

IV JORNADAS DE SIG LIBRE

Plaça Ferrater Mora 1, 17071 Girona
Tel. 972 41 80 39, Fax. 972 41 82 30
infojornadas@sigte.udg.es http://www.sigte.udg.es/jornadassiglibre/

OpenSearch-geo: The simple standard for
geographic web search engines

O. Fonts(1), J. Huerta(1), L. Díaz(1), C. Granell(1)

(1) Institute of New Imaging Technologies, Geographic Information Research Group,
Universitat Jaume I, Castelló, Spain. {fonts, huerta, laura.diaz, carlos.granell}@ uji.es

ABSTRACT
When publishing information on the web, one expects it to reach all the
people that could be interested in. This is mainly achieved with general
purpose indexing and search engines like Google which is the most used
today. In the particular case of geographic information (GI) domain,
exposing content to mainstream search engines is a complex task that
needs specific actions.

In many occasions it is convenient to provide a web site with a specially
tailored search engine. Such is the case for on-line dictionaries (wikipedia,
wordreference), stores (amazon, ebay), and generally all those holding
thematic databases. Due to proliferation of these engines, A9.com
proposed a standard interface called OpenSearch, used by modern web
browsers to manage custom search engines.

Geographic information can also benefit from the use of specific search
engines. We can distinguish between two main approaches in GI retrieval
information efforts: Classical OGC standardization on one hand (CSW,
WFS filters), which are very complex for the mainstream user, and on the
other hand the neogeographer’s approach, usually in the form of specific
APIs lacking a common query interface and standard geographic formats.

A draft ‘geo’ extension for OpenSearch has been proposed. It adds
geographic filtering for queries and recommends a set of simple standard
response geographic formats, such as KML, Atom and GeoRSS. This
proposal enables standardization while keeping simplicity, thus covering a
wide range of use cases, in both OGC and the neogeography paradigms.

In this article we will analyze the OpenSearch geo extension in detail and
its use cases, demonstrating its applicability to both the SDI and the
geoweb. Open source implementations will be presented as well.

Keywords: Geospatial search engines, OpenSearch, Geographic web
services, geoweb.

mailto:fonts,%20huerta,%20laura.diaz,%20carlos.granell%7D@%20uji.es

INTRODUCTION

Web content findability is generally addressed by mainstream search engines, such
as Google. Sites like Wikiloc1 demonstrate that geographic content can be effectively
exposed to Google’s geoindex, and can be retrieved through a general web search,
just like any other non geographic content. However, the data publisher has to
manually adapt its content and publish it in the way google wants it, and has little
control over how and when the data will be indexed or ranked [1]. It might even be
never indexed.

So relying on external geoindexation engines can be valuable, but it in many cases

data publishers will want to setup their own search engines, addressing spatial and full
text indexation, that return optimally ranked result sets.

Geodata search standardization efforts in OGC include Catalogue Services for the

Web query syntax (Common Query Language at catalog level) [2] and WFS filters (at
feature level) [3]. These syntaxes are suitable for fine grained selection and provide
high levels of expressiveness. But they assume previous knowledge of query syntax,
data schema and its semantics, restricting its potential to advanced users already
familiar with the queried dataset nature. These engines might search into a catalog for
metadata retrieval, or directly into the data for feature selection based on its attributes.
In any case, for the results to be useful, they should link as directly as possible to the
data they represent [4].

To target the widest audience (mass market in OGC vocabulary), a radically simple

interface must be provided [4], consisting of one unique text box to search across all
the data. Specialization of the search engine can take benefit from data nature
awareness to optimize the result set. For example, finding the queried text in ‘dc:title’
would rank higher than finding it in ‘dc:abstract’.

Besides from OGC standards services, there is other rapidly growing geographic (or

geotagged) content in the web, which we will call neogeography, often ignoring OGC
standardization efforts because of their complexity and specialized audience. Many of
such web services offer their own API to query against their georeferenced datasets,
such as geonames2, flickr3 or twitter4. Each API having its own query syntax and
response formats, search clients cannot be generic.

There is a need for a search interface suitable for both OGC and neogeograpy web

services that provides standarization while keeping simplicity.

Such a standard was proposed by A9.com and is called OpenSearch [5].

OpenSearch:

• Describes search engine capabilities in a structured, machine-readable way.
• Provides a simple set of allowed request parameters.
• Provides a simple set of response formats.
• Is extensible.

1 http://www.wikiloc.com
2 http://www.geonames.org/export/ws-overview.html
3 http://www.flickr.com/services/api/
4 http://apiwiki.twitter.com

http://www.wikiloc.com/
http://www.geonames.org/export/ws-overview.html
http://www.flickr.com/services/api/
http://apiwiki.twitter.com/

One of its extensions is the OpenSearch-geo draft, proposed by Andrew Turner [6].
While geo-search services continue to grow in number, there are yet few of them
implementing this standard, and there is a lack of client implementations too. One of
the aims of this work is to analyze existing opensearch-geo implementations, check
their interoperability, and promote new ones.

Pedro Gonçalves et al. are working in an OpenSearch extension for OGC

Catalogue Services [7], now in draft status, that extends and adapts the original
A.Turner’s proposal. The second aim of this paper is to address interoperability issues
in these proposals, identifying:

• Coherence between both drafts, proposing a merged solution,
• Degrees of freedom that could lead to non-interoperable services, specially with

respect to response formats and its content tags,
• Core (mandatory) functionality vs. recommended (optional) functionality,

keeping in mind that expressiveness is a plus, but simplicity is a must,
• Backwards compatibility with simple OpenSearch (non geo-aware) clients.

In the following section the OpenSearch specification is briefly introduced,

describing its parameters, response formats and use in web browsers. The next
section discusses the geo extension thoroughly, based on the two draft specification
efforts available: Description document, parameter names and formats, error handling,
encoding, and popular geographic response formats are analyzed. A third section is
devoted to existing service and client implementations. Finally, some conclusions are
drawn.

OPENSEARCH SPECIFICATION

In this section the OpenSearch standard [5] is briefly described, introducing its
autodiscovery mechanism, description document, request parameters and response
formats. Its use in web browsers is also introduced.

OpenSearch was conceived by A9.com, an Amazon.com company, as a

mechanism to trigger a distributed search over a collection of web sites and merge the
results in an unique result set (search results syndication).

The entry point to a search engine is its description document. This document

contains, along with other metadata, an URL template for each accepted response
format. Each template indicates the mandatory and optional query parameters, as well
as the syntax to build the query as an URL. The query is performed as an HTTP GET.

There is only one mandatory parameter, {searchTerms}, which are the keywords to

be searched for. Other optional parameters are used for paginated results, preferred
language, and request and response encoding. The original parameters list can be
extended incorporating namespaces to the description document, which makes
possible the ‘geo’ extension.

The response formats can be syndication formats as RSS 2.0 [8] or Atom 1.0 [9],

but others may be used without restriction. In XML-based responses, the ‘opensearch’
namespace5 is used to add pagination information and a reference to the originator
query, and the ‘atom’ namespace6 is used to add a reference to the search description

5 http://a9.com/-/spec/opensearch/1.1/
6 http://www.w3.org/2005/Atom

http://a9.com/-/spec/opensearch/1.1/
http://www.w3.org/2005/Atom

document. This last feature enables search engine autodiscovery from a response
document. The autodiscovery mechanism can be used also in an HTML 4 document
by means of a link tag.

Probably the most popular use case of OpenSearch is in modern web browsers like

Firefox 2+ [10], and Internet Explorer 7+ [11]. When an HTML page with an
OpenSearch autodiscovery tag is loaded, the web browser offers the possibility to add
a custom search engine to its “search bar”.

When creating advanced OpenSearch services, such as geo-enabled ones, it is

almost obliged to keep compatibility with browser’s functionality, as it is the most
popular and convenient way to exploit them. This means including, at least, an HTML
response format, and reviewing main browser’s recommendations ([10, 11]). A JSON
suggestion (“as-you-type”) response format [12, 13] is also recommended when
technically possible, as to be useful it requires low response times (<100 ms).

OPENSEARCH GEO EXTENSION

The OpenSearch geo extension adds new parameters and suggests a collection of
simple geographic response formats. For the sake of simplicity, all coordinates in this
standard are expressed as geodetic WGS84 latitude and longitude (EPSG:4326).

There are two OpenSearch-geo draft proposals: The original from A. Turner [6] and

a proposed OGC extension for CSW [7]. The former is in ‘draft’ status, but constitutes
the main public accessible reference. The later is in discussion status inside OGC, so
it can suffer substantial changes and is intended for discussion only (non normative).
The Geo extension is analyzed in this section, both proposals are compared, and an
outline on how to merge them is suggested.

Description document

The geo extension adds a new namespace7 to the description document that allows
for specific parameters in the url templates.

For services restricted to a specific geographic domain, we suggest to add an

optional bbox tag to the description document. This could prevent clients to perform
queries out of service’s geographic domain, and makes the own service geoindexable.
The geoRSS-simple syntax [15] could be used (note that geoRSS coordinate pairs are
latitude-longitude ordered, inversely from {geo:bbox?} parameter) .

<?xml version="1.0" encoding="UTF-8"?>
<OpenSearchDescription
 xmlns="http://a9.com/-/spec/opensearch/1.1/"
 xmlns:geo="http://a9.com/-/opensearch/extensions/geo/1.0/"
 xmlns:georss="http://www.georss.org/georss"
 <ShortName>Local geostuff</ShortName>
 <!-- Other service metadata -->

 <georss:box>42 -71 43 -69</georss:box>

 <Url type="application/vnd.google-earth.kml+xml"
template="http://example.com/search.kml?nom={searchTerms}&box={geo:bbox}"/>
 <Url type="application/atom+xml"
template="http://example.com/search.atom?nom={searchTerms}&box={geo:bbox}"/>

 </OpenSearchDescription>

7 http://a9.com/-/opensearch/extensions/geo/1.0/

http://a9.com/-/opensearch/extensions/geo/1.0/

Request

Discussion on request parameters, error handling and request encoding follows.

Parameters

To keep compatibility with non geo extension aware clients, all geo parameters
should be optional for them. Services claiming to be “OpenSearch geo” (that is,
including the ‘geo’ namespace in the description document) should implement at least
the {geo:box?} parameter (see Table 1). This is stated in [7] and could be translated to
[6]. Implementing a box filter over a geographic dataset is simple and provides a
fundamental functionality.

Table 1: Compared OpenSearch Geo parameters in both drafts

Parameter name in
OpenSearch.org [6]

Parameter name
in OGC [7]

Definition and Format

{geo:box?} {geo:box?} Four comma separated geodetic coordinates
(WGS84) describing a rectangular filter, in
the form “west,south,east,north” (as in WMS
BBOX [14]).

{geo:polygon?} {geo:geometry?} Polygon as in geoRSS-simple [15]; Well-
Known Text geometry [16].

{geo:lat?}
{geo:lon?}
{geo:radius?}

{geo:lat?}
{geo:lon?}
{geo:radius?}

A circle described as a center (lat, lon) and a
radius (eters).

{geo:locationString?} {geo:name?} A place name (text).
 {geo:relation?} One of “overlaps”, “contains”, “disjoint”.
 {geo:uid?} Unique identifier.

Parameter name incoherences between both drafts should be resolved. This is the

case for {geo:polygon?} vs. {geo:geometry?}, and {geo:locationString?} vs.
{geo:name?}. As [6] has been publicly available for a time, we recommend keeping the
original {geo:polygon?} and {geo:locationString?} parameter names.

{geo:polygon?} and {geo:geometry?} parameters serve similar purposes, but the

format is defined differently in both proposals. {geo:polygon?} [6] is a comma-
separated coordinate pair list (in lat, lon order) describing a 2D simple polygon external
ring in clockwise order:

lat1,lon1,lat2,lon2,lat3,lon3,[…],lat1,lon1

A polygon has at least three different points, plus the last one being the same as

the first, closing the loop. Note that this is the same polygon serialization used in
geoRSS-simple profile [15].

The alternative {geo:geometry?} [7] parameter content relies on Well-Known Text

standard [16]. Well Known Text syntax provides for point, linestring, polygon, triangle,
polyhedralsurface, tin, multipoint, multilinestring, multipolygon and geometrycollection
geometry types, either in 2D or 3D, and optionally with linear referencing (measured).
Such expressiveness comes at a price, and this extra complexity is not providing a
substantial gain. So keeping the original {geo:polygon?} parameter as defined in [6] is
proposed.

As both standards stay, {geo:lat?}, {geo:lon?} and {geo:radius?} should be used
together to describe a circle8.

{geo:box?}, {geo:polygon?}, and the ‘circle’ ({geo:lat}, {geo:lon} and {geo:radius})

triplet are geometric filters. They are mutually exclusive. That is, only one of them can
be used in a given query. If a query contains more than one geometric filter, search
engine behavior is undefined.

{geo:relation?} value can be one of “overlaps”, “contains”, “disjoint”9. These

keywords are a subset of Common Query Language “geoop names” ([2] p. 14).
Search engines should ignore it if not accompanied by a geometric filter.

{geo:locationString?} is a text field indicating a place name to search into. Its

behavior is rather unpredictable, and will depend mostly on how the search engine
deals with it. {geo:uid?} is an unique identifier of the record in the repository context
[7]. Both functionalities could be assimilated in the general {searchTerms} textbox.

Thus, the geo parameters could be reduced, to ‘box’, ‘polygon’, ‘circle’ and

‘relation’.

Error handling

Many restrictions in parameter format and combinations have been stated. The
OpenSearch geo specification should identify the potential derived errors in a client
request. For example, bbox’s xmin greater than xmax, invalid polygon syntax, lat and
lon stated without a radius, invalid relation name, more than one geometric filter, etc.

OpenSearch has no hard rule about how to communicate errors to the client.

However, the “developer how to” suggests returning a well-formatted response with an
item describing the error in a human readable way10. We suggest using the HTTP 400
“Bad Request” client error status code [17], with an error description as payload.

Url and character encoding

Not being an OpenSearch specific problem, character and url encoding is a
common source of problems. When constructing a request from its template, all
parameter values should be url (percent) encoded. According to RFC 3986 [18], the
universal characters (international alphabets) should be first byte encoded in UTF-8,
then the result percent-encoded. The ECMAScript [19] function encodeURIComponent
is a convenient way of performing this within a web browser environment.

So it is recommended for new OpenSearch services to include UTF-8

InputEncoding as default, as already stated in the description document specification
[5]. Older services will accept ISO-8859-1 as InputEncoding, but this practice is
discouraged in accordance to RFC 3986 [18].

8 Radius is expressed in meters, and lat, lon in degrees. In the lat-lon space, the degrees-per-meter factor
is different for each axis, and depends on latitude. As a rough approximation (for small radii and
considering the Earth spherical), consider degrees-per-meter in the north-south axis as 0.000009. And for
the east-west axis as 0.000009/cos(lat). So the ‘circle’ in Earth’s surface is approximately transformed to
an ellipse in the lat-lon space, with its major axis in the east-west axis, and more excentric at higher
latitudes. For a ‘circle’ centered at the poles, the transformation is a box spanning all latitudes wide.
9 “overlaps” means matching all the resources partially or totally inside the geometric filter. “contains” only
selects the resources totally inside. “disjoint” matches the resources totally outside (not(overlaps)).
10 http://www.opensearch.org/Documentation/Developer_how_to_guide#How_to_indicate_errors

http://www.opensearch.org/Documentation/Developer_how_to_guide#How_to_indicate_errors

The comma (,) used in {geo:box?} or {geo:polygon} to separate coordinate values is
often not replaced by its percent-encoded equivalent %2C, and the space character,
which has a percent-encoded value of %20, is usually encoded as a plus sign ‘+’.
OpenSearch services should consider these variants for compatibility with all client
implementations.

Response formats

The available response formats are identified by its MIME types in the service
description document. OpenSearch does not set any mandatory format, nor limits its
number. The most widely used include RSS 2.0 (application/rss+xml), Atom 1.0
(application/atom+xml), and HTML (text/html) or XHTML ('application/xhtml+xml).
Atom and RSS are suitable for syndication, and HTML/XHTML for human-readable in-
browser visualization. JSON suggestions11 format is also very popular.

Any OpenSearch geo service should include geographic content in its responses. In

order for clients and services to interoperate, the server should offer geographic
content encoded in a predictable way. It should be mandatory for ‘geo’ services
offering RSS or Atom to encode geographic content in GeoRSS [15], and those
offering XHTML responses, to use the ‘geo’ microformat [21]. The same way, JSON
responses should encode geographic content using GeoJSON [22] (except for JSON
suggestions).

Discussion on recommended geo formats follows.

Geo microformat in XHTML

This format provides a machine-readable way to describe a coordinate pair (thus,
only a point), using existing HTML tags, so HTML parsers can identify geographic
tagging in conventional web pages. It consists of a root tag with class “geo” with two
child tags, with “latitude” and “longitude” classes. For example:

<div class="geo">This result is located at:
 37.386013 lat,
 -122.082932 lon.
</div>

For example, the Minimap Sidebar12 extension for Firefox can detect the locations

so described and conveniently display them over a map.

GeoRSS in RSS and Atom

RSS and Atom responses should use GeoRSS to encode geographic content.
Using non standard geographic serialization leads to generic clients not knowing how
to parse it, thus breaking interoperability. GeoRSS comes in two serializations or
profiles:

• GeoRSS-simple serialization is designed to be maximally concise. The

representations available (point, box, circle, line and polygon) require only a
single tag to be described.

• GeoRSS-GML is a simple GML 3.1.1 profile to represent the same elements
(Point, Envelope, CircleByCenterPoint, LineString and Polygon) more verbosely.
GML adds multiple Coordinate Reference Systems support, which won’t be
used in OpenSearch.

11 http://www.opensearch.org/Specifications/OpenSearch/Extensions/Suggestions/1.1
12 http://minimap.spatialviews.com/

http://www.opensearch.org/Specifications/OpenSearch/Extensions/Suggestions/1.1
http://minimap.spatialviews.com/

The GeoRSS specification includes an XSD schema and a GML profile that can be
used for format validation. It defines “<georss:where> as the tag that signals
geographic content – either in GeoRSS Simple or GML.” [15]. In the practice, this tag
is not always used (in fact, some examples from the own specification don’t use it). So
parsers should be aware of the de-facto optionality of this tag, and detect geographic
content by the presence of ‘georss’ namespace13 content, be it inside a
<georss:where> tag or not.

Finally, note that OpenSearch draft extension for CSW [7] sets Atom as a

mandatory format.

KML

We strongly recommend to implement KML as a response format in OpenSearch
geo services, as it is well defined (by both Google and OGC specifications) and easy
to implement (well known, widely used in web, with many libraries available), and it
provides unique features for visualization and interaction (styling contents, network
links, 3D capabilities, etc.), thus being the suitable format for rendering over an
interactive map or globe.

There are two ways to describe an item (or <Placemark>) in KML [1]. One is

through a CDATA element inside the <Description> tag, containing a fragment of
HTML tagged text. This description is suitable for visualization of human-readable
content, where some multimedia elements (images or videos) can also be embedded.
Google Maps and Google Earth, for instance, show this HTML description inside the
pop-up bubble associated with the Placemark. Another way to describe item attributes
is through the <ExtendedData> element, which allows for structured content through
the use of a predefined schema (see section 9.2 in [20] for further details).

In some use cases it can be useful to maintain results attribute’s structure. For

example, for carrying a Dublin Core metadata set. But clients intended for final users
may not parse and display <ExtendedData> elements, so the use of an HTML
alternative representation under <Description> is recommended.

GeoJSON

OpenSearch geo services delivering JSON responses (application/json mime type)
should use GeoJSON, for the same reasons that RSS and Atom should use GeoRSS:
It is a standard that enables service-independent parsing of geographic content.

OpenSearch specific information contained in responses is addressed in XML-

based documents by means of opensearch14 and atom15 namespaces. JSON has not
an associated schema. This lack of schema has led to each service adopting its own
serialization format16, what forces clients to develop specific parsers.

Fortunately GeoJSON fixes the structure to be used, but only for geographic

content [12]. It is not defined how to describe other OpenSearch response intrinsic
elements in JSON, as alternate links, paging information, the originating query, or the
autodiscovery mechanism.

The following example, inspired in the Atom format, is proposed as a generic
structure for OpenSearch JSON responses:

13 http://www.georss.org/georss
14 http://a9.com/-/spec/opensearch/1.1/
15 http://www.w3.org/2005/Atom
16 http://www.opensearch.org/Community/JSON_Formats

http://www.georss.org/georss
http://a9.com/-/spec/opensearch/1.1/
http://www.w3.org/2005/Atom
http://www.opensearch.org/Community/JSON_Formats

{ "opensearch": {
 "totalResults": 4230000, "startIndex": 21, "itemsPerPage": 10,
 "Query": {
 "role": "request", "searchTerms": "New York History",
 "startPage": 3, "geo": { "box": "-74.0667,40.69418,-73.9116,40.7722" }
 }
 },
 "links": [
 { "rel": "alternate",
 "type": "text/html",
 "href": "http://example.com/New+York+History?pw=3&bbox=-
74.0667,40.69418,-73.9116,40.7722" },
 { "rel": "alternate",
 "type": "application/atom+xml",
 "href": "http://example.com/New+York+History?pw=3&bbox=-
74.0667,40.69418,-73.9116,40.7722&format=atom" },
 { "rel": "self",
 "type": "application/json",
 "href": "http://example.com/New+York+History?pw=3&bbox=-
74.0667,40.69418,-73.9116,40.7722&format=json" },
 { "rel": "prev",
 "type": "application/json",
 "href": "http://example.com/New+York+History?pw=2&bbox=-
74.0667,40.69418,-73.9116,40.7722&format=json" },
 { "rel": "next",
 "type": "application/json",
 "href": "http://example.com/New+York+History?pw=4&bbox=-
74.0667,40.69418,-73.9116,40.7722&format=json" },
 { "rel": "first",
 "type": "application/json",
 "href": "http://example.com/New+York+History?pw=1&bbox=-
74.0667,40.69418,-73.9116,40.7722&format=json" },
 { "rel": "last",
 "type": "application/json",
 "href": "http://example.com/New+York+History?pw=42299&bbox=-
74.0667,40.69418,-73.9116,40.7722&format=json" },
 { "rel": "search",
 "type": "application/opensearchdescription+xml",
 "href": "http://example.com/opensearchdescription.xml" }
],
 "bbox": [-74.0667, 40.69418, -73.9116, 40.7722],
 "results": {
 "type": "FeatureCollection",
 "features": [
 { "type": "Feature",
 "geometry": {
 "type": "LineString",
 "coordinates": [
 [-73.9972, 40.73763], [-73.99167, 40.73519],
 [-73.99035, 40.737015], [-73.98914, 40.73643],
 [-73.990431, 40.734640], [-73.991504, 40.731617]
]
 },
 "properties": {
 "title": "New York History",
 "description": "... Union Square.NYC - A virtual tour ...",
 "links": [{ "href":
"http://www.columbia.edu/cu/lweb/eguids/amerihist/nyc.html" }]
 }
 }
]
 }
}

IMPLEMENTATIONS

Existing search engines

Table 2 summarizes some on line OpenSearch geo engines at the time of writing.

Table 2: Existing OpenSearch geo engines, parameters and response formats

Name Geo parameters Response formats
Geocommons17 box HTML, Atom, KML, JSON.
Terradue18 box, uid RDF/DCLite4G (but declared as XHTML),

HTML (not working), Metalink, GML (but
declared as XHTML).

GeoNetwork (FAO)19 box (not working) RSS (but declared as HTML)

Geocommons service georreferences results by means of a bounding box,

described as a four vertex polygon in KML, and using the <georss:box> simple tag in
Atom (this last not working at the time of writing, having all coordinates the zero -“0”-
value). JSON response items have a “bbox” property, but don’t follow the GeoJSON
format. Atom provides alternate and edit links for all entries. HTML does not use the
geo microformat. Item descriptions are plain text.

Terradue service returns a RDF/XML format (see [7], annex E.3) containing

DCLite4G20 metadata description for each item. Georeferencing is achieved in
<dct:spatial> tag, serialized in WKT [16] form. HTML format is not working (HTTP error
code 404, ‘not supported’). GML Earth Observation Profile is another supported
format.

GeoNetwork opensource is a standards based catalog application supporting “geo

OpenSearch” since version 2.1.021. There are many running instances, the main one
being FAO’s22. ‘geo’ box parameter is ignored. It returns GeoRSS results, encoding
bbox in GeoRSS-gml format. Item description is HTML inside a CDATA block. In order
to improve OpenSearch geo support, we have submitted a patch to GeoNetwork’s
code23, that enables {geo:box?}, {geo:locationString?} and {geo:geometry?} request
parameters, and adds HTML as response format. These improvements will
presumably be available in next (2.5.0) version.

In conclusion, there are still few OpenSearch geo clients, each one with its own

peculiarities, that could gain interoperability if guidelines stated in previous section
were adopted.

Proposed OpenLayers client

As far as we know, there are no OpenSearch geo clients that can be used as a
reference implementation for testing purposes. Thus we are developing an
OpenLayers24 client25 to easily add an OpenSearch geo control to web mapping
applications:

 new OpenLayers.Control.OpenSearch({
 div: searchControlDiv,
 description: "http://example.com/opensearchdescription.xml"
 });

17 http://core.geocommons.com/opensearch.xml
18 http://catalogue.terradue.com/genesi/envisat_meris/mer_rr__1p/description/
19 http://www.fao.org/geonetwork/srv/en/portal.opensearch
20 http://wiki.osgeo.org/wiki/Geodata_Metadata_Requirements#Dublin_Core_lite_for_Geo_.28DClite4G.29
21 http://geonetwork-opensource.org/software/geonetwork_opensource/releases/2.1.0
22 http://www.fao.org/geonetwork/
23 http://trac.osgeo.org/geonetwork/ticket/190
24 http://www.openlayers.org
25 http://trac.openlayers.org/ticket/2453

http://catalogue.terradue.com/genesi/envisat_meris/mer_rr__1p/description/
http://www.fao.org/geonetwork/srv/en/portal.opensearch
http://wiki.osgeo.org/wiki/Geodata_Metadata_Requirements#Dublin_Core_lite_for_Geo_.28DClite4G.29
http://geonetwork-opensource.org/software/geonetwork_opensource/releases/2.1.0
http://www.fao.org/geonetwork/
http://trac.osgeo.org/geonetwork/ticket/190
http://www.openlayers.org/
http://trac.openlayers.org/ticket/2453

This client parses OpenSearch description documents, seeking for supported geo
parameters and formats, automatically constructs a search box and selects a response
format from those supported by OpenLayers (GeoRSS, Atom, KML or GeoJSON).

Fig. 1. OpenSearch Control in OpenLayers

CONCLUSIONS

The simple OpenSearch-geo interface has great potential for geoweb’s
discoverability & usability, suitable for both highly specialized catalogs and simple
geotagged content. There are few implementations whose particularities in response
formats make them not always compatible with a generic client. There are two draft
proposals, with the risk of incoherence between them and increasing complexity to the
interface.

In this article we have discussed:
• Parameters described on both drafts, and a common proposal focused on

simplicity,
• Guidelines on standard geographic content encoding in a variety of response

formats,
• Actual OpenSearch geo search engines,
• Support for OpenSearch geo in GeoNetwork and OpenLayers.

These contributions are intended for discussion, in the hope that they can help

bringing maturity to the proposal, and promote the proliferation of interoperable
implementations.

Future work includes promoting these ideas to the specification proposals,

increasing tools for potential implementers, further GeoNetwork service and
OpenLayers client development to fully support the specification, and analysis on how
other existing geoweb applications and standards could profit from OpenSearch geo.

ACKNOWLEDGEMENTS

We want to thank the support from Jo Walsh (Open Knowledge Foundation), Jose
Garcia and Francois Prunayre (GeoNetwork developers), and Papeschi Fabrizio
(Institute of Methodologies for Environmental Analysis, CNR).

This work has been partially supported by the European project EuroGEOSS and
by the CENIT España Virtual project through the Instituto Geográfico Nacional (IGN).

REFERENCES

[1] ABARGUES, C. (2009) “Discovery and retrieval of Geographic data using Google.” Master
of Science in Geospatial Technologies;TGEO0011. http://run.unl.pt/handle/10362/2536

[2] NEBERT, D. et al. (2007) “OpenGIS® Catalogue Services Specification. Version 2.0.2.”
Open Geospatial Consortium Inc. Ref. OGC 07-006r1

[3] VRETANOS, P. (2005) “Web Feature Service Implementation Specification.” Open
Geospatial Consortium Inc. Ref. OGC 04-094.

[4] WALSH, J. (2007) “On Spatial Data Search.” Terradue White Paper. Ref. T2-Research-07-
003-OnSearch.

[5] CLINTON, D. et al. “OpenSearch 1.1 Specification (draft 4).” Opensearch.org
[6] TURNER, A. “OpenSearch Geo Extension 1.0 (draft 1).” Opensearch.org
[7] GONÇALVES, P. (editor) (2010) “OpenGIS® OpenSearch Geospatial Extensions Draft

Implementation Standard. Version 0.0.2.” Open Geospatial Consortium Inc. Ref. OGC 09-
084r3.

[8] “RSS 2.0 Specification. Version 2.0.11” (2009) RSS Advisory Board.
http://www.rssboard.org/rss-specification.

[9] NOTTINGHAM M., SAYRE, R. (editors) (2005) “The Atom Syndication Format”. IETF.
RFC 4287.

[10] “Creating OpenSearch plugins for Firefox” Mozzila Developer Center.
https://developer.mozilla.org/en/Creating_OpenSearch_plugins_for_Firefox [last visited
Feb 2010].

[11] “Search provider extensibility in Internet Exporer” Microsoft Developer Network.
http://msdn.microsoft.com/en-us/library/cc848862%28VS.85%29.aspx#spe_addprov [last
visited Feb 2010].

[12] “JavaScript Object Notation (JSON)” http://www.json.org/
[13] CLINTON, D. (editor) “OpenSearch Suggestions Extensions 1.1 (draft 1)”. Opensearch.org
[14] BEAUJARDIERE, J. (editor) (2006) “OpenGis® Web Map Server Implementation

Specification. Version 1.3.0.” Open Geospatial Consortium Inc. Ref. OGC 06-042. Section
7.3.3. GetMap Request parameters (pp. 33-37).

[15] “GeoRSS”. http://www.georss.org [last visited Feb 2010].
[16] HERRING, J. R. (editor) (2006) “OpenGis® Implementation Specification for Geographic

information – Simple feature access – Part 1: Common architecture. Version 1.2.0” Open
Geospatial Consortium Inc. Ref. OGC 06-103r3. Chapter 7: Well-known Text
Representation for Geometry (pp.53-63).

[17] BERNERS-LEE, T. et al. (1999) “Hypertext Transfer Protocol – HTTP/1.1” IETF. RFC
2616.

[18] BERNERS-LEE, T. et al. (2005) “Uniform Resource Identifier (URI): Generic Syntax” IETF.
RFC 3986. Chapter 2. Characters.

[19] (2009) “ECMAScript Language Specification. 5th edition.” ECMA International. ECMA-262.
15.1.3. URI Handling Function Properties.

[20] WILSON, T. (editor) (2008) “OGC® KML. Version 2.2.0”. Open Geospatial Consortium Inc.
Ref. OGC 07-147r2.

[21] “Geo microformat draft specification. http://microformats.org/wiki/geo [last visited Feb
2010].

[22] BUTLER, H., DALY, M., DOYLE, A., GILLIES, S., SCHAUB, T., SCHMIDT, C. (2008) “The
GeoJSON Format Specification. Rev. 1.0.”. http://geojson.org/geojson-spec.html [last
visited Feb 2010].

http://run.unl.pt/handle/10362/2536
http://www.rssboard.org/rss-specification
https://developer.mozilla.org/en/Creating_OpenSearch_plugins_for_Firefox
http://msdn.microsoft.com/en-us/library/cc848862%28VS.85%29.aspx#spe_addprov
http://www.json.org/
http://www.georss.org/
http://microformats.org/wiki/geo
http://geojson.org/geojson-spec.html

	OpenSearch-geo: The simple standard for geographic web search engines
	ABSTRACT
	
	 INTRODUCTION
	OPENSEARCH SPECIFICATION
	OPENSEARCH GEO EXTENSION
	Description document
	Request
	Parameters

	Table 1: Compared OpenSearch Geo parameters in both drafts
	Error handling
	Url and character encoding

	Response formats
	Geo microformat in XHTML
	GeoRSS in RSS and Atom
	KML
	GeoJSON

	IMPLEMENTATIONS
	Existing search engines

	Table 2: Existing OpenSearch geo engines, parameters and response formats
	Proposed OpenLayers client

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

