
 
 
 
 
 
 

A MISSION CONTROL SYSTEM FOR AN 
AUTONOMOUS UNDERWATER VEHICLE 

 
 
 
 

Narcís PALOMERAS ROVIRA  
 
 
 

Dipòsit legal: GI-253-2012 
          http://hdl.handle.net/10803/69957 

 
 
 
ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX ha estat autoritzada pels titulars dels 
drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i 
docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a 
disposició des d’un lloc aliè al servei TDX. No s’autoritza la presentació del seu contingut en una 
finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la 
tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la 
persona autora. 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR ha sido autorizada por los 
titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en 
actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su 
difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su 
contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al 
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis 
es obligado indicar el nombre de la persona autora. 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  Spreading 
this thesis by the TDX service has been authorized by the titular of the intellectual property rights only 
for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not 
authorized neither its spreading and availability from a site foreign to the TDX service. Introducing its 
content in a window or frame foreign to the TDX service is not authorized (framing). This rights affect 
to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of 
the thesis it’s obliged to indicate the name of the author. 

 



A Mission Control System for an

Autonomous Underwater Vehicle

Narćıs Palomeras Rovira

ViCoRob

University of Girona

A thesis submitted for the degree of

PhD in Computer Engineering

Supervisors:

Pere Ridao Rodriguez and Carlos Jorge Ferreira Silvestre

July 2011

mailto:narcis.palomeras@udg.edu
http://vicorob.udg.edu
http://www.udg.edu


2



Contents

Contents i

List of Figures vii

Nomenclature xviii

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Goal of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the art 9

2.1 Overview of control architectures . . . . . . . . . . . . . . . . . . 9

2.2 Mission Control Systems review . . . . . . . . . . . . . . . . . . . 13

2.3 Mission planning systems . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Predefined mission systems . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Script and language based MCS . . . . . . . . . . . . . . . 19

2.4.1.1 Research systems . . . . . . . . . . . . . . . . . . 19

2.4.1.2 Commercial systems . . . . . . . . . . . . . . . . 22

2.4.1.3 Generic systems . . . . . . . . . . . . . . . . . . 23

2.4.2 Formalism based . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2.1 Formal mission description . . . . . . . . . . . . . 26

2.4.2.2 Formal mission and framework description . . . . 29

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

i



CONTENTS

2.6 Survey conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 The Petri net formalism . . . . . . . . . . . . . . . . . . . 36

3 Experimental platform 39

3.1 Vehicle experimental platforms . . . . . . . . . . . . . . . . . . . 39

3.1.1 Ictineu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Sparus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 COLA2 architecture . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Generic and custom frameworks for developing control ar-

chitectures for autonomous vehicles . . . . . . . . . . . . . 46

3.2.2 Reactive layer . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.3 Execution layer . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.4 Mission layer . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Defining a mission using Petri nets 63

4.1 Discrete Event System . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Primitive verification . . . . . . . . . . . . . . . . . . . . . 70

4.3 Petri Net Building Blocks . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 PNBBs verification . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Task verification . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Control structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.1 Sequence control structure . . . . . . . . . . . . . . . . . . 83

4.5.1.1 Sequence control structure verification . . . . . . 86

4.5.2 Parallel control structure . . . . . . . . . . . . . . . . . . . 87

4.5.3 Additional control structures . . . . . . . . . . . . . . . . . 88

5 Mission Control Language 93

5.1 The MCL programming paradigm . . . . . . . . . . . . . . . . . . 94

5.2 Actions and events . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 PNBB patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

ii



CONTENTS

5.5 Control structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Mission plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7 The Mission Control Language - Compiler . . . . . . . . . . . . . 100

5.8 The real-time Petri net player . . . . . . . . . . . . . . . . . . . . 101

6 Coordination of multiple vehicles 107

6.1 Coordination constraints . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.1 Mutual exclusion . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.2 Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Deadlock avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Decentralized supervision . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.1 Checking the d-admissibility of a constraint . . . . . . . . 125

6.3.2 Design minimizing communication . . . . . . . . . . . . . . 126

6.3.3 Supervisor design for a d-admissible constraint . . . . . . . 127

6.4 Multiple vehicle coordination implementation . . . . . . . . . . . 128

7 Planning 129

7.1 Automated planning . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Classical planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2.2 Initial state s0 and goal g . . . . . . . . . . . . . . . . . . 134

7.2.3 Planning operators . . . . . . . . . . . . . . . . . . . . . . 134

7.2.4 Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 State-Space planner . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3.1 Search algorithms . . . . . . . . . . . . . . . . . . . . . . . 139

7.3.1.1 Non heuristics search algorithms . . . . . . . . . 140

7.3.1.2 Heuristics search algorithms . . . . . . . . . . . . 143

7.4 Knowledge database . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4.1 World modeling scripts . . . . . . . . . . . . . . . . . . . . 146

7.5 Adding planning abilities to the proposed Mission Control System 148

8 Experimental results 153

8.1 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

iii



CONTENTS

8.2 Example 1: Dam inspection . . . . . . . . . . . . . . . . . . . . . 157

8.2.1 Mission description . . . . . . . . . . . . . . . . . . . . . . 160

8.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.3 Example 2: Visual survey . . . . . . . . . . . . . . . . . . . . . . 166

8.3.1 Mission description . . . . . . . . . . . . . . . . . . . . . . 166

8.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.4 Example 3: Localization of OOIs . . . . . . . . . . . . . . . . . . 169

8.4.1 Mission description . . . . . . . . . . . . . . . . . . . . . . 170

8.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.5 Example 4: Cable tracking . . . . . . . . . . . . . . . . . . . . . . 175

8.5.1 Mission description . . . . . . . . . . . . . . . . . . . . . . 178

8.5.1.1 Off-line mission . . . . . . . . . . . . . . . . . . . 178

8.5.1.2 On-board planning . . . . . . . . . . . . . . . . . 181

8.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9 Conclusion 187

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.4 Research framework . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9.5 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . 193

A An Introduction to Petri Nets 197

A.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.2.1 The coverability tree . . . . . . . . . . . . . . . . . . . . . 201

A.2.2 The matrix equation approach . . . . . . . . . . . . . . . . 203

A.3 Siphons and Traps . . . . . . . . . . . . . . . . . . . . . . . . . . 206

A.4 Invariants Based Control . . . . . . . . . . . . . . . . . . . . . . . 206

A.5 Subclasses of Petri nets . . . . . . . . . . . . . . . . . . . . . . . . 207

A.5.1 State Machine . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.5.2 Marked Graph . . . . . . . . . . . . . . . . . . . . . . . . 209

A.5.3 Free-Choice . . . . . . . . . . . . . . . . . . . . . . . . . . 209

iv



CONTENTS

A.5.4 Extended Free-Choice . . . . . . . . . . . . . . . . . . . . 210

A.5.5 Asymmetric Choice . . . . . . . . . . . . . . . . . . . . . . 210

A.5.6 Ordinary Petri nets . . . . . . . . . . . . . . . . . . . . . . 210

B Control structures 213

C Mission Control Language grammar 225

References 229

v



CONTENTS

vi



List of Figures

2.1 Phases of a classical deliberative control architecture. . . . . . . . 10

2.2 Structure of a behavior-based control architecture. . . . . . . . . . 11

2.3 The hybrid control architecture structure. . . . . . . . . . . . . . 12

2.4 MCS classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Orca: Intelligent adaptive reasoning system. Extracted from Turner

[1995]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Navigation Layered Block Diagram where mission layer outputs are

subsumed by the outputs from the emergency, operator or obstacle

avoidance layers which are running at higher competent levels.

Extracted from Kao et al. [1992]. . . . . . . . . . . . . . . . . . . 20

2.7 Autosub mission control node showing event inputs, mission script

processor and command output. Extracted from McPhail and Pe-

body [1997]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 VectorMAP screen shoot. Extracted from www.iver-auv.com. . . . 23

2.9 VPL screen shoot. Extracted from msdn.microsoft.com. . . . . . . 24

2.10 SMACH mission example. Extracted from www.ros.org. . . . . . . 27

2.11 Example of a typical mission plan in Helm over MOOS. Extracted

from Newman [2005]. . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12 Lift automaton produced by Esterel compilation. Extracted from

Boussinot and de Simone [1991]. . . . . . . . . . . . . . . . . . . . 29

2.13 Mission Procedure described in Coral. Extracted from Oliveira

et al. [1998]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.14 Romeo vertical motion control system. Extracted from Caccia

et al. [2005]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



LIST OF FIGURES

2.15 Summary table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 (a) Garbi AUV and (b) Uris AUV. . . . . . . . . . . . . . . . . . 40

3.2 Ictineu AUV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Sparus AUV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Three-layer organized control architecture. . . . . . . . . . . . . . 46

3.5 Example of a three-layered component based control architecture. 47

3.6 Framework modular design. . . . . . . . . . . . . . . . . . . . . . 51

3.7 Example of communication between components. . . . . . . . . . 55

4.1 Petri net model of three different robot primitives and its corre-

sponding state machine. . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Primitive model reachability graph with vanishing states. . . . . . 71

4.3 (a) One input one output interface, (b) one input two outputs

interface, (c) two inputs one output interface, (d) two inputs two

outputs interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Example of a task PNBB and its relationship with the primitive

model presented in Figure 4.1. . . . . . . . . . . . . . . . . . . . . 76

4.5 Execution action structure. Extracted from Bibuli et al. [2007]. . 77

4.6 Task PNBB reachability graph. . . . . . . . . . . . . . . . . . . . 79

4.7 Example of a task PNBB with a timed transition (TT4) able to

disable the execution of the supervised primitive if a time-out hap-

pens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 Reachability graph for the timed task PNBB shown in Figure 4.7. 80

4.9 Example of a simplified PNBB. . . . . . . . . . . . . . . . . . . . 82

4.10 (a) Control structure used to sequence two PNBBs and (b) its

schematic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 Example of a two simplified PNBBs composed with the sequence

control structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.12 Example of a parallel-and control structure without an abort mech-

anism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.13 Example of a parallel control structure trying to execute the same

task in parallel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.14 Non parallel control structures simplified models. . . . . . . . . . 91

viii



LIST OF FIGURES

4.15 Parallel control structures simplified models. . . . . . . . . . . . . 92

5.1 (a) AST from Example 4. (b) AST from Example 4 once separated

tasks from control structures. . . . . . . . . . . . . . . . . . . . . 102

5.2 Mission definition and execution schema. . . . . . . . . . . . . . . 106

6.1 Simplified sequence of two tasks. . . . . . . . . . . . . . . . . . . . 108

6.2 Example of two simple Petri net missions. . . . . . . . . . . . . . 109

6.3 Example of the mutual exclusion (M = {P2, P5}, β = 1). . . . . . 113

6.4 Example of the mutual exclusion (M = {P2, P5}, β = 1) after

apply the PW-Transformation. . . . . . . . . . . . . . . . . . . . . 114

6.5 Example of the ordering O = {P5, P2} after applying the PW-

Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.6 Synchronization of tasks P2 and P5. . . . . . . . . . . . . . . . . 119

6.7 (a) AUV mission example and (b) robotic arm mission example. . 120

6.8 Resulting centralized Petri net after combining four independent

missions with five coordination constraints. . . . . . . . . . . . . . 120

6.9 (a) A deadlock appears when two ordering constraint O(P2, P5)

and O(P5, P2) are combined. (b) A deadlock appears when the

two mutual exclusions M([P2→ T2→ P3→ T3→ P4], P8) and

M(P3, [P7→ T6→ P8→ T7→ P9]) are combined. . . . . . . . 122

6.10 Applying the deadlock avoidance procedure to Figure 6.9(a). . . . 124

6.11 Figure 6.9(b) after applying the deadlock avoidance procedure. . . 125

7.1 Planner components and its relations. . . . . . . . . . . . . . . . . 139

7.2 (a) Tree structure and (b) graph structure. . . . . . . . . . . . . . 141

7.3 (a) Order in which the nodes are expanded using a DFS algorithm

or (b) a BFS algorithm. . . . . . . . . . . . . . . . . . . . . . . . 141

7.4 World modeler schema. . . . . . . . . . . . . . . . . . . . . . . . . 146

7.5 Deliberation components used to build on-line plans. . . . . . . . 149

7.6 The four control loops within the proposed hybrid architecture. . 151

8.1 Dam inspection setup during the experiments carried out in Girona

(Spain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.2 Dam inspection mission tree. . . . . . . . . . . . . . . . . . . . . . 163

ix



LIST OF FIGURES

8.3 Trajectory realized by the AUV in front of the wall. . . . . . . . . 164

8.4 Mosaic build after the inspection. . . . . . . . . . . . . . . . . . . 164

8.5 Chronogram for a successful execution. . . . . . . . . . . . . . . . 165

8.6 Chronogram for a mission in which an alarm is raised. . . . . . . 165

8.7 Sparus trajectory obtained by dead reckoning when performing a

visual survey at the Azores. . . . . . . . . . . . . . . . . . . . . . 168

8.8 Underwater photo-mosaic from the area of interest obtained off-line.168

8.9 Obtained trajectories after simulating the coordinated mission. . . 174

8.10 Chronogram for a coordinated mission. . . . . . . . . . . . . . . . 175

8.11 Coordinates of the target cable with respect to the Ictineu AUV. . 177

8.12 Ictineu AUV in the test pool. Small bottom-right image: Detected

cable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.13 Cable tracking mission simulation. . . . . . . . . . . . . . . . . . . 185

8.14 Example of on-line mission plans during the execution of the cable

tracking mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.1 (a) Petri net example in its initial state (µ0). (b) Petri net example

after firing T0. (c) Petri net example after firing T0 and then T1

and T2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.2 Reachability analysis for the Petri net in Figure A.1 where S0, S1,

S4 and S5 are vanishing states while S2, S3 and S6 are tangible

states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A.3 (a) Conflicting Petri net structure. It exhibits non-determinism.

(b) A Petri net representing deterministic parallel activities. (c)

Symmetric confusion: T0 and T2 are concurrent but in conflict

with T1. (d) Asymmetric confusion: T0 is concurrent with T1 but

in conflict with T2 if T1 fires before T2. . . . . . . . . . . . . . . 208

A.4 Petri net subclasses: (a) State Machine (b) Marked Graph (c)

Free-Choice (d) Extended Free-Choice (e) Asymmetric Choice. . . 210

A.5 Hierarchy between Petri net subclasses. . . . . . . . . . . . . . . . 211

B.1 (a) Petri net and (b) schematic for the control structure not. . . . 214

B.2 (a) Petri net and (b) schematic for the control structure sequence. 215

B.3 (a) Petri net and (b) schematic for the control structure if-then. . 216

x



LIST OF FIGURES

B.4 (a) Petri net and (b) schematic for the control structure if-then-else.217

B.5 (a) Petri net and (b) schematic for the control structure if-then. . 218

B.6 (a) Petri net and (b) schematic for the control structure try-catch. 219

B.7 (a) Petri net and (b) schematic for the control structure parallel-and.220

B.8 (a) Petri net and (b) schematic for the control structure parallel-or. 221

B.9 (a) Petri net and (b) schematic for the control structure monitor-

condition-do. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

B.10 (a) Petri net and (b) schematic for the control structure monitor-

while condition-do. . . . . . . . . . . . . . . . . . . . . . . . . . . 223

xi



LIST OF FIGURES

xii



Acronyms

AAC Architecture Abstraction Component.

AC Asymmetric Choice.

AHRS Attitude and Heading Reference System.

AHRS-FOG Attitude Heading Reference System - Fiber Optic Gyroscope.

AI Artificial Inteligence.

ANTLR Another Tool for Language Recognition.

API Application programming interface.

ASC Autonomous Surface Craft.

ASL Autonomous System Lab.

AST Abstract Syntax Tree.

AUV Autonomous Underwater Vehicle.

BBP Behavior-Based Planning.

BFS Breadth-First Search.

BNF Backus Normal Form.

CCD Charge Coupled Device.

CCR Concurrency and Coordination Runtime.

xiii



Acronyms

CIRS Centre d’Investigacio en Robotica Submarina.

COLA2 Component Oriented Layer-based Architecture for Autonomy.

CORBA Common Object Request Broker Architecture.

CURV Cable-Controlled Underwater Recovery Vehicle.

DES Discrete Event System.

DFS Depth-First Search.

DGPS Differential Global Positioning System.

DOF Degree of Freedom.

DSL Domain Specific Language.

DSS Decentralized Software Services.

DSTL Defence Science and Technology Lab.

DVL Doppler Velocity Log.

EFC Extended Free-Choice.

EKF Extended Kalman Filter.

FC Free-Choice.

FOG Fiber Optic Gyroscope.

FSM Finite State Machine.

GPS Global Positioning System.

GUI Graphic User Interface.

HIL Hardware In the Loop.

IAUV Intervention Autonomous Underwater Vehicle.

xiv



Acronyms

ICE Internet Communications Engine.

IDL interface Definition Language.

IIS Institute of Industrial Science.

ILP Integer Linear Program.

INRIA Institut National de Recherche en Informatique et en Automatique.

IP Internet Protocol.

IPC Inter Process Communication.

ISE International Submarine Engineering.

ISR Institute for Systems and Robotics.

JAUS Joint Architecture for Unmanned Systems.

LBL Low BaseLine.

LED Light-Emitting Diode.

LOS Line Of Sight.

MAS Multi Agent System.

MCL Mission Control Language.

MCL-C Mission Control Language - Compiler.

MCS Mission Control System.

MES Mitsubi Engineering Shipbuilding.

MG Marked Graph.

MOOS Mission Oriented Operating Suite.

MRDS Microsoft Robotics Developer Studio.

xv



Acronyms

MRG Mobile Robotics Group.

MRU Motion Reference Unit.

MRU-FOG Motion Reference Unit-Fiber Optic Gyroscope.

MSIS Miniking Mechanically Scanned Imaging Sonar.

NAC Natural Actor Critic.

NASA National Aeronautics and Space Administration.

NOCS National Oceanography Center of Southampton.

NPS Naval Postgraduate School.

O2CA2 Object Oriented Control Architecture for Autonomy.

OOI Object Of Interest.

PCL Point Cloud Library.

PID Proportional Integral Derivative.

PNBB Petri Net Building Block.

PNML Petri Net Markup Language.

PNP Petri Net Player.

POP Partial Order Planning.

POSIX Portable Operating System Interface for Unix.

RAP Reactive Action Packages.

REST Representational State Transfer.

RL Reinforcement Learning.

ROS Robot Operating System.

xvi



Acronyms

ROV Remotely Operated Vehicle.

RPC Remote Procedure Call.

RPL Reactive Plan Language.

SAUC-E Student Autonomous Underwater Challenge-Europe.

SBPI Supervision Based on Place Invariant.

SCADE Software Critical Application Development Environment.

SDL Specification and Description Language.

SM State Machine.

SOAP Simple Object Access Protocol.

SPA Sense Plan and Act.

STL Standard Template Library.

STRIPS Stanford Research Institute Problem Solver.

T-REX Teleo-Reactive EXecutive.

TAO The Ace Orb.

TCP Transmission Control Protocol.

TDL Task Description Language.

TecGraf Computer Graphics Technology Group.

UdG University of Girona.

UDP User Datagram Protocol.

UJI Universidad Jaume I.

UL-S Unconstrained Least Squares.

xvii



Acronyms

ULV Ultra Low Voltage.

UML Unified Modeling Language.

UPC Universitat Politècnica de Catalunya.

URIS Underwater Robotic Intelligent System.

USB Universal Serial Bus.

USBL Ultra Short BaseLine.

UUV Unmanned Underwater Vehicle.

VICOROB Computer Vision and Robotics.

VPL Visual Programming Language.

WHOI Woods Hole Oceanographic Institution.

XML Extensible Markup Language.

YARP Yet Another Robot Platform.

xviii



Chapter 1

Introduction

There are plenty of places in our world in which a man has never been. Most of

these places are hidden in the depths of our seas and oceans. Maybe for this rea-

son, the underwater exploration began many years ago. It started investigating

the deepness of the seas, trying to understand its physical and chemical char-

acteristics and learning about the life forms that inhabit this realm [ScienceEn-

cyclopedia, 2011]. Despite underwater research started with manned vehicles,

like the bathyspheres build by Charles William Beebe (1877-1952) and Auguste

Piccard (1884-1962) or the famous Alvin deep-sea submersible build in 1964 by

Allyn Vine (1941-1994), first unmanned underwater vehicles appeared soon.

In the 1950s, the Royal Navy builts a pioneer Remotely Operated Vehicle

(ROV) named Cutlet to recover practice torpedos. One decade later, the US

Navy funded most of early ROV technology with what they called the Cable-

Controlled Underwater Recovery Vehicle (CURV). This ROV was used to perform

deep-sea rescue operations as well as to recover objects from the ocean floor like

the ill-fated USS Thresher and the hydrogen bomb lost by the US Navy in the

coast of Palomares in Spain. Building on this technology base, the offshore oil

and gas industry created the work class ROVs to assist in the development of

offshore oil fields. More than a decade later, ROVs became essential during

the 1980s when much of the new offshore development exceeded the reach of

human divers. Technological development in the ROV industry has accelerated

and today’s ROVs perform numerous tasks in many fields. These tasks range

from simple inspection of sub-sea structures, cable and platforms to connecting

pipelines and placing underwater manifolds. They are used extensively both in

1



1. INTRODUCTION

the initial construction of a sub-sea development and the subsequent repair and

maintenance.

One might consider that ROVs constitute the state of the art for most of the

technological applications nowadays. However, the tether cable imposes some

constraints such as limiting the working area and making the operation more

difficult. These limitations triggered research into a new generation of under-

water robots, this time autonomous, mainly developed for inspection purposes

and to collect data and samples. Most of these vehicles are prototypes developed

by research centers, although, some of them are commercially available. There

are several potential Autonomous Underwater Vehicle (AUV) applications being

explored by various organizations around the world [Davis, 1996]: environmental

monitoring, oceanographic research, underwater archeology [Conte et al., 2010]

and maintenance/monitoring of underwater structures are just a few examples.

AUVs are attractive for use in these areas because of their size and their non-

reliance on human operators. Also, AUVs can be deployed in larger numbers and

for longer periods. Moreover, in restricted environments such as kelp forests or

under ice, AUVs perform better than typical ROVs. Given the potential appli-

cations and advantages of AUVs, it is no wonder that academic and commercial

organizations around the world are conducting research using these vehicles.

Although technological advances in marine vehicles offer high reliable hard-

ware, the software that controls the AUVs has the complex, and not yet solved,

task to adapt the AUV’s actions to the unpredictable changes produced in the

environment to fulfill a mission plan. This thesis focuses on the software which

takes all these decisions: the vehicle’s control architecture.

A robot architecture contains elements that range from device drivers to com-

ponents in charge to perform high level tasks like tracking a cable or planning

a mission. As exposed in Kortenkamp and Simmons [2008], several questions

should be answered before implementing a robotic architecture: For which kind

of missions the robot is designed for? Which set of actions are needed to perform

this mission? Which data is necessary to do it? Who are the robot users? How

the robot will be evaluated?. These are some questions to be answered before

facing the development of a robot architecture. An organized analysis of each

one allows a successful implementation of a particular architecture.

Starting from the kind of mission to be performed by current AUVs, they range

from surveys, inspections, intervention operations or target location missions. In

2



1. Introduction

order to achieve them, AUVs generally have a set of primitives which describe

simple tasks that the vehicle is able to perform autonomously like ”go to a point”,

”track a cable” or ”reach a desired depth”. The data needed by these primitives

is acquired by a complete sensor suite. However, to improve the robustness of the

gathered data, auxiliary components are designed to fuse, filter and refine those

data. AUV users are mainly scientists or engineers who want a simple way to

accurately control all the steps taken during the development of a mission. This is

one of the reasons that predefined plans are more popular in underwater robotics

than in other fields like surveillance [Saptharishi et al., 2002], mail delivering

[Beetz et al., 2001] or tour guide robots [Burgard et al., 1999] where some goals

are given and is the robot who actually plans the mission.

This thesis describes the development of a control architecture for an AUV,

with the main focus on the design and implementation of the components used

to define and execute autonomous missions for a single or multiple AUVs. We

refer to the set of components used to describe and execute a mission by an

autonomous vehicle as a Mission Control System (MCS).

Following sections describe the motivations, objectives and the organization

of the thesis.

1.1 Motivations

During the last decade, the Centre d’Investigacio en Robotica Submarina (CIRS)

has developed several ROV and AUV prototypes. In parallel with the construc-

tion of these vehicles the necessary software to control them has been developed.

What initially was a set of drivers to access the thrusters and the few sensors of

these early ROVs and AUVs, has become a complex control architecture com-

posed of drivers, controllers, processing units and autonomous behaviors. The

reactive layer of a new behavior-based architecture named Object Oriented Con-

trol Architecture for Autonomy (O2CA2) was developed some years before in the

CIRS [Ridao et al., 2002]. Although O2CA2 allowed the execution of autonomous

tasks, a system to define and execute a mission, in which the set of behaviors un-

der execution may be modified at anytime, was not included. Therefore, the main

motivation of this dissertation is to enhance the features of this previous archi-

tecture developing a system adequate to describe and execute a mission plan for

an AUV. The system has to be easy to use by a standard AUV user, a scientific

3



1. INTRODUCTION

or an engineer, and has to provide mechanisms to ensure the safety of the defined

mission before and during its execution. Moreover, the MCS has to be as generic

as possible, being able to be adapted to various vehicles. The possibility to de-

fine missions in which multiple vehicles are coordinated as well as to increase the

deliberation capabilities of the autonomous vehicles will be also considered.

1.2 Goal of the thesis

The way in which a mission is described and executed by an autonomous vehicle

is closely related to several factors: the used control architecture, the mission to

execute and the available hardware are among the principal ones. However, many

similarities can be found between different AUVs and missions. Therefore, the

main goal of this thesis is described as follows:

Develop a system to define and execute missions for autonomous

underwater vehicles, simple to use from the users point of view,

and easily adaptable to different control architectures.

This work has been carried out at CIRS, part of the Computer Vision and

Robotics (VICOROB) group at the University of Girona (UdG). The developed

MCS has been integrated in the available underwater vehicles: Ictineu AUV

[Ribas et al., 2007] and Sparus AUV [Hurtos et al., 2010].

1.2.1 Objectives

The goal of this thesis can be divided into the following more specific objectives:

State of the art: Study the principal control architectures for autonomous

vehicles as well as the main MCSs presented in the literature, with a special

attention to generic systems as well as to systems tailored to underwater

vehicles.

Generic: Implement a MCS as generic as possible simplifying its adaptation to

different control architectures.

Mission control system: Propose a simple and formal method to control the

execution flow of robot actions. The system has to respond to robot actions

4



1. Introduction

and environmental events which drive the vehicle from a given initial state

to a desired final state. Special attention will be given to the inherent

parallel structure of autonomous missions assessing the correct ending of

the execution flow avoiding getting stuck in undesired deadlocks.

Multiple-vehicle coordination: Study the definition of multiple-vehicle mis-

sions by means of coordination constraints. Given the strict communication

restrictions found in the underwater environment in terms of band width,

particular attention will be paid to bound the amount of information to be

interchanged to ensure the coordination.

Enhance deliberation: Although the study of the best deliberation mecha-

nism for an AUV control architecture is not an objective of this dissertation,

we are interested on studying the interface between the proposed MCS and

a deliberative upper layer based on planning.

Testing: Test experimentally, using different marine robots, the functionalities

and the simplicity of use of the proposed MCS.

1.3 Outline of the thesis

After this introductory chapter, a state of the art about MCSs, mainly focusing

on AUVs, is presented. Chapter 3 introduces the experimental platforms in which

the MCS has been tested as well as the control architecture used by them. How

missions are defined, verified and executed using the proposed system is described

in Chapter 4 and Chapter 5. An insight of multiple-vehicle mission coordination

is given in Chapter 6. Finally, how to interface a deliberative layer with the

proposed MCS is shown in Chapter 7. The thesis finalizes with some results in

Chapter 8 before the conclusions. A brief description of each chapter is presented

next.

Chapter 2: The aim of this chapter is to overview different approaches pre-

sented in the literature to deal with the problem of defining and executing a

mission. The elements that conform these solutions are grouped in what we

call MCS. As MCSs are closely related with the vehicle’s control architec-

ture being used, an overview about control architectures is also presented.

5



1. INTRODUCTION

Chapter 3: This chapter introduces the experimental platform in which the

proposed MCS has been developed and tested. It includes the control ar-

chitecture where the MCS is integrated as well as the vehicles used in the

experimental phase.

Chapter 4: This chapter develops how autonomous vehicle missions are coded

using Petri nets. It begins comparing a mission with a formal Discrete Event

System (DES). Then, the chapter describes how the vehicle primitives are

modeled using Petri nets and are supervised by means of Petri net structures

named tasks. How the task execution flow is controlled by means of Petri

net control structures is presented next. The properties that have to be

verified for each one of these Petri net models/structures as well as how

they are composed to generate a full mission is also introduced.

Chapter 5: Connecting different Petri net structures to build a complex mission

can be a cumbersome and error-prone work if the user has to deal directly

with the Petri nets using graphical tools. To overcome this difficulty, a

Domain Specific Language (DSL) named Mission Control Language (MCL)

is proposed in this chapter, which allows to define and compose Petri net

structures in a simple way.

Chapter 6: The purpose of this chapter is to further develop the presented

methodology to deal with the coordination of multiple vehicles. Three co-

ordination constraints have been studied: mutual exclusions, tasks ordering

and tasks synchronization.

Chapter 7: Although, automated planning techniques are out of the scope of

this thesis, the purpose of this chapter is to study the interface between

well-known automated planning algorithms and the proposed MCS.

Chapter 8: This chapter presents four representative experiments: a dam in-

spection mission in the context of an industrial application, a visual survey

in a zone of scientific interest, a multiple-vehicle mission to gather georef-

erenced data about several Object Of Interest (OOI) and a cable tracking

mission in which planning techniques are employed.

Chapter 9: This chapter concludes the thesis by summarizing the work and

pointing out contributions and future work. It also comments on the re-

6



1. Introduction

search evolution and the publications accomplished during this research

project.

Appendices: These chapters incorporates additional information. An intro-

duction about Petri nets is presented in Appendix A. Appendix B details

the proposed control structures introduced in Chapter 4. Finally, the com-

plete Backus Normal Form (BNF) grammar for the MCL is included in

Appendix C.

7



1. INTRODUCTION

8



Chapter 2

State of the art

The aim of this chapter is to review various approaches presented in the literature

to deal with the problem of defining and executing a mission. The elements that

conform these solutions are grouped in what we call Mission Control System

(MCS). Since MCSs are closely related with the vehicle’s control architecture

that is being used, an overview about control architectures is first presented to

see how the modules in charge of programming and executing a mission have

evolved during the last decades. Next, several well studied MCS alternatives

presenting different features are reviewed. The chapter finalizes with a summary

and some conclusions.

2.1 Overview of control architectures

The first attempt at building autonomous robots began around the mid-twentieth

century with the emergence of Artificial Inteligence (AI). The approach begun

at that time was known as Traditional AI, Classical AI or Deliberative approach.

Traditional AI relied on a centralized world model for integrating sensory infor-

mation for reasoning in order to generate actions in the world, following the Sense

Plan and Act (SPA) pattern [Nilsson, 1980]. Its main architectural feature was

that sensing flowed into a world model, used afterwards by the planner to build

a plan which was then executed without continuously relying on the sensors that

created the model. The design of the classical control architecture was based on a

top-down philosophy. The sequence of phases usually found in a traditional delib-

erative control architecture can be seen in Figure 2.1. Firsts robots using a SPA

9



2. STATE OF THE ART

P
er

ce
pt

io
n

M
od

el
lin

g

P
la

nn
in

g

T
as

k
ex

ec
ut

io
n

M
ot

or
 c

on
tr

ol

sensors actuators

Figure 2.1: Phases of a classical deliberative control architecture.

deliberative control architecture began in the late 1960s with the Shakey robot at

Stanford University [Fikes and Nilsson, 1971; Nilsson, 1984]. Mission plans were

described by the Shake robot using Stanford Research Institute Problem Solver

(STRIPS) [Fikes and Nilsson, 1971] and executed by the PLANEX system. Pro-

graming different missions within the same application domain, like for instance

package delivering, was quite easy using STRIPS. However, changing the mission

domain implied changing the world model, the planning operators, the associ-

ated low level actions, and so on. Many other robotic systems were built with

the traditional AI approach [Albus; Chatila and Laumond, 1985; Huang, 1996;

Laird and Rosenbloom, 1990; Lefebvre and Saridis, 1992], all of them sharing

the same kind of problems. Planning algorithms failed with non-trivial solutions

and the integration of the world representations was extremely difficult and, as

a result, planning in a real world domain took a long time. Also, the execution

of a plan without involving sensing was dangerous in a dynamic world. Only

structured and highly predictable environments were proved to be suitable for

classical approaches.

In the middle of the 1980s, motivated by the poor performance of robots

in real environments, a number of scientists began rethinking the general prob-

lem of organizing intelligence. Among the most important opponents to the AI

approach were Rodney Brooks [Brooks, 1986], Rosenschein and Kaelbling [Rosen-

schein and Kaelbling, 1986] and Agre and Chapman [Agre and Chapman, 1987].

They criticized the symbolic world used by traditional AI and promoted a more

reactive approach with a strong relation between the perceived world and the

actions. They implemented these ideas using a network of simple computational

elements, connecting sensors to actuators in a distributed manner. There were no

central models of the world explicitly represented. The model of the world was the

10



2. State of the art

sensors actuators

avoid obstacles

go to point

explore

manipulate the world

Figure 2.2: Structure of a behavior-based control architecture.

real one as perceived by the sensors at each moment. Leading the new paradigm,

Brooks proposed the Subsumption Architecture, built as an stack of layers of

interacting Finite State Machines (FSMs). This FSMs were called behaviors, rep-

resenting the first approach to a new field called Behavior-based Robotics. The

behavior-based approach used a set of simple parallel behaviors which reacted

to the perceived environment proposing the response that the robot should take

in order to accomplish the behavior’s goal, see Figure 2.2. Whereas SPA robots

were slow and tedious, behavior-based systems were fast and reactive. There

were no problems with world modeling or real-time processing because they con-

stantly sensed the world and reacted to it. Several successful robot applications

were built using the behavior-based approach [Connell, 1992; Horswill, 1993]. A

well known example of behavior-based robotics is Arkin’s motor-control schemas

[Arkin, 1989], where motor and perceptual schemas are dynamically connected

to each other.

Despite the success of the behavior-based models, they soon reached the limits

in their capabilities. Limitations when trying to undertake long-range missions

and the difficulty to optimize the emerging robot behavior were the most signif-

icant ones. Also, since multiple behaviors can be active at any time, behavior-

based architectures need an arbitration and coordination mechanism that allows

higher-level behaviors to override signals from lower-level behaviors. Therefore,

selecting the proper behaviors to achieve robustness and efficiency in accom-

plishing goals was a key point that has to be addressed. Generally speaking,

in a behavior-based architecture there was no system to define a mission plan

combining a set of behaviors or schemas. In essence, robots needed to combine

the planning capabilities of the classical architectures with the reactivity of the

behavior-based architectures, attempting a compromise between bottom-up and

top-down methodologies. This evolution was named Hybrid Architectures , being

this the most common paradigm nowadays. Usually, an hybrid control architec-

11



2. STATE OF THE ART

sensors actuators

reactive layer

deliberative layer

control execution

Figure 2.3: The hybrid control architecture structure.

ture is structured in three layers: the reactive layer, the control execution layer

and the deliberative layer, see Figure 2.3. The reactive layer takes care of the real

time issues related to the interactions with the environment. It is composed by

basic robot behaviors relying on some sort of feedback control connecting sensors

to actuators. Each behavior may be designed using different techniques, ranging,

but not constrained to, from nonlinear control [Barrett et al., 1996] to reinforce-

ment learning [Carreras et al., 2003; El-Fakdi et al., 2010; Peters, 2007]. The

control execution layer interacts between the upper and the lower layers, super-

vising the accomplishment of the tasks assigned to the vehicle. This layer acts

as an interface between the numerical reactive and the symbolic planning layers.

It is responsible of translating high-level plans into low-level actions by means of

enabling/disabling the behaviors in the reactive layer, at the appropriate moment

and using the correct parameters. Also, the control execution layer monitors the

behaviors being executed and handles the exceptions that may occur. The de-

liberative layer transforms the mission description into a sequence of actions, a

plan. It determines the long-range tasks of the robot based on high-level goals.

One of the first architectures which combined reactivity and deliberation

was proposed by James Firby. In his thesis [Firby, 1989], the first integrated

three-layer architecture was presented. From there, hybrid architectures have

been widely used. One of the best known is Arkin’s AURA [Arkin and Balch,

1997], where a navigation planner and a plan sequencer was added to its initial

behavior-based motor-control schemas architecture. The Planner-Reactor archi-

tecture [Lyons, 1992] and the Atlantis [Gat, 1991] used in the Sojourner Mars

explorer are well known examples of hybrid architectures too.

Although most of nowadays architectures use the three-layer model not all

the proposed systems have deliberative capabilities. Most of them are limited

12



2. State of the art

to interpret a mission predefined by a human operator, instead of automatically

generating a mission plan using an on-board planner or reasoner. This is the

case for most Autonomous Underwater Vehicle (AUV) architectures that despite

following a hybrid model, only few of them include on-board deliberation capa-

bilities. A summary of 25 existing AUVs as well as a review of 11 AUV control

architectures was presented by Valvanis in 1997 [Valavanis et al., 1997]. All of the

studied architectures are based on hierarchical, subsumption or hybrid models.

Ridao [Ridao et al., 2000], surveyed also several control architectures for AUVs

organizing them among deliberative, reactive and hybrid architectures too.

Nowadays, control architectures for autonomous vehicles are composed by

a set of components distributed among layers according to their functionalities.

These components are independent entities that can communicate with any other

component in the architecture. The essence of the hybrid model in which some

components react fast to input stimulus while others process the data to take

long term decisions is still valid, however, the hierarchy among the components

is becoming more vague.

2.2 Mission Control Systems review

All autonomous vehicles that are intended to execute missions autonomously need

a MCS. Several common points can be found among the systems presented in the

literature. Focusing on underwater vehicles, first point consists in the kind of mis-

sions that AUVs have to deal with. Most underwater autonomous missions can be

classified into three main categories: scientific, industrial and military missions.

In scientific missions, AUVs are used to perform surveys in challenging environ-

ments such as deep waters [Whitcomb, 2000], under the ice [Kunz et al., 2008]

or in hydrothermal zones [Yoerger et al., 2007]. Surveys are useful to evaluate

sand and gravel deposits, examining hydrothermal vents or to obtain bathymet-

ric maps. Industrial applications in which AUVs are employed range from cable

deployment [Kao et al., 1992] or dam inspection [Palomeras et al., 2009a] to envi-

ronmental monitoring [Griffiths et al., 1998]. Finally, military applications which

include the use of AUVs are focused on localization and recovery of underwa-

ter targets [Anderson and Crowell, 2005], mine counter measure missions, port

security or inspection of hostile environments.

More similarities are found with the control architecture model implemented

13



2. STATE OF THE ART

Figure 2.4: MCS classification.

by the AUVs. Although old architectures follow the subsumption model, current

control architectures follow a layer-based approach with or without on-board

deliberative capabilities. However, both control architectures models share a

common feature: all of them have a set of basic actions that are executed to

achieve a simple goal like reach a way-point, keep an altitude or enable a sensor.

These basic actions are named commands, actions, primitives, tasks, behaviors or

schemas, but from now on, all of them will be referenced as vehicle primitives or

simply primitives. A mission description has to contain the vehicle primitives to

be executed according to the events raised in the vehicle’s control architecture and

the mission goals. Then, it seems appropriate to represent this mission plan as

a Discrete Event System (DES). How the user specifies this DES changes widely

from one system to another, but a first division can be done depending on how

the mission plan is built: either automatically using AI techniques or manually

predefined by a user. In the first group procedural reasoning [Marco et al., 1996],

schema-based reasoning [Turner, 1995], plan repairing [Patrón et al., 2007], Multi

Agent System (MAS) [gav, 2011], Reactive Action Packages (RAP) [Firby, 1987]

or general planning and scheduling techniques [Rajan et al., 2007] can be used in

14



2. State of the art

order to obtain a mission plan from a given list of goals and constraints. MCSs

that use AI techniques provide several advantages: the possibility to re-plan a new

mission while it is under execution, the ability to undertake long missions that can

hardly be predefined, a better response when dealing with unknown or changing

environments or the fact of avoiding human errors when defining the mission plan

are just few of them. The second main group is composed by MCSs based on

predefined plans. Despite the advantages shown by deliberative MCSs, predefined

plans are currently the state of the art in the underwater robotics domain. When

using predefined mission plans the ultimate responsibility is given to the mission

programmer who must analyze the mission requirements and write a suitable

code for each possible alternative. This feature can be seen as a disadvantage

because gives to the human operator the responsibility to anticipate all possible

states in the mission but also as an advantage because it ensures a predictable

robot behavior. In the literature, popular ways to predefine a mission plan are

Domain Specific Language (DSL) that range from basic scripts [Kao et al., 1992;

Nagahashi et al., 2005; Perrett and Pebody, 1997] to high-level [urb, 2011; Kim

and Yuh, 2003] or visual languages [Johns and Taylor, 2008]. DSLs combine a

description of primitives to execute to fulfill a mission together with the inclusion

of error handling mechanisms like a maximum depth or minimum altitude values,

safety or forbidden zones or alternative missions to be executed when a specific

event is raised. A different approach employed to encode predefined plans is the

utilization of well known formalisms to model not only the mission plan but also

the framework in which the plan is going to be executed. Petri nets [Barbier et al.,

2001; Barrouil and Lemaire, 1999; Caccia et al., 2005; Costelha and and, 2007;

Oliveira et al., 1998] and state machines [Bohren, 2011; Boussinot and de Simone,

1991; Silva et al., 1999] are the most popular formalisms used by this purpose.

The use of well known formalisms increases the complexity when encoding a

mission as well as limits their expressiveness, however, simplifies its analysis and

execution.

Figure 2.4 shows the main blocks that a MCS may contain. First block rep-

resents the user interaction with the system. A mission definition given by a user

may include the detailed list of primitives to execute or simply a set of goals to

achieve. If the latter is used, a component to plan the mission according to the

user input is needed. However, many systems omit this step and is the user itself

who completely defines the mission to execute. Regardless of how the mission

15



2. STATE OF THE ART

has been defined (using planning techniques or a predefined plan) a mission plan

can be seen as a DES that sequences the primitives to execute according to some

events. Once a mission is defined, there are systems which verify it before its ex-

ecution. A mission verification consists, basically, with the systematically study

of all the alternatives that may occur during the mission execution. Finally, the

executive component has to interpret the mission plan and transform it into a

sequence of vehicle primitives triggered by some kind of events raised by the vehi-

cle’s primitives. If the mission is defined by a formalism, this process is as simple

as applying a set of well defined rules. If an error is detected while a mission is

under execution, the executive component may ask the planning component to

re-plan the mission. If the system does not provide any on-board deliberation

system, then the mission plan has to include the actions to perform for all possible

events.

A review of some popular MCSs, mainly in the underwater robotics domain,

is presented in next section. Systems are classified based on whether they include

artificial intelligence techniques to automatically plan a mission or not. Focusing

on the latter, we differentiate among those that use a well known formalism to

describe a mission and the ones that use DSLs or scripts.

2.3 Mission planning systems

Not many successful approaches use deliberative modules on-board an AUV to

plan a mission. The ORCA architecture [Turner, 1995] is one of them. It has

been designed to fulfill long duration missions where preprogrammed plans are

not possible because they become obsolete and fail. Then, an on-board intelligent

controller able to create and update the mission plan is needed. To implement this

controller, a schema-based reasoning system is used. Given a set of goals with

constraints, the environment description and few partial plans, the reasoning

system tries to accomplish each goal. To this end, all the goals as well as the

dependencies between them, are added in a task list. The reasoning system

chooses the highest priority task and applies a procedural-schema to complete

it, see Figure 2.5. Every procedural-schema consists of a set of primitives that

try to complete a simple task. When the task is completed, the whole process

is repeated until all goals have been successfully fulfilled. The reasoning system

has a library of primitives and a library of procedural-schemes.

16



2. State of the art

Focus 
Attention

Assess
Event

Diagnose
Change

Apply
P-schema

Select
P-schema

Select
Response

done

P-schema

ENVIRONMENT

change

Ev
en

tH
an

dl
er

goal
New goal

c-schema

Not
important

Figure 2.5: Orca: Intelligent adaptive reasoning system. Extracted from Turner
[1995].

A different a hi-level software architecture with deliberative capabilities is

presented by Chang [Chang et al., 2004]. It is composed by a mission level, a

task level and a behavior level. Using this software architecture the AUV receives

the mission file from the surface workstation. The mission management computer

plans the global path according to the electronic sea chart and the restrictions of

the mission file. Then, the task level plans the task sequences based on the global

path and global rule databases. The task coordination module coordinates the

task sequences according to clock events, hardware failure events and obstacle

avoidance events. The task coordination may trigger the real-time mission re-

planning when it fails to coordinate tasks. In the worse condition, the AUV

might give up the former mission and re-plan the task sequences to return to the

callback point. The task coordination module is also responsible for translating

the task into vehicle primitives. The behavior level arbitrates conflicts between

vehicle primitives or conflicts between vehicle primitives and the sea environment,

and sends then the vehicle primitives parameters to the motion control computer.

The mission planning procedure as well as the task coordination are modeled

using Petri nets.

The Ocean Systems Laboratory in the Heriot-Watt University has also de-

veloped an architecture with planning capabilities to carry out multiple AUV

missions [Evans et al., 2006]. They are using on-line plan repairing algorithms

[Patrón et al., 2007] in order to obtain automated plans similar to the ones defined

17



2. STATE OF THE ART

by the user.

The Teleo-Reactive EXecutive (T-REX) [Rajan et al., 2007] developed by the

Monterey Bay Aquarium Research Institute combines planning and scheduling

techniques in a complex MCS. It is a port of the Remote Agent architecture de-

veloped by the National Aeronautics and Space Administration (NASA)’s Deep

Space 1 spacecraft. T-REX is a hybrid executive for integrating primitive robot

actions into higher level tasks. It aims to simplify this integration by using a

model and a planner to generate necessary actions automatically where appropri-

ate, to enable temporal constraints to be specified and enforced, and to handle

recovery from failures through re-planning. T-REX uses the constraint-based

temporal planning paradigm for representing and reasoning about plans. In T-

REX, a time-line is a core primitive for representing all the states in the past,

present and future. T-REX applies the SPA paradigm placing planning at the

core of a control loop in a systematic way and embracing the divide and conquer

idea to enable a planning centric system to scale well, enabling a spectrum of vari-

ously reactive and deliberative behaviors. With T-REX, not only robust, safe and

compliant executions are provided but also high-level programming capabilities

and goal-directed commanding through its on-board planner.

RAP [Firby, 1987], have been defined in the literature to deal with the func-

tions done by a MCS. In RAP, each package contains a goal and a set of task

nets to achieve this goal. Each task net contains basic actions or other goals that

must be achieved using other packages. Planning techniques are needed to know

which task net is more suitable to achieve a particular package goal. Despite RAP

has not been widely used in the underwater domain, several autonomous vehicle

architectures use it to specify its missions [Firby et al., 1995]. Moreover, other

popular systems like the Reactive Plan Language (RPL) [McDermott, 1994], have

been inspired on RAP.

2.4 Predefined mission systems

Most of the MCS available in AUVs opt for predefined missions in which the

user describes all the steps to be performed instead of making use of deliberative

techniques. The problem with this approach is that the user has to take into

account all the alternative states that can arise during the mission execution and

define a suitable response for each of them. To simplify this process, some sys-

18



2. State of the art

tems provide error handling mechanisms to simplify the definition of emergency

routines when a failure is detected.

In the following sections, some solutions that use predefined mission plans in

their MCS are reviewed. Two categories are identified: first, systems based on

scripts or DSLs and then systems based on well known formalisms. In general,

systems from the first group are easier to use from an operator point of view, and

allow for a higher degree of expressiveness. On the other hand, systems in the

second group have to be adapted to the mission definition and execution domain

and its expressiveness may be limited by the imposed formalism but provide tools

to simplify its verification and execution.

2.4.1 Script and language based MCS

Numerous systems use a DSL or a script to describe the steps to carry out a

mission. In order to review some of the systems presented in the literature three

sub-groups have been established: those systems developed by research centers to

be used by AUVs, solutions employed in commercial AUVs and, finally, generic

solutions that can be used for any autonomous vehicle.

2.4.1.1 Research systems

One of the firsts AUV control architecture including a MCS was the Proteus

mission executor developed in 1992 by the International Submarine Engineer-

ing (ISE). The adopted solution [Kao et al., 1992] uses an architecture based

on Brooks’ concept of subsumption [Brooks, 1989] where several behaviors are

combined in different levels. Outputs from different independent behaviors can

either be combined when they are from the same competent level (cooperation) or

subsumed by other outputs from a higher competent level (subsumption). Based

on this architecture they propose a MCS that runs into a level without worrying

about collisions or other emergencies, since other levels are in charge of control-

ling these situations. To achieve task sequencing, a script is used. The script

consists in an ordered sequence of operations to be performed within a particular

context. Each script contains a collection of tasks organized into steps, where

each step may contain any number of task threads. All the tasks in the same step

start simultaneously and the step finalizes when all tasks terminate. All these

steps are executed sequentially, see Figure 2.6.

19



2. STATE OF THE ART

Figure 2.6: Navigation Layered Block Diagram where mission layer outputs are
subsumed by the outputs from the emergency, operator or obstacle avoidance
layers which are running at higher competent levels. Extracted from Kao et al.
[1992].

The Naval Postgraduate School (NPS) from Monterey developed a hybrid

mission control system [Marco et al., 1996] composed by three layers or levels:

the strategic level, the execution level and the tactical level. The execution level

is in charge of controlling the motion and stabilization of the vehicle acting in

real time over the robot’s actuators. The strategic level is based on a logic

and procedural reasoning system that uses Prolog as an inference mechanism to

execute a rule-based language in which the primitives are controlled and linked.

The Prolog language describes a DES that sequences the primitives to execute

in the mission plan. Finally, the tactical level joins the strategic level with the

execution level. This level recollects data from the execution level to supervise

the primitives execution.

The Autosub [McPhail and Pebody, 1997; Perrett and Pebody, 1997] is an

AUV developed by the National Oceanography Center of Southampton (NOCS).

Its MCS, named Mission Control Node, enables the vehicle to follow a 3D course

through the sea. The Autosub has three main sub-control systems: propulsion

and speed control, position control and finally depth and altitude control. The

mission control node executes a list of commands specified in a mission script.

Every command includes a mission line number, a stop flag, a start event and

the time-out for the next event. When a command or a sensor rises an event,

the command with this start event begins, see Figure 2.7. To activate the sub-

control systems, a specific depth, orientation or velocity parameters have to be

sent to one of these three modules. The execution of all commands within a

script is sequential except when a stop, surface or abort event occurs. In this

case, the current mission script is ignored and a built-in emergency control script

20



2. State of the art

Figure 2.7: Autosub mission control node showing event inputs, mission script
processor and command output. Extracted from McPhail and Pebody [1997].

is executed to bring the required response.

The Autonomous System Lab (ASL) in the University of Hawaii has designed

a DSL to define autonomous missions for the underwater robot SAUVIM [Kim

and Yuh, 2003]. The SAUVIM task description language is a high level language

that makes use of a library of primitive actions. The library contains primitives

such as motion commands, input/output commands to control specific hardware

and application-specific commands such as depth or speed control. The task

description language used to execute these primitives has basic utilities such as

numeric operations, conditional, loop and manipulation commands, array of vari-

ables or mathematical functions. Hence, by using this language, a mission plan

has the same aspect as a C program. All the situations in the mission have to be

predicted, including failure situations.

In 2003, the Mitsubi Engineering Shipbuilding (MES) constructed the r2D4.

The vehicle was initially developed by the Institute of Industrial Science (IIS)

[Nagahashi et al., 2005] to investigate hydrothermal vent systems. r2D4 may

operate in two modes: Ordinary and Relative Course Mode. In ordinary course

mode the following elements must be specified by the user: the list of way-points

defined by their longitude, latitude and depth/altitude and the actions used to

achieve these way-points; the route to go back to the recovery point if the mission

21



2. STATE OF THE ART

is terminated during diving; and a roughly drawn map of depth up to which

r2D4 can reach without encountering obstacles. In response to each expected

trouble during the mission, several procedures are beforehand prepared taking

into account the emergency return course and the safety map. In the relative

course mode the r2D4 makes a thorough investigation around the environmental

anomaly point detected by the payload sensors.

2.4.1.2 Commercial systems

In addition of research centers, there are companies that sell their own AUVs.

These vehicles use to include a MCS to allow their operators to define and ex-

ecute autonomous missions. Remus [Allen et al., 1997] is probably one of the

most popular commercial AUVs. It was originally designed by the Woods Hole

Oceanographic Institution (WHOI) and nowadays is manufactured and sold by

Hydroid. Remus uses a program based on an ASCII mission file that contains

a sequence of objectives. An objective is a task that the vehicle must complete

before attempting the next objective. An entire mission is completed when the

entire list of objectives is completed following its sequence. Any quantifiable goal

can be an objective: reaching a particular geographic location or pressing a but-

ton on the host computer. Due to the simplicity of this script-based system, the

Remus MCS can be modified. For instance in [Pang et al., 2003], a Behavior-

Based Planning (BBP) used to describe missions such as chemical plume tracing

or deepest point search is used instead. In this example, a set of behaviors whose

priorities change depending on some factors are used to control the vehicle.

Another commercial AUV that has become quite popular is the GAVIA AUV

System, developed by Hafmynd LTD [gav, 2011]. Its distributed software archi-

tecture is composed by a MAS called intelligent artificial crew, that comprises a

full crew responsible for the safe navigation of the vessel, together with scientific

personnel responsible for meeting the goals of the mission. Mission execution fol-

lows a mission plan expressed in Extensible Markup Language (XML) scripting

language. The mission plan can contain fixed paths consisting of 3D way-points

and 3D lines or patterns, and dynamic paths determined in real-time by an on-

board scientist analyzing sensor data. Reaction to exceptional or critical opera-

tional conditions is handled by the captain of the intelligent artificial crew who,

with the aid of his crew, oversees the proper running of the vehicle. This relieves

the planner of foreseeing every possible situation and leaves it free to concentrate

22



2. State of the art

Figure 2.8: VectorMAP screen shoot. Extracted from www.iver-auv.com.

on the goals of the mission. Although the intelligent artificial crew introduces

some deliberative techniques to plan trajectories or react to some errors, missions

are mostly predefined using an XML scripting language.

A windows software application named VectorMAP is used to plan missions

for the whole family of Iver [Anderson and Crowell, 2005] AUVs. Missions are

created using georeferenced charts or imagery in a simple drag and drop method-

ology as shown in Figure 2.8. Way-points are added by a simple point and click

method and the vehicle’s behavior or sensor logging can be modified in every

way-point. A lawnmower sweep can be added effortlessly by selecting the area

the Iver will scan and VectorMAP will automatically synthesize the mission way-

points. Once the mission is programed it can be easily imported in the vehicle in

order to execute it.

2.4.1.3 Generic systems

Despite MCSs proposed by research or commercial institutions for an specific

AUV, exists several solutions to define a mission that can be applied to any

sort of autonomous vehicles. Some of these solutions are provided by standard

frameworks like the urbiscript language that has been developed since 2003 by

Jean-Christophe Baillie in the Cognitive Robotics Lab of ENSTA Paris, and now

is further developed by the Gostai company together with the Urbi framework

[urb, 2011]. The urbiscript language can be described as an orchestration script

language. It can be used to glue together C++ components into a functional

23



2. STATE OF THE ART

Figure 2.9: VPL screen shoot. Extracted from msdn.microsoft.com.

behavior, the CPU-intensive algorithmic part being left to C++ and the behav-

ior scripting part being left to the script language which is more flexible, easy

to maintain and allows dynamic interaction during program execution. As an

orchestration language, urbiscript also brings some useful abstractions to the

programmer by having parallelism and event-based programming as part of the

language semantics. The scripting of parallel primitives and reactions to events

are core requirements of most robotic and complex AI applications.

Another DSL integrated into a specific framework is the Microsoft Visual Pro-

gramming Language (VPL) (see Figure 2.9). It has been developed by Microsoft

for the Microsoft Robotics Developer Studio (MRDS) [Johns and Taylor, 2008].

VPL is designed on a graphical dataflow-based programming model. Rather than

series of imperative commands sequentially executed, a dataflow program is more

like a series of workers on an assembly line, who do their assigned task as the

materials arrive. As a result VPL is well suited to programming a variety of

concurrent or distributed processing scenarios. Despite it is targeted for begin-

ner programmers with a basic understanding of concepts like variables and logic,

VPL is not limited to novices. It may appeal to more advanced programmers for

rapid prototyping or code development.

Lua is a lightweight multi-paradigm programming language designed as a

scripting language with extensible semantics as a primary goal. Lua [Ierusalim-

24



2. State of the art

schy et al., 2006] has a relatively simple C Application programming interface

(API) compared to other scripting languages. It was created in 1993 by mem-

bers of the Computer Graphics Technology Group (TecGraf) at the Pontifical

Catholic University of Rio de Janeiro, in Brazil. It is commonly described as

a multi-paradigm language, providing a small set of general features that can

be extended to fit different problem types, rather than providing a more com-

plex and rigid specification to match a single paradigm. Lua is widely used as

a scripting language by game programmers. However, several attempt to use it

into the robotics field has been done. For instance, a high-level decision making

process for the autonomous humanoid robot Nao has been implemented using it

[Niemueller et al., 2009].

Task Description Language (TDL) [Simmons and Apfelbaum, 1998] is another

programming language that extends the C++ programming language to include

asynchronous constrained procedures, called Tasks. It allows defining a mission

and compiling it into a pure C++ file executed on the vehicle by means of a

platform-independent task management library. TDL has been designed to sim-

plify the function control at the task-level. For this purpose, TDL applies highly

non-linear code that otherwise would be difficult to understand, debug and main-

tain using pure C++. The TDL is based on task trees that can be dynamically

modified. Each node corresponds to a basic action or a goal that is expanded

using other task trees.

2.4.2 Formalism based

MCS based on formalisms can be divided in two major groups. The first one, uses

a formalism to define a set of states, in which actions are executed, and the flow

between these states, when specific events are raised. These systems are similar

to DSL systems. The main difference is that the imposed formalism reduces

the expressiveness of the language, for instance, DSLs allow to define emergency

missions, safety depth and altitude values or forbidden zones, while on the other

hand, formal methods allow a simpler execution and reachability analysis. The

second group of formal MCSs use the chosen formalism, not only to define the

mission to execute but to model the vehicle architecture and the mission as a

whole. Then, the vehicle components, the data flow or even the sequence of

primitives to execute are modeled in a single DES. This model can be analyzed

25



2. STATE OF THE ART

to prove state reachability, resources availability or deadlock avoidance among

others.

2.4.2.1 Formal mission description

The solution developed in the ISE [Kao et al., 1992] has been presented as a

scripting MCS. However, it could also be considered as a formal mission descrip-

tion system because it is possible to relate the scripts used to define a mission

with a formal FSM.

SMACH [Bohren, 2011], which stands for State MACHine, is a Python library

to build hierarchical state machines. SMACH is useful to execute complex plans

in which all possible states and state transitions can be explicitly described. It

provides fast prototyping of complex state machines, however, it is not recom-

mended for unstructured tasks or low-level systems that require high efficiency.

SMACH is integrated in the Robot Operating System (ROS), and hence, ROS

components can be executed from SMACH states by means of a standard inter-

face for preemptive tasks named actionlibs. User data can also be passed between

different SMACH states. SMACH does not provide any tool for verification or

analysis purposes. However, generated hierarchical state machines can be eval-

uated from any third part FSMs verification software. Figure 2.10 shows and

example of a hierarchical state machine encoding the steps to perform in order

to autonomously recharge a vehicle.

The cross platform software for robotics Mission Oriented Operating Suite

(MOOS) [Newman, 2005] includes also its own module to define and execute

predefined missions: the Helm. MOOS has been used to develop several archi-

tectures for AUVs [Eickstedt and Sideleau, 2009; Schneider and Schmidt, 2010].

The Helm job is to take navigation data and, given a set of mission goals, de-

cide the most suitable actuation commands. The multiple mission goals take

the form of prioritized tasks within the Helm. Helm is designed to allow at sea

reloading of missions. This makes for very rapid turnaround of missions in a

research-oriented field trip. The Helm has two modes: on-line and off-line. When

off-line no tasks are run and the Helm makes no attempt to control actuators. In

this mode the vehicle can be teleoperated. When on-line, the vehicle motors are

under the control of the Helm. Mission goals are accomplished by deciding which

vehicle actions should be undertaken. To accomplish these goals, the Helm has

a mission plan described by a set of prioritized primitive tasks. The sequential

26



2. State of the art

Figure 2.10: SMACH mission example. Extracted from www.ros.org.

27



2. STATE OF THE ART

Figure 2.11: Example of a typical mission plan in Helm over MOOS. Extracted
from Newman [2005].

execution of these primitives is achieved using messages. Several primitives can

be executed simultaneously. Every primitive needs an activation message to start

its execution and generates a message when it finishes. A primitive can finalize

when its corresponding goal has been fulfilled, when a time-out has expired, or

when it does not receive incoming data from its related objects. The finalization

message can activate zero, one, or more primitives. Also, other object messages

can activate a primitive. When two or more primitives try to use the same re-

source, the primitive with the highest priority wins. All these rules, primitives

and interfacing methods allow the definition of a mission by means of a network

of tasks that can be approximated to a marked graph as shown in Figure 2.11.

A well known system used to describe a DESs is Esterel [Boussinot and de Si-

mone, 1991]. Its development started in the early 1980s, and was mainly carried

out by a team of Ecole des Mines de Paris and Institut National de Recherche

en Informatique et en Automatique (INRIA). Esterel is a synchronous program-

ming language for the development of complex reactive systems. The imperative

programming style of Esterel allows the simple expression of parallelism and pre-

emption. As a consequence, it is very well suited for control-dominated model

designs. Esterel could be used to model the mission as well as the vehicle control

architecture. However, despite it has been reported in several papers [Anisimov

et al., 1997; Nana et al., 2005] as a synchronous missions programming system

suitable for AUVs that follow the model checking approach, authors are not aware

28



2. State of the art

Figure 2.12: Lift automaton produced by Esterel compilation. Extracted from
Boussinot and de Simone [1991].

of any AUV using it to define their missions. Esterel formal approach allows to

compile programs into efficient FSMs, see Figure 2.12, and easily verify and exe-

cute the automatically obtained FSMs. Inspired with Esterel there are other for-

mally defined synchronous programming languages like Lustre [Halbwachs et al.,

1991]. Lustre is a data-flow language for programming reactive systems like the

industrial Software Critical Application Development Environment (SCADE).

2.4.2.2 Formal mission and framework description

Some MCSs not only describe the mission to execute as a DES but also models

the primitives to be executed, the control flow among them and the resources

that primitives may need. In a vehicle’s control architecture, typical resources to

model are the access to sensors or actuators as well as the availability of some

variables that are provided by other components.

A popular system implementing this approach is the Marius’ control archi-

tecture, named Coral [Oliveira et al., 1998] developed in 1994 by the Institute

for Systems and Robotics (ISR) from Lisbon, Portugal. It has several systems in

charge of controlling some vehicle capabilities like the acoustic communications,

an obstacle detector and a navigator. Moreover, a mechanism based on message

exchanging is used for communication purposes. To define a mission, vehicle

primitives are used to activate and synchronize one or more systems. However,

these vehicle primitives can not be executed arbitrarily: there are some precon-

ditions that have to be accomplished in order to be enabled and, once executed,

29



2. STATE OF THE ART

Figure 2.13: Mission Procedure described in Coral. Extracted from Oliveira et al.
[1998].

they activate some post-conditions. Therefore, to define a mission, a valid se-

quence of vehicle primitives have to be enchained. Petri nets are the formalism

selected to describe these systems, the primitives and the flow among primitives

as shown in Figure 2.13. Some time later [Oliveira and Silvestre, 2003], the way

in which missions were defined using Coral was enhanced. The proposed solution

mediates the interaction with real-time systems on board a vehicle and/or be-

tween participating vehicles in the same mission scenario. A temporal module is

used to monitories a model for each vehicle primitive and if the primitive model

becomes unresponsive, the temporal module aborts it and an emergency mission

is executed instead.

In the CNR-ISSIA, Italy, there is another similar approach, also based on

Petri nets, designed to control an underwater robot [Caccia et al., 2005]. The

presented architecture is a transfer in to the marine robotics field of the concept

of execution control levels originally introduced by R. Alami in 1998 [Alami et al.,

1998]. This architecture uses Petri nets to describe the execution flow as well as

to model sensors and controllers, see Figure 2.14. When a task requires some

sensors or actuators, the Petri net that describes its behavior tries to enable first

the desired sensors/actuators and then runs the task. Similarly, if a value can be

30



2. State of the art

Figure 2.14: Romeo vertical motion control system. Extracted from Caccia et al.
[2005].

estimated by different systems, a demultiplexer built using a Petri net structure,

allows to connect all the possible versions of this value with the input of the

task that requires it. A Supervision Based on Place Invariant (SBPI) [Moody

and Antsaklis, 1998] is used to check that a task can be only in three states:

initialized, running or idle. Moreover, SBPIs are used to avoid or to allow the

simultaneous write/read of variable values. Once the whole system is defined

as a Petri net, an unfolding algorithm [McMillian, 1995] plans the actions to

perform in order to transform the current Petri net state into the goal state. The

architecture was later extended with an event handling mechanism to allow an

operator to interact with the mission evolution [Bibuli et al., 2007].

Not all the systems that model the mission to execute as well as its exe-

cution framework are based on Petri nets. In LSTS/FEUP [Silva et al., 1999]

the TEJA CASE [Deshpande and de Sousa, 1997] tool is used to graphically

model the dynamic behavior of the software architecture using an hybrid state

machine paradigm. When the whole application is modeled, C++ code is auto-

matically generated from this model. The architecture is divided in three layers:

31



2. STATE OF THE ART

abstraction layer, functional layer and coordination layer. The abstraction layer

provides low level access to the devices (sensors and actuators). Functional layer

includes primitives and navigation algorithms that do no directly depend on the

available hardware. Finally, the coordination layer is used to accomplish correct

mission execution and tolerance to unexpected events. A mission file describes

the response of the coordination layer to each triggered event. Those responses

are implemented using actions available in the functional layer. There are also

emergency primitives to guarantee the ultimate robustness.

The approach for the mission control sub-system proposed in [Champeau

et al., 2000] is to formalize an object framework based on the use of formal

languages for the primitive design. The Unified Modeling Language (UML) for-

malism, is used to define the sequence diagram for the mission expression as well

as the class diagram for the description of the objects integrated in the mission

and the objects used on the embedded platform. Then, the Specification and

Description Language (SDL) formalism is used to formalize the behavior of the

object and support formal verification to increase the trust in the embedded code.

From this point of view, a mission is a set of objects which exchange messages

and each message reception triggers an action defined by a method in the object

class. The static part of this real time object model is described using the UML

formalism while the SDL formalism is used for the behavior of the object. Once

a mission is defined, it is possible to automatically build the state space from the

SDL formalism in order to check deadlocks, infinite loops or if any queue length

is exceeded.

Finally, there are solutions that combine the use of a formalism like the Petri

nets with a script-alike approach with handling error mechanisms. For instance,

this is the case of the Redermor [Barbier et al., 2001; Barrouil and Lemaire, 1999],

a French AUV used in military applications mainly for inspection and mine recov-

ery missions. Redermor uses a programming and a monitoring execution system

called ProCoSA. The system is composed by a Graphic User Interface (GUI) to

build the Petri nets in which places represent behavioral states and transitions

represent actions, events and messages. A Petri net player automata, developed

in Lisp, is also included. The actions to be performed by the autonomous vehicle

are implemented then by independent sub-systems. The communication between

the Petri net player and these actions is socket based. To specify a mission,

the user has to provide a set of way-points in 3D, its priority, a time-out and

32



2. State of the art

the process to be executed at each point. Some constraints like vehicle auton-

omy limitations, forbidden zones, maximum and minimum depth limits and fixed

obstacles have to be provided too. Using all this data, a planner selects an op-

timized itinerary and a guidance navigator generates high level orders to follow

this optimal path while avoiding obstacles. The State estimator computes the

vehicle state using the information provided by the map processor and generator

which is in charge of analyzing the sonar images. Finally, the mission controller

supervises the phases of the mission and the correct execution of all procedures.

2.5 Summary

In order to summarize all reviewed systems Figure 8.7 presents a table including

the most relevant information from each one. Outlined elements are:

• The architecture model in which the MCS is included.

• The primary missions to execute.

• How autonomous missions are described.

• The availability of on-board deliberation systems.

• The presence/absence of error handling mechanisms to simplify the mission

description.

• The language/formalism used to describe a mission plan.

• The inclusion of verification techniques.

2.6 Survey conclusions

Once finished the review of some control architectures and their MCSs found in

the literature, several conclusions can be drawn in order to establish the guidelines

for developing a new MCS. First of all, lets summarize the main alternatives and

highlight their strengths and weaknesses.

33



2. STATE OF THE ART

Figure 2.15: Summary table.

34



2. State of the art

• MCS based on AI techniques are very versatile. They allow to define a mis-

sion with just few lines (specifying only the goals) and to take care of errors

or unpredictable events automatically by means of on-board deliberative

techniques. On the other hand, they are more complex and make difficult

to control the vehicle’s final behavior as well as to verify generated plans

before its execution.

• MCS based on predefined plans described by DSLs or scripts present a good

trade off between simplicity of use and functionalities. The inclusion of error

handling mechanisms increases its expressibility at expenses of difficulting

its interpretation (execution) and verification.

• Formalism based MCS are probably the hardest to use. Describing a mis-

sion using a formalism can be a hard work and error-prone. Despite GUIs

may simplify this process, the absence of error handling mechanisms or

automatic deliberative techniques implies that all states that can occur

during a mission have to be considered in advance. On the other hand, the

capability of not only modeling the mission but also parts of the control

architecture together with the use of well known formalisms allows for a

more complete and systematic verification as well as simplifies the mission

execution.

Therefore, a MCS that takes advantage of the strengths identified in the above

summary should include:

• An unified model in which not only the mission plan is modeled but also

the framework in which the mission will be executed. This model allows to

verify the mission reachability, the availability of resources and the presence

of deadlocks. In the literature, formalisms like FSMs or Petri nets are

presented as appropriate ways to model and analyze a mission plan and its

execution framework.

• In order to deal with unlikely situations it is worth to simplify how responses

for unexpected events are provided. Having a systematic way to include

the possible alternatives that can be produced during a mission plan or the

inclusion of error handling mechanisms that simplifies the definition of these

alternatives may help. Systems based on planning algorithms are the ones

35



2. STATE OF THE ART

who best deal with this problem. However, their non predictable behavior,

the amount of time needed to generate each new plan and their complexity

makes them not always the best option. Predefined plans based on DSL

have shown to be a trade off between formalism based missions and complex

deliberative systems.

• DSLs must provide not only sequential, iterative or conditional execution

of primitives but also structures to capture errors, simplify parallelism and

allow the preemptive execution of primitives. It is worth noting the inherent

parallel structure of autonomous missions.

Then, our proposal is to develop a MCS based on a DSL providing sequential,

iterative, conditional, parallel and preemptive execution of primitives and, fur-

thermore, that could be automatically translated into a well known formalism.

Thus, even though the mission plan will be described by means of a formalism

that can be systematically analyzed and executed, the human operator will deal

with a more friendly DSL that simplifies parallelization as well as error handling

mechanisms. The use of on-board deliberative systems have been proved effective

in several situations, however, their study is out of the scope of this dissertation.

Then, only the interface with a deliberative system will be studied.

2.6.1 The Petri net formalism

The approach presented in this thesis, models the components involved in the

execution of a mission as well as the mission itself using a single formalism,

thus, being easy to analyze the resulting system and to check several properties.

Elements typically checked in a mission are: the reachability of final states, the

absence of deadlocks in the mission or the availability of resources. However,

as can be seen in Chapter 4, our approximation to the verifying problem is not

the usual one: instead of defining a mission and then check if several properties

hold, these properties are first checked for small blocks that compose the mission

so the resulting mission of connecting these blocks inherently holds the same

properties. This approach allows to perform a reachability analysis to each small

DES, representing a primitive or a control structure, instead of the final DES

encoding the whole mission which is usually large and requires much time to be

analyzed.

36



2. State of the art

Therefore, according to our propose a formalism has to be first choosen and

then a DSL has to be defined in accordance with the constraints imposed by

this formalism. FSMs are the most popular and widely known way to formally

encode a DES. However, Petri nets present some advantages compared with them:

Petri nets are more compact, are better suited to express parallelism and also

can represent a larger class of languages than standard FSMs [Murata, 1989].

Moreover, several precedents in the underwater robotics literature [Barbier et al.,

2001; Barrouil and Lemaire, 1999; Caccia et al., 2005; Oliveira et al., 1998] as

well as in other domains [Costelha and and, 2007; Ziparo and Iocchi, 2006] point

us to use Petri nets to define a formal MCS.

Then, Petri nets seems to be the more adequate formalism to encode and

execute a mission for an autonomous vehicle. However, there are several types of

Petri nets that can be used for this task. We started testing marked graphs, a

subgroup of Petri nets in which each place p have exactly one input transition and

one output transition [Palomeras et al., 2006a]. Marked graphs allow concurrency

but not conflict, and for this reason, are easy to use but it is difficult to model

concepts as preemptive execution or some complex control structures. Therefore,

we changed to ordinary Petri nets that allow concurrency and conflict symmet-

rically and asymmetrically. We have also take advantage of timed transitions to

model time-outs as well as to delay the firing of some transition. In the proposed

framework, timed transitions may represent 2 different things: a transition that

once has been enabled its firing is delayed by a timer or a transition that once has

been enabled their firing depends on the completion of another process, generally

continuous. The latter, should be modeled by an hybrid Petri net, however, to

simplify the whole framework, they are modeled as timed transitions in which

the time that passes from its enabling until its firing is unknown. Appendix A

presents an introduction to Petri nets as well as the main algorithms applied to

verify, supervise and execute them.

37



2. STATE OF THE ART

38



Chapter 3

Experimental platform

The experimental platform introduced in this chapter encompasses all aspects

in which the proposed Mission Control System (MCS) has been developed and

tested. The MCS is the set of tools within the vehicle’s control architecture that

are implemented to define, verify and execute a mission. Although one of our

objectives is to define a MCS as generic as possible, to obtain experimental results

the proposed MCS has been implemented in the context of a tangible control

architecture. Therefore, this chapter will discuss about the control architecture

where the proposed system is integrated as well as the vehicles that operate with

this architecture.

3.1 Vehicle experimental platforms

In 1995 the University of Girona (UdG) built its first Unmanned Underwater

Vehicle (UUV) in collaboration with the Universitat Politècnica de Catalunya

(UPC). The vehicle was called Garbi [Amat et al., 1996] and was conceived as a

Remotely Operated Vehicle (ROV). In 2005 the vehicle was rebuild and converted

into Garbi AUV, as shown in Figure 3.1(a). This vehicle uses four thrusters and

includes a simple sensor suite: 2 compasses, 2 pressure sensors a water speed

sensor and water leakage sensors. Garbi dimensions are: 1.3m long, 0.9m high and

0.7m wide with a maximum speed of 1 knot and a weight of approximately 150Kg.

In 2001 a smaller UUV was also designed with the aim of developing a light

weight, low cost Autonomous Underwater Vehicle (AUV) to be used as a research

platform in a water tank testing facility. This spherical shaped vehicle called

39



3. EXPERIMENTAL PLATFORM

(a) (b)

Figure 3.1: (a) Garbi AUV and (b) Uris AUV.

Underwater Robotic Intelligent System (URIS) [Batlle et al., 2004] incorporates 4

thrusters, a magnetic compass, a pressure sensor, water speed sensors, Differential

Global Positioning System (DGPS), water leakage sensors and a computer vision

system. Its radius is about 35cm and the weight is approximately 35kg. URIS is

shown in Figure 3.1(b).

The experience gained in the group with the development of these previous

vehicles made it possible to build two new AUVs of reduced weight and dimensions

with remarkable sensorial capabilities and easy maintenance. These two vehicles,

Ictineu AUV built in 2006 and Sparus AUV built in 2010, are the main test

platforms of this thesis.

3.1.1 Ictineu

Ictineu AUV, shown in Figure 3.2, is the result of a project started in 2006. During

the summer of that year, the Defence Science and Technology Lab (DSTL), the

Heriot-Watt University and the National Oceanographic Center of Southampton

organized the first Student Autonomous Underwater Challenge-Europe (SAUC-

E), an European wide competition for students to foster research and development

in underwater technology. Ictineu AUV was originally conceived as an entry for

the SAUC-E competition by a team of students collaborating with the Computer

Vision and Robotics (VICOROB) group in the UdG [Ribas et al., 2007]. Although

the competition determined many of the vehicle’s specifications, Ictineu was also

40



3. Experimental platform

Figure 3.2: Ictineu AUV.

designed keeping in mind its posterior use as experimental platform for various

research projects in our laboratory.

Ictineu AUV was tailored around a typical open frame design. This config-

uration has been widely adopted by commercial ROVs because of its simplicity,

toughness and reduced cost. Although the hydrodynamics of open frame vehicles

is known to be less efficient than a closed hull type vehicles, they are suitable

for applications not requiring movements at high velocities or traveling long dis-

tances. The robot chassis is made of Delrin, an engineering plastic material which

is lightweight, durable and resistant to liquids. Another aspect of the design is

the modular conception of its components which simplifies upgrading the vehicle

and makes it easier to carry out maintenance tasks. Some of the modules (the

thrusters and most of the sensors) are watertight and therefore, are mounted

directly onto the vehicle chassis. On the other hand, two cylindric pressure ves-

sels made of aluminum house the power and computer modules while a smaller

one made of Delrin contains a Motion Reference Unit (MRU). Their end-caps

are sealed with conventional O-ring closures while the electrical connections with

41



3. EXPERIMENTAL PLATFORM

other hulls or external sensors are made with plastic cable glands sealed with

epoxy resin. Ictineu is propelled by six thrusters that allow it be fully actu-

ated in Surge (movement along X axis), Sway (movement along Y axis), Heave

(movement along Z axis) and Yaw (rotation around Z axis) achieving a maximum

speeds of 3 knots. It is passively stable in both Pitch and Roll Degree of Freedom

(DOF) as its meta-center is above the center of gravity. This stability is the result

of an accurate distribution of the heavier elements at the lower part of the frame

combined with the effect of technical foam placed in the top, which provides a

slightly positive buoyancy to the vehicle.

One of the main objectives of the laboratory was to provide the underwa-

ter robot with a complete sensor suite. The robot includes a Tritech Miniking

Mechanically Scanned Imaging Sonar (MSIS) designed for use in underwater ap-

plications such as obstacle avoidance and target recognition. Also, the robot

is equipped with a SonTek Argonaut Doppler Velocity Log (DVL) specially de-

signed for applications which measure ocean currents, vehicle speed over ground

and as an altimeter using its 3 acoustic beams. The particular spatial distribution

chosen to place the acoustic sensors within the vehicle frame avoid dead zones, im-

proving their overall performance. Moreover, Ictineu AUV has a compass which

outputs the sensor heading (angle with respect to the magnetic North), a pres-

sure sensor for water column pressure measurements and a Xsens MTi low cost

miniature Attitude and Heading Reference System (AHRS) which provides a 3D

orientation (attitude and heading), 3D rate of turn as well as 3D acceleration

measurements. Finally, the robot is also equipped with two cameras. On one

hand, a forward-looking color camera, mounted on the front of the vehicle and,

on the other hand, a down looking Tritech Super SeaSpy color Charge Coupled

Device (CCD) Underwater Camera, located in the lower part of the vehicle. The

latter is mainly used to capture images of the seabed for research on image mo-

saicking while the former is intended for target detection and tracking, inspection

of underwater structures and to provide visual feedback when operating the ve-

hicle in ROV mode. Nowadays, Ictineu AUV is used as a research platform for

different underwater inspection projects which include dams [Ridao et al., 2010],

harbors, shallow waters and cable/pipeline inspections [El-Fakdi et al., 2010].

42



3. Experimental platform

3.1.2 Sparus

Sparus AUV, shown in Figure 3.3, is the second experimental platform used in

this thesis. It was built by a group of students in the UdG to face the 2010 edition

of SAUC-E competition and was devised with the main goal of having a small

and simple torpedo-shaped vehicle with hovering capabilities.

Sparus is designed with one vertical thruster for the Heave DOF and 2 hor-

izontal thrusters for the Surge and Yaw DOFs. The 3 thrusters, supplied by

Seabotix, are integrated in a classical torpedo shape AUV. The vertical thruster

is placed in the center of the vehicle, where the center of gravity and buoyancy

are located. The horizontal thrusters are placed in the back, separated from

the longitudinal axis of the vehicle to generate a torque for the Yaw DOF. The

mechanical structure and components are therefore organized around this config-

uration. The front of the vehicle contains all the sensors and the battery housing.

The back of the robot contains a second housing for the electronics, computer and

inertial navigation system. Having the batteries in a separate housing increases

the weight, length and expense of the vehicle but on the other hand it minimizes

the downtime between missions by allowing battery packs to be quickly inter-

changed. Also, potentially explosive gases that can build up from the batteries

do not interfere with sparking and high temperature electronics.

The main structure is made of aluminum profiles and stainless steel clamps

that hold the two pressure housings. The battery housing is hold with only one

clamp in the top, to allow its easy and fast replacement for a second battery

housing. The housings were made of aluminum which easily transmits the in-

ternal heat to the environment, it is easy to machine and it is strong enough to

withstand the sea pressure (they were designed for 100m depth). In order to elim-

inate screws, a 1.8mm nylon thread before the O-ring secures the end-caps. The

electronics housing can be easily opened from the back of the vehicle, allowing

the access to the electronics and computer in few minutes.

To give the vehicle the required buoyancy, technical foam is distributed all over

the top part of the robot. It is strategically located to place the buoyancy center

at the same longitudinal position as the gravity center but above it, ensuring

pitch and roll stability. The vehicle is trimmed with lead weights, in order to

bring the gravity center where the vertical thruster is placed. Small zinc anodes

were added to eliminate the corrosion due to sea water and different metals on

the vehicle. Finally, to reduce the water drag and to protect the components, a

43



3. EXPERIMENTAL PLATFORM

Figure 3.3: Sparus AUV.

two-part ABS skin covers the AUV.

For connecting all the external components, two types of underwater connec-

tors were used: Subconn R© for the high current connections and Lumberg R© for

the low current parts. Also, the umbilical cable, which is often connected and dis-

connected, uses a Subconn R© connector. The main battery switch is IP68 rated

and covered with resin. The WiFi adapter, also covered with resin, is placed on

the top of the vehicle. It also has the option to be detached to float on the surface

while keeping the connection with the AUV through a 5 meter Universal Serial

Bus (USB) cable. The final dimensions of the vehicle are 1.22m length by 0.23m

diameter, and the weight is around 30kg.

The on-board embedded computer has been chosen as a trade-off between

processing power, size and power consumption. An Ultra Low Voltage (ULV)

Core Duo processor with the 3.5” small form factor was selected. The vehicle is

also equipped with a complete sensor suite composed by two color video cameras

(forward-looking and down-looking), a AHRS MTi from XSens Technologies, a

Micron imaging sonar from Tritech, an echo-sounder, a pressure sensor and a

DVL from LinkQuest which also includes a compass/tilt sensor. Temperature,

voltage and pressure sensors as well as water leakage detectors are installed into

the pressure vessels for safety purposes. The on-board computer, the sensors

and the three thrusters are powered by two battery packs. The first one, at

44



3. Experimental platform

12V, powers the computer, the electronics and the sensors while the second one,

at 24V, provides the power to the thrusters. Each battery pack has 10Ah of

capacity, which allows for an autonomy of 2.5 hours.

3.2 COLA2 architecture

The architecture used in all the underwater vehicles available at UdG was the Ob-

ject Oriented Control Architecture for Autonomy (O2CA2) [Ridao et al., 2002].

The O2CA2 was a behavior-based control architecture [Brooks, 1986] that im-

plemented a reactive layer in which a set of behaviors were able to perform some

specific tasks. With the inclusion of a coordinator [Carreras et al., 2001], it was

possible to enable several of these behaviors simultaneously in order to perform

a more complex tasks. However, traditional behavior-based architecture limita-

tions appeared when trying to undertake long-range missions. To transform this

reactive architecture into a layer-based architecture, a MCS implementing the

functionalities of a deliberative and an execution layer has been developed. The

MCS is an independent set of components that can be connected with the O2CA2

reactive architecture but also with any other reactive architecture/layer imple-

mented by an autonomous vehicle or manipulator [Palomeras et al., 2010a]. The

new layer-based control architecture, named Component Oriented Layer-based

Architecture for Autonomy (COLA2), has been implemented in Ictineu AUV

and Sparus AUV. It is based on software modules that encapsulate a set of re-

lated functions or data named components. Components may exist autonomously

from other components in a network node having the ability to communicate

with each other. The architecture is organized in three layers following the hy-

brid model [Arkin and Balch, 1997; Firby, 1989]: the mission layer, the execution

layer and the reactive layer. The mission layer obtains a mission plan by means

of an on-board automatic planning algorithm or compiling a high-level mission

description given by a human operator. The mission plan, described using the

Petri net formalism, is then interpreted by the execution layer. It is executed

by means of enabling/disabling the vehicle primitives contained in the reactive

layer, see Figure 3.4. The proposed MCS implements the first two layers, mission

and execution, while the reactive layer is implemented in our vehicles as a new

version of the O2CA2.

To simplify the development of each component in the COLA2, an unified

45



3. EXPERIMENTAL PLATFORM

Figure 3.4: Three-layer organized control architecture.

framework has been created to simplify its programming as well as the communi-

cation among all the components. Therefore, COLA2 has been developed using

the custom framework that is detailed next.

3.2.1 Generic and custom frameworks for developing con-

trol architectures for autonomous vehicles

A software framework is an abstraction in which common code providing generic

functionality can be selectively overridden or specialized by user code providing

specific functionality [Riehle, 2000]. Frameworks have distinguishing features that

separate them from libraries or normal user applications. Some of these features

are:

• The overall program’s flow control is not dictated by the application imple-

mented using the framework but by the framework itself.

• Frameworks have a default behavior that must actually be a useful behavior.

46



3. Experimental platform

Figure 3.5: Example of a three-layered component based control architecture.

• A framework can be extended by a user but, in general, is not allowed to

be modified.

There are several generic frameworks that claim to simplify the process to

create a control architecture for a robot. They provide tools to build the compo-

nents that compose the control architecture, simplify the communications among

them and offer simulation tools among others.

Some of these frameworks are more suitable for a kind of robots than others.

Orocos [oro, 2011], for instance, is mainly used to control industrial manipulators

but it has also been successfully applied to autonomous vehicles like the Berlin

Racing Team that took part of the Urban Grand Challenge Competition in 2007

[Kolagheichi-Ganjineh, 2008]. It is a toolkit composed of a set of C++ libraries

for advanced machine and robot control that provides kinematics and dynamics

functions as well as Bayesian filters. On the other hand, the Yet Another Robot

Platform (YARP) is a middle-ware mainly designed for humanoid robots. It sup-

ports building a robot control system as a collection of programs. These programs

are communicated in a peer-to-peer way, with a family of connection types that

can be swapped in and out to match the desired requirements. YARP contains

47



3. EXPERIMENTAL PLATFORM

a set of libraries, protocols, and tools to keep modules and devices cleanly de-

coupled. An example of an humanoid using YARP is the iCub [Sandini et al.,

2004]. Focused in mobile robots there are several solutions and, probably, the

most widely used is the Player Project [Biggs et al., 2010]. The Player robot

server is a robot control interface that supports a wide variety of robots. Most of

them are small mobile robots like e-puck [e-p, 2011], iRobot create [iRo, 2011] or

LEGO Mindstorms [LEG, 2011]. Player’s client/server model allows robot control

programs to be written in several programming languages like C++, Tcl, Java, or

Python and to run on any computer with a network connection to the robot. It

supports multiple concurrent client connections to devices. In fact, Player makes

no assumptions about how to structure the robot control programs, thus being

more minimal than other robot interfaces. Player also includes two simulation

back-ends named Stage and Gazebo. They are a 2D and 3D multi-robot sim-

ulators, respectively, including realistic sensor feedback and physically plausible

interactions between objects. Another toolset originally initiated by the United

States Department of Defense to develop an open architecture for the domain

of unmanned systems is the Joint Architecture for Unmanned Systems (JAUS).

JAUS is built on the five principles of: vehicle platform independence, mission

isolation, computer hardware independence, technology independence and oper-

ator use independence. An open source implementation of the JAUS project,

named OpenJAUS, is currently supported by academic and industrial people.

OpenJAUS includes all of the software and sample code necessary to standardize

an unmanned system. It is based on components, and provide tools for message

exchange, service creation, node management and simulation tools among others.

Orca is another open-source framework for developing component-based robotic

systems. It provides the means for defining and developing the building-blocks

which can be pieced together to form arbitrarily complex robotic systems, from

single vehicles to distributed sensor networks. It uses a commercial open-source

library for communication and interface definition and tools to simplify the com-

ponents development. The cross platform software for robotics research named

Mission Oriented Operating Suite (MOOS) developed by Paul Newman and the

Oxford Mobile Robotics Group (MRG) [Newman, 2005] has received also a good

reception. It has not been used only in mobile robots but in underwater vehi-

cles too. It contains a set of libraries to build independent components that are

communicated among each other by means of a central blackboard. Several com-

48



3. Experimental platform

ponents are included in MOOS to simplify common operations like data logging,

component managing, vehicle teleoperation, navigation or mission definition and

execution.

Although all these solutions come from institutions or foundations, the lack

of an standard solution has caught the attention of some companies that have

decided to offer their own environments for robot control and simulation. The

first one to get some popularity among the robotics community was the Webots

[Web, 2011], developed since 1996 by Cyber Robotics. Webots is a mobile robot

prototyping and simulation software that handles a wide variety of standard sim-

ple mobile robots. Unlike the rest of the solutions, the main use of Webots is

to simulate mobile robots or teleoperate them from a base computer instead of

build a control architecture to be used within them. Microsoft, one of the biggest

software companies in the world, has also developed his own platform named Mi-

crosoft Robotics Developer Studio (MRDS) [Johns and Taylor, 2008]. It offers the

Concurrency and Coordination Runtime (CCR) that makes it easier to handle

asynchronous input and output data, eliminating the conventional complexities of

manual threading, locks, and semaphores. Lightweight state-oriented Decentral-

ized Software Services (DSS) framework enables also to create program modules

that can inter-operate on a robot as well as on connected PCs using a simple, open

protocol. Moreover, the MRDS includes also simulation tools as well as a simple

drag-and-drop Visual Programming Language (VPL) that makes it easy to create

robotics applications. The VPL provides the ability to take a collection of con-

nected blocks and reuse them as a single block elsewhere in the program. MRDS

also support a number of languages including C# and Visual Basic .NET, JScript,

and IronPython. The main criticism received by MRDS is its totally dependence

of Microsoft tools and operative system. Gostai, the company that builds the

Jazz robot, has also its own software platform to control robots and complex sys-

tems in general named Urbi [urb, 2011]. Urbi includes a C++ component library

called UObject that comes with a robot standard Application programming in-

terface (API) to describe motors, sensors and algorithms. Once all the sensors

and actuators in the robot are defined using UObject, the urbiscript orchestra-

tion script language can be used to glue the components together and describe

high level behaviors but with embedded parallel and event-driven semantics to

make the job easier. Finally, there is the solution proposed by Willow Garage

named Robot Operating System (ROS) [WillowGarage, 2010]. Willow Garage

49



3. EXPERIMENTAL PLATFORM

is the manufacturer of PR2 and Texai robots but also leads the development

of the open source ROS as well as supports the development of other popular

projects like the OpenCV [GaryBradski, 2010], the Point Cloud Library (PCL)

and the Player project [Biggs et al., 2010]. ROS is a set of libraries and tools for

building robotics applications. It provides hardware abstraction, device drivers,

libraries, visualizers, message-passing, package management, etc. In only three

years, over than 50 robots are using ROS and more than 1600 public packages

are available. Moreover, Player, Stage and Gazebo have been adapted for being

used within the ROS platform, Urbi integrates ROS support, Orocos tool-chains

allows to use their libraries into a ROS stack and YARP supports the TCPROS,

which is the transport layer for ROS messages and services to communicate their

components. Unlike other systems, ROS is a meta-operating system for a robot

providing the services expected from an operating system.

Despite the facilities provided by these or other frameworks many developers

decide to roll their own solutions. The overhead produced by these packages,

the necessity to adapt the own code to them or the desire to have a fully cus-

tomized and controlled solution are some of the reasons for doing it. However,

as the features offered by these solutions increase, the arguments against their

use decrease. And intermediate solution has been proposed to develop a custom

framework that can be easily connected to several generic frameworks. Thus, it is

possible to keep a small control architecture easy to maintain and very adapted to

our necessities but also, communicate our custom components with components

developed using popular generic frameworks.

The functional requirements offered by the proposed framework are:

• Simplify the creation and the addition of new components.

• Be as less invasive as possible when building the components, minimizing

the coupling with the system and the rest of components.

• Allow to enable and disable components during the initialization and run-

time.

• Allow to simultaneously execute tasks in each component.

• Provide simple mechanisms to communicate the components among them.

50



3. Experimental platform

• Allow components to rise discrete events that can be used by a hierarchically

superior component.

• Allow components to receive action commands that can be sent by a hier-

archically superior component.

• Allow components to save information related with its configuration in a

persistent way.

• Enable component logging features.

• Allow to distribute components among the nodes of a network.

• Provide an homogeneous interface to all the components to access input/output

devices as serial ports, Ethernets, frame-grabbers, etc.

• Allow the communication with generic frameworks like, ROS, MOOS, the

Player project, etc.

Figure 3.6: Framework modular design.

The framework has been divided in five modules as shown in Figure 3.6: the

main module, named core, and four additional modules that provide the rest of

the functionalities.

• The Core Module manages the communication among components together

with the networking module. It is also responsible to transmit and receive

events and actions, to control the components configuration, record the logs

and manage the component’s distribution.

• The Networking Module allows different network nodes to communicate

with each other, and the whole system to communicate with external sys-

tems.

51



3. EXPERIMENTAL PLATFORM

• The Data Manipulator Module provides tools to serialize and deserialize

data structures into an Extensible Markup Language (XML) string or an

XML string plus a byte array. Once all the structures are serialized and

therefore share the same format, they can be easily transmitted between

components.

• The Threading Module provides classes to create new execution threads

allowing to execute parallel threads inside each component. Periodic, non-

periodic and real-time threads are supplied.

• The Input/Output Module gives an uniform and easy access to most of the

input/output devices available in an autonomous vehicle.

A key point when developing a control architecture is to decide how their

components communicate between them. If multiple components are running

into a multi-thread process, and hence sharing the same memory space, com-

munication can be done by means of shared variables. However, when each

component is an independent process that may run in an independent network

node a communication protocol must be established. In order to communicate

components among them it is necessary to define the messages to transmit and

the mechanism to transport these messages. Some well-known communication

packages are Common Object Request Broker Architecture (CORBA), Simple

Object Access Protocol (SOAP) or, in the robotics field, Inter Process Commu-

nication (IPC). CORBA [Henning and Vinoski, 1999] allows a component to call

a remote method implemented in another object. Like in many other communi-

cation packages, an interface Definition Language (IDL) is used to describe each

message and once compiled, the necessary code to handle the communication

is automatically generated. Several implementations of CORBA are available.

The Ace Orb (TAO) is a popular choice in robotics [TAO, 2011] because of its

real-time capabilities. Similar to CORBA there is the Internet Communications

Engine (ICE) [ICE, 2011]. ICE is an object-oriented middleware that provides

object-oriented Remote Procedure Call (RPC) and publish/subscribe function-

alities. SOAP is a RPC protocol for exchanging structured information relying

on the XML as its message format. The IPC [James, 2011] developed by the

Carnegie Mellon University is another popular choice in the robotics commu-

nity. It uses the publish/subscribe messaging pattern instead of the less flexible

request/reply protocol.

52



3. Experimental platform

Standard frameworks provide also their own solutions. Some of them are

based on popular middle-wares like Orca that uses ICE or Orocos that uses

CORBA. Orocos, however, includes two additional toolchains to enable commu-

nication among components: the Portable Operating System Interface for Unix

(POSIX) MQueues asynchronous communications protocol and the communica-

tion system offered by ROS named TCPROC. YARP may use also the TCPROS

mechanism to communicate its components, or programs, in a peer-to-peer way.

However, many other transport protocols to carry data may be used like Trans-

mission Control Protocol (TCP), User Datagram Protocol (UDP), multi-cast,

local, XML/RPC, etc. In ROS, the components, named nodes, exchange infor-

mation by means of publishing ROS messages to topics. A message is a simply

data structure, comprising typed fields defined by a message description language.

Also, request/reply communications among nodes can be done via services which

are defined by a pair of messages: a request and a reply. All the messages are

transported over the TCPROS transport layer that uses standard TCP/Internet

Protocol (IP) sockets. Other frameworks use simple TCP sockets, like the Player

project, or develop its custom communication protocol, like OpenJAUS, based

on JAUS messages that are communicated using the functions provided by the

OpenJAUS library to send and receive them. MOOS presents a different ap-

proach. Instead of providing a component to component communication, all the

components have a connection to a central data base. Then, each component can

publish data to this data base, register for notifications on named data and collect

notifications on named data. This configuration is easier to setup but more ineffi-

cient and even more because messages are sent using the string format. Another

different approach is the implemented by the MRDS. It uses the DSS as a state-

oriented service model that combines the notion of Representational State Trans-

fer (REST) with a system-level approach for building high-performance, scalable

applications. In DSS services are exposed as resources which are accessible pro-

grammatically. By integrating service isolation, structured state manipulation,

event notification, and formal service composition, DSS addresses the need for

writing high-performance, observable, loosely coupled applications running on a

single node or across the network. This solution is similar to the HTTP-REST

software architecture style for distributed hypermedia systems but specially de-

signed to be used in the context of a robotic application.

53



3. EXPERIMENTAL PLATFORM

The communication strategy proposed in our custom framework to commu-

nicate components between them as well as with external systems involves the

cooperation of several modules. The data manipulator module serializes and dese-

rializes the data to be communicated while the core module and the networking

module are used to transmit it. A well known software design pattern named

proxy has been used to separate the message transmission mechanism from the

rest of the code. The proxy pattern provides a surrogate for another component

to control the access to it. The proxy acts as an intermediary between the client

and the target component implementing the same interface than the latter. Then,

each time that a message is received by a proxy, through a direct reference, it is

transmitted to a proxy server. The proxy server is who really delivers the message

to the target component through a local reference. Communications between the

proxy and the proxy server are done through the network by means of TCP or

UDP sockets, ROSTCP, CORBA, IPC, or any other available communication

package. However, from the point of view of a component, all the communica-

tions are done through a local reference. In the current implementation, a custom

network protocol over a persistent TCP connection has been chosen to commu-

nicate proxies and proxy servers. If this network protocol has to be changed for

any other communication package it implies only to re-implement the proxy and

the proxy server. Moreover, as all the components share the same interface, only

one proxy and one proxy server must be implemented for each communication

package being used.

Figure 3.7 shows how components A and B or C and D are communicated

between them through a local reference because they are running in the same net-

work node, and hence, sharing the same address space. However, to communicate

component A with component C, a message has to be sent from component A to

Proxy C, through a local reference. Then, the Proxy C component, in Node I,

sends a message to the Proxy Server in Node II using a custom protocol over

a TCP socket. Finally, the Proxy Server sends the received message to the

component C, again, through a local reference. To enable this communication

system it is necessary to have a proxy instance for each distributed component

and a proxy server in each network node with references to all the distributed

components in this node.

54



3. Experimental platform

Figure 3.7: Example of communication between components.

3.2.2 Reactive layer

The reactive layer implemented in our vehicles is based on the O2CA2 reactive

architecture presented in [Ridao et al., 2002], however, it has been updated and

re-implemented using the previously presented framework. Its goal is to execute

basic primitives in order to fulfill the missions defined at the mission layer. Prim-

itives are basic robot functionalities offered by the robot control architecture. For

an AUV, a primitive can range from a basic component that checks the battery

level (e.g. batteryMonitor()) to a complex component that navigates towards a

3D way point (e.g. goto(x, y, z)). Primitives have a goal to be achieved. For

instance, the goal of the achieveAltitude primitive would be to drive the robot at

a constant altitude.

The reactive layer is very dependent on the sensors and actuators being used.

It is divided in three modules: the vehicle interface module, the perception module

and the guidance and control module (see Figure 3.5).

• The vehicle interface module contains components, named drivers, which

interact with the hardware. It includes sensor drivers, used to read data

from sensors and actuator drivers, used to send commands to the actuators.

An additional function provided by the drivers is to convert all the data to

the same units as well as to reference all the gathered data to the vehicle’s

fixed body frame.

55



3. EXPERIMENTAL PLATFORM

• The perception module receives the data gathered by the vehicle interface

module. Perception module components are called processing units and

the main ones are: the navigator, the obstacle detector and the target

detectors. The navigator processing unit estimates the vehicle position and

velocity merging the data obtained from the navigation sensors by means

of a Kalman filter [Ribas et al., 2010]. The obstacle detector measures the

distance from the robot to the obstacles, mainly detected using acoustic

sensors. Target detectors process acoustic or visual images to extract the

most relevant features from them. Multiple target detectors have been

programmed in order to detect different objects [El-Fakdi et al., 2010; Ribas

et al., 2007].

• The guidance and control module includes a set of behaviors, a coordinator

and a velocity controller. Behaviors receive data from the vehicle interface

or perception modules, remaining independent of physical sensors and ac-

tuators used. Simple behaviors can be programmed as simple controllers,

however, when the number of parameters to tune increases, it may be dif-

ficult to adjust them. Then, Reinforcement Learning (RL) techniques can

be used to improve the adaptability of vehicle behaviors to the environment

[Carreras et al., 2003; El-Fakdi et al., 2010]. The second component, the co-

ordinator, combines all the responses generated by the behaviors in a single

one [Carreras et al., 2001]. Extract 3.1 shows the coordination rule. Basi-

cally, each behavior generates a response including a velocity set-point for

each DOF, an activation level for each DOF and a priority. The activation

level is used to indicate over which DOFs the primitive acts. Responses

are sorted by their priority and those with higher priority dominate over

the others. The last component, the velocity controller, takes the velocity

set-point provided by the coordinator, turns it into a velocity and com-

putes a response for each thruster to achieve the desired velocity. A simple

Proportional Integral Derivative (PID) for each DOF is used for this task.

The COLA2 architecture can be run in simulation mode. Then, instead of

using the driver components available in the interface module, a module that

simulates the vehicle dynamics as well as its environment is used. This module,

named Neptune simulator [Ridao et al., 2004a], sends navigation data to the nav-

igator processing unit while receives thruster set-points from the vehicle velocity

56



3. Experimental platform

controller. It is also able to artificially generate camera images and acoustic sensor

data for the obstacle detector and the target detectors processing units. There-

fore, for the perception module and the guidance and control module there is no

difference in interfacing the Neptune simulator or the real sensor/actuator drivers.

Algorithm 3.1: Behavior coordination responses algorithm.

struct bhResponse
float response[NDOF] ;

float actLevel[NDOF] ;

int priority ;

coordinator( vector<bhResponse> responses )
float k = 1 ; //Coordination tuning parameter

vector<bhResponse> sortedResp = sortByPriority(responses) ;

for int j = 1 ; j < sortedResp.size() ; j++ do

for int i = 0 ; i < NDOF ; j++ do
sortedResp[j].reponse[i] = sortedResp[j-1].response( i ) *

sortedResp[j-1].actLevel( i ) + ( k - responses[j-1].actLevel( i ) )

* sortedResp[j].actLevel( i ) * sortedResp[j].response( i ) ) ;

sortedResp[j].actLevel[i] = sortedResp[j-1].actLevel( i ) + ( k -

sortedResp[j-1].actLevel( i ) ) * sortedResp[j].actLevel( i ) ) ;

sortedResp[sortedResp.size() - 1].priority = 1 ;

return sortedResp[sortedResp.size() - 1] ;

3.2.3 Execution layer

The execution layer acts as the interface between the reactive layer and the mis-

sion layer, translating high-level plans into low-level commands. Additionally,

the execution layer monitors the primitives being executed in the reactive layer.

The functionalities of this layer have been included in the proposed MCS. Dif-

ferent approaches can be found in the literature to implement this layer: from

lisp [Barbier et al., 2001] to prolog [Healey et al., 1996] interpreters that translate

high-level plans into basic commands, to more conventional alternatives that use

state machines [Newman, 2005] or Petri nets [Caccia et al., 2005; Oliveira et al.,

1998] to relate the Discrete Event System (DES) that describes an autonomous

mission with the primitives under execution.

57



3. EXPERIMENTAL PLATFORM

In COLA2, the execution layer is composed by two main components: the

Architecture Abstraction Component (AAC) and the Petri Net Player (PNP), see

Figure 3.4. The AAC is located at the bottom of the execution layer and keeps

the mission and execution layers, vehicle-independent. Therefore, the reactive

layer is the only one tied with the vehicle’s hardware. The AAC provides an

interface to the reactive layer based on three types of signals: actions, events and

perceptions.

• Actions enable or disable basic primitives within the vehicle’s reactive layer.

For instance, an action can enable a primitive which controls the vehicle’s

depth pointing to a desired set-point and the maximum time to reach it.

• Events are triggered in the reactive layer to notify changes in the state of

its primitives. Following the last example, an event can announce that the

desired depth has been reached within the required time or that the time

has run out.

• Perceptions, meaning specific sensor or processing unit values, are transmit-

ted from the reactive layer to the mission layer in order to be used to extract

relevant information about the current world state when an on-board plan-

ner is used, as it will be shown in Chapter 7. Therefore, the execution layer

is not using the perceptions, just transfering them from the reactive to the

mission layer.

Although the three layers that compose the COLA2 have been entirely imple-

mented using the proposed framework, the AAC allows to connect the execution

layer and the mission layer, which compose the MCS, to other vehicles that al-

ready implement its own reactive layer. To this end, the actions that must be

carried out are:

• Map the primitives that the particular system is able to perform into actions

that the MCS can execute.

• Map the notifications produced by these primitives into interpretable events

for the MCS.

• Specify which perceptions have to be transmitted from the reactive to the

mission layer.

58



3. Experimental platform

Particularly, in COLA2, these are the points to take into account:

• Since the primitives that the proposed reactive layer can execute are pro-

vided by the behaviors within the control and guidance module but also by

the processing units in the perception module, actions to enable, disable

and reconfigure all these components must be defined.

• Each enabled primitive is able to raise notifications indicating its state.

Basically, two notifications may be produced: the primitive has achieved its

goal or the primitive is not able to achieve its goal. The AAC has to receive

these notifications and map them into an event.

• Some values, produced by sensor components, processing units, behaviors

or even actuators, are useful to work out the current world state. These data

have to be transmitted from their source components to the component that

uses then to extract the knowledge about the current world state: the world

modeler. In COLA2, navigation data from the navigator component, safety

information collected by water sensors or the battery monitor and boolean

information produced by object detector processing units is transmitted to

build the current world state.

The second module included in the execution layer is the PNP. The PNP exe-

cutes mission plans using the Petri net formalism by sending actions and receiving

events through the AAC. The execution layer behaves as a DES which connects

high-level discrete plans, given by the mission layer, with low-level continuous

primitives, in the reactive layer. The PNP controls all the timers associated to

timed transitions, fires enabled transitions following the Petri net transition rule,

sends actions from the execution layer to the reactive layer and, if necessary,

fires enabled transitions in the mission layer when events are received. The PNP

component uses TCP sockets to communicate with the AAC. Hence, the AAC

can be implemented together with the reactive layer, using the same framework,

in order to simplify the communication with all its components. For instance,

if a vehicle implementing a reactive layer using ROS wants to be controlled by

the proposed MCS, an AAC can be implemented in ROS to simplify the access

to all the nodes in the reactive layer. The AAC is then communicated with the

PNP through a TCP socket and no more changes have to be performed in the

execution or mission layers neither into the native ROS reactive layer.

59



3. EXPERIMENTAL PLATFORM

How Petri nets are used to define a mission and how the PNP interprets

mission plans is presented in chapters 4 and 5.

3.2.4 Mission layer

Predefined plans are the current state of the art for AUV missions. However,

when dealing with unknown changing environments with imprecise and noisy

sensors, off-line plans can fail. The difficulty of controlling the time in which

events happen, energy management, sensor malfunctions or the lack of on-board

situational awareness may cause predefined plans to fail during execution as as-

sumptions upon which they were based are violated [Turner, 2005]. Therefore, it

is worth to study the inclusion of an on-board planner with the ability to modify

or re-plan the original plan when dealing with missions in which an off-line plan

is susceptible to fail. Thus, a compromise between predefined off-line plans and

automatically generated on-line plans is desirable. Our solution starts with the

introduction of a high-level language, named Mission Control Language (MCL)

to describe off-line plans that can be automatically compiled into a Petri net fol-

lowing a set of desired properties, as introduced in Chapter 5. Next, the interface

with an on-board planner able to automatically sequence planning operators to

fulfill a set of given goals is studied in Chapter 7.

3.2.5 Implementation

The C++ language and a set of well known libraries have been chosen to develop

the framework and therefore the components that compose the COLA2 control

architecture. The main libraries used are Standard Template Library (STL) [In-

ternationa, 2010] and Boost [Dawes et al., 2010] for basic structures, algorithms,

threading and device access, Poco [Engineering, 2010] that provides logging facili-

ties and an XML parser, OpenCV [GaryBradski, 2010] for image processing tasks

and Another Tool for Language Recognition (ANTLR) [Parr, 2010] to develop

the high-level mission definition language compiler presented in Chapter 5.

To solve the repetitive functions that arise when developing a control archi-

tecture, a set of custom libraries have been implemented too:

• A Numeric library that provides the definition of constants, units conver-

sion, 2D and 3D algebraic transformations, etc.

60



3. Experimental platform

• A library to simplify the development of an Extended Kalman Filter (EKF)

for navigation and mapping purposes.

• A library to simplify the development of PID controllers mainly used by

behaviors in the guidance and control module.

The three layers composing the COLA2 have been implemented using these

libraries/framework. However, the components of the reactive layer and the AAC

can be implemented using a different framework and connected to the proposed

MCS through a standard TCP socket in order to keep the proposed MCS vehicle

independent.

61



3. EXPERIMENTAL PLATFORM

62



Chapter 4

Defining a mission using Petri

nets

Chapter 2 introduces several Mission Control Systems (MCSs) used by under-

water vehicles to define and execute autonomous missions. Each mission plan

is basically a Discrete Event System (DES) which determines the vehicle primi-

tives to be executed, in accordance with the events raised in the vehicle control

architecture, to fulfill a mission. Despite the multiple alternatives proposed in

the literature, well known formalisms like Finite State Machines (FSMs) or Petri

nets have been proved to be the most suitable way to describe a mission for-

mally. Petri nets and FSM are a good choice because they are well studied and

naturally oriented towards the modeling and analyzing of asynchronous and con-

current DESs. Moreover, an appropriated use of these formalisms leads naturally

to a unifying formal framework for the analysis of the logical behavior of the DES

that occurs at all levels of the MCS as well as simplifies its posterior execution.

Finally, using well known formalism it is possible to guarantee basic properties

verifying the resulting DES before its execution. Compared with FSMs, Petri

nets are more compact and better suited to express parallelism and can also rep-

resent a larger class of languages than standard FSMs. Both Petri net and FSM

formalisms provide reachability analysis techniques to check basic properties as

deadlock avoidance or the reachability of final states from an initial state. How-

ever, Petri nets provide also linear-algebraic algorithms that can be used to obtain

more information about its behavior. Therefore, Petri nets have been choose as

the formalism to describe the mission plans for Autonomous Underwater Vehicles

63



4. DEFINING A MISSION USING PETRI NETS

(AUVs) following the methodology proposed in this dissertation. Section 2.6.1

presents a an extended discussion about why Petri nets have been used as the

base formalism in the proposed MCS.

Several elements have to be defined to program a mission plan. We not only

pretend to model the flow between vehicle primitives but the framework in which

these primitives are executed too. Therefore, these primitives are modeled first,

by means of Petri nets, to describe their behavior. Primitives are part of the

control architecture and therefore, some resources can be modeled together with

them. Next, to control the execution flow of primitive models as well as to

supervise its own execution a set of Petri net structures named Petri Net Building

Blocks (PNBBs) has been proposed. PNBBs are the basic elements used to

define a mission plan and are divided in two main classes: tasks and control

structures. Tasks are used to supervise the execution of primitive models, while

control structures are used to control the execution flow between PNBBs (tasks

as well as control structures) sequentially, in parallel, iteratively or conditionally.

Once primitive models and PNBBs are defined, a mission can be defined just

composing them according to some basic rules. If a set of desired properties

is hold for all these basic control structures (primitive models, tasks and control

structures), the mission plan obtained through the composition of these structures

will accomplish these same properties without need of further verification.

After the formal definition of a DES, the chapter describes how the vehicle

primitives are modeled and supervised using tasks as well as how their execution

flow is controlled by means of control structures. The properties that have to be

verified for each PNBB as well as how these PNBBs are composed among them

are also introduced.

4.1 Discrete Event System

To execute a mission, an AUV has to enable/disable a number of vehicle primitives

in a specific order. This order will be determined by two factors: the mission to

perform and the changes produced in the environment or in the vehicle itself

while executing these vehicle primitives. As seen in previous chapters, actions

are issued to the execution layer to enable/disable vehicle primitives and events

are received from these primitives informing about changes in the environment

or in the vehicle itself. Then, a mission plan can be seen as a DES responsible of

64



4. Defining a mission using Petri nets

defining which actions must be executed in each state according to the received

events.

Definition 4.1.1. A Discrete Event System is a discrete-state, event-driven sys-

tem, that is, its state evolution depends entirely on the occurrence of asynchronous

discrete events over time [Cassandras and Lafortune, 2007].

Then, a formal definition for a DES is

Σ = {S,A,E, γ}, (4.1)

where

• S = {s1, s2, · · · } is a finite or recursively enumerable set of states;

• A = {λ, a1, a2, · · · } is a finite or recursively enumerable set of actions plus

the null action λ. A is also known as the set of output events;

• E = {λ, e1, e2, · · · } is a finite or recursively enumerable set of events plus

the null event λ. E is also known as the set of input events; and

• γ : S × E → 2S × A is a state-transition function.

The state-transition function γ(s, e) = (s′, a), where s, s′ ∈ S, e ∈ E and

a ∈ A, represents the system’s behavior in response to the detected events. This

is when the system is in state s and the event e is received, the system should

change its state to s′ and execute the action a. Since null events and actions

(λ) are included in E and A respectively, the system can change its state even

if no events are received (γ(s, λ) = (s′, a)). Similarly, a state-transition may be

produce without launching any action (γ(s, e) = (s′, λ)).

In this dissertation, Petri nets conform the formalism chosen to describe the

DES to be used for describing autonomous missions. Appendix A presents some

general concepts about Petri nets.

4.2 Primitives

As introduced in previous chapters, primitives are basic robot functionalities of-

fered by the vehicle control architecture. For instance, typical primitives for an

65



4. DEFINING A MISSION USING PETRI NETS

AUV are: reach a certain depth (AchieveDepth), navigate towards a way-point

(Goto) or detect that an alarm has raised (Alarm). In general, primitives have a

goal to achieve, for instance, the goal for the Goto primitive is to drive the robot

inside a particular sphere of acceptance centered in a target way-point.

Chapter 2 shows that one of the benefits of using a formalism appears when

not only the mission plan is defined using the formalism but also the framework in

which the mission is executed. In control architectures like Coral [Oliveira et al.,

1998], each system in charge of controlling some vehicle capabilities is modeled

using Petri nets. Similar happens in the architecture proposed by the he CNR-

ISSIA [Caccia et al., 2005] where Petri nets are used to describe the execution

flow as well as to model sensors and controllers. As the proposed approach wants

to be vehicle independent, it is not possible to model the elements that compound

the vehicle (or the reactive layer) and then use these elements to define a mission.

Instead, we model the primitives that the vehicle is able to execute regardless how

they are implemented or the dependencies that they have. Then, some properties

have to hold:

• Each primitive can be enabled regardless of which other primitives are al-

ready enabled.

• If two or more primitives can not be enabled simultaneously, because they

exclusively share some resources, they have to be implemented as a single

primitive.

• Primitives have to take care to behave as expected in the primitive model.

Therefore, although a software or hardware failure is produced the primitive

have to finalize with a valid final state.

From the point of view of a DES, what we care about primitives are the

actions that they can receive and the events that the primitives may raise. A

generic primitive model have been defined in which only two actions can be sent

to a primitive: one for enabling it and another for disabling it. However, this

assumption can be easily enriched adding some parameters to these actions. For

instance, the action to enable the primitive that drives a robot to a specific

way-point can be parametrized with the location (x, y and z ) of this way-point

or if a primitive implements several behaviors that share a resource, it can be

parametrized to select which one to execute. On the other hand, each primitive

66



4. Defining a mission using Petri nets

may raises several events, but to keep things simple, only two of them will be

considered in this generic primitive model: an ok event informing that an already

enabled primitive has achieved its goal and a fail event informing that a failure

or time-out happened while the primitive was enable.

The behavior of a primitive able to receive two actions and to raise two events

can be modeled using a Petri net. If only the relationship between actions and

events is expressed, a general Petri net model can be build. Figure 4.1 presents

three models for primitives increasing in complexity. Next, these three models

are discussed.

• The enable/disable primitive model shown in Figure 4.1(a), models the

actions enable and disable but any event. To enable the primitive, place

enable has to be marked. If it was previously disabled (place off marked)

the transition T0 fires sending an enabling action to the vehicle primitive

and marking the place exe that indicates that it is under execution. When

the primitive is enabled, it can be disabled marking the disable place, that

produces the firing of T1 sending a disable action to the vehicle primitive

and marking again the off place.

• The enable/disable, ok model, see Figure 4.1(b), presents a primitive which

is pursuing a certain a goal. When the primitive is enabled (place exe

marked), if the goal that the primitive is seeking is reached the ok event is

raised in the vehicle primitive and it is received in the primitive model firing

T2 and marking the place ok. Transition T2 is a non-immediate transition

that depends on the reception of an external event to fire. Here, transition

T2 is related with event ok, then, to fire, transition T2 have to be enabled

and event ok received. The primitive may be disabled from the ok state

(when place ok is marked) or from the exe state (when place exe is marked).

All the transitions that restore the token to place off (here T1 and T3) sent

also a disabling action to the vehicle primitive.

• The enable/disable, ok/fail model shown in Figure 4.1(c) introduces a prim-

itive with four main states: (i) disabled, (ii) seeking a goal, (iii) the goal has

been achieved and (iv) an error has occurred. In the first and second states,

place off or exe are marked respectively. In the third state, while place exe

is marked, the vehicle primitive running in the robot control architecture

67



4. DEFINING A MISSION USING PETRI NETS

is responsible for checking the achievement conditions. When these condi-

tions are achieved, an ok event raises firing transition T2 and marking the

ok place. On the other hand, if an error is detected by the vehicle primitive

while it is under execution, the fail event raises firing T3 and marking the

fail place. In this model, the primitive can be disabled from states exe, ok

or fail by firing transitions T1, T6 or T7 respectively.

These primitive models must be used as a guide line to generate the vehicle

primitives that runs on the vehicle architecture and those primitives must en-

sure that they behave like the model that represents them. So, it is possible to

ensure that the input-output behavior of the primitive satisfies the pre-specified

requirements and then, it can be safely executed by a supervisory Petri net. The

three presented models contain non-immediate transitions (named enabling and

disabling) that are fired when a hierarchically superior Petri net decides it. When

transition T0 in Figure 4.1(a), (b) or (c) fires, an enabling action is sent from

the primitive model to the vehicle primitive through the Architecture Abstrac-

tion Component (AAC). Disabling actions are sent from all the transitions that

restore the token to the off place. The events raised by the vehicle primitive are

also related to non-immediate transitions. These transitions (T2 in Figure 4.1(b)

and T2 and T3 in Figure 4.1(c)) models the continuous process executed in the

vehicles primitive that detects if the primitive goal is achieved, T2 fires, or if the

primitive is unable to achieve its goal and therefore fails, T3 fires. In a partic-

ular primitive, for instance the AchieveDepth primitive, the firing of T2 can be

subjected to the condition:

”If the vehicle has kept its depth during n seconds within an error margin of

plus/minus m meters respect to a desired depth, then the ok event that produces

the firing of T2 is raised.”

Thus, when a condition is achieved by the vehicle primitive, an event is sent

from the reactive layer to its corresponding Petri net model in the MCS through

the AAC to fire the transition that is related with this event. As only one primitive

model is associated to each vehicle primitive and only one transition is associated

to each event belonging to a primitive, when an event is received in the MCS

the transition associated to this event is always enabled and ready to fire if the

vehicle primitive has been designed according to the primitive model.

68



4. Defining a mission using Petri nets

(a)

(b)

(c)

Figure 4.1: Petri net model of three different robot primitives and its correspond-
ing state machine.

69



4. DEFINING A MISSION USING PETRI NETS

4.2.1 Primitive verification

Once a Petri net model for a vehicle primitive has been formally defined it can

be verified. Basically, we want to check that the Petri net model evolves free of

deadlocks from an initial state, where the Petri net is enabled, to a final state

and, moreover, that once disabled it can be reused. The desirable properties

of the net can be checked performing a reachability analysis or, alternatively,

studying its invariants, siphons and traps, see Appendix A. When performing

a reachability analysis, it is well known the high computational burden due to

the state explosion problem. However, at this level, Petri nets modeling vehicle

primitives are kept small so this analysis can be easily done. The reachability

graph presented next, is computed considering that:

Each vehicle primitive is ”connected” (receives actions and sent events) with

only one primitive model and can be only disabled from a hierarchic supervisor if

it was previously enabled for this same supervisor.

The reachability graph for the primitive model presented in Figure 4.1(c) is

shown in Figure 4.2. It contains 8 states. Each one of these states corresponds

to a marking vector in the Petri net in which Si = {µ(enable) µ(disable) µ(exe)

µ(off) µ(ok) µ(fail)}. Figure 4.2 shows how the Petri net can evolve free of

deadlocks from the initial state SOff towards any other state and come back later

to SOff . Because the primitive initial and final states are the same, the primitive

model is reusable (e.g. the AchieveDepth primitive can be run more than one time

without reinitialization). It is worth noting that 4 tangible states, see Appendix A,

appear in the reachability tree: SOff = {0 0 0 1 0 0}, SExe = {0 0 1 0 0 0},
SOk = {0 0 0 0 1 0} and SFail = {0 0 0 0 0 1}. SOff is the rest state, here the

primitive is disabled, place off is marked, and waiting to be enabled. In SExe, the

primitive is seeking for a goal, place exe is marked. SOk appears when the goal

has been achieved, place ok is marked, while SFail state indicates that a failure

has happened, place fail is marked. The other four states SEnabled = {1 0 0 1 0 0},
Sdisabled 1 = {0 1 1 0 0 0}, Sdisabled 2 = {0 1 0 0 1 0}, and Sdisabled 3 = {0 1 0 0 0 1}
are vanishing states. Figure 4.1(c) shows a simplified reachability graph in which

only tangible states are present.

Although a reachability analysis is enough to check all the desired properties

it is possible to analyze siphons, traps and invariants to prove the deadlock free

70



4. Defining a mission using Petri nets

Figure 4.2: Primitive model reachability graph with vanishing states.

condition. When analyzing them, only the trap

trap = {exe, off, ok, fail} (4.2)

is found. One place invariant is also found involving the same set of states:

exe+ off + ok + fail = 1 (4.3)

According to Iordache and Antsaklis [2006a], if all the siphons in a Petri net

are controlled by an invariant or a trap and they are marked in their initial state

(in SDisabled the µ(off) = 1) it is possible to ensure that they will not lose all

their tokens and hence, to ensure that a deadlock will never happen.

4.3 Petri Net Building Blocks

PNBBs are the basic building structures used to encode a mission. They are

Petri nets with a definite functionality that implement a specific interface.

We understand as an interface the set of places belonging to a Petri net that

are used to connect this Petri net structure with the others. All the PNBBs have

at least one interface I1 (or only I), named external interface, that is composed

71



4. DEFINING A MISSION USING PETRI NETS

by a set of places where

I = Iinput ∪ Ioutput
Iinput ∩ Ioutput = Ø

∀p ∈ Iinput, •p = Ø

∀p ∈ Ioutput, p• = Ø. (4.4)

The places that compose the interface are called fusion places. A state that

contains a place p ∈ Iinput marked, is named an input state while a state that

contains a place p ∈ Ioutput marked, is named an output state. According to the

number of places in the interface, different interfaces may be defined. Figure 4.3

presents four PNBBs that implement a different interface each. Moreover, a block

diagram that exemplifies the behavior of each interface is also shown.

• Figure 4.3(a) shows a PNBB with Iinput = {begin}, Ioutput = {ok} that can

be only enabled and when a condition is achieved an ok state is marked. Its

interface includes one input place and one output place. When the place

begin is marked, the non-immediate transition T0 is enabled. When T0

fires the output place ok is marked.

• Figure 4.3(b) shows a PNBB with Iinput = {begin}, Ioutput = {ok, fail} that

once it is enabled it can achieve a successful final state, place ok marked,

or an unsuccessful final state, place fail marked. Its interface includes one

input place and two output places. When the place begin is marked, the

non-immediate transitions T0 and T1 are enabled and in conflict. The first

one to fire will mark the output place ok or fail.

• Figure 4.3(c) shows a PNBB with Iinput = {begin, abort}, Ioutput = {ok}
that includes two input places and one output place in its interface. When

the structure is enabled, place begin marked, if place abort becomes marked

T1 fires immediately removing the token in the begin place. Otherwise, if

T0 fires the output place ok is marked.

• Figure 4.3(d) corresponds to a PNBB with Iinput = {begin, abort}, Ioutput =

{ok, fail} that can be enabled and aborted. While the structure is enabled

it can reach a desired goal state, marking place ok, or it can fail trying to

achieve this state, marking place fail. Non-immediate transitions T0 and

72



4. Defining a mission using Petri nets

T1 are enabled when the PNBB is started and may fire marking the output

place ok or fail. However, if place abort becomes marked once the PNBB

has started, T2 fires immediately removing the token in the begin place

disabling transitions T0 and T1.

Two different types of PNBBs have been designed: tasks and control struc-

tures. Tasks are used to supervise primitive models. They implements only one

interface, the external interface I. However, control structures, that are used to

compose tasks as well as other control structures among them, implement multi-

ple interfaces (I1...In). Control structures implement an external interface as all

the PNBBs (named I1) but also implement several internal interfaces (I2...In) in

order to compose other PNBBs among them as explained later.

4.3.1 PNBBs verification

One of the major concerns when programming a mission for an AUV is to be

able to verify some properties of the defined mission before its execution. Our

approach to perform this verification consists on checking some properties to all

the PNBBs used to compose the whole mission. If these properties holds for

each PNBB they will hold also for the whole mission without need of further

verifications. Next, the conditions to be checked for each PNBB are enumerated:

1. Common Interface: all the PNBBs used in a mission implements the

same interfaces (external if tasks or external and internal if control struc-

tures).

2. Reachability Condition: from all possible initial states, the PNBB should

evolve free of deadlocks until reaching a valid final state.

3. Reusability: task PNBBs have to be reused during the execution of a

mission avoiding to be duplicated. Then the marking of all its places must

be the same in the initial and final states except for the places belonging

to the external interface.

All the PNBBs used to define a mission must share the same interface. Then,

as the interface presented in Figure 4.3(d) is the more general one, it is the one

that have been used in this dissertation. However, any other interface with a well

73



4. DEFINING A MISSION USING PETRI NETS

(a) (b)

(c) (d)

Figure 4.3: (a) One input one output interface, (b) one input two outputs inter-
face, (c) two inputs one output interface, (d) two inputs two outputs interface.

74



4. Defining a mission using Petri nets

defined set of input and output places could be used. It is worth noting that

standardizing and limiting the number of actions and events for the tasks it is

easy to systematize the definition of a mission.

To evaluate the last two properties, a reachability graph or an analysis based

on siphons, traps and invariants can be performed. Since the PNBBs have been

designed small enough, a small computational burden is expected if the reacha-

bility graph is build.

4.4 Tasks

Tasks are PNBBs that supervise the execution of a primitive model. Tasks have

an external interface in order to be connected with other PNBBs but also are

able to communicate with vehicle primitives by means of actions and events.

The execution of an action involves sending a message from the MCS to the

vehicles control architecture. This message will enable or disable one of the

vehicle primitives. A set of parameters can be associated with these actions.

Events communicate changes detected by the vehicle primitives to the MCS.

Every event is associated to a particular non-immediate transition that will fire

once enabled if its related event is received.

Figure 4.4 shows an example of a task, with the interface presented in Fig-

ure 4.3(d), and the relationship with the primitive model presented in Figure 4.1(c).

The task may receive two events, ok and fail, and send two actions, enable and

disable. Hence, its interface is defined by:

Iinput = {begin, abort}
Ioutput = {ok, fail}

I = Iinput ∪ Ioutput = {begin, abort, ok, fail} (4.5)

When the transition TT0 in Figure 4.4 fires, the primitive model is enabled.

TT0 replaces here the enabling transition shown in Figure 4.1(c). Transitions

TT1, TT2 and TT3 disable the primitive model. These transitions replace then

the transition disabling in Figure 4.1(c). The events sent from the vehicle primi-

tive to the supervisor task work as follows: when the ok event is received, transi-

tion T2 fires marking the primitive ok place in the primitive model but also the

is ok place. Similarly, if the fail event raises, places primitive fail and is fail are

75



4. DEFINING A MISSION USING PETRI NETS

Figure 4.4: Example of a task PNBB and its relationship with the primitive
model presented in Figure 4.1.

76



4. Defining a mission using Petri nets

Figure 4.5: Execution action structure. Extracted from Bibuli et al. [2007].

marked. An importance difference with respect to the primitive model shown in

Figure 4.1(c) is the off place. This place acts as a mutual exclusion avoiding to

execute the primitive if it is already under execution. In the primitive model the

off place was connected with the transition T0 while here it is connected with

TT0. The mutual exclusion has been moved one step backward avoiding the

multiple enabling of a primitive, however, the behavior in the primitive model

has not changed.

The task presented in Figure 4.4 is very similar, in essence, to the execution

action structure introduced in Bibuli et al. [2007] where each execution action

structure, that is equivalent to the proposed PNBB tasks, is internally composed

by a simple Petri net whose marking defines the action state as shown in Fig-

ure 4.5.

4.4.1 Task verification

When a superior control structure marks the input place begin, transition TT0

fires enabling the vehicle primitive, place enable marked. Once the primitive is

enabled it is disabled if and only if:

1. The primitive achieves its goal raising an ok event which fires T2. The

firing of T2 marks the place is ok that produces the firing of TT2 disabling

77



4. DEFINING A MISSION USING PETRI NETS

the primitive.

2. A failure is detected within the primitive and the fail event, that fires T3,

is raised. The firing of T3 marks the place is fail that produces the firing

of TT3 disabling the primitive.

3. The task is aborted by a hierarchic PNBB marking the input place abort in

the interface. If the task is under execution when the place abort is marked,

transition TT1 fires disabling the primitive.

If the first or the second conditions happens, the task disables the primitive

marking again the off place and marking the ok or fail output place in the

interface. However, if the latter happens, abort marked, the primitive is disabled,

place off becomes marked, and the rest of tokens inside the task are removed.

The reachability graph for the Petri net in Figure 4.4 is shown in Figure 4.6. It

contains only four states where Si={µ(begin), µ(abort), µ(ok), µ(fail), µ(is exe),

µ(is ok), µ(is fail), µ(enable), µ(disable), µ(off), µ(exe), µ(primitive ok),

µ(primitive fail) }. {begin, abort, ok, fail} are the set of places that compose

the interface, {enable, disable, off, exe, primitive ok, primitive fail} are the set of

places in the primitive model and {is exe, is ok, is fail} are the rest of places

that compose the PNBB task. The four tangible states are STask Disabled =

{0 0 0 0 0 0 0 0 0 1 0 0 0}, STask Exe = {0 0 0 0 1 0 0 0 0 0 1 0 0},
STask Ok = {0 0 1 0 0 0 0 0 0 1 0 0 0} and STask Fail = {0 0 0 1 0 0 0 0 0 1 0 0 0}.
From the initial state STask disabled in which only the place off is marked two

final states can be reached. Both of them have the place off marked and the

only difference is because or place ok, in STask ok, or place fail, in STask fail, have

been marked depending on how the primitive has finalized. If the task has been

hierarchical aborted, place abort has received a token, while it was under execu-

tion, STask exe, state STask disabled is reached again. Then, the task evolves from

the initial state to a final state within deadlocks except if it is aborted. In any

case, from any valid marking in the input interface,begin or begin and later abort,

only one place in the output interface, ok or fail, is marked or any if the task is

aborted. The rest of places preserve its original marking making the structure

reusable.

The reachability graph presented in Figure 4.6 has been build according to

one assumption:

78



4. Defining a mission using Petri nets

Figure 4.6: Task PNBB reachability graph.

A task PNBB can only be aborted by the hierarchical superior PNBB that has

started it and only after being started.

Even though primitives are well supervised by tasks, if the vehicle primitive

fails and it is not capable of raising an ok or a fail event the primitive model,

and therefore the task that supervise it, may never end. To solve this problem

two alternatives can be employed:

1. Model a time-out in the supervisor task using a timed transition as shown in

Figure 4.7. When the timed transition (TT4) fires, the primitive is disabled

as if a fail event had occurred.

2. Trust in a hierarchical superior structure to abort the task. However, we

discourage the use of this alternative because of the potential risks involved.

Figure 4.8 shows the reachability graph for a timed task. The only differ-

ence with respect to the reachability graph shown in Figure 4.6 is that the state

STask fail can be reached if a fail event is received firing T3 and then TT3 and

T7 but also if a time-out happens firing TT4 and then TT5 and T1.

4.5 Control structures

In order to execute the PNBB tasks sequentially, in parallel, or using iterative

or conditional structures another kind of PNBBs are used. These PNBBs called

79



4. DEFINING A MISSION USING PETRI NETS

Figure 4.7: Example of a task PNBB with a timed transition (TT4) able to
disable the execution of the supervised primitive if a time-out happens.

Figure 4.8: Reachability graph for the timed task PNBB shown in Figure 4.7.

80



4. Defining a mission using Petri nets

control structures are used to aggregate tasks as well as other control structures

with the objective of modeling more complex actions.

PNBBs are highly dependent on their interface. On one hand, the interface

of a task depends on the primitive models being used. For instance, if a primitive

that only generates an output event is used, a single input single output interface,

i.e. Figure 4.3(a), could be used to supervise it. On the other hand, depending

on the desired control flow between PNBBs, it is possible that a more complex

interface could be needed. If a primitive that can generate two output events

has to be controlled, from the point of view of a task, the interface presented in

Figure 4.3(b) should be enough to supervise it, however, if we want to execute

the primitive preemptively, the interface in Figure 4.3(d) must be used instead to

be able to abort the task during its execution. As one of the requirements of our

system is that all the PNBBs must share the same interface, the most general will

be always used. In general, if the interface shown in Figure 4.3(a) is used, it is

only possible to execute PNBBs in sequence or in parallel. Using an interface with

two different outputs (ok and fail), as the one shown in Figure 4.3(b), conditional

as well as iterative constructions are also possible. With the addition of an abort

input place, see Figure 4.3(d), a rich set of preemptive control structures can be

designed.

PNBBs are composed among themselves by means of their interface places. It

is very interesting, for analysis purposes, to find a generic reduced model which,

starting in the same initial state, reaches exactly the same final states [Oliveira

and Silvestre, 2003]. Then, these generic reduced model may be used to set-

up complex control structures. Careful designing those aggregated structures, we

may enforce them to accomplish the same safety properties exhibited by primitive

models and tasks, achieving a simple method for building safe mission plans

through the composition of safe PNBBs, while avoiding tedious computational

expensive verification methods.

Figure 4.9 presents a PNBB implementing the interface I = {begin, abort,

ok, fail} introduced in (4.5). From the interface point of view, this Petri net

behaves in the same way that the tasks presented in Figure 4.4 and Figure 4.7.

This means that the same reachability graph is produced. Then, it may be used

as a reduced Petri net model to represent a generic PNBB.

81



4. DEFINING A MISSION USING PETRI NETS

Figure 4.9: Example of a simplified PNBB.

(a)

(b)

Figure 4.10: (a) Control structure used to sequence two PNBBs and (b) its
schematic model.

82



4. Defining a mission using Petri nets

4.5.1 Sequence control structure

The control structure shown in Figure 4.10 is used to compose two PNBBs to be

executed sequentially. While Figure 4.10(a) is the real Petri net control structure

that carry out this functionality, Figure 4.10(b) is a schematic model of this

sequence control structure. Blocks A and B, in the schematic model, represent

the two PNBBs in the sequence. Arrows a and b are the respective ok outputs

for each block while a’ and b’ correspond respectively to the fail outputs for the

PNBBs A and B. The control structure model begins with the input i that goes

towards the A block and ends with the output state o if ok or o’ if fail.

The sequence control structure in Figure 4.10(a) contains the same interface

that the PNBB in Figure 4.9 but triplicated: I1 = {begin1, abort1, ok1, fail1},
I2 = {begin2, abort2, ok2, fail2} and I3 = {begin3, abort3, ok3, fail3}.

Control structures not only have to implement an external interface, I1, in

order to be connected with other PNBBs but also one or more internal interfaces,

here I2 and I3, composed by the same input/output places to connect PNBBs

between them. For instance, if two PNBBs have to be sequenced, the external

interface I1, belonging to the first PNBB, must be composed with the internal

interface I2 in the control structure and the external interface I1, belonging to

the second PNBB, must be composed with the internal interface I3 in the control

structure as shown in Figure 4.11. If there is only one PNBB that have to be

executed two times in sequence, it is also possible to compose the external inter-

face I1 of this PNBB task with both I2 and I3 internal interfaces in the sequence

control structure. Then, places begin1 and abort1, in the task interface, will re-

ceive two input arcs while places ok1 and fail1 will have two output arcs each.

Thus, a control structure contains one ore more internal interfaces in which other

PNBBs can be connected through composition, and an external interface that

can be used to connect this PNBB with other control structures hierarchically.

To compose two Petri nets using its interface the following operand is defined:

Definition 4.5.1. Given a Petri net NA = {PA, TA, AA} where: PA is the set of

all places in NA, TA is the set of all transitions in NA and AA is the set of all

arcs in NA and at least one interface Ij where j ∈ N/{0} and Ij is the set of all

places in PA that belongs to the interface j. Given a second Petri net with an

interface Ik defined as (NB = {PB, TB, AB}, Ik), the composition operand can be

applied to (NA, Ij)⊕ (NB, Ik) if and only if the following conditions hold:

83



4. DEFINING A MISSION USING PETRI NETS

Ij ≡ Ik → The input places and the output places in interfaces Ij and Ik must

be the same (property of common interface).

(PA/Ij) ∩ (PB/Ik) = ∅ → The rest of the places in both Petri nets have to be

different. This can be easily done by temporally adding a prefix to each

place identifier before perform the composition.

TA∩TB = ∅ → The transitions of both Petri nets have to be different. This can

be easily done by temporally adding a prefix to each transition identifier

before perform the composition.

AA ∩ AB = ∅ → The arcs of both Petri nets have to be different.

The resulting Petri net after applying the composition operand (NA, Ij) ⊕
(NB, Ik) is NAB = {PAB, TAB, AAB} where

PAB contain (PA/Ij) ∪ (PB/Ik) ∪ P ′ where P ′ is a set of places resulting from

the fusion of both interfaces Ij and Ik. For each place pj belonging to Ij

and for each place pk belonging to Ik where pj ≡ pk a simple place pjk is

added to PAB. Moreover, µ(pjk) = µ(pj) + µ(pk) and •pjk = •pj ∪ •pk and

pjk• = pj • ∪ pk•.

TAB contains TA ∪ TB.

AAB contains AA ∪ AB.

Figure 4.11 shows the composition of the sequence control structure in Fig-

ure 4.10(a) with two PNBBs as the one presented in Figure 4.9. The sequence

control structure is defined by NCS = {PCS, TCS, ACS} where:

PCS = {begin1, abort1,ok1, fail1, begin2, abort2, ok2, fail2, begin3, abort3,

ok3, fail3, exe20, exe30};

TCS = {T0, T1, T2, T3, T4, T5, T6};

ACS = {begin1 → T0, abort1 → T5, abort1 → T6, T0 → begin2, T0 → exe20,

T5 → abort2, exe20 → T1, exe20 → T2, T6 → abort3, ok2 → T1, fail2 → T2,

T1 → begin3, T2 → fail1, exe30 → T3, exe30 → T4, ok3 → T3, fail3 → T4,

T3 → ok1, T4 → fail1};

84



4. Defining a mission using Petri nets

The two PNBBs are defined by NPNBB1 = {PPNBB1, TPNBB1, APNBB1} and

NPNBB2 = {PPNBB2, TPNBB2, APNBB2} where

PPNBB1 = {begin1, abort1,ok1, fail1, exe0};

TPNBB1 = {T0, T1,T2, T3};

APNBB1 = {begin1 → T0, abort1 → T1, T0 → exe0, exe0 → T1, exe0 → T2,

exe0 → T3, T2 → ok1, T3 → fail1};

PPNBB2 = {begin1, abort1,ok1, fail1, exe0};

TPNBB2 = {T0, T1,T2, T3};

APNBB2 = {begin1 → T0, abort1 → T1, T0 → exe0, exe0 → T1, exe0 → T2,

exe0 → T3, T2 → ok1, T3 → fail1};

The composition shown in Figure 4.11 appears after compound the interface

ICS2 = { begin2, abort2, ok2, fail2} with the NPNBB1 using the interface IPNBB1 =

{ begin1, abort1, ok1, fail1} and the interface ICS3 = { begin3, abort3, ok3, fail3}
with the NPNBB2 using the interface IPNBB2 = { begin1, abort1, ok1, fail1}.

Figure 4.11: Example of a two simplified PNBBs composed with the sequence
control structure.

85



4. DEFINING A MISSION USING PETRI NETS

4.5.1.1 Sequence control structure verification

Analyzing the sequence control structure once connected with two task PNBBs

shown in Figure 4.11, no invariants, siphons or traps are found. The reachability

graph is deadlock free and three different final states can be reached after firing

all the enabled transitions like in Figure 4.6 or Figure 4.9:

1. When the control structure is aborted during its execution, the internal

PNBBs are aborted in cascade and all the tokens are removed. The resulting

state coincides with the initial state.

2. If both internal PNBBs finalize with an ok the sequence control structure

finalizes with its place ok1 marked.

3. If one of the internal PNBBs finalizes with a fail, the whole control structure

finalizes with the fail1 place marked.

The assumption in which the reachability analysis for the task PNBBs has

been done says that: ”A task PNBB can only be aborted by the hierarchical

superior PNBB that has started it and after it has been started.”. Looking at

Figure 4.11 the only transition how aborts the first PNBB is T5 and T5 can not

be fired until place exe2 has a token. As exe2 only receives a token when T0,

that is the transition who starts the first PNBB, fires. Then, it is proved by

construction that the PNBB will be aborted only after it has been started and

by the same PNBB who has started it.

This deadlock and reachability analysis must be done in all the control struc-

tures used for defining a mission. Then, the resulting net after aggregating some

PNBBs will be a new PNBB that satisfies the desired Petri net properties, as in-

herited from the original PNBB [Palomeras et al., 2008]. It is worth noting that

it is not necessary to span the whole reachability graph of the resulting Petri net

to ensure the deadlock free as well as the state reachability properties. Spanning

it, would have a very high computational cost as the complexity of the Petri net

that results from the composition operation can be very large. These properties

are guaranteed by construction and hence a mission plan, implemented according

to these rules, progresses from its starting state to an exit state without sticking

into a deadlock. It is also proved that this set of PNBBs is closed with respect

to the composition operation. No need for post-verification is one of the main

86



4. Defining a mission using Petri nets

differences between the proposed system and others who provide also verification

capabilities.

4.5.2 Parallel control structure

Figure 4.12: Example of a parallel-and control structure without an abort mech-
anism.

Another control structure is shown in Figure 4.12. Here, a paralell-and control

structure able to execute two PNBBs in parallel is presented. It is important to

note that the control structure in Figure 4.12 can not be aborted because it

implements the interface shown in Figure 4.3(b). The same control structure but

with all the mechanisms that allow to abort it are shown in the Appendix B.

When dealing with parallelism a question arises:

What happens if a user tries to execute the same task in two different execution

threads that coincide in the time?

Figure 4.13 presents this problem. Note that Figure 4.13 contains the same

parallel-and control structure shown in Figure 4.12 trying to initialize the same

task in two parallel threads. To improve the readability of Figure 4.13, all the

87



4. DEFINING A MISSION USING PETRI NETS

places and transition belonging to the control structure, the task or the primitive

model have the prefix cs , t or pr respectively before its identifier except for

the control structure interface (here begin, ok and fail). When the parallel-and

control structure is started, the place pr off in the primitive act as a mutual

exclusion allowing only to fire pr T0 only once until the task has been disabled

again. Thus, it is not possible to ensure which instantiation will be executed first,

by the natural undeterministic behavior of Petri nets, but it is possible to ensure

that if a task is already under execution, when a new instantiation is produced,

this new instantiation will wait until the task finalizes to start it again with

the new parameters provided by this second instantiation. Thus, what is really

happening is that the task is automatically sequenced avoiding major problems

instead of being executed in parallel.

4.5.3 Additional control structures

Based on the interface presented in Figure 4.3(d), some popular control structures

are defined in our MCS while others may be defined by the mission programmer

if necessary. Schemes of all these control structures are shown in Figures 4.14

and 4.15. Next, they are detailed.

• Not: It is used to negate the output of a PNBB, see Figure 4.14(a). Then,

if the PNBB A finalizes with the place fail marked (a’ ), place ok in the

Not structure will become marked (o) and vice-versa.

• Sequence: It is used to execute one PNBB after another, see Figure 4.14(b).

If any PNBB finishes with a fail the whole structure finalizes with a fail

(o’ ) otherwise it finalize in the ok state (o).

• If-Then-(Else): Executes the PNBB inside the If statement, PNBB A in

Figure 4.14(c) and (d), and depending if the PNBB ends with an ok or a

fail the PNBB inside the Then statement, PNBB B, or the Else statement,

PNBB C, if available is executed respectively.

• While-Do: Executes the PNBB inside the While statement, PNBB A in

Figure 4.14(e). If this PNBB finishes with an ok executes the do statement,

PNBB B, otherwise ends with an ok (o). If the do statement finishes with

an ok executes again the A block. Otherwise ends the whole structure with

a fail (o’).

88



4. Defining a mission using Petri nets

Figure 4.13: Example of a parallel control structure trying to execute the same
task in parallel.

89



4. DEFINING A MISSION USING PETRI NETS

• Try-Catch: Executes the Try PNBB. If it finishes with a fail the Catch

PNBB is executed as shown in Figure 4.14(f). The structure Try A Catch

B is equivalent to the combination of the structures If ( Not( A ) ) Then

B, however, the necessary code when using this combination of control

structures, see Chapter 5, becomes harder to follow than the use of the

well-known structure try-catch.

• Parallel-And: Executes two PNBBs in parallel, see Figure 4.15(a). If both

PNBBs finish in an ok place the whole control structure finishes with an

ok (o). Otherwise, the Parallel-And finishes with a fail (o’ ). See that the

structure finalizes only when both PNBB A and B have finished.

• Parallel-Or: Executes two PNBB in parallel. The first structure to finish

aborts the other, see Figure 4.15(b). The Parallel-Or finishes with the final

state of the first PNBB to end.

• Monitor-Condition-Do: Executes de PNBB Monitor and Condition,

PNBBs A and B in Figure 4.15(c) and (d) in parallel. If the former finalizes

the latter is aborted and the output is the formers output. Otherwise, if the

later finalizes first, the Monitor PNBB is aborted and the Do statement,

PNBB C, is executed.

• Monitor-WhileCondition-Do: The same structure than the Monitor-

Condition-Do but when the Do PNBB finalizes with an ok instead of

finalize the whole structure, the Monitor and Condition blocks are executed

again, see Figure 4.15(d).

See that control structures not, sequence, if-then-else, while-do and try-catch

don’t allow parallelism. They only allow sequential, conditional and iterative

control of tasks in a similar way than other popular languages. However, with the

introduction of the parallel and monitor structures a high degree of parallelism

can be achieved. This is possible because the inclusion of the abort input place

in the interface that allows to cancel an execution thread when another one

finalizes. Then, when building all these control structures special care has to be

taken in order to be able to abort all the primitives that are running in a PNBB

simultaneously as well as to remove all the tokens in the PNBB when the abort

place is marked. The Petri net for each one of these control structures as well as

a simplified schema are found in Appendix B.

90



4. Defining a mission using Petri nets

(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Non parallel control structures simplified models.

91



4. DEFINING A MISSION USING PETRI NETS

(a) (b)

(c) (d)

Figure 4.15: Parallel control structures simplified models.

92



Chapter 5

Mission Control Language

Previous chapter has presented a methodology to define a mission plan by con-

necting small Petri nets named Petri Net Building Blocks (PNBBs). The use of

a formalism such as Petri nets provides several advantages. However, connecting

PNBBs among them to build a complex mission can be a cumbersome and error

prone work if the user has to deal directly with the Petri nets using graphical

tools or even more if Petri nets are textually encoded. To avoid these problems,

a Domain Specific Language (DSL) called Mission Control Language (MCL) is

proposed. MCL allows to define the PNBBs and compose them in a simple way.

Therefore, instead of using graphical tools to describe a mission or dealing with

Petri nets textually encoded, our approach uses a DSL which automatically com-

piles into a Petri net. MCL is used to describe the actions and the events needed

to communicate the Petri net tasks with the robot primitives. It also may spec-

ify the Petri net structures for the PNBBs, tasks and control structures, used

in the mission, relating their transitions with the previously defined actions and

events, in case of tasks, and defining which places belong to each interface. Once

all these elements have been described a mission can be coded. Then Mission

Control Language - Compiler (MCL-C), composes all the PNBBs used to define

a mission among them to obtain a final Petri net mission plan that is described

using a standard Extensible Markup Language (XML) format called Petri Net

Markup Language (PNML) [web, 2010].

93



5. MISSION CONTROL LANGUAGE

5.1 The MCL programming paradigm

The programming paradigm with more similarities to how MCL defines a mis-

sion by composing PNBBs is the functional where each PNBB can be seen as a

function. For example, if a mission to submerge a robot 3 meters, navigate to

the way-point (4, 6) and then surface have to be coded using the tasks keepDepth

and goto and the sequence control structure, the following functional code will

be obtained:

sequence( sequence( KeepDepth( 3 ), Goto( 4, 6 ) ), KeepDetph( 0 ) ).

Using the functional programming paradigm, tasks are defined as functions

whose parameters are the values needed by the primitives to operate. These values

are essentially the parameters for the actions that have to be transmitted from

the Mission Control System (MCS) to the vehicle primitives. Control structures

are defined as functions in which their parameters are either tasks or other control

structures. The output of each function, or PNBB, depends on the number of

output places in its external interface. For instance, if the places belonging to

the external output interface are Ioutput = {ok, fail}, then the output of each

function is a boolean value (ok or fail).

Although the functional programming paradigm is the closer way to define

a mission following the presented methodology, to simplify the operators work,

a mission can be encoded in MCL using an imperative programming style. The

imperative programming paradigm is more familiar and easier to understand for

an operator than a functional one. Thus, the MCL has been developed to make

use of it. Moreover, the additional constraints have been assumed to simplify

even more the mission encoding process.

• The interface presented in Figure 4.3(d) has been selected to be used by

all the PNBBs involved in the mission. This interface is composed by the

places I = {begin, abort, ok, fail}

• It is possible to create new tasks, however, they have to implement the

selected interface.

• Ten control structures, the ones presented in Section 4.5.3, have been pre-

defined to be used within MCL. The user may modify the behavior of these

control structures but no their interfaces. Additional control structures

94



5. Mission Control Language

may be added. However, they could not be used following the imperative

paradigm, only the functional one.

Applying the presented constraints, the final user only has to deal with the

definition of the following elements:

• Define the actions that each vehicle primitive may receive (enable and dis-

able).

• Define the events that each vehicle primitive may raise (ok and fail).

• From the predefined task patterns or from a new one, instantiate the actions

and events of each primitive in order to supervise it.

• Describe the mission plan using the previously instantiated tasks and the

predefined control structures.

Once the vehicle primitives are defined by means of their actions and events

and supervised by means of PNBB tasks, the only element that must be rewritten

for each new mission is the mission plan.

Following sections describe the necessary elements to define a mission using

MCL, the main algorithms used to translate a mission coded in MCL into a Petri

net and how to execute the resulting Petri net mission plan.

5.2 Actions and events

The actions used to enable/disable the primitives as well as the events that can

be generated by them must be specified in the MCL program. Actions are defined

using the command

actions{ (actionid = primitive( command, list of parameters ))* }

where the command is the activity to be executed by the primitive (normally

enable or disable it) and the list of parameters are the variables that must be

specified by the user in the mission plan, see Section 5.6, when the task is called.

Events are defined by the command

events{ (event id)∗ }

95



5. MISSION CONTROL LANGUAGE

Extract 5.1 shows an example in which the actions and events used by the

Goto() task are defined. The mapping of actions and events is implemented in

the Architecture Abstraction Component (AAC). Each time that an action is

sent from the MCS through the AAC, the latter has to ask to the related ve-

hicle primitive to execute the command with the parameters instantiated in the

mission plan. Similarly, each time that a primitive raises an event the AAC has

to map this event with an event id and send it to the MCS. Hence, this map-

ping is used to tailor the MCS to a particular set of primitives defined in the AAC.

Extract 5.1: Actions & events definition.

actions {
enableGoto = GotoPrimitive( c: enable, v: way-point ) ;

disableGoto = GotoPrimitive( c: disable ) ;

...
}
events {

eventGotoOk ;

eventGotoFail ;

...
}

5.3 PNBB patterns

To define a new PNBB, it is necessary to specify its structure composed by a set

of places (P ), a set of transitions (T ) and a set of arcs (A). To do it, the following

commands are used:

places{ (place id (number of tokens).interface id)∗ }
transitions{ (transition id)∗ }

arcs{ (source id → destination id)∗ }

The interface that each place belongs has to be indicated by (interface id).

If the interface id is 0 means that the place does not belong to any interface,

however, places belonging to the external interface have interface id = 1 and

places belonging to an internal interfaces, used in control structures to specify

how PNBBs are composed, have values from interface id = 2...n. Both num-

ber of tokens and interface id are set to 0 by default. A graphic Petri net editor

96



5. Mission Control Language

with PNML support, for instance the pipe2 [Bonet et al., 2010], may be used to

define a PNBB pattern instead of defining it textually.

The PNBB pattern for the task shown in Figure 4.4 is described in Extract 5.2

using the MCL notation.

Extract 5.2: Building Block Pattern definition.

AchieveOneGoal {
places {

begin.1; abort.1; ok.1; fail.1; is exe; is ok; is fail; enable; disable;

off(1); exe; primitive ok; primitive fail;

}
transitions {

TT0; TT1; TT2; TT3; T0; T1; T2; T3; T6; T7;

}
arcs {

begin.1 → TT0; TT0 → is exe; TT0 → enable; enable → T0; T0 →
exe; exe → T1; exe → T2; exe → T3; T1 → off; off → TT0; T2 →
primitive ok; T3 → primitive fail; primitive ok → T6; primitive fail

→ T7; T6 → off; T7 → off; T2 → is ok; T3 → is fail; TT1 →
disable; disable→ T1; disable→ T6; disable→ T7; TT2→ disable;

TT3 → disable; is ok → TT2; is exe → TT2; is exe → TT1; is exe

→ TT3; is fail → TT3; abort.1 → TT1; TT2 → ok.1; TT3 → fail.1;

}
}

5.4 Tasks

To define a task, a PNBB pattern must be connected to the set of actions and

events belonging to a primitive. Once the PNBB pattern used to supervise a

primitive is chosen, the actions and events related to this primitive must be as-

sociated to the corresponding transitions in the pattern. Tasks have a header

composed by the list of all the parameters used in their actions. For instance,

if a task has to execute the action enableGoto it must include in its header the

parameter way-point used by this action. Extract 5.3 shows an instance of the

task pattern presented in Extract 5.2 that is used to supervise the primitive goto

that guides a robot towards a way-point.

97



5. MISSION CONTROL LANGUAGE

Extract 5.3: Task definition.

Goto( way-point ): AchieveOneGoal {
a: enableGoto → T0;

a: disableGoto → T1, T6, T7;

e: eventGotoOk → T2;

e: eventGotoFail → T3;

}

5.5 Control structures

The ten control structures presented in Section 4.5 are implemented in the MCL:

not, sequence, if-then, if-then-else, while-do, try-catch, parallel-and, parallel-or,

monitor-condition-do and monitor-while condition-do. When a control structure

is used to aggregate two structures, i.e. sequence or parallel, two sets of internal

interfaces must be provided. If a control structure is used to aggregates three

control structures, i.e. if-then-else or monitor-condition-do, three sets of internal

interfaces must be provided instead. It is possible to extend the MCL to include

new foreseen control structures. Nevertheless, if new structures are defined, the

MCL have to be used as a functional programming language rather than an

imperative one.

5.6 Mission plan

Once the tasks and the control structures have been defined, a mission plan can

be coded using MCL. This is the only section that must be rewritten for each

new mission if the same set of primitives is used. Although MCL is in essence

a functional language, the developed compiler is able to understand predefined

control structures in an imperative form. As predefined control structures are

very similar to those provided by other popular languages and tasks can be seen

as function calls, programming a new mission using MCL becomes very simple.

Extract 5.4 shows how the MCL is used to program a very simple mission. In

this example the vehicle has to achieve a desired depth and then go to a way-point

while keeping this depth. Once the way-point is achieved the vehicle surfaces.

If any error is produced, the vehicle enables a recovery beacon. Note that the

98



5. Mission Control Language

semicolon (;) symbol is used to sequence two PNBBs instead of delimiting the

end of a sentence as usual in popular imperative languages like C or Java. Then,

the semicolon (;) is used to sequence the task Depth( 15, ”achieve” ) with the

parallel-or control structure and this one with the Depth( 0, ”achieve” ) task.

However, as the two blocks inside the parallel-or control structure contain only

one element, a task, it is not necessary to add a semicolon at the end of each one,

because no sequencing is required. The same happens by the last PNBB of each

block in the try-catch control structure.

Extract 5.4: MCL mission definition.

mission

try
Depth( 15, ”achieve” ) ;

parallel
Depth( 15, ”keep” )

or
Goto( 24, 12 )

; Depth( 0, ”achieve” )

catch
StartRecoveryBeacon()

The same mission could be coded in a functional way as shown in Extract 5.5.

However, its is more difficult to read.

Extract 5.5: Funcional mission definition.
mission(

try-catch(

seq(

seq(

Depth( 15, ”achieve” ),

parallel-or( Depth( 15, ”keep” ), Goto( 24, 12 ) )

),

Depth( 0, ”achieve” )

),

StartRecoveryBeacon() )

)

99



5. MISSION CONTROL LANGUAGE

For a formal description about the MCL grammar using the Backus Normal

Form (BNF), the reader is pointed to the Appendix C which includes a description

of all the predefined control structures as well as all the necessary sections to

program a mission using MCL.

5.7 The Mission Control Language - Compiler

The process to generate a Petri net from a MCL program is performed by the

MCL-C. This process is divided in four main steps:

1. Generate a Petri net for each PNBB pattern.

2. Add the actions and the events to the Petri net patterns in order to build

the PNBB tasks.

3. Use the mission plan to generate an Abstract Syntax Tree (AST) in which

the nodes are the control structures and the leaves are the tasks.

4. Traverse the AST composing first the control structures among them and

then the tasks to build the whole Petri net mission plan.

The procedures involved to implement steps (1) and (2) are trivial. While the

code is being parsed by the compiler, a Petri net for each pattern is generated and

then actions and events are connected to a copy of these patterns creating the

tasks. The compiler only checks if the arcs in the patterns are correctly connected

with valid places and transitions or vice-versa. The MCL-C also checks that all

the parameters used by the task actions appear also in the task header.

Step (3) can be seen as the translation of the imperative code written by

the user into a functional code. This process consists of building an AST, Fig-

ure 5.1(a), for instance, shows how the code in Extract 5.4 is transformed into an

AST. Finally, in step (4), a recursive algorithm named composeMission, shown in

Extract 5.6, is applied. The previously generated AST, named t, and an initially

empty vector of tasks, named vt, relating how each task external-interface has

to be composed with the control-structure internal-interfaces, are used as input

parameters. The algorithm explores the AST and composes all the control struc-

tures recursively following Definition 4.5.1. When a task is found during this

100



5. Mission Control Language

process, if it is not included in vector vt, the interface id of the places belong-

ing to its external interface are renumbered and the modified task is included in

vector vt. When the whole AST has been explored, every task in the vector vt is

composed with as many internal interfaces as necessary. Note that tasks are not

replicated, instead, only one task PNBB is included in the final Petri net mission

plan, even though it can be called several times from different control structures,

see Figure 5.1(b) and Figure 4.13 in previous chapter. The no replication of tasks

is due to each task is connected to a single vehicle primitive that may depend on

vehicle resources that don’t have to be replicated.

The resulting Petri net after compiling the mission shown in Extract 5.4

includes three tasks (Depth, Goto and StartRecoveryBeacon) and four control

structures (two sequences, one parallel-or and a try-catch that wraps the whole

mission).

5.8 The real-time Petri net player

Once the MCL mission has been compiled, a single Petri net called mission plan

and coded using PNML is obtained. A particular extension had to be introduced

in the PNML in order to properly implement the communication facilities offered

by the AAC in the language, namely to define the actions that are sent from the

Petri Net Player (PNP) to the vehicle control architecture and the events gener-

ated there to the PNP. The PNP executes in real-time the Discrete Event System

(DES) described by the Petri net mission plan applying the basic Petri net tran-

sition rule. To do it, the PNP has to fire enabled transitions, send the vehicle

primitive actions through the AAC and fire the event-related enabled transition

when the corresponding event is received from a vehicle primitive. This compo-

nent is implemented in C++ and uses the Transmission Control Protocol (TCP)

to communicate with the AAC. Then, to execute an MCL mission for a particular

Autonomous Underwater Vehicle (AUV) it is only necessary to build and AAC,

within the AUV control architecture, and communicate this component with the

PNP using standard TCP sockets. Section 3.2.3 details more information about

this topic. Next, the three main algorithms implemented in the PNP are shown.

101



5. MISSION CONTROL LANGUAGE

(a)

(b)

Figure 5.1: (a) AST from Example 4. (b) AST from Example 4 once separated
tasks from control structures.

102



5. Mission Control Language

Extract 5.6: function composeMission.

Input: AST t, vector<task> vt
Output: PetriNet pn
if t.root = ”mission” then

/* If the tree root tag is ’mission’ call

composeMission(..) for its first child */

pn = composeMission( t.child[0], vt ) ;
/* Compose every task with the rest of the control

structures */

for i = 0 to size( vt ) do
pn = compose( vt[i], pn ) ;

else
/* else, load the indicated control structures */

pn = load( ControlStructure[t.root] ) ;
/* For every child, do */

for i = 0 to size( t.child ) do
if t.child[i].type = ”task” then

/* When a task is found change the interface id. */

changeInterfaceId( i, vt, pn ) ;
/* Put the parameters of this task in the pn

transition that enables it */

takeParameters( i, vt, pn ) ;
else

/* If the child is another control structure call

composeMission(..) for this child */

pnTmp = composeMission( t.child[i], vt ) ;
/* compose both Petri nets */

pn = compose( pnTmp, pn ) ;

103



5. MISSION CONTROL LANGUAGE

Extract 5.7: function receiveEvent.
Input: PetriNet pn, Event ev

boolean found = false;

iterator<Transition> t = pn.transition.begin() ;

while not found and t 6= pn.transition.end() do

if t→ ev = ev and isEnabled( pn, t ) then
found = true ;

fire( pn, t ) ;

else
t++ ;

The code in Extract 5.7 is executed each time that an event is received through

the AAC. This function checks if any transition in the Petri net mission plan is re-

lated with the received event. If there is a related transition, and it is enabled, the

usual case, the transition is fired. The code shown in Extract 5.8 is executed when

the mission starts, or each time that a transitions fires because and event has been

received. Function enabledTransitions() returns all enabled transitions except the

ones that are related with an event. Next, function ready2fireTransitions() takes

the subset of transitions that are ready to fire, immediate transitions as well as

those timed transitions whose timers have expired, and also, increments the timer

for all enabled timed transitions. From the set of ready to fire transitions, func-

tion selectRandomly() choses a random transition. Once the transition to fire is

selected it is fired using the code presented in Extract 5.9.

104



5. Mission Control Language

Extract 5.8: function playPetriNet.

Input: PetriNet pn

/* Take all the enabled transitions in the Petri net mission

plan */

q = enabledTransitions( pn ) ;

while size( q ) > 0 do

/* Take all the transitions ready to fire in q */

qf = ready2fireTransitions( q ) ;

if size( qf ) > 0 then

/* Select, randomly, a transition t ∈ qf */

t = selectRandomly( qf ) ;

fire( pn, t ) ;

q = enabledTransitions( pn ) ;

else

/* Wait to see if any timed transition is ready to fire

in a while */

wait() ;

Firing a transition t, involves removing a token from all the places in the

pre-set of t, •t, adding a token to all the transition in the post set of t, t•, and

sending all the actions associated to the transition t, through the AAC, to the

corresponding primitives.

105



5. MISSION CONTROL LANGUAGE

Extract 5.9: function fire.

Input: PetriNet pn, Transition t

for action a ∈ t do

/* Send all the available actions of the ready-to-fire

transition t */

sendAction( a ) ;

for place p ∈ •t do

/* Remove 1 token from all the places in the pre set of t

*/

µ(p) = µ(p)− 1 ;

for place p ∈ t• do

/* Add 1 token to all the places in the post set of t */

µ(p) = µ(p) + 1 ;

Figure 5.2 shows the whole picture about how a mission is defined an executed

using the proposed MCS. The mission program is written by the user in MCL,

then the MCL-C transforms this code into a Petri net coded in PNML. This

PNML can be seen as the byte-code that is finally executed by the PNP in real

time on the vehicle control architecture.

Figure 5.2: Mission definition and execution schema.

106



Chapter 6

Coordination of multiple vehicles

The purpose of this chapter is to further develop the presented methodology to

deal with the coordination of multiple vehicles. Lets imagine a mission in which

a couple of AUVs, each one equipped with a robotic arm, has to collaborate to

build an underwater construction. If each AUV and manipulator is considered

as an independent robot, a set of constraints must be defined between them to

coordinate their work.

Coordination of multiple vehicles can be studied from different points of view.

From Artificial Inteligence (AI) techniques based on auction mechanisms [Murillo

et al., 2007] to searching algorithms for coordination and cooperation [Caiti et al.,

2008]. In the underwater domain, several control algorithms to perform multiple

vehicle formations [Edwards et al., 2004] or cooperative path-following [Vanni

et al., 2008] have been developed recently. However, our idea presents a com-

pletely different approach. It consists of describing an independent missions for

each entity and then, coordinate the execution of these missions introducing some

constraints between them. Therefore, the proposed method follows these steps:

1. Program a mission for each robot obtaining an independent Petri net for

each one as presented in previous chapters.

2. Define a set of constrains to enforce a coordinated behavior among all the

robots involved in the mission.

3. Automatically synthesize the necessary Supervision Based on Place Invari-

ants (SBPIs) to carry out each constraint.

107



6. COORDINATION OF MULTIPLE VEHICLES

P1T 0P0

Figure 6.1: Simplified sequence of two tasks.

4. Connect the independent robot mission between them by means of the

SBPIs previously synthesized generating a centralized Petri net mission in

which all the constraints are satisfied.

5. Check that the centralized mission is deadlock free.

6. Partitioning the centralized Petri net mission into as many decentralized

Petri nets as entities involved in the mission, keeping the same behavior

than in the centralized net while minimizing the communication between

the decentralized nets.

Three coordination constraints have been studied: mutual exclusions, tasks

ordering and tasks synchronization. To simplify the Petri net mission plan, ob-

tained when compiling a mission coded in MCL, a more compact representation,

than the one presented in previous chapters, will be used to explain how the con-

straints work. In this representation each place acts either a task instantiation or

a slack place. When a place representing a task is marked, has a token, it means

that the task is under execution. All places representing a task are 1-bounded.

Control structures are replaced by slack places that guide the control flow among

task-places. These simplifications are done to improve the comprehension of the

presented multiple-vehicle coordination mechanism. To illustrate this compact

representation Figure 6.1 shows the sequence of two tasks, represented by places

P0 and P1, in which P0 is under execution. This figure can be compared with

Figure 4.11 in which two tasks are also sequenced. However, while in Figure 4.11

all the mechanisms to send and receive actions and events as well as to abort the

tasks are shown, the simplified representation presented in Figure 6.1 hides all

this stuff.

108



6. Coordination of Multiple Vehicles

Figure 6.2: Example of two simple Petri net missions.

6.1 Coordination constraints

In following sections, mutual exclusion, ordering and synchronization constraints

used for achieve multiple-vehicle coordinated missions are detailed. To illustrate

the coordination constraints, Figure 6.2 shows a compact representation of two

missions. Both missions describe the sequence of three tasks represented by P1,

P2 and P3 for the first entity and P4, P5 and P6 for the second.

The incidence matrix, see Appendix A, for the first vehicle mission (Dv1) and

for the second vehicle mission (Dv2) as well as their initial markings (µv10 and µv20 )

are defined as

Dv1 =

 −1 0

1 −1

0 1

 (6.1)

µv10 =

 1

0

0

 (6.2)

Dv2 =

 −1 0

1 −1

0 1

 (6.3)

µv20 =

 1

0

0

 (6.4)

109



6. COORDINATION OF MULTIPLE VEHICLES

6.1.1 Mutual exclusion

The first constraint to study is the mutual exclusion, popularly called mutex.

A typical example of a mutex appears when several vehicles can not be in the

same location at the same moment. For instance, imagine that two AUVs, used

to build an underwater infrastructure, share a single docking station to recharge

their batteries. The access to this resource should be protected by a mutex.

Formally, a mutex is defined as:

Definition 6.1.1. A mutual exclusion is a pair (M , β), where M is the set of

tasks, represented as places, involved in the mutual exclusion and β ∈ N \ {0} is

the maximum number of tasks in M which can be simultaneously under execution

(e.g. if β = 1, then the maximum number of marked places in M must be 1).

For instance, if the tasks represented by places P2 and P5 in Figure 6.2 are

in mutual exclusion (M = {P2, P5}) and only one of the tasks can be running

simultaneously (β = 1), then the SBPI described by Proposition 6.1.1 can be

used to connect both Petri net missions in order to build a centralized Petri net

in which the constraint is enforced.

Proposition 6.1.1. Let W be a set of independent Petri nets and (M , β) a

mutual exclusion defined over W . If constraint (6.5) holds, the mutual exclusion

property defined above is satisfied.

lµ ≤ β where

l = [l1 · · · li · · · ln], with li =

{
1 if pi ∈M
0 otherwise

(6.5)

Where l is a vector of integers with as many elements as places in the central-

ized Petri net (n) and µ is the marking vector of the centralized Petri net. See

Appendix A for an introduction about linear state constraints and SBPIs.

Proof. Because only the tasks li ∈ l related to places pi ∈M are set to 1 and the

rest of them are set to 0 and the task places are 1-bounded, lµ gives the number

of places in M simultaneously marked. Hence, if a marked place represents a

110



6. Coordination of Multiple Vehicles

running task and the constraint lµ ≤ β holds, it follows that no more than β

tasks in M can be simultaneously under execution.

Applying the Proposition 6.1.1 to the Petri nets in Figure 6.2 to impose the

mutual exclusion (M = {P2, P5}, β = 1), the following constraint is obtained.

[
0 1 0 0 1 0

]
·



µ(p1)

µ(p2)

µ(p3)

µ(p4)

µ(p5)

µ(p6)


≤ 1 = µ(p2) + µ(p5) ≤ 1 (6.6)

If both Petri nets Dv1 and Dv2 presented in equations (6.1) and (6.3) are

combined in a centralized net, the corresponding incidence matrix will be given

by

Dv1&v2 =



−1 0 0 0

1 −1 0 0

0 1 0 0

0 0 −1 0

0 0 1 −1

0 0 0 1


(6.7)

with the following initial marking

µv1&v20 =



1

0

0

1

0

0


(6.8)

To apply the SBPI computed in (6.6) to the centralized matrix in (6.7), (6.8)

111



6. COORDINATION OF MULTIPLE VEHICLES

equations (A.10) and (A.11) are used.

Dc = −
[

0 1 0 0 1 0
]
·



−1 0 0 0

1 −1 0 0

0 1 0 0

0 0 −1 0

0 0 1 −1

0 0 0 1


=

[
−1 1 −1 1

]

(6.9)

µc0 = 1−
[

0 1 0 0 1 0
]
·



1

0

0

1

0

0


= 1 (6.10)

Once (6.9) and (6.10) are computed the centralized Petri net that enforces

the constraint (M = {P2, P5}, β = 1) is obtained applying (A.12) and (A.13).

D =



−1 0 0 0

1 −1 0 0

0 1 0 0

0 0 −1 0

0 0 1 −1

0 0 0 1

−1 1 −1 1


(6.11)

µ0 =



1

0

0

1

0

0

1


(6.12)

The Petri net obtained in (6.22), (6.23) is shown in Figure 6.3. It is worth

112



6. Coordination of Multiple Vehicles

Figure 6.3: Example of the mutual exclusion (M = {P2, P5}, β = 1).

noting that if transition T1, in the first vehicle, fires taking the mutual exclusion,

task P4, in the second vehicle, can not finalize until P2 has been disabled, T2 has

fired. To avoid this, a slack place has been added before every Pi ∈M . A simple

transformation called PW-Transformation has been applied for this purpose. The

goal of this transformation is to add a slack place before the places involved in

a constraint to untie the finalization of these places with the execution of the

successive places.

Definition 6.1.2. The PW-Transformation over a place Pi in the Petri net N =

{P, T,A} is defined as P ′ = P ∪ {Pwait
i }, T ′ = T ∪ {Twaiti } where •Pwait

i = •Pi,
Pwait
i • = {Twaiti }, Twaiti • = {Pi} and •Pi = {Twaiti }.

The PW-Transformation does not modify the Petri net behavior, however,

the additional waiting place allows a previous task to finalize even if the next

task in the sequence can not be executed due to a mutual exclusion or any other

constraint. Figure 6.4 shows the final centralized Petri net once the constraint

(M = {P2, P5}, β = 1) and the PW-Transformation have been applied.

6.1.2 Ordering

The notion of order appears quite naturally when describing distributed systems.

Ordering between two tasks appears when one task can be only executed after the

termination of another one. Recalling the AUV builders scenario, if the robotic

arm that each AUV includes is considered an independent entity, two ordering

constraints must be established between the vehicle and the manipulator to move

a block. First, the vehicle must be moved to the position in which the building

113



6. COORDINATION OF MULTIPLE VEHICLES

Figure 6.4: Example of the mutual exclusion (M = {P2, P5}, β = 1) after apply
the PW-Transformation.

block is and then, the manipulator can grasp it. Next, the AUV have to navigate

to the position in which the building block has to be released, only once the

manipulator has grasped and lifted the block.

Using these simplified Petri net missions, launching, enabling, a task repre-

sented by the 1-bounded place p with µ(p) = 0 consists in marking p with one

token, µ(p) = 1. On the other hand, the termination of a task p currently under

execution, µ(p) = 1, consist in removing the token from p, µ(p) = 0. Then, a

formal definition of an ordering between two tasks is:

Definition 6.1.3. An ordering pair is defined as a set of two places O = {ps,
pw} where pw, that stands for the waiting place, can not be marked before ps, that

stands for the signaling place, has been unmarked.

Again, a PW-Transformation must be applied before adding the ordering

constraint. This transformation must be applied to the place pw ∈ O.

To ensure the ordering constraint, an extended form of lµ ≤ b is used. This

form

cυ ≤ b (6.13)

is described in Iordache et al. [2002b] and uses the Parikh vector (υ) to control

the Petri net behavior. The Parikh vector contains a counter for every transition

in the system. Every counter is initialized to 0 and when a transition tj fires, the

corresponding element υj in the Parikh vector is incremented. For ordering the

two places contained in an ordering pair, transitions ps• and •pw are used.

114



6. Coordination of Multiple Vehicles

Figure 6.5: Example of the ordering O = {P5, P2} after applying the PW-
Transformation.

Proposition 6.1.2. Let W be a set of mission Petri nets and O = {ps, pw} an

ordering pair defined over W , then it can be shown that if the constraint (6.14)

holds, the properties of the ordering pair are satisfied.

c · υ ≤ 0 where

c = [c1 · · · cj · · · cm], with cj =


−1 if tj ∈ ps•

1 if tj ∈ •pw
0 otherwise

(6.14)

Where c is a vector of integers with as many elements as transitions in the

centralized Petri net (m) and υ is the Parikh vector of the centralized Petri net.

For an introduction about about general linear vector constraints in Petri nets

see Iordache and Antsaklis [2002].

Proof. With the Parikh vector it is possible to register the number of firings of

each transition. To ensure the order between both tasks, the number of firings of

the transition immediately after the place ps, ps•, must be always equal or greater

than the number of firings of the transition before the place pw. If the transition

before place pw, •pw, fires before the transition after the place ps, the constrain

synthesized in Proposition 6.1.2 will be bigger than 0 making itself false.

Applying the Proposition 6.1.2 to the Petri nets in Figure 6.2 to impose the

115



6. COORDINATION OF MULTIPLE VEHICLES

ordering O = {P5, P2}, the following constraint is obtained:

[
1 0 0 − 1

]
·


υ(t1)

υ(t2)

υ(t3)

υ(t4)

 ≤ 0 = υ(t1)− υ(t4) ≤ 0 (6.15)

To apply a supervisor using the Parikh vector, a general linear constraint has

to be used. An extract of the equations presented in Iordache and Antsaklis

[2002] is presented here for the readers convenience. The SBPI shown in (A.9) is

enhanced with the Parikh vector term, being

Lµ+ Cυ ≤ b. (6.16)

Then, to compute the general linear constraint the following equations are

used:

D+
c = max(0,−LD − C) (6.17)

D−c = max(0, LD + C) (6.18)

Where the max operator is defined as follows.

Definition 6.1.4. If A is a matrix, B = max(0, A) is the matrix of elements

Bij = 0 for Aij < 0 and Bij = Aij for Aij ≥ 0.

Then, following the ordering example and applying (6.17), (6.18) and (A.11)

D+
c = max(0,

[
−1 0 0 1

]
) =

[
0 0 0 1

]
(6.19)

D−c = max(0,
[
−1 0 0 1

]
) =

[
1 0 0 0

]
(6.20)

µc0 = 0−
[

0 0 0 0 0 0
]
·



1

0

0

1

0

0


= 0 (6.21)

116



6. Coordination of Multiple Vehicles

the controlled Petri net D and its marking vector µ0 are obtained.

D =



−1 0 0 0

1 −1 0 0

0 1 0 0

0 0 −1 0

0 0 1 −1

0 0 0 1

−1 0 0 1


(6.22)

µ0 =



1

0

0

1

0

0

0


(6.23)

Figure 6.5 shows an example of the ordering constraint O = {P5, P2} applied

over the nets presented in Figure 6.2 where, additionally, the PW-Transformation

has been applied to P2.

6.1.3 Synchronization

Synchronization constraints are used to fix rendezvous among tasks allowing them

to be launched simultaneously. Following the autonomous underwater builders

scenario, if some building blocks are too heavy to be lifted by a single robotic arm,

a synchronization constraint can be forced between two autonomous builders to

do the task together.

Definition 6.1.5. A set of places S is said to be synchronized if and only if

∀pi, pj ∈ S / pi 6= pj and ] • pi = ] • pj = 11, •pi is enabled if and only if •pj is

also enabled.

To synthesize a set of SBPIs to enforce this constraint, a new set of places S ′ =

{pwaiti } has to be defined where all the pwaiti come from the PW-Transformation

of pi ∀pi∈S.

1Where ] • pi means: the number of input transition of place pi.

117



6. COORDINATION OF MULTIPLE VEHICLES

Proposition 6.1.3. Let W be a set of independent Petri nets and S a syn-

chronization set of task-places defined over W , then it can be shown that if the

constraint (6.24) holds, the synchronization property is satisfied.

∀pwaiti , pwaitj ∈ S ′ where pwaiti 6= pwaitj

cυ ≤ 0 where

c = [c1 · · · cj · · · cm], with cj =


−1 if tj ∈ •pwaiti

1 if tj ∈ pwaitj •
0 otherwise

(6.24)

Proof. A synchronization between places S = {pi, pj} is equivalent to the order-

ings O1 = {• • pj, pi} and O2 = {• • pi, pj}. Therefore the proof follows the lines

of the proof presented in Proposition 6.1.2.

If the tasks represented by the places P2 and P5 in Figure 6.2 have to be

executed synchronously, the synchronization set S = {P2, P5} is defined. Af-

ter apply the PW-Transformation to P2 and P5 and building the set S ′ =

{P2wait, P5wait} Proposition 6.1.3 may be applied. If ]S stands for the num-

ber of elements in the synchronization, then

]S · (]S − 1) (6.25)

is the number of orderings constraints needed to enforce the synchronization.

In the proposed example ]S = 2 then, only two ordering constraints are needed.

The constraints are

− υ(T1) + υ(T4′) ≤ 0 and

υ(T2′)− υ(T3) ≤ 0

Applying equations (6.17), (6.18) and (A.11) two supervisors are synthesized

as shown in Figure 6.6.

Figure 6.7 shows an extract of the missions programmed for the underwater

construction scenario. Each AUV has to move at one of the extremes of a building

118



6. Coordination of Multiple Vehicles

Figure 6.6: Synchronization of tasks P2 and P5.

block and once there, wait for the robotic arms to take the block. Next, AUVs

move to the way-point in which the building block has to be released. Meanwhile,

the two manipulators should wait until being near the block to take away. Once

there, they have to grab it, and then, lift it in synchrony. When both vehicles

are in the final way-point, the manipulators have to release the building block at

the same time. A mission like the one shown in Figure 6.7(a) is programmed for

each AUV and a mission like the one shown in Figure 6.7(b) is programmed for

each robotic arm. Then, six constraints are defined:

O(AUV1 navigate wp1,Arm1 graps),

O(AUV2 navigate wp1,Arm2 graps),

S(Arm1 lift,Arm2 lift),

O(Arm1 lift,AUV1 navigate wp2),

O(Arm2 lift,AUV2 navigate wp2),

S(AUV1 keep pose,AUV2 keep pose,Arm1 release,Arm2 release).

Figure 6.8 shows the resulting centralized Petri net after applying the first

five constraints. The last synchronization is not included because it generates 12

supervisors and, if included, the figure becomes hard to follow. Chapter 8 shows

a complete example in which two AUVs and two Autonomous Surface Crafts

(ASCs) are coordinated.

119



6. COORDINATION OF MULTIPLE VEHICLES

(a)

(b)

Figure 6.7: (a) AUV mission example and (b) robotic arm mission example.

Figure 6.8: Resulting centralized Petri net after combining four independent mis-
sions with five coordination constraints.

120



6. Coordination of Multiple Vehicles

6.2 Deadlock avoidance

After applying a set of coordination constraints among several vehicle missions it

is necessary to check that the resulting centralized mission is deadlock free.

Several techniques for deadlock avoidance using Petri nets can be found in

the literature [Iordache et al., 2002a; Lautenbach and Ridder, 1996]. Most of

them are based on the well known necessary condition for deadlock, namely that

a deadlocked ordinary Petri net contains at least one empty siphon. From this

definition, to avoid a deadlock, it is necessary to ensure that none of the siphons in

the net becomes empty. To achieve this, two conditions have to be accomplished:

1. All the siphons must be initially marked.

2. All the siphons must be controlled.

A siphon can be controlled by a trap or by a place invariant. If a siphon is

not controlled by its own Petri net it is possible to add a constraint like lµ ≤ b

to control it.

Figure 6.9 shows two basic cases in which deadlocks can appear because

of combined constraints. The deadlock in Figure 6.9(a) arise because place

O(P2, P5) has to be marked before firing T5′ to mark P5, then fire T4 and finally

mark O(P5, P2). Hence, place O(P2, P5) is a predecessor of place O(P5, P2) it-

self. But at the same time O(P2, P5) can only be marked if T2′ fires marking

P2 and also firing T2. Since place O(P5, P2) must be marked in order to enable

T2′, place O(P5, P2) must also be a predecessor of place O(P2, P5) itself and

hence the deadlock appears. This deadlock can be detected but not avoided.

Other deadlocks can be not only detected but avoided too. The deadlock shown

in Figure 6.9(b) appears if T7′ fires later than T2′ but before T3 or if T2′ fires

after T7′ but before T7. This deadlock can be avoided applying an extra super-

visor. A procedure to check if a Petri net is deadlock free and able to add an

extra supervisor if it is not, is described in the algorithm presented in Extract 6.1.

121



6. COORDINATION OF MULTIPLE VEHICLES

(a)

(b)

Figure 6.9: (a) A deadlock appears when two ordering constraint O(P2, P5) and
O(P5, P2) are combined. (b) A deadlock appears when the two mutual exclusions
M([P2 → T2 → P3 → T3 → P4], P8) and M(P3, [P7 → T6 → P8 → T7 →
P9]) are combined.

122



6. Coordination of Multiple Vehicles

Extract 6.1: Deadlock avoidance procedure.

(1) Compute the invariants of the centralized net.

(2) For every vehicle mission, join the final places with the initial place

through a single transition.

(3) Compute the minimal siphons and traps in the transformed Petri net

resulting from step (2).

(4) For every siphon Sp that is not controlled by a place invariant or a

trap, or that is not initially marked, generate a constraint lµ ≤ 1 using

equation (6.26). If there are no uncontrolled, or initially unmarked

siphons, the Petri net is deadlock free and the algorithm finalizes.

(5) If the constraint lµ ≤ 1 generated in step (4) produces a Dc = [0, 0, ...0]

applying equation (A.10), it means that it is impossible to add a

supervisor to avoid the deadlock. The algorithm finalizes with a

deadlocked Petri net conveniently signaled.

l = [l1 · · · li · · · lnc], where li =

{
1 if pi ∈ Sp
0 otherwise

(6.26)

(6) If the SBPI synthesized in step (4) is valid (Dc 6= [0, 0, ...0]), add the

supervisor to the original Petri net, add the place invariant to the list

created in step (1) and repeat from step (2).

Applying the algorithm in Extract 6.1 to the Petri net in Figure 6.9(a) the

following invariants are obtained:

P1 + P2wait + P2 + P3 = 1 (6.27)

P4 + P5wait + P5 + P6 = 1 (6.28)

P2 + P5 +O(P2, P5) +O(P5, P2) = 0 (6.29)

To apply the Petri net modification described in step (2), a transition (T ′)

must be added between the end place P3 and the begin place P1 as well as

between P6 and P4 as shown in Figure 6.10. Four minimal siphons are obtained

in the transformed Petri net. All of them are trap or invariant controlled but

Sp = {P2, P5, O(P2, P5), O(P5, P2)} (6.30)

123



6. COORDINATION OF MULTIPLE VEHICLES

Figure 6.10: Applying the deadlock avoidance procedure to Figure 6.9(a).

is not initially marked. If a supervisor is synthesized to initially mark this

siphon, the resulting supervisor happens to be not valid (Dc = [0, 0, ..., 0]) and

the algorithm terminates at step (v).

When applying the same algorithm to the Petri net in Figure 6.9(b) four

invariants and five siphons are obtained. The only uncontrolled siphon is

Sp = {P4, P3, P8, P9,M([P2→ T2→ P3→ T3→ P4], P8),

M(P3, [P7→ T6→ P8→ T7→ P9])} (6.31)

A supervisor is generated in the step (4) of Extract 6.1 and applied to the

Petri net as shows in Figure 6.11. Since no more siphons appear, the algorithm

terminates with a deadlock free Petri net.

6.3 Decentralized supervision

A set of algorithms to check if a centralized Petri net system can be distributed

among several subsystems is presented in Iordache and Antsaklis [2006b]. This

centralized systems can be related to the Petri net obtained in previous sections

after applying a set of coordination constraints to the vehicle missions. More-

over, if the obtained system is not directly distributable, an algorithm to add

124



6. Coordination of Multiple Vehicles

Figure 6.11: Figure 6.9(b) after applying the deadlock avoidance procedure.

minimal communication to make it distributable is introduced too. This section

reproduces some of the algorithms introduced in Iordache and Antsaklis [2006b]

showing how they can be used to decentralize the multiple-vehicles centralized

missions previously synthesized.

6.3.1 Checking the d-admissibility of a constraint

A system is admissible if all its supervisors, the places that has been added in

order to ensure the coordination constraint, control only controllable transitions

and detect only observable transitions. t is a controllable transition if it is possible

to add a supervisor place c so that t can be in c•. On the other hand, t is

observable if it is possible to add a supervisor place c so that t can be in c• or in

•c.
To check if a system that is admissible in a centralized way, c-admissible, is

also admissible once distributed, d-admissible, all its constraints have to accom-

plish the algorithm shown in Extract 6.2. Let TMo and TMc be the observed and

controlled transitions by the constraint lµ + cυ ≤ b being checked. ζ is the set

of subsystems in which the centralized system will be split and To,i and Tc,i are

the observable and controllable transitions for each subsystem. In our frame-

work, the subsystems ζ as well as the To,i and Tc,i sets are defined for the initial

uncoordinated vehicle missions. There are as many subsystems as independent

vehicle missions and it is assumed that each vehicle is only capable of observing

125



6. COORDINATION OF MULTIPLE VEHICLES

and controlling their own transitions.

Extract 6.2: Check the d-admissibility of a constraint.

(1) Find TMo and TMc .

(2) Let ζ be the set of indices i satisfying To,i ⊇ TMo .

(3) If ζ = ∅, declare the constraint not d-admissible and exit.

(4) Define Tc = ∪i∈ζ Tc,i.
(5) If Tc satisfy Tc ⊇ TMc then constraint d-admissible else constraint not

d-admissible.

In general, it can be difficult to compute TMo and TMc . Alternatively, estimates

of T ec ⊇ TMc and T eo ⊇ TMo can be used. However, in this case the algorithm only

checks a sufficient condition for d-admissibility. T ec and T eo can be calculated

using the control place C generated for the SBPI synthesized by the constraint

to enforce the desired behavior in the centralized system as T ec = C• and T eo =

•C ∪ C•

6.3.2 Design minimizing communication

If the algorithm in Extract 6.2 returns that a constraint is not d-admissible it is

possible to introduce communication in order to make the constraint d-admissible.

To characterize communication three binary variables are introduced: αi,j = 1 iff

the transition tj is communicated to subsystem si, εi,j = 1 iff the transition tj is

remotely controlled by subsystem si and δi,k = 1 iff the subsystem si is involved

with the constraint k.

Extract 6.3 applies an Integer Linear Program (ILP) to solve (6.35) in order

to minimize the communication cost of the distribution.

Extract 6.3: Design minimizing communication.

(1) Find the value of α, ε and β that minimize (6.35) subjected to the

constraints defined by (6.32), (6.33) and (6.34).

αi,j ≥ δi,j ∀j ∈ {f : tj ∈ T ko \ To,i} (6.32)

∀k = 1 · · ·nc :
n∑
i=1

δi,k ≥ 1 (6.33)

126



6. Coordination of Multiple Vehicles

∀k = 1 · · ·nc, ∀x = 1 · · ·n, ∀j ∈ {y : ty ∈ T kc } :

δx,k ≤ εx,j +
∑
i∈Ij

δi,k (6.34)

∑
i,j

αi,jci,j +
∑
i,j

εi,jfi,j +
∑
i,k

δi,khi,k (6.35)

Where nc is the number of constraints, n the number of subsystems, ci,j is the

cost of communicate the tj firing to subsystem si, fi,j is the cost of control the

tj firing from subsystem si and hi,k is the cost that subsystem si intervenes in

constraint k.

When talking about underwater vehicles, minimize the communication be-

tween them is critical. Underwater vehicles use to communicate through acoustic

modems with very low bandwidth. Then, it is important to find techniques to

minimize the amount of information to be transmitted.

6.3.3 Supervisor design for a d-admissible constraint

If the algorithm presented in Extract 6.2 shows that all the constraints are d-

admissible or using the algorithm shown in Extract 6.3 a communication policy

is found which makes all the constraints d-admissible, it is possible to design a

decentralized supervisor applying Extract 6.4 to each constraint.

Extract 6.4: Supervisor design for a d-admissible constraint.

(1) Let µ0 be the initial marking of N , C the control place of the

centralized SBPI enforcing lµ+ hq + cυ ≤ b and ζ the set of subsystems.

(2) ∀i∈ζ , let xi ∈ N be a state variable of si.

(3) Define Si, for i ∈ ζ, by the following rules:

3.1 - Initialise xi = µs0

3.2 - If t ∈ Tc,i, t ∈ C• and xi < Ws(C, t), then Si disables t.

3.3 - If t fires, t ∈ To,i and t ∈ •C, then xi = xi +Ws(t, C).

3.4 - If t fires, t ∈ To,i and t ∈ C•, then xi = xi −Ws(C, t).

In our framework, Extract 6.2 will be always false if the constraint to check

involves two or more vehicles. However, if only the presented constraints are

used, it is always possible to find a communication policy with Extract 6.3 to

127



6. COORDINATION OF MULTIPLE VEHICLES

decentralize them.

6.4 Multiple vehicle coordination implementa-

tion

To integrate all these algorithms into our current framework, the MCL has been

extended. First, instead of being able to define only one mission per file, several

missions can be defined. Second, each one of these missions have an identifier

named mission id. Third, each task can have a label, label id, associated to it.

Finally, a new section has been added in the MCL to describe the constraints

involved in the mission using the syntax described in Extract 6.5.

Extract 6.5: MCL constraints definition.

constraints {
mutex {

mission id :label id (, mission id :label id)+

}=β

order {
mission id :label id, mission id :label id

}
sync {

mission id :label id (, mission id :label id)+

}
}
Algorithms presented in Extract 6.2, Extract 6.3 and Extract 6.4 have been

implemented within the MCL-C in order to obtain one PNML file for each vehicle

once compiled the MCL code. The lp solve library [Berkelaar et al., 2010] is used

to solve, in compilation time, the ILP problem that appears in Extract 6.3.

128



Chapter 7

Planning

Predefined plans, as the ones presented in previous chapters, are the state of the

art for today Autonomous Underwater Vehicle (AUV) missions. However, when

dealing with the uncertain and unknown underwater environment with processes

and other agents changing the world in unpredictable ways, and with notoriously

imprecise and noisy sensors, plans can fail by several reasons [Turner, 2005].

Quoting Dwight D. Eisenhower: Plans are worthless, but planning is everything.

There is a very great distinction because when you are planning for an emergency

you must start with this one thing: the very definition of ”emergency” is that

it is unexpected, therefore it is not going to happen the way you are planning.

The difficulty to control the time in which events happens, how to deal with

resources as energy, how to respond to sensor malfunctions or the lack of on-

board situational awareness may cause off-line plans to fail at execution time as

assumptions upon which they were based are violated. Moreover, the difficulty

to add new sub-goals during a mission diminishes the possibilities of these off-line

planned systems [Rajan et al., 2007]. Consequently, an on-board planner with

the ability to modify or re-plan the original plan should be included in an AUV.

However, on the other hand, scientists want to ensure that the data that they

need is collected where and when they specify and not when a planner decides to

do it. Similarly, militaries have often been opposed to on-board planners, since

it is critical for most of their missions to ensure a predictable robot behavior.

Then, a compromise between off-line plans and automated on-board planning is

desirable.

As presented in the survey, see Chapter 2, not many successful approaches

129



7. PLANNING

using deliberative modules on-board an AUV are found in the literature [Evans

et al., 2006; Patrón et al., 2008; Rajan et al., 2007; Turner, 2005].

In general, to develop a system able to react to any unforeseen event is still an

open question. Nowadays, algorithms are only able to react to those situations

for which they have been programmed to deal with. However, the way in which

the actions to take are specified can drastically change based on how the problem

is defined. For instance, if when defining a mission a conditional structure is used

each time that the vehicle can choose several alternatives, the size and complexity

of this mission plan will grow exponentially to the number of alternatives that

the vehicle can face during the mission execution. However, if it is possible to

describe each vehicle primitive in such a way that an on-board planner can un-

derstand when and why this primitive should be executed, the planner itself can

be able to choose the most suitable action each time simplifying, a priory, the

mission description. Therefore, we propose to add some deliberative capabilities

to the previously presented framework in a hierarchical way. Although, auto-

mated planning techniques are out of the scope of this thesis, the purpose of this

chapter is to describe the interface of some well-known automatic planning tech-

niques with the existing Mission Control System (MCS) from a practical point of

view. Thus, simple planning techniques are used to illustrate how to interface a

deliberative layer over the presented MCS.

7.1 Automated planning

Automated planning concerns the realization of strategies or action sequences. It

can be defined as the reasoning side of acting that tries to choose and organize

actions, to fulfill a goal, by anticipating their expected outcomes [Ghallab et al.,

2004]. A typical planner takes three inputs: a description of the initial state

of the world, a description of the desired goal, and a set of possible actions, all

encoded in a formal language. The planner produces a sequence of actions that

leads from the initial state to a state meeting the goal.

Planning can be used in diverse domain-specific areas like path-planning [Fer-

guson et al., 2005] or manipulation-planning [Amato and Wu, 1996]. In some of

these areas the use of domain-specific approaches may be beneficial. Generally

speaking, domain-specific planners use specific representations and techniques

adapted to each problem while domain-independent planning use generic rep-

130



7. Planning

resentations and techniques. However, when dealing with autonomous vehicles,

domain-specific approaches may not be sufficiently satisfactory because its delib-

erative capabilities will be limited to areas for which domain-specific planners are

available. Then, domain-independent approaches, that claim to not use domain

knowledge, should be used.

Planning is concerned with choosing and organizing planning actions to change

the state of a system. Then, a conceptual model for this system have to be de-

fined. Formally, this state-transition dynamic system is defined by the triple

Σ = (S,A, γ), (7.1)

where:

• S = {s1, s2, · · · } is a finite set of states;

• A = {a1, a2, · · · } is a finite set of planning actions; and

• γ : S × A→ 2S is a state transition function.

To simplify the planning problem, it is useful to make restrictive assumptions

in order to work out a well defined model. The following assumptions define the

widely used restricted model [Ghallab et al., 2004].

Definition 7.1.1. The restricted model is a state-transition system like the one

presented in (7.1) in which the following assumption hold:

• The system has a finite and fully observable set of states with complete

knowledge about it.

• The system is deterministic and static. This means that the states only

change when an operation is applied to a state and its application brings

the system to a single other state.

• The planner handles only restricted goals. Extended goals such as states to

be avoided and constraints on state trajectories are not handled.

• The solution plan is a linearly ordered finite sequence of operations with no

duration.

131



7. PLANNING

7.2 Classical planning

Despite planning-graph [Blum and Furst, 1997] and propositional satisfability

[Davis and Putnam, 1960] techniques have been proved very effective in several

domains, the classical planning approach has been chosen in this dissertation for

its simplicity.

A classical planning problem for a state-transition system (Σ) following the

restricted model introduced in Definition 7.1.1 is a triple P = (Σ, s0, g), where s0

is an initial state and g corresponds to a set of goal states. Then, a solution to

P is a sequence of planning actions (a1, a2, · · · , ak) corresponding to a sequence

of state-transitions (s0, s1, · · · , sk) such that s1 = γ(s0, a1), · · · , sk = γ(sk−1, ak)

and sk is a goal state (sk ∈ g).

In a classical planing approach, states are represented by sets of logical atoms

that can be true or false and planning actions are represented by the instance of

planning operators that change the truth value of these atoms. A state is a set of

ground atoms of L where L is a first-order language in which every term is either

a variable symbol or a constant symbol. If L has no function symbols, the set S

of all possible states is guaranteed to be finite.

Definition 7.2.1. Let L be a first-order language that has finitely many predicate

symbols and constant symbols [Ghallab et al., 2004]. A classical planning domain

in L is a restricted state-transition system Σ = (S,A, γ) such that:

• S ⊆ 2all ground atoms of L

• A = all ground instances of operators in O, where O is a set of planning

operators. Each planning action a ∈ A is a triple of subsets of L, which

can be written as a = (precond(a), effects−(a), effects+(a)). The set

precond(a) is called the preconditions of a. The set of effects+(a) and

effects−(a) are called the effects of a. These two sets of effects must be

disjoint (effects+(a) ∩ effects−(a) = ∅)

• γ(s, a) = (s− effects−(a)) ∪ effects+(a), a ∈ A is applicable to s ∈ S iff

precond(a) ⊆ s, otherwise γ(s, a) is undefined.

• S has the property that if s ∈ S, then for every planning action a that

is applicable to s, the set (s − effects−(a)) ∪ effects+(a) ∈ S. In other

words, S is closed under γ.

132



7. Planning

Definition 7.2.2. A classical planning problem is a triple P = (Σ, s0, g), where:

• s0, the initial state, is any state in set S;

• g, the goal, is any set of ground literals; and

• a goal g correspond to a set of goal sates Sg where Sg = {s ∈ S|s satisfies g}

Thus, the statement of a planning problem P = (Σ, s0, g) is P = (O, s0, g).

Once defined the classical planning principles, how states, goals and operators

are presented in our framework is introduced.

7.2.1 States

States have been introduced in Definition 7.2.1 as a set of ground atoms of L,

where these ground atoms are the combination of variables and constant symbols.

In our implementation the ground atoms of L are named facts. Thus, each state

contain a set of facts representing the information that is true in the world model

for this specific state. As the closed-world assumption [Reiter, 1982] is used,

the facts that does not appear in the state are false. The variable symbols that

compose these facts are called entities and each entity has a type assigned. Then,

to describe a fact, one or two entities with a constant symbol representing a

quality or a relation between the entities is used. For instance, if we want to

express that in the initial state our vehicle is in a specific location we can use the

fact

vehicle::ictineu In location::dock

where ictineu is an entity of type vehicle, dock is an entity of type location and

In is a constant symbol that relates both entities. Entities can contain internal

attributes. For instance, a location type entity includes three attributes: x, y

and z. This extra information is used when an operator is instantiated. A file

with all the entities in the knowledge database as well as their attributes must

be provided by the user.

133



7. PLANNING

7.2.2 Initial state s0 and goal g

Both the initial state s0 and the goal g are two sets of facts. The former can

be given by the user or computed by a component able to extract information

from the world. It have to include all the facts, related to all the entities in the

domain, that are true when the planner starts to compute a new plan. The latter,

contains the set of facts that have to be true to consider that the mission has

been fulfilled. This means that if g ⊆ sk, sk is a final state and no more operator

instances have to be computed.

7.2.3 Planning operators

The transition function γ is specified generically through a set of planning opera-

tors that are instantiated into planning actions. Do not confuse planning actions

with the actions used in previous chapters to enable/disable vehicle primitives.

Definition 7.2.3. In classical planning, a planning operator is a triple

o = (name(o), precond(o), effects(o)), (7.2)

where

• name(o), the name of the operator, is an expression of the form n(x1, · · · , xk),
where n is a symbol called operator name and x1, · · · , xk are the variable

symbols that appear anywhere in o, the entities;

• precond(o) and effects(o), the preconditions and effects of o, respectively,

are generalizations of the preconditions and effects in Definition 7.2.1.

It is worth noting that n is a unique operator identifier, the variable symbols

that appear anywhere in o are entities and each one of these entities has a partic-

ular type. For instance, the signature of an operator that moves a vehicle from

one location to another is an expression like

move(vehicle, location, location),

where move is the operator name n and the variable symbols x1, · · · , xk are

defined by the entity types vehicle, location and location. This general operator

can be instanced into a particular planning action like

134



7. Planning

move(ictineu, deploy, dock),

where ictineu is a vehicle type entity and deploy and dock are location type

entities. precond(o) indicates the facts that must be present in the world model

in order to apply the operator. Thus, if a is an instance of an operator o ∈
O, γ(s, a) exists iff precond(a) ⊆ s where s ∈ S. Finally, effects(a) are the

changes produced in the world if the operator is applied. effects(a) are divided

in effects+(a) and effects−(a), where

• effects+(a) are the facts that are supposed to be produced into the current

state after applying the operator instance a; and

• effects−(a) are the facts that are supposed to be removed from the current

state after applying the operator instance a.

Despite the facts that have to be true in the world in order to apply the

operator, the preconditions, a set of boolean expressions relating the operator

entities among them or with literal values, can be added to the operator o. Only

when all the expressions are true the operator may be applied.

Extract 7.1 presents an example of a planning operator, named move, that

moves a vehicle (v) from an initial location (l1 ) to a final location (l2 ) only if the

vehicle v is in location l1, as stated in the precondition, and l1 6= l2, as stated in

the expressions.

Extract 7.1: Planning operator move.

move(vehicle v, location l1, location l2 )

precond
v in l1 ;

add
v in l2 ;

del
v in l1 ;

expression
l1 6= l2 ;

If no cost function is specified in the operator, the planner looks for the plan

with the shortest sequence of planning actions, otherwise, the planner minimize

the cost function.

135



7. PLANNING

To execute a planning action on a real robot it is necessary to associate it

with a vehicle action. As exposed in previous chapters, the basic robot actions

are the vehicle primitives. However, instead of relating vehicle primitives with

planning operators, off-line missions programmed using the Mission Control Lan-

guage (MCL) has been associated to planning operators. This pre-programmed

missions, named MCL mission operators, are in charge to solve a particular phase

of a more complex mission. Then, the planner will not sequence vehicle primi-

tives but small pieces of MCL code containing calls to vehicle primitives. Several

advantages arise from this solution:

• First of all, the number of planning operators and the length of the sequence

of planning actions to fulfil a mission will be reduced. As the complexity

of a classical planning problem is related to the number of states in S and

also to the number of operator instances (A) applicable to each state, then

the planning problem is reduced and, therefore, plans can be obtained more

quickly.

• The vehicle’s behavior is more predictable than executing an arbitrary com-

bination of primitives selected by the on-board planner. The user is who

chooses how to combine a set of vehicle primitives to perform a specific

task nor the on-board planner. The planner only decides in which mission

phase the vehicle is and which MCL mission operator is more suitable to

be executed in this particular phase.

• Finally, although basic planners produce only a sequence of actions to be ex-

ecuted, parallelization, conditional and iterative execution of vehicle primi-

tives can be done within the MCL mission operators by means of Petri Net

Building Blocks (PNBBs) control structure.

To link the planning operators with the MCL mission operators, the extra

keyword mcl has been added in the planning operator definition as shown in

136



7. Planning

Extract 7.2.

Extract 7.2: Complete planning operator move definition.

move(vehicle v, location l1, location l2 )

precond
v in l1 ;

add
v in l2 ;

del
v in l1 ;

expression
l1 6= l2 ;

mcl
MclMove( l2.x, l2.y, l2.z ) ;

Extract 7.3 shows the MCL mission operator linked by the move planning

operator in Extract 7.2. This MCL operator looks very simple because if some

error occurs when executing it, the error will be cached by the planner and a new

plan will be computed.

Extract 7.3: MclMove MCL mission operator.

mission MclMove( x, y, z )

monitor

parallel
AvoidObstacles( )

or
Goto( x, y, z )

condition Alarm() do
Stop()

To initialize the parameters of the MissionGoto MCL mission operator, the

predefined attributes of l2 entity, (l2.x, l2.y and l2.z) are used.

7.2.4 Plans

The planner generates a plan to be executed in real-time on-board an autonomous

vehicle. This plan must contain an ordered list of planning actions. Furthermore,

the plan contains the facts that should be true in the world each time that a

137



7. PLANNING

planning action is under execution. This information will be useful when running

the plan on-line to know whether it continues being valid or not.

Definition 7.2.4. A plan is defined as an ordered list of executable planning

actions each one described by the triple

plan = {mclop, Fi, Fe}, (7.3)

where

• mclop is an instance of an MCL mission operator;

• Fi is the set of facts that should be true when the mclop is initially executed;

and

• Fe is the set of facts that should be true after execute the mclop.

7.3 State-Space planner

The simplest algorithms used in classical planning are the state-space search al-

gorithms. The search space of this algorithms is a subset of the state space: each

node in the search space corresponds to a state of the world, each arc corresponds

to a state transition, and a plan corresponds to a path in the search space from

the initial node (initial state) to a final node (a state in which the goals have

been achieved) [Ghallab et al., 2004]. Opposed to state-space planners there are

plan-space planners in which nodes are partially specified plans and arcs are plan

refinement operations intended to further complete a partial plan. Intuitively,

a refinement operation avoids adding to the partial plan any constraint that is

not strictly needed for addressing the refinement purpose. This is called the least

commitment principle [Weld, 1994]. Planning starts from an initial node cor-

responding to an empty plan and the search aims at a final node containing a

solution plan that correctly achieves the required goals. Planners planning in the

plan-space are commonly known as Partial Order Planning (POP) algorithms.

Despite several successful approaches have demonstrated the validity of POP

when dealing with autonomous vehicles [Chien et al., 1998; Patrón et al., 2008],

for the sake of simplicity, state-space planners will be discussed in this disser-

tation. The aim of this chapter is just to illustrate how a domain-independent

138



7. Planning

Figure 7.1: Planner components and its relations.

planner algorithm can be connected with the previously presented methodology

to improve the performance of the whole MCS adding some deliberative capabil-

ities. Then, as shown in Figure 7.1, from the MCS point of view, the planner

algorithm will be a black-box that given some inputs is able to generate a plan as

an output. Thus, although a simple planner algorithm will be presented in this

chapter, it can be replaced by any other planner, like a POP or a graph-plan to

improve its performance.

7.3.1 Search algorithms

Search techniques are general problem-solving methods. To formulate a search

problem, a set of states, a set of operators, an initial state and a goal criterion

have to be specified. Then, it is possible to use search techniques to solve the

problem [Pearl and Korf, 1987]. If search algorithms go from the initial state s0

to a final state sk in which g ⊆ sk then, the algorithm performs a forward-search.

Otherwise, if the algorithm begins at the goal g and inverses of the planning

operator instances are applied until satisfying the initial state a backward search

is used. In small scale search problems, simple search techniques are sufficient

to do a systematic search. However, due to its complexity, heuristics can be

introduced to guide the search process. Heuristic search makes use of the fact

that most problem spaces provide some information that distinguishes among

states in terms of their likelihood of leading to a goal. This information is called

a heuristic evaluation function [Pearl and Korf, 1987]. In other words, the goal

139



7. PLANNING

of an heuristic search is to reduce the number of nodes searched in seeking a

goal [Kopec et al., 2004]. Then, it is important to distinguish between the search

algorithms that use heuristics and those who do not use it.

7.3.1.1 Non heuristics search algorithms

The state-space for a planning problem is defined as a tree in which the root is

s0. For each operator instance that is applied to s0 a new state si appears. The

whole process is then repeated for each si until an state that satisfies g is achieved.

However, if it is possible to achieve the same state from different previous states,

the tree structure can be converted into a more efficient graph structure as shown

in Figure 7.2. There are two main algorithms to visit all the nodes in a graph:

• A Depth-First Search (DFS) is a technique for traversing a tree, tree struc-

ture, or graph. DFS visits the child nodes before visiting the sibling nodes,

see Figure 7.3(a), that is, it traverses the depth of the tree before the

breadth.

• A Breadth-First Search (BFS) is another technique for traversinga tree,

tree structure, or graph. BFS visits the sibling nodes before visiting the

child nodes, see Figure 7.3(b). The primary advantage of BFS is that if

a nondeterministic procedure p is complete, then the breadth-first version

of p will also be complete1. However, in most cases the BFS procedure

will have a huge space requirement. For example, suppose that every node

of the search space has b children, the terminal nodes are at depth d, the

time needed to visit each node is Θ(1), and the space needed to store each

node is also Θ(1). Then the running time for a breadth-first search will be

Θ(bd), and because a BFS must keep a record of each node visited, then

the memory requirement will also be Θ(bd).

Despite the huge space requirement of BFS, it will return the shortest plan

that bring us to the solution. A standard implementation of the BFS algorithm

1A deterministic procedure is complete if, whenever it is invoked on a solvable problem P, it
is guaranteed to return a value v not equal to failure. A nondeterministic procedure is complete
if, whenever it is invoked on a solvable problem P, at least one of its execution traces will return
a value v not equal to failure whenever P is solvable.

140



7. Planning

(a) (b)

Figure 7.2: (a) Tree structure and (b) graph structure.

(a) (b)

Figure 7.3: (a) Order in which the nodes are expanded using a DFS algorithm or
(b) a BFS algorithm.

141



7. PLANNING

has been implemented following the pseudo-code presented in Extract 7.4.

Extract 7.4: BFS pseudo-code.

breadthFirstSearch( O, Entities, s0, g )
vector<action> actions = buildActions( O, Entities ) ;

vector<state> visitedStates ;

visitedStates.add( s0 ) ;

struct node
node∗ n ;

state s ;

action a ;

vector<node> plan ;

plan.add( node( null, s0, null ) ) ;

for node p ∈ plan do

for action a ∈ actions do

if precond(a) ⊆ p.s then
state newState = p.s - effects−(a) + effects+(a) ;

if newState /∈ visitedStates then
visitedStates.add( newState ) ;

plan.add( node( *p, newState, a ) ) ;

if g ⊆ newState then
return plan ;

The planner algorithm based on the BFS starts building the actions by com-

bining the planning operators, O, with all the available entities, Entities. To

avoid visiting several times the same states, a pool of visited states, visitedStates,

is saved. Each node in the plan is composed by the state itself, a pointer to the

previous node and the action that transforms the state in the previous node to the

current one. Starting from the node that includes the initial state, the algorithm

checks which actions can be applied, precond(a) ⊆ si. If an action can be applied

and the resulting state is not in the pool of visited states, then a new node is

generated. This node contains the new state, a pointer to the current node and

the action that transforms the current node with the new one. This process is

repeated for all new nodes until one of them satisfies g. Then, a plan is found. To

obtain the sequence of nodes to be executed the plan must be interpreted. The

142



7. Planning

pseudo-code in Extract 7.5 performs this function.

Extract 7.5: Extract list of actions from a plan graph.

extractRealPlan( plan )
node n0 = plan.first() ;

node planNode = plan.last() ;

vector< node > realPlan ;

while planNode 6= n0 do
realPlan.add( planNode ) ;

planNode = planNode.n ;

return invertVector( realPlan ) ;

The state in the last node of the plan satisfy g. Then, from this node, it is

possible to follow the pointer to the precedent nodes until reach the initial state.

This list of nodes is the real plan but in inverse order. Therefore, it must be

inverted before return it.

The planning algorithm presented in Extract 7.4 do not use any cost function.

However, it is simple to assign a positive weight value to each operator to be used

as a cost function. Thus, the planner’s goal is to obtain the sequence of planning

actions leading the world model from its initial state s0 to a final state sk in which

g ⊆ sk, minimizing the total cost of all the actions being used. If all the planning

operators have the same cost associated, then the algorithm in Extract 7.4 is

enough to find the best solution. However, if different positive cost values are

associated to each operator, some modifications have to be done. First of all,

each node have to save a value indicating the cost to reach this state. Then,

each time that a previously visited state is reached from a different combination

of action/source node, the cost value and the preceding node/action have to

be updated if the new cost is lower. Moreover, once a state that successfully

accomplish g is reached, if there are nodes waiting to be evaluated with a lower

cost than the current node, these nodes have to be evaluated. When there are no

remaining nodes to be evaluated or these nodes have a cost bigger or equal than

the solution node, the algorithm finalizes.

7.3.1.2 Heuristics search algorithms

If heuristics are used to guide the search, several well known algorithms can be

used: best-first search [Pearl, 1984], A* [Hart et al., 1968] or B* [Berliner, 1979]

143



7. PLANNING

are just some of them. However, to use heuristics, it is necessary to assess how

close to the goal, g, may bring each action. A very intuitive idea to obtain a

general heuristics for a domain-independent classical planning algorithm is the

relaxation principle [Ghallab et al., 2004]. Given an action a and a state s, the

transfers function γ is defined as γ(s, a) = (s − effects−(a)) ∪ effects+(a).

However, if the relaxation principle is applied, the transfer function γ is defined

as γ(s, a) = s ∪ effects+(a).

As the facts produced by effects−(a) are neglected in the resulting state,

the simplified γ(s, a) involves only a monotonic increase in the number of facts

from s to γ(s, a). Hence, compute the cost in which g is achieved will be easier

applying this relaxation principle. The following heuristic functions extracted

from Ghallab et al. [2004] are based on this relaxation idea.

Definition 7.3.1. Let s ∈ S be a state, f a fact, and g a set of facts. The

minimum cost from s to f , denoted by 4∗(s, f), is the sum of the cost associated

to the minimum number of planning actions required to reach from s a state

containing f . The minimum cost from s to g, 4∗(s, g), is the sum of the cost

of the minimum number of planning actions required to reach from s a state

containing all facts in g.

Let 4(s, f) be an estimation of 4∗(s, f) and 4(s, g) be an estimation of

4∗(s, g). 4 is given by the following equations.

4(s, f) = 0 if f ∈ s
4(s, g) = 0 if g ⊆ s

4(s, f) =∞ if ∀a ∈ A, f /∈ effects+(a) (7.4)

otherwise:

4(s, f) = min{cost(a) +4(s, precond(a))|f ∈ effects+(a)}
4(s, g) = Σf∈g 4 (s, f) (7.5)

From (7.4) and (7.5) an heuristic function h(s) may be defined to give an

estimation of the cost from a node s to a node that satisfies the goal g of a

144



7. Planning

planning problem as

h(s) = 4(s, g) (7.6)

Once the heuristic function h(s) is defined, a standard A* algorithm can be

used to perform a guided search among all possible states to find a solution for a

planning problem.

7.4 Knowledge database

The restricted model introduced in Definition 7.1.1 says that the system used to

plan must be static and deterministic. In general, classic planning techniques

have been applied in such systems. However, when the system on which we

pretend to plan is the real world, this assumption is commonly wrong. In the

real world, the facts that describe a state do not only change when an action

is applied, but may also change dynamically. Moreover, the application of an

action does not always brings the system to a single other state, real world is

nondeterministic. Therefore, it is necessary to constantly check the state of the

world to detect changes on it and see whether these changes conform to the ones

expected in the plan or not. If changes are different from those expected, it will

be necessary to generate a new plan. To keep a simplified representation of the

real world, a component named world modeler has been developed.

Traditionally, several control architectures for AUVs include a knowledge

database to keep track of certain variables in the world [Herman et al., 1988].

In the AUV domain, these knowledge database use to collected data to build ter-

rain elevation maps including data about the soil, vegetation, ravines, landmarks,

obstacles or transponders. These data sets, use to be used by path planners to

work out a safety trajectory or by on-board expert systems to decide the next

region of interest to be surveyed.

In the proposed architecture, a component named world modeler is in charge

to keep this knowledge database updated. To not tie the world modeler to a

particular application domain, this component uses a context provider to be as

general as possible. The context provider uses a set of scripts, defined by the

user, to build the facts that compose the current world state: the knowledge

database. These scripts take the perceptions received from the reactive layer to

145



7. PLANNING

Figure 7.4: World modeler schema.

add or delete facts in the current world state as shown in Figure 7.4.

7.4.1 World modeling scripts

To describe the current world state, only the facts used by the planning operators

in their preconditions and effects have to be modeled. Thus, the user have to

provide scripts capable to transform the perceptions received into a set of facts.

These scripts are named fact provider scripts.

Each script is defined by the triple

fp = {id, conditions, effects}, (7.7)

where:

• id is an identifier;

• conditions are a set of boolean expressions involving perceptions that have

to be true in order to apply the script; and

• effects are the changes to be produced in the knowledge database if the

script is applied. Like for the operators, effects are divided between effects+

(add) and effects− (del).

Each script may contain one or more condition statements relating perceptions

among them or among literals. The syntax of a condition is described as

146



7. Planning

<condition value1=(perception id|num) type1=(”literal”|”perception”)

operator=(”=”|”!=”|”<”|”>”|”<=”|”>=”) value2=(perception id|num)

type2=(”literal”|”perception”)>

Simple boolean expressions can be defined using this syntax. When all the

conditions inside one fact provider script are true, the effects are applied. Sev-

eral effects+ and effects− can be included in each script following this syntax:

<del value1=(”forall”|entity id) type1=entityType id prop=id

(value2=(”forall”|entity id) type2=entityType id)?>

<add value1=(”forall”|entity id) type1=entityType id prop=id

(value2=(”forall”|entity id) type2=entityType id)?>

If the term forall is used instead an entity id, then a fact is generated for

each entity whose type coincides with the entityType id. Extract 7.6 and Ex-

tract 7.7 show two of these fact provider scripts.

Extract 7.6: low battery fact provider script.
<script id="low_battery">

<condition value1="auv.battery" type1="perception"

operator="<" value2="30" type2="literal"/>

<del value1="ictineu" type1="vehicle" prop="batteryOk"/>

<add value1="ictineu" type1="vehicle" prop="batteryLow"/>

</script>

In Extract 7.6, when the auv.battery perception is sent through the Architec-

ture Abstraction Component (AAC) to the world modeler, the fact provider script

low battery is executed. If the value of the perception auv.battery is smaller than

30%, the fact ictineu BatteryOk is removed from the world knowledge database

while the fact ictineu BatteryLow is added to it.

147



7. PLANNING

Extract 7.7: recovery location fact provider script.

<script id="recovery\_location">

<condition value1="auv.x" type1="perception"

operator=">" value2="-2" type2="literal"/>

<condition value1="auv.x" type1="perception"

operator="<" value2="2" type2="literal"/>

<condition value1="auv.y" type1="perception"

operator=">" value2="-2" type2="literal"/>

<condition value1="auv.y" type1="perception"

operator="<" value2="2" type2="literal"/>

<condition value1="auv.z" type1="perception"

operator="<" value2="0.2" type2="literal"/>

<condition value1="auv.z" type1="perception"

operator=">" value2="0.0" type2="literal"/>

<del value1="ictineu" type1="vehicle" prop="in"

value2="forall" type2="location"/>

<add value1="ictineu" type1="vehicle" prop="in"

value2="recovery" type2="location"/>

</script>

The script shown in Extract 7.7 modifies the fact vehicle in location. If the

ictineu entity position (x, y, z) is near to (0, 0, 0) (plus, minus an error), all the

facts ictineu in whatever are deleted from the world knowledge database and the

fact ictineu in recovery is added to it.

7.5 Adding planning abilities to the proposed

Mission Control System

General concepts about automatic planning as well as several search algorithms

based on classical planning techniques have been reviewed. World modeling tech-

niques to keep an updated knowledge database have been also introduced. Now,

how all these algorithms are implemented as components in the previously intro-

duced control architecture and how they are related among them and the other

components in the architecture is detailed.

148



7. Planning

Figure 7.5: Deliberation components used to build on-line plans.

The two components added into the architecture to provide on-board planning

capabilities are: a world modeler and a planner, see Figure 7.5. The former,

receives perceptions through the AAC and applying a set of scripts defined by the

user add and remove facts into the current world state, the kno0wledge database.

The latter, is a classical domain-independent planner algorithm, that, given a

set of facts provided by the world modeler and a list of available operators and

entities, generates a plan to achieve the goals described by the user. The current

implementation is a simple BFS algorithm working in the state-space according

the restricted model presented in Definition 7.1.1.

Instead of using the vehicle primitives as basic planning operators, off-line

missions programmed in MCL has been used as planning operators to solve a

particular phases of a more general mission. The use of MCL mission operators

allow us to control the vehicle behavior keeping the planner as simple as possible.

Moreover, time and resources are not taken into account when planning, avoiding

to anticipate the state of the resources as well as to take decisions based on the

worst case possible that is the usual approach when planning with resources. A

positive cost value associated to each planning operator is used by the planner to

find the less costly combination of operators that brings to the solution. Finally,

to describe a mission, the user has to provide a set of scripts used to model the

world, the list of entities available in the world with all their attributes and the

set of goals to achieve in addition to the planning operators.

Both components, the world modeler and the planner, work together to pro-

149



7. PLANNING

vide deliberative capabilities to the system. On one hand, the world modeler

provides the initial state and tracks the changes produced in the world state. On

the other hand, the planner generates a plan containing the a sequence of MCL

mission operator instances to execute as well as the set of predictable facts in

the world model before and during the execution of each operator as described in

Definition 7.2.4. Planning operators contain which are the more likely changes to

be produced in the world if an operator is applied but when a planning operator

is executed these changes are not introduced in the world model. Only when the

vehicle sensors detect that some values have changed, transmit these perceptions

to the world modeler and, according to the available fact provider scripts, intro-

duces or deletes facts in the world model. If the facts generated in the world

modeler component do not correspond to the facts estimated in the plan, then

it is necessary to re-plan. This is the main drawback of the proposed solution.

However, our main intention is to generate new plans as quick as possible instead

of having plans more accurate but slower to generate because even that ones may

fail when dealing with the real environment. Thus, it is preferable to be able to

rebuild a new plan faster than generate a priori more reliable plans but slower

to obtain. Additional advantages of this system comes from the possibility to

use any planning algorithm, even if it has not been designed to be used in real

time on-board an autonomous vehicle. The utilization of MCL mission operators

presents also the advantages described in Section 7.2.3.

The relation of the planner and the world modeler components with the rest

of the components in the control architecture is shown in Figure 7.6. This figure

presents the four control loops that appears within the proposed architecture.

The lower-level control loop contains the velocity controller that operates at a

frequency between 10 - 100Hz. It is in the reactive layer and it is responsible for

sending set-points to the actuators. The second control loop is also in the reactive

layer and runs at a frequency of 5Hz. It coordinates the primitive responses and

send the resulting set-points to the velocity controller. The third control loop

appears in the control execution layer. It reacts to any new event with less than

a second. Using the events received from the reactive layer it controls which

primitives must be in operation and which not, following a given MCL planning

operator. Finally, the higher-level control loop is able to modify the plan executed

in the control execution layer depending on the received perceptions. It can react

to new facts in the world model within few seconds. Hence, primitives must be

150



7. Planning

Figure 7.6: The four control loops within the proposed hybrid architecture.

able to react to fast changes in the real world while the planner has to look only

for major changes in order to build the new plan to execute.

The inclusion of a this deliberative system within the previous architecture

does not provide a greater degree of intelligence than the achieved using an off-

line plan. However, it dramatically simplifies the way in which the mission is

described avoiding, moreover, possible errors or oversights done by the user when

describing the mission plan.

151



7. PLANNING

152



Chapter 8

Experimental results

Several missions have been programmed and executed using the proposed Mission

Control System (MCS). The main platforms in which these experiments have been

performed are the two Autonomous Underwater Vehicles (AUVs) Ictineu AUV

[Ribas et al., 2007] and Sparus AUV [Hurtos et al., 2010]. Experiments have

been carried on different locations including water tanks, the shoreline, rivers

and dams. Moreover, several experiments have been executed in a Hardware

In the Loop (HIL) simulator named Neptune [Ridao et al., 2004a]. In these

missions, the identified dynamic models of an AUV [Ridao et al., 2004b] as well

as an Autonomous Surface Craft (ASC) [Goden and Pascoal, 2001] have been

used to obtain a more realistic results. All the vehicles, both real or simulated,

implements the Component Oriented Layer-based Architecture for Autonomy

(COLA2) presented in Chapter 3.

First experiments applying an earlier version of the proposed MCS were re-

ported in several works. These experiments present a simulation of the tasks

carried out in the Student Autonomous Underwater Challenge-Europe (SAUC-

E) 2006 [Palomeras et al., 2006b] and the real execution performed by the Ictineu

AUV in the competition’s final run [Ribas et al., 2007]. This first approach was

also reported in a journal article [Carreras et al., 2007] were a simplified scientific

mission was performed in the shoreline. In parallel with these experiments, an

industrial application to inspect a dam was studied. Again, first results were

obtained using the Neptune HIL simulator [Palomeras et al., 2006a] while real

divings were reported three years later with the current MCS [Palomeras et al.,

2009c; Ridao et al., 2010]. Some scientific and industrial interest applications

153



8. EXPERIMENTAL RESULTS

have been performed. One of them is the acquisition of several photo-mosaics in

the Ebre river with Ictineu AUV. This data was obtained to estimate the exten-

sion of the invasive specie of zebra mussels. Photo-mosaics were also gathered in

the natural reserve of Monte da Guia in the Azores islands. The environmental

information recollected was used to study and model the animals habitat [Schmi-

ing et al., 2009]. Industrial applications of cable tracking have been studied too.

While specialized cable tracking primitive algorithms have been tested in a water

tank with the Ictineu AUV [El-Fakdi et al., 2010], a whole cable tracking mission

involving several phases have been simulated. Finally, some missions to study

the coordination among several vehicles using the Petri net formalism [Palomeras

et al., 2010c] as well as a preliminary work to interface an on-board planning

system within the presented MCS [Palomeras et al., 2010b] have been tested in

simulation.

This chapter begins introducing the main primitives implemented to perform

the proposed missions. In general, the success of an autonomous mission is highly

related with the success of its primitives [Kortenkamp and Simmons, 2008]. Then,

four representative missions are introduced. The first one is a dam inspection mis-

sion in the context of an industrial application and the second a visual survey in

a zone of scientific interest. Both missions are defined off-line using the Mission

Control Language (MCL) and executed using a single vehicle. In the first mis-

sion the vehicle is connected through an umbilical link to allow the operators to

monitor and take part in the mission if necessary. Also, the umbilical is used to

power-up the vehicle. In the second mission, the robot is powered by batteries

and runs completely autonomous. The third mission, executed in the HIL simula-

tor Neptune, prove how coordination constraints can be used to control a mission

involving several vehicles. Here, an ASC and an AUV have to collaborate to geo-

reference several Object Of Interests (OOIs). The last mission is also inspired by

an industrial application. It presents a standard cable tracking mission scenario.

This mission shows the pros and cons of using planning techniques on-board an

autonomous vehicle versus a more traditional off-line mission description. While

the whole mission has been simulated, the main primitives involved in it have

been individually tested in a water tank.

154



8. Experimental results

8.1 Primitives

Despite the purpose of this chapter is to verify the MCS embodied in the control

architecture, the main primitives available in the vehicles are first introduced. As

the HIL simulator reproduces the interface module, implemented primitives can

be executed either by a real vehicle or by a simulated one. Several primitives

can be executed simultaneously controlling several Degree of Freedoms (DOFs).

Then, the coordinator component have to merge all the responses following the

algorithm presented in Extract 3.1. The following primitives are implemented as

behavior components in the guidance and control module, see Chapter 3 for more

information about the COLA2 organization.

• heading: Given a desired angle, the robot rotates to reach it taking the

shortest direction and then keeps this orientation. A simple Proportional

Integral Derivative (PID) is employed in this primitive. It uses the localiza-

tion data provided by the navigator processing unit and controls only the

vehicle’s Yaw DOF.

• altitude: Moves the vehicle to a specific altitude with respect to the seabed

and keeps it. A simple PID is employed in this primitive. It uses the data

provided by the obstacle detector and controls only the vehicle’s Heave

DOF.

• depth: Moves the vehicle to a specific depth with respect to the surface and

keeps it. A simple PID is employed in this primitive. It uses the localization

data provided by the navigator and controls only the vehicle’s Heave DOF.

• surface: Rises the vehicle to the surface. It uses the localization data

provided by the navigator and controls only the vehicle’s Heave DOF.

• emergencySurface: Performs an emergency surface dropping a safety

weight. Moreover, enables a beacon to facilitate the vehicles recovery.

• goto: It implements a simple 2D Line Of Sight (LOS) algorithm with cross

tracking error [Healey, 2006]. It is used to guide the robot towards the

desired way-point. The localization data provided by the navigator is used

to control the path in both the Surge and Yaw DOFs.

155



8. EXPERIMENTAL RESULTS

• trajectory: Performs a survey following a set of 2D way-points. Uses the

same LOS guidance algorithm than the goto primitive. The localization

data provided by the navigator is used to control the path in both Surge

and Yaw DOFs. The trajectories obtained with this primitive are not very

smooth because when the AUV reaches one of the way-points in the trajec-

tory path it stops and turns over itself until heading the next way-point.

• searchPattern: Performs a sinusoidal trajectory following a specified di-

rection and increasing the amplitude as it moves away from the initial point.

The localization data is provided by the navigator and the behavior controls

the path in both Surge and Yaw DOFs.

• stationKeeping: It uses the images gathered by the down-looking color

camera and the localization data provided by the navigator to visually keep

the vehicle’s position [Cuf́ı et al., 2002]. It controls the vehicle in all possible

DOFs (Surge, Sway if available, Yaw and Heave).

There are several primitives that do not affect the vehicles movement. They

are used to send an event if an alarm raises, to enable or disable a processing unit

detector, to check the value of a specific variable or similar. These primitives,

implemented as processing units, are listed next.

• initializeVehicle: Checks all the sensors and actuators available in the

vehicle. If everything is ok it starts the logs of all the components and

finishes successfully. Otherwise, it finalizes in a fail state.

• stopVehicle: finalize the logs and stops all the components.

• alarm: Checks several sensors and generates an event when a failure is

detected or a value is out of the scope. Checked variables include pres-

sure, temperature and battery levels, as well as water sensors and sen-

sors/actuators status.

• invalidPositioning: Checks the quality of the localization data. When

this quality is below a given threshold, an event is raised.

• getPositionFix: Waits until the Global Positioning System (GPS) com-

ponent receives some valid data to correct the vehicle’s position.

156



8. Experimental results

• takeImages: Enables/disables the processing unit that gathers images

from the camera sensor.

• objectDetector: Implements a visual object detector algorithm. Once an

OOI is defined, shape and color, a down-looking color camera is used to

check if the OOI appears in the images gathered by the camera sensor. If

the OOI is detected an event is triggered, otherwise, the primitive keeps

processing the new incoming images. Several object detection strategies

were developed in the context of the SAUC-E [Hurtos et al., 2010; Ribas

et al., 2007].

A Petri Net Building Block (PNBB) task has been defined for each primitive in

order to supervise it. These tasks will have the same name than the primitive be-

ing supervised but starting with a capital letter. From the mission point of view,

instantiate a task is similar than instantiate a primitive because tasks enable a

primitive when they are called and disable it when they finalize. Therefore, the

Heading, Altitude, Depth, Surface, Goto, Trajectory, SearchPattern, StationKeep-

ing, Alarm, InvalidPositioning, GetPositionFix, TakeImages and ObjectDetector

tasks have been defined in order to be used in an MCL mission. In addition to

these presented primitives/tasks, specific ones will be developed for each partic-

ular mission.

8.2 Example 1: Dam inspection

Although there are several companies claiming to provide underwater robots for

dam inspection like Seabotix, VideoRay, FrugoSurvey or InuktunServices, of-

ten, none of them is providing an integral solution to the dam inspection prob-

lem. Normally, they propose the use of small class Remotely Operated Vehicles

(ROVs), working as teleoperated cameras for video recording, to replace the

professional divers who traditionally occupied this place. There exist very few

research precedents providing an added value solution. One of the most rele-

vant works is the ROV3 system developed by the researchers of the Institut de

recherche HydroQuebec, Canada [Cote and Lavallee, 1995]. It is a small ROV, lo-

calized through an Low BaseLine (LBL) system, which makes use of a multi-beam

sonar for collision avoidance. The system is able to control the distance to the

wall and includes several video cameras as well as a laser system for 2D and 3D

157



8. EXPERIMENTAL RESULTS

measurements. The COMEX and the Electricité De France companies, France,

developed a similar project [Poupart et al., 2000]. In this case, a ROV manufac-

tured by COMEX was localized using 5 LBL transponders. Again, several video

cameras together with 2D, double spot, laser system were used to take measure-

ments. The Soniworks Company is selling a very accurate wired LBL navigation

system to localize a ROV with centimetric accuracy. The system is combined

with a GPS to georeference the imagery gathered with the ROV. Nevertheless,

the system is not able to register the images to provide a big image mosaic of the

surveyed area. Moreover, in all the previous systems the use of LBL makes the

operation tedious due to calibration. In order to focus on real problems, our team

contacted with FECSA-ENDESA Spanish hydroelectric company to identify the

tasks of interest. This meeting, allowed us to identify different mission scenarios.

On December 2007 first experiments in the dams of Pasteral I and Pasteral II in

Girona, Spain, were carried out using Ictineu AUV. In February 2009, see Fig-

ure 8.1, new experiments were carried in the same place in order to improve the

data quality obtained one year before. These new data sets allowed us to obtain

high quality mosaics from the dam’s wall.

Civil engineers of the hydroelectric companies, carry out periodic visual in-

spections of the state of the concrete. Commonly this is achieved through a careful

visualization of a video recorded by a professional diver or a ROV. Our approach

to this problem consist on the use of an AUV which follows a pre-programmed

path facing the wall while snapping images. A localization system based on a

moored buoy equipped with a Differential Global Positioning System (DGPS)

receiver, an Ultra Short BaseLine (USBL) transceiver and a Motion Reference

Unit (MRU) is used to georeference the AUV position. On-board, a navigation

system based on a Doppler Velocity Log (DVL) and a Attitude Heading Reference

System - Fiber Optic Gyroscope (AHRS-FOG) is used for the AUV navigation.

During the experiments both navigation systems were not interconnected in real

time but, since both equipments were time synchronized, the georeferenced tra-

jectory of the AUV could be extracted through post processing, and hence also

georeference the imagery. After the mission, the set of gathered images together

with the localization data obtained in the buoy were combined and used to setup

an image mosaic of the wall of the dam using an image mosaicking system which

has been also developed in our lab [Garcia et al., 2001].

During the experiments carried out in December 2007, two main problems

158



8. Experimental results

Figure 8.1: Dam inspection setup during the experiments carried out in Girona
(Spain).

were detected:

• How to detect the robot orientation with respect to the concrete of the dam

due to the magnetic perturbations provoked by the iron within the concrete

to the AUV compass.

• Defects in the illumination of the images taken by the AUV camera.

To deal with the first problem two solutions were proposed. First an Extended

Kalman Filter (EKF) method was proposed to detect and track the wall of the

dam using an imaging sonar [Kazmi et al., 2009]. The wall, a line, was represented

in polar coordinates from which the distance between the robot and the wall, and

their relative orientation can be easily extracted. The second alternative was

to install a Fiber Optic Gyroscope (FOG) in the vehicle to avoid the magnetic

disturbances. Latter solution was the implemented during the experiments. The

second issue was solved improving the lighting system as well as using a more

sensitive underwater camera.

159



8. EXPERIMENTAL RESULTS

8.2.1 Mission description

The dam inspection mission is described as follows. First, the vehicle is initialized

checking all the subsystems and enabling the sensor logs. Then, in parallel with

the rest of the mission, an alarm monitor is used to raise an event in case the

pressure/temperature exceeds a threshold or if a water leakage is detected inside

a pressure vessel. Using the goto behavior the vehicle goes to the initial way-point

of the survey and, after achieving the desired orientation and distance respect to

the dam wall, the survey starts. Human operators may assist the vehicle in this

crucial step. Then. imagery of the dam’s wall is recorded during the survey using

the forward locking camera. When the survey finalizes, the camera is disabled

and the vehicle goes to the recovery position where it stops. If during the mission

the alarm monitor raises an event, the mission has to be aborted and the vehicle

surfaces using an emergency system. As the whole mission is inside a try-catch

structure, if a task is unable to accomplish its goal the try block is cancelled and

the vehicle surfaces aborting the mission in a controlled manner.

A couple of extra primitives have been specially designed to perform this

mission:

• wallInspection: Follows a sequence of 2D way-points in front of a wall. It

uses the localization data provided by the on-board navigator and controls

the vehicle in Surge and Heave DOFs.

• distance: Keeps a specific distance with respect to a vertical wall. A

simple PID is employed in this primitive. It uses the data provided by

the obstacle detector processing unit and controls only the vehicle’s Surge

DOF. This primitive has several operating modes configurable through pa-

rameters. First, it can only achieve the correct distance between the vehicle

and the wall and then finalizes or achieve this distance and then keeps it

until the primitive is aborted. Second, the primitive can be supervised by

a human operator that tele-operates the vehicle until achieve the desired

distance. These two working modes have also been added to the heading

primitive.

In industrial applications, sometimes the user is more interested in a semi-

autonomous operation approach than in a completely autonomous one. For

safety reasons, a human operator can be supervising the autonomous mission

160



8. Experimental results

being able to abort it if something unexpected happens. Also, the combination

of tele-operated tasks with autonomous ones can be useful in some situations. In

this particular case, the approximation to the wall to setup the initial heading

and distance could be done by a human operator while the most tedious part of

keeping the desired heading and distance while the vehicle performs a full survey

in front of the wall is better to be performed autonomously by the vehicle itself.

Moreover, the human operator can monitor the images taken by the robot camera

and also the trajectory recorded by the navigation system and abort the mission

if the data is not satisfactory. The code to carry out the proposed mission is

presented in Extract 8.1.

161



8. EXPERIMENTAL RESULTS

Extract 8.1: Dam inspection mission.

mission

monitor

try
InitializeVehicle() ;

Goto(initial pos) ;

parallel
Heading( angle, timeout, ”achieve”, ”manual” )

and
Distance( distance, timeout, ”achieve”, ”manual” )

;

parallel
WallInspect( path[...] )

or
TakeImages()

or

parallel
Heading( angle, timeout, ”keep”, ”auto” )

and
Distance( distance, timeout, ”keep”, ”auto” )

;

Goto( recovery pos );

Surface() ;

StopVehicle()

catch
Surface() ;

StopVehicle()

condition
Alarm()

do
EmergencySurface()

The tree shown in Figure 8.2 shows a simplification of the automatically gen-

erated Petri net.

162



8. Experimental results

Figure 8.2: Dam inspection mission tree.

8.2.2 Results

In order to obtain the best results, several experiments were carried out keeping

the robot perpendicular to the dam’s wall but changing the distance to it from

1 to 4 meters. Because the hydroelectric central was generating power, the ex-

periments had to be constrained to a part of the wall sufficiently far from the

water inlet, in a very shallow area. Several type of trajectories were tested and

the best results were obtained moving the robot vertically and performing the

horizontal movements during the upper part. This can be explained because the

on-board navigation system used for the horizontal displacement relies on a DVL

that works better when the distance with the floor is above 2.5 meters while

vertical navigation system relies mainly in a depth sensor that is not affected

by the altitude. Figure 8.3 shows the real trajectory performed by the vehicle

in one of the experiments. This trajectory has been computed off-line after the

experiments integrating the sensors in the moored buoy, USBL, DGPS and MRU,

and the sensors in the vehicle, DVL and Motion Reference Unit-Fiber Optic Gy-

roscope (MRU-FOG). The covered area was approximately of 4× 9 meters with

163



8. EXPERIMENTAL RESULTS

Figure 8.3: Trajectory realized by the AUV in front of the wall.

Figure 8.4: Mosaic build after the inspection.

164



8. Experimental results

Figure 8.5: Chronogram for a successful execution.

Figure 8.6: Chronogram for a mission in which an alarm is raised.

a wall distance of 1.5 meters and from 1 to 5 meters from the surface. The data

position shown in Figure 8.3 was used together with all the captured images to

build the mosaic presented in Figure 8.4. The mosaic is a high resolution image

with more than 67Mpx, approx. 1 pixel per millimeter, in which the wall can be

easily inspected. In Figure 8.4 plenty of algae can be seen on the wall as well as

circular marks that were added to it to verify the result with previously known

measures [Palomeras et al., 2009a; Ridao et al., 2010].

To see more accurately how actions and events are executed, two chronograms

are included. Figure 8.5 shows the sequence of actions and events as well as the

primitives under execution in each moment for a mission successfully executed.

The length of the bars representing the primitives is purely indicative. It does

not correspond with the duration that the primitives were actually running. Fig-

ure 8.6 shows a mission in which an Alarm event is raised while executing the

mission. The chronogram shows how the monitor-condition-do structure disables

all the primitives under execution and then, the emergency surface primitive

starts.

165



8. EXPERIMENTAL RESULTS

8.3 Example 2: Visual survey

An autonomous survey to map a region of interest is presented in this example to

validate a completely autonomous mission carried out using the proposed MCS.

Sparus AUV, equipped with a down-looking color camera and several navigation

sensors like a DVL and an Attitude and Heading Reference System (AHRS), is

required to build a sea-floor photo-mosaic from a zone of scientific interest. The

simplicity of use of the MCL allowed the vehicle operators to program the mission,

on-board a boat with only a few minutes, once in the region of interest.

8.3.1 Mission description

The propound survey mission is composed by the following phases:

1. The AUV is deployed from the base boat being initialized through a WiFi

connection.

2. The vehicle is submerged towards a predefined altitude with respect to the

sea bottom.

3. While keeping the altitude and grabbing images, the AUV is guided across

a set of way-points following a prefixed trajectory.

4. When the last way-point is reached, the vehicle surfaces and signals its

position to be easily recovered by the base boat.

In parallel to these four main steps, several internal alarms are checked. These

alarms may raise an event because a water leakage is detected, the vehicle is run-

ning out of batteries or due to a pressure or temperature alarm is catched inside

one of the pressure vessels. If any of these alarms is raised an emergency stop

is required. Moreover if any task is unable to complete its execution within a

specific time-out or because some sensor/actuator malfunction, the mission is

aborted surfacing the vehicle for recovery. Extract 8.2, presents the survey mis-

sion coded in MCL.

166



8. Experimental results

Extract 8.2: Survey mission.

mission

monitor

try
InitializeVehicle() ;

Altitude( altitude, timeout, ”achieve” ) ;

parallel
Trajectory( velocity, path[...] )

or
TakeImages()

or
Altitude( altitude, timeout, ”keep” )

;

Surface() ;

StopVehicle()

catch
Surface() ;

StopVehicle()

condition
Alarm()

do
EmergencySurface()

The mission is basically the sequence of the tasks InitializeVehicle, Altitude,

Trajectory, Surface and StopVehicle. To keep the tasks as simple as possible,

the trajectory-following, while keeping the altitude and gathering images from

the seabed, is performed composing three tasks in parallel. The whole mission

is inside a try-catch control structure, then, if any of these tasks fails or a time-

out arrives, the catch block is executed while the rest of the tasks are aborted.

Moreover, in parallel, an Alarm task is being executed. If any of the events

checked by this task raises, the whole mission is aborted and the vehicle performs

an emergency surface dropping a safety weight.

167



8. EXPERIMENTAL RESULTS

Figure 8.7: Sparus trajectory obtained by dead reckoning when performing a
visual survey at the Azores.

Figure 8.8: Underwater photo-mosaic from the area of interest obtained off-line.

168



8. Experimental results

8.3.2 Results

In summer 2010 several autonomous surveys were performed in the Azores islands

to obtain seabed photo mosaics covering areas of biological interest [Schmiing

et al., 2009]. Figure 8.7 shows the trajectory described by the vehicle Sparus AUV

during the survey mission depicted in Extract 8.2. The trajectory was obtained

from the navigator component on-board the vehicle. The sea-floor photo-mosaic

shown in Figure 8.8 was built off-line using the gathered images [Garcia et al.,

2001].

8.4 Example 3: Localization of OOIs

The next mission consists in georeferencing and providing on-line access to a set

of images gathered from OOIs lying on the seabed. The images are grabbed by

an AUV and transmitted to an ASC acting as a gateway to a base boat. Both

vehicles, the AUV and the ASC, have to cooperate to perform this mission. The

mission consists of the following steps:

1. The ASC carries the AUV towards the deployment area.

2. When the ASC has deployed the AUV, the underwater vehicle is submerged

and the survey begins.

3. Whenever the AUV detects an OOI, it keeps its position over the object

and sends a localization request to the ASC.

4. The ASC navigates towards the AUV using a simple Unconstrained Least

Squares (UL-S) algorithm.

5. When both vehicles are aligned, the AUV transmits images of the detected

OOI to the ASC using the vertical channel. The ASC georeferences these

images and re-transmits them to a base station. Then, the survey continues.

6. When the survey is completed, the AUV sends a signal to the ASC. The

surface vehicle is guided to the recovery area while the AUV surfaces and

waits to be recovered.

If an error is produced or an alarm is detected on the AUV, the ASC is notified

and the mission is canceled. On the other hand, if the ASC is unable to navigate

169



8. EXPERIMENTAL RESULTS

towards the AUV and vertically align with it, the AUV continues the survey

without transmitting the gathered data.

In order to perform this cooperative mission additional primitives have been

added to the ones previously presented:

• gotoTarget: Guides an ASC to a position almost vertically aligned with

respect to an AUV. First, the ASC is guided through a circular trajectory

to ensure non-collinearity between the AUV and the ASC poses from which

GPS fixes and ranges to the AUV, provided by an acoustic modem, were

gathered. The AUV is assumed to send its depth to the ASC embodied in

the message packet. Then, using the 3D range and the robot depth, the

2D range between both vehicles is computed before localizing the target by

means of a simple UL-S algorithm [Cheung et al., 2004]. Once the AUV

has been localized, the ASC is guided towards its position.

• receive/send data: Receives/sends large packets of data through an acous-

tic modem. This primitive can be only used when the two vehicles in com-

munication are vertically aligned.

Additionally to the tasks build to supervise the introduced primitives, two

tasks that do not supervise any primitive have also been used. These task are

named Void and True. Both are instantaneous and always finalize in the ok state.

The Void task is used for coordination purposes while the True task is used in

a never-ending loop. The use of never-ending constructions may be dangerous

avoiding to reach a final state. These constructions have to be always supervised

by hierarchic control structures able to abort them when necessary.

8.4.1 Mission description

The mission code for the AUV and the ASC are programmed below in Extract 8.3

and Extract 8.4. To coordinate the vehicles, a set of constraints between them is

coded in MCL as shows Extract 8.5.

170



8. Experimental results

Extract 8.3: AUV cooperative mission.

mission

monitor

try
InitializeVehicle() ;

Altitude( altitude, timeout, ”achieve” ) : deploy auv ;

monitor

parallel
Trajectory( velocity, path[...] )

or
Altitude( altitude, timeout, ”keep” )

while condition
Search( object description )

do

parallel
Void() : req georef ;

StationKeeping( )

or
SendData() : send data

or
Void() : georeference fail

;

Void() : survey done ;

Surface() ;

StopVehicle()

catch
Void() : survey aborted ;

Surface() ;

StopVehicle()

condition
Alarm() : survey alarm

do
EmergencySurface()

Extract 8.3 resembles the mission presented in Extract 8.2. The main differ-

ence is that the parallel structure in which the vehicle performs a trajectory while

171



8. EXPERIMENTAL RESULTS

keeping its altitude has been inserted inside a monitor-while condition-do control

structure. Thus, a third task named Search is simultaneously executed. If the

Search task founds an OOI, then, the do-block is executed and the Trajectory and

Altitude tasks are aborted. As the monitor-while condition-do control structure

is iterative, when the do-block finalizes the whole control structure starts again.

This do-block contains the code to ask for being georeferenced as well as to wait,

keeping the current position, until a send data or a georeference fail signal is

received from the ASC. If the Trajectory task finalizes the pre-programed path,

the whole monitor structure finalizes and the AUV sends a survey done signal,

surfaces and stops.

Extract 8.4: ASC cooperative mission.

mission
InitializeVehicle() ;

Goto( velocity, deploy area ) ;

Deploy() : deploy auv ;

parallel

while True() do
Void() : req georef ;

if GotoTarget() then
ReceiveData() : send data

else
Void() : georeference fail

or
Void() : survey done

or
Void() : survey aborted

or
Void() : survey alarm

;

Goto( velocity, recovery area ) ;

StopVehicle()

The mission to be executed by the ASC is shown in Extract 8.4. It begins

deploying the AUV before waiting for a georeference request. When a request

is received, the GotoTarget task begins and depending if it finalizes successfully

or not the data between both vehicles is transmitted, ReceiveData() or a geo-

172



8. Experimental results

reference fail is send to the AUV. The mission finalizes when a survey done,

survey aborted or survey alarm signal is received from the AUV. When one of

these signals arrives, the parallel-or control structure finalizes aborting the while

true iterative structure.

Extract 8.5: Cooperative mission constraints.

constraints {
order { asc:deploy auv, auv :deploy auv }
order { auv :req georef, asc:req georef }
sync { auv :send data, asc:send data }
order { asc:georeference fail, auv :georeference fail }
order { auv :survey done, asc:survey done }
order { auv :survey aborted, asc:survey aborted }
order { auv :survey alarm, asc:survey alarm }

Six orderings and one synchronization constraint have been defined in Ex-

tract 8.5 to coordinate both vehicles. The first ordering, avoids the beginning of

the AUV’s Altitude task before the end of the Deploy task in the ASC. Similarly,

the second ordering, keeps the ASC stacked in the Void(): req georef task until

the AUV has found an OOI. The only way for the AUV to finalize the execution

of the StationKeeping task is to receive a synchronization signal send data or an

ordering signal georeference fail from the ASC. On the other hand, the only way

for the ASC to finalize the while true iterative structure is to receive a signal

from the AUV indicating that the survey has finalized, it has been aborted or an

alarm has been raised.

8.4.2 Results

The cooperative mission has been executed in the HIL simulator Neptune using

an hydrodynamic model for the AUV [Ridao et al., 2004a] and the ASC [Goden

and Pascoal, 2001]. The use of a simulated environment allows us to control all

the events produced during the execution as well as to force errors, time-outs

or alarms. Figure 8.9 shows the trajectory performed by the AUV, continuous

blue line, and the ASC, dashed red line, as well as the position of the four OOIs

to be photographed and georeferenced, black circles. Additionally, the position

in which the AUV has detected the four OOIs (*) and the ASC position after

173



8. EXPERIMENTAL RESULTS

Figure 8.9: Obtained trajectories after simulating the coordinated mission.

174



8. Experimental results

Figure 8.10: Chronogram for a coordinated mission.

localize and navigate towards the AUV (+) are also marked in Figure 8.9.

The amount of data to be communicated between both vehicles when they

are not using the vertical channel has to be minimal because of the utilization

of low band width acoustic modems. Then, not only the algorithm used by the

ASC to discover the AUV position has to use few packages of data but also all

the coordination mechanism has to coordinate the vehicles using the minimum

number of data packages.

A chronogram has been included in this mission to see the sequence of actions

and events as well as the coordination of tasks between both vehicles arranged in

time. Figure 8.10 this chronogram in which only one OOI has been found before

completing the survey.

8.5 Example 4: Cable tracking

The use of professional divers for the inspection and maintenance of underwater

cables/pipelines is limited by depth and time. ROVs represent an alternative to

human divers. The main drawback of using ROVs for surveillance missions resides

in its cost, since it increases rapidly with depth, because of the requirements for

bigger umbilicals and support ship. All those reasons point towards AUVs as an

alternative solution for such missions. An AUV can be deployed from the coast

without help of any ship, perform all the tracking mission by itself gathering all

useful data from sensors and surface at the desired location for recovery.

175



8. EXPERIMENTAL RESULTS

Several systems have been developed for underwater cable/pipeline inspection

purposes. Basically, the technology applied classifies the methodologies in three

big groups depending on the sensing device used for tracking the cable/pipeline:

magnetometers [Asakawa et al., 2002; Ito et al., 1994], sonar [Evans et al., 2003;

Iwanowski, 1994] and vision based methods [Balasuriya and Ura, 2002; Ortiz

et al., 2009]. Compared to magnetometer or sonar technology, vision cameras,

apart from being a passive sensor, provide far more information with a larger

frequency update, are inexpensive, much less voluminous and can be powered

with a few watts. Light-Emitting Diode (LED) technology is also contributing

to reducing the size of the lighting infrastructure and the related power needs,

what also matters in this case. The mission proposed here consists on building a

georeferenced photo-mosaic of an underwater cable. The vehicle must be able to

search the underwater cable, follow it while gathering images and keep and accu-

rate positioning during all the mission. Then, combining the vehicle’s navigation

data with the acquired images, the mosaic is composed off-line. For this experi-

ments, a vision-based system developed at the University of the Balearic islands

[Ortiz et al., 2009] has been chosen to track a submerged cable in a controlled

environment. The vision algorithm computes the polar coordinates (ρ,Θ) of the

straight line corresponding to the detected cable in the image plane. Being (ρ,Θ)

the parameters of the cable line, the Cartesian coordinates (x, y) of any point

along the line must satisfy

ρ = x× cos(Θ) + y × sin(Θ). (8.1)

As shown in Figure 8.11, equation (8.1) allows us to obtain the coordinates

of the cable intersections with the image boundaries (Xu,Yu) and (XL,YL), thus

the mid point of the straight line (xg,yg) can be easily computed by

(xg, yg =
XL +Xu

2
,
Yu + YL

2
). (8.2)

The computed parameters (ρ,Θ, xg, yg) together with its derivatives are sent

to the guidance and control module in order to be used by a primitive that tracks

the cable. Figure 8.12 shows a real image of Ictineu AUV while detecting a cable.

A primitive implemented by Andres El-fakdi [El-Fakdi et al., 2010] to track

an underwater cable using the Ictineu AUV has been used in this mission to have

a really adaptable method to track a cable in a changing environment. The goal

176



8. Experimental results

Camera 
coordinate 
frame

Θρ gx gy
),( LL YX

),( UU YX XY
Robot 
coordinate 
frame)(SurgeX )(SwayY )(HeaveZ )(YawN

Figure 8.11: Coordinates of the target cable with respect to the Ictineu AUV.

Figure 8.12: Ictineu AUV in the test pool. Small bottom-right image: Detected
cable.

177



8. EXPERIMENTAL RESULTS

of this primitive is:

• cableTracking: Whenever an underwater cable is within the field of view

of the vehicle’s downward-looking camera, this primitive controls the vehicle

in Surge, Sway and Yaw DOFs to guide the robot in order to follow the

cable. It uses an stimulus-to-action mapping formerly learn in simulation

that is in continuous adaptation by means of a Natural Actor Critic (NAC)

algorithm [El-Fakdi et al., 2010].

8.5.1 Mission description

The mission to execute has been programmed using two paradigms. First, an

off-line predefined mission plan coded in MCL and, second, using an on-board

planner able to automatically combine a set of planning operators.

8.5.1.1 Off-line mission

Extract 8.6 shows the off-line solution. The mission starts after initializing the

vehicle, taking a GPS position fix and driving the vehicle to the initial position.

Then, the vehicle is submerged until an altitude of one meter with respect to the

sea-floor is achieved. Thereafter, two tasks are executed in parallel, the Search-

Pattern and the Search task that is configured to recognize the underwater cable.

If the Search task successfully finds the cable, both tasks are aborted and the

CableTracking task is enabled. When the CableTracking task misses the cable,

the SearchPattern and the Search tasks are enabled again. On the other hand,

if the SearchPattern finishes because it is unable to find the cable before a time-

out, the whole structure ends and the vehicle surfaces and goes to the recovery

position. In order to keep the vehicle always localized, when the InvalidPosi-

tioning tasks raises an ok event, the monitor block is aborted and the Surface

and GetPositionFix tasks are executed. Because when the vehicle is submerged

the localization is based on dead reackoning techniques, the position uncertainty

grows continuously. When this uncertainty reaches a threshold, it is necessary to

take a position fix via GPS to reduces the drift. When the vehicle is correctly

positioned, the execution continues. The whole mission is inside a try-catch con-

trol structure. If any of the tasks within this block finalizes unexpectedly, then

the catch block is executed aborting the mission and driving the vehicle to the

178



8. Experimental results

recovery zone. Moreover, parallel to all this code, an Alarm task is under ex-

ecution. If any event checked by this task raises, the monitor block is aborted

and the vehicle comes to the surface by means of a drop-weight emergency system.

179



8. EXPERIMENTAL RESULTS

Extract 8.6: Cable tracking off-line mission.

mission

monitor

try
InitializeVehicle() ;

GetPositionFix( ) ;

Goto( initial pos ) ;

monitor
Altitude( altitude, timeout, ”achieve” ) ;

parallel

monitor
SearchPattern( search timeout )

while condition
Search( ”cable description” )

do
CableTracking( params NAC )

or
TakeImages()

or
Altitude( altitude, timeout, ”keep” )

while condition
InvalidPositioning()

do
Surface() ;

GetPositionFix()
;

Surface() ;

Goto( recovery pos ) ;

StopVehicle()

catch
Surface() ;

Goto( recovery pos ) ;

StopVehicle()

condition
Alarm()

do
EmergencySurface()

180



8. Experimental results

8.5.1.2 On-board planning

If the mission is programmed as a planning problem, a set of planning operators

must be first defined specifying its preconditions and effects. For this particular

mission, seven planning operators have been used: GotoOp, SurfaceOp, Achie-

veAltitudeOp, TakeFixOp, CheckAlarmOp, SearchCableOp and CableTrackingOp.

These planning operators are described in Table 8.11. They include a piece of

MCL code together with the description of their preconditions and effects.

The MCL code for the operator SearchCableOp is presented in Extract 8.7.

This MCL operator shows three tasks executed in parallel. If the Search task

founds the cable, then this fact will be added to the knowledge database, as ex-

pected in the plan, and the SearchCableOp operator will finalize in the ok state

continuing the execution of the mission plan previously computed. However, if the

planning operator finalizes because of a time-out produced by the SearchPattern

task, then the SearchCableOp is aborted, the world modeler adds an unexpected

fact into the knowledge database and a new plan has to be computed.

Extract 8.7: MCL code for the SearchCableOp planning operator.

mcl plan op SearchCableOp( timeout, cable description, altitude )

parallel
SearchPattern( timeout )

or
Search( cable description )

or
Altitude( altitude, ”keep” )

The world modeler is responsible for keeping the facts that describe the world

up-to-date. Table 8.2 shows a list with some of the possible facts in the knowledge

database, the scripts to generate each one of these facts, the primitives involved

and if these facts can be in the initial state (W0) or they are part of the goal

state.

Once a mission plan is generated, it is composed by a sequence of planning

operators with the facts that should be present in the world model before and

after the operator’s execution. If any operator finishes with a fail or the facts

1Do not confuse the robot’s primitives, i.e. goto, with the PNBB tasks which supervise
these primitives, i.e. Goto, or the planning operators, i.e. GotoOp.

181



8. EXPERIMENTAL RESULTS

Table 8.1: Planning operators for the cable tracking mission.

op: TakeFixOp Robot r
pre: r surface, r position bad, r no alarms
add: r position ok
del: r position bad
mcl: TakeFixMCLOp()
op: SearchCableOp Robot r Object o
pre: r seafloor, r position ok, r no alarms, r in inspection, o not found
add: o found
del: o not found
mcl: SearchCableMCLOp(timeout, o.description, altitude )
op: CableTrackingOp Robot r Object o
pre: r position ok, r no alarms, o found, o not mapped
add: o mapped
del: o not mapped
mcl: CalbeTrackingMCLOp( altitude, params NAC )
op: GotoOp Robot r Zone a Zone b
pre: r in a, r position ok, r no alarms
add: r in b
del: r in a

expr: a != b
mcl: GotoMCLOp( b.x, b.y )
op: SurfaceOp Robot r
pre: r seafloor
add: r surface
del: r seafloor
mcl: SurfaceMCLOp()
op: CheckAlarmOp Robot r
pre: r alarm
add: r no alarm
del: r alarm
mcl: CheckAlarmMCLOp()

182



8. Experimental results

Table 8.2: Facts that can be generated during the mission execution by the world
modeler scripts.

Fact WM Script Primitive W0/Goal
robot position bad navigation status InvalidPositioning W0

robot position ok navigation status InvalidPositioning –
robot surface robot altitude Navigator W0/Goal

robot seabottom robot altitude Navigator –
robot no alarms alarms status Alarm W0

robot alarms alarms status Alarm –
robot in deploy robot position Navigator W0

robot in inspection robot position Navigator –
robot in recovery robot position Navigator Goal
cable not found cable status SearchCable W0

cable found cable status SearchCable –
cable not mapped mission status SearchCable W0

cable mapped mission status SearchCable Goal

that the world modeler adds in the knowledge database do not match with the

ones expected by the planner, a new plan is build from the current situation.

The initial plan obtained in the proposed cable tracking mission is composed by

a sequence of seven planning operators: TakeFixOp(), GotoOp(inspection), Alti-

tudeOp(altitude, ”achieve”), SearchOp(”cable”, altitude, timeout), CableTracking-

Op(altitude, param NAC), SurfaceOp() and GotoOp(recovery). However, if the

vehicle loses the cable, the navigation quality becomes poor or an alarm raises,

these states will be mapped by one of the world modeler scripts as a new fact

in the knowledge database. As this new fact will not coincide with the ones ex-

pected in the mission plan, a new plan will be generated by the on-board planner

aborting the previous one. Programming a mission using planning operators and

world modeling scripts can be less intuitive than coding an off-line imperative

mission. However, for complex missions where a large number of events may

take place, the use of an on-board planner simplifies the mission description and

avoids possible errors introduced by the user.

183



8. EXPERIMENTAL RESULTS

8.5.2 Results

While the main primitives has been tested with Ictineu AUV in a water pool,

the whole proposed mission has been simulated using the HIL simulator Neptune

[Ridao et al., 2004a]. The simulated environment allows us controlling all the

events produced during the mission execution and also gives us the opportunity

to induce some errors, task failures and alarms forcing the re-planing process.

Thus, it is easier to check if the vehicle reacts as specified in the mission plan.

The simulation environment includes a 140 meters long cable placed on a flat

bottom. The cable contains five sections that are buried in the sand in which

the cable can not be detected by the computer vision system. The on-board

navigation system is designed so that the vehicle can not travel more than 50

meters without getting a GPS fix.

Similar executions have been obtained by the off-line user predefined plan

and the on-board automatically generated plan. The main difference is that each

time that the automatically generated plan fails because the assumptions done

about the world are different than the facts provided by the world modeler, a

new plan has to be build. While the on-board planning is generating this new

plan the vehicle keeps its position until the new plan is ready. Twelve plans

has been generated by the on-board planner to complete the mission shown in

Figure 8.13(a). However, due to the simplicity of the mission, less than a second

have been required to compute each one of these plans. An example of some of

these plans and the world state that has motivated them is shown in Figure 8.14.

Figure 8.13(a) shows the trajectory performed by the vehicle during the exe-

cution of the proposed mission. The AUV is submerged and localizes the cable,

see Figure 8.13(b). Then, it tracks the underwater cable for more than 130 meters

using the cableTracking primitive specially developed for this purpose. The Rein-

forcement Learning (RL) algorithm that implements this primitive is constantly

updating the stimulus-to-action mapping to improve its performance. Each time

that the cable was not visible by the vision system, i.e. because the cable was

buried by sand, a search procedure based on the last known bearing is enabled to

find it, see Figure 8.13(c). Moreover, if the vehicle navigation accuracy is below

a threshold, the vehicle surfaces to take a position fix, see Figure 8.13(d). The

mission ends if after several time searching for the cable it is impossible to find

it, see Figure 8.13(e), or if an alarm raises, i.e. the vehicle runs out of batteries.

184



8. Experimental results

a)

b) c) d) e)

Figure 8.13: Cable tracking mission simulation.

185



8. EXPERIMENTAL RESULTS

Figure 8.14: Example of on-line mission plans during the execution of the cable
tracking mission.

186



Chapter 9

Conclusion

This chapter concludes the work presented throughout this document. It first

summarizes the thesis by reviewing the contents described in each chapter. Then,

the research contributions extracted from the proposals and the experiments are

pointed out. In addition, some interesting future research issues are commented

in the future work section. Finally, the research framework in which this thesis

was developped is described before the list of related publications.

9.1 Summary

This thesis addresses the development of a Mission Control System (MCS) to

define and execute missions in the context of a control architecture for an Au-

tonomous Underwater Vehicle (AUV). Chapter 2 presents an overview of control

architectures and popular MCS implemented for representative underwater ve-

hicles. Studied systems are divided between planning-based systems, in which

deliberative modules plan the mission on-line, and systems based in predefined

missions, where the mission plan is described off-line by a user. Predefined plans,

that are the state of the art for nowadays AUVs, are then categorized in those

which use a Domain Specific Language (DSL) to describe a mission plan and those

using a formalism. After comparing both, it is shown that, formalism based sys-

tems present formal verification and execution supervision while DSLs tend to be

more expressive and easy to use. Therefore, a compromise solution is chosen using

a DSL that can be automatically translated into a formal Petri net. Chapter 3 in-

troduces the vehicle experimental platforms and the control architecture, named

187



9. CONCLUSION

Component Oriented Layer-based Architecture for Autonomy (COLA2), used by

these vehicles. The COLA2 has been developed along the realization of this thesis

and although the proposed MCS has been developed as an independent module,

it has adapted to it to carry out the experimental work. The procedure to define

a mission using Petri nets is described in Chapter 4. First of all, a mission is

compared with a Discrete Event System (DES) in which actions enable and dis-

able vehicle primitives while these primitives generate, as a response, events that

change the state of the DES. Then, the way in which vehicle primitives are mod-

eled using Petri nets and are supervised by means of Petri net structures named

tasks is described. To control the execution flow between tasks, another kind of

Petri Net Building Block (PNBB) is defined: the control structures. Using the

control structures, tasks can be executed sequentially, conditionally, iteratively, in

parallel and always with the possibility to abort them. It is easy to combine tasks

and control structures with each other to describe complex missions from simple

structures. The main advantage of building a mission from small blocks is the fact

of avoiding the verification of the final mission since it is already verified by con-

struction. Instead of dealing directly with Petri nets, a DSL that automatically

translates a high level imperative language into a Petri net has been designed

and developed to simplify the user’s work. This language named Mission Control

Language (MCL) is presented in Chapter 5. Chapter 6 presents an insight of

how constraints can be added to coordinate multiple vehicles. Three constraints

are presented: mutual exclusions, orderings and synchronizations. The proposed

method consists in the following steps: Program an individual mission for each

entity; Define a set of constrains to enforce a coordinated behavior among the

entities; Automatically synthesize the necessary Supervision Based on Place In-

variants (SBPIs) to deal with the constraints; Connect each independent robot

mission among them by means of the previously synthesized SBPIs generating a

centralized Petri net ; Check that the centralized mission is deadlock free; And fi-

nally, partition the centralized Petri net mission into as many decentralized Petri

nets as entities involved in the mission, keeping the same behavior than in the

centralized net while minimizing the communication between the decentralized

nets. Despite planning is out of the scope of this thesis, Chapter 7 introduces

how to interface the proposed MCS with an automated planning system to en-

hance the deliberative capabilities. Two components are added for this purpose:

a state-space planner and a world modeler. The world modeler keeps a knowl-

188



9. Conclusion

edge database up to date according with the perceptions received by the COLA2

reactive layer and a set of scripts, provided by the user, that transform these

perceptions in facts. According to the facts in the knowledge database and the

goals given by the user, an on-board planner automatically selects the sequence of

planning operators to execute. These planning operators are predefined missions

encoded in MCL that solve a particular phase of a more general mission. Then,

the planner is not sequencing directly vehicle primitives but small predefined mis-

sions. Experimental results are reported in Chapter 8. Four experiments have

been carried out, two of them with the experimental platforms Ictineu AUV and

Sparus AUV while the other two have been executed in simulation. The first ex-

periment shows an industrial application, in the context of a dam inspection, in

which human intervention in required to adjust some of the mission parameters.

The second experiment presents a completely autonomous survey in an area of

scientific interest. The third experiment is intended to validate the coordination

capabilities introduced in Chapter 6. An AUV and an Autonomous Surface Craft

(ASC) have to collaborate to gather georeferenced images about some Object Of

Interest (OOI). Finally, a pipe tracking inspection application is used to compare

two different paradigms to program a mission: an off-line user predefined mission

and an on-line automatically generated mission.

9.2 Contributions

This thesis work has accomplished the proposed goal of developing a system to

define and execute missions for autonomous underwater vehicles, simple to use

from the user point of view, and easily adaptable to different control architectures.

In the development of this goal, various research contributions were achieved.

These contributions are listed below:

• Development of a control architecture for an AUV: Although the

control architecture COLA2 is organized using the typical three-layers model

(reactive, execution and mission), the combination of elements that com-

pound each layer is new. The reactive layer is subdivided in three modules,

separating the vehicle interface drivers from the perception units and these

from the components that control and guide the vehicle. Moreover, a co-

ordinator to merge multiple behavior responses is also included. The exe-

189



9. CONCLUSION

cution layer implements a common DES but also includes an Architecture

Abstraction Component (AAC) to simplify the interface of the execution

and mission layers with the reactive one that is particular for each vehi-

cle. Finally, the mission layer allows to define off-line missions using a high

level language but also admits the use of a planner together with a world

modeler.

• Mission definition using Petri nets: Our proposal depicts a method

to define a set of building blocks using Petri nets and shows how these

blocks have to be composed among them to create a larger structure. These

PNBBs are conditioned to several constraints. On one hand, they have to

share a common interface that determines the number of actions/events to

be received/sent for each task. On the other hand, a reachability analysis

has to be performed to ensure that each block evolve free of deadlocks from a

valid initial state to a valid final state. Then, it is possible to describe a large

structure by means of composing PNBBs in which the checked properties

will hold.

• The Mission Control Language: A completely new language has been

designed and implemented to allow the AUV users to easily define a mission.

The MCL is a high level imperative language that automatically compiles

the mission program into a formal Petri net, avoiding the tedious part of

programming a mission using the graphical manipulation of a Petri net.

• Coordination of multiple vehicles: The decentralized supervision of

Petri nets theory developed by Marian V. Iordache and Panos J. Antsaklis

[Iordache and Antsaklis, 2006b] has been adapted to the underwater domain

allowing the coordination of multiple vehicle missions while minimizing the

communication between them. This is extremely important in underwater

robotics since acoustic communications are known to have a low band width.

• Deliberation and execution interface: A new interface to connect an

automated planning algorithm with an execution layer based on Petri nets

has been proposed. A world modeler allows the use of planners that have

not been designed to operate on-board an autonomous vehicle. Moreover,

MCL missions have been used as planning operators to ensure a predictable

behavior while simplifying the whole system.

190



9. Conclusion

9.3 Future Work

During the development of this research work, new problems and topics of interest

for future investigation have arisen. The following points are the ones which have

been found as the most logical lines to continue this research.

• Visual programming interface: The creation of a high-level language

has simplified remarkably the mission programming for autonomous vehi-

cles. However, many AUVs always perform similar missions in which the

sequence of tasks vary relatively little. One example are the vehicles used

to perform surveys to collect data. For such missions would be interesting

to design a visual programming interface in which the user may define the

path to carry out and the actions to be performed in each way-point graph-

ically. In addition, the output of this interface could be a program coded in

MCL that the user could modify to add elements that are hard to describe

from a visual environment.

• Enhance multiple vehicles coordination: Multiple vehicle coordina-

tion has become a popular topic in the underwater domain. Thus, new

constraints can be added to the ones presented in Chapter 6 to simplify the

coordination of multiple vehicles. Moreover, the algorithm to check if the

combination of coordination constraints produces a deadlocked mission, see

Extract 6.1, analyzes the whole centralized mission. To check if a dead-

lock exists, since constraints have always a similar form, a more efficient

algorithm could be found. Finally, new mechanisms to allow communica-

tion between vehicle primitives should be studied. Currently, there is only

communication before or after the execution of a primitive but no during

its execution. However, to perform multiple vehicle formations [Edwards

et al., 2004] or cooperative path-following [Vanni et al., 2008] this feature

will be necessary.

• Extend deliberation capabilities: The world modeler as well as the

planner components presented in Chapter 7 are very simple. In fact, the

aim of this chapter is only to show the interface between these components

and the proposed MCS. The development of a more adequate on-board

planner together with a proper world modeler, exploiting the benefits of a

robust execution layer, would represent a new and interesting research line.

191



9. CONCLUSION

9.4 Research framework

The results and conclusions presented in this disertation have been possible after

the realization of countless simulations and experiments. All the work done during

the evolution of this thesis is summarized here with references to the most relevant

research publications done by the author. The complete list of publications can

be consulted in the next section.

At the beginning of this thesis in 2005, there was one research platform in the

Centre d’Investigacio en Robotica Submarina (CIRS), the Garbi AUV. However,

in January 2006 started the construction of a new vehicle, Ictineu AUV, to face the

first edition of the Student Autonomous Underwater Challenge-Europe (SAUC-

E). To confront this competition, not only a vehicle had to be built but also

the Object Oriented Control Architecture for Autonomy (O2CA2) had to be

remodeled and a MCS developed. In parallel with this competition, the CIRS

was starting a series of experiments to automatically survey the wall of a dam. For

these experiments it was also necessary to have a functional MCS. Two works

presenting simulated results were published reporting a preliminary version of

the proposed MCS [Palomeras et al., 2006a,b]. The first one faced the SAUC-E

mission while the second one dealt with the dam inspection scenario. Once the

Ictineu AUV was operative, this preliminary MCS was tested on it. The first

expimental test was during the SAUC-E competition [Hernandez et al., 2006;

Ribas et al., 2007] in which Ictineu AUV obtained the first position. To summarize

the preliminary design of the MCS an article was published in the International

Journal of Control [Carreras et al., 2007] where a scientific interest mission was

programmed by means of Petri nets.

To simplify the way in which missions were programmed using Petri nets, a

high level language was proposed [Palomeras et al., 2007a,b]. However, before

implementing the proposed language some improvements were performed in the

way in which Petri nets were used to encode the missions [Palomeras et al., 2008]

in order to obtain more reliable missions. After applying these modifications, the

MCL was redefined [Palomeras et al., 2009b], implemented and tested [Palomeras

et al., 2009a] repeating the dam inspection experiments previously presented but

in a real scenario instead of a simulated one. Once the MCS was completely

implemented and working not only in Ictineu AUV but also in the new vehicle

Sparus AUV, a joint work was done in collaboration with the Universidad Jaume

192



9. Conclusion

I (UJI). The work consisted of controlling an underwater vehicle with a robotic

manipulator attached to it in the context of an intervention mission [Palomeras

et al., 2010a] taking advantage of the AAC to control two different reactive layers

from the proposed MCS.

Finally, to improve the MCS capabilities two additional works were carried

out. The first one applies the decentralized supervision of Petri nets introduced

by M. V. Iordache and P. J. Antsaklis [Iordache and Antsaklis, 2006b] to the

multiple underwater vehicles coordination [Palomeras et al., 2010c]. The second

one defines the interface of the proposed system with an on-board planner in

order to enhance the deliberative system capabilities [Palomeras et al., 2010b].

In parallel to the thesis main line, additional publications have been done in

the field of remote experimentation and telerobotics [Ridao et al., 2005, 2006,

2007] as well as collaborating with the laboratory projects for the development of

an Intervention Autonomous Underwater Vehicle (IAUV) [Prats et al., Submitted;

Ribas et al., 2011, Submitted]. Moreover, an article summarizing the COLA2 as

well as the proposed MCS has been also submitted [Palomeras et al., submitted].

9.5 Related publications

P. Ridao, E. Batlle and N. Palomeras

First steps in Remote Experimentation with UUVs.

Workshop International en Telerobtica y Realidad Aumentada para Tele-

operacin, 2005.

P. Ridao, E. Hernandez, N. Palomeras and M. Carreras

Remote Training in AUV Control Using HIL Simulators.

Manoeuvring and Control of Marine Craft, 2006.

N. Palomeras, M. Carreras, P. Ridao and E Hernandez

Mission control system for dam inspection with an AUV.

IEEE/RSJ International Conference on Intelligent Robots and Systems,

2006, pp. 2551-2556.

N. Palomeras, P. Ridao, M. Carreras and E. Hernandez

Design of a Mission Controller for an Autonomous Underwater Robot.

Workshop de Agentes F́ısicos, 2006, pp. 167-174.

193



9. CONCLUSION

E. Hernandez, P. Ridao, M. Carreras, D. Ribas, N. Palomeras, A.

El-Fakdi and F. Chung

Ictineu AUV, un Robot per a Competir.

Congrs Catal d’Intelligncia Artificial, 2006.

D. Ribas, N. Palomeras, P. Ridao, M. Carreras and E. Hernandez

ICTINEU AUV Wins the First SAUC-E Competition.

IEEE International Conference on Robotics and Automation, 2007, pp.

151-156.

M. Carreras, N. Palomeras, P. Ridao and D. Ribas

Design of a mission control system for an AUV.

International Journal of Control, 2007, v. 80(7), pp. 993-1007.

N. Palomeras, P. Ridao and M. Carreras

Defining a Mission Control Language.

Congrs Internacional sobre Tecnologia Marina, 2007.

N. Palomeras, P. Ridao, M. Carreras and J. Batlle

MCL: A Mission Control Language for AUVs.

Control Applications in Marine Systems, 2007.

P. Ridao, M. Carreras, E. Hernandez and N. Palomeras

Underwater Telerobotics for Collaborative Research.

Advances in Telerobotics, 2007. Ed. M. Ferre, M. Buss, R. Aracil, C.

Melchiorri and C. Balaguer.

N. Palomeras, P. Ridao, M. Carreras and C. Silvestre

Towards a Mission Control Language for AUVs.

17th IFAC World Congress, 2008, pp. 15028-15033.

N. Palomeras, J. C. Garcia, M. Prats, J. J. Fernandez, P. J. Sanz and

P. Ridao

A Distributed Architecture for Enabling Autonomous Underwater Interven-

tion Missions.

IEEE Systems Conference, 2010, pp. 159-164.

N. Palomeras, P. Ridao, M. Carreras and C. Silvestre

Mission Control System for an Autonomous Vehicle: Application Study of

194



9. Conclusion

a Dam inspection using an AUV.

8th IFAC International Conference on Manoeuvring and Control of Marine

Craft, 2009.

N. Palomeras, P. Ridao, M. Carreras and C. Silvestre

Using Petri nets to specify and execute missions for Autonomous Underwa-

ter Vehicles.

IEEE/RSJ International Conference on Intelligent Robots and Systems,

2009.

N. Palomeras, P. Ridao, C. Silvestre and A. El-fakdi

Multiple vehicles mission coordination using Petri nets.

IEEE International Conference on Robotics and Automation, 2010, pp.

3531-3536.

N. Palomeras, P. Ridao, M. Carreras and C. Silvestre

Towards a Deliberative Mission Control System for an AUV.

7th IFAC Symposium on Intelligent Autonomous Vehicles, 2010.

N. Palomeras, A. El-Fakdi, M. Carreras and P. Ridao

COLA2: A control architecture for AUVs.

Journal of Oceanic Enginering, submitted.

D. Ribas, P. Ridao, LL. Maǵı, N. Palomeras and M. Carreras

The Girona 500, a multipurpose autonomous underwater vehicle.

Proceedings of the Oceans IEEE, 2011.

M. Prats, D. Ribas, N. Palomeras, J. C. Garćıa, V. Nannen, J. J.

Fernández, J. P. Beltrán, R. Campos, P. Ridao, P. J. Sanz, G.

Oliver, M. Carreras, N. Gracias, R. Maŕın and A. Ortiz

Reconfigurable AUV for Intervention Missions: A Case Study on Underwa-

ter Object Recovery.

Journal of Intelligent Service Robotics, submitted.

D. Ribas, N. Palomeras, P. Ridao, M. Carreras and A. Mallios

Girona 500 AUV, from survey to intervention.

Transactions on Mechatronics, submitted.

195



9. CONCLUSION

196



Appendix A

An Introduction to Petri Nets

Petri nets were invented in 1962 by Carl Adam Petri in his PhD thesis [Petri,

1962]. They are one of several mathematical representations of discrete dis-

tributed systems. While finite automates can only represent regular languages,

Petri nets are able to describe regular but also non regular languages. Its al-

gebraical representation is simple and thus makes its specification and analysis

simpler. There are several analysis techniques based on their structural and be-

havioral properties to detect and prevent anomalies and errors.

Table A.1 shows a formal definition of a Petri net [Murata, 1989]. It consists

of a particular class of directed graph composed of a finite set of places P, tran-

sitions T and directed arcs A, a weight function W and an initial state called

initial marking µ0. Arcs link places to transitions and transitions to places but

never places nor transitions between themselves. Every place can accommodate

zero, one or more tokens. If it is assumed that each place can accommodate an

unlimited number of tokens, such Petri nets are referred to as infinite capacity

nets. On the other hand, for a finite capacity net (N,µ0), each place p has an

associated capacity K(p) that is the maximum number of tokens that p can hold

at any time. The operator µ(p) returns the number of tokens in place p. The

dynamic behavior of a system represented by a Petri net is changed according to

the following transition rule:

1. A transition t is said to be enabled if each input place p of t (•t, see

Table A.2) is marked with at least w(p, t) tokens, where w(p, t) is the weight

197



A. AN INTRODUCTION TO PETRI NETS

A petri net is a 5-tuple, PN = (P, T, F,W, µ0) where:

P = {p1, p2, ..., pn} is a finite set of places,
T = {t1, t2, ..., tm} is a finite set of transitions,
A ⊆ (PxT ) ∪ (TxP ) is a set of arcs (flow relation),
W : A→ {1, 2, 3, ...} is a weight function,
µ0 : P → {0, 1, 2, 3, ...} is the initial marking,
P ∩ T = Ø and P ∪ T 6= Ø.

A Petri net structure N = (P, T,A,W ) without
any specific initial marking is denoted by N.

A Petri net with the given initial marking
is denoted by (N,µ0).

Table A.1: Formal definition of a Petri net.

•t = {p|(p, t) ∈ F} = the set of input places of t
t• = {p|(t, p) ∈ F} = the set of output places of t
•p = {t|(t, p) ∈ F} = the set of input transitions of p
p• = {t|(p, t) ∈ F} = the set of output transitions of p
where F is the set of all arcs.

Table A.2: Petri net pre-set and post-set.

198



A. An Introduction to Petri Nets

of the arc from p to t.

2. An enabled transition may or may not fire. It is possible to differentiate

between immediate and non-immediate transitions. Immediate transitions

fire as soon as they are enabled while non-immediate transitions fire only

if they are enabled and an extra process, generally represented by another

Petri, net reaches an specific state. Then, it is assumed that: if an immedi-

ate and a non-immediate transition are enabled, the immediate transition

will be always the first to fire.

3. A firing of an enabled transition t removes w(p, t) tokens from each input

place p of t, and adds w(t, p) tokens to each output place p of t (t•, see

Table A.2), where w(t, p) is the weight of the arc from t to p.

A Petri net is said to contain a self-loop if exists a place p which is both an

input and output place of a certain transition t. A Petri net without self-loops is

called a pure Petri net. A Petri net is said to be ordinary if all of its arc weights

are 1’s.

Figure A.1(a) shows a Petri net with four places (P0, P1, P2 and P3) and

four transition (T0, T1, T2 and T3). T0 and T2 are immediate transitions while

T1 and T3 are non-immediate transitions. Places and transitions are connected

by arcs as shown in the figure. If the initial marking (µ0) is {1, 0 0 0} then T0

is the only enabled transition. When T0 fires, according to the transition rule,

P0 will lose one token while one token will be added to P1 and P2 as shown

in Figure A.1(b). In Figure A.1(b) transitions T1 and T2 are enabled, however,

as T1 is a non-immediate transition, T2 is the transition that will fire next and

Figure A.1(c) will be obtained. Here, both enabled transitions (T1 and T3) are

non-immediate. Thus, either the first or the latter may fire.

A.1 Properties

One of the main reasons for modeling systems with Petri nets is their support for

the analysis of many properties associated with problems in concurrent systems.

Two types of properties can be studied with a Petri net model: (1)Behavioral

Properties, also called marking-dependent, which depend on the initial marking,

and (2)Structural Properties which are independent of the initial marking. Three

199



A. AN INTRODUCTION TO PETRI NETS

(a) (b) (c)

Figure A.1: (a) Petri net example in its initial state (µ0). (b) Petri net example
after firing T0. (c) Petri net example after firing T0 and then T1 and T2.

of the most important behavioral properties and one structural property are de-

tailed next:

• Reachability: The firing of an enabled transition will change the token

distribution, the marking, in a net according to the transition rule. A

sequence of firings will result in a sequence of markings. A marking µn, is

said to be reachable from a marking µ0 if there is a sequence of firings that

transforms µ0 to µn. The set of all possible markings reachable from µ0 in a

net (N,µ0) is denoted by R(µ0). The set of all possible firing sequences from

µ0 in a net (N,µ0) is denoted by L(µ0). For example, the Petri net shown

in Figure A.1 can reach an infinite number of different states, however,

they can be reduced to only seven: {1, 0, 0, 0} (Figure A.1(a)), {0, 1, 1,

0}(Figure A.1(b)), {0, 1, 0, 1} (Figure A.1(c)), {0, 0, 0, 1}, {1, ω, 0, 0},
{0, ω, 1, 0} and {0, ω, 0, 1}, where ω represents any value bigger than 1.

• Boundedness: A Petri net (N,µ0) is said to be k-bounded or simply

bounded if the number of tokens in each place p does not exceed a finite

number k for any marking reachable from µ0, i.e. µ(p) ≤ k for every place p

and every marking µ ∈ R(µ0). Figure A.1 shows a Petri net with places P0,

P2 and P3 1-bounded but with place P1 unbounded. A Petri net (N,µ0)

is said to be safe if it is 1-bounded.

• Liveness: A Petri net (N,µ0) is said to be live if, no matter what marking

has been reached from µ0, it is possible to ultimately fire any transition of

the net by progressing through some further firing sequence. This means

200



A. An Introduction to Petri Nets

that a live Petri net guarantees deadlock-free operation, no matter what

firing sequence is chosen. Thus, the Petri net in Figure A.1 is live.

• Invariants: Net invariants are one of the structural properties of Petri

nets. Place invariants are sets of places whose weighted token count remains

constant for all possible markings. They are represented by a n-dimensional

integer vector x, where n is the number of places of the Petri net; non-zero

entries correspond to the places that belong to the particular invariant.

Then, xµ = xµ0 for µ representing any subsequent marking of µ0. The

place invariants of a net can be computed by finding integer solutions to

xD = 0 where x is the place invariant vector and D the incidence matrix,

see Section A.2. One place invariant can be found in Figure A.1, it is

represented by µ(P0) + µ(P2) + µ(P3) = 1.

A.2 Analysis

Methods of analysis for Petri nets may be classified into three groups: i) the

coverability (reachability) tree method, ii) the matrix-equation approach, and iii)

reduction or decomposition techniques [Murata, 1989]. The first method involves

essentially the enumeration of all the reachable markings of a Petri net (R(µ0)).

Although it is applicable to all sorts of nets, in practice it may only be applied to

small nets due to the complexity of the state space explosion. On the other hand,

matrix equations and reduction techniques are powerful but in most cases they

are only applicable to special subclasses of Petri nets or particular situations.

A.2.1 The coverability tree

The coverability tree is an analysis technique based on the construction of a tree

where nodes are Petri net states and arcs represent transitions firings. Considering

any possible Petri net, a tree whose root node is the initial state of this Petri net

(µ0) is builded. Then, it is possible to examine all transitions that can fire from

this state, defining new nodes in the tree, and repeat this process until all possible

reachable states (R(µ0)) are identified. The reachability tree is conceptually easy

to construct, however, it may be infinite. Therefore, it is necessary to seek a

201



A. AN INTRODUCTION TO PETRI NETS

finite representation of this tree. This is possible, but at the expense of losing

some information. The finite version of an infinite reachability tree will be called a

reachability graph and can be computed using the algorithm shown in Extract A.1

[Cassandras and Lafortune, 2007] where:

• x0 is the root node and corresponds to the initial state of the given Petri

net (µ0).

• A terminal node is a node from which no transitions can fire.

• A duplicated node is a node that is identical to a node already in the tree.

• >d denotes node dominance. If x = [x(p1), ..., x(pn)] and y = [y(p1), ..., y(pn)]

are two states, x dominates y (x >d y) if the following two conditions hold:

x(pi) ≥ y(pi), for all i = 1, ..., n and x(pi) > y(pi), for at least some

i = 1, ..., n.

Extract A.1: Compute reachability graph.

initialize x = x0 ;

for each new node x do

evaluate the transition function f(x, tj) for all tj ∈ T ;

if f(x, tj) is undefined for all tj ∈ T then

mark x as a terminal node ;

else

create a new node x’ = f(x, tj) ;

if x(pi) = ω for some pi then

set x’(pi) = ω ;

else if exists a node y in the path from the root node x0 to x such

that x’ >d y then

set x’(pi) = ω for all pi such that x’(pi) > y(pi) ;

else

x’(pi) is as obtained in f(x, tj) ;

end

end

end

If all new nodes have been marked as either terminal or duplicate nodes,

then stop ;

202



A. An Introduction to Petri Nets

1 0 0 0 S0

0 1 1 0 S1

0 0 0 1 S3

0 1 0 1 S2

P0, P1, P2, P3

T0 T2

T1T3

1 w 0 1 S4

0 w 0 1 S6

0 w 1 0 S5

T3

T0

T2

T1
T3

Figure A.2: Reachability analysis for the Petri net in Figure A.1 where S0, S1,
S4 and S5 are vanishing states while S2, S3 and S6 are tangible states.

If Algorithm A.1 is applied to the Petri net in Figure A.1 the reachability graph

shown in Figure A.2 is obtained. When the reachability graph of a Petri net with

immediate and non-immediate transitions is computed, the resulting states can

be vanishing or tangible. A state is called tangible if it does not possesses any

outgoing immediate transition. Otherwise, the state is called vanishing.

A.2.2 The matrix equation approach

To introduce the matrix-equation approach some terms must be defined. Let Z
be the set of integers, n be the number of places in a Petri net and m be the

number of transitions. The arcs connecting transitions to places are described

by the matrix D+ ∈ Zn×m and the arcs connecting places to transitions are

described by D− ∈ Zn×m, where the in×m element of matrix D+ has a zero if

there are no arcs connecting transition m with place n or the weight of the arc

(w(m,n)) otherwise and the in,m element of matrix D− is zero if there are no arcs

connecting place n with transition m or the weight of the arc (w(n,m)) otherwise.

Note that the elements of D+ and D− are greater than or equal to zero. The

marking of a Petri net is represented by a n dimensional integer vector µ whose

kth element is the number of tokens in the place pn (µ(pn)). The transitions of

a Petri net fire in discrete steps. The transitions that have to fire at the current

step are represented by the m dimensional integer vector q. The jth element of

q is 0 if the jth transition will not be fired and 1 if it will fire. A given firing

vector q represents a valid possible firing if all of the transitions for which it

203



A. AN INTRODUCTION TO PETRI NETS

contains nonzero entries are enabled1. The validity of a given firing vector q can

be determined by checking the enabling condition:

µ ≥ D−q (A.1)

Where all vector and matrix inequalities are read element-by-element with

respect to the two sides of the inequality. The Petri net incidence matrix is

defined as

D = D+ −D− (A.2)

Then, it is possible to work out the matrices D+, D− and D for the Petri net

shown in Figure A.1:

D+ =


0 0 0 1

1 0 0 0

1 0 0 0

0 0 1 0



D− =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



D =


−1 0 0 1

1 −1 0 0

1 0 −1 0

0 0 1 −1


When a Petri net contains no self loops, the D matrix is uniquely defined by

D+ and D− and then, we can use the following inequality as an equivalent to the

enabling condition to (A.1).

1It is worth noting that for a transition to be fired, first it has to be enabled.

204



A. An Introduction to Petri Nets

µ+D+q ≥ D−q

µ+ (D+ −D−)q ≥ 0

µ+Dq ≥ 0 (A.3)

When using (A.1) or (A.3) care must be taken when q indicates the concurrent

firing of multiple transitions. Concurrency may not be allowed at all, in which

case q would be a zero vector with a single element equal to one. Concurrency

may be allowed only when each of the indicated transition firings could occur one

after the other in any order.

When the transitions described by the q vector fires, the state of the Petri net

changes. The state change is described by

µ← µ+Dq (A.4)

Thus, the Petri net transition rule previously described can be exposed by the

following system:

µk+1 = µk +Dqk (A.5)

D ∈ Zn×m, µ ∈ Zn, q ∈ Zm, (µ, q ≥ 0) (A.6)

Without (A.6), system (A.5) is a rather uninteresting subclass of linear differ-

ence equations, but with (A.6), it becomes something entirely different, requiring

different tools and concepts for analysis.

205



A. AN INTRODUCTION TO PETRI NETS

A.3 Siphons and Traps

A trap or a siphons is a set of Petri net places. In a trap, when one of the

places becomes marked, the trap will always be marked for all future reachable

markings. Similarly, once the marking of a siphon becomes empty, the siphon

will remain empty. If •p is the set of input transitions into the place p and p• is

the set of output transition from the place p as shown in Table A.2, then, this

same notation can be used with sets of places. Let S be a set of places, then •S
and S• refer to the set of input and output transitions for the entire set S. Thus,

a set of places S is a siphon if and only if

•S ⊆ S• (A.7)

In the same way, a non empty set of places S is a trap if it accomplishes

S• ⊆ •S (A.8)

The set S = {P0, P2, P3 } in the Petri net shown in Figure A.1 is both a

siphon and a trap because •S = S•.

A.4 Invariants Based Control

Structural invariants are important means not only for analyzing Petri nets, since

they allow for the net’s structure to be investigated independently of any dynamic

process, but also to control the behavior of a Petri net. It is possible to supervise

a Petri net in order to enforce an invariant with some of their places by means of

the Supervision Based on Place Invariant (SBPI). Invariant based control relies

with linear state constraints. A linear state constraint is denoted by

lµ ≤ b (A.9)

where l is an integer weight vector and b is an scalar. These constraints can

be interpreted as: the sum of the tokens obtained by multiplying the l vector by

the current number of tokens in each place (µ) has to be always less or equal than

b. In order to add one of this linear state constraint to a Petri net represented by

206



A. An Introduction to Petri Nets

the incidence matrix Dp, an extra place must be added. Following equations are

used for this endeavor [Moody and Antsaklis, 1998]:

Dc = −lDp (A.10)

µc0 = b− lµ0 (A.11)

where Dc describes the Petri net controller and µc0 is its initial marking. Then,

the incidence matrix of the resulting Petri net (D) and its initial state (µ0) can

be obtained as:

D =

[
Dp

Dc

]
(A.12)

µ0 =

[
µp0

µc0

]
(A.13)

Not only linear marking constraints can be used to control a Petri net. It is

possible to restrict the Petri net behavior enforcing constraints related with its

firing vector or the Parikh vector. For a further dissertation about this topic, the

reader is referred to Iordache and Antsaklis [2002].

A.5 Subclasses of Petri nets

In order to describe the Petri net subclasses three concepts have to be introduced:

conflict, concurrency and confusion. Figure A.3(a) shows a Petri net where two

transitions are marked but only one of them can be fired. This structure is called

a conflict, a choice or a decision. Figure A.3(b) presents an example of deter-

ministic parallel activities where two places are simultaneously marked. Finally,

Figure A.3(c) and (d) present a confusion situation where conflict and concur-

rency are mixed. As can be seen in Figure A.3(c) a symmetric confusion appears

when T0 and T2 are concurrent but in conflict with T1. This means that a

choice between fire T0 and T2 or fire T1 have to be done. In Figure A.3(d) an

asymmetric confusion case is shown, where T0 is concurrent with T1 but will be

in conflict with T2 if T1 fires before T2.

207



A. AN INTRODUCTION TO PETRI NETS

(a) (b)

(c) (d)

Figure A.3: (a) Conflicting Petri net structure. It exhibits non-determinism.
(b) A Petri net representing deterministic parallel activities. (c) Symmetric con-
fusion: T0 and T2 are concurrent but in conflict with T1. (d) Asymmetric
confusion: T0 is concurrent with T1 but in conflict with T2 if T1 fires before T2.

208



A. An Introduction to Petri Nets

Petri nets are classified based on its capabilities to support concurrency, con-

flict and confusion as shown in Figure A.4 and Figure A.5). Six main types of

Petri nets are explained below.

A.5.1 State Machine

A State Machine (SM) is an ordinary Petri net with each transition t having

exactly one input place and exactly one output place. This means that there can

not be concurrency but there can be conflict, several transitions can be fired at

the same time.

| • t| = |t • | = 1, ∀t ∈ T

A.5.2 Marked Graph

A Marked Graph (MG) is an ordinary Petri net with each place p having exactly

one input transition and one output transition. This means that there can not

be conflict but allows concurrency.

| • p| = |p • | = 1, ∀p ∈ P

A.5.3 Free-Choice

A Free-Choice (FC) net is an ordinary Petri net in which every outgoing arc from

a place is either the unique outgoing arc or if there exist several outgoing arcs

from this place, then every one of them must be the unique incoming arc to its

corresponding transition. There can be both concurrency and conflict, but never

at the same time.

∀p ∈ P, | • p| ≤ 1 or •(p•) = {p}; equivalently,

∀p1, p2 ∈ P, p1 • ∩ p2• 6= Ø ⇒ |p1 • | = |p2 • | = 1.

209



A. AN INTRODUCTION TO PETRI NETS

T 4

T 3

T 2

T 1

T 0

P2

P1

P0

(a) (b) (c) (d) (e)

Figure A.4: Petri net subclasses: (a) State Machine (b) Marked Graph (c) Free-
Choice (d) Extended Free-Choice (e) Asymmetric Choice.

A.5.4 Extended Free-Choice

An extended Extended Free-Choice (EFC) net is a FC Petri net where for every

transition t with more than one incoming arc from places p1, ..., pn the set of

outgoing arcs of these places reach the same set of transitions.

p1 • ∩p2• 6= Ø ⇒ p1• = p2• for all p1, p2 ∈ P .

A.5.5 Asymmetric Choice

An Asymmetric Choice (AC) net, also known as a simple net, is an ordinary Petri

net in that, concurrency and conflict are allowed, but not asymmetrically.

p1 • ∩p2• 6= Ø ⇒ p1• ⊆ p2• or p1• ⊇ p2• for all p1, p2 ∈ P .

A.5.6 Ordinary Petri nets

In ordinary Petri nets confusion is allowed symmetrically and asymmetrically.

210



A. An Introduction to Petri Nets

Petri nets

Asymmetric choice

Extended free choice

Free

 choice
State 

Machine

Marked

Graph

Figure A.5: Hierarchy between Petri net subclasses.

211



A. AN INTRODUCTION TO PETRI NETS

212



Appendix B

Control structures

This appendix develops the control structures introduced in Chapter 4. Ten Petri

Net Building Block (PNBB) control structures are shown: not, sequence, if-then,

if-then-else, while-do, try-catch, parallel-and, parallel-or, monitor-condition-do

and monitor-while condition-do. For each control structure, its complete Petri

net, a schematic representation and its instantiation when programing a mission

using Mission Control Language (MCL) are shown. See that all PNBBs use the

same interface: Ii = { begin, abort, ok, fail}.

213



B. CONTROL STRUCTURES

Table B.1: Not.

id: Not
internal interfaces: I2

MCL: not( A )

(a)

(b)

Figure B.1: (a) Petri net and (b) schematic for the control structure not.

214



B. Control Structures

Table B.2: Sequence.

id: Sequence
internal interfaces: I2, I3

MCL: A ; B

(a)

(b)

Figure B.2: (a) Petri net and (b) schematic for the control structure sequence.

215



B. CONTROL STRUCTURES

Table B.3: If-Then.

id: If-Then
internal interfaces: I2, I3

MCL: if( A ) { B }

(a)

(b)

Figure B.3: (a) Petri net and (b) schematic for the control structure if-then.

216



B. Control Structures

Table B.4: If-Then-Else.

id: If-Then-Else
internal interfaces: I2, I3, I4

MCL: if( A ) { B } then { C }

(a)

(b)

Figure B.4: (a) Petri net and (b) schematic for the control structure if-then-else.

217



B. CONTROL STRUCTURES

Table B.5: While-Do.

id: While-Do
internal interfaces: I2, I3

MCL: while( A ) { B }

(a)

(b)

Figure B.5: (a) Petri net and (b) schematic for the control structure if-then.

218



B. Control Structures

Table B.6: Try-Catch.

id: Try-Catch
internal interfaces: I2, I3

MCL: try{ A } catch{ B }

(a)

(b)

Figure B.6: (a) Petri net and (b) schematic for the control structure try-catch.

219



B. CONTROL STRUCTURES

Table B.7: Parallel-And.

id: Parllel-And
internal interfaces: I2, I3

MCL: parallel{ A } and{ B } and{ C} ...

(a)

(b)

Figure B.7: (a) Petri net and (b) schematic for the control structure parallel-and.

220



B. Control Structures

Table B.8: Parallel-Or.

id: Parllel-Or
internal interfaces: I2, I3

MCL: parallel{ A } or{ B } or{ C} ...

(a)

(b)

Figure B.8: (a) Petri net and (b) schematic for the control structure parallel-or.

221



B. CONTROL STRUCTURES

Table B.9: Monitor-Condition-Do.

id: Monitor-Condition-Do
internal interfaces: I2, I3, I4

MCL: monitor{ A } condition( B ) do{ C} ...

(a)

(b)

Figure B.9: (a) Petri net and (b) schematic for the control structure monitor-
condition-do.

222



B. Control Structures

Table B.10: Monitor-While Condition-Do.

id: Monitor-While Condition-Do
internal interfaces: I2, I3, I4

MCL: monitor{ A } while condition( B ) do{ C} ...

(a)

(b)

Figure B.10: (a) Petri net and (b) schematic for the control structure monitor-
while condition-do.

223



B. MISSION CONTROL LANGUAGE GRAMMAR

224



Appendix C

Mission Control Language

grammar

This appendix contains the context-free grammar for the Mission Control Lan-

guage (MCL) introduced in Chapter 5. It is described with a variation of the

standard Backus Normal Form (BNF) notation technique used by the ANTLR

[Parr, 2010] software tool.

〈global〉 → 〈actionsBlock〉 〈eventsBlock〉 〈patternBlock〉 〈tasksBlock〉 ( 〈missionBlock〉
)+ ( 〈constraintsBlock〉 )? EOF

〈actionsBlock〉 → ‘actions’ ‘{’ ( 〈actionsDef 〉 )* ‘}’

〈actionsDef 〉 → ID ‘=’ 〈actionPrimitive〉 ‘;’

〈actionPrimitive〉 → ID ‘(’ 〈command〉 〈actionVarList〉 ‘)’

〈command〉 → ‘c’ ‘:’ ID

〈actionVarList〉 → ( ‘,’ 〈actionVar〉 )*

〈actionVar〉 → ( ‘v’ ‘:’ (ID | NUM ) )

〈eventsBlock〉 → ‘events’ ‘{’ ( 〈eventsDef 〉 )* ‘}’

225



C. MISSION CONTROL LANGUAGE GRAMMAR

〈eventsDef 〉 → ID ‘;’

〈patternBlock〉 → ‘pattern’ ‘{’ ( 〈pattern〉 )* ‘}’

〈pattern〉 → P ID ( ‘:’ ID ‘.xml’ ‘;’ | ‘{’ 〈patternDef 〉 ‘}’ )

〈patternDef 〉 → 〈patternPlaces〉 〈patternTrans〉 〈patternArcs〉

〈patternPlaces〉 → ‘places’ ‘{’ ( 〈patternPlacesDefs〉 )+ ‘}’

〈patternPlacesDefs〉 → ID ( ‘.’ NUM )? ( ‘(’ NUM ‘)’ )? ‘;’

〈patternTrans〉 → ‘transitions’ ‘{’ ( 〈patternTransDefs〉 )+ ‘}’

〈patternTransDefs〉 → ID ( ‘.’ NUM )? ( ‘(’ NUM ‘)’ )? ‘;’

〈patternArcs〉 → ‘arcs’ ‘{’ ( 〈patternArcsDefs〉 )+ ‘}’

〈patternArcsDefs〉 → ID ( ‘.’ NUM )? ‘->’ ID ( ‘.’ NUM )? ‘;’

〈tasksBlock〉 → ‘tasks’ ‘{’ ( 〈tasks〉 )* ‘}’

〈tasks〉 → ID ‘(’ ( 〈listId〉 )? ‘)’ ‘:’ P ID ‘{’ 〈taskDef 〉 ‘}’

〈taskDef 〉 → ( 〈taskActions〉 | 〈taskEvents〉 ) *

〈taskActions〉 → ‘a’ ‘:’ ID ‘->’ listId ‘;’

〈taskEvents〉 → ‘e’ ‘:’ ID ‘->’ listId ‘;’

〈missionBlock〉 → ‘mission’ ( ‘:’ ID ( ‘[’ ID ‘at’ NUM ‘]’ ) )? ‘{’ 〈statement〉
‘}’

〈statement〉 → 〈call〉 ( ‘;’ 〈statement〉 )?

‘while’ ‘(’ 〈statement〉 ‘)’ ‘{’ 〈statement〉 ‘}’ ( ‘;’ 〈statement〉 )?

‘if ’ ‘(’ 〈statement〉 ‘)’ ‘{’ 〈statement〉 ‘}’ ( ‘else’ ‘{’ 〈statement〉 ‘}’ )? (

‘;’ 〈statement〉 )?

‘parallel’ ‘{’ 〈statement〉 ‘}’ ( ( ‘and’ | ‘or’) ‘}’ 〈statement〉 ‘}’ )+ ( ‘;’

〈statement〉 )?

‘try’ ‘{’ 〈statement〉 ‘}’ ‘catch’ ‘{’ 〈statement〉 ‘}’ ( ‘;’ 〈statement〉 )?

‘not’ ‘(’ 〈statement〉 ‘)’ ( ‘;’ 〈statement〉 )?

‘monitor’ ‘{’ 〈statement〉 ‘}’ ( ( ‘condition’ | ‘while condition’ ) ‘(’

〈statement〉 ‘)’ ‘do’ ‘{’ 〈statement〉 ‘}’ )+ ( ‘;’ 〈statement〉 )?

226



〈call〉 → ID ‘(’ ( 〈listId〉 )? ‘)’ ( ‘:’ ID )?

〈constraintsBlock〉 → ‘constraints’ ‘{’ 〈constraint〉 ‘}’

〈constraint〉 → ( 〈mutex〉 | 〈order〉 | 〈sync〉 )*

〈mutex〉 → ‘ mutex ’ ‘{’ 〈listId〉 ‘}’ ‘=’ NUM

〈order〉 → ‘ order ’ ‘{’ ID ‘:’ ID ‘,’ ID ‘:’ ID ‘}’

〈sync〉 → ‘ sync ’ ‘{’ 〈listId〉 ‘}’

〈listId〉 → ( ID ( ‘,’ ID ) *)

〈P ID〉 → ( ‘P ’ ) ( [A-Z] | [0-9] | ‘ ’ | ‘-’ )+

〈ID〉 → ( ‘$’ | [a-z] | [A-Z] | ‘ ’ )( ‘$’ | [A-Z] | [a-z] | [0-9] | ‘/’ | ‘ ’ | ‘-’ )*

〈NUM〉 → ( ‘-’ )? ( ‘0’ | [1-9] ( [0-9] )* ) ( ‘.’ ( [0-9] )+ )?

227



C. MISSION CONTROL LANGUAGE GRAMMAR

228



References

Petri net marked language reference, November 2010. URL http://www.pnml.

org. 93

Internet communications engine, 2011. URL http://www.zeroc.com/ice.html.

52

LEGO mindstorms, 2011. URL http://mindstorms.lego.com/. 48

The ace orb, 2011. URL http://www1.cse.wustl.edu/~schmidt/TAO.html. 52

Webots, 2011. URL http://www.cyberbotics.com. 49

EPFL education robot, 2011. URL http://www.e-puck.org/. 48

Gavia AUV, 2011. URL http://www.gavia.is. 14, 22

iRobot create, 2011. URL http://www.irobot.com/. 48

OROCOS, 2011. URL http://www.orocos.org/. 47

Urbi forge, 2011. URL http://www.urbiforge.org/. 15, 23, 49

P.E. Agre and D. Chapman. Pengi: an implementation of a theory of activity.

In 6th Annual Meeting of the American Association for Artificial Intelligence,

pages 268–272, Seattle, Washington, 1987. 10

R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture for

autonomy. International Journal of Robotic Research, 17(4):315 – 337, 1998.

30

229

http://www.pnml.org
http://www.pnml.org
http://www.zeroc.com/ice.html
http://mindstorms.lego.com/
http://www1.cse.wustl.edu/~schmidt/TAO.html
http://www.cyberbotics.com
http://www.e-puck.org/
http://www.gavia.is
http://www.irobot.com/
http://www.orocos.org/
http://www.urbiforge.org/


REFERENCES

J.S. Albus. Outline for a theory of intelligence. IEEE Transactions on Systems,

Man, and Cybernetics, 21(3):473–509, May-June 1991. 10

B. Allen, R. Stokey, T. Austin, N. Forrester, R. Goldsborough, M. Purcell, and

C. von Alt. REMUS: a small, low cost AUV; system description, field trials

and performance results. In OCEANS ’97. MTS/IEEE Conference Proceedings,

volume 2, pages 994–1000, 1997. 22

J. Amat, J. Batlle, A. Casals, and J. Forest. GARBI: a low cost ROV, constrains

and solutions. In 6ème Seminaire IARP en robotique sous-marine, pages 1 –

22, Toulon-La Seyne, France, 1996. 39

N.M. Amato and Y. Wu. A randomized roadmap method for path and manipula-

tion planning. In IEEE International Conference on Robotics and Automation,

volume 1, pages 113 – 120, 1996. 130

B. Anderson and J. Crowell. Workhorse AUV- a cost-sensible new autonomous

underwater vehicle for surveys/soundings, search & rescue, and research. In

IEEE/MTS OCEANS, Jan 2005. 13, 23

N.A. Anisimov, A.A. Kovalenko, G.V. Tarasov, A.V. Inzartsev, and A.Ph.

Scherbatyuk. A graphical environment for auv mission programming and verifi-

cation. In 10th International Symposium on Unmaned Untethered Submersible

Technology, pages 394 – 405, 1997. 28

R.C. Arkin. Motor schema-based mobile robot navigation. International Journal

of Robotics Research, August 1989, 8(4):92–112, 1989. 11

R.C. Arkin and T. Balch. AuRA: Principles and practice in review. Journal of

Experimental and Theoretical Artificial Intelligence, 9:175–189, 1997. 12, 45

K. Asakawa, J. Kojima, Y. Kato, S. Matsumoto, N. Kato, T. Asai, and T. Iso.

Design concept and experimental results of the autonomous underwater vehi-

cle AQUA EXPLORER 2 for the inspection of underwater cables. Advanced

Robotics, 16(1):27–42, 2002. 176

A. Balasuriya and T. Ura. Vision based underwater cable detection and following

using AUVs. In MTS/IEEE Oceans, Biloxi, Mississippi, October 2002. 176

230



REFERENCES

M. Barbier, J. Lemaire, and N. Toumelin. Procedures planner for an AUV. In

International Symposium on Unmanned Untethered Submersible Technology,

2001. 15, 32, 37, 57

D. Barrett, M. Grosenbaugh, and M. Triantafyllou. The optimal control of a

flexible hull robotic undersea vehicle propelled by an oscillating foil. In Au-

tonomous Underwater Vehicle Technology, 1996. AUV ’96., Proceedings of the

1996 Symposium on, pages 1 – 9, jun 1996. 12

C. Barrouil and J. Lemaire. Advanced real-time mission management for an

AUV. In SCI NATO RESTRICTED Symposium on Advanced Mission Man-

agement and System Integration Technologies for Improved Tactical Operations,

Florence, Italy, September 1999. 15, 32, 37

J. Batlle, P. Ridao, R. Garcia, M. Carreras, X. Cufi, A. El-Fakdi, D. Ribas,

T. Nicosevici, and E. Batlle. URIS: Underwater Robotic Intelligent System,

chapter 11, pages 177 – 203. Instituto de Automatica Industrial, Consejo

Superior de Investigaciones Cientificas,, 1st edition, 2004. 40

M. Beetz, T. Arbuckle, T. Belker, A. Cremers, D. Schulz, M. Bennewitz, W. Bur-

gard, D. Hahnel, D. Fox, and H. Grosskreutz. Integrated, plan-based control

of autonomous robot in human environments. Intelligent Systems, IEEE, 16

(5):56 – 65, 2001. doi: 10.1109/5254.956082. 3

M Berkelaar, J Dirks, K Eikland, P Notebaert, and J Ebert. Mixed integer linear

programming solver, November 2010. URL http://lpsolve.sourceforge.

net/5.5/. 128

H. Berliner. The B*-Tree search algorithm - a best-first proof procedure. Artificial

Intelligence, 12(1):23–40, 1979. 143

M. Bibuli, R. Bono, G. Bruzzone, and M. Caccia. Event handling towards mis-

sion control for unmanned marine vehicles. In IFAC Conference on Control

Applications in Marine Systems, 2007. viii, 31, 77

G. Biggs, T. Collett, B. Gerkey, A. Howard, N. Koenig, J. Polo, R. Rusu,

and R. Vaughan. Player and stage, 2010. URL http://playerstage.

sourceforge.net/. 48, 50

231

http://lpsolve.sourceforge.net/5.5/
http://lpsolve.sourceforge.net/5.5/
http://playerstage.sourceforge.net/
http://playerstage.sourceforge.net/


REFERENCES

A.L. Blum and M.L. Furst. Fast planning through planning graph analysis. Ar-

tificial intelligence, 90(1-2):281–300, 1997. 132

Jonathan Bohren. SMACH, 2011. URL http://www.ros.org/wiki/smach_ros.

15, 26

P. Bonet, C.M. Llado, R. Puijaner, and W.J. Knottenbelt. Platform independent

Petri net editor 2, November 2010. URL http://pipe2.sourceforge.net. 97

F. Boussinot and R. de Simone. The ESTEREL language. In Another Look at

Real Time Programming IEEE, volume 79, pages 1293–1304, 1991. vii, 15, 28,

29

R.A. Brooks. A robust layered control system for a mobile robot. IEEE J. Robot.

and Auto., 2(3):14–23, 1986. 10, 45

R.A. Brooks. A robot that walks; emergent behaviours from a carefully evolved

network. Neural Computation, 1989, 1(2):253–262, 1989. 19

W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,

W. Steiner, and S. Thrun. Experiences with an interactive museum tour-guide

robot. Artificial Intelligence, 114(1-2):3–55, 1999. 3

M. Caccia, P. Coletta, G. Bruzzone, and G. Veruggio. Execution control of robotic

tasks: a Petri net-based approach. Control Engineering Practice, 13(8):959 –

971, 2005. vii, 15, 30, 31, 37, 57, 66

A. Caiti, G. Casalino, E. Lorenzi, A. Turetta, and R. Viviani. Distributed adap-

tive environmental sampling with AUVs: Cooperation and team coordination

through minimum-spanning-tree graph searching algorithms. In IFAC Work-

shop on Navigation, Guidance and Control of Underwater Vehicles, 2008. 107

M. Carreras, J. Batlle, and P. Ridao. Hybrid coordination of reinforcement

learning-based behaviors for AUV control. In IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, volume 3, pages 1410 – 1415, 2001.

45, 56

M. Carreras, P. Ridao, and A. El-Fakdi. Semi-online neural-qlearning for real-

time robot learning. In IEEE/RSJ IEEE/RSJ Conference on Intelligent Robots

and Systems, pages 662 – 667, 2003. 12, 56

232

http://www.ros.org/wiki/smach_ros
http://pipe2.sourceforge.net


REFERENCES

M. Carreras, N. Palomeras, P. Ridao, and D. Ribas. Design of a mission control

system for an AUV. International Journal of Control, 80(7):993 – 1007, 2007.

153, 192

C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.

Springer, 2007. 65, 202

J. Champeau, P. Dhaussy, and L. Latreille. Mission control with the UML and

SDL formalisms. In OCEANS 2000 MTS/IEEE Conference and Exhibition,

volume 3, pages 1639 – 1645, 2000. 32

Z. Chang, X. Bian, and X. Shi. Autonomous underwater vehicle: Petri net based

hybrid control of mission and motion. In International Conference on Machine

Learning and Cybernetics, volume 2, pages 1113 – 1118, 2004. 17

R. Chatila and J. Laumond. Position referencing and consistent world modelling

for mobile robots. In IEEE International Conference on Robotics and Automa-

tion, ICRA, pages 138–170, 1985. 10

K. Cheung, H. So, W. Ma, and Y. Chan. Least squares algorithms for time-of-

arrival-based mobile location. IEEE Transactions on Signal Processing, 52(4):

1121 – 1130, 2004. 170

S. Chien, B. Smith, G. Rabideau, N. Muscettola, and K. Rajan. Automated

planning and scheduling for goal-based autonomous spacecraft. In IEEE In-

telligent Systems and their Applications, volume 13, pages 50 – 55, 1998. doi:

10.1109/5254.722362. 138

J.H. Connell. SSS: A hybrid architecture applied to robot navigation. In IEEE In-

ternational Conference on Robotics and Automation, ICRA, pages 2719–2724,

1992. 11

G. Conte, S.M. Zanoli, and D. Scaradozzi. A feedback scheme for missions man-

aging in underwater archeology. In The 7th IFAC Symposium on Intelligent

Autonomous Vehicles, 2010. 2

H. Costelha and P. Lima and. Modelling, analysis and execution of robotic tasks

using petri nets. In IEEE International Conference on Intelligent Robots and

System, 2007. 15, 37

233



REFERENCES

J. Cote and J. Lavallee. Augmented reality graphic interface for upstream dam

inspection. In Proceedings of SPIE, 1995. 157

X. Cuf́ı, R. Garcia, and P. Ridao. An approach to vision-based station keeping

for an unmanned underwater vehicle. In IEEE/RSJ International Conference

on Intelligent Robots and Systems, volume 1, pages 799 – 804, 2002. 156

D. Davis. Precision maneuvering and control of the Phoenix Autonomous Un-

derwater Vehicle for entering a recovery tube. PhD thesis, Naval Postgraduate

School, Monterey, California, September 1996. 2

M. Davis and H. Putnam. A computing procedure for quantification theory.

Journal of the ACM, 7(3):201–215, 1960. 132

B. Dawes, D. Abrahams, and R. Rivera. Boost C++ libraries, 2010. URL http:

//www.boost.org/. 60

A. Deshpande and J. B. de Sousa. Real-time multi-agent coordination using DIA-

DEM: Applications to automobile and submarine control. In IEEE Conference

on Systems, Man and Cybernetics, 1997. 31

D.B. Edwards, T.A. Bean, D.L. Odell, and M.J. Anderson. A leader-follower

algorithm for multiple AUV formations. In Autonomous Underwater Vehicles,

2004 IEEE/OES, pages 40 – 46, 2004. 107, 191

D. Eickstedt and S. Sideleau. The backseat control architecture for autonomous

robotic vehicles: A case study with the iver2 AUV. In OCEANS 2009,

MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Chal-

lenges, pages 1 – 8, 2009. 26

A. El-Fakdi, M. Carreras, and E. Galceran. Two steps natural actor critic learning

for underwater cable tracking. In IEEE International Conference on Robotics

and Automation ICRA, Anchorage, Alaska, USA, May 2010. 12, 42, 56, 154,

176, 178

Applied Informatics Software Engineering. Poco C++ libraries, 2010. URL http:

//pocoproject.org/. 60

234

http://www.boost.org/
http://www.boost.org/
http://pocoproject.org/
http://pocoproject.org/


REFERENCES

J. Evans, Y. Petillot, P. Redmond, M. Wilson, and D. Lane. AUTOTRACKER:

AUV embedded control architecture for autonomous pipeline and cable track-

ing. In MTS/IEEE Oceans, pages 2651–2658, San Diego, California, September

2003. 176

J. Evans, C. Sotzing, P. Patrón, and D. Lane. Cooperative planning architectures

for multi-vehicle autonomous operations. Technical report, Systems Engineer-

ing for Autonomous Systems Defence Technology Centre, Jul 2006. 17, 130

D. Ferguson, M. Likhachev, and A. Stentz. A guide to heuristic-based path

planning. In International Conference on Automated Planning and Scheduling,

2005. 130

R.E. Fikes and N.J. Nilsson. ”STRPS”: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2(3/4):189 – 208,

1971. 10

R Firby. An investigation into reactive planning in complex domains. In AAAI,

pages 201 – 206, Jan 1987. 14, 18

R.J. Firby. Adaptive Execution in Complex Dynamic Worlds. PhD thesis, Yale

University, New Haven, Connecticut, 1989. 12, 45

R.J. Firby, R.E. Kahn, P.N. Prokopowic, and M.J. Swain. An architecture for

vision and action. In Fourteenth International Joint Conference on Artificial

Intelligence, pages 72 – 79, 1995. 18

R. Garcia, X. Cuf́ı, and J. Batlle. Detection of matchings in a sequence of under-

water images throughtexture analysis. In International Conference on Image

Processing, 2001. 158, 169

GaryBradski. Open source computer vision library, 2010. URL http://opencv.

willowgarage.com/wiki/. 50, 60

E. Gat. Reliable Goal-directed Reactive Control for Real-World Autonomous Mo-

bile Robots. PhD thesis, Virginia Polytechnic and State University, Blacksburg,

Virginia, 1991. 12

M. Ghallab, D. Nau, and P. Traverso. Automated Planning. Morgan Kaufmann,

Elsevier, 2004. 130, 131, 132, 138, 144

235

http://opencv.willowgarage.com/wiki/
http://opencv.willowgarage.com/wiki/


REFERENCES

M. Goden and A. Pascoal. Model of an autonomous ocean vehicle. Master’s

thesis, Dynamical Systems and Ocean Robotics Lab in the Instituto Superior

Tecnico of Lisbon, 2001. 153, 173

G. Griffiths, N. Millard, S. McPhail, P. Stevenson, J. Perrett, M. Peabody,

A. Webb, and D. Meldrum. Towards environmental monitoring with the Au-

tosub autonomous underwater vehicle. In International Symposium on Under-

water Technology, pages 121 – 125, 1998. 13

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow

programming language LUSTRE. Proceedings of the IEEE, 79:1305 – 1320,

Sep 1991. 29

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic deter-

mination of minimum cost paths. In IEEE Systems Science and Cybernetics,

volume 4, pages 100 – 107, 1968. doi: 10.1109/TSSC.1968.300136. 143

A. Healey, D. Marco, P. Oliveira, and A. Pascoal. Strategic level mission control

- an evaluation of CORAL and PROLOG implementations for mission control

specifications. In Symposium on Autonomous Underwater Vehicle Technology,

1996. 57

A.J. Healey. Advances in Unmanned Marine Vehicles, chapter Guidance laws,

obstacle avoidance and artificial potential functions, pages 43–66. Number 3.

The Istitution of Electrical Engineers, 2006. 155

M. Henning and S. Vinoski. Advanced CORBA programming with C++. Addison-

Wesley Longman Publishing Co. Inc., 1999. 52

M. Herman, T. Hong, S. Swetz, D. Oskard, and M. Rosol. Planning and world

modeling for autonomous undersea vehicles. In IEEE International Symposium

on Intelligent Control, pages 370 – 375, August 1988. doi: 10.1109/ISIC.1988.

65459. 145

E. Hernandez, P. Ridao, M. Carreras, D. Ribas, N. Palomeras, A. El-Fakdi, and

F. Chung. Ictineu AUV, un robot per a competir. In Congrs Catal d’Intelligncia

Artificial, 2006. 192

236



REFERENCES

I. Horswill. Polly: A vision-based artificial agent. In IEEE National Conference

on Artificial Intelligence, AAAI, 1993. 11

H.M. Huang. An architecture and a methodology for intelligent control. IEEE

Expert: Intelligent Systems and their applications, 11(2):46–55, 1996. 10

N. Hurtos, A. Mallios, S. Carreno, R. Campos, C. Lee, X. Fuster, S. Cusi, E. Gal-

ceran, A. Carrera, M. Villanueva, N.Palomeras, D. Ribas, and M. Carreras.

Sparus, the university of Gironas entry for SAUC-E 2010. International Jour-

nal of Maritime Engineering, 2010. 4, 153, 157

R. Ierusalimschy, L.H. de Figueiredo, and W. Celes. Lua 5.1 Reference Manual.

Lua.org, August 2006. 24

Silicon Graphics Internationa. Standard template library programmer’s guide,

2010. URL http://www.sgi.com/tech/stl/. 60

M. Iordache and P. Antsaklis. Synthesis of supervisors enforcing general linear

vector constraints in petri nets. in Proceedings of the American Control Con-

ference, 1:154 – 159, Apr 2002. 115, 116, 207

M. Iordache and P. Antsaklis. Supervisory control of concurrent systems.

Birkhäuser Boston, 2006a. 71

M. Iordache and P. Antsaklis. Decentralized supervision of petri nets. In IEEE

Transactions on Automatic Control, volume 51 (2), pages 376 – 381, 2006b.

124, 125, 190, 193

M. Iordache, J. Moody, and P. Antsaklis. Automated synthesis of deadlock pre-

vention supervisors using petri nets. Technical report, ISIS Group at the Uni-

versity of Notre Dame, 2002a. 121

M. Iordache, J. Moody, and P. Antsaklis. Synthesis of deadlock prevention su-

pervisors using petri nets. IEEE Transactions on Robotics and Automation, 18

(1):59 – 68, 2002b. 114

Y. Ito, N. Kato, J. Kojima, S. Takagi, K. Asakawa, and Y. Shirasaki. Cable

tracking for autonomous underwater vehicle. In IEEE Symposium on AUV

technology, pages 218–224, 1994. 176

237

http://www.sgi.com/tech/stl/


REFERENCES

M.D. Iwanowski. Surveillance unmanned underwater vehicle. In IEEE Oceans,

pages 1116–1119, 1994. 176

R. Simmonsand D. James. Inter-Process Communication, A Reference Manual,

April 2011. Version 3.9. 52

Kyle Johns and Trevor Taylor. Professional Microsoft Robotics Developer Studio.

Wrox, May 2008. 15, 24, 49

M. Kao, G. Weitzel, X. Zheng, and M. Black. A simple approach to planning and

executing complex AUV missions. In Symposium on Autonomous Underwater

Vehicle Technology, pages 95 – 102, May 1992. doi: 10.1109/AUV.1992.225188.

vii, 13, 15, 19, 20, 26

W. Kazmi, P. Ridao, and D. Ribas. Dam wall detection and tracking using a

mechanically scanned imaging sonar. In International Conference on Robotics

and Automation, page 3595, May 2009. 159

T.W. Kim and J. Yuh. Task description language for underwater robots. In

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.

15, 21

R. Tinosch R. Kolagheichi-Ganjineh. Ein hybrider Verhaltensansatz zur

Steuerung autonomer Fahrzeuge in Echtzeitumgebungen im Kontext der

DARPA Urban Grand Challenge. PhD thesis, Freie Universität Berlin Institut

für Informatik, 2008. 47

D. Kopec, T.A. Marsland, and J.L. Cox. Computer Science Handbook, chapter

Search. Chapman and Hall/CRC, 2nd ed. edition, 2004. 140

D. Kortenkamp and R. Simmons. Handbook of Robotics, chapter Robotic Systems

Architectures and Programming, pages 187 – 206. Number 8. Springer-Verlag,

2008. 2, 154

C. Kunz, C. Murphy, R. Camilli, H. Singh, J. Bailey, R. Eustice, M. Jakuba,

K. Nakamura, C. Roman, T. Sato, R.A. Sohn, and C. Willis. Deep sea un-

derwater robotic exploration in the ice-covered arctic ocean with AUVs. In

Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International

Conference on, pages 3654 – 3660, 2008. 13

238



REFERENCES

J.E. Laird and P.S. Rosenbloom. Integrating, execution, planning, and learning

in Soar for external environments. In T. S. W. Dietterich, editor, 8th Annual

Meeting of the American Association for Artificial Intelligence, AAAI, pages

1022–1029, Hynes Convention Centre, July–August 1990. MIT Press. 10

K. Lautenbach and H. Ridder. The linear algebra of deadlock avoidance - a petri

net approach. Technical report, Institute for Computer Science, University of

Koblenz, Germany, 1996. 121

D. Lefebvre and G. Saridis. A computer architecture for intelligent machines.

In IEEE International Conference on Robotics and Automation, ICRA, pages

245–250, Nice, France, 1992. 10

D. Lyons. Planning, reactive. In Encyclopedia of Artificial Intelligence. John

Wiley and Sons, New York, 1992. 12

D.B. Marco, A.J. Healey, and R.B. Mcghee. Autonomous underwater vehicles:

Hybrid control of mission and motion. Autonomous Robots, 3:169–186, 1996.

14, 20

D. McDermott. Transformational planning of reactive behavior. Technical report,

YALEU/DCS/RR-941, Yale University, 1994. 18

K.L. McMillian. A technique of a state space search based on unfolding. In

Formal Methods in System-Design, pages 45 – 65, 1995. 31

S. McPhail and M. Pebody. Autosub-1. a distributed approach to navigation and

control of an autonomous underwater vehicle. In 7th International Conference

on Electronic Engineering in Oceanography. Technology Transfer from Research

to Industry., pages 16 – 22, 1997. vii, 20, 21

J. Moody and P. Antsaklis. Petri net supervisors for discrete event systems. PhD

thesis, University of Notre Dame, 1998. 31, 207

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541 – 580, 1989. 37, 197, 201

J. Murillo, V. Munoz, D. Busquets, and B. López. Coordinating agents schedules

through auction mechanisms. In CAEPIA’s workshop on Planning, Scheduling

and Constraint Satisfaction, pages 105 – 114, 2007. 107

239



REFERENCES

K. Nagahashi, T. Ura, A. Asada, T. Obara, T. Sakamaki, K. Kim, and K. Oka-

mura. Underwater volcano observation by autonomous underwater vehicle

”r2D4”. In OCEANS 2005, 2005. 15, 21

L. Nana, L. Marce, J. Opderbecke, M. Pettier, and V. Rigaud. Investigation of

safety mechanisms for oceanographic AUV missions programming. In Oceans

2005 - Europe, volume 2, pages 906 – 913, 2005. 28

P.M. Newman. MOOS - Mission Orientated Operating Suite, 2005. vii, 26, 28,

48, 57

T. Niemueller, A. Ferrein, and G. Lakemeyer. A lua-based behavior engine for

controlling the humanoid robot nao. In Proc. of RoboCup Symposium 2009,

Graz, Austria, 2009. 25

N.J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Company,

1980. 9

N.J. Nilsson. Shakey the robot. Technical Report 323, SRI International, Menlo

Park, California, 1984. 10

P. Oliveira, A. Pascoal, V. Silva, and C. Silvestre. Mission control of the MARIUS

AUV: System design, implementation, and sea trials. International Journal of

Systems Science, special issue on Underwater Robotics, 29(10):1065 – 1080,

1998. vii, 15, 29, 30, 37, 57, 66

R. Oliveira and C. Silvestre. Supervisão e controlo da missão de véıculos

autónomos. Master’s thesis, Dynamical Systems and Ocean Robotics Lab in

the Instituto Superior Tecnico of Lisbon, 2003. 30, 81

A. Ortiz, J. Antich, and B. Oliver. A particle filter-based approach for tracking

undersea narrow telecommunication cables. International Journal of Machine

Vision and Applications, 2009. 176

N. Palomeras, M. Carreras, P. Ridao, and E. Hernandez. Mission control system

for dam inspection with an AUV. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 2551 – 2556, 2006a. 37, 153, 192

240



REFERENCES

N. Palomeras, P. Ridao, M. Carreras, and E. Hernandez. Design of a mission con-

troller for an autonomous underwater robot. In Workshop de Agentes F́ısicos,

pages 167–174, 2006b. 153, 192

N. Palomeras, P. Ridao, and M. Carreras. Defining a mission control language.

In Congrs Internacional sobre Tecnologia Marina, 2007a. 192

N. Palomeras, P. Ridao, M. Carreras, and J. Batlle. MCL: A mission control

language for AUVs. In Control Applications in Marine Systems, 2007b. 192

N. Palomeras, P. Ridao, M. Carreras, and C. Silvestre. Towards a mission control

language for AUVs. In 17th IFAC World Congress, pages 15028 – 15033, 2008.

86, 192

N. Palomeras, P. Ridao, M. Carreras, and C. Silvestre. Mission control system

for an autonomous vehicle: Application study of a dam inspection using an

AUV. In 8th IFAC International Conference on Manoeuvring and Control of

Marine Craft, 2009a. 13, 165, 192

N. Palomeras, P. Ridao, M. Carreras, and C. Silvestre. Using petri nets to spec-

ify and execute missions for autonomous underwater vehicles. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2009b. 192

N. Palomeras, P. Ridao, M. Carreras, and C. Silvestre. Mission control system

for an autonomous vehicle: Application study of a dam inspection using an

AUV. In International Conference on Manoeuvring and Control of Marine

Craft, 2009c. 153

N Palomeras, J C Garcia, M Prats, J J Fernandez, P J Sanz, and P Ridao.

A distributed architecture for enabling autonomous underwater intervention

missions. In IEEE Systems Conference, pages 159 – 164, 2010a. 45, 193

N. Palomeras, P. Ridao, M. Carreras, and C. Silvestre. Towards a deliberative

mission control system for an AUV. In 7th IFAC Symposium on Intelligent

Autonomous Vehicles, September 2010b. 154, 193

N. Palomeras, P. Ridao, C. Silvestre, and A. El-fakdi. Multiple vehicles mission

coordination using petri nets. In IEEE International Conference on Robotics

and Automation, pages 3531 – 3536, May 2010c. 154, 193

241



REFERENCES

N. Palomeras, A. El-Fakdi, M. Carreras, and P. Ridao. COLA2: A control

architecture forAUVs. Journal of Oceanic Enginering, submitted. 193

S. Pang, J.A. Farrell, R.M. Arrieta, and W. Li. AUV reactive planning: deepest

point. In OCEANS 2003. Proceedings, volume 4, pages 2222–2226, 2003. 22

Terence Parr. Another tool for language recognition, 2010. URL http://www.

antlr.org/. 60, 225

P. Patrón, J. Evans, and D. Lane. Mission plan recovery for increasing vehicle

autonomy. Technical report, Systems Engineering for Autonomous Systems

Defence Technology Centre, Mar 2007. 14, 17

P. Patrón, E. Miguelañez, Y.R. Petillot, D.M. Lane, and J. Salvi. Adaptive

mission plan diagnosis and repair for fault recovery in autonomous underwater

vehicles. In IEEE Oceans, Sep 2008. 130, 138

J. Pearl. Heuristics: intelligent search strategies for computer problem solving.

Addison-Wesley, 1984. 143

J. Pearl and R. E. Korf. Search techniques. Annual Review of Computer Science,

2(1):451–467, 1987. doi: 10.1146/annurev.cs.02.060187.002315. 139

J.R. Perrett and M. Pebody. Autosub-1. implications of using distributed system

architectures in AUV development. In International Conference on Electronic

Engineering in Oceanography, 1997. 15, 20

J. Peters. Machine Learning for Motor Skills for Robotics. PhD thesis, Depart-

ment of Computer Science, University os Southern California, 2007. 12

C.A. Petri. Kommunikation mit automaten. Schriften des Institutes für Instru-

mentelle Mathematik, Jan 1962. 197

M. Poupart, P. Benefice, and M. Plutarque. Subacuatic inspections of EDF (elec-

tricite de france) dams. In MTS/IEEE Conference and Exhibition OCEANS,

volume 2, pages 939 – 942, September 2000. 158

M. Prats, D. Ribas, N. Palomeras, J. C. Garćıa, V. Nannen, J. J. Fernández, J. P.

Beltrán, R. Campos, P. Ridao, P. J. Sanz, G. Oliver, M. Carreras, N. Gracias,

R. Maŕın, and A. Ortiz. Reconfigurable AUV for intervention missions: A case

242

http://www.antlr.org/
http://www.antlr.org/


REFERENCES

study on underwater object recovery. Journal of Intelligent Service Robotics,

Submitted. 193

K. Rajan, C. McGann, F. Py, and H. Thomas. Robust mission planning using

deliberative autonomy for autonomous underwater vehicles. In ICRA Workshop

on Robotics in challenging and hazardous environments, pages 21 – 25, 2007.

14, 18, 129, 130

R. Reiter. Towards a logical reconstruction of relational database theory. In On

Conceptual Modelling (Intervale), pages 191–233, 1982. 133

D. Ribas, N. Palomeras, P. Ridao, M. Carreras, and E. Hernandez. ICTINEU

AUV wins the first SAUC-E competition. In IEEE International Conference

on Robotics and Automation, pages 151 – 156, 2007. 4, 40, 56, 153, 157, 192

D. Ribas, P. Ridao, and J. Neira. Underwater SLAM for structured environments

using an imaging sonar. Springer Tracts in Advanced Robotics, 2010. 56

D. Ribas, P. Ridao, LL. Maǵı, N. Palomeras, and M. Carreras. The Girona 500,

a multipurpose autonomous underwater vehicle. In Proceedings of the Oceans

IEEE, Santander, Spain, June 2011. 193

D. Ribas, N. Palomeras, P. Ridao, M. Carreras, and A. Mallios. Girona 500 AUV,

from survey to intervention. Transactions on Mechatronics, Submitted. 193

P. Ridao, J. Yuh, J. Batlle, and K. Sugiharat. On AUV control architecture. In

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

855 – 860, 2000. 13

P. Ridao, J. Batlle, and M. Carreras. o2ca2, a new object oriented control archi-

tecture for autonomy: the reactive layer. Control Engineering Practice, 10(8):

857–873, 2002. 3, 45, 55

P. Ridao, E. Batlle, D. Ribas, and M. Carreras. Neptune: a HIL simulator for

multiple UUVs. In MTTS/IEEE OCEANS, volume 1, pages 524 – 531, 2004a.

56, 153, 173, 184

P. Ridao, A. Tiano, A. El-Fakdi, M. Carreras, and A. Zirilli. On the identification

of non-linear models of unmanned underwater vehicles. Control Engineering

Practice, 12:1483–1499, 2004b. 153

243



REFERENCES

P. Ridao, E. Batlle, and N. Palomeras. First steps in remote experimentation

with UUVs. In Workshop International en Telerobtica y Realidad Aumentada

para Teleoperacin, 2005. 193

P. Ridao, E. Hernandez, N. Palomeras, and M. Carreras. Remote training in

AUV control using HIL simulators. In Manoeuvring and Control of Marine

Craft, 2006. 193

P. Ridao, M. Carreras, E. Hernandez, and N. Palomeras. Advances in Telerobotics,

volume 31, chapter Underwater Telerobotics for Collaborative Research, pages

347–359. Advances in Telerobotics, 2007. 193

P. Ridao, M. Carreras, D. Ribas, and R. Garcia. Visual inspection of hydroelectric

dams using an autonomous underwater vehicle. Journal of Field Robotics, 27

(6):759 – 778, November - December 2010. 42, 153, 165

D. Riehle. Framework Design: A Role Modeling Approach. PhD thesis, ETH

Zürich, 2000. 46

S.J. Rosenschein and L.P. Kaelbling. The synthesis of digital machines with

provable epistemic properties. TARK: Theoretical Aspects of Reasoning about

Knowledge, pages 83–98, 1986. 10

G. Sandini, G. Metta, and D. Vernon. RobotCub: An open framework for re-

search in embodied cognition. In IEEE-RAS/RSJ International Conference on

Humanoid Robots, pages 13–32, 2004. 48

M. Saptharishi, C.S. Oliver, C. Diehl, K. Bhat, J. Dolan, A. Trebi-Ollennu,

and P. Khosla. Distributed surveillance and reconnaissance using multiple au-

tonomous ATVs: Cyberscout. Robotics and Automation, IEEE Transactions

on, 18(5):826 – 836, 2002. doi: 10.1109/TRA.2002.804501. 3

M. Schmiing, P. Afonso, F. Tempera, and R. Santos. Integrating recent and

future marine technology in the design of marine protected areas - the azores

as case study. In OCEANS-EUROPE, pages 1 – 7, 2009. 154, 169

T. Schneider and H. Schmidt. Unified command and control for heterogeneous

marine sensing networks. Journal of Field Robotics, 27(6), 2010. 26

244



REFERENCES

ScienceEncyclopedia. Underwater exploration - history, oceanography, instru-

mentation, diving tools and techniques, deep-sea submersible vessels, key

findings in underwater exploration - deep-sea pioneers, 2011. URL http:

//science.jrank.org/pages/7100/Underwater-Exploration.html. 1

J. Silva, A. Martins, and F.L Pereira. A reconfigurable mission control system

for underwater vehicles. In OCEANS ’99 MTS/IEEE. Riding the Crest into

the 21st Century, volume 3, pages 1088 – 1092, 1999. doi: 10.1109/OCEANS.

1999.800141. 15, 31

R. Simmons and D. Apfelbaum. A task description language for robot control. In

IEEE/RSJ International Conference Intelligent Robots and Systems, volume 3,

pages 1931–1937, 1998. URL 10.1109/IROS.1998.724883. 25

R.M. Turner. Orca: Intelligent adaptive reasoning for autonomous underwater

vehicle control. In Proceedings of the FLAIRS - 95 International Workshop on

Intelligent Adaptive Systems, pages 52–62, Melbourne, Florida, 1995. vii, 14,

16, 17

R.M. Turner. Intelligent mission planning and control of autonomous underwater

vehicles. In International Conference on Automated Planning and Scheduling,

2005. 60, 129, 130

K.P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru, and G. A. Demetriou.

Control architectures for autonomous underwater vehicles. Control Systems,

IEEE, 17(6):48 – 64, 1997. 13

F. Vanni, A.P. Aguiar, and A.M. Pascoal. Cooperative path-following of underac-

tuated autonomous marine vehicles with logic-based communication. In IFAC

Workshop on Navigation, Guidance and Control of Underwater Vehicles, 2008.

107, 191

D.S. Weld. An introduction to least commitment planning. AI magazine, 15(4):

27, 1994. 138

L.L. Whitcomb. Underwater robotics: out of the research laboratory and into

the field. In Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE

International Conference on, volume 1, pages 709 – 716, 2000. 13

245

http://science.jrank.org/pages/7100/Underwater-Exploration.html
http://science.jrank.org/pages/7100/Underwater-Exploration.html
10.1109/IROS.1998.724883


REFERENCES

WillowGarage. Robot operating system, 2010. URL http://www.ros.org. 49

D. Yoerger, M. Jakuba, A. Bradley, and B. Bingham. Techniques for Deep Sea

Near Bottom Survey Using an Autonomous Underwater Vehicle, volume 28 of

Springer Tracts in Advanced Robotics. Springer Berlin / Heidelberg, 2007. 13

V.A. Ziparo and L. Iocchi. Petri net plans. In ATPN/ACSD 4th International

Workshop on Modelling of Objects, Components, and Agents, 2006. 37

246

http://www.ros.org

	Contents
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Motivations
	1.2 Goal of the thesis
	1.2.1 Objectives

	1.3 Outline of the thesis

	2 State of the art
	2.1 Overview of control architectures
	2.2 Mission Control Systems review
	2.3 Mission planning systems
	2.4 Predefined mission systems
	2.4.1 Script and language based MCS
	2.4.1.1 Research systems
	2.4.1.2 Commercial systems
	2.4.1.3 Generic systems

	2.4.2 Formalism based
	2.4.2.1 Formal mission description
	2.4.2.2 Formal mission and framework description


	2.5 Summary
	2.6 Survey conclusions
	2.6.1 The Petri net formalism


	3 Experimental platform
	3.1 Vehicle experimental platforms
	3.1.1 Ictineu
	3.1.2 Sparus

	3.2 COLA2 architecture
	3.2.1 Generic and custom frameworks for developing control architectures for autonomous vehicles
	3.2.2 Reactive layer
	3.2.3 Execution layer
	3.2.4 Mission layer
	3.2.5 Implementation


	4 Defining a mission using Petri nets
	4.1 Discrete Event System
	4.2 Primitives
	4.2.1 Primitive verification

	4.3 Petri Net Building Blocks
	4.3.1 PNBBs verification

	4.4 Tasks
	4.4.1 Task verification

	4.5 Control structures
	4.5.1 Sequence control structure
	4.5.1.1 Sequence control structure verification

	4.5.2 Parallel control structure
	4.5.3 Additional control structures


	5 Mission Control Language
	5.1 The MCL programming paradigm
	5.2 Actions and events
	5.3 PNBB patterns
	5.4 Tasks
	5.5 Control structures
	5.6 Mission plan
	5.7 The Mission Control Language - Compiler
	5.8 The real-time Petri net player 

	6 Coordination of multiple vehicles
	6.1 Coordination constraints
	6.1.1 Mutual exclusion
	6.1.2 Ordering
	6.1.3 Synchronization

	6.2 Deadlock avoidance
	6.3 Decentralized supervision
	6.3.1 Checking the d-admissibility of a constraint
	6.3.2 Design minimizing communication
	6.3.3 Supervisor design for a d-admissible constraint

	6.4 Multiple vehicle coordination implementation

	7 Planning
	7.1 Automated planning
	7.2 Classical planning
	7.2.1 States
	7.2.2 Initial state s0 and goal g
	7.2.3 Planning operators
	7.2.4 Plans

	7.3 State-Space planner
	7.3.1 Search algorithms
	7.3.1.1 Non heuristics search algorithms
	7.3.1.2 Heuristics search algorithms


	7.4 Knowledge database
	7.4.1 World modeling scripts

	7.5 Adding planning abilities to the proposed Mission Control System

	8 Experimental results
	8.1 Primitives
	8.2 Example 1: Dam inspection
	8.2.1 Mission description
	8.2.2 Results

	8.3 Example 2: Visual survey
	8.3.1 Mission description
	8.3.2 Results

	8.4 Example 3: Localization of OOIs
	8.4.1 Mission description
	8.4.2 Results

	8.5 Example 4: Cable tracking
	8.5.1 Mission description
	8.5.1.1 Off-line mission
	8.5.1.2 On-board planning

	8.5.2 Results


	9 Conclusion
	9.1 Summary
	9.2 Contributions
	9.3 Future Work
	9.4 Research framework
	9.5 Related publications

	A An Introduction to Petri Nets
	A.1 Properties
	A.2 Analysis
	A.2.1 The coverability tree
	A.2.2 The matrix equation approach

	A.3 Siphons and Traps
	A.4 Invariants Based Control
	A.5 Subclasses of Petri nets
	A.5.1 State Machine
	A.5.2 Marked Graph
	A.5.3 Free-Choice
	A.5.4 Extended Free-Choice
	A.5.5 Asymmetric Choice
	A.5.6 Ordinary Petri nets


	B Control structures
	C Mission Control Language grammar
	References

