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Abstract

Scene modeling has a key role in applications ranging from visual mapping to aug-
mented reality. This thesis presents an end-to-end solution for creating accurate 3D
textured models using monocular video sequences, with contributions at different
levels.

First, we discuss a method developed within the framework of sequential Struc-
ture from Motion, where a 3D model of the environment is maintained and updated
as new visual information becomes available. The camera pose is recovered by di-
rectly associating the 3D scene model with local image observations, using a dual
registration approach. Compared to the standard Structure from Motion techniques,
this approach decreases the error accumulation while increasing the robustness to
scene occlusions and feature association failures, allowing 3D reconstructions for any
type of scene.

We also develop an online approach for measuring similarities between images.
In this way, images corresponding to the same scene region can be associated, al-
lowing the reduction of drift and position uncertainties for mapping and navigation.
Inspired from content-based image retrieval, the proposed approach uses visual vo-
cabularies to represent images as occurrences of visual words. The technique is
entirely sequential and automatic, making it suitable for online applications, such
as robot navigation and mapping: (i) the vocabularies are built and updated on-
line, during image acquisition, in order to efficiently represent the visual information
present in the scene, and (ii) the vocabulary building and image indexing processes
do not require any user intervention.

Lastly,motivated by the need to map large areas, we propose an online 3D model
simplification algorithm. The simplification process uses plane-parallax to estimate
the geometry of the scene, eliminating the necessity of explicit scene shape infor-
mation. Such an approach offers two main advantages: (i) it is suited for online
applications, where it can run parallel with the 3D reconstruction process, and (ii)
as it does not require having the full model prior to the simplification, the algorithm
allows mapping of larger, more complex scenes.

We discuss the efficiency of the proposals and compare them with other state of
the art approaches, using a series of challenging datasets both in underwater and
outdoor scenarios.
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Resum

El modelat d’escenes juga un paper clau en un gran ventall d’aplicacions que van
des de la generació mapes fins a la realitat augmentada. Aquesta tesis presenta una
solució completa per a la creació de models 3D amb textura utilitzant seqüències de
v́ıdeo monoculars, proposant contribucions a diferents nivells.

En primer lloc es presenta un mètode desenvolupat en el context de Structure
from Motion seqüencial, a on el model 3D de l’entorn és manté i s’actualitza a mesura
que es va disposant de nova informació visual. La posició de la càmera es calcula
directament registrant cadascuna de les imatges de la seqüència amb el model 3D
de l’escena. En comparació amb les tècniques estàndard per obtenir l’estructura de
l’escena, aquesta proposta redueix l’error acumulat essent més robusta en presència
d’oclusions, i tolera millor els errors en l’associació de caracteŕıstiques, permetent la
reconstrucció 3D de qualsevol tipus d’escena.

També s’ha desenvolupat un mètode online per a la mesura de similitud entre
imatges. D’aquesta manera, les imatges corresponents a la mateixa regió de l’escena
es poden associar, permetent la reducció de la deriva i la incertesa en la posició de la
càmera, millorant la navegació i la construcció de mapes. Inspirat en la recuperació
d’imatges basades en el contingut, el mètode presentat utilitza vocabularis visuals
per a presentar les imatges com a aparicions de paraules visuals. La tècnica és
completament seqüencial i automàtica, convertint-se en una eina adequada per a
aplicacions online. Aix́ı mateix, els processos de generació del diccionari i indexat
de les imatges no requereixen cap intervenció per part de l’usuari.

Motivat per la necessitat de construir mapes en àrees extenses, es proposa en
aquesta tesis un algorisme de simplificació de models 3D. El procés de simplificació
utilitza la informació que aporta el parallax per a l’estimació de la geometria
de l’escena, eliminant la necessitat d’informació expĺıcita sobre la morfologia de
l’escena. Aquesta proposta ofereix dos avantatges: (i) és factible per a les aplicacions
online, a on pot córrer de manera paral·lela amb la reconstrucció 3D, i (ii) donat que
no requereix disposar del model complet abans d’iniciar la simplificació, l’algorisme
permet generar mapes de grans dimensions d’escenes complexes.

L’eficiència de les propostes s’ha comparat amb altres mètodes de l’estat de l’art,
utilitzant diversos conjunts de dades submarines i terrestres.
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Chapter 1

Introduction

1.1 Objectives

The aim of this thesis is to provide a complete framework for efficient 3D modeling.

More specifically, given an image sequence of a scene, the objective is to provide

a high-precision textured 3D reconstruction of the scene with virtually no human

intervention.

The main focus of this thesis is on efficient modeling of 3D underwater scenes for

scientific studies. Nevertheless, as shown in this work, we have successfully applied

the technique in other areas of interest such as the reconstruction of small scale

objects, outdoor natural scenes, urban environments, etc.

Although some successful 3D reconstruction algorithms have been reported in

literature, they are limited to specific applications. Most techniques assume con-

trolled or structured environments, where illumination, camera motion and scene

geometry priors can be used. More importantly, these techniques can be applied to

very limited scenes only, due to the complexity of the 3D reconstruction problem.

In contrast, we aim to develop an online generic framework for 3D scene re-
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construction that can cope with wide areas of complex and highly unstructured

environments. In order to achieve this, we focused on the following aspects:

Online process. The entire framework has been designed to process the data se-

quentially, enabling its use on online applications such as robot navigation and

mapping.

Flexibility of acquisition. The 3D reconstruction algorithm uses image sequences

that can be acquired by using any type of video/still cameras, with no con-

straints on the acquisition process. Moreover, the framework can readily cope

with camera occlusions and temporary failures.

Stand-alone framework. While additional information can be integrated into the

3D reconstruction process, the framework does not require any additional sen-

sor information. This increases the flexibility of the reconstruction process

while decreasing the acquisition costs. In this way, underwater sequences can,

for example, be acquired by using cameras mounted on inexpensive Remotely

Operated Vehicles (ROVs) or even by divers using hand-held cameras. On the

other hand, without absolute positioning sensors, vision systems are prone to

drifting. We address this shortcoming by proposing a novel online cross-over

detection system, that allows the detection of loops in camera trajectory along

with camera pose1 correction.

Efficient 3D modeling. The framework employs a novel online 3D model simpli-

fication algorithm, that allows mapping of larger, more complex scenes.

1Camera position and attitude (orientation).

2
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1.2 Motivation

Throughout the history of the Earth, the most determinant element, that shaped it

as we know it today, are the oceans. They are the origin of life on Earth and home

of the widest biodiversity. Moreover, the oceans are the major factor in our climate,

literally affecting almost every aspect of our daily lives.

Apparently paradoxical, the oceans represent the least studied region of the

Earth’s surface. The main reason behind this is the inaccessibility and hostility of

this environment. This, however, is changing at a rapid pace. Our urge to find

alternative food and energy sources, to understand climate changes and geological

phenomena have determined the scientists to multiply their efforts into understand-

ing this complex environment. Moreover, the latest technological advances provide

the scientists with the basis for more efficient means to explore the underwater

environment.

In this context, this thesis proposes a valuable tool for remote underwater studies.

Images acquired by scuba divers using hand-held cameras can be used to obtain high

detail textured 3D models of the seafloor. Using cameras mounted on Unmanned

Underwater Vehicle (UUV) we can obtain 3D maps of high depth underwater re-

gions that otherwise would be inaccessible to humans. Just to name a few, this

proposal has applicability in (see Figure 1.1 for some examples of scientific oriented

underwater imagery):

• Biology. Visual 3D maps of marine habitats provide important clues in study-

ing the marine species and their interaction with the environment.

• Ecology. The impact of human activities on our environment has become

a matter of great concern nowadays. Climate changes, intensive fishing and

the destruction of habitats greatly affect the underwater biodiversity. In this

3
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(a)

(b)

(c)

Figure 1.1: Motivation – Scientific underwater imagery. (a) a coral reef head
near Bahamas; (b) underwater lava formations captured during MoMARETO’06 cruise –
courtesy of IFREMER and (c) amphoras near Pianosa Island in the Mediterranean Sea –
courtesy of Venus Project.

4



1. INTRODUCTION

context, 3D models can be used to observe and monitor the changes that take

place in the underwater habitats, such as coral reefs.

• Geology. Shape and texture of the regions with increased geological activity

greatly aid geologists in order to understand the complex geological phenomena

that take place underwater.

• Archeology. In our pursuit to understand history, we continuously search the

depths of the oceans for new clues about our past. Unfortunately, in most cases

the artifacts are too fragile or too inaccessible to be recovered for studying.

In this case, 3D models can provide a viable solution for remote archeological

studies.

Nowadays, an increasing number of underwater studies employ ROVs as an alter-

native to scuba divers. This eliminates the risks the divers are exposed to, especially

in deep waters, while allowing more efficient studies. However, the use of ROVs poses

a series of drawbacks: their operation requires specialized personnel and their range

and depth is limited by the length of their umbilical cable, which connects the ROV

with the ship. Various research groups have focused their efforts on developing un-

derwater vehicles that would carry out missions autonomously. This requires that

the vehicles be able to model the environment in order to navigate through it. The

images acquired by cameras mounted on these vehicles can be processed and 3D

maps of the environment can be obtained. Furthermore, the obtained maps can be

used for navigation in subsequent missions where, for example, successive surveys

of the same area are needed.

With the wide accessibility of high computational power, the use of wide area

3D modeling has become an area of interest in fields much closer to the end-user:

• Urban 3D modeling. Applications such as Google Earth [47] (see Figure

5
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Figure 1.2: Motivation – Urban architecture. Google Earth view of downtown Miami
depicting 3D models of the most iconic buildings.

1.2) or certain navigation applications such as iGo [63] offer 3D models of

urban landmarks. The process of constructing the 3D models could be highly

simplified by using automated 3D modeling techniques. Additionally, one

could imagine applications where tourists would able to obtain 3D models

along with information about the landmarks they are visiting.

• Architecture. Indoor / outdoor 3D models of buildings can be obtained for

virtual marketing purposes. Also, using augmented reality, one could visualize

beforehand the results of the restoration of a historical building for example,

etc.

• Virtual reality. Computer games and virtual community applications such

as Second Life [130] could be enriched with 3D models of real-life objects and

buildings.

6
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1.3 Challenges

The human brain interprets visual information provided by the eyes by generating

3D images of our surroundings. We use this information in order to orient ourselves

and move through the environment. The flexibility and power of abstraction of the

brain allows it to easily cope with constant challenges in our environment such as

moving objects, lighting artifacts and so on. When it comes to computer vision

however, things become ever more difficult. For this, in order to achieve flexibility

and robustness, we need to address a series of challenges:

• Unstructured, natural 3D scenes consist of large amounts of objects with di-

verse shapes and textures. As the camera moves through the scene, objects

constantly occlude each other (see Figure 1.3).

• Light changes (e.g. motion of the light source), moving shadows, altering of

light reflections in specular surfaces due to point of view changes drastically

modify the photometric properties of the scene. This effect is particularly

emphasized in underwater scenes, where sun flicker (changes in light pattern

due to sunlight being refracted on moving sea surface) dramatically changes

the illumination field (refer to Figure 1.4 for details).

• Moving objects such as cars and pedestrians in urban environments or fishes

and algaes in underwater environments (see Figure 1.5) violate the rigid scene

assumption, inducing errors in scene geometry estimation.

All these are common challenges faced by computer vision systems. However, the

underwater environment poses specific challenges that make underwater imagery a

particularly difficult task (Figure 1.6):

• In water, light suffers a much higher rate of attenuation than in atmospheric

7
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(a) (b)

(c) (d)

Figure 1.3: Challenges – Scene occlusions. (a) and (b) show the same underwater
scene from two different camera view points; The region marked by the yellow rectangles
is shown in detail in (c) and (d). Note the rock is clearly visible in (a) and (c) but almost
occluded in (b) and (d).

conditions. This limits the maximum distance between the camera and the

scene, resulting in a narrow coverage of the camera. In order to cover wide

scene areas, large amounts of images have to be merged. Furthermore, due to

light attenuation, at great depths, additional illumination sources have to be

used. Generally, underwater vision systems employ focus lights as the latter

can illuminate the scene at greater ranges. The drawback of the focus lights,

however, is that they induce highly non-uniform lighting fields [42] (refer to

Figure 1.6a for details).

• The contrast of underwater images is reduced due to light absorbtion, decreas-

8
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(a) (b)

(c) (d)

(e) (f)

Figure 1.4: Challenges – Light artifacts. (a) and (b) illustrate an underwater scene
a few frames apart. The details of the outlined region are visible in (a) while not dis-
tinguishable in (b) due to shadowing. Specular surfaces such as wet pavement (c) and
windows (d) are highly reflective, inducing lighting artifacts. (e) and (f) show two frames
of an underwater scene taken only 150ms apart. The light pattern changes drastically due
to sun flickering.
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(a) (b)

Figure 1.5: Challenges – Moving objects. Moving objects such as pedestrians in
urban scenes (a) and fishes in underwater scenes (b) violate the rigid scene assumption.

ing the signal-to-noise ratio (see Figure 1.6b).

• Small suspended particles present in the sea water such as plankton and sedi-

ments generate the so called scattering effect. Practically, the scattering effect

takes place due to the light changing direction when it enters in contact with

the particles. The forward scattering bends the light beams traveling from the

scene towards the camera, resulting in a blurring effect that reduces the level

of detail of the images (Figure 1.6c). On the other hand, the backward scat-

tering refracts the light from the light source towards the camera decreasing

the contrast and inducing noise in the images (Figure 1.6d).

In addition to environment challenges, vision systems pose specific fundamental

problems:

• Our aim is to develop a 3D modeling system where the camera can move freely

through the scene. In order to maintain the generic character of the proposal,

we assume that no external sensor information is used. In this case, scene

10
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(a) (b)

(c) (d)

Figure 1.6: Challenges – Underwater environment. (a) the use of additional illumi-
nation sources induce non-uniform illumination fields (a); (b) light attenuation limits the
range of the camera: the two divers in the background are hardly visible; (c) forward scat-
tering blurs and decreases the contrast of underwater images and (d) backward scattering
induces image noise.

geometry and camera motion are computed incrementally. Over wide scenes,

small errors in the camera pose and scene geometry estimation build up over

time. This error build-up can lead to estimations that drift away from the

reality.

• Scene models are composed of 3D vertices. These vertices can be seen as

discrete samples of the surfaces that are present in the scene. Over wide scene

areas, millions of such vertices can be generated. Such large number of scene

11
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samples can prove too large to be effectively managed by vision systems.

1.4 Contributions

This thesis has contributions at different levels, briefly described hereafter. A more

extensive account of the contributions is presented in Chapter 6.

1.4.1 Structure from Motion

We develop a novel Structure from Motion (SfM) algorithm, where the scene model

is generated using a two-step approach: (i) camera pose is directly obtained from

the scene model and (ii) using the camera pose, the scene model is updated and

extended. This approach reduces the accumulation of error and results in more

accurate scene models.

Also, we propose a novel dual camera pose recovery method, which allows SfM

algorithm to successfully cope with both planar and non-planar scenes.

1.4.2 Ortho-mosaic and Rendering

We propose a novel approach to generate synthetic 2D visual maps – ortho-mosaics.

By exploiting the geometry of the scene, the approach takes into account surface

normals and camera poses in order to assure maximum resolution and minimum

distortions during the ortho-mosaic rendering. This method results in accurate and

visually pleasant scene maps.

1.4.3 Loop Closure Detection

Loop closures are situations where the camera revisits an already surveyed region.

These regions allow us to impose additional constraints in the geometry of the scene,

12
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hence reducing the 3D estimation errors. This thesis proposes an online loop closing

detection algorithm that uses Bag of Words (BoW) to measure visual similarities

among camera frames. There are three main novelties that we propose here: (i)

the visual vocabularies are built incrementally, enabling the use of the algorithm

for online applications; (ii) the algorithm requires no training stage and no user

intervention, and (iii) the feature clustering process uses a global data distribution

criteria, resulting in more efficient visual vocabularies.

1.4.4 Vertex Selection

Scene models are formed from thousands to millions of 3D vertices. Most of these

vertices are geometrically redundant (4 or more vertices laying on the same plane,

3 or more vertices laying on the same straight edge, etc.). We propose an online

approach which analyzes the geometry of the scene and selects only those vertices

that are geometrically representative for the scene. The method uses plane-parallax

techniques that allow us to approximate the shape of the scene without explicitly

recovering its geometry. In this way, feature selection can be carried out sequentially,

as the scene model is being built.

The result is a 3D scene model with drastically reduced complexity that, at the

same time, maintains the accuracy of the original model.

1.5 Thesis Outline

In Chapter 2 we review previous work on image registration techniques, visual fea-

ture extraction and matching, mosaicing and 3D reconstruction techniques. The

review details those aspects of literature that are relevant to this thesis. Modern

visual feature extractors and descriptors are described thoroughly as they constitute

13
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the basis for the proposed 3D reconstruction framework. Also, other 3D reconstruc-

tion algorithms are discussed along with their limitations, illustrating the motivation

behind this work.

Chapter 3 presents the proposed 3D reconstruction algorithm. The first part

of the chapter provides a detailed description of each step of the algorithm. The

algorithm is validated through a series of experiments presented in the last part of

the chapter. In here, we discuss various experiments that we have carried out in

underwater, natural and structured environments.

In Chapter 4, we present the cross-over detection algorithm. The algorithm is

built on top of the 3D reconstruction process and allows online detection of loops in

the camera trajectory. In the first part of the chapter, we provide a review of the

literature regrading the cross-over detection problem. Next, a detailed description

of the proposed algorithm is provided. Finally, we present a series of experiments

along with a comparison with a state of the art loop closure detection algorithm.

Chapter 5 discusses the online model simplification algorithm, that works in

parallel with the 3D reconstruction algorithm. First, we discuss the existing work

related to 3D model simplification, followed by a detailed description of our simpli-

fication algorithm. The chapter concludes with a series of experimental results and

comparison with a widely used model simplification algorithm.

Finally, Chapter 6 summarizes the contributions of the thesis and discusses on-

going and future work. This chapter also presents the publications of the author,

that are most significant to the development of this thesis.

14



Chapter 2

Literature Review

Scene modeling has represented one of the most fundamental problems of computer

vision since its birth, four decades ago. Despite this, until not long ago, scene

modeling was more of an exploratory field with very limited applications. Recent

advances in both hardware and algorithms, however, have increased the popularity

of scene modeling within the scientific community. Applications of this field have

become part of our everyday lives. Google Earth, for example, allows anyone with

a computer and an Internet connection to take an instant virtual trip to any place

on Earth.

This chapter presents a brief review of most the representative techniques in the

general context of scene modeling.

2.1 Image Registration

Determining the transformations that take place between images as camera view-

point changes is an essential problem in computer vision. This is widely known as

the image registration problem. It constitutes the basis for camera motion estimation

and scene modeling.
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Image registration has been largely discussed in the literature, where a series

of authors have proposed methods to tackle this problem. Largely, these methods

can be classified into: frequency domain based methods (Fourier transform), dense

methods (optical flow) and sparse methods (feature based), discussed hereafter.

2.1.1 Frequency Domain

Originally, frequency-based methods used phase-correlation in order to estimate the

shifts between two images. This was later extended to account for rotation and

scale transformations [118] and even affine transformations [148] using log-polar

coordinates. A few authors have proposed the use of frequency domain methods for

underwater image registration [123, 124].

However, frequency domain methods are computationally expensive, as they

require Fast Fourier Transform (FFT) to be computed over the entire images.

2.1.2 Optical Flow

Optical flow methods estimate the disparity (apparent motion) of pixels between

pairs of images. Generally, optical flow estimates the image flow field using the

Brightness Constancy Model (BCM), in which it is assumed that the photometric

properties (intensity and color) remain constant.

There are two main approaches in estimating the optical flow: global methods

such as Horn-Schunck [61] which yield dense flow fields, and local methods such as

Lucas-Kanade [80, 81] that produce non-dense regularized grid flow fields but are

more robust to noise.

Lucas-Kanade is one of the most widely used methods based on the local Taylor
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series approximation using partial spatial and temporal derivatives. It considers:

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt+ ξ,

where I(x, y, t) is pixel intensity at coordinates (x, y) at time t and ξ is a remainder

(small enough to be ignored). Making use of the BCM assumption along frames, we

have

∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt = 0

or

∂I

∂x

δx

δt
+
∂I

∂y

δy

δt
+
∂I

∂t

δt

δt
= 0

therefore,

∂I

∂x
Vx +

∂I

∂y
Vy = −∂I

∂t

Using Ix, Iy and It as the spatial and temporal derivatives we obtain −It =

IxVx + IyVy or simply −It = ∇I · ~V which is an equation that imposes a single

constraint with two unknowns, thus not solvable as is. However, assuming constant

flow within small windows, for instance, over 3× 3 pixels, we can obtain a set of 9

equations:

Ix11
· Vx + Iy11 · Vy = −It11

Ix12
· Vx + Iy12 · Vy = −It12

Ix13
· Vx + Iy13 · Vy = −It13

...

Ix33
· Vx + Iy33 · Vy = −It33
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Therefore, we can construct an over-determined system of 3× 3 = 9 equations:




Ix11
Iy11

Ix12
Iy12

...
...

Ix33
Iy33




·



Vx

Vy


 =




−It11
−It12
...

−It33




This over-determined system B · ~v = −b can be solved in a Least-Squares sense

giving BT · B · ~v = BT(−b) and, therefore, ~v = (BTB)
−1
BT(−b). Hence,



Vx

Vy


 =




∑
I2xij

∑
Ixij

· Ixij

∑
Ixij

· Ixij

∑
I2yij




−1

·




−∑ Ixij
· Itij

−∑ Iyij · Itij




Local optical flow methods yield a vector direction for each considered patch in the

image.

In recent years, some authors have proposed better alternatives to BCM that

assume linear changes in illumination – Generalized Dynamic Image Model (GDIM)

[100, 106], and color [84, 101].

However, due to the formulation of the problem, the optical flow methods are

not suitable for disparities that exceed 1 pixel. The solution for this is to use

multi-resolution approaches [105]. Here, the images are gradually decimated and

the optical flow is computed from coarse levels towards fine levels. This approach

has its own drawback: it is slow (optical flow has to be computed at each level) and

the maximum pixel disparity has to be known a priori in order to set the number

of decimation levels. Also, multi-resolution approaches are very sensitive to noise,

since errors in the estimation of optical flow at coarse levels will propagate to fine

levels.
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2.1.3 Feature Based

Feature based image registration methods focus on certain regions in the images,

rather than images as a whole. Tracking the changes that these regions (features)

suffer between images allows accurate image registration. For this, image features

must be: (i) repetitive – features can be correctly tracked among images even in the

presence of point of view and illumination changes and (ii) discriminative – in the

sense that they can be uniquely matched in images.

Image registration based on image features involves three steps:

Feature detection. Extraction of the regions of interest in the images correspond-

ing to image features such as: point features, line (edge) features, blob features,

etc.

Feature description. Characterization of the image features in order to correctly

identify and associate them.

Feature matching. Association of image features corresponding to the same re-

gion in the scene.

Hereafter, we discuss some of the most popular image feature detection, descrip-

tion and matching techniques, providing a detailed description of those used as basis

for this work.

Feature detection

During this step, the actual locations of image pixels corresponding to the visual

features are extracted (see Figure 2.1 for a comparison between different types of

feature detectors). The outcome of the step depends on the image content and the

type of feature extractor. However, regardless of these factors, the features have to

be highly distinguishable from their neighborhood.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.1: Examples of feature fetectors. Examples of features extracted from two
different scenes – urban (left column) and underwater (right column): Harris (a) and (b),
Hessian (c) and (d), MSER (e) and (f), SIFT (g) and (h) SURF (i) and (j). Number of
extracted features was highly reduced for illustration clarity.
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Harris Corner Detector is historically the most widely used point feature de-

tector. Originally developed by Harris and Stephens in 1988 [55] to extract corner

regions in structured environments (hence its name), it was successfully applied to

all sorts of scenes. Harris Corner Detector extracts image points with high gradient

in both X and Y directions. These points are locally discriminative in the sense

that image patches centered in the points are highly dissimilar to any neighboring

patches.

Harris Corner Detector uses the second moment matrix (also called the autocor-

relation matrix) for feature extraction:

C(x, y) =




I2x(x, y) IxIy(x, y)

IxIy(x, y) I2y (x, y)




where:

I2x =
∑

W

(Ix(xi, y, i))
2

I2y =
∑

W

(Iy(xi, y, i))
2

IxIy =
∑

W

Ix(xi, y, i)Iy(xi, y, i)

Matrix C(x, y) captures the intensity structure of the local neighborhood. Its

eigenvalues represent two principal intensity changes in the neighborhood of a point.

Harris features points correspond to local maxima of KHarris. Such points are in-

variant to rotation and arbitrary lightning changes.

KHarris =
I2xI

2
y − (IxIy)

2

I2x + I2y + ε

where ε is a small scalar added to avoid division by 0.

21



EFFICIENT 3D SCENE MODELING AND MOSAICING

Hessian blob detector was one of the first image feature detectors. Proposed

by Beaudet in 1978 [10], it represents the basis for many recent corner detectors.

The Beaudet operator is a rotationally invariant measurement of cornerness given

by the determinant of the Hessian matrixM which represents a second-order partial

derivative of an image I:

M(x, y) =



Ixx(x, y) Ixy(x, y)

Ixy(x, y) Iyy(x, y)




The second derivatives used in the Hessian matrix correspond to blobs and

ridges1, being represented by the local maxima of KHessian:

KHessian(x, y) = Ixx(x, y)Iyy(x, y)− I2xy(x, y)

Harris affine and hessian affine detectors are robust to image noise and in-

variant to rotation and lighting changes. However none of them is invariant to scale

and affine transformations [92]. This makes them ineffective in wide base-line im-

age registration where changes in camera viewpoint can induce significant geometric

transformations.

Mikolajczyk et al. [94] have proposed adaptations of both Harris and Hessian

feature extractors that are invariant to scale changes and affine transformations. In

order to cope with scale changes, they propose the use of an scale selection method

based on Laplacian. The idea is to select a scale that is characteristic to the local

structure. For this, the Harris autocorrelation matrix is modified to include scale

information:

1Blobs and ridges are compact image regions which differ from the background in terms of
intensity, color or texture characteristics.
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CAffine(x, σI , σD) = σ2
Dg(σI) ∗




I2x(x, σD) IxIy(x, σD)

IxIy(x, σD) I2y (x, σD)




The local image derivatives are computed using Gaussian kernels of scale σD and

averaged by smoothing with a Gaussian window of scale σI .

In the case of the Hessian feature extractor, the second order matrix becomes:

MAffine(x, σD) =



Ixx(x, σD) Ixy(x, σD)

Ixy(x, σD) Iyy(x, σD)




The affine shape of the neighborhood around the feature points in both Harris

and Hessian cases is estimated using an iterative method using the eigenvalues of

the second moment matrix.

SIFT detector uses Laplacian of Gaussian to extract image features that cor-

respond to high gradient regions. However, in order to decrease the computa-

tional load, the Laplacian of Gaussian operator is approximated by Difference of

Gaussians (DoG). The use of DoG was proposed by Lowe in [79] for both feature

extraction and scale selection. For this, an image I is convolved with Gaussian filters

at different scales, and the differences between successive Gaussian-blurred images

are taken (see Figure 2.2):

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ)

L(x, y, kσ) = G(x, y, kσ) ∗ I(x, y)

where G(x, y, kσ) is the Gaussian kernel at scale kσ.

Specifically, image I is convolved with different kernels by successively increas-

ing k. The convolved images are grouped by octaves, which correspond to doubling
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Figure 2.2: SIFT feature detection. Laplacian of Gaussian is approximated by DoG.
The image I is convolved with Gaussians at different levels. Adjacent Gaussian images
are subtracted to obtain DoG.

the value of k. The DoG is obtained by simply subtracting two adjacent convolved

images. By stacking all the DoG’s, we obtain a 3D space where the first two di-

mensions are given by x and y and the third dimension is the scale (this space is

referred to as the scale-space). The keypoint features are obtained by extracting

local extrema in the scale-space. In this way, the method extracts image features

that are invariant to scale changes.

However, the precision of the extracted image features is limited by the resolution

of the image I. In order to increase the precision of the feature extractor, Lowe

proposes the use of a quadratic Taylor expansion of the scale-space, thus obtaining

sub-pixel accuracy.

SURF detector uses the determinant of Hessian matrix for selecting both, the

location of the keypoint and its scale [8]. The Hessian matrix M(x, y, σ) of image I

at point (x, y) is given by:
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(a) (b)

Figure 2.3: SURF feature detection. (a) Integral image calculation scheme. (b)
Approximation of the second-order derivatives of Gaussian Lyy and Lxy with box filters
Dyy and Dxy (mean / average filter)

M(x, y, σ) =



Lxx(x, y, σ) Lxy(x, y, σ)

Lxy(x, y, σ) Lyy(x, y, σ)




Lxx, Lxy and Lyy are the convolutions of the Gaussian second-order derivatives with

the image I at point (x, y).

Motivating that, in practice, the Gaussians need to be discretized and cropped,

thus producing aliasing, Bay et al. approximate second-order derivatives of Gaussian

with box filters (Figure 2.3b) which are applied on the integral version of I. The

entry of an integral image IΣ at a location (x, y) represents the sum of all pixels in

the input image I of a rectangular region formed by the point (x, y) and the origin

(Figure 2.3a).

The scale-space is built by gradually increasing the block filter size and stacking

the responses (M). The feature extraction in the scale-space is carried out in a

similar fashion with the one proposed by Lowe [79].

As reported in the literature and determined by our experiments, SURF has very

similar performance to SIFT, but has a significant cut in computational load.

MSER detector was proposed by Matas et al. for detecting blob regions in

wide baseline image registration [88]. As defined by the authors, a maximal region
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is a connected component of an appropriately thresholded image. In other words,

MSER extracts compact regions whose pixels have either higher (bright blobs) or

lower (dark blobs) intensity values than all the pixels in their surroundings.

In order to extract MSER regions, the image is binarized using gradually in-

creasing intensity thresholds. The binarization is used to extract compact dark and

bright regions. MSER selects only those regions whose area changes insignificantly

over a large range of intensity thresholds. These areas prove to be highly stable in

both illumination (linear and non-linear) and affine transformations.

Feature description

For accurate image registration, each image feature has to be characterized so that

image features corresponding to the same scene region – also referred to as pre-image

region [19] – can be correctly matched. Blob features are generally characterized by

extracting some statistics on the intensity or color values of the pixels forming the

blob. However, in the case of point and edge features the characterization is not

done on the features themselves. As images are subject to noise, illumination and

geometric changes, measuring only one pixel (point features) or a small amount of

pixels (edge features) would be highly unstable. In these cases, the solution is to

characterize these types of features using their surrounding pixels.

Much of the robustness of feature tracking to lighting changes, noise and image

transformations is obtained by choosing appropriate feature characterization (fea-

ture description). An extensive survey and comparison of state of the art feature

characterization methods is discussed in [8,93]. Hereafter, we detail two widely used

feature descriptors employed in this thesis.
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SIFT descriptor. The detector used by SIFT provides interest points that are

translation and scale invariant. Rotation, illumination and affine invariance is man-

aged by the descriptor. The SIFT descriptor calculates an orientation corresponding

to the dominant gradient direction of the neighborhood of a feature. All the fol-

lowing calculations are done relative to this orientation, so that all the features

corresponding to the same pre-image point are aligned in the same direction (rota-

tion invariance). In order to calculate the orientation, the gradient magnitude m

and orientation Θ are calculated for each pixel in the neighborhood of the feature:

m(x, y) =
√
(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

Θ(x, y) = tan−1 L(x, y + 1)− L(x, y − 1))

L(x+ 1, y)− L(x− 1, y)

L is obtained by smoothing I with a Gaussian at the scale where the feature was

extracted. The gradient orientations Θ are used to form an orientation histogram

with 36 bins. The highest peak in the histogram is detected and any other local peaks

within 0.8 of the highest peak are used to create keypoints with those orientations.

Finally, a parabola is fit to the 3 histogram values closest to each peak to interpolate

the peak position for better accuracy. As a result, each detected SIFT keypoint is

characterized by a vector (x, y, s,m,Θ), where x, y represent the coordinates of the

keypoint, s the scale, m the magnitude and Θ the orientation. In order to achieve

orientation invariance, the coordinates of the descriptor and the gradient orientations

are rotated relative to the keypoint orientation.

A Gaussian weighting function with σ equal to 0.5× the width of the descriptor

window is used to assign a weight to the magnitude of each sample point. Convo-

lution with Gaussian avoids sudden changes in the descriptor with small changes
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in the position of the window, and gives less emphasis to gradients that are further

away from the feature, as these are most prone to misregistration errors.

The keypoint descriptor allows for significant shift in gradient positions by cre-

ating an orientation histogram for each of the 4×4 sample regions. The orientation

histogram consists of 8 bins covering the 360 degree range of orientations. Each bin

is multiplied by a weight of 1 − d for each dimension, where d is the distance from

the sample to the central value of the bin, measured in units of the histogram bin

spacing.

The descriptor is formed from a vector containing the values of all the orientation

histogram entries. SIFT uses 4 × 4 array of histograms with 8 orientation bins in

each, computed from a 16×16 sample array. Therefore, the SIFT feature descriptors

have 4× 4× 8 = 128 elements.

Finally, the feature vector is normalized, to reduce the effects of illumination

changes.

SURF descriptor assigns a reproducible orientation to each detected keypoint,

in order to get invariance to rotation. For this, the Haar-wavelet responses in x

and y directions are calculated (shown in Figure 2.4) in a circular neighborhood

of radius 6s around the keypoint, where s is its scale. Accordingly, the size of

wavelet filters is adjusted to the scale. Using integral images, only six operations

are needed to compute the response in x or y direction at any scale. The side

length of the wavelets is 4s. Once the wavelet responses are calculated and weighted

with a Gaussian (σ = 2.5s) centered at the keypoint, the responses are represented

as vectors in a space with the horizontal response strength along the abscissa and

the vertical response strength along the ordinate (corresponding to x and y axis

in Figure 2.4). The dominant orientation is estimated by calculating the sum of
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Figure 2.4: SURF orientation assignment. Left: Circular neighborhood of radius 6s
around the keypoint, where wavelet responses are computed (s is a scale of the keypoint).
Middle: Haar wavelet 2D filters used for SURF. Right: Representation space of the wavelet
responses as vectors with coordinates x (horizontal response) and y (vertical response).
The dominant orientation is estimated by calculating the sum of all vectors within a sliding
orientation window covering an angle of π/3.

all responses within a sliding orientation window covering an angle of π/3. The

horizontal and vertical responses within the window are summed, yielding a new

vector. The longest vector lends its orientation to the interest point.

SURF descriptor is extracted by constructing a square region around each key-

point with the size 20s, oriented along the keypoint orientation. The regions is

then split into 16(4× 4) smaller square sub-regions and the Haar wavelet responses

in horizontal direction (dx) and vertical (dy) are calculated (horizontal and verti-

cal directions are relative to keypoint orientation as shown in Figure 2.5b). The

wavelet responses dx and dy are weighted with a Gaussian (σ = 3.3s) centered at

the keypoint, that increases the robustness to geometric deformations and localiza-

tion errors. Then, dx and dy are summed up independently over each subregion

to form a first set of entries in the feature vector. Furthermore, the sum of the

absolute values of the responses |dx| and |dy| are extracted, providing information

about the polarity of the intensity changes. Hence, each sub-region is represented

by a four-dimensional descriptor vector f = (
∑
dx,

∑
dy,

∑ |dx|,
∑ |dy|), underlying
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(a) (b)

Figure 2.5: SURF feature descriptor. (a) The descriptor is constructed from absolute
sums of wavelet responses along x and y over the 20s keypoint neighborhood split into
16 square sub-regions. The descriptor entries of a sub-region represent the nature of the
underlying intensity pattern; (b) A square region centered in the keypoint is aligned with
the keypoint orientation. “Horizontal” (x) and “vertical” (y) wavelet responses are also
defined with respect to this orientation.

its intensity structure. By stacking up the descriptor vector for all the subregions,

the result is a 64 dimension vector describing each key feature.

The wavelet responses are invariant to a bias in illumination (offset). Invariance

to contrast (a scale factor) is achieved by normalizing the descriptor vector.

Feature Matching

Image features originating from the same pre-image region have similar photometric

properties, reflected in a resemblance between feature descriptors. Early feature

matching techniques used simple similarity measurements between features’ neigh-

borhood (correlation). Currently, correlation based methods are sparsely used in

feature matching due to their lack of invariance to rotation and affine transforma-

tions. However, due its high precision in feature localization (subpixel correlation-

based feature matching) [149], correlation is still used in some applications where

rotation and affine transformations are absent or can be accounted for.

Modern feature matching techniques use similarity measurements between fea-

ture descriptors. As the descriptors themselves are invariant to illumination and

camera viewpoint changes, these matching techniques are highly robust, increasing
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the precision of image registration.

Correlation matching was initially used for area based feature matching [7, 39].

Here, the image features are extracted in image I1 and the matches are obtained

by applying correlation on a neighborhood of each pixel within a fixed-size search

window in I2 around the coordinates of each feature. The computational cost of this

approach is very high since all possible candidates within each search window of each

feature have to be analyzed. Later, this approach has been optimized by extracting

image features (e.g. using Harris Corner extractor) and correlating windows centered

on the extracted features.

Different feature matching methods have been developed based on the correlation

measurement. They can be either a measurement of similarity – Normalized Cross

Correlation (NCC) or a measurement of dissimilarity – Sum of Absolute Differences

(SAD) and Sum of Squared Differences (SSD). Given a keypoint p1 in image I1

with coordinated (x1, y1) and a candidate match p2 in image I2 with coordinated

(x2, y2) the NCC is defined on a rectangular neighborhood of these keypoints with

size 2r + 1× 2r + 1 as:

NCC(p1, p2) =

i=r∑

i=−r

j=r∑

j=−r

(I1(x1 + i, y1 + j)− I1)(I2(x2 + i, y2 + j)− I2)

r2
√
σ2(I1)σ2(I2)

Here, I is the average and σ2(I) is the variance of image I:

I =

i=r∑

i=−r

j=r∑

j=−r

I(x+ i, y + j)

r2

31



EFFICIENT 3D SCENE MODELING AND MOSAICING

σ2(I) =

i=r∑

i=−r

j=r∑

j=−r

(I(x+ i, y + j)− I)2

r2

Similarly, SAD and SSD are defined as:

SAD(p1, p2) =
i=r∑

i=−r

j=r∑

j=−r

|I1(x1 + i, y1 + j)− I2(x2 + i, y2 + j)|

SSD(p1, p2) =
i=r∑

i=−r

j=r∑

j=−r

(I1(x1 + i, y1 + j)− I2(x2 + i, y2 + j))2

Descriptor similarity. In order to associate corresponding features in different

images, a descriptor similarity measurement is needed. The most commonly used

one is the Euclidean distance:

s(p1, p2) = ‖f1 − f2‖ (2.1)

In order to find the corresponding features, the Euclidean distance is calculated

between all the features in one image and all the features in the other image. The

feature pairs corresponding to the minimum distances are most likely to correspond

to the same pre-image region – Nearest Neighbor (NN). However, this is not always

valid (not all features in one image have correspondence in the other) and this

assumption can introduce outliers (erroneous feature pairs). One way to minimize

this risk is to use a threshold on the maximum acceptable distance between feature

descriptors, though optimal thresholds are dependent on the image data.

In [79], Lowe proposes a more general and robust approach. Here, he imposes

that distance to the NN must be significantly lower (usually ≃ 1.5×) than the dis-

tance to its Second Nearest Neighbor (SNN). In general, the SNN method performs

well as correct matches need to be significantly closer than the closest incorrect
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matches in order to achieve reliable matching. For false matches, there will likely be

a number of other false matches within similar distances. The second nearest match

provides an estimate of the density of false matches within this area of the feature

space and at the same time identifies specific instances of feature ambiguity.

Figure 2.6 illustrates the matching process in the case of two distinct scenes:

urban (Figure 2.6a and Figure 2.6c) and underwater (Figure 2.6b and Figure 2.6d).

2.1.4 Match Propagation

Match propagation represents a hybrid approach that combines feature-based with

optical flow [74,147]. In match propagation, a sparse set of points are extracted from

feature correspondences. Using these points as seeds, image registration is expanded

using either optical flow or local matching. This approach combines the advantages

of sparse and dense matching up to a certain degree.

2.2 Photo-mosaicing

Photo mosaicing (simply called “mosaicing” hereafter) is primarily a technique that

allows widening the coverage of the scene by aligning (stitching) images taken by a

panning or moving camera. Mosaicing has its origins in aerial photography, where

images taken from planes or air balloons were manually aligned in order to obtain

maps for military purposes. With the introduction of automated mosaicing tech-

niques by means of image registration, photo mosaicing has extended his range of

applications.

Mosaicing is widely used nowadays for underwater sea floor mapping to com-

pensate for the narrow coverage of cameras due to limited visibility [38, 40, 41, 50,
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(a)

(b)

(c) (d)

Figure 2.6: Examples of feature matching. (a) and (b) illustrate matching between
two images for an urban and an underwater scene. (c) and (d) show the disparity of the
features. Red lines denote mismatched features (outliers).
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Figure 2.7: Example of mosaicing. Mosaic of a planar scene. Colored rectangles outline
of the contributing images. Green corresponds to the first (reference) frame, yellow and
blue to the second and third images respectively. The mosaic was generated using the
projective homography model.

65, 115, 132, 133]. Furthermore, mosaicing techniques are successfully employed in

applications such as navigation of underwater vehicles [29, 37, 43, 49, 51], document

analysis [99], augmented reality [138], scene stitching [15, 139], etc.

Mosaics can be accurately employed in situations where the scene does not induce

parallax [56] – planar scenes or when the camera is rotated around its optical axis

(see Figure 2.7 for an example of mosaic of a planar scene). In these cases the

transformation induced on the images by the camera motion can be modeled as a

planar transformation, called homography (H).

A homography is a planar projective transformation, represented by a 3 × 3

homogeneous matrix, relating the coordinate systems of two images I1 and I2 so

that p1 = H · p2:
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α · x1
α · y1
α




=




a b c

d e f

g h 1



·




x2

y2

1




where p1 = (x1 y1 1)
T and x2 = (x2 y2 1)

T are 2D points in homogeneous coordinates;

α is an arbitrary scale factor.

In the general case, homographies have 8 Degrees of Freedom (DoF). Depending

on the application, the number of DoF can be reduced in order to limit the estimation

errors. Table 2.1 provides a description of the common types of homographies.

Transform Figure DoF H

Translation 2




1 0 tx
0 1 ty
0 0 1




Euclidean 3



cos(φ) −sin(φ) tx
sin(φ) cos(φ) ty

0 0 1




Similarity 4



s · cos(φ) −s · sin(φ) tx
s · sin(φ) s · cos(φ) ty

0 0 1




Affine 6



a b c
d e f
0 0 1




Projective 8



a b c
d e f
g h 1




Table 2.1: Homography motion models. A 2-DoF homography allows only for
translation between images. Euclidean transformations account for the translation
and a rotation angle φ between images. The similarity model adds the scaling factor
s. Affine motion model extends the similarity model by including the anisotropic
scaling. Finally, the projective motion model describes any possible planar trans-
formation between images induced by a 6-DoF camera motion.

The transformation H between images is obtained using image registration tech-
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niques, most commonly using feature correspondences [104] (see Section 2.1.3). De-

pending on the homography model, a minimum of 1 to 4 correspondences are needed

to compute H . In practice, tens to hundreds of correspondences are used in order

to increase the precision of the homography in the presence of feature localization

noise.

The mosaics are then rendered by establishing a global frame (coordinate sys-

tem) and aligning the images with respect to this global frame using homographies.

Generally, the mosaic coordinate system is chosen to coincide with the coordinates

of the first image; in this case the transformation between an image j and the mo-

saic (absolute homography) is obtained by chaining the local homographies (relative

homographies) of the previous images: 1Hj =
1 H2 ·2 H3 · ... ·j−2 Hj−1 ·j−1 Hj. From

this, it becomes evident that small errors in the relative homographies build up

to generate important inaccuracies in the estimation of the absolute homographies.

This problem is common to vision systems, where the camera position is computed

incrementally (see Section 1.3).

Generally, homographies are prone to estimation inaccuracies due to:

Feature localization errors – are induced by image noise, aliasing, changes in

lighting and camera viewpoint.

Outliers – are caused by feature matching errors, usually due to repetitive patterns

in the scene.

Moving objects – violate the rigid scene assumption.

Non-planar scenes – violate the planarity assumption.

The effect of feature localization errors, outliers and moving objects can be re-

duced by using modern feature detectors and robust estimation methods such as
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Random Sample Consensus (RANSAC) [33] or Least Median of Squares (LMedS)

[122]. However, the violation of planarity represents a limitation of 2D mosaicing

techniques.

Obviously, most outdoor scenes (landscapes, urban, underwater, etc.) are hardly

planar. If the camera is not sufficiently far from the scene2, the parallax effect

produces significant errors in the homography estimations (see Figure 2.8). In this

case, 3D reconstruction techniques represent a far more accurate alternative to 2D

mosaicing.

2.3 3D Reconstruction

3D reconstruction techniques are concerned with the recovery of the shape of scenes

and their representation as 3D models. Using such techniques, a 3D model of the

scene is obtained, represented as a collection of 3D elements such as points (vertices),

lines, planes, surfaces, etc.

In order to recover the geometry of the scene, 3D objects are related to their

projection on the image plane. Assuming the pinhole model3, this relation is given

by the projection matrix Π so that:

i


α · px
α · py
α




= i
WΠ(3×4) ·

W




Px

Py

Pz

1




2As a thumb rule, if the camera-to-scene distance is more than∼ 10× the scene depth variations,
the parallax-induced errors can be neglected.

3Pinhole camera model is a simplified representation of the cameras, where some of the transfor-
mations that light suffers inside the camera optics are ignored. It is the most widely used projective
representation due to its simplicity.
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(a) (b)

(c)

(d)

Figure 2.8: Mosaicing under parallax. (a) and (b) show two images representing a
light pole with a building in background. The planarity assumption does not stand here
due to the big depth differences between scene elements with respect to the camera. Trying
to register the images using mosaicing techniques generates important misalignments. In
(c) the building facade is correctly aligned, being the predominant plane, however the light
pole and the trees create a ghosting effect (shown in color). Image (d) illustrates the full
mosaic (20 images) of the facade. Again, we can observe that the parallax effect induces
misalignments (highlighted in yellow).

39



EFFICIENT 3D SCENE MODELING AND MOSAICING

Figure 2.9: Camera projection. The 3D point WP is projected in the image plane onto
point ip.

where p = (px, py)
T is the image projection of a 3D point P = (Px, Py, Pz)

T (see

Figure 2.9), α is an arbitrary scaling factor. The projection matrix Π is a function of

the rotation W
i R and translation W

i t between the scene (world) and camera coordinate

systems, and the intrinsic parameters (A) of the camera:

i
WΠ(3×4) = A ·




W
i R

T
(3×3)

W
i t(3×1)

0(1×3) 1


 (2.2)

A =




ku kc u0

0 kv v0

0 0 1



·




f 0 0 0

0 f 0 0

0 0 1 0
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(a) Pincushion Distortion

(b) Barrel Distortion

Figure 2.10: Camera distortions. Image (a) illustrates the pincushion distortion, typ-
ical for long focal lengths (tele-lenses), (b) shows the barrel distortion mostly found in
wide-angle lenses (short focal distances).

where f is the focal length in millimeters and ku, kv are the relationships between

pixels and world metric units (in pix/mm) along x and y axes of the image plane,

respectively. The point where the camera focal axis intersects the image plane

(principal point) is defined by (u0, v0). Finally kc is the skew between image frame

vectors (u, v) which, in the ideal case, is 0 (they are perpendicular), therefore, kc =

tan(φ) · kv, where φ is the skew angle between the image frame vectors.

In order to be able to accurately apply the pinhole camera model on real cameras,

we have to account for the radial and tangential [14] distortions induced by the

optical systems of these cameras (illustrated in Figure 2.10).
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Considering an unitary focal length (f = 1), the projection of a 3D point P =

(Px, Py, Pz) is given by:

pd =



xd

yd


 =




Px

Pz

Py

Pz




by denoting r2 = x2d+y
2
d, considering the distortion model, we obtain the undistorted

point pu:

pu =



xu

yu


 = (1 + kc1 · r2 + kc2 · r4 + kc5 · r6) · pd + dt

where dt is the tangential distortion vector defined as follows:

dt =




2 · kc3 · xd · yd + kc4 · (r2 + 2 · x2d)

kc3 · (r2 + 2 · y2d) + 2 · kc4 · xd · yd




Parameters kc1, kc2, . . . , kc5 represent non-linear distortion coefficients. After undis-

torting, the point (xu, yu, 1)
T is projected into the image plane using the matrix of

intrinsic camera parameters A:




x

y

1




= A ·




xu

yu

1




Camera intrinsic parameters (αu, αv, αc, u0, v0) and the non-linear distortion co-

efficients (kc1, kc2, . . ., kc5) are obtained by camera calibration methods [32, 125].

So far, we have discussed the problem of estimating the projection of a 3D point

in the camera plane given its 3D position. Nonetheless, we are interested in the

reverse problem: given a projection of a 3D point (or another scene element) in the

camera plane, how to recover the 3D position of the former. This problem cannot
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Figure 2.11: Stereo triangulation. Having the position of the projections of the 3D
point P in two cameras (p1, p2)and the position of the cameras(R1, t1, R2, t2), the 3D
position of P is defined by the intersection of the projection lines (C1, p1) and (C2, p2).

be solved from a single camera view. By analyzing Figure 2.9, we can see that any

3D point P ′ laying on the line (C, P ) would yield the same projection p on the

image plane. Consequently, having only the position of the 2D point p, there is an

ambiguity in the position of P . This problem can be resolved given two or more

camera views of P , as illustrated in Figure 2.11.

Hereafter, we briefly discuss some of the most widely used techniques for recov-

ering the camera pose and the 3D geometry of a scene.

Stereo. Stereo vision algorithms use two or more cameras in a rigid setup. The

relative pose of the cameras is obtained by calibration [57, 154]. In this case, the

geometry of the scene can be obtained directly using epipolar geometry [56, 83].
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At application level, online stereo vision techniques such as those presented in

[30, 103, 111, 151] include robot navigation and visual servoing. Other proposals,

more related to our work, focus on scene and object modeling [88, 144].

Stereo systems generally provide accurate results but require a more complex

calibration and image acquisition process. The use of multiple cameras and the

necessity of camera synchronization hardware greatly increases the acquisition costs.

Moreover, stereo setups cannot be easily handled by humans and are difficult to

mount on small size robots.

Structure from Motion. The SfM problem refers to recovering the structure of

the scene using a single moving camera. The main advantage of Structure from

Motion is actually the use of a single camera, which leads to a highly flexible and

accessible image acquisition process.

From the algorithmic point of view, SfM is equivalent to stereo techniques except

that the 3D camera motion for each time interval4 has to be determined. As the

camera motion and the scene structure are computed at the same time, the result of

SfM is an up-to-scale representation of the scene5 (see Figure 2.12). However, this

scale ambiguity can be resolved if the size of any object in the scene is known.

Initial approaches of Structure from Motion used motion computation based on

fundamental matrix (F ) [9, 75] and trifocal tensor [35]. These approaches have a

common drawback: position estimation based on motion integration leads to im-

portant drifts over relatively short distances. With the introduction of Bundle

Adjustment (BA) techniques [76,109,136,142], the effect of drifting can be partially

reduced by globally minimizing the reprojection errors within the image sequence.

In this context, some authors [16, 128, 145] have proposed batch SfM methods that

4Time elapsed between two consecutive frames captured by the camera.
5Assuming that the camera intrinsic parameters are known.
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Figure 2.12: SfM scale ambiguity. The 3D position of point P from an arbitrary
moving camera can be determined up to a scale factor. The disparity dp of the point P
determined by the camera motion R and t would be the same as d′p when the motion R′

and t′ is greater with P further away.

use camera motion estimation followed by BA. However, in online applications,

where accurate scene structure and camera poses have to be constantly available,

repeatedly applying BA to correct for drifts is not feasible due to the high compu-

tational costs related to Bundle Adjustment. Additionally, motion-integration SfM

methods suffer from another major drawback: instability at small camera motions.

In this case, F is ill-conditioned [56], resulting in a poor estimation of the camera

motion.

A more accurate alternative to motion integration is the direct recovery of camera

pose. This can be achieved by associating 3D features with image features and

estimating the camera pose using methods such as Direct Linear Transformation

(DLT) [56]. In [135], the authors propose a batch SfM method based on DLT for

reconstructing well-known world sites from Internet photo collections.

Oriented towards underwater imaging, Pizarro et al. [113, 114] propose a SfM

framework that deals with large sequences by independently processing local
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submaps. Within the submaps, the camera pose is recovered directly by using re-

section methods and the submaps are registered using global alignment techniques.

While accurate, this approach has somewhat limited applications as it uses naviga-

tion priors for submap generation.

Factorization. Factorization methods use a special formulation to deal with scene

structure and camera motion, decomposing image measurements (i.e. image dispar-

ities) into a product of two separate factors:

image disparities⇐⇒ motion× shape

The first solution to the factorization problem, introduced by Tomasi and Kanade,

used rank constraints under orthographic camera projection [140]. This work was

later extended to deal with more general camera models [53, 58, 137]. Factorization

methods are mainly aimed at object and small scale reconstructions. Even though

latest developments in factorization allow partially dealing with missing data [17,

87], these methods cannot deal with high degree of missing data, rendering them

impractical for scene modeling.

Dense reconstruction. These methods use pixel disparities, rather than feature

correspondences to recover the scene geometry. The result is a 2.5D model6 of

the scene, where the optical flow is used to estimate the depth of the scene points

corresponding to each pixel in the image [67,97]. Generally, dense reconstruction ap-

proaches use iterative methods based on Longuet-Higgins differential image motion

model, being highly expensive in terms of computation.

62.5D models do not represent the full geometry of the scene. Alternatively, the scene is
represented by a regular grid of points defined by their depth.
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2.4 Conclusions

A wide range of applications, from remote scientific studies to augmented reality

and virtual tourism benefit from automated visual mapping. Classical approaches

involving 2D mosaicing are limited to quasi planar scenes. In reality, most environ-

ments are far from being planar and the necessity to map such environments led to

an increased interest in 3D scene modeling. Despite this, most 3D techniques are

application specific and inherently offline. Moreover, these approaches are rather

limited, being able to handle only small scale / reduced complexity scenes.
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Chapter 3

Direct Structure from Motion

This chapter is concerned with robust 3D scene modeling using a novel Struc-

ture from Motion algorithm – Direct Pose Registration Structure from Motion

(DPR-SfM). The aim is to obtain a high precision texture model of a generic scene

acquired using any off the shelf camera undergoing an arbitrary trajectory. The

reconstruction algorithm does not require any camera position / attitude informa-

tion, endowing DPR-SfM with flexibility to be readily used for any type of 3D scene

modeling application, both underwater and terrestrial.

For this, we have designed the DPR-SfM algorithm to cope with the most com-

mon challenges (see Section 1.3):

• Object occlusions and perspective distortions.

• Invalid image frames due to camera obstructions, motion blur, etc.

• Moving objects.

• Image noise, low contrast and illumination changes (especially in the under-

water environment).
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DPR-SfM computes directly the pose of the camera without the necessity to

recover the inter-frame motion. The structure of the scene is formed by sets of 3D

vertices characterized by affine invariant local image descriptors. In this way, by

associating image patches extracted from camera views with the 3D vertices, we

can recover the camera pose with respect to the scene model. In DPR-SfM, the

camera pose is obtained using a novel dual approach, allowing accurate camera pose

estimations even in the presence of planar scenes, where most 3D reconstruction

algorithms would fail.

Subsequently, the obtained camera poses are used to update the scene model

as new features are tracked. Both camera pose estimation and scene model update

steps use robust methods thus reducing the impact of poor camera pose/vertex

estimations.

DPR-SfM algorithm works in two stages, as shown in Figure 3.1. First, it uses

motion estimation techniques in order to obtain an initial model corresponding to

a small subregion of the scene. In the second stage, using the initial model as a

“seed”, the subsequent camera poses are computed by registering 2D features with

3D vertices in the scene model. For each newly acquired image, once the camera

pose is recovered, the scene model is updated by adding vertices corresponding to

newly tracked features. In this way, as the camera moves, the model is extended to

represent new regions of the scene.

As the data is being processed sequentially, camera pose and scene model estima-

tions are constantly available, enabling the use of DPR-SfM for online applications

such as robot navigation and mapping, in situ scientific studies, etc.

The remainder of this chapter details the flow of the DPR-SfM algorithm, fol-

lowed by a discussion on various results that we have obtained by applying the

proposed algorithm on outdoor and underwater image sequences. For the ease of
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Get new Frame Get new Frame

Scene Structure

Compute Motion

Compute Structure

Direct Pose
Registration

Model
Update

Base Frame

Enough
Baseline?

Model Initialization Direct Pose Estimation

Yes

No

Figure 3.1: Flowchart of the DPR-SfM algorithm. The model initialization stage
estimates the baseline between the base frame and a newly acquired frame. If the baseline
is wide enough, the motion between the base frame and the acquired frame is recovered.
Using the motion, the scene structure is estimated and the algorithm passes to the direct
pose registration stage, otherwise the process is restarted using the next acquired frame.
In the direct pose registration stage, the camera poses are obtained by extracting corre-
spondences between the acquired images and the model. After each new camera pose
estimation, the algorithm updates the model with new vertices corresponding to features
tracked in the current image. In this way, the scene model grows as the camera surveys
new regions of the scene.

the explanation, we illustrate the description of the DPR-SfM algorithm using a

simple dataset1 provided by the Visual Geometry Group of University of Oxford.

Figure 3.2 depicts the input set of images of a house model.

1http://www.robots.ox.ac.uk/~vgg/data/dunster/images.tar.gz.
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Figure 3.2: DPR-SfM – House dataset. The input sequence of 6 images captured by
a camera undergoing a rotation around a house model.

3.1 Image Features

Feature tracking is the building block of any sparse 3D reconstruction algorithm.

Tracking image features corresponding to a scene region (i.e. points, lines, patches,

etc.), allows the 3D position of the scene features to be estimated.

Robust feature tracking is crucial to the accurate estimation of both the camera
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poses and the structure of the scene. Maximizing the number of frames where a

given scene feature is tracked improves the precision of its 3D position estimation

and increases the number of inter-frame constraints, allowing a higher precision in

camera pose estimation.

In order to ensure robust feature tracking in presence of geometric distortions

and illumination changes, we have tested various state of the art point and blob

feature extractors (see Section 2.1.3): Harris Affine, Hessian Affine, SIFT, SURF

and MSER. As expected, point feature extractors generate more dense sets of

features than blob feature extractors, providing a better coverage of the scene but

having less discriminative power, increasing the chances of mismatching. In contrast,

blob extractors produce more sparse but more stable sets of features with higher

discriminative power.

In terms of feature descriptors, Harris, Hessian and MSER can be described

using both SIFT and SURF, while SIFT and SURF use their own descriptors only.

3.2 Model Initialization

This stage generates a subregion (“seed”) of the 3D model corresponding to the first

few frames of the image sequence. This initial subregion is required by the second

stage that subsequently extends it to the full 3D scene model.

The model is initialized by first fixing the first frame of the sequence as the base

frame Ib. The camera pose corresponding to Ib will serve as the global reference

frame (world frame) for the entire model. During model initialization, the camera

motion between the reference and some image Ii is computed. Ii is chosen so that

the baseline between Ib and Ii is sufficient to ensure a robust motion estimation. The

baseline between images is approximated by translation induced by the homography

53



EFFICIENT 3D SCENE MODELING AND MOSAICING

b−0.8mmHi on the image centers, where bHi is a projective homography obtained

from feature correspondences between images Ib and Ii (see Section 2.2).

Generally, SfM algorithms use fundamental matrix for camera motion estima-

tion. However, when the scene is planar or the parallax effect is small (i.e. small

scene depth variations with respect to scene-to-camera distance), the fundamental

matrix can be ill-conditioned [56]. In this case, a more robust solution is to use

homography-based motion computation. On the other hand, when scene geometry

induces significant parallax, homographies cannot correctly model the camera mo-

tion. In order to cover both cases, we use a dual approach for motion computation:

Fundamental matrix motion computation. Using the feature correspondences

between images Ib and Ii (see Figure 3.3), we estimate the fundamental ma-

trix Fbi using RANSAC-based Least Squares (LS) methods2 [3], with the cost

function given by the Sampson distance [126] (see Figure 3.3c,d):

Ek
sampson =

[(pkb )
TFbip

k
i ]

2

(Fbipki )
2
1 + (Fbipki )

2
2 + (F T

bix
k
l )

2
1 + (F T

bix
k
l )

2
2

(3.1)

where (Fp)2j represents the square of the j -th entry of vector Fp.

The camera rotation RF
bi and translation tFbi are obtained by Singular Value

Decomposition (SVD) of Fbi using [62, 77]:

Fbi = (A−1)T T̂ F
bi R

F
bi A

−1 (3.2)

where A is the known camera intrinsic matrix, R is the rotation matrix of

the camera and T̂ is the translation skew-symmetric matrix (T̂[x] = t × x for

any vector x with t representing the camera translation). The approach yields

2After testing various fundamental matrix estimation methods, RANSAC-based LS method has
been adopted as it proved to provide the most robust results in the case of small base lines.
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4 possible solutions (2 translations and 2 rotations). The correct solution is

obtained by applying cheirality constraints (i.e. reconstructed points must be

in front of the camera) [120].

Homography motion computation. From the correspondences of Ib and Ii we

compute the homography bHi using RANSAC with the cost function given by:

EH = pkb −bHi p
k
i

where pkb and pki represent the kth feature correspondence in images Ib and Ii

respectively.

By normalizing the homography between Ib and Ii:

b̂Hi = −A−1 bHi A

we obtain the camera camera rotation RH
bi and translation tHbi using SVD [31]:

b̂Hi = RH
bi − tHbi η

T

where η is the normal of the scene plane. This type of decomposition raises two

solutions. The correct one corresponds to the plane normal pointing towards

the camera.

Between the two solutions (RF
bi, t

F
bi) and (RH

bi , t
H
bi ), we choose the most accurate

one. This is done by estimating the 3D position of the image features with respect

to each solution using LS Intersection. Then, the accuracy of the camera motion is

given by the back-projection error:
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: DPR-SfM – Camera motion. When there is enough camera motion
between the base frame (left column) and the current frame Ii (right column), the pose
is computed. (a) and (b) show the extracted image features. (c) show the initial feature
disparity after matching, (d) shows the feature disparity after outlier rejection, in this case
using F . (e) and (f) illustrate the epipolar lines for Ib and Ii, respectively.
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Ebi =
N∑

k=1

(‖pkb − ΠbP
k‖+ ‖pki −ΠiP

k‖) (3.3)

where, pkb and pki are the corresponding image features in images Ib and Ii re-

spectively; P k is the estimated 3D position of kth feature.

The solution corresponding to the smallest retrojection error Ebi is chosen and

the corresponding set of 3D points is used to initialize the scene model.

In order to complete the set of camera poses, we recover the pose of the cameras

corresponding to the intermediate frames between Ib and Ii by directly registering

the camera views with the 3D model (Section 3.4). Figure 3.4 illustrates the initial

model for the House dataset, corresponding to the first three frames.

3.3 Scene Model

The scene model was designed to contain geometric along with photometric infor-

mation. The geometry of the scene is described in terms of 3D vertices, defined by

their position [X Y Z]T with respect to a common world frame. Photometrically,

the vertices are characterized by descriptors obtained from their corresponding im-

age feature descriptors.

The image descriptor vectors can be seen as noisy measurements of the image

gradient within a feature patch. As the features are tracked, multiple measurements

of the same patch are obtained. Hence, we improve feature tracking by modifying

the similarity measurement in eq. (2.1) to include multiple observations:

s(fk, fk
i ) = ‖

∑
fk

n
− fk

i ‖ (3.4)
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Figure 3.4: DPR-SfM – Initial model. Initial 3D scene model (red dots) and camera
poses. The model initialization was done using frame 1 (red) and 3 (blue). Camera pose
for frame 2 (green) was obtained by direct registration.

where V k represents the descriptor vector of vertex3 k, and n represents the total

number of images where the vertex was tracked. Using such a descriptor representa-

tion allows for more stable vertex tracking in presence of image noise, illumination

changes and projective distortions.

When associating vertices with image features using eq. (3.4), we impose distance

3Here, we use the term vertex to express a set of image features corresponding to the same
scene point. The actual 3D position of the vertex does not need to be calculated at this point.
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thresholds for s(V k, vki ) to reduce the number of outliers. The threshold values were

established empirically. As all the feature descriptors are normalized, the established

thresholds proved to provide optimum results (for both SIFT and SURF descriptors)

in all the test sequences.

In practice, using a direct approach for feature association in eq. (3.4) involves

a high computational load. Depending on the resolution and the feature extractor

type, an image can yield thousands of features that have to be associated with tens

of thousands of features from each feature group4 in the scene model. We highly

reduce this computational load by using a k -dimensional tree (kd-tree) approach.

Using kd-trees, we hierarchically decompose the scene model feature space into a

relatively small number of subregions so that no region contains too many features [4]

(see Figure 3.5). This provides a fast way to access any scene model feature. In

order to associate an image feature, we traverse down the hierarchy until we find the

subregion containing the match and then scan through the few features within the

subregion to identify the correct match. In the implementation that we used [96],

we obtained a decrease in the computational time with respect to classical NN of

about 5 times.

3.4 Direct Camera Registration

This section deals with the direct recovery of the camera pose with respect to the

scene model, without the need of any a priori information on camera motion or

pose. This way, the robustness of the DPR-SfM algorithm is increased, allowing

it to naturally deal with camera occlusions, loop closures and position estimation

errors.

4DPR-SfM supports simultaneous use of different feature types. In the scene model, the features
are grouped by extractor/descriptor.
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Figure 3.5: Kd-tree partitioning. The k-dimensional feature space is hierarchically
partitioned in subregions containing a small amount of features.

In Section 3.3 we explain how to associate image and scene model features. From

this, we obtain 3D-to-image correspondences with the aim of recovering camera pose

(Ri, ti) with respect to the world frame (see Figure 3.6). The camera pose is obtained

using RANSAC with the cost function:

Ei =
N∑

k=1

‖pki − ΠiP
k‖ (3.5)

In order to robustly cope with different types of scenes, we propose a novel

dual approach for camera pose recovery (similar to the one described in the Section

3.2): (i) if the scene region seen in the current image has enough parallax, we use

projective matrix to recover the camera pose; (ii) if the scene region is planar or

close to being planar, the projection matrix is ill-conditioned [56], in which case we

use a homography approach. In order to determine the planarity of the scene, for

each RANSAC sample, we fit a plane L to the 3D vertices using a LS method. If the

distance between the plane L and all the other 3D vertices (from the 3D-to-image

correspondences) is small enough, we consider the scene region as being planar.
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Figure 3.6: DPR-SfM – Direct pose registration. Example of pose registration of
frame 4: the image features are associated with the scene model. The camera pose is
estimated using the projection matrix.

The method is summarized in Table 3.1. The camera pose estimation methods are

detailed hereafter:

Projection matrix-based. Provided the set of 3D-to-image correspondences, we

obtain the projection matrix Πk using DLT. From equation (2.2), we obtain

the camera pose (Rk, tk).

Homography-based. We compute the planar transformation iHL, so that:

pki =
iHL · pkL

where pkL is the projection of Pk onto plane L. Applying SVD on iHL, we

obtain the relative transformation (iRL,
ktL) between the plane L and the
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Table 3.1: Camera pose recovery process.

1. While not enough RANSAC samples.

2. Choose randomly a set of 3D-to-image correspondences.

3. Fit a plane L to the 3D vertices from the set.

4. Check if the other vertices (corresponding to Ik) lay close to plane
L.

5. If yes, compute R and t based on the homography using the set of
correspondences.

6. If no, compute R and t based on the projection matrix using the
set of correspondences.

7. Go to 1.

camera. Thus, the pose of the camera is obtained from:

ti = tL ·iRL +itL

Ri =
iRL · RL

with tL and RL representing the pose of plane L in the world coordinate

system.

Once a (Rk, tk) have been obtained using the RANSAC dual method, the camera

pose is further adjusted using a LS method that minimizes the back-projection error

shown in eq. (3.5).
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3.5 Model Update

As the camera moves, the DPR-SfM algorithm updates the scene model as new fea-

tures are extracted and tracked, generating new 3D vertices. This section discusses

the model updating process along with the outlier management.

As new images are fed to the DPR-SfM algorithm and the image features are

associated with scene model features (see Section 3.3), three scenarios arise:

Image features matched with model features with known 3D position.

These feature associations are used to recover the camera pose, as explained

in Subsection 3.4. The outliers are detected by reprojecting the 3D vertices

into the image (eq. (3.5)). Vertices with a reprojection error higher than a

pre-established threshold are eliminated. Inliers are added to the model to

create new constraints. Every time an additional image feature is associated

with a particular 3D vertex, the position of the vertex is refined, taking

advantage of this new constraint. The refinement is done by minimizing the

sum of the reprojection errors Ek in all the images where the vertex was

tracked:

Ek =
M∑

i=1

‖pki − ΠiP
k‖ (3.6)

Image features matched with model features with no 3D position.

Adding new image features to already existing model features provides

additional information that ultimately leads to the recovery of 3D vertex

position. In this case, the back-projection approach cannot be used for

outlier rejection as the 3D position of the vertex is unknown at the time.

Alternatively, we use a fundamental matrix based approach. For each image

feature pki we choose a feature pli from its associated feature track so that their

corresponding camera poses (Rk, tk) and (Rl, tl) have the widest possible
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baseline (the wider the baseline the more discriminative the process). From

the relative transformation between the two cameras (Rkl, tkl) we compute

the fundamental matrix F , as shown in equation (3.2). This allows us to use

the Sampson distance shown in eq. (3.1).

If the image feature pki yields a distance Esampson larger than a pre-established

threshold, it is regarded as an outlier and the feature association is eliminated,

otherwise it is added to the model. When enough views of a feature are

available, the position of the corresponding vertex is calculated using a multi-

view factorization approach [83]. The vertex position is then refined using a

LS method (see eq. (3.6)).

Unmatched image features. If the image features could not be consistently as-

sociated to any model features, they are used to generate new feature entries

in the model.

Since not all model features are tracked reliably enough to produce accurate

3D vertices, the model is constantly checked and features that do not provide a

consistent tracking are eliminated in order to minimize the unnecessary clutter

of the model.

Figure 3.7 illustrates the final 3D model of the House sequence along with the

recovered camera poses.

3.6 Ortho-mosaicing and 3D Representation

A great deal of underwater studies require the assessment of 2D visual maps (see

Section 1.2). When the regions of interest contain significant 3D relief, classical

mosaicing techniques prove inaccurate due to the parallax effect. We propose a
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Figure 3.7: DPR-SfM – Final model. 3D model of the House sequence containing
≃ 2, 000 vertices (red dots) along with the camera poses. The first camera pose (shown in
red) defines the global coordinate system of the model.

solution to this shortcoming, where the 3D scene model is ortho-projected into a

plane. The result is a virtual “high-altitude” view of the scene called ortho-mosaic.

In other words, an ortho-mosaic is the equivalent to a 2D mosaic acquired from a

camera located far from the scene.

The ortho-mosaic is obtained by first creating a continuous model of the scene.

The continuous model is defined by triangular patches with the corners defined by

the 3D vertices [6]. Within the patches, we can obtain the 3D position of any point
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using linear or cubic interpolation5.

An ortho-projection plane O is then chosen to have the same tilt as the average

tilt of continuous model. This maximizes the projection area, providing the highest

level of mosaic detail. Then, all the patches are mapped onto the destination plane

along projection rays perpendicular to plane O (see Figure 3.8).

The plane O is digitized based on a predefined resolution; each point pkO on the

grid corresponds to a pixel in the ortho-mosaic. In order to render the mosaic, we

define the following transformation relating each point pkO to a corresponding point

pki from the original images:

pki = ΠiTnp
k
O (3.7)

where Tn is the ortho-projection transformation of the patch [P1 P2 P3] and Πi is

the camera projection matrix corresponding to frame Ii, as shown in Figure 3.8a.

Figures 3.9a and 3.10 illustrate the results of the ortho-mosaicing process for the

the House sequence and an underwater scene respectively.

For the cases where 3D information is required, the ortho-mosaic is used as

texture for rendering the 3D surface. The result is a complete model that includes

both geometrical and photometrical information of the scene. In Figure 3.11 we

show two views of the 3D model of the underwater scene. Here, the surface was

obtained by using cubic interpolation. In the case of the House scene, illustrated in

Figure 3.9b, linear interpolation is more suitable.

5For natural and unstructured scenes, where the shapes are usually smooth, cubic interpolation
provides the best results.
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Figure 3.8: Principles of ortho-mosaicing. In figure (a) The model patch [P1 P2 P3]
is ortho-projected onto the plane O. The corresponding ortho-mosaic patch [p1O p2O p3O]
is rendered using eq. (3.7) from image Ii, chosen so that the angle α between the patch
normal and the camera principal axis is minimum. In (b), for clarity purposes, we show the
ortho-projection of a seafloor model containing a coral-reef formation (Bahamas dataset).
This model will be discussed in detail in Section 3.7.

3.7 Experimental Results

In this section, we discuss the performance of the DPR-SfM algorithm. The evalua-

tion focused on two main aspects: (i) the accuracy of both scene model and camera
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(a)

(b)

Figure 3.9: Model of the house scene. (a) shows the ortho-mosaic of the house. In
this case, there is no gain in using the ortho-mosaic since all the camera views cover the
entire scene. (b) is a view of the textured model; the 3D surface was generated using linear
interpolation, which is more suited for structured scenes, containing planes and straight
edges.
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Figure 3.10: Ortho-mosaic of an underwater scene. The rendered mosaic simulates
a high-altitude view of the scene, depicting coral-reef formations.
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(a)

(b)

Figure 3.11: 3D model of an underwater scene. Two views of the underwater scene
model obtained by texture rendering the ortho-mosaic on the 3D surface. Here the surface
was obtained using cubic interpolation.
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pose estimations and (ii) the robustness of the algorithm when faced to common

challenges such as: illumination changes, shadows, scattering, low contrast images,

moving objects, specular surfaces, obstructions, objects with complex geometry, etc.

DPR-SfM has been successfully tested under various conditions, briefly discussed

hereafter:

• We applied the algorithm on image sequences captured using both still and

video cameras. The algorithm successfully coped with both high overlap im-

ages in video sequences and low overlap images in sequences acquired by still

cameras. The DPR-SfM provides accurate estimations even in the case of tem-

porarily static cameras, where most SfM algorithms would fail. The minimum

overlap between images is given by the minimum number of views where a

feature needs to be tracked before its 3D position is estimated, which can be

set by the user. We generally use a minimum of 3 views per each tracked

feature for redundancy.

• We tested the algorithm in the presence of occlusions and pose estimation

failures (e.g. excessive motion blur). The pose of the camera was correctly

estimated immediately after the situation disappeared. From our experiments,

we have concluded that the camera pose can be correctly estimated, if there

is at least ∼ 20% overlap between the 3D model and the images.

• The conducted experiments included sequence acquisitions under extreme

lighting conditions, obtaining accurate results: sun-flickering in shallow wa-

ters, low lighting and increased turbidity/scattering, strobe/focus lighting in

deep waters.

In the discussion that follows, we generally assess the accuracy of the DPR-SfM

algorithm on absolute basis as, to the best of our knowledge, there are no freely
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available SfM algorithms for comparison that can cope with such large scale recon-

structions.

All the data-sets presented here were acquired using various off the shelf cam-

eras, undergoing a random trajectory with no constraints. For all the sequences, we

assume that the internal parameters of the cameras are known and do not change

throughout the image acquisition (i.e. no zooming), and the radial distortion is

corrected. The estimation of the camera internal parameters and radial distortion

parameters were obtained using a checkerboard pattern and Bouguet’s camera cali-

bration toolbox [12].

3.7.1 Car Scene

In this sequence we used synthetically generated images, allowing the usage of

ground truth in order to quantify the accuracy of the DPR-SfM on both camera

pose and scene geometry estimations.

The scene, comprised by a parked car in front of a building, was chosen to incor-

porate common challenges in urban environments: occlusions, object transparency,

light reflections, shadows, uniform textures, etc. The rendering of the scene was

carried out using ray-tracing as it is capable of producing very high degree of pho-

torealism [116]. Ray-tracing generates images by tracing the path of light through

pixels in an image plane [131], accurately modeling light alterations (reflections,

shadows, transparency).

The sequence consists of 20 frames with 1, 024 × 1, 024 pixels, captured from

a camera undergoing a translation motion along the building facade with a slight

panning (see Figure 3.12 for some examples). The length of the translation is 10m

with a mean distance between the camera and scene (the facade of the building)

of ≃ 9m. In order to accurately compare the results with the ground truth, we fix

72



3. DIRECT STRUCTURE FROM MOTION

Figure 3.12: Car Scene – Input images. Synthetic images generated using ray-tracing
rendering. Here, we illustrate 4 of the 20 frames showing some of the challenges: specular
objects (car body and building windows) induce inter-reflections, irregular illumination
due to shadows (garage door, doors and pavement), transparency (car windows), etc.

the scale of the model by fixing the first two camera poses in the initialization step.

The following camera poses are estimated by direct registration with the model (see

Figure 3.13).

For comparison purposes, we used 4 types of feature extractors: Harris, Hessian,

SIFT and SURF. The processing time for the sequence was ≃ 14mins6. A detailed

6The DPR-SfM algorithm was implemented in Matlab, partially using C++ routines. All the
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Figure 3.13: Car Scene – 3D model. Two views of the 3D model containing 9,800
vertices – 2,900 Harris, 2,600 Hessian, 2,400 SURF and 1,800 SIFT. The first two camera
poses (shown in red) were fixed in order to recover the scale. The remaining camera poses
(green) were estimated by direct registration along with scene model (red dots).
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Table 3.2: Car scene – Processing time. Average processing time for each step
(seconds/frame)

Feat. Extraction Feat. Matching (ANN) Camera Pose Vertex Position

40.1 2.1 0.2 0.6

2 2.5 3 3.5 4 4.5 5 5.5

x 10
4
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S
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Figure 3.14: Car scene – Scene feature matching time. Comparison of average
times for matching image and scene features vs. number of features in scene. The num-
ber of features in the image is constant (12,000). Using ANN decreases drastically the
computation times.

description of execution times is presented in Table 3.2. We processed this sequence

using both NN and Approximated Nearest Neighbor (ANN). The use of ANN

provides a significant gain in computation time (see Figure 3.14): NN times are

quadratic in the number of features while ANN times are linear.

The resulting scene model is illustrated in Figure 3.13:

• Invalid vertices formed by reflective surfaces are removed.

• Facade regions partially occluded by the car are correctly modeled (e.g. left

of the building entrance).

The ray-tracing software was modified to generate the ground truth 3D posi-

tion of the points in the scene corresponding to each pixel in the rendered images.

Knowing the position of the extracted visual features, the accuracy of the model is

quantified by comparing the vertex position estimations with the ground truth.

experiments presented in this work were executed on an Intel Core Duo 2.13 GHz 64-bit platform.
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Figure 3.15a illustrates the average residuals (XY Z) for the vertices generated

by each feature extractor. While very similar, SIFT and SURF have slightly greater

residuals than Harris and Hessian, due to the nature of the extractors (see Section

2.1.3). The evolution of error in camera pose estimation is shown in Figure 3.15b.

In ideal conditions (absence of noise, distortions, blurring, etc.), both scene geom-

etry and camera pose estimations are accurate and the error accumulation (drifting)

is very small. Additionally, we want to test the robustness and accuracy of DPR-SfM

for realistic scenarios. For this, we use a Monte Carlo test by adding noise to image

features, aiming to:

• Assess the accuracy of the model and camera pose estimations in presence of

noise.

• Robust camera pose estimation and vertex position estimation use a pre-

established threshold ρ for outlier rejection (see Sections 3.4, 3.5). We test

how this threshold affects the DPR-SfM accuracy.

As we consider feature localization errors to follow a normal distribution, we

use a zero-mean gaussian noise with a known standard deviation σ. For each test,

we fix the value of ρ and we generate the model with increasing values of σ until

a valid model cannot be generated. We use two values for ρ: 1.5 and 2.5 (values

typically used in DPR-SfM). The errors in scene model and camera pose are given

by εv, εp and εa, where εv is the average error in vertex position estimation and εp is

the average error in camera position estimation (both error measurements are given

by the average Euclidian distance). The error in camera attitude estimations εa is

given by the average of absolute differences over all the rotations:

εa =

N∑

i=1

|φi − φi|+ |θi − θi|+ |ψi − ψi|

3N
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Figure 3.15: Car scene – Reconstruction errors. Figure (a) shows the vertex position
residuals by frames, for each feature extractor. The extractors yield comparable results,
with small error accumulation. In (b) we represent the error in camera pose. The residuals
in both position and attitude are very small with a slow error accumulation.
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Table 3.3: Car scene – Monte Carlo test results. The results for two values of
ρ. The values for εv and εp are expressed in m·10−3 and εa is expressed in rad · 10−3.
Vert./fr. represents the average number of vertices registered in each frame.

ρ = 1.5 ρ = 2.5
σ εv εp εa vert./fr. εv εp εa vert./fr.
0 47.9 1.3 0.03 2226 61.2 3.0 0.05 2449
0.2 48.9 1.4 0.10 2211 61.9 3.2 0.14 2447
0.4 48.8 1.8 0.16 2148 63.6 3.3 0.18 2446
0.6 50.5 3.3 0.21 1939 65.5 4.0 0.23 2435
0.8 51.8 4.2 0.25 1598 66.0 4.4 0.27 2416
1.0 57.9 4.1 0.31 1285 66.4 3.7 0.29 2291
1.2 63.3 7.5 0.7 970 73.8 6.2 0.32 2309
1.4 69.1 14.5 0.81 848 74.0 5.1 0.34 2180
1.6 65.7 19.6 0.85 329 81.8 4.7 0.43 2035
1.8 – – – – 85.6 6.0 0.45 1857
2.0 – – – – 90.7 7.0 0.50 1671
2.2 – – – – 106.6 7.8 0.61 1471
2.4 – – – – 124.6 7.9 0.72 1237

where (φi θi ψi) is the estimated orientation and (φi θi ψi) is the ground truth ori-

entation for camera pose i; N is the total number of frames.

Table 3.3 details the results of the Monte Carlo tests. The noise in image features

has little impact on both model and camera pose estimations, especially when a low

threshold is used. However, as the noise level increases, the use of a very restrictive

threshold highly reduces the number of vertices (see Figure 3.16). This affects the

camera registration precision, ultimately leading to the impossibility to generate a

valid model.

Figure 3.17 illustrates the distribution of the noise in the image features for each

threshold. The DPR-SfM can generate a valid scene model even in the presence of

an overwhelming number of outliers (more than 60%).
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Figure 3.16: Car scene – Feature evolution in Monte Carlo test. The average
number of vertices drops as the noise level increases (Top Figure). Using a more relaxed
threshold keeps a larger number of vertices but slightly decreases the accuracy of the
vertices (Bottom Figure).
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Figure 3.17: Car scene – Image feature noise distribution. The two histograms
correspond to the maximum noise level where DPR-SfM could generate a valid model for
ρ = 1.5 and ρ = 2.5 respectively. In (a) 35.4% of the features fall within the threshold
(yellow line) while in (b) 39.2%.

3.7.2 Water-tank Sequence

This sequence is part of a series of experiments, used for testing the performance

of the DPR-SfM algorithm under realistic conditions. The dataset was acquired

by a camera mounted on the Johns Hopkins University (JHU) ROV at the JHU
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Figure 3.18: Water-tank sequence – Input images. Sample images from the dataset
depicting some of the objects present in the scene.

test tank. The bottom of the tank was populated with rocks and shells, simulating

the appearance and geometry of a typical seafloor scene. The size of the scene is

≃ 5× 5m. The sequence, comprised of 3,500 images (see Figure 3.18), was acquired

at a constant distance of 1.2m above the bottom of the tank. After the visual survey,

the tank was drained and scanned with a Leica Geosystems laser scanner, obtaining

3.8 millon points with an estimated accuracy of 1.2mm.

The objective of this experiment was to assess the 3D reconstruction accuracy

of the DPR-SfM using the ground truth, under a realistic scenario. For this, we

applied the DPR-SfM on the full sequence of 3,500 images. The resulting model,

consisting of 610,000 vertices, is illustrated in Fig. 3.19 along with the estimated
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Figure 3.19: Water-tank sequence – Scene model and camera trajectory. The
model consists of 610, 000 vertices, shown in green. The camera trajectory is marked in
blue. Both the model and the camera trajectory were subsampled for illustrative purposes.

camera trajectory.

The accuracy of the reconstruction was quantified by comparing the obtained

model with the laser scan. For this, we first manually aligned the two models us-

ing 3D point correspondences. The alignment was further refined using Iteratively

Closest Point (ICP) [153]. In order to assess the accuracy of DPR-SfM, we trian-

gulate the surfaces, obtaining a continuous representation of the two models. By

sub-sampling the continuous surfaces, we quantify the reconstruction error using the

Hausdorff distance [98] between the two models. Figure 3.20 illustrates the error

distribution within the reconstruction. The average error was 0.011m (0.91% of the

scene depth) and the maximum error was 0.092m (7.6% of the scene depth). Never-

theless, the wide regions of the tank bottom with higher error correspond to changes

in the carpet shape as the tank was drained for the laser scanning. For details on

the acquisition process and comparative 3D reconstruction results, refer to [113].
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Figure 3.20: Water-tank sequence – Error distribution. The color encoded by error
magnitude, lighter areas correspond to higher errors. The errors on the flat areas do not
correspond to errors in the estimated 3D model, but to the carpet being buoyant.

3.7.3 Rocks Loop

In this experiment, we discuss the capability of the DPR-SfM algorithm to model

outdoor, unstructured scenes.

The scene, illustrated in Figure 3.21, is formed by a random arrangement of rocks.

The image sequence was acquired using a monochrome camera with a resolution of

696 × 520 pixels. A sample of the images is shown in Figure 3.22. During the

acquisition, the camera was looking downwards, towards the scene, and rotated

so that its y axis is tangent to direction of movement, simulating a down-looking

camera mounted on an UUV.

The sequence of 740 frames was processed using HarrisAffine-SURF and SURF-

SURF, yielding 170,000 vertices – 86,000 Harris and 84,000 SURF (see Figure 3.23a).

We obtain an average back-projection error of 1.72 pixels, with 1.67 pixels for Harris

and 1.75 pixels for SURF. The average track length for Harris is 12.1 frames while

for SURF is 14.3 frames. This shows that, in case of unstructured environments,

Harris provides better precision in feature localization, while SURF is more robust

to image transformations.
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Figure 3.21: Rocks loop – Overview. The scene is comprised by a round area with a
diameter of ≃ 8m. The area is covered by rocks with varying sizes and textures, ideal for
simulating an underwater relief.

Figure 3.22: Rocks loop – Input images. A sample set of the input images. We used
a plastic object (highlighted in yellow) to mark the beginning and ending of the loop.

83



EFFICIENT 3D SCENE MODELING AND MOSAICING

−4
−3

−2
−1

0
1

2
3

−8

−7

−6

−5

−4

−3

−2

−1

0

−2

−1

0

301

351

251

401

201

151

451

101

501

 51
  1

551

701

601

651

(a)

−4

−2

0

2

4

−8
−7

−6
−5

−4
−3

−2
−1

0

−3

−2

−1

0

301

251

351

201

401

151

101

451

 51

501

  1

551

701

651

601

(b)

Figure 3.23: Rocks loop – 3D model and camera trajectory. Figure (a) illustrates
the resulting model along with the estimated camera trajectory. The drifting generates a
gap in the model where the loop should be completed. The model is corrected after loop
closure detection and BA (b).
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The major drawback of these types of environments is the impossibility of an

exact quantification of the reconstruction accuracy due to the lack of ground truth.

We overcome this by designing the camera trajectory to have a loop form, so that its

beginning overlaps its ending (see Figure 3.22). This way, we establish constraints

between the two ends of the loops (see Appendix B). After detecting the loop closure

and applying BA, we correct the estimation errors up to a high degree of precision

(see Figure 3.23b). We use this corrected model as the ground truth and compare it

with the original result, quantifying the accuracy of the DPR-SfM. Figures 3.24 and

3.25 illustrate the error evolution in vertex position and camera pose respectively.

3.7.4 Pool Trials

We present one of the experiments we have conducted in the Underwater Robotics

Center of the University of Girona. Shown in Figure 3.26a, the center is endowed

with a pool used for performing tests of small class underwater vehicles. The Under-

water Vehicles (UVs) are controlled and monitored from a submerged control room,

allowing the researchers to have live panoramic view of the experiments.

The tests were performed using Ictineu, an open frame, small class Autonomous

Underwater Vehicle (AUV) (see Figure 3.26). The modular design of Ictineu allows

us to set up different types of sensors, depending on the mission environment and

purpose. For our experiments, we have used an off the shelf, low end, 384 × 288

pixels monochrome camera. The camera was mounted on Ictineu on a down-looking

configuration.

The AUV was set to follow predetermined trajectories, while the camera was

acquiring images of a poster mounted on the bottom of the pool, simulating a

seafloor scene.

The aim of the experiments is to observe the behavior of the DPR-SfM algorithm
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Figure 3.24: Rocks loop – model estimation errors. The evolution of the vertex
position estimation errors by frame for each degree of freedom. Bottom plot illustrates
the total vertex estimation error.

in the presence of flat scenes. In these cases (e.g. sandy seafloor regions, building

facades, etc.), SfM algorithms fail due to the lack of parallax. Our dual approach,

on the other hand, allows us to handle these situations (see Sections 3.2 and 3.4).

In the presented experiment, we have acquired a sequence of 150 frames while

Ictineu was following a straight trajectory, maintaining a constant distance to the

poster of ≃ 1.5m (refer to Figure 3.27 for examples of images from the dataset).

During the experiment, there was a brief communication error between Ictineu and

86



3. DIRECT STRUCTURE FROM MOTION

0 200 400 600 800
0

0.2

0.4
X Error

m

0 200 400 600 800
0

0.5

1
Y Error

m

0 200 400 600 800
0

0.2

0.4
Z Error

m

0 200 400 600 800
0

0.1

0.2
φ Error

ra
d

0 200 400 600 800
0

0.05

0.1
θ Error

ra
d

0 200 400 600 800
0

0.2

0.4
ψ Error

ra
d

0 100 200 300 400 500 600 700 800
0

0.5

1
Position Error

m

0 100 200 300 400 500 600 700 800
0

0.5

1
Attitude Error

ra
d

Figure 3.25: Rocks loop – Camera pose errors. Camera pose estimation error
evolution by frame, for each degree of freedom. Bottom two plots illustrate total estimation
errors for position and attitude respectively.
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(a)

(b)

Figure 3.26: Pool trials – Experimental setup. (a) Underwater Robotics Laboratory
of the University of Girona and (b) Ictineu AUV (foreground) with the seafloor poster
during the experiments, photographed from the submerged control room.
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Figure 3.27: Pool trials – Input images. Images from the sequence of the poster
simulating an underwater scene.

the control room generating some invalid frames to be captured. This offered an

ideal situation to test the robustness of the DPR-SfM algorithm when faced to

camera obstructions / errors.

After processing the sequence, we obtained 10,000 HarrisAffine and 7,000 SURF

vertices. In both cases, we used SURF for description. Figure 3.28 illustrates the

result of the reconstruction. The gap in the camera trajectory corresponds to the

communication error. DPR-SfM was able to recover from this situation, correctly

registering the following frames.

In order to account for the precision of the reconstruction we first first determine

the average scene plane using Least-Squares fitting to the 3D vertices. As the scene

is planar, we define the reconstruction error as the Euclidean distance between the

plane and the 3D vertices. The distribution of the reconstruction error is illustrated
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Figure 3.28: Pool trials – 3D model and camera trajectory. 3D model of the poster
and camera trajectory. There is a gap in the camera trajectory due to a communication
error between the UV and the control room.
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Figure 3.29: Pool trials – Reconstruction error histogram. We calculate the re-
construction error as the Euclidean distance between the scene plane and the vertices.

in Figure 3.29.
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3.7.5 Coral Reef Sequence

Here we discuss the results obtained from sequence depicting a coral reef area. This

dataset is part of a larger survey of a benthic habitat undertaken in shallow waters in

The Bahamas. The images were acquired by the University of Miami (UoM) using

a hand-held HD camera. The sequence consists of 1,100 images of 962× 540 pixels

(the resolution of the images was reduced from 1920×1080 due to interlacing). The

area was surveyed with the camera following a “lawnmower” trajectory, with partial

overlap between adjacent columns. This provides a complete coverage of the area

while offering additional constraints in the model.

The sequence covers ≃ 150m2 and was chosen to include different types of topolo-

gies and textures often found in underwater scenes. Figure 3.30 depicts typical en-

tities found in the dataset. We recover the scene model using HessianAffine-SURF

and SURF-SURF features with an outlier rejection threshold ρ = 1.5, obtaining

270,000 vertices (130,000 HessianAffine and 140,000 SURF). Figure 3.31 illustrates

the scene model and camera trajectory – the number of vertices in the model has

been reduced 10 times in order to avoid cluttering in the figure.

The aim of this experiment is to asses the accuracy of the model with respect

to the texture types present in the scene. For this, we consider the average back-

projection error for each reconstructed vertex. Figure 3.32 shows that the precision

of the vertex reconstruction is highly related to the saliency of the corresponding

image features7. Moreover, it can be observed that there is a strong correlation

between the vertex precision and the type of its neighboring scene type (e.g. vertices

in rocky and coral reef areas are more accurate than ones in sandy areas).

Using the constraints between adjacent columns in the camera trajectory (see

7The saliency represents a quality measurement of the features. It is related to the image
gradient in the neighborhood of the feature, so that higher saliency corresponds to more accurate
and discriminant features.

91



EFFICIENT 3D SCENE MODELING AND MOSAICING

Figure 3.30: Coral reef sequence – Input images. Sample images from the input
sequence showing different types of regions: coral reef formations, rocks, algaes, sand, etc.

Appendix B), we apply BA on the sequence. We use the result as reference to quan-

tify the errors in the reconstruction. The error evolution in camera pose estimation

is illustrated in Figure 3.33. As the camera is registered directly with the model,

the errors do not increase significantly along the columns in the camera trajectory,

reducing drastically the error accumulation.

3.7.6 Mequinenza Sequence

In this experiment, we aim to test the behavior of the DPR-SfM under difficult image

conditions. The sequence was captured in the Ebro river, Mequinenza, Catalunya

by the Ictineu AUV using a down-looking monochrome camera. Due to the high

turbidity in the water, we used additional lighting, which increased the visibility

but induced shadows and non-uniform illumination patterns. Moreover, due to

back-scattering, the images have low contrast (see Figure 3.34).

The sequence, comprised by 2,900 frames of 384×288 pixels resolution, was first

pre-processed using Contrast Limited Adaptive Histogram Equalization (CLAHE)
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Figure 3.31: Coral reef sequence – 3D model and camera trajectory. (a) simplified
scene model and camera trajectory: green and magenta markers show the beginning and
end of trajectory respectively; (b) another view of the scene model.
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(a)

(b)

(c)

Figure 3.32: Coral reef sequence – Vertex error. Figure (a) shows the back-
projection error distribution. Darker values correspond to higher accuracy. The distribu-
tion of image feature saliency is shown in (b); lighter values correspond to higher saliency.
The ortho-mosaic of the scene is provided for reference in (c), showing the relation between
region types, feature saliency and vertex accuracy.
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Figure 3.33: Coral reef sequence – Camera pose errors by frames. (a) camera
pose errors and (b) camera attitude errors.

[155] in order to enhance the quality of the images. Using SURF-SURF features,

we obtained 220,000 vertices. Figure 3.35 illustrates the resulting camera trajectory

and scene model (the number of features has been reduced for illustration clarity).

The model shows an environment with complex geometry, also, the trajectory of
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Figure 3.34: Mequinenza sequence – Input images. Image samples depicting some of
the challenges of sequence: scattering, light absorbtion, shadows, complex scene geometry,
etc.

the camera depicts a motion of Ictineu with sudden changes in heading and motion

direction due to the water currents.

Using an outlier rejection threshold ρ of 1.5, we obtain an average back-projection

error for the whole model of 0.9 pixels.

3.7.7 Urban Experiment

This experiment was aimed at testing the DPR-SfM algorithm for large-scale ur-

ban modeling applications. For this, we acquired a sequence of Unirii Square in

Timisoara, Romania. The square, illustrated in Figure 3.36, has a rectangular shape,

measuring ≃ 155×120m and is surrounded by historical buildings of various shapes

and textures. We used a low-end Pentax Optio A30 digital camera for video acqui-

sition, while walking through the square following a loop trajectory. The resulting
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Figure 3.35: Mequinenza sequence – 3D model and camera trajectory. (a) scene
model along with camera trajectory: green and magenta markers show the beginning and
end of trajectory respectively; (b) another view of the scene model.
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Figure 3.36: Urban experiment – Overview of the Unirii Square. Aerial view of
the Unirii Square.

image sequence contains 961 frames of 640 × 460 pixels in resolution (see Figure

3.37).

After applying DPR-SfM on the sequence using SURF-SURF, the resulting

model, shown in Figure 3.38, contains 240,000 vertices. The drift due to error

integration is obvious at the loop closure, where the facades of the buildings are re-

peated (see Figure 3.38b). The main reason behind the high drift in this dataset is

the decreased precision in feature localization due to the low quality of the images:

the camera uses a high compression ratio MPEG2 codec, which results in loss of

details in images.

After the loop closure detection (see Section 4.3.4), we corrected the model, as

shown in Appendix B. The result is shown in Figure 3.39.

Considering the model after BA as the ground truth, we calculate the camera
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Figure 3.37: Urban experiment – Input images. Sample images from the dataset,
showing some of the typical challenges such as moving objects, occlusions, sun flickering,
lack of texture, etc. Also, the partial overlap between the first and last image can be
clearly observed.
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Figure 3.38: Urban experiment – 3D model and camera trajectory. (a) scene
model (red) along with camera trajectory (blue) – the number of vertices in figure was
reduced by 10 times to avoid cluttering; (b) top view of the scene model clearly depicting
the drift at the loop closure (repeated edges at the bottom marked in green).
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(a)

(b)

Figure 3.39: Urban experiment – 3D model and camera trajectory after BA.

(a) view of the 3D model using colored vertices, and the camera trajectory; (b) top view
of the 3D model aligned with an aerial view of Unirii Square from Google Earth – the
reconstruction fits the photo accurately.
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Figure 3.40: Urban experiment – Estimation errors. (a) total camera position drift:
evolution by frames; (b) vertex estimation error distribution.

pose and vertex position estimation errors by comparing the models before and after

the BA (in a similar fashion to the experiment described in Section 3.7.3). Figure

3.40 illustrates the error for both camera and vertex estimations.

3.8 Discussion

In this chapter we presented a novel SfM algorithm for large scale scene modeling.

The algorithm generates the scene models sequentially, using a two stage approach.

Initially, DPR-SfM creates a seed model corresponding to a small subregion of the

scene, using camera motion estimation techniques. In the second stage, the scene

model is extended to cover the entire surveyed area. During scene reconstruction,

the camera pose is recovered by directly registering camera views with the scene

model. This increases the accuracy and robustness of DPR-SfM, allowing it to
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successfully cope with situations often found in visual surveys such as occlusions,

camera temporary failures, etc. Also, using direct camera pose registration highly

increases the flexibility of the DPR-SfM.

Generally, state of the art SfM algorithms require additional sensor information

or impose constraints on the image acquisition (e.g. minimum camera movement

between frames for correct motion estimation). DPR-SfM can be readily applied on

image sequences acquired with any type of camera, both still and video, with no

constraints on the camera acquisition process. Also, the presented SfM algorithm

does not require navigation priors. However, sensor information such as camera pose

can be used to decrease the computational cost of the algorithm.

The direct camera pose registration uses a novel dual RANSAC projective/ ho-

mography approach which allows the DPR-SfM algorithm to accurately model both

planar and non-planar scenes. This is particularly important in underwater and

urban scenes, where parts of the scene can have significant parallax while others can

be perfectly planar.

Robust estimation methods are also used on vertex position recovery. Experi-

ments show that using a dual layer (camera and model) RANSAC approach increases

the stability and accuracy of the method, especially in challenging environments,

such as underwater, where image blurring and low contrast decrease the efficiency

of feature tracking.

We have also developed an efficient and flexible scene representation. It allows

the 3D modeling of large and complex scenes while enabling the parallel use of

multiple visual feature extractors/descriptors. In this context, we employed a kd-

tree scheme for efficient feature matching and camera registration even for large

scene models.

Results show that DPR-SfM can efficiently cope with large and complex recon-
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structions8 (e.g. Section 3.7.2).

There are several ongoing and future topics that may improve the work pre-

sented in this chapter. After camera pose registration, the image patches around

features can be warped using camera-to-model transformations. This would reduce

the limitations of feature extractor/descriptors of coping with extreme geometric dis-

tortions, increasing the efficiency of feature matching. Also, the accuracy of feature

localization can be improved by using cross-correlation as a refinement step after

feature tracking. Feature-to-model association computational costs can be highly

decreased by using GPU-based parallel processing, e.g. using NVIDIA CUDA.

8We consider the complexity of the 3D modeling problem to be quantified by the amount of
data involved in the reconstruction (i.e. number of camera poses and vertices), rather than the
metric size of the scene, as the size of the reconstructed area depends only on the camera-to-scene
distance and the properties of the camera lenses.
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Chapter 4

Online Loop Detection

Vision-based navigation is essentially a dead reckoning process. During navigation

and map building, vision systems estimate the camera pose relative to either previous

poses or an environment map, while they build the map from observations relative

to camera poses. All estimations are prone to aliasing, noise, image distortions and

numerical errors (see Section 1.3), leading to inaccuracies in both pose and map

inferences. While generally small, these inaccuracies build up in time, leading to

significant errors over large camera trajectories.

These errors can be reduced by taking advantage of the additional information

resulting from cross-overs. Cross-overs (or loop-closures) are situations when a

camera revisits a region of the scene during a visual survey. If correctly detected,

these situations can be exploited in order to establish new constraints, allowing both

camera pose and map errors to be decreased (see Figure 4.1), either using offline

approaches such as BA [19,85,91,127,143] or online approaches employing gaussian

filters such as the popular Kalman Filter [18,36,44,119] or non-parametric methods

such as those using particle filters [82,95], etc. In this context, the main open issue

is the correct and efficient detection of loop closures.
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Figure 4.1: Loop closure detection. As the the camera moves, there is an increasing
uncertainty related to both the camera pose and the environment map. At instant tk,
the camera revisits a region of the scene previously visited at instant ti. If the visual
observations between instants tk and ti can be associated, the resulting information can
be used not only to reduce the pose and map uncertainties at instant tk, but it also can
be propagated, reducing the uncertainties at prior instants.

Loop closure detection is an inherently complex problem due to the amount of

data that needs to be analyzed. As typical image feature extractors yield thousands

of features per image, after just a few hundred frames, the resulting map contains

tens to hundreds of thousands of features. A brute force loop closure detection,

where the current visual observations are compared to the entire map, would be

much too computationally expensive, especially for online applications.

106



4. ONLINE LOOP DETECTION

As an alternative, the complexity of the loop closure problem can be reduced by

narrowing the search to the vicinity of the current camera pose. This is a widely

used approach, mainly in the Simultaneous Localization and Mapping (SLAM) com-

munity, where the vision system is modeled as a sensor with a known uncertainty.

During navigation, an uncertainty is associated to each vehicle pose and the loop

closures are detected by matching current observations with the region of the map

corresponding to the current uncertainty space [27,28,64,112]. However, an accurate

estimation of the vehicle uncertainty is a complex problem and is generally affected

by linearization approximations. To counterbalance this shortcoming, assuring the

detection of the cross-over, current observations may be compared with a region of

the map corresponding to a higher covariance than the estimated one [66,89]. Doing

so becomes computationally expensive, especially over large trajectory loops, where

the covariance of the camera is high. Moreover, the noise model used for covariance

estimation does not account for inaccuracies resulting from obstruction, temporary

motion blur, sensor failures, etc. These situations lead to poor vehicle pose estima-

tion, not reflected in the uncertainty estimation, in which case the loop closure may

not be detected.

A more robust and computationally efficient alternative is to represent entire

images as observations rather than individual image features. In this context, cross-

overs are detected on the basis of image similarity, drastically decreasing the amount

of data that needs to be processed. The reduced computational cost related to such

approaches enable brute force cross-over detection, even for large camera trajecto-

ries. This allows correct detection of trajectory loops, independent of camera pose

and covariance estimation accuracy.

Initial proposals on image similarity cross-over detection use image representa-

tions based on a single global descriptor, embodying visual content such as color or
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Figure 4.2: BoW image representation. Images are represented by histograms of
generalized visual features.

texture [13, 70, 72, 117, 141]. Such global descriptors are sensitive to camera view-

point and illumination changes, decreasing the robustness of the cross-over detection.

The emergence of modern feature extractors and descriptors (see Section 2.1.3)

has led to the development of new appearance-based cross-over detection techniques

that represent visual content in terms of local image descriptors [1, 2, 22, 23, 146].

Inspired from advances in the fields of object recognition and content-based image

retrieval [110, 134, 152], recent examples of such approaches describe images using

BoW (see Figure 4.2). BoW image representation employs two stages: (i) in the

training stage, sets of visual features are grouped or clustered together to generate

visual vocabularies - collections of generalized visual features or visual words; (ii)

in the second stage, the images are represented as histograms of visual word occur-

rences. While discarding the geometric information in images, BoW proved to be

very robust methods for detecting visual similarities between images, allowing effi-

cient cross-over detection even in presence of illumination and camera perspective

changes, partial occlusions, etc.

The disadvantage of current state of the art BoW methods for loop-closing is

the presence of the training stage, which requires the visual features of the scene to

be available before the actual survey takes place. Unfortunately, this is an ineffi-

cient approach since it requires laborious preparations and involves strong a priori
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knowledge of the surveyed area.

We propose a novel framework for Online Visual Vocabulary (OVV) building. It

requires no user intervention and no a priori information about the environment.

OVV creates a reduced vocabulary as soon as visual information becomes avail-

able during the camera survey. As the camera moves, the vocabulary is constantly

updated in order to correctly model the visual information present in the scene.

The vocabulary is built using a novel clustering method that takes into account

the global distribution of visual data, increasing its efficiency. Also, we present a

novel method for feature-cluster association and image indexing, suited for incre-

mental vocabularies.

OVV is implemented on DPR-SfM (see Chapter 3) with the objective of quanti-

fying visual similarities between frames, allowing online detection of loop-closures.

Hereafter, we detail the proposed visual vocabulary building and image indexing

techniques.

4.1 Visual Vocabulary

All the state of the art visual vocabulary-based loop-closure algorithms assume an

initial training stage [1, 2, 22, 23]. This stage involves pre-acquiring visual features

from the scene. These features are then used to build the visual vocabulary by

means of some clustering method. Typical offline vocabulary building methods

use K-means, K-medians or fixed-radius clustering algorithms, which require the

user to set various parameters such as the number of clusters in the vocabulary.

Finding the adequate parameters for an optimum vocabulary is a tedious task which

generally involves a trial and error approach. For example, a vocabulary with too

many words would not have enough abstraction power to detect similarities between
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Vocabulary update
I ..Imp+1 m(p+1)

Cluster merging

Image indexing
I ..Imp+1 m(p+1)

Image re-indexing
I ..I1 mp

Image features

Figure 4.3: Flowchart of OVV and image indexing. Every m frames, the vocabulary
is updated with new visual features extracted from the last m frames. The complete set
of features in the vocabulary is then merged until convergence. The obtained vocabulary
is used to index the last m images. Also, the previously indexed frames are re-indexed, to
reflect the changes in the vocabulary.

images. In contrast, a vocabulary with too few words would be too confusing and

too generalized to be discriminant.

OVV uses a novel incremental visual vocabulary building technique that is both

scalable (thus suitable for online applications) and automatic (see Figure 4.3). For

this, we use of a modified version of agglomerative clustering [11]. Agglomerative

clustering algorithms begin with each element as a separate cluster (called here-

after elementary clusters) and merge them using some similarity measurement into

successively larger clusters until some criterion is met (e.g. minimum number of

clusters, maximum cluster radius, etc.).
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4.1.1 Vocabulary Building

In our proposal, elementary clusters are generated from visual tracking of scene

points (see Chapter 3), with each elementary cluster corresponding to one feature

track. The visual vocabulary is built by incrementally merging these clusters. The

building process can be summarized in two steps (see Figure 4.4):

• Vocabulary initialization step. The vocabulary is initialized with the ele-

mentary clusters corresponding to the first m images. Clusters are gradually

merged until convergence (the merging criterion is discussed in detail in Sec-

tion 4.1.3).

• Vocabulary update step. As the camera moves, more visual information

of the scene becomes available, which needs to be contained in the vocabu-

lary. Therefore, from every block of m images, new elementary clusters are

extracted. These clusters are added to the vocabulary and the complete set of

clusters is gradually merged until convergence. This step is repeated for each

block of m new images.

4.1.2 Cluster Characterization

Each cluster in the vocabulary is defined by its position in the n-dimensional space

and its size (radius). This provides complete information about both the cluster

distribution and the interaction between clusters. As previously shown, all the input

information (for both initialization and update) comes from elementary clusters, so

that all the other clusters in the vocabulary are formed by merging the elementary

clusters. As the elementary clusters are generated from feature tracking1, we define

them through:

1Feature tracking provides multiple (noisy) observations of a scene point.
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Figure 4.4: Iterative visual vocabularies. In the initialization step (bottom part) the
vocabulary is populated with elementary clusters (marked in gray), extracted from the
first m images. These clusters are merged until convergence. The final clusters of each
step are marked in black. In the update step (top part), new elementary clusters obtained
from blocks of m images are added to the vocabulary. The complete set of clusters are
then merged until convergence.

Ck =

∑
f i
k

n

Rk =

∑
(f i

k − Ck)(f
i
k − Ck)

T

n

where Ck is the cluster centroid given by the mean of feature vectors corresponding

to scene point k and Rk is the covariance matrix of the observations of point k.

Each cluster merging involves the joining of two clusters (see Figure 4.4). The

parameters (C, R) of the newly generated cluster are obtained directly from the

merging clusters, without the need of recomputing them from the original data.

This saves both computational time and memory, especially in the case of large

clusters. The position and size of the new cluster are given by [68]:
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Cab =
naCa + nbCb

na + nb

Rab =
na − 1

na + nb − 1
Ra +

nb − 1

na + nb − 1
Rb

+
nb · na

(na + nb)(na + nb − 1)
[(Ca − Cb)(Ca − Cb)

T]

where Ca and Cb are the centroids of the merging clusters, having na and nb elements

respectively.

4.1.3 Cluster Merging

Generally, clustering algorithms use some similarity measurement to decide which

data should be grouped into clusters. Often, similarity measurements are repre-

sented by distances in the n-dimensional data space, such as: Euclidean distance,

Manhattan distance [69], Chebyshev norm [52], Mahalanobis distance [86], vector

angle, etc. These clustering criteria analyze the data only locally and can be subop-

timal, especially in high-dimensional, cluttered spaces such as those used for visual

feature representation.

We propose a novel clustering method that takes into account the global distri-

bution of data, increasing both the distance between clusters and their compactness.

This is crucial, as the efficiency of visual vocabularies is determined by two proper-

ties: (i) repetitiveness – similar image features should be associated with the same

cluster and (ii) discriminative power – dissimilar image features have to be associ-

ated with different clusters.

The proposed method, based on Fisher’s linear discriminant [34] [90], clusters
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the data in order to maximize the following objective function:

Q =
tr(SB)

tr(SW )

where tr() is the trace operator, SB represents the between clusters scatter matrix

and SW represents the within clusters scatter matrix given by:

SB =
1

N

∑
nk(C − Ck)(C − Ck)

T

SW =
1

N

∑
nkRk

where C is the global centroid of the data, N represents the total number of data

elements and nk is the number of data elements contained in cluster k.

Practically, the merging takes place in two steps:

1. For each cluster, we search for merging candidates in its neighborhood (in the

Euclidean sense), using a k-dimensional tree (kd-tree) approach [4].

2. For each possible merging pair of clusters, we compute the objective function

Q′ that would be obtained if the two clusters were merged. If there is an

increase in the value of the objective function, then two clusters are merged

and Sb, Sw are updated accordingly2.

Each merging step changes the distribution of data in the vocabulary, requiring

the re-computation of both SB and SW . As a direct re-computation would be very

costly, we propose an incremental update scheme:

2In practice, we first compute the gain in Q for each possible merging pair, creating a list from
the highest to the lowest gain. The clusters are merged following the order on the list, making the
merging step independent of the order in which the clusters are analyzed.
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S ′

B = SB +
na + nb

N
(C − Cab)(C − Cab)

T

− na

N
(C − Ca)(C − Ca)

T − nb

N
(C − Cb)(C − Cb)

T

S ′

W = SW +
na + nb

N
(Rab)−

na

N
(Ra)−

nb

N
(Rb)

where S ′

B and S ′

W are the updates of SB and SW , respectively; Cab and Rab are the

centroid and covariance matrix of the merged cluster.

4.1.4 Convergence Criterion

The two steps shown in Section 4.1.3 are repeated, gradually merging clusters, until

no more merges are possible (that would increase the value of the objective func-

tion Q). In this way, the repetitiveness and discriminative power of the resulting

vocabulary are maximized. Moreover, using a natural convergence criterion, the

process eliminates the need of user-set parameters such as cluster radius or number

of clusters, specific to other vocabulary building algorithms.

4.1.5 New Clusters

During the vocabulary update step, new elementary clusters are added, containing

new visual features. For each newly added elementary cluster ζe, SB and SW have

to be updated accordingly. Similar to the merging step, we avoid recalculating the

scatter matrices by proposing a novel update method.

The update of SW simply involves the covariance matrix Re of ζe, weighted by

its number of elements ne
3:

3The number of elements in an elementary cluster corresponds to feature track length.
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S ′

W =
NSW +Re

N + ne

Adding any new cluster in the vocabulary affects the global data centroid C. The

new centroid C ′ is obtained from:

C ′ =
CN + Cene

N + ne

Taking into account the changes in C, SB is updated using:

S ′

B =
N

N + ne

(SB + δTCδC − V TδC − δTCV )

− ne

N + ne

(Ce − C ′)T(Ce − C ′)

where δC = C ′ −C, V is the weighted sum of differences between each newly added

cluster centroid and global data centroid. V is obtained incrementally by using:

V ′ =
NV +NδC + ne(Ce − C ′)

N + ne

4.1.6 Linear Discriminant Analysis

Using the cluster information contained in the visual vocabulary, we aim to find a

data transformation that would maximize cluster separability and would allow us to

reduce the dimensionality of the data, thus increasing the speed of both vocabulary

building and image indexing. For this, we consider maximizing the following Linear

Discriminant Analysis (LDA) objective function [34] [90] [25]:
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J(w) =
wTSBw

wTSWw

where w is a vector determining the maximum cluster separability direction. For-

mulating the maximization of J(w) as a generalized eigenvalue problem, we obtain

a data transformation G from the eigenvectors corresponding to w. By selecting m

columns of G corresponding to the highest values of w, we reduce the dimensionality

of the data to s dimensions.

4.1.7 Vocabulary Update Criterion

In Section 4.1.1, in order to simplify the explanation, we state that the vocabulary

is updated each m images. In practice, the vocabulary is updated adaptively, rather

than at fixed intervals, so that it constantly represents an accurate model of the

visual content in images.

During image indexing, features are associated with clusters in the vocabulary

(see Section 4.2.1). For each association of a feature fl with a cluster ζk we check if

the feature falls within the cluster, using:

|fl − Ck| ≤ 3σk (4.1)

where σk is the standard deviation of cluster ζk. In eq. (4.1), the absolute value | · |

and the comparison are to be understood componentwise.

At each vocabulary update step, we index images until the percentage of features

falling within the radius of their associated clusters drops below 90%. At this point,

we consider that the vocabulary does not model correctly the visual content in the

images, hence we update the vocabulary.
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4.2 Image Indexing

Inspired from text document indexing [73], BoW techniques use visual vocabularies

to represent the images by associating the features present in each of the images

with the visual words in the vocabulary [21, 110, 152]. The result is a histogram

representing the number of occurrences of each visual word in the image. The

similarity between images is calculated by comparing these histograms.

When detecting cross-overs, it is paramount that image features be correctly as-

sociated with clusters, even in presence of illumination and perspective changes. We

partially achieve this by maximizing the repetitiveness and discriminative power of

the vocabulary (see Section 4.1.3). However, in the context of online vocabularies,

we need to define a third property: stability. As the vocabulary is constantly up-

dated, the aim is to ensure that similar features are associated with the same clusters

at different stages of the vocabulary update. We achieve this property through a

novel feature-cluster association technique.

4.2.1 Cluster Association

The association between features and visual words is performed by comparing each

feature with all the clusters in the vocabulary. The feature is then associated with

the most similar cluster. Most image indexing techniques calculate the similarity

between features and clusters using distances in the feature space (see Section 4.1.3).

This approach is suitable for image indexing in the case of static vocabularies4 [134].

As we use an online approach for vocabulary building, such a feature association

method would not be stable. In Figure 4.5a, feature f is associated with the closest

cluster ζb. After the vocabulary is updated, clusters ζa and ζc are merged, yielding

4A static vocabulary represents a vocabulary that is calculated before the image indexing stage
and does not change throughout it.
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Figure 4.5: Feature-cluster association. In (a) the feature f is associated with cluster
ζb, using feature-to-cluster centroid distance. After the vocabulary update, clusters ζa and
ζc are merged. The centroid of the newly obtained cluster ζac is now closer to f . Using
a classical approach, feature f would be associated with ζac (b). Using hierarchical trees,
feature f is correctly associated with cluster ζb (c).

a new cluster ζac (Figure 4.5b). As the feature f is now closer to the centroid of

the new cluster ζac, it would be associated to it. In this case, feature f would be

associated with different clusters before and after the vocabulary update.
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Alternatively, the proposed feature-cluster association technique uses a tree-

based approach. The trees are formed during the vocabulary building process. The

nodes of the trees represent the clusters while the branches define the cluster hier-

archy. The roots of the trees correspond to the visual words while the leafs of the

trees correspond to the elementary clusters (see Figure 4.4).

During the feature-cluster association, the trees are visited top-down, calculating

the similarity (Euclidean distance) between each feature and the tree nodes (see

Figure 4.5c). In order to speed up the association process, we visit only those trees

corresponding to visual words in the vicinity of the feature. For this, we calculate

the distance between the feature and the visual words, and select the trees where:

D(f, ζk) ≤ τDm (4.2)

with D(f, ζk) being the distance between feature f and ζk; Dm is the minimum

distance between the feature f and the visual words and τ is a user-defined constant

(τ ≥ 1).

The selected trees are visited in parallel (see Figure 4.6). For efficiency purposes,

a stopping criterion similar to eq. (4.2) is used, hence avoiding visiting branches

that contain nodes that are not close to f . The feature is finally associated to the

visual word corresponding to the most similar leaf.

4.2.2 Image Re-indexing

During the update process, the configuration of the vocabulary changes. Conse-

quently, the similarity between images indexed at different update stages cannot be

computed. Also, indexing the images after each vocabulary update is not a viable

solution due to the high computational cost.
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! a
! b

f f

Figure 4.6: Top-down feature-cluster association. The trees are visited by com-
paring each node with the feature. If a node is too dissimilar to the feature (marked in
light grey), the rest of the tree corresponding to the node is not visited. The feature is
associated with ζa due to the highest similarity between f and the leaf marked in black.

We propose a novel solution to this shortcoming by defining a transformation

pΓp−1 that embodies the changes in the vocabulary during the update stage. This

transformation allows a fast re-indexing of the images (hence eliminating the need

of repeated image indexing):

W̃ p
I =pΓp−1W

p−1
I

where W p−1
I is the indexing of image I at vocabulary update stage p− 1 and W̃ p

I is

an approximation of the image indexing I at vocabulary update stage p.

During update, the visual vocabulary undergoes the following changes:

1. Adding of elementary clusters. If these new clusters are not absorbed into

already existing clusters, they contain new visual information. In this case, it

is very unlikely that any feature from any image before the update would have

been associated to them. Therefore, the bins W̃ k
I are initialized to 0.
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2. Cluster merging. In the case that two (or more) clusters merge, any feature

previously associated with any of these clusters would be associated to the

newly formed cluster. In this case, the number of occurrences associated with

the new cluster is the sum of occurrences of the merging clusters.

To reflect these changes, pΓp−1 has to initialize the histogram elements corre-

sponding to newly added clusters and sum the elements corresponding to merging

clusters. For a better understanding, let us consider the following example: at stage

p−1 the indexing of image I yields [w1 w2 w3]
T corresponding to the visual vocabu-

lary containing (ζ1, ζ2, ζ3); during the vocabulary update, clusters ζ1, ζ2 merge into

ζ12 and a new cluster ζ4 is added. In this case, the transformation pΓp−1 becomes:




w12

w3

w4



=




1 1 0

0 0 1

0 0 0







w1

w2

w3




4.2.3 Image Similarity

The visual resemblance between images is quantified by measuring the similarity

of their corresponding histograms5. As the histograms are represented by vectors

containing the occurrences of the visual words, we calculate their similarity using

the normalized scalar product (cosine of the angle between vectors) [134]:

srq =
WT

r Wq

‖Wr‖2 · ‖Wq‖2
(4.3)

where srq is the similarity score between images Ir and Iq, Wr and Wq are the

histograms of the images; ‖W‖2 =
√
WTW is the L2 norm of vector W .

5Here, the term “histogram” of image I refers to a vector embodying the number of occurrences
of each visual word in I.
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In eq. (4.3), the similarity score is highly influenced by histogram elements

corresponding to visual words with high occurrence. Generally, these words repre-

sent visual features commonly found in the images, thus having low discriminative

power. In order to counterbalance this shortcoming, the elements of the histograms

are weighted using term frequency-inverse document frequency [5]:

wk =
nki

oi
log

mp

Ok

where nki is the number of occurrences of word k in image Ii, oi is the total number

of words in Ii, Ok is the total number of images containing word k and mp is the

total number of indexed images.

4.2.4 Cross-over detection

During online navigation and mapping, an increased value of srq between the cur-

rent image and any previous one indicates a high probability that the two images

correspond to the same region of the scene (i.e. loop closing). This information can

be used for both introducing new constraints in the mapping model and reducing

the navigation-related uncertainties.

Noise, low contrast and especially motion blur may sometimes decrease the ef-

ficiency of image indexing, leading to false positives when detecting cross-overs.

Assuming a smooth camera motion, there must be a certain degree of overlap be-

tween neighboring frames in the image sequence. In other words, if an image Iq has

a high degree of visual similarity with some other image Ir, the neighbors of Ir must

also be (at least partially) visually similar to Iq.

Seeing the similarity between image Iq and all the images in the sequence as a

time-dependent measurement, we employ individual compatibility test [20] in order
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to reject false positives.

4.3 Experimental Results

This section discusses some experiments designed to evaluate the two novelties: (i)

the incremental vocabulary building and (ii) the image indexing based on hierar-

chical trees. The efficiency and accuracy of the OVV algorithm is tested using a

data association and a comparison with ground truth. The obtained results are

compared with with a state-of-the-art offline visual vocabulary building technique

using K-means.

In the first experiment, we provide a detailed analysis of the influence of LDA

dimension reduction s and relative threshold τ on the accuracy and computational

cost of OVV. The two parameters are user-set and provide an increase in the

computational efficiency of OVV at the expense of a slight decrease in the accuracy

of the results. Experiments show that these two parameters are not data sensitive,

so that for the rest of the experiments we used a fixed setting that provides a good

balance between speed and accuracy.

The remaining experiments focused on the detection of loop-closing in various

environments, including underwater and outdoor scenes.

4.3.1 Laboratory Experiment

The first experiment was carried out in the laboratory, using a relatively flat scene

that contains books, boxes and magazines. The scene composition was chosen to be

visually complex, combining uniform (low texture) regions, natural scenes, geometric

figures and abstract drawings.

The test sequence consists of 215 images of 640 × 480 pixels, acquired using a

124



4. ONLINE LOOP DETECTION

Figure 4.7: Laboratory experiment – Input image sequence. Sample images from
the input sequence. The first and the last images have a partial overlap. The blow-up
shows the motion blur and defocusing.

Canon G9 compact camera (see Figure 4.7 for some snapshots of the sequence). The

images contain a certain amount of motion blur and defocusing, allowing us to test

the robustness of the visual vocabulary.

The camera is moved while in a down-looking orientation, describing a loop

trajectory with a partial overlap between the first and the last images. Figure 4.8

illustrates the resulting scene model and camera trajectory, after applying DPR-SfM

on the image sequence. The detection and extraction of features was carried out

using SURF, yielding ∼37,000 tracks corresponding to the 3D vertices. Each image

feature is represented using a 64-element normalized vector as described in Section

2.1.3.

The vocabulary was initialized using the visual information extracted from the
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Figure 4.8: Laboratory experiment – 3D model and camera trajectory. The
scene model contains ∼37,000 vertices (marked in green). The camera describes a loop
trajectory (marked in blue) with an overlap between the first and last images.

first 20 images. During sequence analysis there are 10 vocabulary updates, resulting

in a final vocabulary containing 3,485 visual words. Figure 4.9 illustrates the evo-

lution of the vocabulary. Towards the end of the sequence, the growth rate of the

vocabulary decreases, as there is little new visual information contained in the last

images. The instants when the vocabulary was updated can be better observed in

Figure 4.10, along with the computational times of vocabulary building and frame

indexing.

OVV can be adjusted using two user-set parameters. Unlike other visual vocab-

ulary algorithms, where various parameters need to be adjusted for each dataset in

order to obtain accurate results, the user parameters in OVV are data independent.

The first parameter s determines the number of LDA dimensions used for feature
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Figure 4.9: Laboratory experiment – Vocabulary size evolution. The vocabulary
was initialized using the first 20 frames. After 10 updates, the final vocabulary contains
≃ 3, 400 visual words.
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Figure 4.10: Laboratory experiment – Computational times. The vocabulary
building time (red bars) and the frame indexing time (blue line) evolution vs. the number
of frames. A total of 10 vocabulary updates took place with an average of 0.9 sec./update.
The average indexing time was 0.13 sec./frame.

clustering and image indexing. A lower number of dimensions decreases both the

clustering and frame indexing times, while slightly decreasing the accuracy of the

results. The second parameter τ determines the amount of tree branches that are

simultaneously visited during frame indexing. A lower value of this parameter de-

creases the computational time related to frame indexing, while slightly decreasing

the accuracy of frame indexing.

We designed two tests that assess the efficiency of the OVV and influence of

the parameters on the accuracy of the results. In the first test, we use a direct

data association experiment. For each image feature, we associate an elementary

cluster that corresponds to the smallest Euclidean distance in the feature space. The

image features are then “sent down” the indexing trees. If the image features end
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up at the leaf corresponding to the associated elementary cluster, it is considered

a hit and a miss otherwise. A high ratio of hits denotes a stable vocabulary and

feature labeling which is crucial for accurate results, especially in the case of dynamic

vocabularies used in OVV, as we show in Section 4.2.1. The second test is aimed

at evaluating the accuracy of the visual similarity in representing the actual overlap

between images. For this, we compare the similarity matrix (see Figure 4.11) with

the overlap ground truth matrix. The overlap matrix was obtained by exhaustively

calculating the projective homography between each two images from the sequence.

From the homographies, we obtained the overlap ratio between all images in the

sequence. We represent the accuracy of the frame similarity matrix by the average

of absolute differences between the similarity and the overlap matrices.

The two tests were repeated for different values of s and τ . Table 4.1 shows

the accuracy and execution time versus LDA dimensionality reduction. The results

clearly show the advantages of LDA. Reducing the dimensionality of data to 24

we obtain more accurate results and greatly increased computational efficiency with

respect to full 64 dimensions when no LDA is used. However, decreasing the data

dimensionality further diminishes the discriminative power of the vocabulary. This

increases the similarity score between non-overlapping frames, reducing the overall

accuracy of the result. Additional tests on other datasets show that s = 24 provides

the ideal tradeoff between accuracy and computational efficiency.

Augmenting the value of τ (see Table 4.2), increases the number of tree branches

that are simultaneously visited during image indexing. As expected, this results

in increased accuracy at the expense of higher computational costs. Using τ = 1.4

offers the ideal trade-off between indexing speed and accuracy, as using higher values

increases the related computational cost with no real gain in accuracy. As in the

previous case, τ = 1.4 proved to be the ideal value for all the datasets we have
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Table 4.1: Laboratory experiment – OVV accuracy and execution times vs.

LDA dim. reduction. As the number of dimensions decreases, total vocabulary build-
ing time (2nd column) and average frame indexing time (3rd column) are reduced, also
decreasing the hit percentage (4th column) and increasing the visual similarity average
error wrt. image overlap (5th column). The first row shows the results without using
LDA.

LDA Dim. s Vocab. Time [sec.] Index. Time [sec./fr.] Hits [%] Error
no LDA 11.9 0.24 99.1 0.0714

64 10.9 0.24 99.6 0.0668
48 9.9 0.17 99.5 0.0674
32 8.6 0.13 99.3 0.0682
24 8.3 0.11 99.2 0.0695
16 6.5 0.08 98.8 0.0793
8 5.7 0.05 98.0 0.1216

Table 4.2: Laboratory experiment – OVV accuracy and execution times vs.

τ . Using a higher τ , the average frame indexing time (2nd column) increases as more
tree branches are visited simultaneously, improving the hit percentage (3rd column) and
decreasing the visual similarity average error with respect to image overlap (4th column).

τ Index. Time [sec./fr.] Hits [%] Error
1.0 0.10 95.0 0.0738
1.1 0.11 97.0 0.0731
1.2 0.11 98.4 0.0715
1.3 0.12 98.9 0.0701
1.4 0.13 99.2 0.0695
1.5 0.15 99.2 0.0693

tested.

In order to provide the reader with an objective evaluation, we compare the re-

sults obtained using OVV with an off the shelf BoW algorithm based on K-means

clustering. We have chosen this approach for comparison, due to its popularity in

computer vision and visual SLAM community. We set the number of words in the

vocabulary to be the same as the number of words in the OVV in its final form –

3,485 words. Due to the random nature of K-means clustering, we ran the clustering

algorithm 20 times and chose the vocabulary corresponding to the maximum cluster

compactness. The average computational time was 8.9 sec./run. The frames were
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Figure 4.11: Laboratory experiment – Image similarity matrix. High values close
to the main diagonal correspond to the similarity of the images with their close neighbors.
The bright region in the upper-right corner of the matrix denotes an overlap between
frames in the beginning and the end of the sequence.

indexed using minimum Euclidean distance feature-cluster association with an aver-

age computational time of 0.3 sec./frame, resulting in an average error between the

similarity matrix and frame overlap of 0.0985. This shows that, while incremental,

OVV provides better accuracy than offline K-means algorithm.

The last part of the laboratory experiment consisted in the detection of the loop

closure. For this, we build the image similarity matrix, shown in Figure 4.11. The

similarity matrix illustrates a high degree of visual resemblance between the first

images and the last images of the sequence (upper-right corner).

Figure 4.12 illustrates the similarity score between I215 and all the images in the

sequence. The peak at image I1 indicates a high visual similarity between frames I1

and I215, corresponding to a cross-over (see Figure 4.13). The visual similarity score

between the two images is 0.8, accurately representing the ground truth overlapping
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Figure 4.12: Laboratory experiment – Image similarity for query image I215.
The plot shows the similarity between frame I215 and all the previous frames. The peak
on the far right of the plot corresponds to time-adjacent frames. The peak corresponding
to I1 indicates an overlap.

Figure 4.13: Laboratory experiment – Loop detection. The first (left) and last
(right) images of the sequence correspond to the same region of the scene, determining a
loop closure.

ratio of 0.82.

4.3.2 Coral Reef Experiment

This experiment is aimed at testing the efficiency of the OVV method in describing

natural, unstructured environments for underwater robot navigation and mapping.

The image sequence, acquired using a ROV near the Bahamas by the UoM, is

comprised by 235 frames of 720 × 530 pixels. The surveyed scene contains a coral

formation and its surroundings, combining rich texture areas (vegetation and rock
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Figure 4.14: Reef experiment – 3D model and camera trajectory. The scene
model contains ≃ 62, 000 vertices. The trajectory of the camera has several cross-overs.

formations) and uniform areas (sandy regions).

We applied DPR-SfM on the sequence using SURF features. Figure 4.14 illus-

trates the 3D reconstruction and the camera trajectory estimation. The resulting

≃ 62, 000 SURF feature tracks were used to generate the vocabulary as the scene

was being reconstructed. The vocabulary was initialized using the first 20 frames

and updated 9 times, containing 4,343 in its final form. Analyzing the vocabulary

evolution in Figure 4.15, it can be seen that the vocabulary grows fast at the begin-

ning of the sequence. Towards the end, the vocabulary increase rate slows and the

vocabulary update frequency lowers, as there is little unmodeled visual information

left in the scene.

After vocabulary building and image indexing, the resulting similarity matrix

in Figure 4.16 successfully points out the cross-overs in the camera trajectory. An

exemplification of this is provided in Figure 4.17, where a query for frame I204 shows

two peaks at frames I52 and I155, with similarity scores of 0.73 and 0.75 respectively.
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Figure 4.15: Reef experiment – Vocabulary size evolution. The vocabulary was
initialized using the first 20 frames. After 9 updates, the final vocabulary contains ≃ 3, 400
visual words.
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Figure 4.16: Reef experiment – Image similarity matrix. The bright regions off
the main diagonal correspond to multiple cross-overs.

The estimated overlap ratio between I204 and frames I52 and I155 is 0.78 and 0.8

respectively, showing that the similarity scores closely represent the overlap between

images. Figure 4.18 clearly illustrates that the three frames correspond to the same

region of the scene.

To quantify the precision of the similarity matrix in approximating the image

overlap, we compared it with the overlap ground truth using the average of absolute
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Figure 4.17: Reef experiment – Image similarity for query image I204. The
plot shows the similarity between frame I204 and all the previous frames. The two peaks
corresponding to frames I52 and I155 indicate that all three frames correspond to the same
region of the scene.

I204

I52 I155

Figure 4.18: Reef experiment – Cross-over. Query frame I204 and frames I52 and I155
were successfully determined as corresponding to the same region of the scene, defining a
loop closure.
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differences. The error was 0.095, higher than in the previous experiment. This is

expected, since low contrast and high blurriness in underwater imaging decreases

the quality of image features.

We compared the result with K-means vocabulary, using the same number of

visual words as in the OVV in its final stage. The average error in case of K-means

vocabulary is 0.0978, indicating that OVV yields slightly better results in case of

underwater imaging.

4.3.3 Tortugas Experiment

The second underwater experiment presented here was acquired in the Tortugas,

Florida Keys, using an ROV of the UoM. The sequence, containing 1,000 frames of

720×530 pixels, depicts a region comprised mainly by rocks and sand. The sequence

is characterized by repetitive textures, allowing us to test the OVV algorithms in

presence of increased visual aliasing6.

Figure 4.19 illustrates the estimated 3D model containing 125,850 vertices along

with the camera trajectory. The online vocabulary was initialized using the feature

tracks in the first 20 frames. During scene reconstruction, the vocabulary went

through 15 updates, containing 6,644 visual words in its final form.

After frame indexing, the similarity matrix in Figure 4.20 shows a higher degree

of noise due to visual aliasing. This fact is also indicated by an increased average

error of 0.14 between the visual similarity matrix and the overlap ground truth.

The average in case of K-means is 0.17, showing that OVV is less sensitive to visual

aliasing.

The effect of visual aliasing on image similarity estimation is better outlined in

6The visual aliasing problem corresponds to scenes with poor or repetitive textures and is
characterized by the fact that different regions of the scene appear similar to the camera.
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Figure 4.19: Tortugas experiment – 3D model and camera trajectory. The scene
model shown in red contains ≃ 126, 000 vertices. The trajectory of the camera (blue)
presents some partial overlaps.

Figure 4.21, where non-overlapping frames show a certain degree of visual similar-

ity. While this does not affect the detection of cross-over at frame I156, cross-overs

corresponding to frames with small overlap (e.g. I500) are not detectable.

Figure 4.22 illustrates some of the pairs of images, corresponding to cross-overs

in the camera trajectory.

4.3.4 Urban Experiment

Here, we discuss the loop closure detection for the urban experiment presented in

Section 3.7.7. The visual vocabulary was generated and the images were indexed

during the scene reconstruction. The final vocabulary contains 7,182 words. The

resulting similarity matrix, shown in Figure 4.23, points out a cross-over between
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Figure 4.20: Tortugas experiment – Image similarity matrix. The slightly brighter
background on the upper right side of the similarity matrix denotes a certain amount of
visual aliasing. However, overlapping frames are clearly distinguishable.
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Figure 4.21: Tortugas experiment – Image similarity for query image I589. A
comparison of OVV (blue) andK-means (red) with overlap ground truth (green) points out
the effect of visual aliasing: in both cases, non-overlapping images show a certain degree
of visual similarity, while OVV proves to be slightly less susceptible to this phenomenon.
The cross-over at frame I156 is easily detectable.

the first and last frames of the sequence. The situation is exemplified in Figure 4.24,

where a query for frame I960 denotes a visual similarity of 0.8 with frame I45. Figure

4.25 confirms that the two frames correspond to a loop closure.
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Figure 4.22: Tortugas experiment – Loop detection. Pairs of images corresponding
to some of the detected cross-overs. Query frames are shown in the left column and their
corresponding most similar frames are shown in the right column.
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Figure 4.23: Urban experiment – Image similarity matrix. The bright region in
the upper-right corner of the matrix indicates an overlap between first and last frames of
the sequence.
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Figure 4.24: Urban experiment – Image similarity for query image I960. The
plot shows a high degree of visual similarity between frames I960 and I45, corresponding
to a loop closure.

In the remainder of this section, we present a test that we have carried out in

order to assess the capacity of OVV indexing to be extended to other images of the

same location. For this, we selected a set of photos fromGoogle Images [48] depicting

the Unirii Square, taken at different times of day and from various viewpoints. Each

photo was then indexed using the generated vocabulary and the most visually similar
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I960 I45

Figure 4.25: Urban experiment – Loop detection. Example of image pair corre-
sponding to the loop closure.

image from the original dataset was extracted. Figure 4.26 illustrates the results.

The majority of photos were correctly associated (≃ 90%). Generally, the cases

where OVV did not correctly identify the location were the result of: (i) extreme

zooming, where the query pictures show details of the buildings not modeled in

the vocabulary due to the limited resolution of the original dataset; (ii) severe

obstructions that block most of the visual content modeled in the vocabulary; (iii)

extreme lighting changes – pictures taken in the early evening or at night, where

most of the visual details are lost due to low contrast. Moreover, in the last row of

Figure 4.26 we illustrate an example of poor localization due to HDR processing of

the query image.

4.4 Discussion

BoW methods have proved very efficient in detecting cross-overs in visual navigation

and mapping, especially under lighting and camera view-point changes, occlusions,

etc. However, state of the art visual bag of words methods limit the flexibility of
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Figure 4.26: Urban experiment – Location identification. Google Images photos
used as query images (left column) and the most visually similar image from the original
dataset (right column). The last row shows an example of poor location identification,
due to the post-processing of the query photo.
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the visual surveys, as they require strong knowledge of the surveyed area and heavy

user intervention.

We have developed a new visual BoWmethod for loop-closure detection, oriented

towards online navigation and mapping. The method uses a novel incremental vo-

cabulary building process that eliminates the need of the offline training stage. The

vocabulary is initialized from visual information extracted from a reduced number

of images. As the camera moves, the vocabulary is extended to model new visual

information corresponding to newly surveyed parts of the scene. In order to de-

crease redundancy and augment the efficiency of the vocabulary building process,

we present a novel vocabulary update criterion, which takes into account the visual

information present in the images. In this way, OVV allows for navigation and visual

mapping with no a priori information of the environment.

The vocabulary building process uses a new method, based on Fisher’s linear

discriminant, that takes into account the global data distribution. Experiments

show that this approach increases both the repetitiveness and the discriminative

power of the resulting vocabularies. Also, using LDA during the vocabulary building

enables data dimensionality reduction, decreasing the computational time related to

vocabulary building and image indexing.

In the context of a constantly changing vocabulary, we propose a new hierar-

chical feature-cluster association technique, that increases the stability of feature

labeling. We show that stable feature labeling is critical in detecting visual similar-

ities between images that are indexed at different vocabulary stages. Also, in this

context, we propose a novel incremental image re-indexing method, eliminating the

high cost of repeatedly indexing the images as the vocabulary changes.

Consequently, we present some experimental results that show the applicability of

the method in cross-over detection for online navigation and mapping in underwater
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and land-based environments.

We are currently developing a method for decreasing the complexity of the vi-

sual vocabularies by eliminating small, insignificant clusters at the bottom of the

hierarchy. This would allow OVV to be applied on larger sequences of images. Also,

the computational times related to vocabulary building and image indexing could

be reduced by using Graphics Processing Unit (GPU)-based parallel processing.

143



Chapter 5

Online 3D Model Simplification

Scene reconstruction algorithms approximate the shape of the scene using 3D fea-

tures such as vertices or lines. These features can be seen as discrete measurements

of a continuous model representing the scene. Clearly, the higher the number of the

3D features, the higher the accuracy of the scene structure estimation.

When navigation and mapping algorithms have to deal with large areas, however,

the amount of data may prove overwhelming. This is especially the case when

Kalman Filter or Global Alignment algorithms are used, in which the complexity of

the problem grows with the square of the number of scene features.

The solution to this problem is reducing the number of extracted scene features.

The difficulty stands in selecting the 3D features in a way to minimize the impact

on the precision of the resulting scene model.

The problem of reducing the complexity of 3D models while maintaining the

model precision has been studied by the computer graphics community where it is

known as mesh simplification. The state of the art in mesh simplification includes a

wide range of alternatives. In [78,121], the authors divide the 3D volume into a user-

specified grid. Then, the model is simplified by removing all vertices within a grid
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cell, maintaining only the most representative vertices. Schroeder et al. [129] use a

multiple pass simplification, based on a user specified user error threshold. Eck et al.

[26] use a wavelet-based approach to create a fast multi-resolution representation of

the original surface. A similar multi-resolution approach is employed by Progressive

Meshes (PM) [59, 60], a widely used method in real-time 3D rendering. Other

authors have proposed the use of color and texture information in addition to the

shape in the simplification criteria [45, 46, 150], minimizing visual aliasing due to

model simplification.

Unfortunately, all mesh simplification algorithms are inherently offline, in the

sense that the entire scene geometry must be available during the simplification

process. We propose a novel algorithm that carries out the model simplification se-

quentially, as the model is being generated. The simplification is done by selecting

the vertices that are most representative for the scene geometry, reducing the redun-

dancy in describing 3D shapes. In order to better understand the concept, consider

the simple example of Figure 5.1a, which illustrates a 2D profile as the cross sec-

tion of a 3D relief. By extracting vertices around the edges of the slopes (marked

by dots) and applying linear interpolation (dotted lines), a good approximation of

the shape is obtained. The algorithm follows this concept, selecting 3D vertices on

edges/surface inflexions of the objects present in the scene. Similarly to the inter-

polation in Figure 5.1a, these vertices provide the basis for surface interpolations

that accurately approximate the geometry of the scenes.

As the Online Model Simplification (OMS) process is carried out sequentially, in

parallel with the scene reconstruction process, the scene model is not fully known

during vertex selection. Instead we approximate the scene geometry using depth

maps. From these depth maps, we extract interest points, corresponding to object

edges/surface inflexions, hereafter called geometrical features. The geometrical fea-
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(a)

(b)

(c)

Figure 5.1: Simple 2D example of feature extraction from a topological point

of view. 4 feature points provide a good initial piece-wise linear approximation of the
curved profile (a); absolute value of first derivative (b); the 4 features correspond to the
maxima of the response of the second derivative (c).

tures are then substituted by 3D vertices. The result is a small subset of 3D vertices

that accurately describes the geometry of the scene.

Figure 5.2 outlines the main modules of the OMS algorithm. There are two

parallel pipelines: one computes the structure of the scene (DPR-SfM) and the

second extracts the geometric features. The two pipelines are merged in order to

select the most representative vertices for the structure of the scene. Hereafter we

describe each stage of the vertex selection process.

5.1 Depth Map Computation

The first step for obtaining the depth map is the computation of the 2D optical flow

v = [u v]T from pairs of images. The GDIM method used for this step was proposed

by Negahdaripour et al. [100,106], and later generalized to take advantage of color in

addition to intensity information for improved robustness and estimation accuracy
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Figure 5.2: Flowchart of the OMS algorithm. The geometric processing (right) runs
in parallel with the DPR-SfM pipeline (left). In the geometric processing block, first the
depth map is obtained using plane parallax. Then, the regions of interest corresponding
to edges of objects, are segmented from areas of local maxima of the depth map second
derivative. Finally, geometric features, are then extracted from the regions of interest. The
geometric features are used to select the vertices, generated by the DPR-SfM pipeline, that
are the most representative for the scene.

[102] (see Section 2.1.2). The computed optical flow for each pair of consecutive

frames {Ii−1, Ii} provides an estimate of local disparities for depth computation.

Given the optical flow, an approximation of the depth map can be computed. Our

previous proposals use Longuet-Higgins differential image motion model [107, 108].

However, this approach is computationally expensive, requiring iterative scene depth
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and camera motion estimations. Here, we propose a fast, closed-form solution using

plane-parallax. First, the homography iHi−1 is computed using all the correspon-

dences between the two frames. This homography embodies the disparity induced

by the camera motion on the average scene plane. From here we can obtain the

parallax of the scene that represents a direct measurement of the depth variations

of the scene (D̂):

D̂i = (pi −iHk−1 · pi−1)− vk

where pi−1 and pi are the image point coordinates of frames Ii− 1 and Ii respectively.

5.2 Depth Map Derivatives

In order to extract the geometric features, we consider two types of regions of inter-

est: (i) object edges and (ii) surface inflexions, both of which correspond to large

absolute values of the second derivative of the depth map (see Figure 5.1c) and will

be called edges hereafter.

The second derivative of the depth map (D) is approximated by:

D′′(x, y) =
1

N
ΣN

k=1D(x, y) ∗ LoG(σk)

where ∗ is the convolution operator, LoG(σk) is the Laplacian of Gaussian with

standard deviation σk = m · k and m is a predefined constant. D′′ computed in

this way is less sensitive to noise compared to the standard second derivative using

local differences, while still providing high responses on the edges of the surfaces

(Fig. 5.3b).
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(a) (b)

(c) (d)

Figure 5.3: Main steps of the OMS algorithm. (a) depth map of the scene, (b)
computation of the second derivative, (c) RoI extraction and (d) edge traces along with
the extracted geometric features: “ × ” corresponds to line ends, “ + ” represents line
junctions and “ ◦ ” denotes high curvature points.

5.3 RoI Extraction

As mentioned earlier, the regions of interest correspond to those areas where D′′

has high absolute values. In order to extract these regions, a binarization using a

constant threshold could be applied. However the steepness and the area of the

slopes influence the magnitude and width of the peaks in D′′. In this case, applying

a fixed binarization would either not detect certain edges or would over-evaluate

others. In order to obtain a more suitable binarization, D′′ is locally normalized

using:

150



5. ONLINE 3D MODEL SIMPLIFICATION

D̂′′(x, y) =
D′′(x, y)− wn(x, y)√
vn(x, y)− w2

n(x, y)

where

wn(x, y) =

∑x+n
i=x−n

∑y+n
j=y−nD

′′(i, j)

(2n+ 1)2

and

vn(x, y) =

∑x+n
i=x−n

∑y+n
j=y−n(D

′′(i, j))2

(2n+ 1)2

Figure 5.3c shows the regions of interest after normalization and binarization.

5.4 Geometrical Feature Extraction

In order to minimize geometrical redundancy, only relevant edge points are ex-

tracted. To detect the edges, a thinning algorithm is applied to the regions of

interest [71]. The result is a pixel-wide trace line following the edge (hereafter called

traces), with each pixel corresponding to the local maxima of D′′ (see Figure 5.3d).

Three types of geometrical features are defined along the traces:

• line end points

• line junction points

• high curvature points

Line end-points and line junction points are extracted by convolving the trace

image with specific kernels taking into account 8-neighbor-connectivity. The curva-

ture of the trace line along each point p is obtained by computing Cp within a 2n+1

band along the line [24], with:
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Cp =
1

(2n + 1)

p+n∑

i=p−n

e(−d2
ip
)(1−cos(φp−φi))

where φp and φi represent the angles of the line normals at points p and i respectively;

and dip represents the Euclidean distance between p and i.

High curvature points are extracted by locating local maxima of Cp where Cp >

tc. The threshold tc is imposed in order to avoid false positives due to image aliasing.

Figure 5.3d illustrates the extracted geometric features: line junctions, line-ends

and high-curvature points.

5.5 Selection of 3D Vertices

In order to obtain a reliable 3D reconstruction, the algorithm substitutes geometric

features with vertices. In previous works we have proposed the direct selection of

image features using the geometric criteria [107, 108]. However, as the selection

is done prior to vertex reconstruction, there is no guarantee that all the selected

features will provide reliable reconstruction.

Performing the selection process on the 3D vertices rather than on the image

features overcomes this limitation. Substitution of each geometric feature with a

vertex is carried out using a criteria based on two measurements: the uncertainty of

the 3D location of the vertex and the “distance” between the geometric feature and

the vertex. As the extraction of geometric features takes place in the images, in order

to have a common frame, 3D vertices are represented by their image projections.

Therefore, the score of substituting the geometric feature g with vertex X , in frame

Ii is given by:

sF (g,X) = (1− Σ∆x) · cos(
π

2
· ‖Πi ·X − g‖

maxG
) (5.1)
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where maxG is a pre-established maximum substitution distance. Σ∆x is the uncer-

tainty of vertex X normalized among all the possible candidates of g (see Appendix

A). The use of the cosine function in eq. (5.1) applies a nonlinear weight that re-

wards vertices which are close to the geometric feature and penalizes those towards

the outer radius maxG.

Given a feature g in frame Ii, sF is computed for all vertices whose projections

fall within a radius of maxG. The vertex with the highest score sF is considered the

substitute of g. This selection process is carried out for all geometric features.

Using the substitution criteria show in eq. (5.1), OMS creates a tradeoff between

vertex reconstruction precision and geometric approximation. As the Online Model

Simplification process runs in parallel with the DPR-SfM, the two processes can be

seen as a single SfM module, whose output is a reduced yet accurate scene model.

Obtaining a simplified model directly, without the necessity of generating the full

model as an intermediate step, the computational and memory costs are drastically

reduced, allowing reconstruction of more complex and larger scenes.

5.6 Experimental Results

The experiments reported in this section are aimed at evaluating the OMS algorithm.

We are concerned with two aspects of OMS: (i) efficiency – its capacity to reduce the

number of vertices in the 3D model and (ii) accuracy – the precision loss after model

simplification. In each experiment, the evaluation was carried out by comparing the

model containing the complete set of features (full model) with the simplified model.

In order to provide the basis for comparison, we only tagged the vertices selected

by OMS, without removing any vertices. In this way, vertices corresponding to the

simplified model represent a subset of the vertices comprising the full model.
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We define the efficiency of the OMS as follows:

ξ =
Nfull −NOMS

Nfull

· 100

where Nfull is the number of vertices in the full model and NOMS is the number of

vertices in the simplified model.

We quantify the simplification accuracy using the average Hausdorff distance [98]

between simplified model and the full model. As the Hausdorff distance is metric,

we represent the error as percentage of scene depth.

We extend the analysis of OMS by comparing it with Progressive Meshes [60]. We

have chosen this algorithm for 3 reasons: (i) it is a widely used algorithm in computer

graphics and hardware-based rendering, (ii) it reduces the model complexity by

selecting the most geometrically representative vertices, similarly to our algorithm

and (iii) it allows the user to manually set the number of vertices in the simplified

model, thus providing common basis for comparison.

Hereafter, we present some of the results we have obtained from image sequences

representing outdoor and underwater environments.

5.6.1 Rocks Experiment

In this experiment, a set of rocks with various photometric (texture) and geometric

(size and shape) properties were imaged on a planar concrete background (see Fig.

5.4a). During acquisition, the camera was oriented towards the ground with little

pitch and roll movement, and rotated around its optical axis so that it maintained a

constant orientation with respect to the motion direction (i.e. simulating the motion

of a survey platform). The sequence consists of 360 images of 694×519 pixels.

After applying DPR-SfM on the sequence, the resulting full model shown in

154



5. ONLINE 3D MODEL SIMPLIFICATION

(a) (b)

(c) (d)

Figure 5.4: Rocks experiment – Geometrical feature extraction. (a) sample image
from the sequence, (b) depth map, (c) second derivative and (d) object contours and the
extracted geometrical features).

Figure 5.5a contains 14,000 vertices. When we performed model simplification in

parallel with DPR-SfM, OMS introduced an overhead of 0.11s/frame in the model

update step, as the latter requires the computation of the vertex covariance. The op-

tical flow computation times are highly dependent on the image resolution. For high

resolution images, we use subsampling prior to optical flow computation, resulting

in significant gains in computational times with minimal loss of depth map preci-

sion. For this image sequence, we obtained an average of 1.2s/frame for depth map

computation without subsampling. The rest of the steps for the geometrical feature

extraction and vertex selection stages had small computational costs, averaging a
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(a)

(b)

Figure 5.5: Rocks experiment – 3D Structure. (a) full model containing 14,000
vertices, (b) simplified model using the geometric criteria containing 432 vertices and (c)
texture rendering of the simplified model.

total of 0.1s/frame.

OMS allows the user to specify the maximum substitution distance maxG as

an input parameter (see eq. (5.1)). As maxG is represented in image pixels, we

avoid the resolution dependency by defining the user parameter as percentages of

image width. In order to assess the influence of maxG on the outcome of OMS, we

generated the simplified model using different values of the parameter and compared

the results with PM. In each case, we set the number of vertices in PM to be the

same as those of the OMS model.
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Table 5.1: Rocks experiment – Comparison between OMS and PM. Low values of
maxG result in a highly simplified model, where PM is more efficient than OMS. Increasing
the value of maxG, improves the accuracy of OMS to a point where the difference between
OMS and PM is small. Values of maxG above 4.3 do not bring any significant improves
neither in efficiency nor accuracy of OMS.

maxG Vertices Efficiency [%] Accuracy OMS [%] Accuracy PM [%]
0.7 309 97.8 1.31 0.77
1.4 398 97.2 0.96 0.73
2.9 424 97.0 0.87 0.73
4.3 432 96.9 0.86 0.72
5.8 446 96.8 0.86 0.72

Table 5.1 shows the results of the experiment. Using low values of maxG limits

the amount of geometrical features that are substituted by vertices. This increases

the efficiency of the model simplification at the expense of accuracy. Increasing the

value of maxG highly improves the accuracy of OMS to a point where the results

of OMS and PM are similar. This shows that our OMS approach is nearly as

accurate as the batch PM algorithm. Figure 5.5b illustrates the simplified model

using maxG = 4.3.

5.6.2 Coral Head Experiment

The data for this experiment were acquired during one of the coral reef UoM ROV

surveys. The dataset consists of 2, 000 frames of 512× 384 pixels, corresponding to

a coral head of 1m in height and its surroundings (see Figure 5.6a).

The aim of this experiment was to test the OMS algorithm using real, geo-

metrically complex underwater scenes under extreme, changing lighting conditions.

For this, the sequence was chosen to include both almost flat regions and high 3D

structure regions, with images affected by sun flickering, scattering, blurring and

decreased image contrast due to light attenuation.

During OMS process, the lighting conditions reduced the accuracy in optical flow
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Coral head experiment – Geometrical feature extraction. (a) sample
image from the sequence; (b) depth map; (c) using local differences for second derivative
and simple binarization using a simple threshold the result is very noisy; (d) increasing
the binarization threshold results in edge loss; (e) edge trace and geometrical features
extracted using proposed method; (f) geometrical features on the input image.
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computation, increasing the noise in the depth map computation (see Figure 5.6b).

The high level of noise in the depth map made the detection of edges more difficult.

By computing the second derivative using local differences and applying a fixed

binarization threshold in Figure 5.6c, the result is very noisy, with few extracted

edges corresponding to true scene edges. However, applying the locally normalized

binarization method, the effect of noise was highly reduced, resulting in a correct

estimation of the edges (Figure 5.6e) and the geometrical features (Fig. 5.6f).

The full scene model, shown in Figure 5.7a contains 15,000 vertices. Using

OMS, the number of vertices was reduced to 641 (Fig. 5.7b), resulting in a decrease

of 95.7% in model complexity. The OMS algorithm highly reduced the number

of vertices in the close-to-planar regions, while maintaining the model complexity

in the regions with high 3D structure (i.e. the coral head in the center). The

error introduced by the OMS algorithm was 1.15% while the error introduced by

PM simplification was 0.92%. This shows that OMS has good performance under

challenging conditions, with an accuracy comparable with PM.

5.6.3 Coral Reef Experiment

In this section, we discuss the result of OMS on the dataset presented in Section

4.3.2. The aim of this experiment was to assess the efficiency of OMS under a

dense set of vertices. For this, we increased the number of extracted image features

to 5,000 features/frame. This resulted in a 3D scene model that contains 62,322

vertices. After applying OMS, the model was reduced to only 762 vertices, with

a simplification efficiency of 98.8% (see Figure 5.8). This shows that, as expected,

the complexity of the simplified model depends only on the shape of the scene.

This offers a significant advantage over regular SfM modeling, where the number

of vertices depends on image resolution, number of extracted image features, image
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(a)

(b)

Figure 5.7: Coral head experiment – 3D Structure. (a) full model containing 15,000
vertices, (b) reduced model using the geometric criteria containing 641 vertices.

content, etc.

The error introduced by OMS simplification was 1.17%, while in the case of PM

was 1.01%.
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Figure 5.8: Coral reef experiment – 3D Structure. (a) the full model contains a
dense set of 62,322 vertices, (b) applying OMS, the resulting model is highly simplified to
only 762 vertices.

5.7 Discussion

Model simplification methods greatly reduce the cost related to processing, storage

and representation of complex 3D models. The model simplification techniques pro-

posed in literature are inherently offline, requiring the entire 3D model to be avail-

able during simplification. These methods are not adequate for online 3D modeling
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applications, which could benefit from on-the-fly model simplification strategies.

In this chapter we presented a novel online model simplification algorithm ori-

ented towards large scene reconstruction algorithms. OMS does not require the

geometry of the scene to be available as an intermediate step. The simplification is

carried out by analyzing the scene geometry locally, using plane-parallax approxi-

mations, and selecting only those 3D vertices that are geometrically representative

to elements present in the scene. The vertex selection criteria not only takes into ac-

count the geometrical representativeness of the vertices but also their reconstruction

accuracy.

Applying OMS in parallel with an SfM algorithm results in highly simplified

scene models, which can significantly decrease the computational costs related to

mapping.

We show through experimental results that model simplification using OMS has

minimal impact on the accuracy of the model, with results similar to state of the

art offline model simplification algorithms.

Future work related to Online Model Simplification will focus on multilayered

3D models, containing vertexes classified on geometrical relevance. The result is a

multi-resolution representation of the scene similar to PM. This would allow the user

to select the level of detail, depending on the specific needs, hardware limitations,

etc.
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Chapter 6

Conclusions

This thesis presented a complete framework for efficient 3D scene modeling and

mosaicing. The objective was to develop an efficient and flexible tool for remote sci-

entific studies that require 3D and visual information under any type of acquisition

conditions and scene types. Using such a tool, where no additional sensor infor-

mation and no special acquisition conditions are required, decreases the complexity

and costs related to scientific visual studies.

During the presentation of this work, we mainly focused on underwater scene

modeling due to the increased difficulty and additional challenges that are present

in this environment. Nevertheless, we show successful results on applying the frame-

work on other types of environments, including land-based and urban scenes.

The core of the framework is based on a novel SfM algorithm – DPR-SfM. The

algorithm generates the scene model sequentially, in two stages. In the first stage, a

seed model is created using camera motion estimation techniques. The seed model

corresponds to the first few frames of the sequence, representing a small subregion

of the scene. The second stage extends the seed model in order to cover the en-

tire surveyed area. While the first stage uses classical SFM techniques, the second
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stage uses a direct camera-to-scene registration method which increases the accuracy,

robustness and flexibility of DPR-SfM. Also, results show that direct camera regis-

tration enables the algorithm to quickly recover from scene occlusions and tracking

errors (e.g. due to excessive blurriness induced by fast camera movements, camera

temporary failures, etc.).

Generally, large scale scene modeling algorithms use additional sensor infor-

mation such as camera position and attitude for accurate results. We show that

DPR-SfM achieves the same accuracy with no additional information, increasing its

flexibility with respect to other SFM techniques. DPR-SfM can be readily applied

on image sequences acquired with any type of camera, both still and video, using

natural or artificial lighting (e.g. strobe/focus lighting for deep waters).

The direct camera pose registration uses a novel dual RANSAC projec-

tive/homography approach which allows the DPR-SfM algorithm to accurately

model both planar and non-planar scenes. This is particularly important in un-

derwater and urban scenes, where parts of the scene can have significant parallax

while other parts can be perfectly planar. The use of robust estimation methods

was also extended to vertex position recovery. We show that using robust estima-

tion for both camera pose and vertex position estimations increases the accuracy

and robustness of the method.

DPR-SfM uses an efficient and flexible scene database that enables the parallel

use of multiple feature extractors/descriptors, while allowing fast camera registration

in case of complex and large scenes. In this context, we employed a Kd-tree scheme

for efficient association between image features and model vertices.

The second part of the framework deals with the detection of cross-overs during

visual surveys. The novel BoW method (OVV) is oriented towards online navigation

and mapping, eliminating significant drawback of state of the art visual vocabulary
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algorithms such as strong a priori knowledge of the surveyed area and tedious user

intervention.

OVV uses an incremental vocabulary building process that eliminates the need

for the offline training stage. During the survey, the vocabulary is initialized from

visual information extracted from a small number of images, corresponding to the

beginning of the sequence. Using a novel vocabulary update criterion which takes

into account the visual information present in the images, the vocabulary is updated

in order to constantly represent the visual information contained in the scene.

The vocabulary is built using a novel data clustering method. The clustering,

based on Fisher’s linear discriminant, takes into account the global data distri-

bution rather than local inter-cluster relations. We show that such an approach

ensures a more efficient data distribution, increasing both the repetitiveness and

the discriminative power of the resulting vocabularies. The discriminative power

of the vocabularies is further improved using Linear Discriminant Analysis, which

increases the separability of the visual words within the vocabularies. Also, the use

of LDA enables data dimensionality reduction, decreasing the computational costs

related to vocabulary building and image indexing.

In the context of a constantly changing vocabulary, we propose a new hierar-

chical feature-cluster association technique, that increases the stability of feature

labeling. We show that stable feature labeling is critical in detecting visual similar-

ities between images that are indexed at different vocabulary update steps. Also, to

increase the computational efficiency of OVV, we propose a novel incremental image

re-indexing method, eliminating the high cost of repeatedly indexing the images as

the vocabulary changes.

Finally, we propose a novel Online Model Simplification algorithm oriented to-

wards large scene reconstruction algorithms. OMS simplifies the 3D model sequen-
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tially, by analyzing the scene geometry locally, using plane-parallax approximations.

During simplification, OMS selects only those 3D vertices that are geometrically rep-

resentative for elements present in the scene (e.g. edges, corners, surface inflections,

etc.). The vertex selection criteria not only takes into account the geometrical rep-

resentativeness of the vertices but also their reconstruction accuracy.

We show through experimental results that model simplification using OMS

greatly reduced the complexity of the models while having minimal impact on the

accuracy, with results similar to state of the art offline model simplification algo-

rithms.

6.1 Contributions of the Thesis

In this thesis, we have presented a complete framework for 3D scene modeling.

Particularly, we focused on developing an accurate and flexible SfM algorithm, online

cross-over detection and 3D model simplification. Experimental results presented

in this thesis show the efficiency and accuracy of the three modules. Hereafter, we

present the main contributions of this thesis:

• In Chapter 3 we proposed a novel SfM algorithm based on direct registration

between camera and scene model. While the model is initialized using classical

motion-based techniques, the scene model is extended using a new sequential

two step approach: (i) the camera pose is obtained from camera-model regis-

tration and (ii) using the camera pose, the model is extended to comprise the

new information extracted from the camera view. The camera registration uses

a novel dual approach that allows reconstruction of both planar/non-planar

scenes.

• In Chapter 4 we developed an online cross-over detection algorithm, based on
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visual BoW. OVV uses a novel incremental visual vocabulary that eliminates

the need of a priori knowledge of the scene being surveyed. The vocabulary

building process uses an automatic update criterion, based on image content,

that reduces the number of vocabulary updates. Also, the vocabulary building

uses a novel clustering approach that increases the quality of the vocabulary

and data separability while allowing data dimensionality reduction. The natu-

ral convergence criterion used during vocabulary building eliminates any user

intervention, increasing the ease of use of the method.

Image indexing is carried out by means of a novel indexing method using

hierarchical trees. The method increases the stability of the image indexing

process in the context of dynamic vocabularies. Furthermore, as vocabularies

constantly change, we avoid repeated complete indexing of frames using an

efficient incremental re-indexing method that takes into account the changes

in the vocabulary.

• In Chapter 5 we propose a novel method for 3D model simplification oriented

towards online 3D modeling applications. The method analyzes the scene lo-

cally, using plane-parallax, hence not requiring knowledge of the full scene

model. Based on plane-parallax approximations, the method selects vertices

that are geometrically representative. For this, we present a novel vertex

selection criteria that takes into account both geometric relevance and recon-

struction accuracy of the vertices.

6.2 Ongoing and Future Work

The work presented in this thesis can be improved and extended in several ways.

We present hereafter ongoing and future work directions:
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Direct Structure from Motion After camera pose registration, image patches

around features can be warped using camera-to-model transformations, re-

ducing the effect of extreme geometric distortions on feature tracking. Also,

the scene reconstruction accuracy can be improved, using cross-correlation as

a refinement step after feature matching. Finally, the computational time

of feature-to-model association can be highly decreased using recent develop-

ments in GPU-based parallel processing.

Online Loop Detection The complexity of the visual vocabularies can be reduced

by eliminating small, insignificant clusters at the bottom of the hierarchy. This

would allow online cross-over detection for larger scenes in a more efficient

way. Again, the use of GPU-based parallel processing would highly decrease

the computational time related to vocabulary building and image indexing.

Online 3D Model Simplification A new multi-resolution representation of the

scene based on vertex geometrical relevance could be developed, similar to

PM. Such a representation would allow the user to select the level of detail of

the model, depending on the specific needs, hardware limitations, etc.

6.3 Publications

During the development of the work presented in this thesis, the main contributions

were presented in the following publications:

• T. Nicosevici, N. Gracias, S. Negahdaripour and R. Garcia. Efficient 3D Mod-

eling and Mosaicing. In Journal of Field Robotics, vol. 26, no. 10, pages

759–788, 2009.

• T. Nicosevici and R. Garcia. Online Visual Vocabularies for Robot Navigation
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and Mapping. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2009.

• T. Nicosevici and R. Garcia. Online Robust 3D Mapping Using Structure from

Motion Cues. In MTS/IEEE OCEANS Conference, pages 1–7, 2008.

• T. Nicosevici, R. Garcia, S. Negahdaripour, M. Kudzinava and J. Ferrer. Iden-

tification of Suitable Interest Points Using Geometric and Photometric Cues

in Motion Video for Efficient 3-D Environmental Modeling. In IEEE Interna-

tional Conference on Robotics and Automation, pages 4969–4974, 2007.

• T. Nicosevici, S. Negahdaripour and R. Garcia. Monocular-based 3-D Seafloor

Reconstruction and Ortho-mosaicing by Piecewise Planar Representation. In

MTS/IEEE OCEANS Conference, vol. 2, pages 1279–1286, 2005.
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Estimating the Uncertainty of 3D

Vertices

The selection of the 3D vertices explained in Chapter 5 is based on computing the

first-order approximation of the uncertainty of the 3D points, obtained from noisy

measurements of point projections across several views. We follow the approach

proposed by Haralick for propagating the covariance matrix when the data and the

parameters are implicitly related by the minimization of a cost function [54]. Here,

the cost function is represented by the reprojection error shown in eq. (3.3).

For a given feature track, we consider p to be a 2M × 1 of noisy measurements,

so that p = p0 + ∆p, where p0 indicates the ideal noise-free quantities and ∆p is

random additive noise. Similarly, we consider P = P0 +∆P , where P0 is the vector

of ideal noise-free estimates and ∆P is the associated random perturbation induced

by ∆p. The method assumes the following two conditions:

• The function E (p, P ) has finite second partial derivatives.

• The random perturbations ∆p are small enough, so that E (p0, P0) and E (p, P )

can be well related by a first order Taylor series expansion.
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Let ̺E(p, P ) be the gradient of E with respect to P ,

̺E (p, P ) =
∂E

∂P
(p, P )

Under the above assumptions, an estimate for the covariance Σ∆P of the noise in P ,

is obtained by

Σ∆P =

(
∂̺E
∂P

)
−1

·
(
∂̺E
∂p

)T

· Σ∆p · ∂̺E
∂p

·
(
∂̺E
∂P

)
−1

Given the simplicity of the cost function, analytic expressions for ∂̺E
∂P

and ∂̺E
∂p

are

easy to obtain. For the purpose of selecting the 3D vertices with lower uncertainty

(detailed in Section 5.5), we consider Σ∆p = σ2 ·I2n where σ is the standard deviation

of the reprojection residues obtained from our test data, and I2n is the 2n × 2n

identity matrix.
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Loop Closing and 3D Model

Correction

During a scene reconstruction the 3D map is generated incrementally (see Chapter

3). In a cross-overs situation, there is a certain offset between the two (or more)

subregions of the map corresponding to the same region of the scene, mainly due to

the drift in camera pose and map estimations, (e.g. see Figures 3.23 and 3.38). We

aim here to correct this shortcoming by using loop-closure information to correct

the 3D models.

As mentioned in Chapter 4, we run OVV in parallel with DPR-SfM. In Figure

B.1 we illustrate an example where, during the registration of frame 180, a possible

cross-over is detected with frame 31. Before the model correction, the region of the

scene corresponding to the cross-over is represented two times in the model – in the

subset corresponding to frames 31 and 180, respectively.

Using the cross-over information, we register frame 180 two times. Each time,

we use only those feature tracks (and vertices) corresponding to each of the subsets

(see Section 3.4). The result is a group of image features that are registered with
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Figure B.1: Loop closing – Example of loop detection. Using OVV, a loop closure
is detected between frames 31 and 180.
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Figure B.2: Loop closing – Vertex merging. Registering an image with two subregions
of the model corresponding to a cross-over, the resulting vertex pairs corresponding to the
same pre-image region are merged.

vertices from both model subsets. In other words, using image-to-model registration,

we identify pairs of vertices that correspond to the same pre-image region. Then,

for each vertex pair, we merge the corresponding feature tracks and keep the vertex

position having the lowest uncertainty (see Appendix A). Doing so (see Figure B.2)

allows us to introduce new constrains in the model, corresponding to the detected

loop-closure.

In order to correct the 3D model using the newly obtained cross-over information,

we apply the BA algorithm presented in [76]. For some examples of models before

and after loop-closure detection and model correction, refer to Figures 3.23 and 3.38.
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