

STUDENT’S WATCHER

Xavi Pujolràs Riera
Enginyeria Tècnica en Informàtica de Gestió

Supervisor: Rogier van der Linde
2006 / 2007

Student’s Watcher Xavi Pujolràs Riera

SUMMARY

Evolution of my project

I am an Erasmus student from Universitat de Girona (Spain), and my tutor, Rogier Van

Der Linde. When I arrived in Kaho Saint Lieven he proposed to me to do my project

about an application to see the evolution of their students.

I liked this idea, and I started to work about it.

At the beginning Student’s Watcher was begun in ASP.net. The two main objectives of

my project were to do a useful application, and to learn something about ASP.net.

I had been working in two companies with ASP.net before, and in three weeks a small

application was working with the essential properties to be used. It was then, when we

thought that I had a lot of time to do my project, 4 months exactly, and it could be nice

to learn an another way to work totally different than ASP.net.

Finally my project would be developed in PHP, HTML and CSS, a totally unknowns

languages by me.

From then, Rogier started to teach me these languages and I started to work in a new

way of my project.

Each day I saw more the power of this combination, and finally, I finish my project in

these four months. I have learned PHP, HTML, CSS, and something about JavaScript

and AJAX at the same time that I have done my project.

This could be a good way to do a comparison between these two languages at the end

of the project.

Description of the project

The documentation of the project has been detached in four parts. The first one has

been called ‘About Student’s Watcher’, and there are a small introduction about what is

this application, and the User Guide. This last one has two parts: Starting, to teach how

to install the application and configure it and Using Student’s Watcher to show a

general use when application has been installed.

The second part is the Pre Study. Here we find an introduction to all languages used in

the project, explaining the main characteristics about these.

The following point is a Detailed description of the project. First there is an explication

of the three tier structure used.

The classes and directories subchapter shows the code distribution in directories and

classes.

The three tiers are showed separated in the following chapters, showing in the first one

the database structure, as tables, attributes…

Student’s Watcher Xavi Pujolràs Riera

In the business and presentation tier chapters, it is able to see some fragments of code

to show the most important or difficult to understand parts of Student’s Watcher.

Finally the last part is the conclusion, to do the final evaluation of the project, its

evolution, and the comparison between what I knew in ASP.net and what I know now

about the new languages learned.

Student’s Watcher Xavi Pujolràs Riera

I would like to thank to my tutor, Rogier who has taught me everything I know about

PHP, CSS, JavaScript and AJAX. He has been helping me a lot.

I also thank to my girlfriend Laura and my family,

 Josep, Pepita and Glòria, for their unconditional support.

Student’s Watcher Xavi Pujolràs Riera

INDEX

1. ABOUT STUDENT’S WATHCER...1

1.1. What’s Student’s Watcher ...1

1.2. User Guide

1.2.1. Installing application ...2

1.2.2. Configuration ..3

1.2.3. Showing a course ...6

1.2.4. Showing a student ..7

1.2.5. Personal Fiche..8

2. PRE STUDY ..11

2.1. ASP.net...12

2.2. PHP ..13

2.2.1. Templates...14

2.3. HTML and XHTML ..16

2.4. CSS ..17

2.5. JavaScript ...18

2.6. AJAX...20

2.7. MySQL..22

3. DETAILED DESCRIPTION ..23

3.1. Three tier structure..23

3.2. Classes and directories...24

3.3. Data Tier: Database ..26

3.3.1. Class Diagram ..26

3.3.2. Tables structure..27

3.3.3. MySQL tables ...28

3.3.4. Database.class.php ..29

3.4. Business Tier: PHP Classes ...29

3.4.1. Important code..29

3.5. Presentation Tier: HTML & CSS..31

4. CONCLUSION...34

Student’s Watcher Xavi Pujolràs Riera

1. ABOUT STUDENT’S WATHCER

1.1 What is Student’s Watcher?

“Student’s Watcher” is a small Web application which wants to show in a visual, simple

and fast way, the evolution of the students.

The main project table displays such things as marks and comments about students.

We can add a comment for each mark to explain why this mark. The objective is to be

able to know if some student has a problem, how is going his year, marks in other

courses, or even, to know if he has a bad week in a different subjects.

We can see the evolution of students in past years to do an objective comparison. It

could be really interesting especially for students who are repeating a course.

It also allows inserting global comments of student, we have a list of these, and all

professors can add new ones, where we can see more general valuations.

Student’s Watcher Xavi Pujolràs Riera

1.2 User guide

1.2.1 Installing application

In ‘Student’s Watcher’ main menu, we can find three options. We can see this menu in

the following image (img 1).

 (img 1)

This menu will be present in all screens of the application, and in all moment it can use

it to navigate around it.

Student’s Watcher has been designed to be easy to install. It only needs to be copied

in our system and open the index.php page. If it does not detect an old database it will

show automatically the setup page (setup.php) (img 2).

(img 2)

Student’s Watcher Xavi Pujolràs Riera

In this page we can find a four textboxes to insert some parameters. The first one is

called Host, here we should write the host to use the application.

The two next textboxes need a valid user and password from our database.

And finally we can choose the database to use, to find the information of the students,

courses and all that we will need.

If we do not have all this parameters with correct values, we can’t open another page of

the application, all links takes to the setup page.

When we have been inserted all required values, we may click Set Values option to

save all new values of textboxes.

Finally, if we want to Install database, and erase all old tables, we may click Install

Database button.

Now our application is ready to be used. All options are opened and we can choose

what we want to do.

We can always return to the setup page to change these values or reinstall our

database.

1.2.2 Configuration

When database has been installed it opens automatically the configuration page

(config.php) (img 3). Here, we can change some initial parameters and fill our database.

(img 3)

Student’s Watcher Xavi Pujolràs Riera

In the lower part of the screen we have two textboxes where we can change different

default values of the application. The first one is called weeks per semester. We should

know how many weeks will have in our semester to say it to Student’s Watcher.

The following value is used by the pager. We can select the number of rows that we

want to show per page in the tables of the application.

To save the values we should click Set Parameters option.

In the higher part of the screen we have one of most important steps to start our

application (img 4).

(img 4)

Here we will insert all information in the database. To do it we need a CSV file to take

the data. It is easy to create a CSV file from an Excel file. If we have the Excel file with

all our data, we open this file, and in the ‘File’ menu we chose ‘Save as’. We will see a

new window like the following (img 4).

(img 5)

In this window we have to open the combo box called Save as type and chose CSV

(MS-DOS)(*.csv) option and click Save.

Student’s Watcher Xavi Pujolràs Riera

Our excel file must be with a special structure. We can find an example of a good excel

structure, because our program knows how to read it, in a ‘files’ directory of the

documentation CD. This file is called ‘CSVStructure.xls’ and also we can find there the

‘CSVStructure.csv’ to see the final structure of the file.

When we have the CSV file created we can chose it and click in a Import option to load

all our data in the database. This process could need few minutes because the

program has to create all subscriptions for all students and course.

Now, the application is ready to use, we have the data loaded and all parameters

inserted.

Student’s Watcher Xavi Pujolràs Riera

1.2.3 Showing a course

When we have all steps of the last chapter done, we can start to use our application

correctly.

The application automatically activates the Show Courses menu, in our main menu.

Here we can see all courses inserted in the database. We only have to choose which

want to show (img 6).

(img 6).

When we click on one course it shows a new page of it called ShowCourse.php (img 7).

(img 7)

In the centre of this page there is a table with the students in the course selected

before.

Inside this table we have the name of the student, first column, second is the date of

birth, and we have one column for each week in semester. Under the table there is the

Student’s Watcher Xavi Pujolràs Riera

pager, to select the page we want to show in the table, and the class selector menu (img

8).

(img 8)

1.2.4 Showing a student

Here we can show only the students in a specific class or all classes. When we open

the application, it shows all classes.

We can click on a student name to show a new table with all courses where is

subscribed and the respective marks (img 9).

(img 9)

When we want to add a mark or a comment we only have to click on a cell that we

want to change.

It is possible to move around these cells using the direction keys on our keyboard.

To change a mark (img 10) we should click on a colour in the mark panel, on superior

part of screen. In the same way, we can add or modify a comment for this week and

mark, adding it in the text area called Comments and then clicking the Save Comment

button.

Student’s Watcher Xavi Pujolràs Riera

(img 10)

It is possible to insert a mark without comments or vice versa.

1.2.5 Personal fiche

The last part of the main page of Student’s Watcher we find it on our right side. There

is a panel with a photo and information about the selected student. In this panel we

have a small link called More… It opens a new page (fiche.php) (img 11).

(img 11)

Here we have three different parts to work. First one (img 12) is used to change the

personal information about student, like a name, birth or the photograph.

(img 12)

The next panel (img 13) permit to change the class of the student for each course. We

only have to select a course and then a class and click on change button. If we would

Student’s Watcher Xavi Pujolràs Riera

like to change the class of all courses by this student, we just should use the option All

courses in the first combo box.

(img 13)

Finally, in the inferior part of this screen (img 14) , we can add messages about the

student. These messages will be diferents than the comments inserted before in a mark

for each week. Here the professor can add a general messages for this student, and all

professors can see it to know a important things about the student.

(img 14)

The messages will be added in a right side of the screen called Historic (img 15) there, we

see all messages added by all professors for this student.

(img 15)

Student’s Watcher Xavi Pujolràs Riera

It is possible to modify the messages clicking on the icon with a pen and some lines. If

we click there, this message will be inserted in the panel messages (img 14) and we have

to click on add this message to save the modification.

In the same way it is possible to delete messages using the icon on the right with a red

circle.

It can see it in the next image: (img 16)

 (img 16)

Student’s Watcher Xavi Pujolràs Riera

2. PRE STUDY

Due to the rapid pace of change in the high tech sector, we often need to evaluate new

technologies in order to decide whether to allocate time to learning and using new

systems. Jump on the bandwagon too early, and you risk becoming involved with

something that just heads downhill or does not go anywhere. Wait too long, and you

may find yourself behind the times with regards to “the latest thing”.

One step in all programming projects is to choose the development language to work.

Sometimes this can get to be really complicated due to the great variety of good

languages that at the moment we have. This decision will influence in the rest of our

project.

Programming languages are a particular area of interest. Selecting a language involves

many factors, and certainly is not something that can be considered in a vacuum. Of

course, it is important to pick something that can do the job correctly and efficiently, but

depending on what you need to accomplish, and who you have to work with, the

availability of external libraries, people to help you out, or even to hire you or be hired

by you can all be important factors to weigh.

Programming languages, like any product, have certain properties. Obviously, like any

other sort of information good, production costs in the sense of making copies are

essentially zero. Research and development (sunk costs) are needed to create the

software itself, which means that an initial investment is required, and if the language is

not successful, chances are the investment can not be recouped.

This applies to many information goods, but programming languages also have some

qualities that make them special within this grouping. Namely, that they are both a

means of directing computers and their peripherals to do useful work, but they are also

a means of exchanging ideas and algorithms for doing that work between people. In

other words, languages go beyond simply being something that's useful; they are also

a means of communication. Furthermore, in the form of collections of code such as

packages, modules or libraries, programming languages are also a way to exchange

useful routines that can be recombined in novel ways by other programmers, instead of

simply exchanging finished applications.

Student’s Watcher Xavi Pujolràs Riera

2.1 ASP.NET

Principles of ASP.NET

Even though ASP.NET takes its name from Microsoft's old web development

technology, ASP, the two differ significantly. Microsoft has completely rebuilt ASP.NET,

based on the Common Language Runtime (CLR) shared by all Microsoft .NET

applications. Programmers can write ASP.NET code using any of the different

programming languages supported by the .NET Framework, usually C#, Visual

Basic.NET, or JScript .NET, but also including open-source languages such as Perl

and Python. ASP.NET has performance benefits over other script-based technologies

because the server-side code is compiled to one or a few DLL files on a web server.

ASP.NET attempts to simplify developers' transition from Windows application

development to web development by offering the ability to build pages composed of

controls similar to a Windows user interface. A web control, such as a button or label,

functions in very much the same way as its Windows counterpart: code can assign it

properties and respond to its events. Controls know how to render themselves:

whereas Windows controls draw themselves to the screen, web controls produce

segments of HTML and JavaScript which form part of the resulting page sent to the

end-user's browser.

ASP.NET encourages the programmer to develop applications using an event-driven

GUI paradigm, rather than in conventional web-scripting environments like ASP and

PHP. The framework attempts to combine existing technologies such as JavaScript

with internal components like "Viewstate" to bring persistent (inter-request) state to the

inherently stateless web environment.

ASP.NET uses the .NET Framework as an infrastructure. The .NET Framework offers

a managed runtime environment (like Java), providing a virtual machine with JIT and a

class library.

The numerous .NET controls, classes and tools can cut down on development time by

providing a rich set of features for common programming tasks. Data access provides

one example, and comes tightly coupled with ASP.NET. A developer can make a page

to display a list of records in a database, for example, significantly more readily using

ASP.NET than with traditional web technologies like ASP or PHP.

Student’s Watcher Xavi Pujolràs Riera

2.2 PHP

History

PHP was written as a set of CGI binaries in the C programming language by the

Danish-Canadian programmer Rasmus Lerdorf in 1994, to replace a small set of Perl

scripts he had been using to maintain his personal homepage. Lerdorf initially created

PHP to display his résumé and to collect certain data, such as how much traffic his

page was receiving. "Personal Home Page Tools" was publicly released on June 8,

1995 after Lerdorf combined it with his own Form Interpreter to create PHP/FI.

PHP 5

On July 13, 2004, PHP 5 was released, powered by Zend Engine II. PHP 5 included

new features such as:

• Robust support for Object-Oriented Programming (or OOP) through PHP Data

Objects

• Performance enhancements taking advantage of the new engine

• Better support for MySQL through a completely rewritten extension

• Better XML support through a suite of interoperable tools

• Embedded support for SQLite

• Integrated SOAP support

• Data iterators

• Error handling through exceptions

The latest version as of November 2006 is PHP 5.2.0.

Usage

PHP generally runs on a web server, taking PHP code as its input and creating Web

pages as output, but command-line scripting and client-side GUI applications are part

of the three primary uses of PHP as well. PHP can be deployed on any web server and

on almost every OS platform free of charge. The PHP Group also provides the

complete source code for users to build, customize and extend for their own use.

Server-side scripting

Originally designed to create dynamic web pages, PHP's principal focus is server-side

scripting. While running the PHP parser with a web server and web browser, the PHP

model can be compared to other server-side scripting languages such as Microsoft's

ASP.NET system, Adobe ColdFusion, Sun Microsystems' JavaServer Pages, Zope,

mod_perl and the Ruby on Rails framework, as they all provide dynamic content to the

Student’s Watcher Xavi Pujolràs Riera

client from a web server. To more directly compete with the "framework" approach

taken by these systems, Zend is working on the Zend Framework - an emerging (as of

June 2006) set of PHP building blocks and best practices; other PHP frameworks along

the same lines include CakePHP and Symfony.

2.2.1 PHP Templates

Templates are a good way to separate clearly PHP and HTML code. It needs a file

called xxx.php for each structure we will use. There, it will be all PHP code that this

page will need, like variables, functions, loops, imports…

On the other side it needs a new file called xxx.tpl when we can find all HTML code of

the page. Here it has tags in {xxxxxx} format to say to PHP where the variables are.

In the following code we can see the difference between a page developed with

templates and without it.

dataLoader.php

<body>
 <div id="header">
 <h1>Student's Watcher</h1>
 </div>
 <div id="menu">

 Show Courses

<?php
$db=new DataBase();
 $rs=$db->FindAllCourses();
 $i=0;
 while($row = mysql_fetch_object($rs))
 {
?>
<a href="./ShowCourse.php?courseId=<?=$row->courseid?> "><?=$row->coursename?>

<?
 }
?>

 Data Loader

 </div>
 <div id="content">
<h2>Data Loader</h2>
<form action="<?=$_SERVER['PHP_SELF']?> " method="post" enctype="multipart/form-data">
 <div class="formUpload">
 <label for="search">Select Document:</label>
 <input class="text" type="file" name="search" size="35" id="search" />
 <input class="submit" type="submit" class="goBtn" name="btnSearchDocument"
Value="Ok" />
 </div>

Student’s Watcher Xavi Pujolràs Riera

 </form>
 </div></body>
Market in black words we can see the PHP code inside the HTML code. In the next

code the black words will be changed for Templates tags. And the old code will be in

another page.

Dataloader.tpl

<body>
 <div id="header">
 <h1>Student's Watcher</h1>
 </div>
 <div id="menu">

 Show Courses

 {MENUSHOWCOURSES}

 Data Loader
 Setup

 </div>
 <div id="content">
<h2>Data Loader</h2>
<form action="{PHPSELF} " method="post" enctype="multipart/form-data">
 <div class="formUpload">
 <label for="search">Select Document:</label>
 <input class="text" type="file" name="search" size="35" id="search" />
 <input class="submit" type="submit" class="goBtn" name="btnSearchDocument"
Value="Ok" />
 </div>
 </form>
 </div>
</body>

menuShowCourse.tpl

<!-- BEGIN SHOW -->
 {COURSENAME}
<!-- END SHOW -->

dataLoader.php

include_once("template.class.php");
$tpl=new Template();
$tpl->set_file("html_tp", "Templates/Dataloader/dataloader.tpl");
$tpl->set_file("menu_tp", "Templates/Menu/menuShowCourses.tpl");
$tpl->set_block("menu_tp", "SHOW", "show");
$db=new DataBase();
 $rs=$db->FindAllCourses();
 while($row = mysql_fetch_object($rs))
 {
 $tpl->set_var("COURSEID", $row->courseid);
 $tpl->set_var("COURSENAME", $row->coursename);
 $tpl->parse("show", "SHOW", true);
 }
$tpl->set_var("PHPSELF", $_SERVER['PHP_SELF']);
$tpl->parse("MENUSHOWCOURSES", "menu_tp");
$tpl->parse("HTML", "html_tp");

Student’s Watcher Xavi Pujolràs Riera

$tpl->p("HTML");
?>

2.3 HTML and XHTML

HTML

In computing, HyperText Markup Language (HTML) is the predominant markup

language for the creation of web pages. It provides a means to describe the structure

of text-based information in a document — by denoting certain text as headings,

paragraphs, lists, and so on — and to supplement that text with interactive forms,

embedded images, and other objects. HTML can also describe, to some degree, the

appearance and semantics of a document, and can include embedded scripting

language code which can affect the behavior of web browsers and other HTML

processors.

HTML is also often used to refer to content of the MIME type text/html or even more

broadly as a generic term for HTML whether in its XML-descended form (such as

XHTML 1.0 and later) or its form descended directly from SGML (such as HTML 4.01

and earlier).

XHTML

The Extensible HyperText Markup Language, or XHTML, is a markup language that

has the same depth of expression as HTML, but a stricter syntax. Whereas HTML is an

application of SGML, a very flexible markup language, XHTML is an application of

XML, a more restrictive subset of SGML. Because they need to be well-formed

(syntactically correct), XHTML documents allow for automated processing to be

performed using a standard XML library—unlike HTML, which requires a relatively

complex, lenient, and generally custom parser (though an SGML parser library could

possibly be used). XHTML can be thought of as the intersection of HTML and XML in

many respects, since it is a reformulation of HTML in XML. XHTML 1.0 became a

World Wide Web Consortium (W3C) Recommendation on January 26, 2000. XHTML

1.1 became a W3C recommendation May 31, 2001

Differences from HTML

The changes from HTML to first-generation XHTML 1.0 are minor and are mainly to

achieve conformance with XML. The most important change is the requirement that the

Student’s Watcher Xavi Pujolràs Riera

document must be well formed and that all elements must be explicitly closed as

required in XML. In XML, all element and attribute names are case-sensitive, so the

XHTML approach has been to define all tag names to be lowercase. This contrasts

with some earlier established traditions which began around the time of HTML 2.0,

when many used uppercase tags. In XHTML, all attribute values must be enclosed by

quotes (either 'single' or "double" quotes may be used). In contrast, this was

sometimes optional in SGML, and hence in HTML, where quotes may be omitted in

some circumstances. XML dispensed with the intricate rules for determining when

quotes were required or when they could be omitted by simply requiring them in all

cases . All elements must also be explicitly closed, including empty (aka singleton)

elements such as img and br. This can be done by adding a closing slash to the start

tag: and
. Attribute minimization (e.g., <option selected>) is also

prohibited as the attribute “selected” contains no explicit value; instead, use <option

selected="selected">. More differences are detailed in the W3C XHTML 1.0

recommendation

2.4 CSS

Cascading Style Sheets (CSS) is a style sheet language used to describe the

presentation of a document written in a markup language. It Is most common

application is to style web pages written in HTML and XHTML, but the language can be

applied to any kind of XML document, including SVG and XUL. The CSS specifications

are maintained by the World Wide Web Consortium (W3C).

CSS has various levels and profiles. Each level of CSS builds upon the last, typically

adding new features and are typically denoted as CSS1, CSS2, and CSS3. Profiles are

typically a subset of one or more levels of CSS built for a particular device or user

interface. Currently there are profiles for mobile devices, printers, and television sets.

Profiles should not be confused with media types which were added in CSS2.

A useful example of the power of CSS could be the next page (www.zengarden.com),

showed first with a nice style (img 17) and then with the styles deactivated (img 18).

Student’s Watcher Xavi Pujolràs Riera

(img 17)

(img 18)

2.5 JavaScript

JavaScript is a prototype-based scripting language with a syntax loosely based on C.

Like C, the language has no input or output constructs of its own. Where C relies on

standard I/O libraries, a JavaScript engine relies on a host environment into which it is

embedded. There are many such host environment applications, of which web

technologies are the best-known examples. These are examined first.

Student’s Watcher Xavi Pujolràs Riera

One major use of web-based JavaScript is to write functions that are embedded in or

included from HTML pages and interact with the Document Object Model (DOM) of the

page to perform tasks not possible in HTML alone. Some common examples of this

usage follow.

• Opening or popping up a new window with programmatic control over the size,

position and 'look' of the new window (i.e. whether or not the menus, toolbars

etc are visible).

• validation of web form input values to make sure that they will be accepted

before they are submitted to the server.

• Changing images as the mouse cursor moves over them: This effect is often

used to draw the user's attention to important links displayed as graphical

elements.

The DOM interfaces in various browsers differ and don't always match the W3C DOM

standards. Rather than write different variants of a JavaScript function for each of the

many browsers in common use today, it is usually possible, by carefully following the

W3C DOM Level 1 or 2 standards, to provide the required functionality in a standards-

compliant way that most browsers will execute correctly. Care must always be taken to

ensure that the web page degrades gracefully and so is still usable by any user who:

• has JavaScript execution disabled - for example as a security precaution

• has a browser that does not understand the JavaScript - for example on a PDA

or mobile phone

• is visually or otherwise disabled and may be using an unusual browser, a

speech browser or may have selected extreme text magnification. For more

information on this, see the Web Accessibility Initiative

Other examples of JavaScript interacting with a web page's DOM have been called

DHTML and SPA.

A different example of the use of JavaScript in web pages is to make calls to web and

web-service servers after the page has loaded, depending upon user actions. These

calls can obtain new information, which further JavaScript can merge with the existing

page's DOM so that it is displayed. This is the basis of Ajax programming. PnP

JavaScript design pattern was adopted gradually after commonly use of Ajax to reduce

JavaScript maintenance cost.

Student’s Watcher Xavi Pujolràs Riera

2.6 AJAX

Ajax, shorthand for Asynchronous JavaScript and XML, is a web development

technique for creating interactive web applications. The intent is to make web pages

feel more responsive by exchanging small amounts of data with the server behind the

scenes, so that the entire web page does not have to be reloaded each time the user

requests a change. This is meant to increase the web page's interactivity, speed, and

usability.

The Ajax technique uses a combination of:

• XHTML (or HTML) and CSS, for marking up and styling information.

• The DOM accessed with a client-side scripting language, especially

ECMAScript implementations such as JavaScript and JScript, to dynamically

display and interact with the information presented.

• The XMLHttpRequest object is used to exchange data asynchronously with the

web server. In some Ajax frameworks and in certain situations, an IFrame

object is used instead of the XMLHttpRequest object to exchange data with the

web server, and in other implementations, dynamically added <script> tags may

be used.

• XML is sometimes used as the format for transferring data between the server

and client, although any format will work, including preformatted HTML, plain

text, JSON and even EBML. These files may be created dynamically by some

form of server-side scripting.

The core justification for AJAX style programming is to overcome the page loading

requirements of HTML/HTTP-mediated web pages. AJAX creates the necessary initial

conditions for the evolution of complex, intuitive, dynamic, data-centric user interfaces

in web pages - the realization of that goal is still a work in progress.

Web pages, unlike native applications, are loosely coupled, meaning that the data they

display are not tightly bound to data sources and must be first marshalled into an

HTML page format before they can be presented to a user agent on the client machine.

For this reason, web pages have to be re-loaded each time a user needs to view

different datasets. By using the XmlHttpRequest object to request and return data

without a re-load, a programmer by-passes this requirement and makes the loosely

coupled web page behave much like a tightly coupled application, but with a more

Student’s Watcher Xavi Pujolràs Riera

variable lag time for the data to pass through a longer "wire" to the remote web

browser.

For example, in a classic desktop application, a programmer has the choice of

populating a tree view control with all the data needed when the form initially loads, or

with just the top-most level of data - which would load quicker, especially when the

dataset is very large. In the second case, the application would fetch additional data

into the tree control depending on which item the user selects. This functionality is

difficult to achieve in a web page without AJAX. To update the tree based on a user's

selection would require the entire page to re-load, leading to a very jerky, non-intuitive

feel for the web user who is browsing the data in the tree.

Comparison of classic and Ajax web application mode l.

(img 20)

Student’s Watcher Xavi Pujolràs Riera

2.7 MySQL

In order to use the project in the Web has been decided to use MySQL. It could be

another one, like SQLServer, but it was chosen this one because it is free.

It is used MySQL 4.1, it could be possible to use MySQL 5.0 but this project does not

need the new advantages of this one. With older version it is enough.

MySQL is owned and sponsored by a single for-profit firm, the Swedish company

MySQL AB, which holds the copyright to most of the code base. This is similar to the

JBoss model and how the Free Software Foundation handles copyright in its projects,

and dissimilar to how the Apache project does it, where the software is developed by a

public community, and the copyright to the codebase is owned by its individual authors.

The company develops and maintains the system, selling support and service

contracts, as well as proprietary-licensed copies of MySQL, and employing people all

over the world who collaborate via the Internet. MySQL AB was founded by David

Axmark, Allan Larsson, and Michael "Monty" Widenius.

The MySQL company also sells another DBMS, MaxDB, which is from an unrelated

codebase.

History

• MySQL was first released internally on May 23, 1995

• Windows version released on January 8, 1998 for Windows 95 and NT

• Version 3.23: beta from June 2000, production release January 2001

• Version 4.0: beta from August 2002, production release March 2003 (unions)

• Version 4.1: beta from June 2004, production release October 2004 (r-trees,

subqueries)

• Version 5.0: beta from March 2005, production release October 2005 (cursors,

stored procedures, triggers, views, XA transactions)

• Version 5.1: currently pre-production (since November 2005) (event scheduler,

partitioning, plugin API, row-based replication, server log tables)

• Version 5.2 will include foreign key support for all storage engines (at the

moment only InnoDB supports this)

Student’s Watcher Xavi Pujolràs Riera

3. DETAILED DESCRIPTION

3.1 Three tier structure

Three-tier is a client-server architecture in which the user interface, functional process

logic ("business rules"), data storage and data access are developed and maintained

as independent modules, most often on separate platforms. The term "three-tier" or

"three-layer", as well as the concept of multitier architectures, seems to have originated

within Rational Software. (Citation Needed)

The three-tier model is considered to be a software architecture and a software design

pattern.

Apart from the usual advantages of modular software with well defined interfaces, the

three-tier architecture is intended to allow any of the three tiers to be upgraded or

replaced independently as requirements or technology change. For example, a change

of operating system from Microsoft Windows to Unix would only affect the user

interface code.

Overview of a three-tier application (img 19)

(img 21)

Student’s Watcher Xavi Pujolràs Riera

Comparison with the MVC architecture

At first glance three-tiers may seem similar to the Model-view-controller (MVC)

concept, however topologically they are a different. A fundamental rule in a three tier

architecture is the Client tier never communicates directly with the Data tier; in a three-

tier model all communication must pass through the Middleware tier. Conceptually the

three-tier architecture is linear. However, the MVC architecture is triangular: the

Controller updates the Model, and the View's updates come directly from the Model.

Historically the three-tier architecture concept comes from observations of distributed

systems (for example, web applications) where the Client, Middleware and Data tiers

run on physically separate platforms. Whereas MVC comes from an era of

observations of applications that ran on a single graphical workstation; MVC was

applied to distributed applications much later in its history (see Model 2).

Web Development usage

In the Web development field, three-tier is often used to refer to Websites, commonly

Electronic commerce websites, which are built using three tiers:

1. A front end Web server serving static content

2. A middle dynamic content processing and generation level Application server, for

example Java EE platform.

3. A back end Database, comprising both data sets and the Database management

system or RDBMS software that manages and provides access to the data.

3.2 Classes and directories

On the following image (img 20) we can see the Student’s Watcher directories

structure.

 (img 22)

Student’s Watcher Xavi Pujolràs Riera

In the first folder there are the classes of all objects we need to simulate the database

in an object structure:

• Comment.class.php

• Course.class.php

• Student.class.php

• Subscription.class.php

• Weekeval.class.php

There are, also, Csvhandler.class.php, Database.class.php and Template.class.php.

In the images folder we can find all images from the students to show on the

application.

Includes folder contains two files called Config.inc.php and Functions.inc.php. The first

one includes information to configure the database:

<?php
 // database
 $MYSQLCONFIG = array(
 'host'=>'localhost',
 'user'=>'root',
 'password'=>'root',
 'database'=>'sw'
);
?>

It is able to change these fields using the setup page in Student’s Watcher or modifying

directly from this file.

The second one, Functions.inc.php includes functions like data validation, url builder or

to show errors.

The next folder, Javascript, has all classes needed to use the JavaScript properties

added. It has: functions.js, import.js, page.js, prototype.js and showcourse.js.

Sql folder only contains dbsetup.sql and there are the sql instructions to create all

tables in the database.

Styles directory is used to group all CSS files. It has inside a folder with all icons and

images used in these files. There is a common style for all application called

common.css. To use a specific style we have fiche.css, loader.css, and setup.css.

The last folder is used to group all templates files. Inside it are error.tpl, fiche.tpl,

import.tpl, index.tpl, page.tpl, setup.tpl, showcourse.tpl and showstudent.tpl.

Student’s Watcher Xavi Pujolràs Riera

3.3 Data Tier: Database

3.3.1 Class Diagram

The following diagram is the Entity-Relation Model of Student Watcher. Here it can see

the relation between all application classes.

courses

course_id
course_name
course_code

students

student_id
student_name
student_birth
student_nr

subscriptions

subscription_id
subscription_course_id
subscription_student_id
subscription_class
subscription_course

weekevals

weekeval_id
weekeval_mark
weekeval_comment
weekeval_weeknr
weekeval_subscription_id

comments

comment_id
comment_text
comment_date
comment_user_id
comment_student_id

parameters

parameter_name
parameter_value

Student’s Watcher Xavi Pujolràs Riera

3.3.2 Tables structure

This is the structure of the tables in the database. On the left there is the name of the

table, on the right, attributes of this one.

weekevals: weekeval_id, weekeval_mark, weekeval_comment,

weekeval_weeknr, weekeval_subscription_id

contains: marks and comments about one subscription

subscriptions: subscription_id, subscription_class, subscription_course,

subscription_course_id, subscription_student_id

contains: the class, for each course where student is registered

students: student_id, student_name, student_birth, student_nr

contains: information about student

courses: course_id, course_name, course_code

contains: information about courses

parameters: parameter_id, parameter_name, parameter_value

contains: parameters to use internally

comments: comment_id, comment_text, comment_date, comment_user_id,

comment_student_id.

contains: text with date about students

---- � shows foreign key

___� shows primary key

Student’s Watcher Xavi Pujolràs Riera

3.3.3 MySQL Tables

DROP TABLE IF EXISTS `courses`;
DROP TABLE IF EXISTS `students`;
DROP TABLE IF EXISTS `subscriptions`;
DROP TABLE IF EXISTS `weekevals`;
DROP TABLE IF EXISTS `comments`;
DROP TABLE IF EXISTS `parameters`;

CREATE TABLE IF NOT EXISTS `courses` (
 `course_id` int(10) NOT NULL auto_increment,
 `course_name` varchar(255) NOT NULL default '',
 `course_code` varchar(100) NOT NULL default '',
 PRIMARY KEY (`course_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE IF NOT EXISTS `students` (
 `student_id` int(10) NOT NULL auto_increment,
 `student_name` varchar(255) NOT NULL default '',
 `student_birth` date NOT NULL default '0000-00-00',
 `student_nr` varchar(255) NOT NULL default '',
 PRIMARY KEY (`student_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE IF NOT EXISTS `subscriptions` (
 `subscription_id` int(10) NOT NULL auto_increment,
 `subscription_course_id` int(10) NOT NULL default '0',
 `subscription_student_id` int(10) NOT NULL default '0',
 `subscription_class` varchar(20) NOT NULL default '',
 `subscription_course` varchar(9) NOT NULL default '0',
 PRIMARY KEY (`subscription_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE IF NOT EXISTS `weekevals` (
 `weekeval_id` int(10) NOT NULL auto_increment,
 `weekeval_mark` int(2) NOT NULL default '0',
 `weekeval_comment` text NOT NULL,
 `weekeval_weeknr` int(2) NOT NULL default '0',
 `weekeval_subscription_id` int(10) NOT NULL default '0',
 PRIMARY KEY (`weekeval_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE IF NOT EXISTS `comments` (
 `comment_id` int(10) NOT NULL auto_increment,
 `comment_text` varchar(200) NOT NULL default '',
 `comment_date` date NOT NULL default '0000-00-00',
 `comment_user_id` int(10) NOT NULL default '0',
 `comment_student_id` int(10) NOT NULL default '0',
 PRIMARY KEY (`comment_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

CREATE TABLE IF NOT EXISTS `parameters` (
 `parameter_name` varchar(50) NOT NULL default '',
 `parameter_value` text NOT NULL,
 PRIMARY KEY (`parameter_name`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Student’s Watcher Xavi Pujolràs Riera

INSERT INTO `parameters` VALUES ('complete', '1');
INSERT INTO `parameters` VALUES ('loaded', '0');

Parameter complete is used to says that all tables are created succefully.

Loaded is used to knows if these tables are empty or not.

3.3.4 Database.class.php

This is the biggest class of the project, and here we find de independence between

business class and database. Here are all functions we need to communicate our

application with the database. Inserts, deletes, updates, open connection …

If we never change de database provider, we only should modify this class. All other

classes would be intact.

The constructor of this class is who watch if the database is ready to use and it opens

the other pages if it is all right.

3.4 Business Tier: PHP Classes

The business tier contains all PHP and JavaScript classes used to build HTML, but not

HTML specific classes.

Student’s Watcher can works with JavaScript disabled. JavaScript was added later to

be more complete. But it is not necessary to use the application.

In the same way, AJAX is an extra option. It has been used to be able to use the

direction keys to move around the table and to refresh the student information in a

faster way because the entire web page does not have to be reloaded.

3.4.1 Important code

The main classes of the business tier are showStudent.php, showCourse.php,

import.php, setup.php, index.php and fiche.php. The two first are really similar. Its have

on the beginning the AJAX actions. AJAX actions are only in these pages.

This is the code used in these classes:

 // AJAX actions
 if (isset($_REQUEST['ajaxWeekevalId'])) {
 // incoming
 $ajaxWeekevalId = $_REQUEST['ajaxWeekevalId'];
 $ajaxWeekeval = $db->getWeekevalById($ajaxWeekevalId);
 $ajaxSubscription = $db->getSubscriptionById($ajaxWeekeval->getSubscriptionId());
 // get student
 $ajaxStudent = $db->getStudentById($ajaxSubscription->getStudentId());

Student’s Watcher Xavi Pujolràs Riera

 //outgoing
 echo "comment=".$ajaxWeekeval->getComment()."&mark=".$ajaxWeekeval->getMark()."
 &studentName=".$ajaxStudent->getName()."&studentClass=".$ajaxSubscription-
>getClass()."
 &studentAge=".$ajaxStudent->getAge()."&studentPhoto=".$ajaxStudent->getPhoto()."
 &weekevalId=".$ajaxWeekevalId;
 die();
 }

Here it sees if is set the request with AJAX parameter. If it is true it takes all parameters

it needs. Then return all new parameters to JavaScript, and it will use these. Changing

name, age, photograph… of the student.

Finally it dies, because if we do not do it the application continues executing the rest of

the page, and we do not want it.

In the classes folder we have a retort of our database. One class for each important

table.

A good example of this kind of class could be the following:

<?php
 class Course {
 var $name;
 var $id;
// constructor
 public function Course($name="", $id=-1) {
 $this->name = $name;
 $this->id = $id;
 }
// getters
 public function getName() {
 return $this->name;
 }
 public function getId() {
 return $this->id;
 }
 // setters
 public function setName($name) {
 $this->name=$name;
 }
 public function setId($id) {
 $this->id=$id;
 }
 }
?>

Then, when we want to use information about a course, for example, we ask to

Database.class.php and normally it should return a Course Object. On this Object we

will be able to use the getters and setters to get the information or to modify it.

A simple example to show how it uses Templates in PHP could be the following code

form index.php:

Student’s Watcher Xavi Pujolràs Riera

<?php
 require_once "Classes/DataBase.class.php";
 require_once "Classes/Template.class.php";

 $db = new DataBase();
 $courses = $db->getCourses();

 // BUILD PAGE
 $tpl = new Template("templates/");
 // set files and blocks
 $tpl->set_file("page_tp", "page.tpl");
 $tpl->set_block("page_tp", "LICOURSE", "licourses");
 // generate page
 foreach ($courses as $course) {
 $tpl->set_var("NAME_LICOURSE", $course->getName());
 $tpl->set_var("URL_LICOURSE", "showCourse.php?courseId=".$course->getId());
 $tpl->parse("licourses", "LICOURSE", true);
 }
 $tpl->set_var("TITLE", "StudentsWatch - view course");
 $tpl->parse("HEADEXTRA", "HEADBLOCK");
 $tpl->parse("CONTENT", "CONTENTBLOCK");
 $tpl->pparse("htmlcode", "page_tp");
?>

Here we can see how first we create a Template, and using set_file and set_block we

starts to reference the html code in the page.tpl . Then we generate the page setting

the variables. We can do loops like the foreach in the example, and at the end of it we

have to parse it with the function parse.

In the page.tpl we find tags called, {NAME_LICOURSE}, {URL_LICOURSE} …. Which

will takes the values of the $courrse->getName() and showCourse.php?courseId=".$course-

>getId().

Finally we parse the HEAD and the CONTENT blocks to write the HTML code in the

page.

3.5 Presentation Tier: HTML & CSS

Using templates, the HTML pages are generated combining the PHP classes and .tpl

files. PHP sets into HTML the values of the variables, and generate dynamically some

HTML parts.

In the presentation tier we find all classes called xxx.tpl. One example of these kind of

files is page.tpl:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="nl">
<head>
 <title>{TITLE}</title>
 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
 <link rel="stylesheet" type="text/css" href="Styles/common.css" />
 <script type="text/javascript" src="Javascript/prototype.js"></script>
 <script type="text/javascript" src="Javascript/functions.js"></script>

Student’s Watcher Xavi Pujolràs Riera

 <script type="text/javascript" src="Javascript/page.js"></script>
{HEADEXTRA}
</head>
<body>
 <div id="header">
 <h1>Student's Watcher</h1>
 </div>
 <div id="menubar">
 <ul id="mainmenu" class="dropdown">

 Show Courses
 <ul id="courselist">
<!-- BEGIN LICOURSE -->
 {NAME_LICOURSE}
<!-- END LICOURSE -->

 Configuration
 Setup

 </div>
 <div id="content">
{CONTENT}
 </div>
</body>
</html>

All tags in {XXX} format will be substituted by a value when the page will be generated

by PHP.

It is important to observe that the HTML code in Student’s Watcher never has a style

inside. The style is totally independent of HTML code. In this way, the HTML code is

really simple and then, using CSS we give format to the page.

The following images show the differences using styles or not in Student’s Watcher.

The first one shows a part of HTML code with CSS activated. (img 21)

(img 23)

The second one is exactly the same code but with the CSS deactivated (img24)

Student’s Watcher Xavi Pujolràs Riera

(img 22)

With these two images we can appreciate the power of CSS. For example if sometimes

we want to change our web style, like colours, structure of panels …, we only should

change our Style Sheet or create a new one with the new style.

Student’s Watcher Xavi Pujolràs Riera

4. CONCLUSION

This project wants to be a comparison between two of most important languages used

nowadays, ASPX and PHP. It is not looking for which is the best or the worst language,

surely one is better in some ways and the other in other things. It only wants to find

these ways and be able to know when we should use one or other.

During this project I have learned a lot about PHP and now I can do a personal

comparison between PHP and ASP.net. But I have read some other experiences on

internet to do my vision a little bit more objective.

In the internet community I have found more people who prefer PHP than ASP.net. But

sometimes it could be because the most of web developers who write in forums are

Open Source users and, sometimes, is difficult to know if they are Anti Microsoft or

they are objectives. Here I do not want to enter in this kind of discussion, and I have

chosen some opinions that I like or I think that are objective. When is better PHP?

• It does not need Windows to work. It can works under Linux, for example which

one is more secure than Windows.

• A real developer community has grown up around PHP. This means that bugs

are found and fixed quickly.

• PHP is totally free.

• The final code is really clear and simple to read.

• It makes easy to follow the W3C standards.

• It’s permit to design all style in CSS.

• We have a HTML version without styles if we want, to use in a PDA, or other

devices which do not read CSS.

On the other hand ASP.net has some advantages to PHP. When is better ASP.net?

• Visual Studio has a really nice debugger.

• We can now manipulate Oracle Database objects directly from within the IDE

with the Oracle Developer Tools for VS.NET add-in.

• .NET provides classes for mark up abstraction, meaning that, behind the

scenes, it takes care of the various browsers with which you might be

connecting to the site

Student’s Watcher Xavi Pujolràs Riera

Finally, in my opinion, I guess that maybe ASP.net is more useful to use in a really big

projects. Of course we can use too PHP, but for me, this one could be better to use in a

small or medium applications.

New version of Student’s Watcher

I have started a new version of Student’s Watcher which allows saving all years in the

database. It is included in the CD Documentation of the project. This version just needs

to fix some small problems to works correctly.

It could be really better than the first version because it permits to do the comparison

between different years of the students in the same grid and we can see their evolution

in a quick way.

Personal opinion

 It has been a pleasure for me, to have had this opportunity to learn about these new

technologies. Now I have more experience and I have been able to put in practice all

the knowledge learned in my studies.

I had read something about CSS before, but I did not know it was so powerful. I would

like to work in more projects with these technologies in my future job. I have been

working with ASP.net, but for me, is more creative and I like more the other way. On

the other hand, I hope that more people work with Open Source, if I can, I will do it.

