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ABSTRACT Pressure-jump (p-jump)-induced relaxation kinetics was used to explore the energy landscape of protein
folding/unfolding of Y115W, a fluorescent variant of ribonuclease A. Pressure-jumps of 40 MPa amplitude (5 ms dead-time)
were conducted both to higher (unfolding) and to lower (folding) pressure, in the range from 100 to 500 MPa, between 30 and
50�C. Significant deviations from the expected symmetrical protein relaxation kinetics were observed. Whereas downward
p-jumps resulted always in single exponential kinetics, the kinetics induced by upward p-jumps were biphasic in the low pressure
range and monophasic at higher pressures. The relative amplitude of the slow phase decreased as a function of both pressure
and temperature. At 50�C, only the fast phase remained. These results can be interpreted within the framework of a two-
dimensional energy surface containing a pressure- and temperature-dependent barrier between two unfolded states differing in
the isomeric state of the Asn-113–Pro-114 bond. Analysis of the activation volume of the fast kinetic phase revealed a
temperature-dependent shift of the unfolding transition state to a larger volume. The observed compensation of this effect by
glycerol offers an explanation for its protein stabilizing effect.

INTRODUCTION

The so-called conformational diseases, arising from the accu-

mulation of misfolded proteins in or around cells, have chal-

lenged the main paradigms of structural biology. The most

striking example is the prion phenomenon (1,2), where

the observation of self-perpetuating protein conformational

changes calls for a renewal of our understanding of mole-

cular biology. Due to the recognition of the relationship

between protein misfolding and human diseases, in partic-

ular of age-related neurodegenerative disorders such as

Alzheimer’s and Parkinson’s disease (3,4), the field of pro-

tein folding has gained much interest in the past few years.

Substantial progress toward an understanding of these com-

plex processes has been made through a combination of

novel experimental developments and theoretical advances

(5). To characterize a protein folding reaction, several phe-

nomenological models have been proposed (6), such as

lattice simulations and statistical mechanical models. By

comparison of such theoretical predictions with experiment,

the so-called ‘‘new view’’ of protein folding has emerged in

the last decade, which is based on energy ‘‘landscapes’’

(7,8). It postulates that a range of folding scenarios exists,

containing many different paths that an unfolded polypeptide

chain may explore before reaching its folded native state.

Generally, the kinetics of protein folding and unfolding

are studied by a rapid change of denaturant concentration, or

by temperature jump. Recently, pressure-induced protein

unfolding/folding kinetics has received attention as an ele-

gant alternative tool. This method consists of monitoring

protein relaxations induced by sudden changes of pressure

(9–16). Previously, this approach has been used extensively

to study protein folding and unfolding under equilibrium

conditions (17–19). Pressure-jumps provide unique infor-

mation concerning packing and hydration properties of the

transition state, inaccessible by other experimental tech-

niques. Indeed, pressure induces conformational changes

that reduce the overall volume of the system. In protein

unfolding processes, formation of the ensemble of unfolded

species, including also the protein hydration shell, is usually

accompanied by a decrease in volume. This is believed to be

caused by the combined effects of electrostriction of water

molecules around newly exposed charged and polar groups,

the decrease in partial volume of hydrophobic residues upon

transfer from a nonpolar protein interior to water, and the

elimination of packing defects (20). A jump in pressure,

which can be performed in both directions (pressurization or

depressurization), propagates rapidly without the difficulties

inherent to the mixing of solutions, and can be used without

significantly changing the solvent properties.

The model protein chosen in this work was bovine

pancreatic ribonuclease A (RNase A; EC 3.1.27.5). This

enzyme presents a well-known structure studied by x-ray

crystallography (21) and NMR (22). In addition, the unfold-

ing and refolding processes of the enzyme induced by

chemical denaturant agents have been extensively studied

by means of stopped-flow single- and double-jump and
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pulsed-labeled kinetic experiments by the groups of Baldwin

(23,24) and Scheraga (25,26). Monitoring the unfolding of

RNase A by a change of intrinsic fluorescence is possible

although the protein does not possess any Trp residues in its

sequence. However, to increase the signal, the previously

constructed and characterized Y115W variant has been used

(17). Its Trp residue is located on the solvent-exposed exte-

rior of a b-turn, integrated in a hairpin subdomain, which is

the most important chain folding initiation site (CFIS) of

RNase A (27). Thus, Trp-115 may report as an intrinsic

fluorescence probe on the CFIS as well as on the isomeric

state of the neighboring Asn–Pro peptide bond. Character-

ization of the Y115W RNase A variant showed that the

Y115W substitution does not significantly alter the activity

and the stability of the enzyme at extreme conditions of

temperature and pressure.

Here we use a p-jump technique to examine the dynamics

of volume changes in the course of ribonuclease A folding

and unfolding. We address the important question of whether

folding and unfolding reaction paths are identical, a hypo-

thesis that underlies many experimental and theoretical

studies. Depending on experimental conditions, scenarios

are found where the kinetics after upward and downward

jumps is significantly different. The results can be interpreted

by considering the dynamical aspect of two-dimensional

energy surfaces. Furthermore, the p-jump approach proved

to be useful to analyze the stabilizing effect of glycerol as a

result of its interaction with the unfolding kinetic transition

state. This approach appears to be promising to study the

dynamics underlying protein structural changes.

EXPERIMENTAL PROCEDURES

Protein expression and purification

Y115W RNase A variant was previously constructed by site-directed muta-

genesis as described by Torrent et al. (17). Protein expression and purifi-

cation was performed accordingly.

NMR spectroscopy

One- and two-dimensional nuclear Overhauser enhancement (NOESY)

(mixing time, 180 ms) and total correlation spectroscopy (TOCSY) 1H NMR

spectra of Y115W RNase A were recorded at 35�C on a Bruker 600 MHz

AMX spectrometer equipped with a cyroprobe for increased sensitivity. The

protein concentration was 0.90 mM, and the sample contained 50 mM

sodium 4,4-dimethyl-4-silapentane-1-sulphonate (DSS) as internal chemical

shift standard, 0.20 M sodium phosphate buffer, and 100% D2O. The pH* of

the solution was 6.7, where pH* is the pH meter reading without taking into

account the deuterium isotope effect. The Trp proton resonances were

assigned by comparing the relative intensities of their NOE signals (28).

Fluorescence measurements under high pressure

Fluorescence measurements were carried out using an Aminco Bowman

Series 2 fluorescence-spectrophotometer (SLM Aminco, Foster City, CA),

modified to accommodate a thermostated high pressure optical cell, allowing

measurements up to 700 MPa. The lyophilized protein was dissolved to a

concentration of 0.25 mg/mL in 50 mM MES buffer at pH 5.0, and filtered

using a 0.22-mm filter. This buffer was selected for its relatively small pres-

sure pH dependency (29). The protein solution was placed in a 5-mm diam-

eter quartz cuvette, closed at the top with a flexible polyethylene film that

was attached by a rubber O-ring.

For equilibrium studies tryptophan fluorescence was excited at 290 nm,

using a bandwidth of 8 nm. Emission (accumulation of three scans) was

collected between 310 and 440 nm with a bandwidth of 4 nm. Total fluo-

rescence intensity between these two wavelengths was integrated to follow

the unfolding/folding processes as a function of increasing/decreasing pres-

sure, respectively. For kinetic studies, tryptophan fluorescence intensity was

recorded at 350 nm (16 nm slit) and excited at 290 nm using a 4 nm slit. No

photobleaching was observed under these conditions.

Pressure-induced equilibrium
unfolding transitions

Following each pressure increment/decrement (steps of 20 MPa), the protein

fluorescence was allowed to equilibrate before spectral recording. The equi-

librium fluorescence intensity profiles versus pressure were fitted to Eq. 1

I ¼ If � Iu

11 e
�½ðDG0

u 1 pDVuÞ=RT�
1 Iu; (1)

where If and Iu are the fluorescence intensities of the folded and unfolded

states, respectively, and I the observed fluorescence intensity at pressure p;

DG0
u andDVu are the free-energy and volume change of unfolding at 0.1MPa

(1 atm), respectively.

Pressure-jump-induced kinetics

Pressure-jumps consisted of sudden changes of pressure of640 MPa within

a pressure range of 100–500 MPa. They were performed by using a home-

made p-jump device connected to the high pressure optical cell placed in

the abovementioned fluorescence spectrophotometer (30). Pressure-jumps

(dead-time ,5ms) were carried out by opening an electrically driven pneu-

matic valve localized between the high pressure optical cell and a ballast

tank. The adiabatic temperature change associated to pressure-jumps did not

exceed 0.4�C. After 20 s, the amplitude of the temperature change decreased

to 0.2�C, and after 50 s, the initial temperature was recovered (30).

Determination of kinetic parameters from
relaxation profiles

After each p-jump the relaxation profiles of the unfolding/folding reaction

were fitted to single-exponential and when necessary to double (sequential)

decays, according to Eqs. 2 and 3,

IðtÞ ¼ I0 1Að1� e
�kobstÞ (2)

IðtÞ ¼ I0 1Að1� e
�kobsð1ÞtÞ1Bð1� e

�kobsð2ÞtÞ; (3)

where I(t) and I0 are the fluorescence intensities at time t and at time 0, A and

B are the phase amplitudes, and kobs is the measured rate constant at the final

pressure p.

The individual rate constants of the folding/unfolding reaction

folded state%
ku

kf

unfolded state

were determined from single exponential kinetics and from the fast phase in

cases of two-exponential decays, according to Eqs. 4 and 5,

kobs ¼ ku 1 kf (4)
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where K(P) is the equilibriwn constant at pressure p, tJ.G~, and tJ.Vu are the
free energy and volume change of unfolding obtained trom equilibriwn
experiments and p is the final pressure of each jump. Linear plots of lnkf and
lnku versus the final pressure of each jump allowed us to determine tJ.vt and
tJ.vt, the activation volumes for folding and unfolding, respectively,
according to Eqs. 6 and 7.

lnku = -p(~vt jRT) + ln(ku(OlMPa)) (6)

lnkf = -p(~Vr jRT) + ln(kf(OlMPa))' (7)

formed by swapping of the C-terminal f3-strands (31). Under
identical solution conditions, the RNase A dimer produces a
strong pair of NOE signals arising from the Nl13 Ha and
Pro-114 H8 protons that are indicative of a trans conforma­
tion, and that are not observed in the monomeric wild-type
RNase A (32). These signals are not observed in the NOESY
spectrum ofthe Yl15W variant, which strongly suggests that
the Asn-113-Pro-114 peptide bond is in the cis conformation
in the folded state.

The activation free energy tJ.G# for folding and unfolding was obtained
from Eqs. 8 and 9,

~Gr = -RTln(ku(OlMPa)) + RTln((kBT)jh) (8)

~Gt = -RTln(ku(OlMPa)) + RTln((kBT)jh), (9)

where kB is the Boltzmann constant, R the gas constant, and h the Planck
constant.

RESULTS

Structural characterization by NMR spectroscopy

The ID lH NMR spectrum of Y115W RNase A at 35°C is
typical offolded RNase A (data not shown). The 2D TOCSY
and NOESY spectra revealed one set of peaks arising from
Wl15; these peaks were assigned and their chemical shift
values are (in ppm): Ha 4.29, Hf3 3.15, Hf3' 3.01, H81 6.83,
H83 8.20, H?2 7.70, H?3 7.27, and R172 7.32 (Fig. 1 a). The
observation of only one set of resonances is taken as evi­
dence that this residue adopts only one major conformation
in the folded protein. The lack of NOE crosspeaks between
Trp-115 and other residues' protons is consistent with the
indole side chain being placed at a solvent exposed position.

The Asn-113-Pro-114 peptide bond is cis in native, wild­
type RNase A, but is trans in the three-dimensional dimer

Pressure-induced equilibrium unfolding

In a previous study (17) we showed that the Yl15W amino
acid replacement in the RNase A structure does not substan­
tiaHy perturb its heat and pressure stability. Upon increasing
pressure, a more than threefold increase in fluorescence yield
was obtained. This tumed out to be a suitable intrinsic probe
for fast kinetic measurements. The pressure-induced unfold­
ing transition ofYl15WRNase A was monitored between 30
and 50°C (Fig. 2). The equilibrium unfolding process was
found to be fuHy reversible, and the thermodynamic param­
eters (Table 1) were determined within the framework of a
two-state model. Under aH conditions the fluorescent yield
increased, as pressure was raised, without any significant
spectral shift, indicating that the native polar environment of
the Trp residue is maintained upon protein unfolding. This is
consistent with the exposed position ofthe Tyr-115 residue in
the wild-type enzyme, at the tum connecting f3-strands 5 and 6
(21). From the thermodynamic data (shown partly in Table 1)
it is apparent that both the stability of the Yl15W variant
(expressed by ~Ge) and the absolute value of the reaction
volume (~Vu) decrease linearly as a function of temperature.
The expansibility (a~V/aY) was determined as ~a = 1.4
mI mol-1 K-1

, comparable to that of the wild-type protein
(33).

6.0 -fU--.---..-r-.--'f-.-,-...--,--'""r--r-,...,.......,.--.,-.--,-..-......--I
6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 ppm

FIGURE 1 Two-dimensionalNOESY
NMR spectrwn of RNase A Yl15W in
D20, 0.20 M sodiwn phosphate, pH* 6.7,
35°C. (A) Downfield region. TIte dotted
line traces the assignment of the Trp-115
peaks. (B) TIte dotted boxes mark the
position expected for peaks arising trom a
trans Asn-113-Pro-114 peptide bond;
these peaks are not seen strongly suggest­
ing that this peptide bond is >90% in the
cis conformation.
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p-Jump-induced folding and unfolding kinetics

FIGURE 2 Nonnalized transition curves for the pressure-induced unfold­
ing ofthe Y115Wvariant ofRNase A at different temperatures. Experimental
data for depressurization are coincident with those ofpressurization. The solid
lines are nonlinear regression fits of the experimental data, expressed as
fraction ofunfolded protein, Fu, based on a two-state model, for (O) 30°C, (-)
35°C, ( ... ) 40°C, (e) 45°C, and (~) 50°e.

As expected from equilibrium measurements, p-jumps of
40 MPa in magnitude in either direction (upward and down­
ward), produced an increase or decrease in fluorescence
intensity, respectively. The timescale of the relaxation ki­
netics was of the order of minutes. The monitored spectral
changes were observed to be fully reversible, as in equilib­
rium experiments. The amplitude of the fluorescence change
observed after each p-jump was in excellent agreement with
the spectral change observed in equilibrium measurements.
The kinetics induced by upward and downward p-jumps
were compared under identical final conditions of tem­
perature and pressure. Dissimilar kinetics were observed.
Whereas downward p-jumps resulted always in monophasic
kinetics, upward p-jumps led to biphasic kinetics at pres­
sures lower than PI/2, the pressure at half-transition. A typical
example of these kinetics is shown in Fig. 3. As shown in
Fig. 4, the relative amplitude of the slow phase decreased as
a function of both pressure and temperature. Above PI/2, the
slow phase was no longer detectable. Similarly, at 50°C,
only the fast phase subsisted. Fig. 5 illustrates the pressure
profile of kobs at two selected temperatures. Obviously, at
50°C the monophasic upward and downward p-jump profiles

Solvent effects

In the presence of glycerol (30%), both ~G~ and the abso­
lute value of ~Vu were strongly decreased (Table 1). As a
consequence, the thermodynamic parameters determined at
50°C resembled those determined at 30°C in the absence of

As explained in Experimental Procedures, the individual rate
constants of the fast phase, kf and ku were determined at each
final pressure from kobs and K(P). In all cases, kf decreases
and ku increases linearly as a function of pressure (Fig. 6).
Obviously, kf predominates at pressures below the equilib­
rium midpoint unfolding transition, while ku predominates at
higher pressure. This picture was not affected by the direc­
tion of the pressure-jumps.

Pressure dependence of the individual folding
and unfolding rate constants

were distinguished by only very small differences. These
were constant throughout the pressure range and may be
ascribed to small temperature differences due to adiabatic
compression and decompression. In contrast, at 35°C, a
second kinetic phase was observed in upward p-jumps in the
lower pressure range (below PI/2). We have carried out
upward and downward p-jumps in the whole pressure range,
every 5°C between 30 and 50°C. Without exception, we
always found the same pattem distinguishing upward and
downward p-jumps at temperatures below 50°C.

We investigated whether the absence of the slow phase in
downward pressure-jump experiments might be explained
by its reduced amplitude, as compared to that of upward
pressure-jumps. This could be the case in downward pressure­
jumps starting from an initial pressure higher than PI/2. How­
ever, downward pressure-jumps within a range well below
p 1/2 (under conditions where the amplitude of the slow phase
after upward pressure-jumps is higher than 50%) lead still to
single exponential fast kinetics. We must therefore condude
that the kinetic folding/unfolding mechanism is different
after upward and downward pressure-jumps.

At each temperature, the pressure profile of kobs of the
fast phase is characterized by a u-shape, i.e., it exhibits a
Chevron plot-like behavior, which becomes more and more
pronounced when the temperature is decreased. The origin of
the u-shape is explained by the pressure dependence of the
individual rate constants kf and ku , as described below.

600200 400

Pressure (MPa)

O

0.0

~ 0.5

1.0

TABLE 1 Thermodynamic parameters of Y115W RNase A variant calculated from pressure-induced unfolding curves at pH 5.0

Experimental conditions tJ.G~kJmol- 1 tJ.Vu mI mol- 1 Pl/2 MPa kob, at Pl/2 S-1 tJ.V;mlmol- 1 tJ.Vtmlmol- 1

30°C
50°C
50°C, 10% dextran
50°C, 30% glycerol

34.55 (1.43)
10.25 (0.29)
13.56 (2.59)
25.82 (0.96)

-73.81 (3.28)
-45.51 (!.l5)
-55.38 (10.34)
-62.01 (2.54)

468 (1.39)
225 (0.85)
245 (!.lO)
416 (1.55)

4.20 X 10-3 (1.0 X 10-4
)

9.49 X 10-2 (2.10 X 10-3
)

9.29 X 10-2 (1.7 X 10-3
)

3.19 X 10-2 (2.0 X 10-4 )

-58.17 (2.98)
-17.50 (0.53)
-20.42 (1.06)
-44.28 (2.12)

15.17 (2.98)
27.84 (0.53)
25.46 (1.06)
17.50 (2.12)

Numbers in parentheses are the mean :+: SE of the data. The activation volurnes were detennined from the rapid phase of upward p-jumps.
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FIGURE 3 p-Jump iuduced Y115W RNase A foldiug
and unfoldiug relaxation kiuetics at 30°e. eomparison of
upward and downward p-jumps leadiug to identical final
pressures. The kiuetics after a downward p-jump is fitted
by a siugle exponential (A), that after an upward p-jwnp by
a double (B) and a siugle exponential (e, dashed line). The
correspondiug residuals are shown on the right side.

glyceroL In contrast, the presence of 10% dextran (molecular
weight, 40,000) had no significant effect on the equilibrium
parameters, Further information, not accessible under equi­
librium conditions, was obtained by a kinetic analysis, As
shown in Fig, 5, in the presence of glycerol, upward and
downward p-jump experiments resulted in identical relaxa­
tion times, The kobs pressure profile was, however, strongly
shifted to higher pressures (see also Table 1), In contrast,
dextran did not significantly affect the kobs values,

initial physical chemical condition, This is against expec­
tation, because in the majority of cases, protein kinetics
depends only on final conditions, Furthermore, the observed
differences in folding and unfolding kinetics cannot be ex­
plained by a hysteresis behavior as reported for sorne pro­
teins, Indeed, the pressure-induced folding and unfolding
transition curves under equilibrium conditions can be super­
imposed, and they are identical to those constructed after
pressure-jumps, In contrast, a mechanistic understanding of
the present results may be provided by a closer kinetic
analysis of possible scenarios in relaxation reactions,

DISCUSSION

Dependence of relaxation rate constants on final
and initial conditions

An intriguing result of this paper is the observation that the
p-jump-induced unfolding/refolding kinetics depended on
the direction of the pressure-jump; i,e" it depended on the

Bímolecular reactíons

Typical examples of bimolecular reactions are those re­
flecting the binding/dissociation of a ligand (L) to or from a

700600200 300 400 500

Pressure (MPa)

100
-10 +-----,,---"""T"---r---T"""----,--"""'T"-----l
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-2 OO~~e~~~~ee ••
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FIGURE 4 Nonnalized amplitude of the slow kiuetic phase after upward
p-jwnps, as a function ofpressure, at 35°e (O), 400 e ("'), and 45°e (e).

150 200 250 300

Pressure (MPa)

350 400
FIGURE 5 Pressure dependence of kob" detenniued from upward (salid
symbals) and downward (apen symbals) p-jumps at 35°e ("'Li), 500 e
(eO), and 500 e iu presence of 30% glycerol (_O). The slow phase observed

after positive pressure-jumps at 35 ° is shown by iuverted triangles. At each
condition, the data from two iudependent experimental series were
superimposed iu a way to obtaiu data poiuts every 20 MPa.
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In downward p-jumps (Fig. 7 B), most of the protein is

initially, at high pressure, in state U2 (D). The protein relaxes
within a single phase (C) to occupy partly U1 and F (F1 and

F2 are indistinguishable and the two unfolded states are not

separated by a high energy barrier). This situation does not

change when we continue with our p-jumps to still lower

pressures (E). The protein relaxes again within a single

observable phase to state F. Then, the energy barrier between
the unfolded states will slowly build up again (A). However,
this is of no kinetic importance because then the protein

already occupies the folded state F.
This reaction model, though hypothetical, is in accord

with our kinetic observations. A pressure-dependent energy

barrier, which adapts only slowly to the new pressure after a

pressure-jump, explains why we observe two kinetic phases

in upward p-jumps below p1/2, but only one phase at higher

pressures, and also in downward p-jumps. The analysis of

the respective amplitudes of the two kinetic phases confirms

this model. Regardless of the temperature, the relative ampli-

tude of the slow phase (F2 in our model) decreases as a

function of pressure, until it vanishes when p1/2 is reached.
This results from the steady decrease at higher pressures of

the energy barrier existing between the unfolded states (in

the limit of a negligible energy barrier, the slow phase is no

more detectable). Furthermore, at a given pressure, its rela-

tive amplitude decreases as a function of temperature (to

finally become unobservable at 50�C). This can readily be

explained by an overcoming of the energy barrier between

U1 and U2 at high temperature according to the Arrhenius

relation.

Similar kinetic discrepancies at identical final pressures

may be expected by performing p-jumps of different pres-

sure amplitudes. However, we preferred not to perform these

because different pressure amplitudes result in different adia-

batic heating/cooling effects, which might have biased the

significance of the results. Such temperature artifacts are

inevitable in p-jumps (30), and therefore we conducted our

experiments by applying always constant pressure ampli-

tudes (40 MPa). However, relaxation kinetics using different

perturbation amplitudes have been used by Leeson et al.

(39) in temperature-jump experiments with CspA protein

connected to an infrared spectroscopy detection method.

Although the experimental setup of the temperature and

p-jump experiments was quite different, it is interesting to

note, that the temperature-jump approach resulted in similar

conclusions, implying perturbation-induced changes of the

protein energy landscape. Thus, temperature- and p-jump

relaxation methods appear as highly complementary exper-

imental approaches. Indeed, the temperature-jump study

concluded by calling for performing jumps in opposite

directions. This is not feasible with the temperature-jump,

but easy to perform with the p-jump method.

Relevance of the reaction model with
actual kinetic and structural knowledge
of ribonuclease A

Clearly, the above model fits the complex folding/unfolding

kinetics presented here. In this section we will check its

validity with respect to structural data of ribonuclease A. In a

previous report, the two kinetic phases were explained by

two unfolding pathways originating from two distinct folded

states (30). However, this hypothesis had to be dismissed in

view of our NMR data, indicating that the protein adopts

FIGURE 7 Schematic free energy

landscape of the Y115W variant of

RNase as a function of pressure, in-

cluding one folded state (F) and two

unfolded states (U1 and U2). p-Jumps

are indicated by vertical arrows. A slow

relaxation of the energy surface to a new

physical chemical condition is indi-

cated by horizontal arrows. (A) Upward

p-jumps resulting in biphasic kinetics

below p1/2. (B) Downward p-jumps

resulting in monophasic kinetics.

2270 Font et al.
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only one major conformation in its folded state. This leaves

us with a minimal reaction model containing only one folded

(F) and two unfolded (U1 and U2) states.

The identity of U1 and U2 may become clear by a com-

parison with the work of Scheraga and co-workers (25), who

used chemical denaturants to induce unfolding of RNase A.

Their method, single- and double-jump stopped-flow, as well

as pulsed-labeling kinetic experiments, monitored the pro-

gress of the reaction by detecting changes of fluorescence of

the tyrosyl residues of the enzyme (25,26). Similarly to our

results, they identified two kinetic phases. They showed that

the fast-phase monitors conformational unfolding whereas

the slow-phase monitors the cis-trans isomerization arising

mainly from two proline residues that are cis in the native

structure. Specifically, Tyr-115 was shown to report locally

on the isomerization of the Asn-113–Pro-114 peptide bond.

Further evidence for this very local reporting came from the

use of double mutants by Juminaga et al. (25), showing that

the fluorescence of Y115 does not sense the isomerization of

the nearby P117. This suggests strongly that the fluorescence

of the tryptophan residue replacing Tyr-115 in this study,

does also report on the isomeric state of the Asn-113–Pro-

114 peptide bond. According to the NOESY spectrum, the

Asn-113–Pro-114 peptide bond of the Y115W variant

is—like wild-type RNase A—in the cis conformation in

the folded state. Hence, the unfolded states U1 and U2 appear

to reflect the cis and trans isomers of the Asn-113–Pro-114

peptide bond.

Hence, the two kinetic phases observed in upward p-jumps

can be understood as a rapid protein unfolding, from F to U1,

followed by a slower cis-trans isomerization from U1 to U2.

In the first step, the native isomeric state of Pro-114 (cis) is
conserved. In the second step, the cis-trans isomerization is

possible due to a pressure-induced decrease of the energy

barrier between the cis (U1) and trans (U2) isomers of Pro-

114. The isomerization of other prolines will probably also

occur. However, our probe (Trp-115) is sensitive only to the

isomerization of Asn-113–Pro-114 peptide bond and to the

folded state of the protein. The nonobservation of two kinetic

phases in downward pressure-jumps is explained by an ini-

tially low energy barrier between U1 and U2. This appears

justified in light of a recent report of Bhat et al. (40), showing

that the isomeric state of Pro-114 has little effect on the

folding kinetics of RNase A. Although substitution of Pro-

114 by Ala or Gly was found to destabilize RNase A by

3 kcal/mol (41), previous NMR (42), x-ray (43), folding

(44–46), and computational modeling (47) data show that

RNase A refolds equally from both isomers. Thus, cis
Pro-114 can be classified as a Type II (stabilizing but not

essential) proline according to the nomenclature introduced

in the pioneering theoretical study by Levitt (48). In their

study of the cis-trans equilibrium of glycyl-L-proline, Cheng

and Bovey (49) observed that cis-trans ratio increases as the

temperature is increased. This observation is perfectly in line

with our observation of a diminishing amplitude for the slow

phase (cis to trans) as the temperature is increased because

at higher temperatures, there is less trans isomer present at

equilibrium. Moreover, Cheng and Bovey (49) observed that

the rate of cis-trans interconversion also increases markedly

with temperature. Applied to this model, this means that

under unfolding conditions (high pressure/temperature) the

remaining energy barrier between the cis and trans isomers

of the Asn-113–Pro-114 peptide bond is low enough to allow

their rapid interchange.

Would the weak, fragile structure present in the pressure

denatured state (see preceding section) have a significant

effect on Pro-114 isomerization occurring during refolding?

This is most unlikely. According to Wedemeyer et al. (26),

‘‘the cis-trans isomerization of the Asn-113–Pro-114 pep-

tide bond makes relatively minor, localized changes that

do not affect the structure of the adjacent hydrophobic core

of residues 58–110.’’ Therefore, conversely, any structure in

this hydrophobic core region is unlikely to affect the Pro

isomerization. Moreover, the cis-trans isomeric state of Pro-

114 only weakly affects the folding and native structure of

RNase A (40).

These results are interesting with respect to the role of the

chain-folding initiation site (CFIS). When unfolding is

promoted, the CFIS would be one of the last subdomains

to unfold and the cis-trans isomerization of the Asn-113–

Pro-114 peptide bond takes place only after a first rapid

conformational unfolding. In this view, after an increase of

pressure, the two-dimensional energy surface must first equi-

librate to the new physical chemical condition, before the

isomerization of the proline peptide bond can take place. To

the contrary, when folding is induced (downward pressure-

jump), one of the first subdomains to fold would be the CFIS,

independently of the isomeric state of the Asn-113–Pro-114

peptide bond because the energy barrier between both

isomers is very low.

An intriguing feature of this work is the pressure depen-

dence of the slow phase (U1 to U2), which, according to our

model, reflects the pressure-dependent slow decrease of the

energy barrier between cis and trans Pro-114. At high pres-

sure the rate of this phase is increased, and its amplitude

decreased. No literature data are available to explain this

pressure effect. Further experiments, namely high-pressure

modeling studies, are necessary to understand the effect of

pressure on proline isomerization.

The stabilizing effect of glycerol via its action on
the transition state

As shown in Table 1, glycerol slows down significantly the

folding/unfolding reaction rates. As observed for many other

proteins (50), it thus exerts a stabilizing effect against

pressure-induced protein structural changes. This study offers

a possibility to better understand this effect via a closer

analysis of the reaction transition state. Here we are applying
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this analysis to the fast kinetic phase observed in upward
p-jumps only. Very similar conclusions (not shown) can be
drawn from the downward p-jumps. The slow phase, how­
ever, contained too few and too scattered data points to
permit a thermodynamic analysis.

As shown in Fig. 8, the unfolding transition state always
occupies a volume in between those of the folded and the
unfolded states. However, as shown in the inset, the con­
tribution of the unfolding activation volume ~vt to the
reaction volume ~Vu decreases strongly as a function of
temperature. Interestingly, the presence of 30% glycerol
compensates this effect: at SO°C the ratio of ~vt/~Vu is
comparable to that at 30°C in the absence of glycerol.

From these data, together with the individual unfolding
rate constants ku , it was possible to construct the free energy
(G)/volume (V) diagram of Fig. 8. Because our experiments
do not permit determination of absolute values of G and V,
these were set arbitrarily to zero for the unfolded states.
Under this constraint, the free energy of the transition state is
~80 kI higher than that of the unfolded state, regardless of
the temperature and solvent composition. However, as
expected, the free energy of the folded state is significantly
lower at 30°C than at SO°c. In the presence of 30% glycerol
at SO°C, the stability lies in between those of 30°C and SO°C
in aqueous solvento In water, the volume of the transition
state is close to that of the unfolded state at 30°C, and close
to that of the folded state at SO°c. Most remarkably, in the
presence of 30% glycerol at SO°C, the volume of the transi­
tion state is close to that at 30°C in water.

Font et al.

This combined free energy/volume analysis ofthe unfold­
ing transition state offers a new way to understand, at least
partly, the stabilizing effect of glycerol. The transition state
in the pressure-induced unfolding reaction is certainly a
highly labile species presenting a strongly decreased volume
with respect to the folded state. This volume decrease is
probably due to a collapse of voids (existing in the folded
structure) and to a higher packing density of water molecules
around exposed charged and/or polar residues. This transient
structural reorganization has an energetic cost, which in­
creases as a function of volume change. At high temperature,
here at SO°C, the volume decrease from the folded to the
transition state is less important, and the activation free
energy-and thus the structural stability-is decreased ac­
cordingly. Glycerol, acting as an osmolyte, may be seen as
compensating this temperature effect by decreasing the
volume of the transition state via its reducing action on the
hydration shell of the transition state. The result is a tran­
sition state, resembling in its volume and energy properties
to that observed in its absence at lower temperature. How­
ever, the stabilizing effect of glycerol does not seem to be
related to an increased solvent viscosity. In fact, as shown in
Fig. 1, no stabilizing effect was observed when glycerol was
replaced by dextran, another viscogenous compound. More­
over, as shown in the inset ofFig. 8, the presence of dextran
did not affect the volume of the transition state. This possible
explanation of the structure stabilizing effect of glycerol via
its action on the volume of the unfolding transition state is
certainly attractive. Nevertheless, to assess its general valid­
ity, more experimental p-jump data from other proteins are
now needed.

FIGURE 8 Free energy (G)/volurne (V) diagrarn of the p-jurnp induced
unfolding reaction (fast kinetic phase) at 300 e (e), sooe (~), sooe in the
presence of 30% glycerol (O), and sooe in the presence of 10% dextran
("'). The reaction goes frorn the folded state (F) to the unfolded state (U) via
the transition state (#). The free energy and the volurne ofthe unfolded state
were set to zero. The inset shows the ratio between the activation volurne,
tJ.V*, and the reaction volurne, tJ.V, as a function ofternperature in water (e),
in the presence of 10% dextran (O), and in the presence of 30% glycerol
(T). The error bars are contained within the size of the syrnbols.
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CONCLUSION

After several decades of abundant literature conceming the
effects of chemical agents, temperature, and pressure on pro­
tein structure and stability under equilibrium conditions, the
dynamic aspect of protein folding and unfolding is increas­
ingly gaining interest (SI). This is certainly due to the recog­
nition that protein folding/unfolding is a complex reaction
that can be described properly only in terms of multidimen­
sional energy surfaces (7,S2,S3). Apart from computational
approaches, the p-jump method appears as an interesting
tool, avoiding sorne of the constraints of the T-jump method
(39). Taking RNase A as a model, the p-jump approach re­
sults are consistent with pressure and temperature-dependent
dynamic features of a two-dimensional energy surface.
Furthermore, the method permitted to investigate the impor­
tance of the kinetic transition state in its interaction with
hydration water. It would be very interesting now, to apply
the power of this method to other proteins that tend to unfold
under certain pathological conditions. Especially the mech­
anism of the structural conversion of amyloidogenic proteins
is far from being understood (S4-S8). As these proteins
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appear to be particularly sensitive toward pressure, it is fore-

seeable that the investigation of their pressure-induced dy-

namics will be fertile.
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