with missing data using powerfac-

torization and gpca,” in Proc. CVPR IEEE, vol. 2, 2004, pp. 310–316.

[72] J. Yan and M. Pollefeys, “A factorization-based approach for articulated nonrigid

shape, motion and kinematic chain recovery from video,” IEEE Trans. Pattern Anal-

ysis Machine Intell., vol. 30, no. 5, pp. 865–877, 2008.

[73] A. Goh and R. Vidal, “Segmenting motions of different types by unsupervised man-

ifold clustering,” in Proc. CVPR IEEE, 2007, pp. 1–6.

200

BIBLIOGRAPHY

[74] C. Julia, A. Sappa, F. Lumbreras, J. Serrat, and A. Lopez, “Rank estimation in

3d multibody motion segmentation,” Electron. Lett., vol. 44, no. 4, pp. 279–280, 14

2008.

[75] R. Vidal, R. Tron, and R. Hartley, “Multiframe motion segmentation with missing

data using powerfactorization and gpca,” Int. J. Comput. Vision, vol. 79, pp. 85–105,

2008.

[76] A. Goh and R. Vidal, “Clustering and dimensionality reduction on riemannian man-

ifolds,” in Proc. CVPR IEEE, 2008, pp. 1–7.

[77] G. Chen and G. Lerman, “Spectral curvature clustering (scc),” Int. J. Comput. Vi-

sion, vol. 81, pp. 317–330, 2009.

[78] G. Chen and G. Lerman, “Motion segmentation by scc on the hopkins 155 database,”

in Proc. ICCV IEEE, 2009, pp. 759–764.

[79] J.-H. Kim and L. Agapito, “Motion segmentation using the hadamard product and

spectral clustering,” in Proc. of the IEEE Intern. Conf. on Motion and Video Com-

puting, 2009, pp. 126–133.

[80] H. Yang, G. Welch, J.-M. Frahm, and M. Pollefeys, “3d motion segmentation using

intensity trajectory,” in Lect. Notes Comput. Sc. (ACCV), 2009, pp. 157–168.

[81] F. Lauer and C. Schnrr, “Spectral clustering of linear subspaces for motion segmen-

tation,” in Proc. ICCV IEEE, 2009, pp. 678–685.

[82] A. Bobick and J. Davis, “An appearance-based representation of action,” in Proc.

Int. C. Patt. Recog., 1996, pp. 307–312.

[83] Kalman, Rudolph, and Emil, “A new approach to linear filtering and prediction

problems,” Transactions of the ASME–Journal of Basic Engineering, vol. 82, no.

Series D, pp. 35–45, 1960.

[84] M. A. Tanner, Tools for statistical inference: Methods for exploration of posterior

distributions and likelihood functions (3rd Edition). Springer-Verlag, 1996.

[85] A. Doucet, “On sequential Monte Carlo methods for Bayesian filtering,” Dept. Eng.,

Univ. Cambridge, Tech. Rep., 1998.

[86] I. Rekleitis, “Cooperative localization and multi-robot exploration,” PhD in Com-

puter Science, School of Computer Science, McGill University, Montreal, Quebec,

Canada, 2003.

201

BIBLIOGRAPHY

[87] Y. Shi and W. C. Karl, “Real-time tracking using level sets,” in Proc. CVPR IEEE,

2005, pp. 34–41.

[88] S. Borman, “The expectation maximization algorithm – a short tutorial,” 2004.

[89] K. Kanatani, “Statistical optimization and geometric visual inference,” in Lect. Notes

Comput. Sc., 1997, pp. 306–322.

[90] B. Horn and B. Schunck, “Determining optical flow,” Artificial Intelligence, vol. 17,

pp. 185–203, 1981.

[91] Russle and Norvig, AI, A Modern Approach. Prentice Hall, 1995.

[92] O. Faugeras, R. Deriche, and N. Navab, “Information contained in the motion field

of lines and the cooperation between motion and stereo,” International Journal of

Imaging Systems and technology, vol. 2, pp. 356–370, 1990.

[93] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Trans. Pattern Analysis

Machine Intell., vol. 17, no. 8, pp. 790–799, 1995.

[94] J. Wang and E. Adelson, “Layered representation for motion analysis,” in Proc.

CVPR IEEE, 1993, pp. 361–366.

[95] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov, “Bilayer segmentation of live

video,” in Proc. CVPR IEEE, 2006, pp. 53–60.

[96] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via

graph cuts,” in Proc. ICCV IEEE, 1999, pp. 377–384.

[97] L. Quan, “Invariants of six points and projective reconstruction from three uncali-

brated images,” IEEE Trans. Pattern Analysis Machine Intell., vol. 17, pp. 34–46,

1995.

[98] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in

speech recognition,” in Proc. of the IEEE, 1989, pp. 257–286.

[99] X. Llado, A. D. Bue, and L. Agapito, “Euclidean reconstruction of deformable struc-

ture using a perspective camera with varying intrinsic parameters,” in Proc. Int. C.

Patt. Recog., vol. 1, 2006, pp. 139–142.

[100] S. Koterba, S. Baker, I. Matthews, C. Hu, J. Xiao, J. F. Cohn, and T. Kanade,

“Multi-view aam fitting and camera calibration,” in Proc. ICCV IEEE, 2005, pp.

511–518.

202

BIBLIOGRAPHY

[101] P. Tresadern and I. Reid, “Articulated structure from motion by factorization,” in

Proc. CVPR IEEE, vol. 2, 2005, pp. 1110–1115.

[102] J. Xiao and T. Kanade, “Non-rigid shape and motion recovery: Degenerate deforma-

tions,” in Proc. CVPR IEEE, vol. 1, 2004, pp. 668–675.

[103] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component analysis (gpca),”

IEEE Trans. Pattern Analysis Machine Intell., vol. 27, pp. 1945–1959, 2005.

[104] G. Taubin, “Estimation of planar curves, surfaces, and non-planar space curves de-

fined by implicit equations with applications to edge and range image segmentation,”

IEEE Trans. Pattern Analysis Machine Intell., vol. 13, pp. 1115–1138, 2010.

[105] A. Gruber and Y. Weiss, “Factorization with uncertainty and missing data: Exploit-

ing temporal coherence,” in Advances in Neural Information Processing Systems 16,

S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004, vol. 16.

[106] D. Donoho, “Compressed sensing,” IEEE Trans. on Inform. Theory, vol. 52, no. 4,

pp. 1289–1306, 2006.

[107] Y. Ma, H. Derksen, W. Hong, and J. Wright, “Segmentation of multivariate mixed

data via lossy data coding and compression,” IEEE Trans. Pattern Analysis Machine

Intell., vol. 29, no. 9, pp. 1546–1562, 2007.

[108] L. Zappella, X. Lladó, E. Provenzi, and J. Salvi, “Enhanced local subspace affinity

for feature-based motion segmentation,” Pattern Recogn., vol. 44, pp. 454–470, 2011.

[109] C. J. Poelman and T. Kanade, “A paraperspective factorization method for shape

and motion recovery,” IEEE Trans. Pattern Analysis Machine Intell., vol. 19, no. 3,

pp. 206–218, 1997.

[110] T. Morita and T. Kanade, “A sequential factorization method for recovering shape

and motion from image streams,” in Proceedings of the 1994 ARPA Image Under-

standing Workshop, vol. 2, 1994, pp. 1177–1188.

[111] P. Chen and D. Suter, “Recovering the missing components in a large noisy low-rank

matrix: application to sfm,” IEEE Trans. Pattern Analysis Machine Intell., vol. 26,

no. 8, pp. 1051–1063, 2004.

[112] P. Anandan and M. Irani, “Factorization with uncertainty,” Int. J. Comput. Vision,

vol. 49, no. 2-3, pp. 101–116, 2002.

203

BIBLIOGRAPHY

[113] T. Okatani and K. Deguchi, “On the wiberg algorithm for matrix factorization in the

presence of missing components,” Int. J. Comput. Vision, vol. 72, no. 3, pp. 329–337,

2007.

[114] T. Wiberg, “Computation of principal components when data are missing,” in Pro-

ceedings of the Second Symposium of Computational Statistics, Berlin, 1976, pp. 229–

236.

[115] R. Hartley and F. Schaffalizky, “Powerfactorization: 3d reconstruction with missing

or uncertain data,” in Australia-Japan Advanced Workshop on Computer Vision,

2003.

[116] G. Golub and C. V. Loan, Matrix Computations. Baltimore, USA: Hopkins Univer-

sity Press, 1989.

[117] L. Zelnik-Manor and M. Irani, “Temporal factorization vs. spatial factorization,” in

Lect. Notes Comput. Sc. (ECCV), vol. 2, 2004, pp. 434–445.

[118] A. V. Knyazev and M. E. Argentati, “Principal angles between subspaces in an a-

based scalar product: Algorithms and perturbation estimates,” SIAM J. Sci. Com-

put., vol. 23, no. 6, pp. 2008–2040, 2002.

[119] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography,” Commun.

ACM, vol. 24, no. 6, pp. 381–395, 1981.

[120] L. K. Saul and S. T. Roweis, “Think globally, fit locally: unsupervised learning of

low dimensional manifolds,” J. Mach. Learn. Res., vol. 4, pp. 119–155, 2003.

[121] R. Vidal and R. Hartley, “Motion segmentation with missing data using powerfac-

torization and gpca,” in Proc. CVPR IEEE, vol. 2, 2004, pp. 310–316.

[122] L. Zappella, X. Llado, and J. Salvi, “Rank estimation of trajectory matrix in motion

segmentation,” Electron. Lett., vol. 45, no. 11, pp. 540–541, 2009.

[123] L. Zappella, X. Lladó, and J. Salvi, “Enhanced model selection for motion segmen-

tation,” in Proc. ICIP IEEE, 2009, pp. 4053–4056.

[124] L. Zappella, E. Provenzi, X. Lladó, and J. Salvi, “Adaptive motion segmentation

algorithm based on the principal angles configuration,” in Lect. Notes Comput. Sc.

(ACCV), vol. 6494/2011, 2010, pp. 15–26.

204

BIBLIOGRAPHY

[125] R. Vidal, Y. Ma, S. Soatto, and S. Sastry, “Two-view multibody structure from

motion,” Int. J. Comput. Vision, vol. 68, no. 1, pp. 7–25, 2006.

[126] K. Kanatani, “Motion segmentation by subspace separation and model selection,” in

Proc. ICCV IEEE, vol. 2, 2001, pp. 586–591.

[127] L. Zappella, X. Lladó, and J. Salvi, Motion Segmentation From Tracked Features,

ser. Lectures in Mathematics. LAP LAMBERT Academic Publish. GmbH & Co.

KGBirkhauser, 2011.

[128] C. Julià, A. Sappa, F. Lumbreras, J. Serrat, and A. Lpez, “An iterative multireso-

lution scheme for sfm with missing data: Single and multiple object scenes,” Image

Vision Comput., vol. 28, pp. 164–176, 2010.

[129] J. Cheeger, “A lower bound for the smallest eigenvalue of the laplacian,” Problems

in Analysis, pp. 195–199, 1970.

[130] A. Björck and G. H. Golub, “Numerical methods for computing angles between linear

subspaces,” Mathematics of Computation, vol. 27, no. 123, pp. 579–594, 1973.

[131] P.-A. Absil, A. Edelman, and P. Koev, “On the largest principal angle between

random subspaces,” Linear Algebra and its Applications, vol. 414, no. 1, pp. 288–294,

2006.

[132] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the

space of probability measures, ser. Lectures in Mathematics. Birkhauser, 2005.

[133] S. J. Orfanidis, Introduction to Signal Processing. Englewood Cliffs, NJ, USA:

Prentice-Hall, 1996.

[134] F. Chung, Spectral Graph Theory, ser. Number 92 in CBMS Regional Conference

Series in Mathematics. American Mathematical Society, 1997.

[135] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17,

no. 4, pp. 395–416, 2007.

[136] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. Nor-

well, MA, USA: Kluwer Academic Publishers, 1981.

[137] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans.

Syst., Man, Cybern., vol. 9, no. 1, pp. 62–66, 1979.

[138] C. Zach, I. A., and H. Bischof, “What can missing correspondences tell us about 3d

structure and motion?” in Proc. CVPR IEEE, 2008.

205

BIBLIOGRAPHY

[139] L. Zappella, A. Del Bue, X. Lladó, and J. Salvi, “Simultaneous motion segmentation

and structure from motion,” in Proc. of the IEEE Intern. Conf. on Motion and Video

Computing, 2011, pp. 679–684.

[140] E. Candès and B. Recht, “Exact matrix completion via convex optimization,” Foun-

dations of Computational Mathematics, vol. 9, no. 6, pp. 717–772, 2009.

[141] J. Rennie and N. Srebro, “Fast maximum margin matrix factorization for collabora-

tive prediction,” in International Conference on Machine Learning. ACM, 2005, pp.

713–719.

[142] R. Keshavan, A. Montanari, and S. Oh, “Matrix completion from a few entries,”

Information Theory, IEEE Transactions on, vol. 56, no. 6, pp. 2980–2998, 2010.

[143] A. Cheriyadat and R. Radke, “Non-negative matrix factorization of partial track

data for motion segmentation,” in Proc. ICCV IEEE, 2009, pp. 865–872.

[144] C. Bregler, A. Hertzmann, and H. Biermann, “Recovering non-rigid 3D shape from

image streams,” in Proc. CVPR IEEE, 2000, pp. 690–696.

[145] P. Tresadern and I. Reid, “Articulated structure from motion by factorization,” in

Proc. CVPR IEEE, vol. 2, 2005, pp. 1110–1115.

[146] A. M. Buchanan and A. Fitzgibbon, “Damped newton algorithms for matrix factor-

ization with missing data,” in Proc. CVPR IEEE, vol. 2, 2005, pp. 316–322.

[147] M. Marques and J. Costeira, “Estimating 3d shape from degenerate sequences with

missing data,” Comput. Vis. Image Und., vol. 113, no. 2, pp. 261–272, 2009.

[148] J. Costeira and T. Kanade, “A multi-body factorization method for motion analysis,”

in Proc. ICCV IEEE, 1995, pp. 1071–1076.

[149] A. W. Fitzgibbon and A. Zisserman, “Multibody structure and motion: 3-d recon-

struction of independently moving objects,” in Lect. Notes Comput. Sc. (ECCV),

2000, pp. 891–906.

[150] R. Vidal and R. Hartley, “Three-view multibody structure from motion,” IEEE

Trans. Pattern Analysis Machine Intell., vol. 30, no. 2, pp. 214–227, 2008.

[151] K. Ozden, K. Schindler, and L. Van Gool, “Multibody structure-from-motion in

practice,” IEEE Trans. Pattern Analysis Machine Intell., vol. 32, no. 6, pp. 1134–

1141, 2010.

206

BIBLIOGRAPHY

[152] K. Schindler, D. Suter, and W. Wang, Hanzi, “A model-selection framework for

multibody structure-and-motion of image sequences,” Int. J. Comput. Vision, vol. 79,

no. 2, pp. 159–177, 2008.

[153] A. Galántai, Projectors and Projection Methods, ser. Advances in Mathematics.

Assinippi Park, MA, USA: Kluwer Academic Publishers, 2009.

[154] A. Del Bue, J. Xavier, L. Agapito, and M. Paladini, “Bilinear factorization via aug-

mented lagrange multipliers,” in Lect. Notes Comput. Sc. (ECCV), vol. 4, 2010, pp.

283–296.

[155] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,”

SIAM Jour. Scientic Comput., vol. 20, pp. 33–61, 1998.

[156] S. Wright, R. Nowak, and M. Figueiredo, “Sparse reconstruction by separable ap-

proximation,” IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2479–2493,

2009.

[157] L. Grady, “Random walks for image segmentation,” IEEE Trans. Pattern Analysis

Machine Intell., vol. 28, no. 11, pp. 1768–1783, 2006.

[158] S. Lee and S. Wright, “Implementing algorithms for signal and image reconstruc-

tion on graphical processing units,” Computer Sciences Department, University of

Wisconsin-Madison, Tech. Rep, Tech. Rep., 2008.

207

	Abstract
	Resum
	Resumen
	Acknowledgements
	Contents
	List of figures
	List of tables
	Abbreviations and notation
	1. Introduction
	1.1 From image segmentation to video segmentation
	1.2 Motivation
	1.3 Context
	1.4 Problem definition
	1.5 Objectives
	1.6 Structure of the thesis

	2. State of the art
	2.1 Problems and attributes
	2.2 Classification
	2.3 Main techniques
	2.4 Analysis of the state of the art
	2.5 Databases

	3. Motion segmentation
	3.1 Local subspace affinity (LSA)
	3.2 Enhanced Model Selection (AMS)
	3.3 Adaptive subspace affinity
	3.4 Estimation of the number of motions
	3.5 Conclusion

	4. Joint estimation of segmentation and structure from motion
	4.1 Introduction
	4.2 Single versus multi-body SfM
	4.3 Structure from motion with missing data
	4.4 Motion segmentation and SfM: the missing constraint
	4.5 The JESS algorithm
	4.6 Experiments
	4.7 Conclusion

	5. Conclusion
	5.1 Summary and contributions
	5.2 Future directions
	5.3 Publications and Code

	A. Principal angles, affinity and entropy appendix
	Bibliography

