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Abstract. The front speed of the Neolithic (farmer) spread in Europe
decreased as it reached Northern latitudes, where the Mesolithic (hunter-
gatherer) population density was higher. Here, we describe a reaction–diffusion
model with (i) an anisotropic dispersion kernel depending on the Mesolithic
population density gradient and (ii) a modified population growth equation.
Both effects are related to the space available for the Neolithic population. The
model is able to explain the slowdown of the Neolithic front as observed from
archaeological data.
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1. Introduction

The spread of the Neolithic, one of the most important socioeconomic changes in human
history, has been widely studied using physical models in recent years (for a review, see [1]).
The Neolithic expansion has been tackled from different approaches such as age-structured
population models [2], population spread along rivers [3] and settlement formation [4].

Here, we will focus on the fact that the spread of the Neolithic in Europe was not
homogeneous from the macroscopic point of view. Archaeological observations show that, as
the front propagated from the Near East across Europe, its speed slowed down as higher latitudes
were reached [5].

This decrease of the front speed can be intuitively seen from figure 1, which shows the
arrival time of the Neolithic across Europe. The arrow on the map represents the average
direction along which the expansion from the Near East to the Baltic Sea took place (within
the rectangle). In figure 1, it can be seen that the distance advanced during 500 years is lower on
reaching northern latitudes (a quantitative analysis will be presented in section 5).

Although it would seem that the more intuitive reason for the decrease in speed is the
time needed by crops to adapt to temperate climates, evidence exists that this effect was, in fact,
minimal [6]. Indeed, when establishing their settlements in colder regions, Neolithic populations
just cultivated the more adaptable crops and dropped the rest.

From archaeological studies, one of the most accepted reasons for the presence of
a gradient in the front speed when spreading to the North of Europe is the presence of
Mesolithic hunter-gatherer populations [7], which had higher densities at Northern latitudes.
Thus, motivated by the observational data, in this paper we extend a homogeneous model [8] to
study how the presence of indigenous Mesolithic populations affects the speed of the Neolithic
invasion front.

We describe a reaction–diffusion model for Neolithic population density with a direction-
dependent dispersion kernel determined by the space dependence of the Mesolithic population
density. We also introduce in this model the effect of the presence of Mesolithic populations
on the Neolithic population growth process. We compare the results from the model with
archaeological data [9].

2. Anisotropic dispersion kernel

In the case we assumed that the spread of the Neolithic front took place in a homogeneous
space, it would be reasonable to consider that the probability φ to jump would be the same in
all directions; thus, mathematically we would have [8, 10]

φ(x, y; θ,1)=
1

2π
ψ(1), (1)

that is, the jump probability could be expressed as a function ψ that depends only on the jump
distance, 1, and is independent of the jump direction θ or the position in space (x, y). We have
assumed that

∫
∞

0 1ψ(1)d1= 1.
However, Neolithic individuals do not move in a homogeneous space, since the density of

Mesolithic individuals they encounter depends on the position and direction they move. Then,
for a given position (x, y), the Neolithic individuals will preferably move in the direction along
which they encounter a lower Mesolithic population density, i.e. along the direction where more
free space is available.
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Figure 1. Chronology of the Neolithic wave of advance in Europe. Map obtained
by interpolation of 765 early Neolithic data published by Pinhasi [9]. The arrow
corresponds to the y-direction in our model.

Thus, we can assume that, in this situation, the jump distance probability distribution (1)
will be modulated by the available space, s, at the final jump point (x +1x , y +1y), in each
direction θ = tan−1(1y/1x) and for every jump distance 1=

√
12

x +12
x . Thus, the dispersion

kernel is now of the form

φ(x, y; θ,1)= αs(x +1x , y +1y)ψ(1), (2)

where α is a normalization constant.
We now need a mathematical expression for the available space s(x +1x , y +1y). If Mmax

is the carrying capacity for Mesolithic populations and M(x, y) the actual density of Mesolithic
individuals at the position (x, y), then the fraction of occupied space at this point can be
expressed as

m(x, y)=
M(x, y)

Mmax
. (3)

Thus, the fraction of space available for Neolithic settlements is

s(x +1x , y +1y)= 1 − m(x +1x , y +1y) (4)

and the space-dependent jump distance probability (2) can be written as

φ(x, y; θ,1)= α[1 − m(x +1x , y +1y)]ψ(1). (5)
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For simplicity, we assume that the variation in Mesolithic population density takes place mainly
in one direction, y, in figure 1, whereas it remains approximately constant along the x-direction,
i.e.

φ(x, y; θ,1)= α[1 − m(y +1y)]ψ(1). (6)

Now, Taylor-expanding the term within square brackets in equation (6), we obtain that the space-
dependent jump distance probability is approximately

φ(x, y; θ,1)= α

[
1 − m(y)−

∂m

∂y
1 sin θ

]
ψ(1). (7)

Normalizing equation (7), we obtain that the normalization constant α is

α =
1

2π

1

1 − m(y)
, (8)

and the jump distance probability becomes

φ(x, y; θ,1)=
1

2π

[
1 −

∂m/∂y

1 − m(y)
1 sin θ

]
ψ(1). (9)

We can see from equation (9) that if the Mesolithic (indigenous) population density M increases
along the direction y, then the probability of Neolithic invaders to jump forward (θ = π/2) is
minimum and the probability to jump backwards (θ = 3π/2) is maximum.

3. Population growth

In population dynamics, a commonly used expression to describe the first-order variation in
population density due to population growth (reproduction minus deaths) is the logistic growth
equation [8, 11, 12],

F(N )=
∂N

∂t

∣∣∣∣
g

= aN

(
1 −

N

Nmax

)
, (10)

where a is the initial growth rate, Nmax the carrying capacity and N the density of the Neolithic
population. The subindex g stands for population growth, i.e. for variations in population density
N due to births and deaths (but not to dispersal).

The logistic equation (10) describes an exponential growth for low values of population
density, whereas it is self-limiting for large densities, saturating at Nmax. Note that the limiting
term (within brackets) in equation (10) is similar to expression (4) for the available space that
we have used in the previous section. Therefore, one can say that population growth, according
to equation (10), is limited by the fraction of available space [12].

Now, equation (10) corresponds to a single population reproducing without external
competition. But when we have a second population using the same space and resources,
the presence of this additional population must also contribute to limiting the growth process.
Thus, we can modify equation (10) so that the growth function of the Neolithic population, N ,
also includes the effect of the fraction of space occupied by Mesolithic populations, M [12].
A population density M occupies a fraction M/Mmax of the space available, in addition to
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that occupied by N . Therefore, N within parentheses in equation (10) should be replaced by
(N + (M/Mmax)Nmax). Then,

F(N )= aN

(
1 −

N

Nmax
−

M

Mmax

)
. (11)

Growth functions similar to (11) have been applied to competing micro-organisms [12].

4. Evolution equation

We can describe the variation in the Neolithic population density N , during a generation time T ,
as the sum of the variations due to the dispersion process and due to population growth (see [8]
for details),

N (x, y, t + T )− N (x, y, t)

=

∫ ∫
N (x −1x , y −1y, t)φ(x, y; θ,1)d1x d1y − N (x, y, t)

+[N (x, y, t + T )− N (x, y, t)]g, (12)

where, as in equation (10), the subindex g stands for population growth (as opposed to dispersal,
which corresponds to the first two terms on the right-hand side).

Now, if we Taylor-expand equation (12) up to first order in time and to second order in
space, we find that

∂N

∂t
= −Ux

∂N

∂x
− Uy

∂N

∂y
+ Uxy

∂2 N

∂x∂y
+ Dx

∂2 N

∂x2
+ Dy

∂2 N

∂y2
+ F(N ). (13)

We could also have Taylor-expanded equation (12) up to second order in time [8], finding in
this case slightly lower speeds; however, the conclusions we find here would not change.

The direction-dependent diffusion coefficients Dx and Dy , for our kernel (9), are

Dx =

〈
12

x

〉
2T

=

〈
12

〉
4T

≡ D, (14)

Dy =

〈
12

y

〉
2T

=

〈
12

〉
4T

≡ D, (15)

where T is the generation time, and the mean value of a variable, for example 〈12
x〉, is defined

as 〈
12

x

〉
=

∫
∞

−∞

∫
∞

−∞

12
xφ(1x ,1y)d1x d1y. (16)

The advection terms Ux , Uy and Uxy , using the kernel (9), are

Ux =
〈1x〉

T
= 0, (17)

Uy =

〈
1y

〉
T

= −2D
∂m/∂y

1 − m(y)
, (18)
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Uxy =

〈
1x1y

〉
T

= 0. (19)

As could be expected from the fact that the jump probability distribution (9) depends only on
1y =1sin θ but not on 1x , we have obtained advection only in the y-direction, equation (18).

5. Front speed

As usual, we apply that for t → ∞ the front can be considered locally planar; thus for y → ∞

we can consider the variation in the x-direction negligible [13], and the evolution equation (13)
for y → ∞ becomes

∂N

∂t
= 2D

∂m/∂y

1 − m(y)

∂N

∂y
+ D

∂2 N

∂y2
+ F(N ), (20)

where we will use equation (11) for the growth function F(N ).
As usual [13], we look for constant-shaped solutions to equation (20) with the form

N = N0 exp[ − λ(y − ct)] for N ' 0. As the Neolithic population density N at the leading edge
of the front is low, F(N ) in equation (11) can be linearized, and we obtain from equation (20)

λ=
(c − Uy)±

√
(c − Uy)2 − 4aD(1 − m)

2D
. (21)

In order for λ to be real, the term within the square-root must be non-negative, so the front speed
c is

c = 2
√

aD
√

1 − m(y)− 2D
∂m/∂y

1 − m(y)
. (22)

Equation (22) can be also obtained, without the need for equation (21), by noting that
equation (20) is simply Fisher’s equation with (i) a modified growth term (11), which after
linearization leads to a modified initial growth rate ã = a(1 − m(y)), and (ii) an advection
velocity v = 2D ∂m/∂y

1−m(y) . Thus, the speed of front solutions to equation (20) must be Fisher’s,

namely 2
√

ãD, minus the advection velocity, in agreement with equation (22). Moreover,
the front speed obtained from the linear analysis described above is a lower bound to the front
speed c. However, it is easy to apply variational analysis [14] and derive an upper bound with
the same result, so equation (22) is the exact front speed for equation (20).

From equation (22), we see that if the Mesolithic population density increases with y,
then the front speed decreases because of two effects: (i) the higher the gradient of the reduced
Mesolithic density m, the higher the correction on the front speed; (ii) the speed also changes if
there is less available space for the Neolithic population, i.e. for lower values of s = (1 − m(y))
(if s = 1, this second effect disappears).

To see the actual behavior of the front speed, equation (22), we need an expression for the
variation of the Mesolithic population density M with y. However, the precise function M(y)
is unknown because published data on Mesolithic settlements are scarce and restricted to very
specific local areas, and also because the estimation of population densities from archaeological
data relies on assumptions that are difficult to test and cause important methodological
problems [15]. However, as explained in the introduction, we do know that the Mesolithic
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Figure 2. Test functions used for the increase of the reduced Mesolithic
population density (m = M/Mmax) along the y-direction. A1 = 0.999/1300,
B1 = 0; A2 = −0.1 = −B2 = A3 = B3, τ2 = −ln(10.99)/1300 = −τ3; A4 =

0.99, B4 = 42, τ4 = 1/0.007.

density did increase at northern latitudes [7]. Thus, we apply equation (22) to four different
test functions for the reduced Mesolithic density m(y)= M(y)/Mmax (see figure 2),

m1 = A1 y + B1,

m2 = A2 + B2 exp(y/τ2),

m3 = A3 − B3 exp(−y/τ3),

m4 =
A4

1 + B4 exp(−y/τ4)
.

(23)

To estimate the anthropological parameters a and D appearing in equation (22), we apply that
the initial growth rate for preindustrial populations has a mean value of a = 0.028 year−1 [10],
the mean-squared jump distance is 〈12

〉 = 1531 km2 [8] and the mean generation time is
T = 32 years [16]2

As we expected from equation (22), we see in figure 3 that each of the four test functions
leads to a decrease in the front speed along the y-direction. To better compare the results
with archaeological data, in figure 3 we have plotted c/cmax, where the maximum speed from
equation (22) is given by Fisher’s value [11],

cmax = 2
√

aD. (24)

In fact, this should be corrected due to a time-delay effect [8]. This would further complicate
our equations, so we will not include this effect because, rather than comparing to the absolute

2 For the estimation of the generation time T = 32 years, see note [24] in this reference.
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Figure 3. Curves: relative Neolithic front speed predicted by a model with
the dispersion and growth processes dependent on the presence of Mesolithic
populations, equation (25). Symbols: observed front speeds calculated from
archaeological data [9].

value of the maximum front speed (which we already analyzed in [8]), here we are interested in
focusing our attention on the slowdown effect. This is simpler by considering the relative speed
from equation (22),

c

cmax
=

√
1 − m(y)−

√
D

a

∂m/∂y

1 − m(y)
. (25)

In figure 3 we compare the results obtained from equation (25) (curves) with Neolithic front
speed data (symbols). The latter was obtained by computing the areas within isochrones
separated 250 years inside the rectangle in figure 1 (such isochrones are shown in figure 1 every
500 years for clarity)3.

Comparing the results from equation (25) to those from archaeological data in figure 3,
we see that, even though none of the four test functions reproduce exactly the behavior of the
archaeological data (which is not surprising for such a complex phenomenon), they do give a
good approximation to the general behavior (especially m4). Thus, a simple physical model can
explain qualitatively the decrease in the front speed during the Neolithic expansion range in
Europe. Therefore, physical models are useful to explain not only the average Neolithic front
speed [8], but also its gradual slowdown in space.

The reaction–diffusion model presented in this paper could be applied to many examples of
invasion fronts in which the indigenous population and the invasive one compete for space in a
single biological niche, both in natural habitats [17, 18] and in microbiological assays [12, 19].

3 In figure 3, we compare only the speed data calculated for latitudes above 45◦, since for lower latitudes there is
an important effect due to sea travel. The sites and dates used in our interpolations are those in [9].
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