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We present a method for analyzing the curvat(second derivativgsof the conical intersection
hyperline at an optimized critical point. Our method uses the projected Hessians of the degenerate
states after elimination of the two branching space coordinates, and is equivalent to a frequency
calculation on a single Born—Oppenheimer potential-energy surface. Based on the projected
Hessians, we develop an equation for the energy as a function of a set of curvilinear coordinates
where the degeneracy is preserved to second digey the conical intersection hyperlinerhe
curvature of the potential-energy surface in these coordinates is the curvature of the conical
intersection hyperline itself, and thus determines whether one has a minimum or saddle point on the
hyperline. The equation used to classify optimized conical intersection points depends in a simple
way on the first- and second-order degeneracy splittings calculated at these points. As an example,
for fulvene, we show that the two optimized conical intersection poinG,pfsymmetry are saddle
points on the intersection hyperline. Accordingly, there are further intersection points of lower
energy, and one o€, symmetry—presented here for the first time—is found to be the global
minimum in the intersection space. 2004 American Institute of Physics.

[DOI: 10.1063/1.1813436

INTRODUCTION and thus determines whether one has a minimum or saddle
point on the hyperline. The resulting equation used to clas-
Conical intersection¢Cls) have been shown to play an sjfy optimized conical intersection points depends in a
essential role in the radiationless decay processes involved Eﬂmple way on the first- and second-order degeneracy split-
photochemistry® At the simplest level, a conical intersec- tings calculated at these points.
tion appears as a funnel in the two coordinates that lift the In genera] terms, we propose a treatment of th&l (3
degeneracy. However, we know that an intersection is in factg)_dimensional hyperline analogous to the one used for
a hyperline, i.e., a (3—8)-dimensional space where N3 the characterization of Born—Oppenheimer surfaces, where
—6) is the number of vibrational degrees of freedom, andstationary points are classified as minima or saddle points
that the “conical intersections” we optimize with gradient- yith the help of the nuclear Hessian. One immediate appli-
driven  algorithms are  critical  points in  thiS cation is to the characterization of symmetry-restricted, opti-
(3N—8)-dimensional space. In the many examples we havgyized points of conical intersection. Thus for an optimized
studied to date, we have usually been able to infer that thesg| structure of a given symmetry, we are able to predict
optimized conical intersection points are minima in the interyhether there are related “Cl pointgf.e., critical points—
section spacélS), but until now we have not been able 10 maxima and minima—Ilying on the same conical intersection
prove this by dqing a frequency caICL_JIation, in the way thathyperline, which may have lower symmetry and lower en-
one can for a single Born—_Op[iéanhemer surface. Now thakrqy As a demonstration, we will characterize the optimized
on-the-fly dynamics is possibfe; ccomputations are begin- g /s critical points on the conical intersection hyperline of
ning to explore the nature of the intersection hyperline away, ;|yenel® We will show that there are several Cl critical
from its minimum and show that these higher-energy region?)oints of different symmetry@,,, C, and C,) that are
of a conical intersection hyperline can be chemically signifi-inima or saddle points on the conical intersection hyper-
cant. Furthermore, algorithms have been developed 10 m3ge with the methodology that will be described in subse-
out '(mlnllTum-energy path segments of the hyperline ,ent sections, we have characterized @eCl of fulvene
explicitly.” The purpose of this paper is to show that one cang the global minimum of the intersection space for the first
develop an equation for the energy as a function of a set 9f e and have rationalized the interconnection of the differ-
curvilinear coordinates where the degeneracy is preserved {g, stationary points on the global potential-energy surface.
second ordexi.e., the conical intersection hyperlin€The |, the future, these techniques can be combined with meth-

curvature of the potential-energy surface in these coordinatgsyg already develop&tto document minimum-energy paths
is the curvature of the conical intersection hyperline itself'(intrinsic reaction coordinatgdn the intersection space.

To introduce the characterization of an optimized conical
dElectronic mail: mike.robb@imperial.ac.uk intersection point, we start from the so-called “first-order”
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approach. Thus according to the von Neumann—-Wignehyperboloid. Consequently, the characterization of the coni-
theorem’® at a conical intersection, there are two degrees otal intersection line correct to second order requinawilin-

freedom that lift the degeneracy at first order. This leads t@ar coordinates, which are nonlinear combinations of the

the usual characterization of a conical intersection in termganching and intersection space coordinates. The curvature
of two degeneracy-lifting coordinates that form the branch-y¢ ihe conical intersection hyperline is therefore determined

ng spa}ce(BS), and the remaining (8—8)-dimensional in- by the second derivatives with respect to these curvilinear
tersection space coordinates. .
a(;toordmates.

The degeneracy at a crossing point can also be lifted The d is lifted in first-ord | displ
second order. However, we can choose a coordinate system € degeneracy Is lilted in rst-order nuclear displace-

in which to mix the branching and intersection space coordiMeNts via the branching space coordinates; the gradient dif-
nates to remove this splitting and preserve the degeneracy fgrence(GD) vector [Eq. (1a] and the interstate coupling
second order. These new coordinates are curvilinear rath&ector[Eq. (1b)],

than rectilinear. We are interested in the curvature of the

potential-energy surface in these coordinates, since this gives

the curvature of the conical intersection hyperline and deter- J(Eg—Ep)
mines whether one has a minimum or saddle point on the xl:%, (1a
hyperline. §
As we will show, this second-order analysis can be car- oA
ried out starting from the intersection space Hessians, after x2=<\IfA|&—;|‘I'B), (1b)

elimination of the branching space coordinates by projection.
The gradient is zero in the intersection space at an optimized

(stationary point on a conical intersection hyperline, and thewhere¢ is a vector of Cartesian displacements, and¥g

diagonalization of the Hessian yields N3 8) vibrational are the adiabatic electronic wave functions, dtgis the

frequencies. However, we have two Hessians in the intersec- . I
. . ; . "~ clamped nucleus electronic Hamiltonian operat@rhese
tion space and thus two sets of vibrational frequencies; oné

for each of the two degenerate components. In the simplgN(_) vectors are _useq in algqrithms fo_r locating optimized
“first-order” picture, we assume that the two intersecting POINts on the conical intersection hyperlitfe) The branch-
states will have identical Hessians. However, as we wiling space is sometimes referred to as the g-h plane.

show, the Hessians of the two states are different because of We now introduce a set of coordinates to represent the
second-order effects. The two surfaces split as one movetential-energy surface in the region of a critical point on a
away from the optimized CI point along intersection spaceconical intersection seam,

coordinates(second ordgras well as along the branching

space coordinategdirst orde). As we shall discuss, this situ- _ _ _

ation is analogous to the well-known Renner—Teller picture ~ Q=(Qx;:Qx,)®(Q1,....Qan-5)- 2

for a linear molecule. In order to preserve the degeneracy of

the conical intersection correct to second order, the conica{.he branching space is spanned by the mass-weighted ara-
intersection hyperline must bend as the branching and inter- gsp P y g g

section space coordinates mix along a curvilinear coordinatélient difference vectorQil), and by the mass-weighted in-
Thus, at second order, the analysis of the Hessian in theerstate coupling vectorq, ). The orthogonal complement
intersection space demonstrates how these effects change Ehr?ace (the intersection spabe is spanned by

usual first-order picture. — — h tential ‘ f q
We proceed now to a mathematical development beforéQ1:----Qan-s). The potential-energy surface for groun

illustrating the central concepts and demonstrating that th@"d excited states is obtained by diagonaliziig
method can yield new results using fulvene as an example.
The next two parts of the paper have been written so that

. EA V12
they can be read in any order. V=

V, EB|=VIHVZ=VIHVIHVE+VE (39

QUADRATIC REPRESENTATION
OF THE POTENTIAL-ENERGY SURFACE o .
IN THE REGION OF A CONICAL INTERSECTION KAQXl KABQxZ

From a practical point of view, we start with the Hes- vi= KABQ, «BQ, | (3b)

sians of the two degene imi i X -
generate states at an optimized conical
intersection point. We use an initial set of branching and
intersection space coordinates that are assumed to have come
from the diagonalization of these Hessians. Our development -~ ABN ~
will be based on dsimplified) Taylor expansior(to second i,jEE:BS %?Q'QJ i,z‘gs 7 QiQ;
orden taken over from the spectroscopically oriented treat- /2= (30)
. . . rg_lg . . . a AB~ ~ B~ ]

ment of conical intersections”~” The conical intersection > 7 QiQ; > 7i;QiQ;
line itself, correct to second order, becomes a paraboloid or a IjeBS 1.jeBS
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E
AD.O. ABO.O. A
icBSelS YiQiQ; iesgjas 7 QiR VB
Vi= _ __ |,
2 P > ¥ QiQ; Va
ieBSjels ieBSjelS Renner-Teller
Typel
== 4 B
”_EIS Y5QiQ; 2 77°QiQ; V'>0,% >0
] €
- > Q;
Vi= ) (3¢ i
2 TRQ 2 Qg —a
: A B E
The potential constants above?, k%, «“8, 4}, y&, and Vg A
7", are defined by the following equations:
| He
K'=(V] |vy), 4)
X1
Renner-Teller
T II
KAB=(W | |Pg), (5) & el
X Q Y i<0,Y7>0
2 =CI
Va
| M,
7|]:<qfl| —_ |\I,I>a (6)
0%/ o E
A
9%H
AB €
7ij :<\I’A| — |qIB>! (7)
i9Qj/
whereWV , and ¥ are the degenerate adiabatic wave func-
tions computed at the conical intersection point. Since we
use state-averaged wave functions, these two states are rig- Renner-Teller
orously orthogonalsee the discussion in Ref. 23 about the Qi T
. . . Q ype 11T
choice of degenerate wave functions and the choice of the — i d o G
two vectors for the branching spac®iagonalization of the Vg - 7'i<0,7y" <0
potential matrix at any finite displacement along the coordi- A

natesQ gives the energies of stat® or B. The reference
energy isES, or its equivalenEy, the adiabatic energy a
Q=0 (an optimized CI point The terms«”, «&, and "B
are just the gradients and the interstate coupling, which are
computed during a conical intersection optimization. Thebut is, in general, lifted at second order through the terms in
second-order interstate coupling term§® could be com- V2 if all the ¥/} are not equal to thef and/or thex® are
puted. However, in this paper we base our analysis on thaot zero. The second-order terms are partitioned in three
diagonal termsy/; and %, which can be obtained from a groups:V2 includes effects along the branching space modes,
frequency calculation in the reducedN3- 8)-dimensional Vﬁ includes effects between the branching and intersection
intersection space. space modes, and? includes effects along the intersection
We now discuss the mterpretatlon of the first- andspace modes. For S|mpI|C|ty, we shall LPs)eA for terms)\
second-order terms and ‘y” , 77” , respectively, with the eV2 etc.
help of the partition ol [Eq. (3)]. The first-order part o¥, To keep the development simple, we shall now introduce
V1, contains the first-order terma It is clear that for any some approximations. We discuss the validity of some of
displacement in the branching spa@X£ Qx ), the degen- these approximations subsequently. First, we assume that all

eracy is lifted(to first ordey via V1. Notice that we assume So-called cross-quadratic tem’ﬁl (i#]) and all second-
that we are expanding about an optimized point on the coniorder interstate couplings;® are zero. ThusVj can be
cal intersection, so the gradient terms occur only in theheglected, and the remalnmg second order parts are simpli-

branching spacggradient difference alon@, and interstate fied. Of course, in generaj} # yj; so that one has different
sets of eigenvectors for the two states. In practice, the eigen-

coupling anngQX ). For a displacement in the intersection ectors for two states are almost identical, and it is the ei-
space Ql,...,Q3N,8), the degeneracy remains to first order genvalues or diagonal elements that are different. The as-

t FIG. 1. Classification of Renner—Teller-type profiles along the intersection
space rectilinear coordinates.
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sumption that alln{?B terms are zero is rigorous for the E E
fulvene example discussed below, because the so-calle Vs .
second-order interstate couplings are zero by symmetry Vg i
. . \p . _ Vi \ 1/
Thus, we are left with a simplified quadratic form that con Qus=Qcp >
tains only diagonal second-order terms, —" V ;
A~ AB~
K Qxl K sz : &
T S —_ n -
= — - Qu+dQ ! Qap
V=E+ KABQX2 KBQXl =COI 0=Q'OIS Q'y Q'¢+3Qcp
FIG. 2. Effect of consecutive displacements from the conical intersection
2 a A2 0 along one IS mode and the GD mode of the BS.
s Vi i
+ _ — . L
0 E a,8Q? guess the curvature of the conical intersection hyperline it-
. I I .
ieBS self. The conceptual problem is resolved only when one
moves from rectilinear coordinates to curvilinear coordi-
nates.
S AE o i i
e Vi Before these curvilinear coordinates are expressed math-
" ) ematically, we develop this idea intuitively as a combination
0 2 cy_sa_z ' of first- and second-order degeneracy-lifting effects. As we
icrs " have just discussed in Fig. 1, an infinitesimal displacement

6Q,s along one of the intersection space coordinates pro-

wherek is a diagonal matrix with diagonal elements equal toduces a splitting of the surfaces equivalent to the difference
E2 andEJ (energies at the conical intersection pairfthis ~ between the two eigenvaluésee also the left-hand side of
form is useful because the gradient terms are zero in thfig. 2, where the effect is shown using finite displacements
intersection space. One can obtain new insights by carryingiowever, a subsequent infinitesimal displaceméﬁgs
out a standard frequency analysis and by calculating thgjong a branching space coordinate, namely, the gradient dif-
force constant§y/; and®yf; in this space. ference, can eventually recover the degeneracy by bringing

Let us digress at this stage and discuss the interpretatiafie energies of the two states together again. Thus, the new
that one might make of a frequency analysis for each statgegeneracy-retaining coordinate is realized as a combination
within the intersection space. From a conceptual point off the two displacements, and a new set of degeneracy-
view, it is possible to distinguish three different cases for theeetaining coordinates can be defined as combinations of one

frequencies that might be obtained. In the intersection spacgstersection space and one branching space coordittate
the conical intersection behaves like a Renner—Teller interyradient difference

section of a linear molecule in an orbitally degenerate state;

the gradient of each state is zero, and the degeneracy is lifted '
quadratically. The various possibilities are shown in Fig? 1. CHARACTERIZATION OF THE SEAM: DEFINITION

OF A CURVILINEAR COORDINATE SYSTEM

.Howeve.r, interpretation of the_frequgncy gnalyss wnhmAND CALCULATION OF THE SEAM CURVATURE
an intersection space on the basis of Fig. 1 is by no means

straightforward. If the curvature of both surfaces is the same, Our purpose in this section is to develop the working
then one is tempted to imagine that the optimized point orequations for the characterization of the conical intersection
the conical intersection hyperline is a maximum or mini- using the simplified quadratic form developed previously
mum. However, when the curvature of both surfaces in théEq. (8)]. After diagonalization ol/, the energies of the two
intersection space is different, there is no obvious way tcstates can be expressed as

Eap=AQqt 2 fwiQf+ > °wi6$t% \/ ( xQut 2 *o%Q7+ 2 ComQf 2+<2KAB6XZ)2, (9a)
A=(kB+kM)/2, (9b)
Sk=kB— K", (90
wi=(vi+vDI2, (9d)
Y=Y —vh- (99)

Thus the energy difference between the two states is
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2
AE= \/< 5K6X1+igs a57i6§i+i;s “oyQf +(2KAB6X2)2' 19

In this expression, it is clear that the energy splitting between

the intersecting states comes from first-order effects along Qx1 - —t2 —at?, a= Sk (14)

the branching space coordinates and x, and from qua-

dratic second-order effects along all coordinates. Moreover, __ 1 1

by assuming that all cross-quadratic terms (i#j) be- Q=—ti=4iti, Bi=—. (15
S i \/W i it i \/W

tween branching and intersection space coordinates are zero

and that second-order interstate couplings are zero, we  The expression for the energy of one of the states along the

have the _tacit assur_nption that all energy splittings that atp_x andai coordinates is obtained from E€@) and is
pear as differences in the eigenvalues of the two intersection ™!

space Hessians come from differences in the force constants g — ?\Qx + Yle +y, Q7+ 5KQX +¢8%,Q?

of the two states within the intersection space itself.

~ We now proceed to derive the equation for the conical :KA6Xl+ YAQ! 2 2 1 CAQ2. (16)

intersection hyperline correct to second order. We begin by

setting the energy difference in E(LO) to zero. This gives  Substituting from Eqgs(15) and(16) we have

the condition for the curvilinear coordinates that retain the B A2 a A 24 2.2

energy degeneracy. These coordinates are used to obtain an Ea=— ar’ti+2y10t+ S BTt

expression for the energy ot the seam as a function of the :ay/lxlaztizur(cy“lgl aKA)tiZ_ (17)

curvilinear coordinate&t;}. This expression is finally used to

characterize the seam by its second derivativesEquation (17) gives the energy of the states along a

(9%Elot? )t,=0 degeneracy-retaining coordinate We refer to it as the en-
For our remaining analysis, we introduce one more sim£rgy of the intersection seafiyperling along the curved

plification, namely, we neglect the quadratic splittings alongcoordinatet;. The expression required to characterize the

the branching space modésiy; . In fact, the inclusion of hyperline is then

these terms would complicate the following development but E ¥ A
does not change the conclusions. As we will show,26e; (—2) 2(y0 B~ kPa)= 2{( I ) = } (18
terms affect the magnitude oﬁ?(E/atiz)tizo but not its sign, a4 t,=0 i Sk

which is our main point of interestsee Appendix for the
details of including?dy;). Neglecting thé®sy; splitting and
setting the energy differendé&q. (10)] to zero, one obtains
Eq. (11,

The superscript from the y terms has been omitted for
clarity, but it should be clear that the terms refer to the
branching space coordinatéhe gradient difference in the
fulvene exampleand they terms refer to the intersection

— — space coordinates. This gives us a working equation for the
5KQX1+|§S: cé”iaiz +(2’<ABQX2)2:0' (12) analysis of the curvature of the intersection hyperline that
arises from second-order effects in the intersection space and

From Eq.(11), the curvilinear coordinatel;} will be com-  from first-order effects along the branching space coordi-
binations of the intersection space coordinates with the granates.

dient difference vector(If the second-order interstate cou- At this stage, we need to consider the effect of a trans-
pling is included, then the interstate coupling coordinate offormation of the two degenerate wave functions at the coni-
the branching space mixes as wellhus Eq.(11) is simpli-  cal intersectior(see Ref. 23 for a very general discussion of
fied to this problem. If two degenerate wave functions transform as

. . different irreducible representations of some group, then one

OKkQy, + % CéyiQizzo. (12 can always make a unique choice for the two vectors of the

branching space. However, when a molecule has no symme-

Thus, the equation of the seam is a paraboloid. There aréy. the degenerate wave functions at the conical intersection
(3N—8) solutions to this equation, which are linear combi-are only unique to within a unitary transformation amongst
nations of the (8!—8) linearly independent intersection themselvee. Clearly the transformation ef the degenerate
space modes with théxl coordinate(gradient difference wave functions changes or rotates the basis veégpeslient

Each curvilinear coordinatg is obtained as a solution to Eq. difference and mterstete coupling v_eci)oos_f the branchmg
(13 space. At the same time, the gradient difference and inter-

state coupling vectors are interconverted. Our analysis re-
SkQ, +°57,.Q?=0. (13)  Mains valid, although théy; term of Eq.(18) would be,
! strictly speaking, {*®, and «* would be the projection of
We proceed by writing Eq(13) as a function of the param- the gradient of staté\ along the new interstate coupling
etert. coordinate.
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TABLE I. Ful / tics: CASSQB,6)/cc-pvDZ. p .
ulvene S, /S, energetics GB,6)/cc-pv Pokential Energy

Relative
energy
(to
Sp minimum/
Geometry(Table I11) Adiabatic state Energy/a.u. kcal molt)

Sy minimum So —230.7464 0.0

S, planar minimum S, —230.6489 61.2
Cloian Sy /S, —230.6359 69.4

Clperp Sy /S, —230.6478 61.8

Clgs So/S; —230.6514 59.6

Clgyr So/S; —230.6381 67.9

) Torsion
Thus, when there is no symmetry, and the gradient dif-

ference coordinate that occurs in E@$l) and(12) is not  FiG. 3. Plot of theS, and S, surfaces of fulvene along the torsion and
uniquely defined, does the analysis that we have just preond-inversion coordinates. The seam of intersection is marked as a bold
sented remain valid? Clearly in Eqell) and (12) all the  line.

guantities are differences between the values for differe
states. One might expeéty,= y>— v/ to be invariant to a
transformation between stat@sandB; we have carried out
numerical tests and this seems to be the case, but as yet
have no rigorous proof.

n1Iac:es was complemented by a molecular mechanics valence-
bond (MMVB) dynamics study where the point of decay to
the ground state was analyzed for many trajectories. The
Vef%jectories were found to decay at all methylene torsion
angles, suggesting that the two conical intersection critical
points of C,, symmetry are interconnected by a continuous
COMPUTATIONAL DETAILS seam of intersection along the methylene torsion

Calculations were done at the complete active space sefoordinate’® (This was the first such example we studjed.
consistent field{[CASSCK®6,6)/cc-pVDZ] level of theory We are now fmglly in a position to determine the cur\{|l|negr
with a development version oBAUssiAN9a?* The state- hyperh_ne coo_rdmate that connects the pla_nar anq twisted in-
averaged Hessian was computed for both roots of the degelfgrsection points. Our results §how that th|s.curV|I|.near coor-
erate state-averaged CASSCF wave function. The branchirffnate is composed of the torsion and bond-inversion stretch-
space was mass weighted and projected from each Hessianifty (gradient difference coordinates, shown in Fig. 3 in
yield two (3N — 8)-dimensional Hessians. bolql. Tors_lon a_lo_ne do_es not preserve th_e degeneracy, and the

For every critical point, the normal coordinates of the Va&ration in mixing with the gradient difference along the
two degenerate states were matched with each other by pr§82M eads to the curvature of the seam shown in Fig. 3.
jecting one set upon the other. For the two criti€a), inter- We have characterized the two CI critical points@j,
section points of fulvene the normal coordinates of each suSymmetry located previously as saddle points in the intersec-
face were parallel to each other to within 1° or 2°. This istion space using Eq18). Table Il showsas we explain fully
equivalent to an accuracy of around two decimal places if?€loW that the curvature of the CI hyperline &y, is
the Cartesian displacement vectors. We are therefore conffegative either when the torsion mode and the gradient dif-
dent that the set of coordinates used was sufficiently accuraf§'€nce are combined to produce the curvilinear coordinate
to map out the seam of intersection qualitatively. or when the pyramldal_lzanon mode and the gradle_nt differ-

The valence-bond resonance structures for each comp&Nce mode are combined. Thus, there should exist lower-
nent of the degenerate electronic state at all of the optimize@Nergy Cl critical points on the hyperline along these curved
intersections were obtained from the spin-exchange densigPordinates, and indeed, we find that the “global minimum”

using localized orbitalé® See Ref. 26 for details. of the in_tersection_ space is a structure ©f symmetry
(Clgg) with a torsion angle of 63° that we had never

located—or thought to look for—in our previous work.
The relative energies of the critical poirftainima of the
Sy and S; states and optimized conical intersection pgints
The photophysics of fulvene is characterized by a lack ofare summarized in Table I, and the relevant geometric pa-
fluorescence, which indicates fast internal conversion of theameters are given in Table Ill. The relevant frequencies ob-
excited state to the ground state via a conical interseéfion. tained from the intersection space Hessian calculation for the
In a previous CASSCF study, two distinct critical points on conical intersections of,, symmetry are listed in Table IV.
the Sy/S; conical intersection seam were locatédin (The full list of frequencies appears in EPAPS supporting
Clpian, the methylene group lies in the plane of the ring, andinformation?®)
in the other structureCl ¢, the methylene group is perpen- The vibrational frequencies of the intersection space
dicular to the plane. Both structures ha®g, symmetry, but modes(i.e., the rectilinear coordinates tangent to the curvi-
Clperp lies approximately 8 kcal mol below Clpian (Table  linear seam at the optimized atan be understood in terms
I). The original CASSCF study of the potential-energy sur-of valence-bond representations of the components of the

APPLICATION: ANALYZING THE S,/S; SEAM
IN FULVENE
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TABLE Il. Computed first-order parametefsrojection of gradients onto gradient differeneemd second-order parameters used to characterize the hyperline
curvature at the four optimized fulvene ClI critical poirfiis arbitrary units.

FE AN
Intersection Ve ¥E Syi=vE— 4 (?) = 2{ (5—) - (E«)}
Cl space mode KA KB Sk=KkB—kh (X10°%) (X 10°) (X10%) ' =0 (A
Clpjan Torsion —0.03329 —-0.10164 —0.06835 1.85761 —0.32761 —2.18522 —2.674
Pyramidalization 1.64025 —1.02400 —2.66425 —2.205
Clperp Torsion 0.02904 —0.02348 —0.05251 —10.12036 1.41376 11.53412 —0.649
Pyramidalization —0.00400 0.30976 0.31376 1.080
Clgs Torsion 0.05361 —0.00652 —0.06013 0.50625 2.53009 2.02384 2.283
Pyramidalization 2.46016 —0.30276 —2.76292 0.002
Clpy, Torsion 0.09727 0.02809 —0.06918 —0.22500 1.98025 2.20525 2.608
Pyramidalization 0.96100 1.67281 0.71181 5.512

degenerate electronic state. These modes have Renner—Teller the B, state(negative curvatupe corresponding to RT-1I-
topologies(Fig. 1) and it is these second-order splittings thattype profiles(see Fig. 1
result in the seam curvature. We now discuss these second- One can rationalize the different signs of the curvature
order splittings in detail for the tw@,, optimized Cl critical ~ for the two states using the valence-bond structures shown in
points. Fig. 4. In theA, state, there is & bond between Cand G

We start our analysis with the planar structuresCgf, and the pyramidalization and torsion modes have real fre-
symmetry (Fig. 4). At the Franck—Condon geometry, the quencies. In contrast to this, in thg, state, the methylene
ground state haé,; symmetry, while the lowest singlet ex- group carries an uncoupled electrére., a radical and the
cited state §;) hasB, symmetry. The valence-bond struc- energy is lowered by the same modgsg., imaginary fre-
tures for the two states are shown in Fig. 4. The ground statguencies
has a closed-shell structure with three localized double Due to the different signs of the curvatures, there is a
bonds, whereas the excited state has a diradical structursubstantial second-order splitting along these modes. The
The planar conical intersection d€,, symmetry has a degeneracy-retaining, curvilinear coordinafg$ are combi-
sloped topology along the gradient difference, which corre- nations of these modes with the gradient difference coordi-
sponds to symmetric bond-length inversimecoupling or  nate. Substituting the computed gradients and curvatures at
exchange of the single and double bond#e interstate cou- the intersection in Eq.18), we calculate the value of
pling is an antisymmetric stretch of the C—C bonds. (07253(ti)/0ti2)ti:o (see Table I). In both cases, fo€l 5, We

From our intersection space Hessian calculation, we obgbtain negative second derivativéisr the remaining modes
tain the “frequencies” along the rectilinear intersection spaceye obtain only positive second derivatiydsr the curvature
coordinates. The second-order splittings are less thaglong the curvilinear coordinate. Thus,Cl s, is the analog
300 cm * (RT-I profiles, see Fig. Jifor all modes except of a second-order saddle point in the intersection syiaee
two. These modes are documented in Table IV and correpn a hyperling Displacement along a combination of the
spond to the methylene pyramidalizationbgfsymmetry and  pond inversion(gradient differenceand methylene torsion
the methylene torsion o, symmetry. These two modes coordinate lowers the energies of the two states but preserves
have real frequencies for thg state(i.e., positive curvature the degeneracy. The same applies for the combination of
of the surface along those mogielsut have imaginary values pyramidalization and gradient difference coordinates.

Along the curved methylene torsion plus gradient differ-
ence coordinate, we have optimized a lower-lying intersec-

TABLE Ill. Fulvene S;/S,; optimized conical intersection geometries. All
bond lengths are in angstroms.

TABLE IV. Relevant intersection space frequenci&d-Il profiles, Fig. 1

Hy ” Hg at Clyan and Cherp-
Clpjan A, state 1B, state
Symmetry o (cm™ o (cm b
CIplan Clperp Clgs CIpyr bla 405 320i
Cy, 2v C, s a,’ 431 181i
1-2 1.372 1.424 1.409 1.377 Clperp 1A2 state 1Bl state
2-3 1.531 1.424 1.461 1.521 Symmetry o (cm™ 1) w (cm 1)
3-4 1.320 1.413 1.371 1.326
4-5 1.531 1.424 1.461 1.521 a2b 1006i 376
1-5 1.372 1.424 1.409 1.377 b, 20i 176
1-6 1.578 1.478 1.481 1.567
H,—6-1-2 0.0° 90.0° 63.1° 18.1 aMethylene pyramidalization.
dihedral bMethylene torsion.

G=-1.
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22 L
14, Clgs Clgs
So \ 0 | T T > ol
0 63 90 117 180
< ; GD FIG. 5. One-dimensional profilgrojection of the seam of thes; /S, in-
> tersection in fulvene along the curved methylene torsion/bond-inversion co-
ordinate.

FIG. 4. Surface topology for th§, and S, states in the restricted space of
C,, symmetry(planar geometrigs including branching-space coordinates

at Cl yjan- . . . o
o cal intersection structures, with the help of H48) it is

possible to predict this behavior.
We now discuss how the computed curvature of the
hyperline—together with the first- and second-order param-
tion of C, symmetry @ and B stateg with a methylene eters collected in Table Il—can be used to produce a global
torsion angle of 63° Clg, which lies approximately “cartoon” of the two potential surface§igs. 3 and 5show-
10 kcal mol’l below theC|p|an. This confirms the prediCtion |ng the seam of intersection. Figure 5 shows a one-
of our intersection space Hessian analysis. Further, along théimensional representation of the seam along the curvilinear
curved pyramidalization mode, there is a conical intersectiogoordinate composed of the methylene torsion/bond inver-
of Cs symmetry, Clp,, which lies approximately sjon. The curvilinear coordinate is projected onto the torsion
1.5 kcalmol'* below the planar one. Analysis of the Hes- angle ¢ and the profile corresponds to half a rotation of the
sians atClgz and Cl,, gives positive second derivatives methylene group (180°). Th€,, structures $=0°, 90°,
along all curved coordinates, see Table II. and 180°) are maxima along this curvilinear coordinate,
To complete our analysis of the CI hyperline, we havewhereas theC, structures ¢=63° and 117°) are minima.
calculated the Hessians at the twisted intersectiolCgf  Figure 3 is a two-dimensional cartoon of tBg and S, sur-
symmetry, Cleqp. In this case, the two degenerate statesaces in the space of one rectilinear intersection space coor-
haveA, andB; symmetries, and correlate with tfg and  dinate, the torsion, and the bond-inversion coordirigtadi-
B, states at the planar intersection, respectively. Similar t@nt difference This cartoon illustrates the curvatures of the
the results for the planar intersection, at the twisted intersegwo states at the two critical points @f,, symmetry. From
tion of C,, symmetry, there is substantial second-order splitig. 3, it is clear that the seam of intersection lies along a
ting (RT-lI-type profile along the methylene torsion and py- curved line, a combination of the bond stretching and meth-
ramidalization modetof a, andb, symmetries respectively ylene torsion coordinates. Along the path fro@i y,, to
(see Table 1Y. However, the curvature of th andB states Cl perp (throughClgz), the bond lengths change progressively,
along the rectilinear intersection space coordinates is refpllowing the bond-inversion coordinate. This is shown by
versed compared tCl,,,. The large imaginary frequency the bond lengths in Table ll(stretching of the ¢-C,,
for the A, state along the torsion mode comes from thec,—C., and G-C, bonds and contraction of ;G Cs,
C1—Gs m bond for that state, and the gradient differencec,—C;, and G-C;). At the same time, the gradient differ-
coordinate corresponds, as in the case of the planar intersegnce coordinate changes along the seam. It is purely bond
tion, to the symmetric bond inversion. Using E48), we  inversion at theC,, structureswhere the gradient along the
find a negative sign ford?Eq(t;)/dt7), o along the curved methylene torsion is zeypbut it has a torsion component all
coordinate of combined bond inversion and torsion, and along the seanfcf. the gradient difference at theé, mini-
positive sign along the one that contains the methylene pymum, Fig. 6. Thus, the two rectilinear coordinates mix
ramidalization(Table Il). Thus,Cl ., is a first-order saddle along the CI hyperline.
point on the CI hyperline. This critical point connects the In a similar manner, the path connecting 1@g,,, and
twisted intersectiorCl g3 with its analogClg; (torsion angle  Cl,, also contains the bond-inversion coordinate, but gradu-
117°) and lies approximately 2 kcal mdl above then(see ally gains a pyramidalization component along the curvilin-

the energetics of Table.l ear seam. See Fig. 7 for the gradient difference coordinate at
To summarize, our CI hyperline analysis for the two the optimized intersectioQl .
conical intersections of,, symmetry gives RT-ll-type pro- To summarize, the branching and intersection space co-

files along the methylene torsion and pyramidalizationordinates provide a rectilinear set of orthogonal coordinates
modes for both structures. These are the only two modes th#tat can be used to characterize the curvilinear conical inter-
give a large second-order splitting at these points. Whilesection seam. The rectilinear coordinates are tangent to the
there is no intuitive way of guessing whether a lowering ofcurved seam at any optimized critical point on the Cl seam.

symmetry along these modes will lead to lower-energy coniUsing Eq.(18) above allows the determination of the curva-
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that case, the coordinates that compose the
(3N—8)-dimensional degenerate space only have to be re-
defined as the curvilinear coordinatgs This is not valid
anymore when there are large cross-quadratic terms, i.e., dis-
placements along two curved coordinategindt; will not
retain degeneracy. In our analysis, we cannot identify the
cross-quadratic terms directly, but their effect can be seen on
the eigenvectors of the intersection space Hesdlanrecti-
linear “normal modes” of the intersection spagcehat will

be significantly different for the Hessians of the two states.
In these cases, one should consider that the degenerate space
at the conical intersection has a lower dimension thaN (3
—8). Future work will consider the application of the above
FIG. 6. Gradient difference vector @ 55. methodology to cases with no symmetry when this effect
may occur.
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Our CI hyperline analysis of fulvene has shown that at
the optimized.conical intersections Q?U symmetry, there _ APPENDIX: MODIFIED HYPERLINE CURVATURE
are substantial second-order splittings associated with
Renner—Teller type-II profiles along some vibrational coor- [N this Appendix we give a calculation of the second
dinates. These second-order splittings along the rectilinegferivative of the hyperline with the inclusion 88y, terms
intersection space coordinates can be readily rationalized iffecond-order splitting along the gradient differendggua-
terms of a valence-bond representation of the degenerat®n (13), which is used to determine the curved coordirtate
states. The rectilinear branching and intersection space codpecomes
dinates are tangent to the seam of intersection at any opti- = lac A2 ice. 2
mized CI critical point; however, they can be used to deter- OKQuy +7071Q%, +7 07 QP =0. (A)

mine the local curvature of the seam. In fulvene, this analysiqwo cases have to be considered here. For the first case

was used to show that th@,, CI critical points found in a (5v,87;>0, elliptical seam the second derivative is
previous study are in fact first- and second-order saddle

2

points on the hyperline. Our new methodology predicts the (5 E(zti)> _ Ok (YARB— yBiA). (A2)

curvilinear seam coordinate that retains the degeneracy and aty | _, 2%ovioyi " "

leads to the minima on the hyperline, which we have opti- _ )

mized for the first time. For the alternative cased{,5y;<0, hyperbolic seam the

Our analysis presented above remains valid as long a¥econd derivative is

the cross-quadratic ternigy;; and 7f;® (i#]) are zero. In FE(t) ok s A s a3

'9ti2 :0— 2a5,ylc5,yi(7iiK Yiik"). (A3)

In both cases, the sign of the second derivative is given by

2 .
Sigr( ’ St(_ztl)) =sigr Sx(¥jix®— i k™1, (Ad)
! =0
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