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Abstract:  Topological indices have been applied to build QSAR models for a set of 20 an-

timalarial cyclic peroxy cetals. In order to evaluate the reliability of the proposed linear 

models leave-n-out and Internal Test Sets (ITS) approaches have been considered. The pro-

posed procedure resulted in a robust and consensued prediction equation and here it is 

shown why it is superior to the employed standard cross-validation algorithms involving 

multilinear regression models. 

Keywords: Internal test sets method, topological indices, linear models, QSAR, statistical 

validation. 

 

Introduction 

The objective of the present work is to study true prediction possibilities in a congeneric group of 

antimalarials by using graph-theoretical indices as molecular descriptors. Malaria is one of the most 

concerning diseases in developing countries. The obtaining of an effective vaccine is a far expectative. 

The increasing of resistant strains to chloroquine has raised the search of new potential drugs [1] and 

artemisin-like substances are promising candidates in order to control this epidemic and intensive 

research is being made on cyclic peroxy compounds [1]. 

Graph-theoretical indices, also known as Topological Indices (TI), are non-empirical graph 

invariants calculated from the intuitive representation of the molecules [2-5]. They encode information 

on molecular size, shape and branching, the most important features of the molecular structure. The 
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computation of TI is very swift and they have the advantage of being true structural invariants. That is, 

their values are independent of molecular conformations. Their usefulness in the modeling of physical 

[6,7], chemical and biological [8] properties such as different therapeutical activities as well as 

toxicological properties [9], the drug-like character [10,11] and the molecular similarity/diversity [12-

15], has been firmly established, even within structurally heterogeneous groups of compounds, making 

TI apt for their application in drug design [16-21]. Recent papers deal with the prediction of 

antimicrobial [22,23], specific anti-mycobacterial [24,25], anticonvulsant activities [26], drug-albumin 

binding affinity [27], brain-blood distribution [28], and antioxidant character [29], among others. 

Three-dimensional versions of the graph-theoretical indices have been also proposed [30-32]. But, in 

fact, it is very common to find studies in which the topostructural and topochemical indices explain the 

majority of the system variance, and that the inclusion of molecular geometry-dependent parameters 

does not result in significantly improved predictive models [33]. 

On the other hand, in the QSAR field oftentimes mathematical models are presented as a linear 

equation of some descriptors selected in some way with a good adjustment for the experimental data 

within the series. These models usually come accompanied by a test of validation of leave-one-out 

type in which the value of the property for each molecule is evaluated by an equation obtained with the 

whole rest of the population, in a manner that the selected variables remain fixed. To the apparent 

guarantees that supposes this validation method, when applying the equations to molecules that don't 

appear in the series of training, the results of prediction of the property are usually very poor. In part, 

this is due to the particular procedure which has been followed in order to perform the cross-validation. 

In this work, two related algorithmic designs are explored. First, a standard leave-n-out (LnO) protocol 

normally considered when MLR models are searched. It will be seen how and why this procedure does 

not warrant reliable models, even in the cases for which sound statistical parameters are being 

obtained. The important thing is that in order to obtain reliable models, it is advisable to obtain 

acceptable results for test molecules external to the training group, although the predictions inside it 

were not so remarkable. This encompasses the second method explored here: as it will be seen, 

Internal Tests Sets (ITS) protocol constitutes a more severe LnO procedure. Basically, this method 

internally generates external molecular test sets for which true predictions must be performed. Here, a 

leave-one-out variant will be presented. This means that, one at a time, each molecule in the original 

family is momentarily removed, a model is found using the data of the remaining molecules (even 

relying in an internal LnO protocol) and a prediction is done for the hidden compound. If fact, this 

procedure is equivalent to an n-fold cross-validation test and constitutes an iterative and exhaustive 

process with reposition. The consequence is that a particular prediction equation is built for each 

removed structure and the selection of the relevant variables entering in models can vary among 

equations. Our experience reveals us that this method allows the automatic identification of outliers. 

Calculations 

Data 

This study is made on the set of 20 cyclic peroxy cetals previously published by Posner et al. [34]. 

Table 1 shows the molecular structure of the studied compounds and their activities obtained 

experimentally by a reported method [35]. Activities are expressed as logarithm of IC50 (50% 
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inhibitory concentration, C, in nM units). Thus, the most active compounds show low values. 

 

 

Table 1. Studied molecular structures and experimental activities. 

 
O OMeO

Ar

R

R 
 

Entry Ar R, R Log(IC 50/nM) 

1 Ph Me, Me 3.041 

2 Ph cyclopentyl 2.279 

3 Ph cyclohexyl 2.447 

4 Ph cycloheptyl 2.342 

5 4-MeOPh cyclobutyl 2.204 

6 4-MeOPh cyclohexyl 2.255 

7 4-MeOPh cycloheptyl 2.322 

8 3,4,5-(MeO)3Ph cycloheptyl 2.079 

9 4-CF3OPh cycloheptyl 1.785 

10 4-ClPh cycloheptyl 1.763 

11 4-FPh cycloheptyl 1.929 

12 4-MeSPh cycloheptyl 1.892 

13 4-MeS(O2)Ph cycloheptyl 1.491 

14 4-EtPh cycloheptyl 2.255 

15 4-MeSPh cyclohexyl 2.204 

16 4-MeS(O2)Ph cyclohexyl 1.748 

17 4-O2NPh cyclohexyl 1.663 

18 4-ClPh cyclohexyl 2.000 

19 4-FPh cyclohexyl 2.301 

20 4-F3CPh cyclohexyl 2.146 

Descriptors 

Originally, 90 descriptors were computed for each structure. These graph-theoretical indices are 

briefly defined in table 2. Detailed definitions of these descriptors can be found in references 19, 36-

41.  
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Table 2. Used descriptors. 

 
Symbol Name Definition Reference 

N Molecular size Number of non-hydrogen atoms. 19 
Vk 
 

k=3,4 
Vertices of degree k Number of atoms having k bonds, σ or π, to non-hydrogen 

atoms. 
19 

R Ramification Number of single structural branches. 19 
W Wiener path number Sum of the distances between any two atoms in terms of bonds. 36 
L Length Maximal distance between atoms in terms of bonds. 19 

PRk 
 

k=0-3 

Pairs of ramifications at 
distance k 

Number of pairs of single branches at distance k in terms of 
bonds. 

19 

kχt 

 
k=0-4 

t=p,c,pc 

Randić-like indices of 
order k and type path (p), 

cluster (c) and path-cluster 
(pc) 

∑ ∏
=

−

∈













δ=χ

t
k

j

n

j i
it

k

1

2/1

S

 

δi, number of bonds, σ or π, of the atom i to non-hydrogen 
atoms. Sj,  jth sub-structure of order k and type t. 

37,38 

kχt
v 

 

k=0-4 
t=p,c,pc 

Kier-Hall indices of order k 
and type path (p), cluster 
(c) and path-cluster (pc) 

∑ ∏
=

−

∈













δ=χ

t
k

j

n

j i
it

k

1

2/1

S

vv  

δi
v, Kier-Hall valence of the atom i. 

Sj,  jth sub-structure of order k and type t. 

39 

Gk 

 
k=1-5 

Topological charge indices 
of order k 

∑∑ δ−=
1-N

1=

N

1+

),(G
i

ij
j=i

jiijk k DMM  

M=AQ, product of the adjacency and inverse squared distance 
matrices for the hydrogen-depleted molecular graph. D, distance 

matrix. δ, Kronecker delta 
 

19,40  

Gk
v 

 

k=1-5 

Valence topological charge 
indices of order k 

∑∑ δ−=
1-N

1=

N

1+

vvv ),(G
i

ij
j=i

jiijk k DMM  

M v=AvQ, product of the electronegativity-modified adjacency 
and inverse squared distance matrices for the hydrogen-depleted 

molecular graph. D, distance matrix. δ, Kronecker delta 
 

19,40 

Jk 

 
k=1-5 

Pondered topological 
charge indices of order k 1N

G
J

−
= k

k
 19,40 

Jk
v 

 

k=1-5 

Pondered valence 
topological charge indices 

of order k 1N

G
J

v
v

−
= k

k
 19,40 

kDt 

 
k=0-4 

t=p,c,pc 

Connectivity differences of 
order k and type path (p), 

cluster (c) and path-cluster 
(pc) 

vD t
k

t
k

t
k χ−χ=  19 

Ek 

 
k=1-5 

Topological charge  
differences of order k kkk GGE v −=  41 

F  k 

 
k=1-5 

Pondered topological 
charge  differences of order 

k 
kkk JJF v −=  

41 

kCt 

 
k=0-4 

t=p,c,pc 

Connectivity quotients of 
order k and type path (p), 

cluster (c) and path-cluster 
(pc) 

v
C

t
k

t
k

t
k

χ
χ

=  19 

kQt 

 
k=0-4 

t=p,c,pc 

Inverse connectivity 
quotients of order k and 
type path (p), cluster (c) 

and path-cluster (pc) 
t

k
t

k

t
k

χ
χ=

v

Q  41 

CGk 

 
k=1-5 

Topological charge  
quotients of order k vG

G
CG

k

k
k =  

41 

QGk 

 
k=1-5 

Inverse topological charge  
quotients of order k 

k

k
k G

G
QG

v

=  41 
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The original data matrix dimension was 20×90. The complexity of this primary set of indices was 

reduced resorting to the Unsupervised Forward Selection (UFS) algorithm due to Whitley et al. [42]. 

UFS procedure eliminates redundant vectors of descriptors according to the collinearities present in the 

data. In this way the original data matrix has been slightly reduced to dimension 20×84, avoiding the 

presence of descriptors that did not bring forward any information. Despite only a few vectors have 

been discarded, this prevents for the generation of linear dependences when constructing MLR models, 

especially in the cases where several compounds are iteratively eliminated during a LnO or ITS 

procedure (see below). 

Modeling 

A first test of predictability was performed with the 20 molecules of table 1. It was a standard LnO 

cross-validation, with n ranging from 0 to 2, using Multilinear Regression (MLR) of all the possible 

subsets of k independent variables, where k varies between 1 and 5. In order to select an optimal subset 

of variables for each n and each k, the following Algorithm A was used: 
 
 

Algorithm A(N,n,m,k): Standard MLR-LnO for N molecules for obtaining linear models involving k 
indices selected from a set of m. 

1. Generate all the M= 








k

m
 combinations of k descriptors taken from the group of m. For every 

combination: 
2. Perform the LnO test: 

2.1. Left it apart all the distinct 








n

N
 sets of n molecules taken from the group of N. For 

each set, compute the MLR fitting equation involving the remaining N-n ones. Apply the 
obtained linear model to the excluded molecules. 

2.2. Previous step furnishes with 








1-n

1-N
 predictions by molecule. Evaluate the mean 

value. This constitutes the consensued set of N predictions attached to the k 
descriptors. 

2.3. Compute the correlation coefficient (Rcv) between the N experimental values and the 
consensued ones. 

3. Final selected variables are those attached to the combination having the highest Rcv coefficient 
in step 2.3 and, additionally, an acceptable statistical significance (in this work, for each 
coefficient in the MLR model the probability to be zero is lesser than 1%). 

4. Give as final model the MLR fitting equation obtained considering all the N molecules and the 
selected variables in the previous step. 

 

It is well known that algorithm A overestimates the predictive capabilities of the selected models 

[24]. This is so because the final model arises from a selection within a very big pool of candidates (in 

general the external loop number 1 may generate millions of combinations) and the risk of 

overparametrization is evident as it is quite probable to find a combination of indices well correlated 

with the experimental property vector. Despite to this drawback, when considering MLR or other 

linear techniques this standard algorithm is widely used for its simplicity and execution speed, as steps 

2.1 and 2.2 do not need to be explicitly reproduced for MLR models, as there is a general theorem that 
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allows obtaining the results in an even faster way [43]. Even more, the statistical parameters presented 

accompanying the results (such as the F one) where originally designed to evaluate a single model and 

not a model selected from a big pool of candidates [44]. This feature helps to optimistically interpret 

the obtained fittings. 

A second and more robust test of predictability was also performed with the data, this time using the 

ITS method. It also constitutes a LnO cross-validation, with n ranging from 0 to 2, and considering all 

the possible subsets of k independent variables, where k varies between 1 and 5. In order to select an 

optimal subset of variables for each n and each k values, the following Algorithm B implements a 

L1O-ITS protocol: 
 
 

Algorithm B(N,n,m,k): MLR-LnO/L1O-ITS method for N molecules for obtaining linear models involving 
k indices taken from a set of m. 
 

1. Consider the N molecules with known activity and left apart one at a time (this is the L1O part in 
the ITS formalism). For each set of N-1 remaining molecules: 

1.1. Apply the A(N-1,n,m,k) algorithm. 
1.2. Consider the MLR model obtained in previous step and apply it over the molecule 

excluded in step 1, obtaining in this way the property value prediction and the 
corresponding equation. 

 

 

As it can be seen from the Algorithm B, for each particular value of k, it provides with a single 

model for each left out molecule. Therefore, in this case predictions are made without supervision and 

the process of selection of subset variables is performed without taking into account the information 

relative to the excluded structure (the data of the molecule left out are completely hidden to the system 

at every step) and obtaining in this way a true prediction. Evidently, algorithm B is much more severe 

than Algorithm A: first, because it is much more time consuming (approximately N times more as this 

is the number of required internal calls to Algorithm A) and, second, because it gives true external 

simulated predictions, which can be more unstable. Respect to this last point, the advantage relies in 

the fact that if consistent predictions are obtained, they have an extra value as they where obtained 

simulating external predictions. In this way, ITS procedures can be interpreted as a test for assessing 

the true predictive capabilities of the proposed models. 

Results and Discussion 

Results of prediction performance by using Algorithm A are shown in table 3. In order to compare 

models (despite the word of caution above) even in the case of involving distinct number of 

parameters, we revert to the clogPP term due to Pecka and Ponec [45]. This statistical parameter is the 

co-logarithm of the probability of finding a linear model involving a certain number of descriptors and 

objects and having an equal or greater value of the correlation coefficient. It has been recently 

demonstrated that this is equivalent to the computation of the statistical F term [46]. Higher values of 

clogPP imply greater model reliability. In general, it would be ideal to find a maximal value for 

clogPP, indicating how many descriptors must be taken in the model. 
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Table 3. Performance prediction by Algorithm A (MLR-LnO). 

 
 Number of descriptors (k) 

Model  1 2 3 4 5 
R2 0.611 0.778 0.879 0.948 0.965 

Leave-0-out (MLR) 
clogPP 4.32 5.55 6.84 8.70 8.98 

R2 0.552 0.658 0.827 0.902 0.945 
Leave-1-out 

clogPP 3.76 3.96 5.60 6.67 7.62 
R2 0.552 0.658 0.826 0.902 0.946 

Leave-2-out 
clogPP 3.76 3.76 5.59 6.68 7.63 

 

From Table 3, it seems that the most the number of variables increases, the best the equations 

obtained seems to be. This is a typical result and in some cases a maximum value of R2 or clogPP can 

be achieved along a series in k or in n. In the particular case shown here such a maximum value is not 

found, but some L1O and L2O results are identical as the same final models are selected. 

By contrast, when algorithm B is executed, the prediction performance varies irregularly, as it can 

be seen in Table 4. ITS results in Table 4 present a qualitative and quantitative improvement when 5 

descriptors are being considered in the obtaining of internal models (combinations of 6 descriptors 

where not tested due to the big computation time required). This shows how ITS procedures are 

distinct in nature from simple overall fitting approaches. Authors interpret that the nature of the present 

QSAR problem needs the inclusion of at least 5 descriptors in order to deal with the molecular 

diversity and to achieve an acceptable molecule-property relationship description. This is revealed by 

the ITS procedure, as it forces to make individual and transparent predictions for each one of the 

compounds. The ITS algorithm can be refined implementing an overall L2O or higher protocols 

(making predictions for a couple or more molecules at a time) in step number 1. However, according to 

our experience the results of L2O are only slightly different from the results of L1O and they will not 

be shown here. Furthermore, in our case this was not necessary since at the L1O level a quantitative 

and instructive leap is already found when passing from k = 3 to 4 as presented in Table 4. The best 

models are the ones involving 5 descriptors considering internal L0O (ordinary MLR) or L2O models 

(L3O models are much more time consuming and have not been explored here). 

 

Table 4. Performance prediction by algorithm B (MLR-LnO/ITS-L1O). 

 
 Number of descriptors (k) 

Model  1 2 3 4 5 
R2 0.044 0.140 0.003 0.525 0.695 

Leave-0-out (MLR) 
clogPP 0.43 0.56 0.00 1.73 2.56 

R2 0.044 0.044 0.016 0.210 0.659 
Leave-1-out 

clogPP 0.43 0.16 0.02 0.36 2.25 
R2 0.094 0.044 0.016 0.211 0.676 

Leave-2-out 
clogPP 0.73 0.17 0.02 0.36 2.39 
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Figure 1. The predictions obtained from the model involving 5 descriptors for the ITS-L1O 
procedure. Internal models where obtained by ordinary MLR. R2=0.695, clogPP=2.56. 
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For instance, the predictions obtained by the MLR models are displayed in Figure 1. Similar results 

are obtained by the L1O or L2O models. It must be noted that in Figure 1, each depicted point 

corresponds to a single prediction and is attached to a particular MLR equation model. Thus, in fact we 

are dealing with 20 distinct models. This constitutes another advantage of ITS methodologies: as it 

provides many equations, the possibility of performing a statistical study is open. For the particular 

case we are dealing with, predictions are reasonable except for two cases. The first one, the most 

diverging point, is attached to entry 1 in Table 1, which corresponds to the structure having not only an 

extreme value for the biological property, but also presenting the unique acyclic R,R structure (see 

Table 1). The second case corresponds to the entry number 20 in Table 1. Visually, there is no 

structural evidence to consider this molecule as a special case. This shows how the ITS protocol helps 

to detect outliers: the fist one possibly due to structural reasons or to the fact of being an extrapolation, 

the second one due to non evident reasons related to descriptor or model deficiencies. 

Table 5 shows the frequency with which every index appears in the final 20 models involving 5 

descriptors each. As it can be seen in the table, only 12 descriptors appear in models more than once. 

In Table 5 the data are sorted according to the number of times the index was selected in models. The 

indices G5, J3
v, 3Cc, QG3 and 3χp are the most often used. Additionally, in all the cases in the table each 

index appears in models preserving the corresponding coefficient sign. This feature constitutes an 

indicator for model robustness and, additionally, permits to qualitatively correlate each index with the 

experimental property variation. 

Actually, the model involving the 5 most voted descriptors in Table 5 coincides with the one 

presented in Table 3 for a L0O (MLR) procedure. Equation 1 below shows the explicit model formula 

and the attached statistical data. Figure 2 shows the corresponding adjusted predictions against the 

experimental ones. For this particular case, it is revealed that Equation 1 could be obtained in advance 

by the first numerical investigations which were carried out (Table 3), but ITS method allowed us to 

corroborate that the selected model bears extra value due to the coefficients sign stability and the 

popularity along all the individual models surveyed in Table 5. 
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Table 5. Frequency of use of the indices along the 20 MLR models of 5 descriptors selected by 

Algorithm B. 

 

Cardinal Index 
Frequency 

of use 

Coefficient 

sign 

1 G5 16 – 

2 J3
v
 14 + 

3 3Cc 12 + 

4 QG3 12 – 

5 3χp 10 + 

6 E3 3 + 

7 G4 3 – 

8 J3 3 + 

9 G3
v 3 + 

10 4Cpc
 2 + 

11 J5
 2 + 

12 4Qc 2 – 

 

Equation 1. Global MLR model involving the 5 descriptors selected in the ITS-L1O procedure. 
Coefficient intervals are given at the 95% confidence level. All significance levels for coefficients are 

less than 0.3% (probability for each coefficient to be zero). 

Log(IC50/nM) = 0.241563(±0.077253) 3χp – 2.23930(±0.47090) G5 + 35.3656(±5.8769) J3
v 

 + 0.798064(±0.165968) 3Cc – 0.825473(±0.482103) QG3 – 2.78771(±1.25679) 

n=20, R2=0.965 (clogPP=8.98), F=77.59, p<0.00001. 

Figure 2. Fitting results obtained by using Equation 1. 
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Conclusion 

A QSAR study of a set of antimalarial agents has been performed. It has been shown that the 

reliability of the resulting model is crucially influenced by its quality. Standard MLR Leave-n-out 

procedures with supervision have a much lower predictive power than allowing the process to be 

unsupervised. This is especially due to hidden overparametrization or instability problems. The last 

choice implemented in terms of Internal Tests Sets protocol, also prevents from these eventual 

problems and can be additionally useful for outlier detection. ITS models are more valuable because 

they can perform potentially well in interpolations and extrapolation predictions. 

Acknowledgements 

The authors acknowledge the financial of this research to the Red Temática de Investigación 

Cooperativa RICET (Red de Investigación de Centros de Enfermedades Tropicales C03/04) of the 

Spanish Ministry of Health. It is also acknowledged the support by the grant number BQU2003-07420-

C05 of the Ministerio de Ciencia y Tecnología within the Spanish Plan Nacional I+D. Three 

anonymous referees are also acknowledged for their kind comments and suggestions that improved the 

presentation of this article. 

References 

1. Biagini, G. A.; O'Neill, P. M.; Nzila, A.; Ward, S. A.; Bray, P. G. Antimalarial chemotherapy: 

young guns or back to the future? Trends Parasitol. 2003, 19, 479-487. 

2. Kier, L. B.; Hall, L. H. Molecular Connectivity in Chemistry and Drug Research; Academic Press: 

New York, 1976. 

3. Pogliani, L. From molecular connectivity indices to semiempirical connectivity terms: Recent 

trends in graph theoretical descriptors. Chem. Rev. 2000, 100, 3827-3858. 

4. Estrada, E.; Uriarte, E. Recent Advances on the Role of Topological Indices in Drug Discovery 

Research. Curr. Med. Chem. 2001, 8, 1573-1588. 

5. Gozalbes, R.; Doucet, J. P.; Derouin, F. Application of topological descriptors in QSAR and drug 

design. Curr. Drug Targets Infect. Disord. 2002, 2, 93-102. 

6. Basak, S. C.; Gute B. D.; Grunwald, G. A Comparative Study of Topological and Geometric 

Parameters in Estimating Normal Boiling Point and Octanol/Water Partition Coefficient J. Chem. 

Inf. Comput. Sci. 1996, 36, 1054-1060. 

7. Tomovic, Z.; Gutman, I. Modeling boiling points of cycloalkanes by means of iterated line graph 

sequences. J. Chem. Inf. Comput. Sci. 2001, 41, 1041-1045.  

8. Pogliani, L. The Molecular Connectivity Method: A Powerful Tool in the Study of Biologically 

Relevant Molecules Curr. Top. Pept. Prot. Res. 1994, 1, 119-134. 



Int. J. Mol. Sci. 2006, 7   

 

 

466

9. Estrada, E.; Patlewicz, G.; Chamberlain, M.; Basketter, D.; Larbey, S. Computer-aided knowledge 

generation for understanding skin sensitization mechanisms: the TOPS-MODE approach. Chem. 

Res. Toxicol. 2003, 16, 1226-1235.  

10. Gálvez, J.; Julián-Ortiz, J. V. de; García-Domenech, R. General topological patterns of known 

drugs. J. Mol. Graphics Model. 2001, 20, 84-94.  

11. Murcia-Soler, M.; Pérez-Giménez, F.; García-March, F. J.; Salabert-Salvador, M. T.; Díaz-

Villanueva, W.; Castro-Bleda, M. J. Drugs and nondrugs: an effective discrimination with 

topological methods and artificial neural networks. J. Chem. Inf. Comput. Sci. 2003, 43, 1688-

1702. 

12. Johnson, M. A. ; Maggiora G. M. Concepts and Applications of Molecular Similarity; J. Wiley & 

Sons: New York,1990. 

13. Hall, L. H.; Kier, L. B.; Brown, B. B. Molecular Similarity Based on Novel Atom Type 

Electrotopological State Indices. J. Chem. Inf. Comput. Sci. 1995, 35, 1074-1080. 

14. Carbo-Dorca, R.; Gironés, X.; Mezey, P.G.; The fundamentals of Molecular Similarity; Kluwer 

Academic/Plenum publishers : New York, 2001. 

15. Ivanciuc, O.; Klein, D. J. Computing wiener-type indices for virtual combinatorial libraries 

generated from heteroatom-containing building blocks. J. Chem. Inf. Comput. Sci. 2002, 42, 8-22. 

16. Kier, L. B.; Hall, L. H.; Frazer J. W. Design of Molecules from Quantitative Structure-Activity 

Relationship Models. I Information Transfer Between Path and Vertex Degree Counts. J. Chem. 

Inf. Comput. Sci. 1993, 33, 143-147. 

17. Hall, L. H.; Kier, L. B.; Frazer, J. W. Design of Molecules from Quantitative Structure-Activity 

Relationship Models. II Derivation and Proof of Information Transfer Relating Equations. J. Chem. 

Inf. Comput. Sci. 1993, 33, 148-152. 

18. Hall, L. H.; Kier, L. B. Design of Molecules from Quantitative Structure-Activity Relationship 

Models. III Role of Higher Order Path Counts: Path Three, J. Chem. Inf. Comput. Sci. 1993, 33, 

598-603. 

19. Gálvez, J.; García-Domenech, R.; Julián-Ortiz, J. V. de; Soler. R. Topological approach to drug 

design. J. Chem. Inf. Comp. Sci. 1995, 35, 272-284. Errata: J. Chem. Inf. Comp. Sci. 1995, 35, 938. 

20. Zheng, W.; Cho, S. J.; Tropsha, A. Rational Combinatorial Design. 1. Focus 2-D: A New 

Approach to the Design of Targeted Combinatorial Chemical Libraries. J. Chem. Inf. Comput. Sci. 

1998, 38, 251-258. 

21. Zheng, W.; Cho, S. J.; Tropsha, A. Rational Combinatorial Design. 2. Rational Design of Targeted 

Combinatorial Peptide Libraries Using chemical Similarity Probe and Inverse QSAR Approaches. 

J. Chem. Inf. Comput. Sci. 1998, 38, 259-268. 



Int. J. Mol. Sci. 2006, 7   

 

 

467

22. Jaén-Oltra, J.; Salabert-Salvador, M.T.; García-March, F.J.; Pérez-Giménez, F.; Tomás, F. 

Artificial neural network applied to prediction of fluorquinolone antibacterial activity by 

topological methods. J. Med. Chem. 2000, 43, 1143-1148.  

23. Mut-Ronda, S.; Salabert-Salvador, M. T.; Duart, M. J.; Antón-Fos, G. M. Search compounds with 

antimicrobial activity by applying molecular topology to selected quinolones. Bioorg. Med. Chem. 

Lett. 2003, 13, 2699-2702. 

24. Besalú, E.; Ponec, R.; Julián-Ortiz, J. V. de Virtual generation of agents against Mycobacterium 

tuberculosis. A QSAR study. Mol. Divers. 2003, 6, 107-120.  

25. García-García, A.; Gálvez, J.; Julián-Ortiz, J. V. de; García-Domenech, R.; Muñoz, C.; Guna, R.; 

Borrás, R. New agents active against Mycobacterium avium complex selected by molecular 

topology: a virtual screening method. J. Antimicrob. Chemother. 2004, 53, 65-73. 

26. Bruno-Blanch, L.; Gálvez, J.; García-Domenech, R. Topological virtual screening: a way to find 

new anticonvulsant drugs from chemical diversity. Bioorg. Med. Chem. Lett. 2003, 13, 2749-2754. 

27. Hall, L. M.; Hall, L. H.; Kier, L. B. Modeling drug albumin binding affinity with e-state 

topological structure representation. J. Chem. Inf. Comput. Sci. 2003, 43, 2120-2128.  

28. Luco, J. M. Prediction of the brain-blood distribution of a large set of drugs from structurally 

derived descriptors using partial least-squares (PLS) modeling. J. Chem. Inf. Comput. Sci. 1999, 

39, 396-404. 

29. Estrada, E.; Quincoces, J. A.; Patlewicz, G. Creating molecular diversity from antioxidants in 

Brazilian propolis. Combination of TOPS-MODE QSAR and virtual structure generation. Mol. 

Divers. 2004, 8, 21-33.  

30. Torrens, F. A new topological index to elucidate apolar hydrocarbons. J. Comput.-Aided Mol. 

Design  2001, 15, 709. 

31. Besalú, E.; Gironés, X.; Amat, L.; Carbó-Dorca, R. Molecular quantum similarity and the 

fundamentals of QSAR. Acc. Chem. Res. 2002, 35, 289-295. 

32. Golbraikh, A.; Bonchev, D.; Tropsha, A. Novel ZE-isomerism descriptors derived from molecular 

topology and their application to QSAR analysis. J. Chem. Inf. Comput. Sci. 2002,  42, 769-787.  

33. Basak, S. C.; Mills, D. R.; Balaban, A. T.; Gute, B. D. Prediction of mutagenicity of aromatic and 

heteroaromatic amines from structure: a hierarchical QSAR approach. J. Chem. Inf. Comput. Sci. 

2001, 41, 671-678.  

34. Posner, G. H.; O’Dowd, H.; Ploypradith, P.; Cumming, J. N.; Xie, S.; Shapiro, T. A. Antimalarial 

cyclic peroxy ketals. J. Med. Chem. 1998, 41, 2164-2167. 

35. Posner, G. H.; González, L.; Cumming, J. N.; Klinedinst, D.; Shapiro, T. A. Synthesis and 

antimalarial activity of heteroatom-containing bicyclic endoperoxides. Tetrahedron 1997, 53, 37-

50. 



Int. J. Mol. Sci. 2006, 7   

 

 

468

36. Wiener, H. Structural determination of Paraffin Boiling. Points. J. Am. Chem. Soc. 1947, 69, 17-20. 

37. Kier, L. B.; Murray, W. J.; Randië, M.; Hall, L. H. Molecular connectivity V: connectivity series 

concept applied to density. J. Pharm. Sci. 1976, 65, 1226-1230. 

38. Julián-Ortiz, J. V. de; Gálvez, J., Muñoz-Collado, C., García–Domenech, R.; Gimeno–Cardona, C. 

Virtual combinatorial syntheses and computational screening of new potential anti-herpes 

compounds. J. Med. Chem. 1999, 42, 3308–3314. 

39. Kier, L. B.; Hall, L. H. General definition of valence delta-values for molecular connectivity. J. 

Pharm. Sci. 1983, 72, 1170–1173. 

40. Gálvez, J.; García-Domenech, R.; Salabert, M. T.; Soler, R. Charge indexes. New topological 

descriptors. J. Chem. Inf. Comp. Sci. 1994, 34, 520-525. 

41. Julián-Ortiz, J.V. de; Besalú, E.; García-Domenech, R. True Prediction by Consensus for Small 

Sets of Cyclooxigenase-2 Inhibitors. Indian J. Chem., Sect. A. 2003, 42A, 1392-1404. 

42. Whitley, D.C., Ford, M.G.; Livingstone, D. Unsupervised forward selection: a method for 

eliminating redundant variables. J. Chem. Inf. Comput. Sci. 2000, 40, 1160-1168. 

43. Besalú, E. Fast Computation of Cross-Validated Properties in Full Linear Leave-Many-Out. 

Procedures. J. Math. Chem. 2001, 9, 191-204. 

44. Livingstone, D. J.; Salt, D. W. Judging the significance of multiple linear regression models. J. 

Med. Chem. 2005, 48, 661-663. 

45. Pecka, J.; Ponec, R. Simple Analytical Method for Evaluation of Statistical Importance of. 

Correlations in QSAR Studies. J. Math. Chem. 2000, 27, 13-22. 

46. Besalú, E.; de Julián-Ortiz, J. V. Equivalence of the Pecka–Ponec correlation probability and the 

statistical F significance for MLR models. J. Math. Chem. 2004, 36, 361-363. 

© 2006 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes. 


