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Counterpoise-corrected geometries and harmonic frequencies
of N-body clusters: Application to „HF…n „nÄ3,4…
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The differences between three previously defined counterpoise~CP! schemes for removing the
BSSE in molecular complexes formed by more than two subunits have been assessed by
CP-corrected geometry optimizations and frequency calculations for the hydrogen fluoride trimer
and tetramer. The types of the functional counterpoise~FC! procedures included the site–site
~SSFC!, pairwise additive, and hierarchical Valiron–Mayer~VMFC! schemes. The latter approach
takes into account the basis set extension of the dimers in the trimer, dimers and trimers in the
tetramer, etc. The number of different calculations required to apply this counterpoise scheme
increases very rapidly with the cluster size. The symmetry of the chosen systems makes the test of
this approach computationally feasible. All the optimizations and frequency calculations have been
carried out automatically using a new program that generates the necessary input files and
repeatedly calls a slightly modified version of a Gaussian link. The results show that geometrical
parameters, zero-point vibrational energies, and redshifts computed on the CP-corrected potential
energy surfaces differ considerably from those evaluated on the uncorrected surfaces. The structural
and energetic properties obtained with the conventional SSFC procedure are almost identical to
those predicted by the more costly and complex VMFC method. Hence, the former seems to be
more appropriate in the present case. Furthermore, symmetry-adapted perturbation theory
calculations show the importance of computing the interaction energies at the CP-corrected
geometries. ©2003 American Institute of Physics.@DOI: 10.1063/1.1527011#
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I. INTRODUCTION

It has been recognized that the Basis Set Superpos
Error ~BSSE! ~Ref. 1! represents more than just an unbalan
between the energies of the complex and its fragments in
computations the interaction energy.2,3 The BSSE is a phe
nomenon related to the LCAO approximation that affects
whole description of the complex, i.e., stationary points,4 vi-
bration frequencies, wave function,5 etc. The appearance o
the so-calleda priori BSSE-correction methods6,7 helped to
understand this point of view and to recognize that the w
known and widely used counterpoise~CP! correction8 may
be viewed as an energetic correction to the complex’s ene
This interpretation has the advantage of permitting a strai
forward definition of counterpoise-corrected derivatives
the energy9 in order to obtain the stationary points on th
counterpoise-corrected potential energy surface, vibra
frequencies, dipole moments, spin–spin coupl
constants,10 etc. In the alternative, equally valid argument t
CP correction is viewed as the energetic correction to
interaction energy. It is, in principle, possible to formulate
gradient-optimization procedure based on the minimizat
of the CP-corrected interaction energy in combination w
the monomer relaxation effects. An optimization of such
quantity, henceforth referred as the stabilization energy,
suggested by van Lentheet al.3 This idea was not imple-
mented analytically until Ref. 9.
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The effect of BSSE on the structural properties has b
demonstrated in the hydrogen fluoride dimer. A conventio
MP2/6-31G** geometry optimization leads to a centrosym
metric C2h stationary point. When correcting for BSSE b
using either the Chemical Hamiltonian Approach~CHA!,6 or
by optimizing with the counterpoise-corrected gradient,
correct quasilinearCs structure is obtained.4

The removal of the BSSE in molecular complexes co
posed of more than two fragments has not been extensi
discussed in the literature. A few years ago, Turi a
Dannenberg11 pointed out the ambiguity of the counterpois
correction when studying growing chains of hydrogen flu
ride. They showed that the BSSE computed for the addit
of a new HF monomer to the (HF)n aggregate depends upo
whether the incoming monomer is added to the H or to th
end of the aggregate. Hence, one can obtain different in
action energies for the same chemical process, which is
acceptable. They proposed the use of the counterp
method by defining as many fragments as there are mono
subunits in the complex, with the BSSE defined as the
ference between the energy of each monomer in its o
basis set and that of the whole aggregate.

This method clearly solves the problem of the ambigu
of the CP correction but is unable to explain all the effects
the incoming monomer on the interaction~and BSSE! al-
ready present in the molecular aggregate. Valiron a
© 2003 American Institute of Physics
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Mayer12 illustrated this deficiency with the example of thre
interacting H atoms described by the Slater 1s orbitals. In
this particular case, the counterpoise scheme above will
predict any BSSE in the system whereas all the H–H1H
interactions bear some BSSE. Hence, there is a second-
BSSE due to the basis set extensions of all the H2 descrip-
tions within H3 . Indeed, these diatomic basis set extensi
are as natural as the atomic ones. The BSSE is due to
improvement of the description of the atoms~fragments!
within the complex by using the other fragment basis set
expand the genuine atomic~single fragment! contributions to
the Hamiltonian. Analogously, the genuine diatomic~frag-
ment pair! descriptions, including the respective interacti
contribution within the atom~fragment! pair, are also artifi-
cially improved due to their expansion in the whole comp
basis set~this is the particular case of the basis set extensi
present on the H–H1H interaction commented above!. In
this sense, the hierarchical partition of an aggregate
atomic ~single fragment!, diatomic ~fragment pairs!, etc.,
arises naturally.

One way to take into account those high-order BS
effects within the counterpoise framework was first intr
duced by White and Davidson13 and later generalized b
Valiron and Mayer.12 They proposed a hierarchical counte
poise scheme forN-body clusters that treats the basis s
extension effects of all the monomers, dimers, trimers,
so on, present in an aggregate. However, their propo
scheme was never tested in CP-corrected geometry op
zations. In a recent paper, Mierzwicki and Latajka14 analyzed
the behavior of these two counterpoise methods in the ca
lation of many-body interactions of Li~NH4)n and Li~NH4)n

1

clusters at several levels of theory. They also used ano
rather unusual scheme, introduced by Wells and Wilso15

where the counterpoise correction is carried out over pair
fragments.

In the present paper we intend to go one step further
commented above, in order to properly take BSSE into
count, the counterpoise correction will henceforth be view
as a correction to be added to the aggregate’s descrip
This allows one to compute not only interaction energies,
also gradients and harmonic frequencies for the three di
ent counterpoise schemes. Furthermore, the location of
stationary points on the BSSE-corrected PES is essenti
obtaining the reliable counterpoise-corrected energies an
avoiding the artifacts which are sometimes referred to as
overcorrection.16

We wish to assess the differences between the var
CP methods in terms of geometries, vibration frequenc
and interaction energies. For the first time, the full geome
optimizations using both the pairwise additive and the h
archical counterpoise methods will be performed. The us
the hierarchical counterpoise scheme will help elucidate
effects of the high-order BSSE terms and will help to det
mine whether or not they can be neglected. The validity
the pairwise additive scheme will also be analyzed.

These methods will be applied to the hydrogen fluor
trimer and tetramer. The hydrogen fluoride clusters have
ceived a great deal of attention lately. Recent experimen17

and theoretical16,18–22studies predict planar ring structures
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Cnh symmetry for the (HF)n 3<n,6 gas phase oligomers
In the case of the tetramer and pentamer, however, the
still some debate.23,24 X-ray and neutron diffraction
experiments25 have shown that solid HF tends to form infi
nite zig–zag chains with very large cooperative effec
Therefore, there must be an inversion of the relative stab
of the cyclic and chain isomers as the aggregate grows
this paper, both the cyclic and chainlike arrangements
considered in order to compare the BSSE effect for t
structures where the importance of the cooperative effec
very different. Also, the high symmetry of the cyclic aggr
gates will allow us to perform hierarchical counterpois
corrected geometry optimizations with a relatively large b
sis even for the tetramer.

Finally, we will perform symmetry-adapted perturbatio
theory ~SAPT! analysis for the hydrogen fluoride trimer i
order to gain insights into the nature of the interaction in t
system. Even though SAPT is a genuinely BSSE-free me
odology, its results depend on the choice of geometry tha
turn, is affected by the BSSE. One of the goals of this pa
is to compare the SAPT results at the uncorrected and
counterpoise-corrected geometries and to assess the e
of BSSE-induced changes in the geometry upon the inte
tion energy components.

In the next section we briefly discuss the three differe
counterpoise methods used throughout the paper and d
the corresponding expressions for the counterpoise-corre
cluster energies by using a many-body partitioning of
energy of the aggregate.

II. METHOD

Let us consider first a dimerAB. The energy of this
dimer at a given geometry with rigid monomers26 can be
expressed simply as

EAB5EA1EB1DEAB , ~1!

whereDEAB represents the two-body interaction energy. A
cording to the counterpoise philosophy, this value must
computed using the same basis set for all the terms involv

EAB
CP5EA1EB1EAB2EA

AB2EB
AB

5EAB1~EA2EA
AB1EB2EB

AB!, ~2!

where the superscriptAB means that the whole complex ba
sis set is used~if no superscript is used, it is assumed that t
energy is computed with the fragment’s own basis set!. In
this way, the counterpoise-corrected dimer energy is rec
ered. Note that the one-body interaction energies, i.e.,
fragment energies, are computed with the so-cal
monomer-centered basis sets~MCBS!, whereas only the in-
teraction energy term is computed with the dimer-cente
basis set~DCBS!. It is very important to point out that this is
conceptually similar to the case of thea priori methods, such
as CHA, where the diagonal~fragment-only! blocks of the
Hamiltonian are maintained, and the BSSE-correction ta
place only in the off-diagonal blocks~intermolecular interac-
tion!.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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When a complex is composed of three interacting un
ABC, the energy of the system can be expressed as the
of one-, two-, and three-body interaction energies,

EABC5EA1EB1EC1DEAB1DEAC1DEBC1DEABC ,
~3!

where the last term is due to the nonadditivity of the int
action. In order to obtain a counterpoise-corrected energ
the trimer, the three-body energy term must be compu
following the standard counterpoise prescription, i.e., us
the same, trimer, basis set for all the terms,

DEABC5EABC2EAB
ABC2EBC

ABC2EAC
ABC1EA

ABC

1EB
ABC1EC

ABC . ~4!

The point now is to determine which two-body interacti
energies must be used. If no counterpoise-correction is ta
into account at all for those terms, the following express
is obtained by substituting Eqs.~1! and ~4! into Eq. ~3!,

EABC
CP 5EA1EB1EC1~EAB2EA2EB!1~EBC2EB2EC!

1~EAC2EA2EC!1EABC2EAB
ABC2EBC

ABC

2EAC
ABC1EA

ABC1EB
ABC1EC

ABC

5EABC1~EAB2EAB
ABC!1~EBC2EBC

ABC!

1~EAC2EAC
ABC!2~EA2EA

ABC!2~EB2EB
ABC!

2~EC2EC
ABC!. ~5!

There are three counterpoiselike terms related to basis
extension for all the dimers in the trimer, and also thr
terms corresponding to the basis set extensions of the m
mers, which contribute to the counterpoise correction w
opposite signs. The application of this scheme, howe
yields meaningless results because the monomer basi
extensions are usually larger than those for the dimers,
hence the BSSE is negative. In other words, the energy o
supermolecule~and so the stabilization energy! is lowered
upon counterpoise correction, which is unacceptable.

Alternatively, one can consider using counterpois
corrected two-body interaction terms in Eq.~3! but using the
basis set of the whole trimerABC ~TCBS!.

EABC
CP 5EA1EB1EC1~EAB

ABC2EA
ABC2EB

ABC!

1~EBC
ABC2EB

ABC2EC
ABC!1~EAC

ABC2EA
ABC2EC

ABC!

1EABC2EAB
ABC2EBC

ABC2EAC
ABC

1EA
ABC1EB

ABC1EC
ABC

5EABC1~EA2EA
ABC!1~EB2EB

ABC!1~EC2EC
ABC!.

~6!

In this case the conventional counterpoise scheme is
tained, which includes only the basis set extensions of
monomers in the whole basis set. Wells and Wilson15 called
this approach site–site function counterpoise.

However, the same considerations as those for the di
case may suggest that the two-body interaction energy te
should be described with the respective DCBS basis se
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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the same way as the monomer~one-body! contributions are
expressed in the MCBS. According to these consideratio
the counterpoise-corrected trimer energy will have the f
lowing expression:

EABC
CP 5EA1EB1EC1~EAB2EA

AB2EB
AB!

1~EBC2EB
BC2EC

BC!1~EAC2EA
AC2EC

AC!1EABC

2EAB
ABC2EBC

ABC2EAC
ABC1EA

ABC1EB
ABC1EC

ABC

5EABC1~EAB2EAB
ABC!1~EBC2EBC

ABC!

1~EAC2EAC
ABC!1~EA1EA

ABC2EA
AB2EA

AC!

1~EB1EB
ABC2EB

AB2EB
BC!

1~EC1EC
ABC2EC

BC2EC
AC!. ~7!

Rearranging the terms, the Valiron and Mayer’s hierarchi
counterpoise expression for the energy of a complex is
tained,

EABC
CP 5EABC1~EA2EA

ABC!1~EB2EB
ABC!

1~EC2EC
ABC!1~DEAB2DEAB

ABC!

1~DEBC2DEBC
ABC!1~DEAC2DEAC

ABC!. ~8!

The last three extra terms with respect to the conventio
counterpoise scheme of Eq.~6!, correspond to the differ-
ences, for each dimer in the aggregate, between the d
interaction energy computed within the DCBS and TCB
These effects will henceforth be dubbed second-order ba
set extension effects.

Another counterpoise scheme previously proposed
Wells and Wilson,15 the pairwise additive function counter
poise ~PAFC! can also be obtained in a systematic man
like the other two schemes discussed above. In this case
three- and higher-body interaction terms are not correc
according to the counterpoise scheme. Instead, only the
body interaction energies are corrected by using DCBS
the case of a trimer, the expression for the corrected en
can be easily obtained from Eq.~3!,

EABC
CP 5EA1EB1EC1~EAB2EA

AB2EB
AB!

1~EBC2EB
BC2EC

BC!1~EAC2EA
AC2EC

AC!

1EABC2EAB2EBC2EAC1EA1EB1EC

5EABC1~EA2EA
AB!1~EA2EA

AC!1~EB2EB
AB!

1~EB1EB
BC!1~EC1EC

AC!1~EC1EC
BC!. ~9!

The main feature of this approach is that the whole comp
basis set is never used for any subunit’s calculation, exc
for the trivial case of a dimer. The counterpoise-correction
obtained by summing up, over all the subunits, the diff
ences between the MCBS andall the different DCBS de-
scriptions of a given fragment. For a givenN-body cluster,
the energetic difference between the MCBS and the wh
complex basis set description of each fragment, as define
the conventional counterpoise correction, is substituted
N21 energy differences calculated using only the cor
sponding DCBS. Therefore, one might expect that t
scheme may have problems in dealing with cyclic or high
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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packed clusters where the presence of many close-by D
representations for each fragment may lead to an overest
tion of the BSSE.

TheN-body cluster generalization of these three funct
counterpoise schemes is straightforward and the derivat
can be found elsewhere.12 The final expressions for the so
called site–site, pairwise-additive and Valiron–Mayer~hier-
archical! function counterpoise schemes, SSFC, PAFC,
VMFC, respectively, are as follows:

Ei 1i 2¯ i N
SSFC 5Ei 1i 2¯ i N

1(
i 1

N

~Ei 1

i 12Ei 1

i 1i 2¯ i N!, ~10!

Ei 1i 2¯ i N
PAFC 5Ei 1i 2¯ i N

1 (
i 1Þ i 2

N

~Ei 1

i 12Ei 1

i 1i 2!, ~11!

Ei 1i 2¯ i N
VMFC 5Ei 1i 2¯ i N

1(
i 1

N

~Ei 1

i 12Ei 1

i 1i 2¯ i N!

1 (
i 1, i 2

N

~DEi 1i 2

i 1i 22DEi 1i 2

i 1i 2¯ i N!

1 (
i 1, i 2, i 3

N

~DEi 1i 2i 3

i 1i 2i 32DEi 1i 2i 3

i 1i 2¯ i N!1¯

1 (
i 1, i 2,¯, i N21

N

~DEi 1i 2¯ i N21

i 1i 2¯ i N212DEi 1i 2¯ i N21

i 1i 2¯ i N !.

~12!

In Eq. ~12! the third, fourth, andnth term on the right-hand
side will be referred to as the second-, third-, andnth-order
CP contributions.

An important point is the scalability of these method
Obviously, in the VMFC approach the number of need
calculations rapidly increases with the cluster size. T
SSFC method needs 2N extra energy calculations. For th
PAFC, N(N21) DCBS calculations plusN MCBS calcula-
tions must be carried out, that isN2 extra energy calcula
tions. In case of the VMFC, it can be proved that the to
number of the energy calculations is given by the relati
( i 51

N 2N2 i( i
N). This means that the full hierarchical CP trea

ment of the nonsymmetric trimer through hexamer se
would involve 19, 65, 211, and 665 energy evaluations,
spectively. The treatment including only a second-order C
correction, @VMCP~2!# would involve N(N11) monomer
plus 2(2

N) dimer calculations, that is a total of 2N211 en-
ergy evaluations. In this caseonly 19, 33, 51, and 73 calcu
lations are needed for the trimer up through the hexa
series. The use of the hierarchical scheme is clearly proh
tive even for relatively small oligomers, however, the hi
symmetry may enable such calculations.

Once the CP-corrected energy of an aggregate is
tained, the interaction and stabilization energies of the co
plex are obtained by subtracting the energies of the mo
mers computed at the CP-corrected complex geometry
isolated, respectively~note that since the BSSE is alread
taken into account in the complex energy, the monom
energies are computed with the MCBS!,
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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DEint5EAB¯N
CP 2(

i

N

Ei
i , ~13!

DEstab5EAB¯N
CP 2(

i

N

Ei
` i

. ~14!

The next step is to characterize the stationary points
the CP-corrected potential energy surface of the comp
and to compute the vibrational frequencies. It has be
shown that the gradient, Hessian, and in general any der
tive of energy, can be obtained by a linear combination of
the terms properly differentiated.9

In all the geometry optimization and frequency calcu
tions, we have used our code to automatically generate
the necessary input files and repeatedly call a slightly mo
fied GAUSSIAN 98 package.27 We have rewritten the
program28 in order to accommodate the molecular symmet
and to use the VMFC and PAFC methods.

The MP2 calculations were performed using t
frozen-core approximation with the 6-31G(d,p),
6-3111G(d,p), and a medium polarized basis set with
(10s,6p,4d,1f /6s,4p)→@5s,3p,2d,1f /3s,2p# contraction
scheme proposed by Sadlej.29 The two- and three-body
SAPT calculations were carried out usingTRURL94

program.30

III. RESULTS AND DISCUSSION

A. HFn cyclic

The results of geometry optimizations for the cyclic t
mer and tetramer are gathered in Table I. As shown in Fig
both the trimer and tetramer structures are determined
three parameters: the intermolecular F–F (RF–F) and in-
tramolecular F–H (RF–H) distances, and the angle HFF ang
~a!. We have studied only theC3h andC4h configurations of
the trimer and tetramer, respectively.

It is seen that in the trimer the intermolecular distan
increases upon CP corrections, with the larger differen
corresponding to the PAFC method. Upon CP-correction,
intramolecular F–H distance shortens by,0.01 Å. However,
this difference is still larger than the variation of this distan
with respect to basis sets. The cyclic nature of the comple
precludes large effect of BSSE correction on the angular
rameter. In all cases,a increases~by up to 3°!, leading to a
larger deviation from the triangular arrangement and he
to larger H-bond distances.

The addition of diffuse functions to the 6-31G(d,p) ba-
sis set dramatically decreases the effect of BSSE. The di
ences between the uncorrected and CP-corrected inte
lecular distances decrease from more than 0.1 Å to'0.05 Å
upon inclusion of diffuse functions. The medium polariz
basis set, specifically designed to correctly describe inter
lecular interactions, yields large BSSE. Indeed, both the
corrected and the CP-corrected geometrical parameters
close to the values obtained with the 6-31G(d,p) basis set.

Adding another HF unit to the complex results in
shortening of the intermolecular distance by'0.06 Å. The
intramolecular H–F distance decreases, whereas anga
slightly increases. Cooperative effects are also evident in
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE I. Geometrical parameters~Å, deg!, total ~a.u.!, and stabilization energies~kcal/mol!, and CP correc-
tions ~kcal/mol! for the cyclic HF trimer and tetramer in several basis sets and counterpoise methods. S
1 for the definition of the geometrical parameters.

RF–F RF–H a Energy CP
Single-point

CP DEstab

Trimer
MP2/6-31G(d,p)

Uncorr. 2.530 0.9432 20.6 2300.626538 226.75
SSFC 2.651 0.9355 22.8 2300.608461 11.34 12.23 215.40
PAFC 2.676 0.9345 23.6 2300.607189 12.14 13.47 214.60
VMFC 2.666 0.9339 23.6 2300.607143 12.17 13.39 214.57

MP2/6-3111G(d,p)
Uncorr. 2.649 0.9411 24.2 2300.672298 215.40
SSFC 2.700 0.9391 24.5 2300.668919 2.12 2.21 213.28
PAFC 2.708 0.9389 24.4 2300.668461 2.41 2.53 212.99
VMFC 2.700 0.9390 24.7 2300.668901 2.13 2.23 213.27

MP2/Sadlej
Uncorr. 2.521 0.9489 19.6 2300.843118 223.87
SSFC 2.658 0.9423 22.2 2300.827375 9.88 10.94 214.00
PAFC 2.680 0.9417 22.4 2300.825724 10.91 12.26 212.96
VMFC 2.660 0.9422 22.2 2300.827249 9.94 11.03 213.92

Tetramer
MP2/6-31G(d,p)

Uncorr. 2.471 0.9563 9.0 2400.848922 244.16
SSFC 2.580 0.9440 11.1 2400.824190 15.51 16.70 228.64
PAFC 2.607 0.9422 11.7 2400.822892 16.33 18.26 227.83
VMFC~2! 2.604 0.9408 11.1 2400.821037 17.50 19.36 226.66
VMFC~3! 2.611 0.9400 12.0 2400.82055 17.80 19.91 226.36

MP2/6-3111G(d,p)
Uncorr. 2.563 0.9516 11.5 2400.908758 228.29
SSFC 2.623 0.9467 11.9 2400.902411 3.98 4.22 224.31
PAFC 2.635 0.9462 11.8 2400.901641 4.47 4.79 223.82
VMFC~2! 2.621 0.9468 12.0 2400.902673 3.82 4.03 224.47
VMFC~3! 2.621 0.9468 12.1 2400.902642 3.84 4.06 224.45

MP2/Sadlej
Uncorr. 2.479 0.9586 8.5 2401.140773 242.26
SSFC 2.579 0.9515 9.9 2401.114300 16.61 17.55 225.65
PAFC 2.604 0.9499 10.3 2401.110746 18.48 20.15 223.42
VMFC~2! 2.583 0.9511 10.0 2401.114102 16.73 17.73 225.52
VMFC~3! 2.583 0.9511 10.0 2401.114097 16.73 17.73 225.52
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energetics of the complex. The stabilization energy per
drogen bond increases by more than 1 kcal/mol, thus pro
ing the extra stabilization energy of'6 kcal/mol for the
tetramer

The similar effects are observed in the tetramer. The
termolecular F–F distance lengthens and thea angle slightly
increases. Even though the CP correction increases with
spect to the trimer, the differences in geometrical parame
are comparable to those found in the trimer.

FIG. 1. Geometrical parameters of theC3h andC4h cyclic hydrogen fluoride
trimer and tetramer.
 to 84.88.138.106. Redistribution subject to AIP licens
-
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As for the energies, the CP correction to the trimer a
tetramer energies is always overestimated at the uncorre
geometry. The CP-corrected stabilization energies compu
at the uncorrected minima~single-point counterpoise
calculation! are smaller than those evaluated at the cor
sponding CP-corrected stationary point. The differences
the case of the trimer range from'0.1 kcal/mol for the
6-3111G(d,p) basis set to more than 1 kcal/mol for bo
the 6-31G(d,p) and the Sadlej basis set. In the tetram
these differences are twice as large. It is important to n
that after the CP-correction the basis set dependence of
the calculated stabilization energies and geometrical par
eters decreases. The uncorrected stabilization energies
tained with the 6-31G(d,p) and the Sadlej basis sets are f
too large. All the CP-corrected values are within 3 and
kcal/mol for the trimer and the tetramer, respectively. T
same situation has been observed in previous studie
weakly bound complexes.4,31

The differences between the SSFC and the VMFC c
rected values are still appreciable for the smallest basis
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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6-31G(d,p). The intermolecular distance is again the mo
sensitive geometrical parameter. The inclusion of high-or
terms in the CP method leads to larger intermolecular
tances, the differences being 0.015 and 0.024 Å for the
mer and tetramer, respectively. The effects on the clu
energy are much more evident. The SSFC method lead
the stabilization energy higher in magnitude by'1 and 2
kcal/mol, for the trimer and tetramer, respectively. In t
tetramer case, the inclusion of the third order CP-correc
terms, VMFC~3!, feasible here due to the high symmet
shows no significant effect on either the geometry or
energy of the complex, provided the basis set used is flex
enough. Only in the 6-31G(d,p) basis set, the intermolecu
lar distance still increases by 0.007 Å and the stabilizat
energy decreases by 0.3 kcal/mol. Fortunately, in the rem
ing, more diffused basis sets, the high-order correct
VMFC terms have practically no effect on both geometri
parameters and energies. It is worth to point out two fa
First, in the 6-3111G(d,p) tetramer calculation, the inclu
sion of high-order CP-correction terms induces a sma
BSSE. The intermolecular distance slightly shortens, and
stabilization energy increases by 0.16 kcal/mol upon corr
tion. Even though it is a rather unexpected result, it should
emphasized that the high-order terms in the VMFC meth
can actually be of opposite sign. The fact that the dim
correction term is negative does not mean that its energe
description is better with the DCBS than with the TCB
Instead, it is the dimer interaction energy, which is larg
~more negative!. The reason why this happens is that t
lowering of the monomer energies is larger than the dim
counterparts as the basis set increases. Second, it is rem
able that, despite the large BSSE exhibited at the mono
level by the Sadlej basis set, the effects of high-order
correction are rather insignificant. It is confirmed again tha
basis set should not be consideredbad or unbalancedjust
because it bears a large BSSE. Indeed, we will show tha
Sadlej basis set provides very accurate results, provided
BSSE is properly taken into account.

Finally, the PAFC method leads to larger CP correct
than SSCP and VMCP in all the cases except for the ca
lations involving the 6-31G(d,p) basis set. In this case, th
PAFC results show that the method seems to mimic the
fect of the high-order CP-correction terms. However, the d
ferences observed in both the geometrical parameters
cluster energies when using more suitable basis sets m
this method not advisable.

It has been shown how the CP methods affect the lo
tion of the stationary points at the PES. Obviously, the h
monic frequencies on a corrected and uncorrected PES
expected to be different as well because of the two m
factors. First, the geometrical parameters of the station
points are different, so the differences in frequencies
predicated on how large is the CP-correction on geome
Second, the higher-order derivatives of the CP-correc
term are non-zero, so the CP-corrected second deriva
are expected to differ from the derivatives evaluated for
uncorrected PES. By comparing the corrected and un
rected frequencies at the CP-corrected stationary points
can determine whether the rather expensive calculation
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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the CP-corrected second order derivatives are needed.
differences between the frequencies properly computed
the corresponding uncorrected and CP-corrected PES co
both the ‘‘geometrical’’ and the ‘‘differential’’ factors.

The uncorrected and CP-corrected harmonic frequen
for the cyclic HF trimer calculated for the three basis s
and CP methods are shown in Table II. In all the cases,
uncorrected low frequencies are overestimated whereas
frequencies of the two stretching modes are underestim
with respect to the CP-corrected values. For the 6-31G(d,p)
and Sadlej basis sets the differences between the uncorre
and the CP-corrected frequencies range from 60 cm21 for the
lowest frequency to more than 200 cm21 for the frequencies
labeledv1 and v2 . In general, the BSSE modifies the lo
frequencies by 10%–25%. The differences in the fundam
tal stretching frequencyv4 are .100 cm21. As expected,
the 6-3111G(d,p) frequencies are modified very little
The maximum differences are'50 cm21, even for the most
sensitive frequenciesv1 andv2 .

The inclusion of the second-order CP-correction see
to induce no appreciable changes in the frequencies. Only
the smallest basis set the frequencies are further shifted b
to 7% with respect to the SSFC values. The PAFC frequ
cies are very similar to both the SSFC or VMFC values.

Out of the two mentioned factors affecting frequencie
the ‘‘geometrical’’ one is clearly more important. In genera
the ‘‘geometrical’’ and ‘‘derivative’’ factors act in opposite
directions on the frequency shift. For instance, the unc
rected 6-31G(d,p) lowest frequencies decrease when co
puted on the CP-corrected PES, but tend to increase w
computed using the CP-corrected second derivatives. H
ever, the opposite trend is observed for the Sadlej basis

The effect on the zero-point vibrational energy~ZPVE!
correction can be explained also on the basis of these o
site effects. For the small basis sets, the ZPVE decre
when computed at the CP-corrected PES but then incre
when using CP-corrected second derivatives. The oppo
occurs for the Sadlej basis set, which shows the largest e
in the ZPVE correction. In this case, the uncorrected ZP
correction of 5.72 kcal/mol decreases to 4.84 kcal/mol wh
computed on the VMFC PES and further reduces to 4
kcal/mol upon correcting the second derivatives.

The results obtained in the Sadlej basis set~see Tables I
and II! for the C3h trimer may be compared to the resul
obtained by using an empirically refined SC-2.91HF3BG
potential of Quack, Stohner, and Suhm.20 Our CP-corrected
binding energy and ZPVE correction are slightly smal
than the reference results. Also, theRF–F distance is too long
reflecting the fact that this basis set~and the level of corre-
lation treatment! is expected to underestimate the attracti
in this system. The predicted redshift of the HF stretch
frequency~249 cm21! agrees very well with the harmoni
value obtained~250 cm21! by Quack, Stohner, and Suhm.
should be stressed that the CP correction appears to b
sential for the calculation of this quantity. The CP
uncorrected value of redshift is severely overestimated~371
cm21! in this basis set.

Recently, Liedl16 studied the concerted hydrogen e
change process of the HF trimer at the MP2/aug-cc-pVXZ,
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE II. Harmonic frequencies~cm21!, ZPVE correction~kcal/mol! to the stabilization energy and frequenc
shifts ~cm21! for the cyclic HF trimer. Values in parentheses correspond to the uncorrected harmonic fre
cies andDZPVE computed at the CP-corrected geometry. Redshifts calculated with respect to the mo
H–F stretching frequencies obtained at each level of theory@4193.4, 4118.7, and 4082.4 cm21 for the
6-31G(d,p), 6-3111G(d,p), and Sadlej basis sets, respectively#.

Uncorrected SSFC PAFC VMFC

MP2/6-31G(d,p)

v6(E8) 259.6 203.1~193.6! 189.1~180.8! 194.7~185.0!

v3(A8) 276.5 224.7~202.2! 217.9~186.9! 219.7~193.1!
v8(E8t) 539.6 505.8~474.5! 489.5~467.8! 476.7~456.6!
v5(E8) 755.2 631.6~607.1! 619.4~577.2! 589.4~571.1!
v7(A8t) 765.9 711.6~669.0! 689.4~651.4! 688.9~644.2!
v2(A8) 1153.4 988.3~963.6! 954.0~919.1! 948.3~917.8!
v1(A8) 3668.4 3863.5~3869.1! 3892.6~3899.0! 3905.1~3905.0!
v4(E8) 3841.4 3967.3~3972.4! 3985.6~3990.7! 3995.7~3998.6!
DZPVE 5.84 5.48~5.19! 5.36 ~5.03! 5.30 ~5.03!
Shift 2352 2226 2188 2198

MP2/6-3111G(d,p)

v6(E8) 184.0 172.6~160.4! 169.1~157.3! 171.3~160.0!

v3(A8) 207.4 197.3~181.3! 194.1~177.6! 196.0~181.0!
v8(E8t) 465.0 446.4~432.1! 438.6~427.7! 444.8~432.5!
v5(E8) 553.2 531.2~516.4! 524.6~514.2! 531.2~512.9!
v7(A8t) 680.7 654.6~648.3! 642.6~645.8! 648.0~646.0!
v2(A8) 936.5 884.0~897.2! 884.1~895.2! 876.0~890.8!
v1(A8) 3785.8 3835.8~3833.5! 3839.3~3837.2! 3838.7~3836.6!
v4(E8) 3878.6 3915.2~3913.2! 3917.6~3916.0! 3917.3~3915.1!
DZPVE 4.89 4.78~4.64! 4.72 ~4.61! 4.76 ~4.63!
Shift 2240 2204 2202 2202

MP2/Sadlej
v6(E8) 259.7 186.2~169.8! 174.3~157.1! 185.5~168.6!
v3(A8) 285.7 208.7~181.1! 200.8~166.1! 208.3~179.8!
v8(E8t) 579.2 468.0~532.4! 443.4~524.9! 468.8~530.8!
v5(E8) 752.4 575.0~582.9! 557.6~564.4! 573.2~580.9!
v7(A8t) 771.7 654.0~689.1! 625.7~678.9! 654.8~687.7!
v2(A8) 1166.0 936.4~940.8! 912.3~916.4! 933.1~938.8!
v1(A8) 3533.0 3730.0~3723.1! 3751.3~3741.8! 3732.3~3725.5!
v4(E8) 3711.4 3832.3~3823.7! 3846.0~3835.0! 3833.8~3825.5!
DZPVE 5.72 4.71~4.85! 4.54 ~4.72! 4.70 ~4.84!
Shift 2371 2250 2236 2249
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X52,4. He found that the uncorrected energies for theC3h

and D3h structures were less basis set dependent than
counterpoise-corrected ones. On this basis, he claimed
counterpoise-corrected results were useless. However,
assertion was based on the misinterpretation of his own d
First, the uncorrected values for the minimum and the tr
sition state indeed show a weaker basis set dependence
they lack a monotonic trend. Therefore these values can
be used to properly extrapolate to the basis set limit, and
complete basis set~CBS! limit is completely arbitrary. The
CP-corrected values, on the other hand, vary monotonic
and a CBS extrapolation can be carried out.

Second, the CP-corrected values, contrary to Leidl’s
sertions, provide a much better description of barrier hei
dependence on the basis set than the uncorrected values
example, the reported barriers for the hydrogen exchange
the aug-cc-pVXZ, X52 – 4 series are 20.17, 17.89, an
18.61 kcal/mol, and 23.83, 20.48, and 20.21 kcal/mol for
uncorrected and the CP-corrected values, respectively.
 to 84.88.138.106. Redistribution subject to AIP licens
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best estimate of this barrier using explicitly correlat
coupled cluster calculations is 20.33 kcal/mol. The C
corrected CBS values are clearly closer to this value than
uncorrected ones

Finally, his chief criticism of the usefulness of the CP
correction was based on the results obtained for
transition-stateD3h structure of the trimer where the mono
mers are highly stretched~with a fragment relaxation of'60
kcal/mol!. It should be emphasized that the transition st
structures are much more sensitive to the basis set~and to the
inclusion of correlation effects! than the equilibrium struc-
tures. Therefore this criticism is completely unwarranted.

Another effect that was not taken into account by Lie
was the use of CP-correction in the geometry optimizati
Our calculations performed at the MP2/aug-cc-pVDZ in
cate that the stabilization energy for theC3h structure com-
puted at the CP-corrected stationary point is213.30 kcal/
mol, i.e., 0.16 kcal/mol lower than the single-point C
corrected value. It should be mentioned that the effects
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE III. Geometrical parameters~Å, deg!, total ~a.u.! and stabilization energies~kcal/mol!, and BSSE
corrections~kcal/mol! ~single-point BSSE in parentheses! for the linear (HF)3 in several basis sets and coun
terpoise methods. See Fig. 2 for the definition of the geometrical parameters.

Uncorrected SSFC PAFC VMFC

MP2/6-31G(d,p)
r 1 0.9293 0.9277 0.9277 0.9275
r 2 0.9356 0.9310 0.9311 0.9303
r 3 0.9266 0.9246 0.9246 0.9244
R1 2.647 2.752 2.754 2.755
R2 2.630 2.722 2.727 2.733
a1 8.98 2.87 2.94 3.05
b1 98.80 118.7 118.8 119.2
a2 5.24 3.22 2.85 3.48
b2 108.6 121.2 121.7 121.0
Energy 2300.6104703 2300.60154618 2300.6015036 2300.6011282
DEstab 216.66 211.06 211.04 210.80
CP-corr. 5.60~6.41! 5.63 ~6.47! 5.86 ~6.71!

MP2/6-31G11(d,p)
r 1 0.9342 0.9331 0.9331 0.9331
r 2 0.9377 0.9361 0.9360 0.9361
r 3 0.9303 0.9298 0.9298 0.9299
R1 2.728 2.789 2.789 2.787
R2 2.700 2.762 2.764 2.760
a1 3.16 3.16 3.28 3.20
b1 119.31 119.1 119.1 119.4
a2 3.65 4.05 3.80 3.92
b2 121.2 121.0 121.5 121.9
Energy 2300.66585116 2300.66329844 2300.6632270 2300.66335745
DEstab 211.35 29.75 29.71 29.79
CP-corr. 1.60~1.70! 1.65 ~1.75! 1.56 ~1.66!

MP2/Sadlej
r 1 0.9361 0.9346 0.9344 0.9346
r 2 0.9398 0.9378 0.9374 0.9379
r 3 0.9312 0.9306 0.9305 0.9306
R1 2.616 2.749 2.759 2.749
R2 2.596 2.722 2.734 2.722
a1 2.62 2.90 2.90 2.91
b1 110.8 114.7 115.9 114.7
a2 2.72 3.40 4.45 3.39
b2 114.7 117.0 117.2 117.2
Energy 2300.8323145 2300.8205844 2300.8201539 2300.8205622
DEstab 217.10 29.73 29.46 29.72
CP-corr. 7.36~7.93! 7.63 ~8.32! 7.37 ~7.95!
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BSSE on geometry are much lower in the aug-cc-pVDZ
sis set than in other basis sets of comparable size.4

B. „HF…n linear

The zig–zag linear structures of both the HF trimer a
tetramer were also studied at the same level of theory.
results obtained for the uncorrected and the CP-corrected
ometry optimizations are shown in Tables III and IV for th
trimer and tetramer, respectively. The definitions of ge
metrical parameters are depicted in Fig. 2. In the this ca
only the SSFC method was used for the corrected optim
tion, since including the second-order CP or full VMFC co
rections would involve 33 and 65 gradient calculations,
spectively.

The observed trends are similar to those obtained for
cyclic structures. Upon the CP correction, intermolecular d
tances increase while the intramolecular HF bonds shor
leading to a weaker interaction. The differences between
 to 84.88.138.106. Redistribution subject to AIP licens
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uncorrected and CP-corrected parameters are of the s
order than for the cyclic complexes, except for the interm
lecular bond angles. In this case, the 6-31G(d,p) basis set
poorly describes the directionality of the interaction. The
termolecular bond anglesa1 and a2 are overestimated
whereasb1 andb2 are clearly underestimated by up to 20
This is not surprising since in (HF)2 the uncorrected geom
etry optimization at this level of theory leads to a spurio
cyclic structure.4 The corresponding CP-corrected optimiz
tions, however, overcome this problem. Indeed, the C
corrected angular parameters are in good agreement with
values obtained using more flexible basis sets. Again,
effect of BSSE is minimized by the addition of diffuse fun
tions. The discrepancies between uncorrected and
corrected values are,1° for the angles and 0.06 Å for inter
molecular distances. The Sadlej basis set bears the la
BSSE. However, whereas the intermolecular distances
underestimated by more than 0.12 Å in the absence of
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE IV. Uncorrected and SSFC-corrected geometrical parameters~Å,
deg!, total ~a.u.! and stabilization energies~kcal/mol!, and CP corrections
~kcal/mol! ~single-point CP in parentheses! for the linear HF tetramer in
several basis sets. See Fig. 2 for the definition of the geometrical param

MP2/6-31G(d,p) MP2/6-3111G(d,p) MP2/Sadlej

Uncorrected
r 1 0.9307 0.9355 0.9376
r 2 0.9400 0.9416 0.9442
r 3 0.9379 0.9398 0.9422
r 4 0.9271 0.9308 0.9318
R1 2.643 2.706 2.602
R2 2.575 2.639 2.550
R3 2.607 2.674 2.575
a1 6.85 2.40 2.17
b1 100.8 119.3 110.7
a2 2.15 1.16 1.22
b2 111.1 122.1 115.0
a3 4.04 2.72 2.31
b3 110.5 122.4 115.6
Energy 2400.82141532 2400.8932367 2401.1172646
DEstab 226.89 218.55 227.50

SSFC
r 1 0.9287 0.9341 0.9358
r 2 0.9344 0.9391 0.9413
r 3 0.9331 0.9378 0.9399
r 4 0.9251 0.9303 0.9311
R1 2.731 2.767 2.727
R2 2.660 2.699 2.662
R3 2.695 2.735 2.695
a1 2.2 2.44 2.13
b1 118.5 118.9 115.0
a2 1.0 1.37 1.11
b2 121.8 121.9 118.3
a3 2.4 3.03 2.50
b3 122.1 122.3 118.3
Energy 2400.80761515 2400.8890763 2401.098932
DEstab 218.23 215.94 216.00
CP-corr. 8.66~9.69! 2.61 ~2.76! 11.50~12.31!
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
CP-correction, the angular features of the complex are w
described even at the uncorrected level.

Regarding the CP-corrected stabilization energies,
linear structures are about 4 and 8 kcal/mol less stable c
pared to the cyclic trimer and tetramer, respectively. The
correction in the trimer ranges from 1.6 and 2.76 kcal/m
for the 6-31G(d,p) basis set to 7.95 and 12.31 kcal/mol f
the Sadlej basis set for the trimer and the tetramer, res
tively. The dependence of the CP correction on the geom
seems to be less important than for the cyclic case. Howe
the BSSE can still be overestimated by up to 1 kcal/m
~depending on the basis set! when computed at the uncor
rected geometry. The cooperative effects are obviously
important than in the cyclic structures. However, the addit
of another HF unit to the linear trimer enhances the stab
zation energy per hydrogen bond by'0.5 kcal/mol

The performance of the two first-order CP methods, i
SSFC and PAFC, is similar. Both methods modify the valu
of the geometrical parameters in the same direction, e
though the PAFC method leads to larger corrections than
remaining treatments.

Our results show again that the differences between
SSFC and VMFC approaches are only appreciable in
context of small basis sets. The inclusion of second-order
terms in the 6-31G(d,p) basis set increases the intermolec
lar distances and angles by up to 0.01 Å and 0.5°, where

FIG. 2. Geometrical parameters of the zig–zag linear hydrogen fluo
trimer and tetramer.

rs.
a-
o-
TABLE V. Description of SAPT correctionse ( i j ) ~where i and j correspond to the interaction and the intr
monomer correlation operators, respectively! which are implicitly present in the two- and three-body superm
lecular Møller–Plesset interaction energy termsDEint at the SCF level and in the second order.

Supermolecular
Møller–Plesset SAPT Physical interpretation

Two-body

DEint
SCF ees

(10) Electrostatic energy between SCF monomers

eexch
HL Heitler–London exchange effect between SCF monomers

DEdef
SCF SCF-deformation energy5Induction effect restrained by

exchange~includese ind,r
(20) , e ind,r

(30) , etc.!

e ind,r
(20) 2nd-order induction energy with response effects

e ind,r
(30) 3rd-order induction energy with response effects

DEint
(2) edisp

(20) 2nd-order dispersion interaction of the SCF monomers

Three-body

DEint
SCF eexch

HL Heitler–London exchange nonadditivity

DEdef
SCF SCF-deformation nonadditivity~includese ind,r

(20) , e ind,r
(30) , etc.!

e ind,r
(20) 2nd-order induction nonadditivity with response effects

e ind,r
(30) 3rd-order induction nonadditivity with response effects

DEint
(2)

DEint
(3) edisp

(30) 3rd-order dispersion nonadditivity
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE VI. 2-body and 3-body SAPT contributions~kcal/mol! to the interaction energy for the cyclic an
linear (HF)3 with the 6-31G(d,p) basis set at the uncorrected and VMFC-corrected geometries. The differ
between the corrected and uncorrected values is also reported.~The total 213-body effect, where not indicated
see text for details.!

6-31G(d,p)unc. 6-31G(d,p)corr. Dcorr.2unc. % total

Cyclic

e ind,r
(20) ~2-body! 217.55 29.08 8.47 58.1

e ind,r
(20) ~3-body! 21.87 21.35 0.52 3.5

e ind,r
(30) ~2-body! 20.29 20.17 0.12 0.8

e ind,r
(30) ~3-body! 20.62 20.35 0.26 1.8

edisp
(20) ~2-body! 25.84 23.57 2.27 15.5

edisp
(30) ~3-body! 0.00 0.00 0.00 0.0

ees
(10) ~2-body! 235.86 226.47 9.39 64.4

eexch
HL ~2-body! 37.06 19.62 217.44 114.1

eexch
HL ~3-body! 20.51 20.22 0.30 2.0

DEHL 0.69 27.07 27.76 53.2

DEdef
SCF 211.22 25.89 5.33 36.5

DEint
SCF 210.53 212.96 22.44 16.7

DEint
SCF ~3-body! 24.59 22.48 2.10 14.4

DEint
(2) 22.83 21.61 1.23 8.4

DEint
MP2 215.49 215.70 0.21 1.4

DErel 0.97 0.41 20.56 3.8

DEint
MP2 ~3-body! 24.86 22.63 2.23 15.3

Linear

e ind,r
(20) ~2-body! 28.38 25.32 3.06 28.4

e ind,r
(20) ~3-body! 20.31 20.38 20.07 0.6

e ind,r
(30) ~2-body! 20.13 20.10 0.04 0.3

e ind,r
(30) ~3-body! 20.16 20.13 0.03 0.3

edisp
(20) ~2-body! 23.03 22.18 0.85 7.9

edisp
(30) ~3-body! 0.00 0.00 0.00 0.0

ees
(10) ~2-body! 220.58 217.10 3.48 32.2

eexch
HL ~2-body! 17.65 11.05 26.6 59.7

eexch
HL ~3-body! 20.16 20.10 0.06 0.6

DEHL 23.09 26.15 23.05 28.3

DEdef
SCF 25.62 23.99 1.63 15.1

DEint
SCF 28.71 210.14 21.43 13.2

DEint
SCF ~3-body! 21.09 20.88 0.21 1.93

DEint
(2) 21.24 20.66 0.58 5.3

DEint
MP2 210.47 211.14 0.67 6.2

DErel 0.22 0.08 20.14 1.3

DEint
MP2 ~3-body! 21.14 20.91 0.23 2.13
is
s,

o
se

as
ly
ct
e

co
f

de

ra-
he
f the

ted
dis-

po-
tion
d,
lowers the stabilization by 0.26 kcal/mol. The effect of th
term in the remaining basis sets is negligible. Nevertheles
is worth noting that in the case of the 6-3111G(d,p) basis
set, analogously to the cyclic structure, the sign of the c
rection is opposite, i.e., the stabilization energy increa
upon correction.

The inclusion of high-order CP-correction terms w
computationally feasible only for the trimer, therefore on
the SSFC method was used to compute the CP-corre
geometry of the linear tetramer. Nevertheless, we perform
a single-point second-order CP-correction at the SSFC
rected geometry with the 6-31G(d,p) basis set. The value o
CP correction increased by 0.64 kcal/mol.

As pointed out recently by Rinco´n et al.,32 the open
chain structures for the HF trimer and tetramer are first-or
 to 84.88.138.106. Redistribution subject to AIP licens
it
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saddle points connecting two equivalent cyclic configu
tions. Our results are consistent with their findings in all t
cases. The CP-correction does not change the topology o
PES in any case, not even for the 6-31G(d,p) basis set,
where the effect on the geometry is very large.

C. Perturbation analysis of the minimum-energy
results

The differences between the geometries of the correc
and uncorrected surfaces can be further emphasized by
secting the interaction energy terms into perturbative com
nents obtained from the symmetry-adapted perturba
theory ~SAPT!. These corrections are free from BSSE an
as shown by Cybulski and Chalasinski,33 their sum con-
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE VII. Energetic SAPT contributions~kcal/mol! to the interaction energy for the cyclic and linear (HF3

with the 6-3111G(d,p) basis set at the uncorrected and VMFC-corrected geometries.

6-3111G(d,p)unc. 6-3111G(d,p)corr. Dcorr.2unc. % total

Cyclic

e ind,r
(20) ~2-body! 29.69 27.78 1.91 14.3

e ind,r
(20) ~3-body! 21.38 21.22 0.15 1.1

e ind,r
(30) ~2-body! 20.15 20.13 0.02 0.1

e ind,r
(30) ~3-body! 20.35 20.29 0.06 0.4

edisp
(20) ~2-body! 24.07 23.47 0.60 4.5

edisp
(30) ~3-body! 0.00 0.00 0.00 0.0

ees
(10) ~2-body! 224.97 222.60 2.37 17.8

eexch
HL ~2-body! 20.25 16.24 24.01 30.2

eexch
HL ~3-body! 20.23 20.17 0.06 0.4

DEHL 24.95 26.54 21.59 11.9

DEdef
SCF 26.82 25.50 1.32 9.9

DEint
SCF 211.77 212.04 20.27 2.0

DEint
SCF ~3-body! 22.55 22.10 0.45 3.3

DEint
(2) 21.40 21.23 0.17 1.2

DEint
MP2 213.61 213.59 0.02 0.2

DErel 0.42 0.32 20.10 0.8

DEint
MP2 ~3-body! 22.66 22.20 0.47 3.5

Linear

e ind,r
(20) ~2-body! 26.27 24.96 1.31 13.4

e ind,r
(20) ~3-body! 20.36 20.34 0.02 0.2

e ind,r
(30) ~2-body! 20.10 20.09 0.01 0.1

e ind,r
(30) ~3-body! 20.15 20.12 0.03 0.3

edisp
(20) ~2-body! 22.62 22.21 0.41 4.2

edisp
(30) ~3-body! 0.00 0.00 0.00 0.0

ees
(10) ~2-body! 216.25 214.79 1.47 15.0

eexch
HL ~2-body! 12.06 9.42 22.4 27.1

eexch
HL ~3-body! 20.13 20.10 0.03 0.3

DEHL 24.32 25.47 21.15 11.7

DEdef
SCF 24.81 23.91 0.90 9.2

DEint
SCF 29.13 29.37 20.25 2.5

DEint
SCF ~3-body! 20.95 20.78 0.16 1.6

DEint
(2) 20.57 20.42 0.16 1.6

DEint
MP2 29.79 29.84 20.05 0.5

DErel 0.13 0.09 20.04 0.4

DEint
MP2 ~3-body! 20.98 20.81 0.17 1.72
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verges asymptotically to the CP-corrected supermolec
terms. The supermolecular SCF interaction energy,DEint

SCF,
may be divided into the Heitler–London interaction ener
DEHL and the SCF deformation part,DEdef

SCF. The former
originates from the unperturbed monomer wave functio
and can be further divided into its electrostatic and excha
components~see Table V!. The latter involves effects of elec
tronic polarization, which is restrained by the exchange
fects. Its exchangeless contributions can be represente
the sum of the SAPT induction correctionse ind,r

(n0) . Out of
these terms only the electrostatic term is additive; the
maining ones contribute three-body components.

In the second-order of Møller–Plesset theory, one of
dominating SAPT terms is the second order dispersion t
edisp

(20) . This term is additive and thus only contribute the tw
body components. The first nonadditive dispersion com
nent appears in the third order of perturbation theory as
 to 84.88.138.106. Redistribution subject to AIP licens
ar

,

s
e

f-
by

-

e
m
-
-
e

edisp
(30) term. This term usually dominates the nonadditivity

theDEint
(3) supermolecular Møller–Plesset term. The physi

sense of the SAPT corrections considered in this work,
their correspondence to the supermolecular Møller–Ple
terms are summarized in Table V~see also Ref. 34!. The
basis set dependence of two-body SAPT terms in (HF)2 was
analyzed previously~see Ref. 34!. Monomer properties of
HF in the Sadlej basis set can be found in Ref. 18.

The SAPT contributions were calculated for the cyc
and linear trimer at three basis sets. The calculations w
carried out at uncorrected and VMFC-corrected minima
the trimers and the results are shown in Tables VI–VIII. As
trimer of highly polar molecules, (HF)3 is dominated, at the
level of two-body interactions, by the electrostatic attractio
These effects are counterbalanced, to a certain degree, b
repulsive exchange effects. The two-body induction effe
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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are also important. The two-body dispersion interaction
the third in importance. At the level of three-body intera
tions the bulk of nonadditive interaction originates from t
SCF-deformation term. The exchange nonadditivity is qu
small while the three-body dispersion is nearly zero. T
cyclic configuration is stabilized over the linear one at t
level of two body interactions, because of more favora
electrostatic and induction effects in the cyclic arrangeme
The three-body terms also favor the cyclic structure.

Calculations of SAPT terms at two different geometrie
one uncorrected and a counterpoise-corrected~at the VMFC
level! are displayed in Tables VI–VIII. In the 6-31G(d,p)
basis set the evaluation of SAPT terms at the uncorre
minimum geometry leads to large discrepancies in SA
terms resulting in considerable percent errors in the elec
static, exchange, and induction terms. For example,
the cyclic configuration, the errors in these terms ran

TABLE VIII. Energetic SAPT contributions~kcal/mol! for the cyclic and
linear HF trimer with the Sadlej basis set.

Sadlejunc. Sadlejcorr. Dcorr.2unc. %total

Cyclic

e ind,r
(20) ~2-body! 219.22 210.23 9.00 64.6

e ind,r
(20) ~3-body! 22.13 21.52 0.61 4.3

e ind,r
(30) ~2-body! 20.23 20.17 0.06 0.4

e ind,r
(30) ~3-body! 20.58 20.37 0.20 1.4

edisp
(20) ~2-body! 28.64 25.82 2.82 20.2

edisp
(30) ~3-body! 0.04 0.02 20.02 0.1

ees
(10) ~2-body! 231.79 223.23 8.56 61.4

eexch
HL ~2-body! 37.99 20.32 217.67 126.1

eexch
HL ~3-body! 20.49 20.20 0.29 2.0

DEHL 5.71 23.11 28.82 63.3

DEdef
SCF 213.09 27.66 5.44 39.0

DEint
SCF 27.38 210.77 23.38 24.3

DEint
SCF ~3-body! 24.92 22.78 2.14 15.3

DEint
(2) 25.46 23.15 2.30 16.5

DEint
MP2 213.86 214.54 20.68 4.9

DErel 0.93 0.53 20.40 2.9

DEint
MP2 ~3-body! 25.10 22.91 2.19 15.7

Linear

e ind,r
(20) ~2-body! 210.03 25.98 4.05 41.7

e ind,r
(20) ~3-body! 20.36 20.33 0.02 0.2

e ind,r
(30) ~2-body! 20.13 20.11 0.02 0.2

e ind,r
(30) ~3-body! 20.22 20.15 0.07 0.7

edisp
(20) ~2-body! 24.76 23.42 1.35 13.8

edisp
(30) ~3-body! 0.00 0.00 0.00 0.0

ees
(10) ~2-body! 218.70 214.68 4.02 41.4

eexch
HL ~2-body! 19.18 11.15 28.03 82.4

eexch
HL ~3-body! 20.19 20.11 0.08 0.8

DEHL 0.30 23.64 23.93 40.5

DEdef
SCF 28.96 24.78 4.18 43.0

DEint
SCF 28.67 28.41 0.25 2.6

DEint
SCF ~3-body! 21.27 20.86 0.41 4.2

DEint
(2) 20.48 21.31 20.82 8.4

DEint
MP2 29.34 29.84 20.50 5.1

DErel 0.17 0.10 20.07 0.7

DEint
MP2 ~3-body! 21.30 20.89 0.41 4.3
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from 50% to over 100%. These errors are reduced in
6-3111G(d,p) basis set to 15%–30%. The results o
tained in Sadlej basis set also indicate large discrepancie
SAPT terms derived using these two geometries. Althou
this basis set produces reliable values of SAPT terms, it a
generates large values of BSSE that result in large distort
of geometrical parameters. It is worth noting that because
this difference in geometry it is possible to obtain a fa
picture of the interaction energy composition if the calcu
tions are done for the uncorrected minimum. For example
Sadlej basis set the Heitler–London interaction ener
DEHL is negative~23.11 kcal/mol! in the VMFC-corrected
minimum whereas in the uncorrected minimum it has a
pulsive ~5.71 kcal/mol! value for the cyclic configuration. A
similar sign reversal ofDEHL also takes place in the linea
configuration.

IV. CONCLUSIONS

This paper has examined the methods of BSSE-free
ometry optimization and frequency calculations in clust
larger than a dimer. Three different counterpoise schem
have been critically examined. It has been shown that
counterpoise-corrected supermolecule energy can be e
obtained in all the cases by using the many-body partition
of energy. The expressions for the so-called site–s
pairwise-additive, and hierarchical function counterpoise
reproduced.

A computer program for such calculations using thr
counterpoise schemes has been coded and tested for gra
optimizations and harmonic frequency calculations of the
trimer and tetramer. The high symmetry of the cyclic co
plex has made possible the study of the cyclic HF tetram
within the hierarchical CP approach.

Calculations performed in three different basis s
6-31G(d,p), 6-3111G(d,p), and Sadlej basis sets ind
cate that only the latter two are suitable to judge the per
mance of the CP-procedures. The first basis set leads to
sults that are too erratic. This basis set performs very po
even after the CP-correction, and should be avoided in
studies of intermolecular interactions.

Generally, both SSFC and VMFC lead to very simil
values of the CP correction. The PAFC scheme leads to
larger, most likely overestimated, CP values. Therefore
our opinion it does not represent a valid correction schem

A comparison of the results obtained with the conve
tional ~SSFC! and the hierarchical~VMFC! CP methods in-
dicates that, except for unsuitable basis sets such as
6-31G(d,p), the high-order BSSE effects are not importa
We conclude that the conventional CP scheme is clearly
ferred in this case, mainly due to the extra computatio
cost required by the application of the VMFC~which is prac-
tically inapplicable in larger clusters with low symmetry!.

The CP-corrected gradient optimizations demonstr
large effects of BSSE on equilibrium geometries and ro
tional constants. The calculations of CP-corrected second
rivatives of complex energies at the CP-corrected station
points underscore the importance of determining the ZP
corrections and redshifts in the BSSE-free manner. The s
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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sitivity of frequency shifts to BSSE was recently pointed o
by Hobza and Havlas, who argued that the reliable pre
tions of ‘‘blueshifting’’ hydrogen bonds require evaluatin
frequencies on a BSSE-free PES.35

The medium-polarized basis set of Sadlej bears a la
BSSE, but the results obtained are very reliable compare
either empirical potential or high levelab initio calculations,
provided that the CP-corrected PES is used. For this b
set, the high-order BSSE effects are almost negligible e
though the first-order BSSE correction is ca. the 70%–8
of the interaction energy.

The presented SAPT results show that already at
level of two-body interactions the cyclic configuration is s
bilized over the linear one. The three-body terms also fa
the cyclic structure. The large differences between the res
obtained at the uncorrected and counterpoise-corrected
ometries underscore the need for performing the analysi
the interaction energy at the counterpoise-corrected m
mum geometries.
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