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The effect of counterpoise correction and relaxation energy term
to the internal rotation barriers: Application to the BF 3¯NH3
and C2H4¯SO2 dimers

Pedro Salvador and Miquel Duran
Institute of Computational Chemistry and Department of Chemistry, University of Girona, 17071,
Girona, Spain

~Received 23 March 1999; accepted 16 June 1999!

The relevance of the fragment relaxation energy term and the effect of the basis set superposition
error on the geometry of the BF3¯NH3 and C2H4¯SO2 van der Waals dimers have been analyzed.
Second-order Mo” ller–Plesset perturbation theory calculations with thed95(d,p) basis set have been
used to calculate the counterpoise-corrected barrier height for the internal rotations. These barriers
have been obtained by relocating the stationary points on the counterpoise-corrected potential
energy surface of the processes involved. The fragment relaxation energy can have a large influence
on both the intermolecular parameters and barrier height. The counterpoise correction has proved to
be important for these systems. ©1999 American Institute of Physics.@S0021-9606~99!30634-6#
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I. INTRODUCTION

The theoretical study of molecular interactions under
supermolecular approach with finite basis sets centered a
atomic positions originates the so-called basis set superp
tion error ~BSSE!.1,2 Within the LCAO-MO approach, each
fragment can be expanded to some extent in the basis s
the partner. Thus, BSSE is the unphysical effect due to
improvement of the quantum mechanical description of
fragments within the supermolecule. While it has been r
ognized for a long time that this effect results in an incre
of the interaction energy,3 only recently have studies of th
effect of BSSE in geometrical parameters3,4 and electron
density5 been addressed.

BSSE-free potential energy surfaces and interaction
ergies have become a target for many researchers in the
years.6–10 Under a methodological point of view, two ap
proaches have faced up the problem. The first,aprioristic
approach, constrains the supermolecule description to ke
consistent with the description of its fragments. An exam
of this methodology is the chemical Hamiltonian approa
~CHA!, introduced by Mayer,11 which eliminates BSSE-pure
terms of the Hamiltonian using a mixed second quantiza
scheme. Several studies applying the CHA have yielded
curate results at any level of theory.12–15 Other aprioristic
approximations at the Hartree–Fock level have also b
recently proposed and applied to the water dimer.16

However, the most widely used method to handle BS
has been thea posterioricounterpoise method.17,18Boys and
Bernardi and Jansen and Roos suggested that the supe
tion error is minimized if the same basis set is used for
description of both the supermolecule and its fragments.
literature has plenty of discussion about the validity of t
approach,19–21which stays as a matter of active controvers
This counterpoise correction scheme~CP-correction! has
been shown recently4 to converge to CHA results for a wid
range of hydrogen bonded systems, and thus it is establi
as a reliable procedure to study intermolecular complexe
4460021-9606/99/111(10)/4460/6/$15.00
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In the literature, the counterpoise correction for interm
lecular complexes has usually been applied to estimate
BSSE-free interaction energy. In most cases it has been
plied at the optimized supermolecular geometry and negl
ing the relaxation of the fragments geometry with respec
the monomers situation. One can argue that this restrictio
acceptable if the relaxation contribution is negligible
smaller than the desired accuracy. On the other hand,
CP-correction depends upon the partitioning into fragme
of the system. Regarding intermolecular complexes, che
cal intuition helps to define as many fragments as molecu
the complex exhibits. In this way, one can obtain the sup
molecule structure and the energy to be consistent with
fragments defined previously. However, one can choos
morephysicalpartitioning. One can consider that the supe
molecule is made up of a set of atoms and therefore
BSSE can be seen as an intramolecular property, inde
dent of any chemical partitioning. The last option is mand
tory in case of most chemical reactions, where the coun
poise method is rather inappropriate.23 However, one of the
chemical processes where fragments are defined con
ously constant along the reaction coordinate is the inte
rotation in weakly bonded systems. In the last years, Ra´n
et al. have been questioning the validity of the counterpo
correction in the evaluation of energy barriers to intern
rotation including the fragment relaxation term.22–24

The concept of the BSSE fragment relaxation term
misleading. The expression for the BSSE-correction wit
the counterpoise approach is defined disregarding the f
ments of the system being allowed or forbidden to relax th
own geometry. One cannot split the BSSE-correction te
into a ‘‘relaxation term’’ and an ‘‘intermolecular term.’
When the parameters are frozen, the BSSE amount dep
only on the intermolecular distances and angles, but
value of the BSSE at a given geometry depends conceptu
on all the parameters involved in the calculation. Nevert
less, experience shows that the intramolecular parameter
0 © 1999 American Institute of Physics
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not very modified when correcting for the BSSE.
The papers by Rayo´n et al.have assumed that there is n

BSSE at all in the evaluation of energy barriers to inter
rotation processes. For a systemS, the value of the energy
barrier is easily calculated as

Eb~S!5ETS~S!2Emin~S!, ~1!

with Emin and ETS being the energy of the minima and th
connecting transition state structure involved in the proce
respectively. Consistent results can be obtained provided
the system is properly described. However, bothETS and
Emin and henceEb are BSSE-contaminated, i.e., if the syste
S is made up of two subsystemsA andB. This is the case for
weakly bonded complexes. Thus, the energy barrier sho
be calculated as

Eb
CP~S!5ETS

CP~S!2Emin
CP ~S!

5ETS~S!2Emin~S!1dTS
CP~S!2dmin

CP ~S!. ~2!

The assumption of zero BSSE is only valid if the la
two terms vanish, i.e., if BSSE were independent of the
ometry, which is not at all the case. Therefore, it can
important to relocate the structures in the CP-corrected P
Note that bothETS

CP(S) andEmin
CP(S) can be obtained with the

counterpoise receipt regardless of the fragment relaxation
ing included or excluded.

To gain a deeper insight on this point we have perform
both uncorrected and CP-corrected geometry optimizat
for two weakly bonded subsystems, BF3¯NH3 and
C2H4¯SO2 and compared the values obtained for the ene
barriers using Eqs.~1! and~2! with those obtained by Rayo´n
et al.24 We have analyzed also the differences between
so-called single point counterpoise correction, i.e., the
ergy correction at the uncorrected PES~s.p. CP-correction!,
and the CP-corrected optimization. Finally, we decided
study the effect of the fragment relaxation to both the ene
and the geometry for these systems. Therefore, we hav
optimized the geometry with the intramolecular paramet
frozen at the optimum value of the free monomers.

To better understand the implications of the BSSE a
the fragment relaxation, in the following section we w
present first compact formulas for the influence of the co
terpoise correction on the geometry of a chemical syst
Then, formulas will be given for the analysis of the fragme
relaxation, with particular focus on the case of an inter
rotation process.

In the second part of the paper we will describe t
computational procedure, whereas the third part will d
with the discussion of the results obtained and their analy

A. Counterpoise correction to geometry

Let us consider a supermoleculeAB made up of two
interacting subsystemsA and B. The interaction energy ca
be expressed as

DE~AB!5EAB
AB~AB!2EA

A~A!2EB
B~B!. ~3!
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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We defineEY
Z(X) as the energy of subsystemX at geom-

etry Y with basis setZ. The interaction energy can be split i
the following way:

DE~AB!5DEel~AB!1DErel~A,B!. ~4!

The first term represents the electronic contributio
which depends only on the supermolecule geometrical
rameters,$AB%,

DEel~AB!5EAB
AB~AB!2EAB

A ~A!2EAB
B ~B!, ~5!

whereas the second term, positive definite, represents th
laxation contribution,25 which compensates for the geomet
distortion of the subsystems in the supermolecule,EAB

A (A)
andEAB

B (B), with regard to the isolated optimum geometr
EA

A(A) andEB
B(B),

DErel~A,B!5EAB
A ~A!2EA

A~A!1EAB
B ~B!2EB

B~B!. ~6!

Note that DErel(A,B) depends on both the supermo
ecule and subsystem parameters,$AB,A,B%.

According to the counterpoise idea, since the same b
set is used in the relaxation term for each subsystem, o
the electronic contribution term brings about the BSS
Thus, the counterpoise-corrected interaction energy sho
be written as

DECP~AB!5@EAB
AB~AB!2EAB

AB~A!2EAB
AB~B!#

1@EAB
A ~A!1EAB

B ~B!2EA
A~A!2EB

B~B!#

5@EAB
AB~AB!2EA

A~A!2EB
B~B!#

1@EAB
A ~A!1EAB

B ~B!2EAB
AB~A!2EAB

AB~B!#

5DE~AB!1dAB
BSSE, ~7!

where the CP-correction expressed asdAB
BSSE tends to zero as

the basis sets of the subsystems approach completenes
obviously depends on the supermolecular structural par
eters, as shown by the subscriptAB. Thus, BSSE is not an
additive term to the interaction energy. Indeed, it is stron
geometry-dependent4 and can modify meaningfully the un
corrected, BSSE-contaminated geometrical parameters
vibrational properties.3,4

Any stationary point of the uncorrected supermolec
potential energy surface determines a stationary point of
interaction energy surface, because there is no variatio
the isolated subsystems. Differentiating Eq.~7!,

]~DECP~AB!!

]Ri
5

]~DE~AB!!

]Ri
1

]~dAB
BSSE!

]Ri

5
]~EAB

AB~AB!!

]Ri
1

]~EAB
A ~A!!

]Ri

1
]~EAB

B ~B!!

]Ri
2

]~EAB
AB~A!!

]Ri

2
]~EAB

AB~B!!

]Ri
;RiP$AB%, ~8!
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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it can be seen that the uncorrected supermolecular geom
is only valid under the assumption that the BSSE defined
dAB

BSSE is stationary at the current nuclear arrangement,

]~dAB
BSSE!

]Ri
50 ;RiP$AB%.

In order to obtain corrected interaction energies, one
to deal with a corrected supermolecular potential energy
face. The counterpoise corrected PES for the supermole
can be defined as follows:

ECP~AB!5EAB
AB~AB!1dAB

BSSE5EAB
AB~AB!

1@EAB
A ~A!1EAB

B ~B!2EAB
AB~A!2EAB

AB~B!#.

~9!

The equation above represents another point of view
the CP-correction. In our opinion, it should be more gen
ally assigned to the supermolecule description, rather tha
the interaction energy. Some authors22 have argued tha
BSSE is a pure interaction energy term; however, BSSE
ists even thought we are not interested in interaction ene
In fact,EAB(AB) andDEAB(AB) differ by a BSSE-free con-
stant term which depends only on the system and the de
tion of the fragments. Therefore it seems quite coheren
assign the BSSE correction toEAB(AB).

Equation~8! can be easily generalized to theNth-order
energy derivatives. Second and third derivatives to be u
for both harmonic and anharmonic vibrational analysis c

FIG. 1. Structures involved in the internal rotation of the BF3¯NH3 system.
Intermolecular distance is indicated.
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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be expressed as linear combinations of the contribution
each term, as shown by Simonet al.3 Any property defined
as a derivative of the energy can be corrected for the BS
Unlike CHA methods, there is no definition for a CP
corrected electronic density for the supermolecule.

B. The role of the fragment relaxation

To estimate the BSSE-free interaction energy neglec
the relaxation of the fragments geometry one can rewrite
~7! as

DEno-rel
CP ~AB!5EAB

AB~AB!2EAB
AB~A!2EAB

AB~B!. ~10!

As mention above, this expression can be acceptab
the relaxation contribution is negligible or smaller than t
desired accuracy. This equation usually refers to the re
ation of the fragments at the uncorrected supermolecule
ometry, which is indeed different when corrected for BSS
by the counterpoise method. One must assume that the e
getic relaxation contribution at both the corrected and unc
rected supermolecule geometry should be of the same
Recent calculations have shown that intermolecular par
eters were the only ones modified meaningfully when c
recting through counterpoise method.3,4 Thus, the contribu-
tion of the relaxation term on the interaction energy is alm
constant. Derivative of Eq.~6! shows

]~DErel~AB!!

]Ri
5

]~EAB
A ~A!1EAB

B ~B!1EA
A~A!2EB

B~B!!

]Ri

5
]~EAB

A ~A!!

]Ri
1

]~EAB
B ~B!!

]Ri
;RiP$A,B%,

~11!

where EA
A(A) and EB

B(B) vanish by definition. Derivatives
involving intermolecular parameters also vanish beca
both fragment contributions are calculated with their ow
basis set. Furthermore, differentiating the interaction ene
expression one obtains
nergy

ere the
ergy is
TABLE I. Geometrical parameters, electronic energies, and relaxation contribution for the minimum e
structure of BF3¯NH3 complex calculated at MP2, s.p.CP-MP2, and CP-MP2 levels of theory~see Fig. 1!.
Number of basis functions is shown. The second half collects the values obtained in the calculations wh
intramolecular parameters were frozen to the values they have in the free monomers. Relaxation en
calculated using Eq.~6!.

Method
Basis

functions
Electronic energy

~hartrees!
rB–N
~Å!

rB–F
~Å!

aFBN
~deg!

rN–H
~Å!

aHNB
~deg!

Relaxation
energy
~cm21!

MP2/d95(d,p) 95 2380.294 541 2 1.671 1.377 104.1 1.019 110.5 59
s.p.CP-corrected 2380.281 615 0

CP-MP2/d95(d,p) 95 2380.282 071 8 1.725 1.375 103.5 1.018 110.4 55

MP2/d95(d,p) 95 2380.268 241 7 2.383 1.321a 90.0a 1.015a 112.2a 0b

s.p.CP-corrected 2380.263 448 6

CP-MP2/d95(d,p) 95 2380.263 922 7 2.519 1.321a 90.0a 1.015a 112.2a 0b

aOptimized parameters for BF3 and NH3 systems.
bZero by definition.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions



state

ere the
ergy is

4463J. Chem. Phys., Vol. 111, No. 10, 8 September 1999 Internal rotation barriers

Downloaded 02 Dec 2010
TABLE II. Geometrical parameters, electronic energies, and relaxation contribution for the transition
structure of the BF3¯NH3 complex calculated at MP2, s.p.CP-MP2, and CP-MP2 levels of theory~see Fig. 1!.
Number of basis functions is shown. The second half collects the values obtained in the calculations wh
intramolecular parameters were frozen to the values they have in the free monomers. Relaxation en
calculated using Eq.~6!.

Method
Basis

functions
Electronic energy

~hartrees!
rB–N
~Å!

rB–F
~Å!

aFBN
~deg!

rN–H
~Å!

aHNB
~deg!

Relaxation
energy
~cm21!

MP2/d95(d,p) 95 2380.292 457 2 1.687 1.377 104.2 1.018 110.4 58
s.p.CP-corrected 2380.279 754 8

CP-MP2/d95(d,p) 95 2380.280 267 3 1.747 1.374 103.5 1.018 110.4 54

MP2/d95(d,p) 95 2380.267 710 8 2.411 1.321a 90.0a 1.015a 112.2a 0b

s.p.CP-corrected 2380.263 299 4

CP-MP2/d95(d,p) 95 2380.263 730 3 2.533 1.321a 90.0a 1.015a 112.2a 0b

aOptimized parameters for BF3 and NH3 systems.
bZero by definition.
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]~DEno-rel
CP ~AB!!

]Ri
5

]~EAB
AB~AB!!

]Ri
2

]~EAB
AB~A!!

]Ri

2
]~EAB

AB~B!!

]Ri
;RiP$AB8%, ~12!

where $AB8% represents merely the intermolecular para
eters, i.e., the intermolecular distance and angular variab
The relaxation term does not contribute directly to the C
corrected intermolecular parameters. The values can d
from those obtained using Eq.~8! due to the presence of th
last two terms. Equation~10! is analogous to Eq.~7!; in the
complete basis set limit Eq.~10! does not converge to Eq
~7!, so that the neglect of relaxation terms can be import
even in the case of large basis sets.

II. COMPUTATIONAL DETAILS

Ab initio calculations were carried out using theGAUSS-

IAN94 package.26 MP2 ~Ref. 27! geometry optimizations for
BF3¯NH3 and C2H4¯SO2 van der Waals complexes wer
carried out with thed95(d,p) ~Ref. 28! basis set. The
frozen-core approximation was also used throughout.
corrected geometry optimizations were performed as
scribed by Simonet al.3 The convergence criterion was set
1025 a.u. in the RMS gradient. A Mixed BFGS-DIIS~Refs.
29, 30! method was used for the location of the stationa
structures on the CP-corrected PES.

III. RESULTS AND DISCUSSION

Figure 1 depicts the structures involved in the inter
rotation along theC3 axis for the BF3¯NH3 complex.
Tables I and II collect the total energies and relevant g
metric parameters for the minimum and transition state,
spectively. In both cases, uncorrected and CP-corrected
timizations have been carried out. Uncorrected numbers
in perfect agreement with those obtained by Rayo´n et al.24

As expected, the CP-corrected intermolecular dista
(rB–N) is larger than the uncorrected one. Differences
the order of 0.05 Å are observed for both the eclipsed
alternated geometry. However, the effect of BSSE on
 to 84.88.138.106. Redistribution subject to AIP licens
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intramolecular distances and angles is very small. A ma
mum difference of 0.7° and 0.003 Å is found for theaBFN
angle andrB–F distance, respectively in the TS structu
s.p.CP-correction overcorrects the BSSE by about 0.2–
kcal/mol.

One of the main goals of this paper is the analysis of
relaxation term in both the uncorrected and CP-corrected
ergy and geometry. In Tables I and II we also present
result of the optimization of the system with intramolecu
variables fixed to the values they exhibit in free fragme
~e.g., BF3 being planar!. Thus, the intermolecular interactio
is studied also, by keeping fixed intramolecular paramet
to assess the importance of fragment geometry relaxation
the intermolecular geometries and energetics.

The relaxation energy is BSSE-independent in this s
tem. The energy penalty falls in the range of 54–59 cm21 at
both the minimum and TS geometry, independently of
CP-correction being applied. However, the effect on
B–N distance is dramatic. For both structures,rB–N is
lengthened by about 0.7–0.8 Å when the fragments are
allowed to relax. The CP-correction increases this num
even more. Thus, the BSSE effect on the geometry is m
important without the relaxation term, differences of'0.13
being observed here.

Table III shows the calculated values for the barr
height to internal rotation. It can be seen that it is n
strongly affected by the CP-correction. That means t
BSSE-contamination is similar for both the minimum a
the TS. Using Eq.~1! we obtained 457 and 408 cm21 for the
uncorrected and s.p.CP-corrected energies, respectivel
good agreement with Rayo´n et al.24 Use of the CP-corrected

TABLE III. Electronic energies~cm21! for the internal rotation barrier in
the BF3¯NH3 complex. In parentheses the values are obtained neglec
the relaxation term.

Method Rotational barrier~cm21!

MP2/d95(d,p) 457 ~117!
s.p.CP-corrected 408 ~33!
CP-MP2/d95(d,p) 396 ~42!
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE IV. Geometrical parameters, electronic energies, and relaxation contribution for the minimum e
structure of the C2H4¯SO2 complex calculated at MP2, s.p.CP-MP2, and CP-MP2 levels of theory~see Fig. 2!.
Number of basis functions is shown. The second half collects the values obtained in the calculations wh
intramolecular parameters were frozen to the values they have in the free monomers. Relaxation en
calculated using Eq.~6!.

Method
Basis

functions
Electronic energy

~hartrees!
R

~Å!
a

~deg!
b

~deg!
aSOO
~deg!

aHCH
~deg!

Relaxation
energy
~cm21!

MP2/d95(d,p) 108 2626.044 177 6 3.465 85.0 19.7 108.6 121.3 1
s.p.CP-corrected 2626.038 665 5

CP-MP2/d95(d,p) 108 2626.039 011 8 3.677 91.7 14.8 108.7 121.3 0.5

MP2/d95(d,p) 108 2626.043 800 2 3.474 84.0 20.1 108.9a 120.0a 0b

s.p.CP-corrected 2626.038 287 3

CP-MP2/d95(d,p) 108 2626.038 633 1 3.687 91.0 15.0 108.9a 120.0a 0b

aOptimized parameters for C2H4 and SO2 isolated systems.
bZero by definition.
te
rt
e
ed

th

ax

ob
d

ct
ed
se

if
h
th

.7
io

rms
nd

nd
ote
he
ite
ed

rm

da-
the
etter

for
r to
ave

in-
P-
receipt@Eq. ~2!# decreases that value to 396 cm21. The effect
of the relaxation term is again very important. The calcula
values are much smaller when the fragments are undisto
than in the full optimization. The uncorrected value d
creases to 117 cm21, whereas for s.p.CP- and CP-correct
rotations the barrier height is only 33 and 42 cm21, respec-
tively. Note that whereas the relaxation energy at both
eclipsed and alternated geometries is'58 cm21, the differ-
ence in the barrier height turns out to be'350 cm21. The
same happens for the CP-corrected calculations. These
sults show clearly the importance of the effect of the rel
ation term on the geometry.

Tables IV and V collect the geometrical parameters
tained for the C2H4¯SO2 system at both the minimum an
transition state structures~see Fig. 2!. Only selected intramo-
lecular parameters are shown. Regarding the BSSE effe
trend similar to that found for the first system is observ
The s.p.CP-correction overestimates BSSE in all the ca
CP-corrected intermolecular distanceR is '0.2 Å longer
than the uncorrected value for the minimum geometry. D
ferences in the order of 1.2 Å are obtained for the TS. T
effect on the angular parameters is meaningful, mostly at
TS, wherea andb8 parameters change from 71.6° and 71
to 86.7° and 79.5°, respectively. Neglect of the relaxat
d
ed
-

e

re-
-

-

, a
.
s.

-
e
e

°
n

term does not change this situation. Relaxation energy te
are negligible. The largest distortions are found in the bo
anglesaSOO andaHCH, belonging to the SO2 and C2H4

molecule, respectively. However, differences of 0.009 a
0.022 Å in the intermolecular distance are obtained. N
that neglect of the relaxation term lengthens slightly t
value ofR for the minimum, whereas the effect is oppos
for the transition state. Table VI shows the values obtain
for the rotational barrier; in this case, the relaxation te
does not have a large effect. Small differences of'4–5
cm21 are observed. However, the CP-correction is man
tory; uncorrected values were three times larger than both
s.p.CP- and CP-corrected. CP-corrected values agree b
with the estimated experimental value of 30 cm21 proposed
by Andrewset al.31

IV. CONCLUSIONS

The counterpoise correction is found to be mandatory
these weakly bonded systems. The effects on the barrie
internal rotation energy and geometrical parameters h
been analyzed. The assumptions made by Rayo´n et al.24 con-
cerning the evaluation of energy barriers to rotation are
correct from a conceptual point of view. The s.p.C
state

ere the
ergy is

d_permissions
TABLE V. Geometrical parameters, electronic energies, and relaxation contribution for the transition
structure of the C2H4¯SO2 complex calculated at MP2, s.p.CP-MP2, and CP-MP2 levels of theory~see Fig. 2!.
Number of basis functions is shown. The second half collects the values obtained in the calculations wh
intramolecular parameters where frozen to the values they have in the free monomers. Relaxation en
calculated using Eq.~6!.

Method
Basis

functions
Electronic energy

~hartrees!
R

~Å!
a

~deg!
b8

~deg!
aSOO
~deg!

aHCH
~deg!

Relaxation
energy
~cm21!

MP2/d95(d,p) 108 2626.043 422 0 3.619 71.6 71.8 108.7 121.3 0.5
s.p.CP-corrected 2626.038 455 9

CP-MP2/d95(d,p) 108 2626.038 798 3 3.732 86.7 79.5 108.7 121.3 0.5

MP2/d95(d,p) 108 2626.043 068 4 3.597 73.4 73.4 108.9a 120.0a 0b

s.p.CP-corrected 2626.038 118 7

CP-MP2/d95(d,p) 108 2626.038 437 7 3.726 87.1 80.3 108.9a 120.0a 0b

aOptimized parameters for C2H4 and SO2 isolated systems.
bZero by definition. to 84.88.138.106. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_an
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Down
correction overestimates the BSSE. The CP-correction te
is strongly geometry dependent; CP-corrected optimizati
must be carried out to obtain accurate BSSE-free geome
for further vibrational analysis.

Furthermore, the fragment relaxation energy cannot
seen as an additional term to the rotational barrier. The eff
of the fragment relaxation on the intermolecular paramete
probed to be very important for the BF3¯NH3 complex, the
CP-correction not changing this situation. The CP-correcti
scheme can be successfully applied despite the relaxa
contribution not being taken into account.

In terms of rotational barrier height, the single point CP
corrected and CP-corrected values are very similar. Ho
ever, anharmonic effects can be very important in th
hydrogen-bonded and van der Waals complexes.22,32–34For
instance, for several water clusters, Junget al.34 have shown
that the anharmonic correction modifies by 100% the vibr
tional frequencies of intermolecular modes. Moreover, lar

FIG. 2. Structures involved in the internal rotation of the C2H4¯SO2 sys-
tem. Intermolecular parameters are indicated.

TABLE VI. Electronic energies~cm21! for the internal rotation barrier in
the C2H4¯SO2 complex. In parentheses the values obtained are neglect
the relaxation term.

Method Rotational barrier~cm21!

MP2/d95(d,p) 166 ~161!
s.p.CP-corrected 46 ~37!
CP-MP2/d95(d,p) 47 ~43!
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
m
n
ry

e
ct
rs

n
on

-
-

e

-
e

amplitude modes related to flat potential energy surfaces
poorly described using the rigid rotor-harmonic oscillat
approach.35 This is the case of internal rotation motion
Thus, ZPVE corrections using CP-corrected harmonic a
anharmonic frequencies for the intermolecular vibratio
modes should be considered and their study is in progres
our laboratory.
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