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The differences between three previously defined counterg@®e schemes for removing the
BSSE in molecular complexes formed by more than two subunits have been assessed by
CP-corrected geometry optimizations and frequency calculations for the hydrogen fluoride trimer
and tetramer. The types of the functional counterpdiS€) procedures included the site—site
(SSFQ, pairwise additive, and hierarchical Valiron—May®MFC) schemes. The latter approach
takes into account the basis set extension of the dimers in the trimer, dimers and trimers in the
tetramer, etc. The number of different calculations required to apply this counterpoise scheme
increases very rapidly with the cluster size. The symmetry of the chosen systems makes the test of
this approach computationally feasible. All the optimizations and frequency calculations have been
carried out automatically using a new program that generates the necessary input files and
repeatedly calls a slightly modified version of a Gaussian link. The results show that geometrical
parameters, zero-point vibrational energies, and redshifts computed on the CP-corrected potential
energy surfaces differ considerably from those evaluated on the uncorrected surfaces. The structural
and energetic properties obtained with the conventional SSFC procedure are almost identical to
those predicted by the more costly and complex VMFC method. Hence, the former seems to be
more appropriate in the present case. Furthermore, symmetry-adapted perturbation theory
calculations show the importance of computing the interaction energies at the CP-corrected
geometries. ©2003 American Institute of Physic§DOI: 10.1063/1.1527011

I. INTRODUCTION The effect of BSSE on the structural properties has been

demonstrated in the hydrogen fluoride dimer. A conventional

It has been recognized that the Basis Set Superp03|t|o|Q]P2/6_31G* geometry optimization leads to a centrosym-

Error (BSSE (Ref. 1) represents more than just an unbalance . . . .
. ; . ‘metric C,,, stationary point. When correcting for BSSE b
between the energies of the complex and its fragments in the . ¢ ~2n : Y pol ng y

computations the interaction energyThe BSSE is a phe- using either the Chemical Hamiltonian Approd@HA),” or

nomenon related to the LCAO approximation that affects theby optimizing with the counterpoise-corrected gradient, the

whole description of the complex, i.e., stationary pofhis, CO"_T_EI quaS|I|ne|a$StstrlécStuSrE IS obt;eunelﬁ. |

bration frequencies, wave functidretc. The appearance of € removar ot (ne IN Molecuiar complexes com-
the so-calleca priori BSSE-correction metho85 helped to posed of more than wo fragments has not been extensively
understand this point of view and to recognize that the Welplscussed n the literature. A f?W_ years ago, Turi gnd
known and widely used counterpoi¢gP) correctiofd may Dannerjberb1L pointed qut the amblguny of the counterpoise
be viewed as an energetic correction to the complex's energ§C"ection when studying growing chains of hydrogen fluo-
This interpretation has the advantage of permitting a straightide- They showed that the BSSE computed for the addition
forward definition of counterpoise-corrected derivatives of®f @ néw HF monomer to the (HFaggregate depends upon
the energ in order to obtain the stationary points on the whether the incoming monomer is added to the H or to the F

counterpoise-corrected potential energy surface, vibratiofnd of the aggregate. Hence, one can obtain different inter-
frequencies, dipole moments,  spin—spin CouplingaCtion energies for the same chemical process, which is un-
constants? etc. In the alternative, equally valid argument thea@cceptable. They proposed the use of the counterpoise
CP correction is viewed as the energetic correction to thénethod by defining as many fragments as there are monomer
interaction energy. It is, in principle, possible to formulate asubunits in the complex, with the BSSE defined as the dif-
gradient-optimization procedure based on the minimizatiorference between the energy of each monomer in its own
of the CP-corrected interaction energy in combination withbasis set and that of the whole aggregate.

the monomer relaxation effects. An optimization of such a  This method clearly solves the problem of the ambiguity
quantity, henceforth referred as the stabilization energy, wasf the CP correction but is unable to explain all the effects of
suggested by van Lenthet al® This idea was not imple- the incoming monomer on the interacti¢gand BSSE al-
mented analytically until Ref. 9. ready present in the molecular aggregate. Valiron and
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Mayer‘? illustrated this deficiency with the example of three C,n Symmetry for the (HF)3<n<6 gas phase oligomers.
interacting H atoms described by the Slater drbitals. In |5 the case of the tetramer and pentamer, however, there is
this particular case, the counterpoise scheme above will NGl some debaté®?4 X-ray and neutron diffraction
predict any BSSE in the system whereas all the H+HH  experiment®® have shown that solid HF tends to form infi-
interactions bear some BSSE. Hence, there is a second-ordgfe zig—zag chains with very large cooperative effects.
BSSE due to the basis set extensions of all thedelscrip-  Therefore, there must be an inversion of the relative stability
tions within H;. Indeed, these diatomic basis set extensiongf the cyclic and chain isomers as the aggregate grows. In
are as natural as the atomic ones. The BSSE is due to thgis paper, both the cyclic and chainlike arrangements are
improvement of the description of the atorfflsagment$  considered in order to compare the BSSE effect for two
within the complex by using the other fragment basis sets t@tructures where the importance of the cooperative effects is
expand the genuine atomisingle fragmentcontributions to  very different. Also, the high symmetry of the cyclic aggre-
the Hamiltonian. Analogously, the genuine diatonfiag-  gates will allow us to perform hierarchical counterpoise-
ment paif descriptions, including the respective interactioncorrected geometry optimizations with a relatively large ba-
contribution within the atonifragmenj pair, are also artifi- sjs even for the tetramer.
cially improved due to their expansion in the whole complex  Finally, we will perform symmetry-adapted perturbation
basis sefthis is the particular case of the basis set extensiongheory (SAPT) analysis for the hydrogen fluoride trimer in
present on the H—HH interaction commented abovein  order to gain insights into the nature of the interaction in this
this sense, the hierarchical partition of an aggregate intgystem. Even though SAPT is a genuinely BSSE-free meth-
atomic (single fragmeni diatomic (fragment pairs etc.,  odology, its results depend on the choice of geometry that, in
arises naturally. turn, is affected by the BSSE. One of the goals of this paper
One way to take into account those high-order BSSEs to compare the SAPT results at the uncorrected and the
effects within the counterpoise framework was first intro-counterpoise-corrected geometries and to assess the effects
duced by White and Davidsbhand later generalized by of BSSE-induced changes in the geometry upon the interac-
Valiron and Mayer? They proposed a hierarchical counter- tion energy components.
poise scheme foN-body clusters that treats the basis set In the next section we briefly discuss the three different
extension effects of all the monomers, dimers, trimers, andounterpoise methods used throughout the paper and derive
S0 on, present in an aggregate. However, their proposeithe corresponding expressions for the counterpoise-corrected
scheme was never tested in CP-corrected geometry optiméluster energies by using a many-body partitioning of the
zations. In a recent paper, Mierzwicki and Latafkanalyzed  energy of the aggregate.
the behavior of these two counterpoise methods in the calcu-
lation of many-body interactions of (NH,),, and Li(NH,) ;
clusters at several levels of theory. They also used anothelr,
rather unusual scheme, introduced by Wells and WifSon,
where the counterpoise correction is carried out over pairs of et us consider first a dimeAB. The energy of this
fragments. dimer at a given geometry with rigid monom&tsan be
In the present paper we intend to go one step further. Agxpressed simply as
commented above, in order to properly take BSSE into ac-
count, the counterpoise correction will henceforth be viewed Eas=EatEptAEse, @

as a correction to be added to the aggregate’s descriptiofyhereA E, g represents the two-body interaction energy. Ac-
This allows one to Compute not Only interaction energies, bu&ording to the Counterpoise ph”osophy’ this value must be

also gradients and harmonic frequencies for the three diffelcomputed using the same basis set for all the terms involved,
ent counterpoise schemes. Furthermore, the location of the

stationary points on the BSSE-corrected PES is essential to Eap=Ea+Es+Eag—EA°—Eg®
obtaining the reliable counterpoise-corrected energies and to _ _ AB _ AB
avoiding the artifacts which are sometimes referred to as an =Eapt (EA=Ea™+Ee— B, @
overcorrectiort® where the superscrigB means that the whole complex ba-
We wish to assess the differences between the variousis set is usedf no superscript is used, it is assumed that the
CP methods in terms of geometries, vibration frequenciesgnergy is computed with the fragment’'s own basis.det
and interaction energies. For the first time, the full geometrythis way, the counterpoise-corrected dimer energy is recov-
optimizations using both the pairwise additive and the hierered. Note that the one-body interaction energies, i.e., the
archical counterpoise methods will be performed. The use dragment energies, are computed with the so-called
the hierarchical counterpoise scheme will help elucidate thenonomer-centered basis s€éMCBS), whereas only the in-
effects of the high-order BSSE terms and will help to deterteraction energy term is computed with the dimer-centered
mine whether or not they can be neglected. The validity obasis sefDCBS). It is very important to point out that this is
the pairwise additive scheme will also be analyzed. conceptually similar to the case of tagoriori methods, such
These methods will be applied to the hydrogen fluorideas CHA, where the diagonafragment-only blocks of the
trimer and tetramer. The hydrogen fluoride clusters have reHamiltonian are maintained, and the BSSE-correction takes
ceived a great deal of attention lately. Recent experim&ntal place only in the off-diagonal blockintermolecular interac-
and theoreticaf'8-?’studies predict planar ring structures of tion).

METHOD
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When a complex is composed of three interacting unitsthe same way as the monom@ne-body contributions are
ABC, the energy of the system can be expressed as the suexpressed in the MCBS. According to these considerations,
of one-, two-, and three-body interaction energies, the counterpoise-corrected trimer energy will have the fol-

lowi ion:
EABC: EA+ EB+ Ec+AEAB+AEAc+AEBC+AEABC, 0(\;\;'”9 expression . N
(3  Efsc=EatEstEc+(Eas—EA°—Eg®)

where the last term is due to the nonadditivity of the inter- +(Ege— EEC—EEC) + (Eac— EAC— E2S) + Epgc
action. In order to obtain a counterpoise-corrected energy of ABC ABC _ABC  ABC . ABC . —ABC
the trimer, the three-body energy term must be computed —Epg —Egc —Eac tEax tEgTtHEC

following the standard counterpoise prescription, i.e., using

. . — + _ ABC + _ ABC
the same, trimer, basis set for all the terms, Easct (Eas—Eap )+ (Esc—Egc

AEpsc=Engc—Eag —Ege—Eac +EA®C +(Epc—Enc) +(Ea+EA"—EA°—ERO)
+ERBC+ ERBC, 4) +(Eg+ERP“—ER°—ER©)
ABC BC AC
The point now is to determine which two-body interaction +(EctEc —Ec —Ech). @)

energies must be used. If no counterpoise-correction is takeRearranging the terms, the Valiron and Mayer’s hierarchical
into account at all for those terms, the following expressioncounterpoise expression for the energy of a complex is ob-

is obtained by substituting Eqél) and (4) into Eq. (3), tained,

Egbc=Ea+Eg+Ec+(Eag—Ea—Eg) +(Egc—Eg—Ec) Expc=Easct (Ea—EA°9) +(Eg—ER®)
+(Eac—Ea—Ec)+Easc—EAg“— E8e° +(Ec—Eg")+(AEas— AERR®
—EARSHEAPCHERC+ EL®C +(AEgc— AERE) +(AEAc—AERED). (8

— Esont (Exn— EABC) 4+ (Ea.— EABC The last three extra terms with respect to the conventional
rect (Eas~Eas ™)+ (Fec~Eac?) counterpoise scheme of E6), correspond to the differ-
+(Epc— ERSC) — (Ep—ERR®) — (Eg— EREC) ences, for each dimer in the aggregate, between the dimer
ABC interaction energy computed within the DCBS and TCBS.
—(Bc—Ec™). (3 These effects will henceforth be dubbed second-order basis-

There are three counterpoiselike terms related to basis s8¢t €xtension effects.
extension for all the dimers in the trimer, and also three Another counterpoise scheme previously proposed by
terms corresponding to the basis set extensions of the mondVells and Wilsor';> the pairwise additive function counter-
mers, which contribute to the counterpoise correction withPoise (PAFC) can also be obtained in a systematic manner
opposite signs. The application of this scheme, however',ike the other two schemes discussed above. In this case, the
yields meaningless results because the monomer basis dBf€e- and higher-body interaction terms are not corrected
extensions are usually larger than those for the dimers, an@ccording to the counterpoise scheme. Instead, only the two-
hence the BSSE is negative. In other words, the energy of thgedy interaction energies are corrected by using DCBS. In
supermoleculdand so the stabilization eneigjs lowered the case of_a trimer, the expression for the corrected energy
upon counterpoise correction, which is unacceptable. can be easily obtained from E(B),

Alternatively, one can consider using counterpoise- — ESE =Ej+Eg+Ec+(Eag— EA®—ER®)
corrected two-body interaction terms in E§) but using the

basis set of the whole trimexBC (TCBS). +(Egc—ESC—E2®) + (Eoc—EAC—E2O)
ESEc=Ea+Eg+Ec+(EASC—EABC—ELEC) +Eagc— Eag— Egc— Eact+Eat+Eg+Ec
T (EA2C— EAPC— EAO) + (EARC- EAPC-EAP) =Ensct (Ea—ER®) + (EA—ER) + (Es—Eg)
+Easc—Eap — Esc —Eac’ +(Eg+EgO) +(Ec+EC)+(Ec+ECY). (9
4 EABC EABC, EABC The main feature of this approach is that the whole complex
A B c . . . .
basis set is never used for any subunit’s calculation, except
=Epgct (Ea— EAPO) + (Eg— ER®%) + (Ec— ERR©). for the trivial case of a dimer. The counterpoise-correction is

©) obtained by summing up, over all the subunits, the differ-
ences between the MCBS ardl the different DCBS de-
In this case the conventional counterpoise scheme is olscriptions of a given fragment. For a givéhbody cluster,
tained, which includes only the basis set extensions of théhe energetic difference between the MCBS and the whole-
monomers in the whole basis set. Wells and WilSaralled  complex basis set description of each fragment, as defined in
this approach site—site function counterpoise. the conventional counterpoise correction, is substituted by
However, the same considerations as those for the diméd—1 energy differences calculated using only the corre-
case may suggest that the two-body interaction energy termsgponding DCBS. Therefore, one might expect that this
should be described with the respective DCBS basis set, ischeme may have problems in dealing with cyclic or highly
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packed clusters where the presence of many close-by DCBS _
representations for each fragment may lead to an overestima- AE;= E%E N 2 Ei, (13
tion of the BSSE. !
The N-body cluster generalization of these three function ,
counterpoise schemes is straightforward and the derivations AEg,=ESE ..\ -> Ei“'. (14
can be found elsewheté.The final expressions for the so- !
called site—site, pairwise-additive and Valiron—Maykier- The next step is to characterize the stationary points on
archica) function counterpoise schemes, SSFC, PAFC, anthe CP-corrected potential energy surface of the complex,
VMFC, respectively, are as follows: and to compute the vibrational frequencies. It has been
shown that the gradient, Hessian, and in general any deriva-
SSFC _ i _ i1z tive of energy, can be obtained by a linear combination of all
By iy = Bigiye 'N”Li2 (E CEEY (10 the terms properly differentiated.
In all the geometry optimization and frequency calcula-
o tions, we have used our code to automatically generate all
Er?i\z.c..iN— iy iyt E (E'1 E'?), (11)  the necessary input files and repeatedly call a slightly modi-
112 ' fied GAUSSIAN 98 packagé’ We have rewritten the
prograni®in order to accommodate the molecular symmetry,

VMFC _ +E (E|1 '1'2 'N) and to use the VMFC and PAFC methods.
iz i~ Figizr iy n The MP2 calculations were performed using the
frozen-core  approximation with the 6-316G0),
n 2 (AE'l' AE?l?z---iN) 6-31+ +G(d,p), and a medium polarized basis set with a
i1<is "'z f1l2 (10s,6p,4d,1f/6s,4p) —[ 5s,3p,2d,1f/3s,2p] contraction
scheme proposed by Sadf&j.The two- and three-body
" 2 (AEuluzu _AE2 |N) SAPT calculations were carried out USINGRURL94
T e P PP PP program?°
N
+ > (AEjM2 N1 AEI2IN ) IIl. RESULTS AND DISCUSSION
i1<ip<<in_1 1127 IN-1 127 IN-1
A. HF, cyclic
(12)

The results of geometry optimizations for the cyclic tri-
In Eq. (12) the third, fourth, andhth term on the right-hand mer and tetramer are gathered in Table I. As shown in Fig. 1,
side will be referred to as the second-, third-, amo-order  both the trimer and tetramer structures are determined by
CP contributions. three parameters: the intermolecular F-HR:-() and in-

An important point is the scalability of these methods.tramolecular F—~HRg_,; distances, and the angle HFF angle
Obviously, in the VMFC approach the number of needed(«). We have studied only th€s, andC,;, configurations of
calculations rapidly increases with the cluster size. Thehe trimer and tetramer, respectively.

SSFC method needsN\N2extra energy calculations. For the It is seen that in the trimer the intermolecular distance
PAFC,N(N—1) DCBS calculations plusl MCBS calcula- increases upon CP corrections, with the larger differences
tions must be carried out, that ¥? extra energy calcula- corresponding to the PAFC method. Upon CP-correction, the
tions. In case of the VMFC, it can be proved that the totalintramolecular F—H distance shortens49.01 A. However,
number of the energy calculations is given by the relationthis difference is still larger than the variation of this distance
=N 2NNy, This means that the full hierarchical CP treat- with respect to basis sets. The cyclic nature of the complexes
ment of the nonsymmetric trimer through hexamer serieprecludes large effect of BSSE correction on the angular pa-
would involve 19, 65, 211, and 665 energy evaluations, rerameter. In all casesy increasegby up to 39, leading to a
spectively. The treatment including only a second-order CPlarger deviation from the triangular arrangement and hence
correction,[VMCP(2)] would involve N(N+1) monomer to larger H-bond distances.

plus 2() dimer calculations, that is a total oNf+1 en- The addition of diffuse functions to the 6-310) ba-
ergy evaluations. In this casmly 19, 33, 51, and 73 calcu- sis set dramatically decreases the effect of BSSE. The differ-
lations are needed for the trimer up through the hexameences between the uncorrected and CP-corrected intermo-
series. The use of the hierarchical scheme is clearly prohibiecular distances decrease from more than 0.1 A@05 A

tive even for relatively small oligomers, however, the highupon inclusion of diffuse functions. The medium polarized
symmetry may enable such calculations. basis set, specifically designed to correctly describe intermo-

Once the CP-corrected energy of an aggregate is olecular interactions, yields large BSSE. Indeed, both the un-
tained, the interaction and stabilization energies of the comeorrected and the CP-corrected geometrical parameters are
plex are obtained by subtracting the energies of the moncelose to the values obtained with the 6-38G1) basis set.
mers computed at the CP-corrected complex geometry and Adding another HF unit to the complex results in a
isolated, respectivelynote that since the BSSE is already shortening of the intermolecular distance #¥.06 A. The
taken into account in the complex energy, the monomeritramolecular H—F distance decreases, whereas amgle
energies are computed with the MCBS slightly increases. Cooperative effects are also evident in the
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TABLE I. Geometrical parameter@, deg), total (a.u), and stabilization energig&cal/mo), and CP correc-
tions (kcal/mo) for the cyclic HF trimer and tetramer in several basis sets and counterpoise methods. See Fig.
1 for the definition of the geometrical parameters.

Single-point
Re_g Re_n @ Energy CP CP AEgip
Trimer
MP2/6-31G(,p)
Uncorr. 2.530 0.9432 20.6 —300.626538 —26.75
SSFC 2.651 0.9355 22.8 —300.608461 11.34 12.23 —15.40
PAFC 2.676 0.9345 23.6 —300.607189 12.14 13.47 —14.60
VMFC 2.666 0.9339 23.6 —300.607143 12.17 13.39 —14.57
MP2/6-314 + G(d,p)
Uncorr. 2.649 0.9411 24.2  —300.672298 —15.40
SSFC 2.700 0.9391 245 —300.668919 2.12 2.21 —-13.28
PAFC 2.708 0.9389 24.4  —300.668461 2.41 2.53 —-12.99
VMFC 2.700 0.9390 24.7  —300.668901 2.13 2.23 —-13.27
MP2/Sadlej
Uncorr. 2.521 0.9489 19.6 —300.843118 —23.87
SSFC 2.658 0.9423 22.2 —300.827375 9.88 10.94 —14.00
PAFC 2.680 0.9417 22.4  —300.825724 10.91 12.26 —12.96
VMFC 2.660 0.9422 22.2  —300.827249 9.94 11.03 -13.92
Tetramer
MP2/6-31G(,p)
Uncorr. 2471 0.9563 9.0 —400.848922 —44.16
SSFC 2.580 0.9440 11.1  —400.824190 15.51 16.70 —28.64
PAFC 2.607 0.9422 11.7  —400.822892 16.33 18.26 —27.83
VMFC(2) 2.604 0.9408 11.1  —400.821037 17.50 19.36 —26.66
VMFC(3) 2.611 0.9400 12.0 —400.82055 17.80 19.91 —26.36
MP2/6-31+ + G(d,p)
Uncorr. 2.563 0.9516 11.5 —400.908758 —28.29
SSFC 2.623 0.9467 11.9 —400.902411 3.98 4.22 —24.31
PAFC 2.635 0.9462 11.8 —400.901641 4.47 4.79 —23.82
VMFC(2) 2.621 0.9468 12.0 —400.902673 3.82 4.03 —24.47
VMFC(3) 2.621 0.9468 12.1  —400.902642 3.84 4.06 —24.45
MP2/Sadlej
Uncorr. 2.479 0.9586 8.5 —401.140773 —42.26
SSFC 2.579 0.9515 9.9 —401.114300 16.61 17.55 —25.65
PAFC 2.604 0.9499 10.3 —401.110746 18.48 20.15 —23.42
VMFC(2) 2.583 0.9511 10.0 —401.114102 16.73 17.73 —25.52
VMFC(3) 2.583 0.9511 10.0 —401.114097 16.73 17.73 —-25.52

energetics of the complex. The stabilization energy per hy- As for the energies, the CP correction to the trimer and
drogen bond increases by more than 1 kcal/mol, thus providetramer energies is always overestimated at the uncorrected
ing the extra stabilization energy o£6 kcal/mol for the geometry. The CP-corrected stabilization energies computed
tetramer at the uncorrected minima(single-point counterpoise
The similar effects are observed in the tetramer. The ingg|culation are smaller than those evaluated at the corre-

termolecular F—F distance lengthens anddfengle slightly  sponding CP-corrected stationary point. The differences in
increases. Even though the CP correction increases With r¢re case of the trimer range from0.1 kcal/mol for the

spect to the trimer, the differences in geometrical parameterg_g4, +G(d,p) basis set to more than 1 kcal/mol for both

are comparable to those found in the trimer. the 6-31G(,p) and the Sadlej basis set. In the tetramer
these differences are twice as large. It is important to note
that after the CP-correction the basis set dependence of both

Hr/f the calculated stabilization energies and geometrical param-

\\\R H eters decreases. The uncorrected stabilization energies ob-
O\ tained with the 6-31G{,p) and the Sadlej basis sets are far
F@}X F too large. All the CP-corrected values are within 3 and 5
H kcal/mol for the trimer and the tetramer, respectively. The

same situation has been observed in previous studies of
weakly bound complexes®?

FIG. 1. Geometrical parameters of tBg, andC,, cyclic hydrogen fluoride The differences petween T[he SSFC and the VMFC_COI’-
trimer and tetramer. rected values are still appreciable for the smallest basis set
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6-31G(d,p). The intermolecular distance is again the mostthe CP-corrected second order derivatives are needed. The
sensitive geometrical parameter. The inclusion of high-ordeglifferences between the frequencies properly computed on
terms in the CP method leads to larger intermolecular disthe corresponding uncorrected and CP-corrected PES contain
tances, the differences being 0.015 and 0.024 A for the triboth the “geometrical” and the “differential” factors.
mer and tetramer, respectively. The effects on the cluster The uncorrected and CP-corrected harmonic frequencies
energy are much more evident. The SSFC method leads for the cyclic HF trimer calculated for the three basis sets
the stabilization energy higher in magnitude 1 and 2 and CP methods are shown in Table II. In all the cases, the
kcal/mol, for the trimer and tetramer, respectively. In theuncorrected low frequencies are overestimated whereas the
tetramer case, the inclusion of the third order CP-correctiofirequencies of the two stretching modes are underestimated
terms, VMFQ3), feasible here due to the high symmetry, with respect to the CP-corrected values. For the 6-813(
shows no significant effect on either the geometry or theand Sadlej basis sets the differences between the uncorrected
energy of the complex, provided the basis set used is flexibland the CP-corrected frequencies range from 60 diar the
enough. Only in the 6-31@(p) basis set, the intermolecu- lowest frequency to more than 200 Chrfor the frequencies
lar distance still increases by 0.007 A and the stabilizatiolabeledw; and w,. In general, the BSSE modifies the low
energy decreases by 0.3 kcal/mol. Fortunately, in the remairfrequencies by 10%-25%. The differences in the fundamen-
ing, more diffused basis sets, the high-order correctioral stretching frequency», are >100 cni'. As expected,
VMFC terms have practically no effect on both geometricalthe 6-3k +G(d,p) frequencies are modified very little.
parameters and energies. It is worth to point out two factsThe maximum differences are50 cni™*, even for the most
First, in the 6-3% +G(d,p) tetramer calculation, the inclu- sensitive frequencies; and w,.
sion of high-order CP-correction terms induces a smaller ~The inclusion of the second-order CP-correction seems
BSSE. The intermolecular distance slightly shortens, and thto induce no appreciable changes in the frequencies. Only for
stabilization energy increases by 0.16 kcal/mol upon correcthe smallest basis set the frequencies are further shifted by up
tion. Even though it is a rather unexpected result, it should b& 7% with respect to the SSFC values. The PAFC frequen-
emphasized that the high-order terms in the VMFC methodies are very similar to both the SSFC or VMFC values.
can actually be of opposite sign. The fact that the dimer ~ Out of the two mentioned factors affecting frequencies,
correction term is negative does not mean that its energeticiie “geometrical” one is clearly more important. In general,
description is better with the DCBS than with the TCBS.the “geometrical” and “derivative” factors act in opposite
Instead, it is the dimer interaction energy, which is largerdirections on the frequency shift. For instance, the uncor-
(more negative The reason why this happens is that therected 6-31Gq,p) lowest frequencies decrease when com-
lowering of the monomer energies is larger than the dimeputed on the CP-corrected PES, but tend to increase when
counterparts as the basis set increases. Second, it is remagemputed using the CP-corrected second derivatives. How-
able that, despite the large BSSE exhibited at the monomedver, the opposite trend is observed for the Sadlej basis set.
level by the Sadlej basis set, the effects of high-order CP  The effect on the zero-point vibrational ener@PVE)
correction are rather insignificant. It is confirmed again that sorrection can be explained also on the basis of these oppo-
basis set should not be consideread or unbalancedjust ~ site effects. For the small basis sets, the ZPVE decreases
because it bears a large BSSE. Indeed, we will show that the¢hen computed at the CP-corrected PES but then increases
Sadlej basis set provides very accurate results, provided thghen using CP-corrected second derivatives. The opposite
BSSE is properly taken into account. occurs for the Sadlej basis set, which shows the largest effect

Finally, the PAFC method leads to larger CP correctionin the ZPVE correction. In this case, the uncorrected ZPVE
than SSCP and VMCP in all the cases except for the calcusorrection of 5.72 kcal/mol decreases to 4.84 kcal/mol when
lations involving the 6-31G{,p) basis set. In this case, the computed on the VMFC PES and further reduces to 4.54
PAFC results show that the method seems to mimic the efkcal/mol upon correcting the second derivatives.
fect of the high-order CP-correction terms. However, the dif-  The results obtained in the Sadlej basis(see Tables |
ferences observed in both the geometrical parameters amuhd Il) for the Cyy, trimer may be compared to the results
cluster energies when using more suitable basis sets malkdtained by using an empirically refined SC-219F3BG
this method not advisable. potential of Quack, Stohner, and SuffOur CP-corrected

It has been shown how the CP methods affect the locabinding energy and ZPVE correction are slightly smaller
tion of the stationary points at the PES. Obviously, the harthan the reference results. Also, tRe_g distance is too long
monic frequencies on a corrected and uncorrected PES areflecting the fact that this basis deind the level of corre-
expected to be different as well because of the two mairation treatmentis expected to underestimate the attraction
factors. First, the geometrical parameters of the stationarin this system. The predicted redshift of the HF stretching
points are different, so the differences in frequencies arérequency(249 cml) agrees very well with the harmonic
predicated on how large is the CP-correction on geometryalue obtained250 cm ) by Quack, Stohner, and Suhm. It
Second, the higher-order derivatives of the CP-correctioshould be stressed that the CP correction appears to be es-
term are non-zero, so the CP-corrected second derivativesential for the calculation of this quantity. The CP-
are expected to differ from the derivatives evaluated for thaincorrected value of redshift is severely overestim&gd
uncorrected PES. By comparing the corrected and uncoem™?) in this basis set.
rected frequencies at the CP-corrected stationary points one Recently, Lied!® studied the concerted hydrogen ex-
can determine whether the rather expensive calculations ahange process of the HF trimer at the MP2/aug-c&pV
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TABLE II. Harmonic frequencieécm™1), ZPVE correctior(kcal/mo) to the stabilization energy and frequency
shifts (cm™?) for the cyclic HF trimer. Values in parentheses correspond to the uncorrected harmonic frequen-
cies andAZPVE computed at the CP-corrected geometry. Redshifts calculated with respect to the monomer
H-F stretching frequencies obtained at each level of th¢d@93.4, 4118.7, and 4082.4 chfor the
6-31G(,p), 6-31+ + G(d,p), and Sadlej basis sets, respectilely

Uncorrected SSFC PAFC VMFC
MP2/6-31G(,p)
wg(E") 259.6 203.1(193.6 189.1(180.9 194.7(185.0
w3(A") 276.5 224.7202.2 217.9(186.9 219.7(193.1)
wg(E") 539.6 505.8474.5 489.5(467.8 476.7(456.6
ws(E") 755.2 631.6607.1) 619.4(577.2 589.4(571.1)
w7(A'Y 765.9 711.6669.0 689.4(651.4 688.9(644.2
wy(A") 1153.4 988.3963.6 954.0(919.1 948.3(917.9
w(A") 3668.4 3863.53869.1 3892.6(3899.0 3905.1(3905.0
wy(E") 3841.4 3967.33972.9 3985.6(3990.7 3995.7(3998.6
AZPVE 5.84 5.485.19 5.36(5.03 5.30(5.03
Shift —352 —226 —188 —198
MP2/6-31+ +G(d,p)
wg(E") 184.0 172.6(160.4 169.1(157.3 171.3(160.0
w3(A") 207.4 197.3181.3 194.1(177.6 196.0(181.0
wg(E") 465.0 446.4432.)) 438.6(427.7 444.8(432.5
ws(E") 553.2 531.2516.4 524.6(514.2 531.2(512.9
w7(A") 680.7 654.6648.3 642.6(645.9 648.0(646.0
wy(A") 936.5 884.0897.2 884.1(895.2 876.0(890.8
wq(A") 3785.8 3835.83833.5 3839.3(3837.3 3838.7(3836.6
w4(E") 3878.6 3915.23913.2 3917.6(3916.0 3917.3(3915.1
AZPVE 4.89 4.784.64) 4.72 (4.6 4.76(4.63
Shift —240 —204 —202 —202
MP2/Sadlej

wg(E") 259.7 186.2169.8 174.3(157.0) 185.5(168.6
w3(A") 285.7 208.7(181.1) 200.8(166.1) 208.3(179.8
wg(E") 579.2 468.0532.9 443.4(524.9 468.8(530.8
ws(E") 752.4 575.0582.9 557.6(564.4 573.2(580.9
w7(A") 771.7 654.0689.1) 625.7(678.9 654.8(687.7
wy(A") 1166.0 936.4940.8 912.3(916.9 933.1(938.9
wq(A") 3533.0 3730.43723.2 3751.3(3741.8 3732.3(3725.5
w4(E") 3711.4 3832.33823.7 3846.0(3835.0 3833.8(3825.5
AZPVE 5.72 4.71(4.85 4.54(4.72 4.70(4.84)
Shift —-371 —250 —236 —249

X=2,4. He found that the uncorrected energies for@ig  best estimate of this barrier using explicitly correlated
and Dy, structures were less basis set dependent than theoupled cluster calculations is 20.33 kcal/mol. The CP-
counterpoise-corrected ones. On this basis, he claimed tleorrected CBS values are clearly closer to this value than the
counterpoise-corrected results were useless. However, thisicorrected ones
assertion was based on the misinterpretation of his own data. Finally, his chief criticism of the usefulness of the CP-
First, the uncorrected values for the minimum and the traneorrection was based on the results obtained for the
sition state indeed show a weaker basis set dependence, ltansition-stateD 5, structure of the trimer where the mono-
they lack a monotonic trend. Therefore these values cannaters are highly stretchgavith a fragment relaxation o+60
be used to properly extrapolate to the basis set limit, and hikcal/mo). It should be emphasized that the transition state
complete basis s€CBS) limit is completely arbitrary. The structures are much more sensitive to the basitaset to the
CP-corrected values, on the other hand, vary monotonicallinclusion of correlation effecjsthan the equilibrium struc-
and a CBS extrapolation can be carried out. tures. Therefore this criticism is completely unwarranted.
Second, the CP-corrected values, contrary to Leidl's as- Another effect that was not taken into account by Liedl
sertions, provide a much better description of barrier heightvas the use of CP-correction in the geometry optimization.
dependence on the basis set than the uncorrected values. Faur calculations performed at the MP2/aug-cc-pVDZ indi-
example, the reported barriers for the hydrogen exchange farate that the stabilization energy for tg;, structure com-
the aug-cc-pXZ, X=2-4 series are 20.17, 17.89, and puted at the CP-corrected stationary point-i43.30 kcal/
18.61 kcal/mol, and 23.83, 20.48, and 20.21 kcal/mol for themol, i.e., 0.16 kcal/mol lower than the single-point CP-
uncorrected and the CP-corrected values, respectively. Theorrected value. It should be mentioned that the effects of
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TABLE Ill. Geometrical parameteréA, deg), total (a.u) and stabilization energiegcal/mol), and BSSE
corrections(kcal/mo) (single-point BSSE in parenthegdsr the linear (HF) in several basis sets and coun-

terpoise methods. See Fig. 2 for the definition of the geometrical parameters.

Uncorrected

SSFC PAFC VMFC
MP2/6-31G(,p)
ry 0.9293 0.9277 0.9277 0.9275
rs 0.9356 0.9310 0.9311 0.9303
rs 0.9266 0.9246 0.9246 0.9244
R, 2.647 2.752 2.754 2.755
R, 2.630 2.722 2.727 2.733
2 8.98 2.87 2.94 3.05
B1 98.80 118.7 118.8 119.2
@, 5.24 3.22 2.85 3.48
B> 108.6 121.2 121.7 121.0
Energy —300.6104703 —300.60154618 —300.6015036 —300.6011282
AEqa -16.66 —11.06 —11.04 -10.80
CP-corr. 5.60(6.41) 5.63(6.47) 5.86(6.71)
MP2/6-31G+ +(d,p)
rq 0.9342 0.9331 0.9331 0.9331
rs 0.9377 0.9361 0.9360 0.9361
rs 0.9303 0.9298 0.9298 0.9299
R, 2.728 2.789 2.789 2.787
R, 2.700 2.762 2.764 2.760
ay 3.16 3.16 3.28 3.20
B1 119.31 119.1 119.1 119.4
a, 3.65 4.05 3.80 3.92
B> 121.2 121.0 121.5 121.9
Energy —300.66585116 —300.66329844 —300.6632270 —300.66335745
AEqa -11.35 -9.75 -9.71 —-9.79
CP-corr. 1.601.70 1.65(1.75 1.56(1.66
MP2/Sadlej
rq 0.9361 0.9346 0.9344 0.9346
ry 0.9398 0.9378 0.9374 0.9379
rs 0.9312 0.9306 0.9305 0.9306
R, 2.616 2.749 2.759 2.749
R, 2.596 2.722 2.734 2.722
aq 2.62 2.90 2.90 2.91
B1 110.8 114.7 115.9 114.7
a, 2.72 3.40 4.45 3.39
B> 114.7 117.0 117.2 117.2
Energy —300.8323145 —300.8205844 —300.8201539 —300.8205622
AEgiap —-17.10 —9.73 —9.46 —9.72
CP-corr. 7.367.93 7.63(8.32 7.37(7.95

BSSE on geometry are much lower in the aug-cc-pVDZ bauncorrected and CP-corrected parameters are of the same
sis set than in other basis sets of comparable‘size. order than for the cyclic complexes, except for the intermo-

lecular bond angles. In this case, the 6-3d@{) basis set
poorly describes the directionality of the interaction. The in-
The zig—zag linear structures of both the HF trimer andtermolecular bond angles; and a; gre overestlmatedo
tetramer were also studied at the same level of theory. Thgh.er.easel and'B_Z are ‘?'ea”Y underestimated by up to 20°.
results obtained for the uncorrected and the CP-corrected gdiS IS not surprising since in (HgYhe uncorrected geom-
ometry optimizations are shown in Tables Il and IV for the €Y optimization at this level of theory leads to a spurious
trimer and tetramer, respectively. The definitions of geo-Cyclic structuré’ The corresponding CP-corrected optimiza-
metrical parameters are depicted in Fig. 2. In the this casdOns, however, overcome this problem. Indeed, the CP-
only the SSFC method was used for the corrected optimizaGorrected angular parameters are in good agreement with the
tion, since including the second-order CP or full VMFC cor- Values obtained using more flexible basis sets. Again, the
rections would involve 33 and 65 gradient calculations, re-£ffect of BSSE is minimized by the addition of diffuse func-
spectively. tions. The discrepancies between uncorrected and CP-
The observed trends are similar to those obtained for theorrected values are1° for the angles and 0.06 A for inter-
cyclic structures. Upon the CP correction, intermolecular disimolecular distances. The Sadlej basis set bears the largest
tances increase while the intramolecular HF bonds shorte®3SSE. However, whereas the intermolecular distances are
leading to a weaker interaction. The differences between thenderestimated by more than 0.12 A in the absence of the

B. (HF), linear

Downloaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



J. Chem. Phys., Vol. 118, No. 2, 8 January 2003 Counterpoise-corrected geometries

545
TABLE IV. Uncorrected and SSFC-corrected geometrical paraméfers o
deg, total (a_.u) and ‘stabiliz‘ation energie(ﬂxcal/mol)‘, and CP correctior_]s For1 R F. rs P
(kcal/mo) (single-point CP in parenthesefor the linear HF tetramer in H 2/'\)¢[H
several basis sets. See Fig. 2 for the definition of the geometrical parameters. o2 2 o3 B3 - ‘
MP2/6-31G@,p) MP2/6-3L+ +G(d,p)  MP2/Sadle] R 3H Rs (X H
B AF ro F r4
Uncorrected

M 0.9307 0.9355 0.9376 FIG. 2. Geometrical parameters of the zig—zag linear hydrogen fluoride
ry 0.9400 0.9416 0.9442 trimer and tetramer.
rs 0.9379 0.9398 0.9422
rs 0.9271 0.9308 0.9318
Ry 2.643 2.706 2.602 CP-correction, the angular features of the complex are well
EZ ;2;? 2'232 ;2?2 described even at the uncorrected level.
aj 6.85 2'.40 2'.17 Regarding the CP-corrected stabilization energies, the
B 100.8 119.3 110.7 linear structures are about 4 and 8 kcal/mol less stable com-
a, 215 1.16 1.22 pared to the cyclic trimer and tetramer, respectively. The CP
B> 111.1 122.1 115.0 correction in the trimer ranges from 1.6 and 2.76 kcal/mol
ag 4.04 272 231 for the 6-31G(l,p) basis set to 7.95 and 12.31 kcal/mol for
Bs 1105 122.4 115.6 the Sadlej basis set for the trimer and the tetramer, respec-
Energy ~ —400.82141532  —400.8932367 ~ —401.1172646  {jyely The dependence of the CP correction on the geometry
ABsan ~26.89 ~1855 ~27.50 seems to be less important than for the cyclic case. However,

SSFC the BSSE can still be overestimated by up to 1 kcal/mol
r 0.9287 0.9341 0.9358 (depending on the basis sathen computed at the uncor-
r 0.9344 0.9391 0.9413 rected geometry. The cooperative effects are obviously less
s 0.9331 0.9378 0.9399 important than in the cyclic structures. However, the addition
ry 0.9251 0.9303 0.9311 : : . -
R, 5 731 2 767 > 797 of gnother HF unit to the linear trimer enhances the stabili-
R, 2 660 2 699 2 662 zation energy per hydrogen bond By0.5 kcal/mol
Rs 2695 2735 2.695 The performance of the two first-order CP methods, i.e.,
a 2.2 2.44 213 SSFC and PAFC, is similar. Both methods modify the values
B1 118.5 118.9 115.0 of the geometrical parameters in the same direction, even
@y 1.0 1.37 111 though the PAFC method leads to larger corrections than the
B2 1218 121.9 118.3 remaining treatments.
@3 2.4 3.03 2.50 Our results show again that the differences between the
B3 122.1 122.3 118.3 X :
Energy 400 80761515 —400.8890763 —401.098932 SSFC and VMFC gpproaches are o_nIy appreciable in the
AE. _18.23 15094 ~16.00 context of small basis sets. The inclusion of second-order CP
CP-corr. 8.669.69 2.61(2.76 11.50(12.31) terms in the 6-31Gi{, p) basis set increases the intermolecu-

lar distances and angles by up to 0.01 A and 0.5°, whereas it

TABLE V. Description of SAPT correctionsl!) (wherei andj correspond to the interaction and the intra-
monomer correlation operators, respectiyeiich are implicitly present in the two- and three-body supermo-
lecular Mgller—Plesset interaction energy teriis;, at the SCF level and in the second order.

Supermolecular

Mgller—Plesset SAPT Physical interpretation
Two-body
AESCF 10 Electrostatic energy between SCF monomers
et Heitler—London exchange effect between SCF monomers
AESSF SCF-deformation energyinduction effect restrained by
exchangdincludesel?) , 3, etc)
2 2nd-order induction energy with response effects
S 3rd-order induction energy with response effects
AE@ egffg 2nd-order dispersion interaction of the SCF monomers
Three-body
AESCF e Heitler—London exchange nonadditivity
AESS SCF-deformation nonadditivitincludese(%) , €3, etc)
2 2nd-order induction nonadditivity with response effects
N 3rd-order induction nonadditivity with response effects
AE@
AE( 50 3rd-order dispersion nonadditivity
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TABLE VI. 2-body and 3-body SAPT contributiond&cal/mol) to the interaction energy for the cyclic and
linear (HF); with the 6-31G(,p) basis set at the uncorrected and VMFC-corrected geometries. The difference
between the corrected and uncorrected values is also rep@rtesitotal 2+3-body effect, where not indicated;

see text for detail$.

6-31G(,p)unc. 6-31G(,p)corr. Acorr.—unc. % total
Cyclic
€29 (2-body) —17.55 -9.08 8.47 58.1
€29 (3-body) -1.87 -1.35 0.52 35
€3 (2-body) -0.29 -0.17 0.12 0.8
€3 (3-body) -0.62 -0.35 0.26 1.8
€7 (2-body) —5.84 -3.57 2.27 15.5
€9 (3-body 0.00 0.00 0.00 0.0
€9 (2-body) —35.86 —26.47 9.39 64.4
exch (2-body) 37.06 19.62 —17.44 114.1
el (3-body) -0.51 -0.22 0.30 2.0
AE™ 0.69 —-7.07 -7.76 53.2
AESSF -11.22 —5.89 5.33 36.5
AESSF —10.53 —12.96 —2.44 16.7
AERSF (3-body) -4.59 —-2.48 2.10 14.4
AER -2.83 —-1.61 1.23 8.4
AEMP2 —15.49 —15.70 0.21 1.4
AEy 0.97 0.41 —0.56 3.8
AENMP? (3-body) —4.86 —2.63 2.23 15.3
Linear
€29 (2-body) —-8.38 —-5.32 3.06 28.4
€2 (3-body) -0.31 -0.38 -0.07 0.6
€3 (2-body) -0.13 -0.10 0.04 0.3
€3 (3-body) -0.16 -0.13 0.03 0.3
€7 (2-body) -3.03 -2.18 0.85 7.9
€59 (3-body 0.00 0.00 0.00 0.0
€29 (2-body —20.58 -17.10 3.48 322
exch (2-body) 17.65 11.05 -6.6 59.7
el (3-body) -0.16 -0.10 0.06 0.6
AE™ —-3.09 —6.15 —-3.05 28.3
AESSF -5.62 —3.99 1.63 15.1
AESSF -8.71 —-10.14 —-1.43 13.2
AESSF (3-body) —1.09 —0.88 0.21 1.93
AE(® —-1.24 —0.66 0.58 5.3
AEMP2 —-10.47 —-11.14 0.67 6.2
AEy 0.22 0.08 -0.14 1.3
AENP? (3-body) —-1.14 —-0.91 0.23 2.13

lowers the stabilization by 0.26 kcal/mol. The effect of this saddle points connecting two equivalent cyclic configura-
term in the remaining basis sets is negligible. Nevertheless, ttons. Our results are consistent with their findings in all the
is worth noting that in the case of the 6-8% G(d,p) basis cases. The CP-correction does not change the topology of the
set, analogously to the cyclic structure, the sign of the corPES in any case, not even for the 6-38G{) basis set,
rection is opposite, i.e., the stabilization energy increasewhere the effect on the geometry is very large.
upon correction.
The inclusion of high-order CP-correction terms was ) ) o
computationally feasible only for the trimer, therefore only C- Perturbation analysis of the minimum-energy
the SSFC method was used to compute the CP- correcté&SUItS
geometry of the linear tetramer. Nevertheless, we performed The differences between the geometries of the corrected
a single-point second-order CP-correction at the SSFC corlnd uncorrected surfaces can be further emphasized by dis-
rected geometry with the 6-316p) basis set. The value of secting the interaction energy terms into perturbative compo-
CP correction increased by 0.64 kcal/mol. nents obtained from the symmetry-adapted perturbation
As pointed out recently by Rineoet al,*? the open theory (SAPT). These corrections are free from BSSE and,
chain structures for the HF trimer and tetramer are first-ordeas shown by Cybulski and Chalasindkitheir sum con-
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TABLE VII. Energetic SAPT contributiongkcal/mo) to the interaction energy for the cyclic and linear (HF)
with the 6-31+ + G(d,p) basis set at the uncorrected and VMFC-corrected geometries.

6-31+ + G(d,p)unc. 6-31+ + G(d,p)corr. Acorr.—unc. % total
Cyclic
elzy (2-body) —9.69 -7.78 1.91 14.3
€20 (3-body) -1.38 -1.22 0.15 1.1
elsar (2-body ~0.15 -0.13 0.02 0.1
€3 (3-body) -0.35 -0.29 0.06 0.4
€7 (2-body) —4.07 —-3.47 0.60 45
€59 (3-body 0.00 0.00 0.00 0.0
€29 (2-body) —24.97 —22.60 2.37 17.8
€ben (2-body) 20.25 16.24 —4.01 30.2
€0 (3-body) -0.23 ~0.17 0.06 0.4
AEM —4.95 —-6.54 —~1.59 11.9
AEGE ~6.82 ~5.50 1.32 9.9
AESCF -11.77 —12.04 -0.27 2.0
AESSF (3-body) —2.55 —-2.10 0.45 3.3
AE(® —-1.40 -1.23 0.17 1.2
AENF? ~1361 ~13.59 0.02 0.2
AE 0.42 0.32 -0.10 0.8
AENMPZ (3-body) —2.66 —2.20 0.47 35
Linear
€29 (2-body) -6.27 —4.96 1.31 13.4
€2 (3-body) -0.36 -0.34 0.02 0.2
€3 (2-body) -0.10 -0.09 0.01 0.1
€3 (3-body) -0.15 -0.12 0.03 0.3
elfa) (2-body ~2.62 —2.21 0.41 42
€59 (3-body 0.00 0.00 0.00 0.0
€9 (2-body —-16.25 -14.79 1.47 15.0
€aen (2-body) 12.06 9.42 —2.4 27.1
€ben (3-body) -0.13 -0.10 0.03 0.3
AE™ —-4.32 ~5.47 -1.15 11.7
AEGS —4.81 -3.91 0.90 9.2
AERT ~9.13 ~9.37 ~0.25 25
AEPSF (3-body) -0.95 -0.78 0.16 1.6
AER) ~0.57 ~0.42 0.16 16
AENF? ~9.79 ~9.84 ~0.05 05
AE 0.13 0.09 -0.04 0.4
AENMP? (3-body) —-0.98 -0.81 0.17 1.72

verges asymptotically to the CP-corrected supermoleculag(*9) term. This term usually dominates the nonadditivity of

- - SCF
terms. The supermolecular SCF interaction eneidy,,,  the AE( supermolecular Mgller—Plesset term. The physical

A . . . . t
may be divided into the Heitler—London interaction energy.sense of the SAPT corrections considered in this work, and
AEM and the SCF deformation pa\E5S™. The former

. . their correspondence to the supermolecular Mgller—Plesset
originates from the unperturbed monomer wave functlon%ermS are summarized in Table {¢ee also Ref. 34 The

and can be further divided into its electrostatic and exchanggasis set dependence of two-body SAPT terms in gHs
componentgsee Table V. The latter involves effects of elec- analyzed przviously(see Ref. 34 yMonomer properties of

tronic polarization, which is restrained by the exchange ef-

fects. Its exchangeless contributions can be represented ﬁif in the Sadlej ba§|s S_EI can be found in Ref. 18. )
the sum of the SAPT induction correctiomﬁ‘é’?. out of The SART contributions were calculated for the cyclic
these terms only the electrostatic term is additive; the re@nd linear trimer at three basis sets. The calculations were
maining ones contribute three-body components. carried out at uncorrected and VMFC-corrected minima of
In the second-order of Mgller—Plesset theory, one of théhe trimers and the results are shown in Tables VI-VIII. As a
dominating SAPT terms is the second order dispersion terrtfimer of highly polar molecules, (HE)is dominated, at the
ng_gg This term is additive and thus only contribute the two- level of two-body interactions, by the electrostatic attraction.
body components. The first nonadditive dispersion compoThese effects are counterbalanced, to a certain degree, by the
nent appears in the third order of perturbation theory as theepulsive exchange effects. The two-body induction effects
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TABLE VIII. Energetic SAPT contributiongkcal/mol) for the cyclic and

linear HF trimer with the Sadlej basis set.

P. Salvador and M. M. SzczesSniak

from 50% to over 100%. These errors are reduced in the
6-31+ +G(d,p) basis set to 15%—30%. The results ob-
tained in Sadlej basis set also indicate large discrepancies in

Sadlein. _ Sadlelo, Acor—unc,  Sétotal SAPT terms derived using these two geometries. Although,
Cyclic this basis set produces reliable values of SAPT terms, it also
|ndr (2-body —-19.22 -10.23 9.00 64.6 generates large values of BSSE that result in large distortions
|ndr (3-body -2.13 -1.52 0.61 4.3 of geometrical parameters. It is worth noting that because of
.ndr (2-body -0.23 -0.17 0.06 0.4 this difference in geometry it is possible to obtain a false
.ndr (3-body —0.58 -0.37 0.20 1.4 picture of the interaction energy composition if the calcula-
fd.sp (2-body —8.64 —5.82 2.82 20.2 tions are done for the uncorrected minimum. For example, in
eliap (3-body 0.04 0.02 —0.02 01 Sadlej basis set the Heitler—London interaction energy,
€0 (2-body) -31.79  -23.23 8.56 61.4  AE" is negative(—3.11 kcal/mo) in the VMFC-corrected
exch (2-body 37.99 20.32 —17.67 126.1 minimum whereas in the uncorrected minimum it has a re-
€oeen (3-body) —0.49 -0.20 0.29 2.0 pulsive (5.71 kcal/mo] value for the cyclic configuration. A
AE™ 5.71 -3.11 -8.82 63.3 similar sign reversal oAE™" also takes place in the linear
AESST —-13.09 -7.66 5.44 39.0 configuration.
AESSF -7.38 -10.77 -3.38 24.3
AEFSF (3-body) -4.92 -2.78 2.14 15.3
AE(® —5.46 -3.15 2.30 16.5 IV. CONCLUSIONS
AEMP? —13.86 —14.54 —-0.68 4.9 ) )
AE 093 053 -0.40 29 This paper hr_;ls examined the methods Qf BS_SE-free ge-
AEMP (3-body 510 201 219 15.7 ometry 0pt|m|za_t|on and freqL_Jency calculat|ons_ in clusters
larger than a dimer. Three different counterpoise schemes
Li”eaf have been critically examined. It has been shown that the
,nd, (2-body) —10.03 —5.98 4.05 417 counterpoise-corrected supermolecule energy can be easily
,nd, (3-body) —0.36 —0.33 0.02 02 obtained in all the cases by using the many-body partitioning
mdr (2-body —0.13 —0.11 0.02 02 of energy. The expressions for the so-called site—site,
mdr (3-body —0.22 —0.15 0.07 07 pairwise-additive, and hierarchical function counterpoise are
ed,sp (2-body) -4.76 -3.42 1.35 13.8 reproduced.
fdisop (3-body 0.00 0.00 0.00 0.0 A computer program for such calculations using three
) (2-body ~18.70  —14.68 4.02 414 counterpoise schemes has been coded and tested for gradient
eexch (2-body 19.18 11.15 ~8.03 824 optimizations and harmonic frequency calculations of the HF
€excn (3-body —0.19 —0.11 0.08 08 trimer and tetramer. The high symmetry of the cyclic com-
AE:ZF 0.30 —364 —3.98 405 plex has made possible the study of the cyclic HF tetramer
iEgech ::'23 :g'z 3;? 42'(6) within the hi_erarchical CP approach. _ _
gtcp : : : ‘ Calculations performed in three different basis sets
ABin (3-body —l2r ~0.86 0.41 4.2 6-31G(d,p), 6-31++G(d,p), and Sadlej basis sets indi-
AE@ -0.48 -1.31 -0.82 8.4 : .
AE:C'[PZ oaa oga 0,50 51 cate that only the latter two are sungble to J_udge the perfor-
int mance of the CP-procedures. The first basis set leads to re-
AE;j'PZ 0.17 0.10 —0.07 0.7 sults that are too erratic. This basis set performs very poorly
AEMP? (3-body) -1.30 -0.89 0.41 43

even after the CP-correction, and should be avoided in the
studies of intermolecular interactions.
Generally, both SSFC and VMFC lead to very similar

are also important. The two-body dispersion interaction isvalues of the CP correction. The PAFC scheme leads to the
the third in importance. At the level of three-body interac-larger, most likely overestimated, CP values. Therefore, in
tions the bulk of nonadditive interaction originates from theour opinion it does not represent a valid correction scheme.

SCF-deformation term. The exchange nonadditivity is quite

A comparison of the results obtained with the conven-

small while the three-body dispersion is nearly zero. Thetional (SSFQ and the hierarchicaMFC) CP methods in-
cyclic configuration is stabilized over the linear one at thedicates that, except for unsuitable basis sets such as the
level of two body interactions, because of more favorable5-31G(d,p), the high-order BSSE effects are not important.
electrostatic and induction effects in the cyclic arrangementWe conclude that the conventional CP scheme is clearly pre-
The three-body terms also favor the cyclic structure.
Calculations of SAPT terms at two different geometries,cost required by the application of the VMR®hich is prac-

one uncorrected and a counterpoise-correéé¢dhe VMFC

level) are displayed in Tables VI-VIII. In the 6-318(p)
basis set the evaluation of SAPT terms at the uncorrecteldrge effects of BSSE on equilibrium geometries and rota-

ferred in this case, mainly due to the extra computational

tically inapplicable in larger clusters with low symmetry
The CP-corrected gradient optimizations demonstrate

minimum geometry leads to large discrepancies in SAPTional constants. The calculations of CP-corrected second de-
terms resulting in considerable percent errors in the electrodvatives of complex energies at the CP-corrected stationary
static, exchange, and induction terms. For example, impoints underscore the importance of determining the ZPVE
the cyclic configuration, the errors in these terms rangeorrections and redshifts in the BSSE-free manner. The sen-
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