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A conceptually new approach is introduced for the decomposition of the molecular energy
calculated at the density functional theory level of theory into sum of one- and two-atomic energy
components, and is realized in the “fuzzy atoms” framework. �Fuzzy atoms mean that the
three-dimensional physical space is divided into atomic regions having no sharp boundaries but
exhibiting a continuous transition from one to another.� The new scheme uses the new concept of
“bond order density” to calculate the diatomic exchange energy components and gives them
unexpectedly close to the values calculated by the exact �Hartree-Fock� exchange for the same
Kohn-Sham orbitals. © 2007 American Institute of Physics. �DOI: 10.1063/1.2741258�

I. INTRODUCTION

In the past years, there has been a growing interest in the
so-called molecular energy decomposition schemes. With
such a posteriori analyses of the results obtained in the quan-
tum chemical calculations, the total energy of a system is
expressed �exactly or approximately� as a sum of atomic and
diatomic terms. The atomic energy terms, as compared with
the energies of the free atom, account for the gain or loss of
intra-atomic energy upon bond formation, whereas the di-
atomic terms naturally reflect the energetic aspects of the
intramolecular interactions present in the molecule. As the
individual atoms within a molecule are not true quantum
mechanical observables, there are different methods to define
them approximately, leading to different schemes of analysis:
it can be accomplished either in the Hilbert space of atom-
centered basis orbitals or directly in the thee-dimensional
�3D� physical space.1 For the Hilbert-space analysis, energy
decomposition schemes of the Hartree-Fock �HF� and den-
sity functional theory �DFT� energy have already been de-
vised and successfully applied.4–6 These schemes are obvi-
ously restricted to basis sets having true atomic character and
become ill defined in the complete basis set limit. In order to
carry out a decomposition in the physical space, one must
assign in some sense a part of the 3D space to each atom.
The analysis of different quantities in the 3D space is most
often accomplished by applying the atoms in molecules
�AIM� theory,7 defining the so-called atomic basins. In our
study,8 the decomposition of the Hartree-Fock energy in the
AIM framework led to results which are in good qualitative
agreement with those of the respective Hilbert-space
decomposition.4 However, the cumbersome numerical two-
electron �i.e., formally six dimensional� integrations are ex-
tremely CPU demanding, basically due to the complex shape

of the atomic basins. For each atom or atomic pair, there is
one such integration for calculating the Coulomb energy con-
tribution and one for each pair of occupied molecular orbitals
for the respective exchange energy component. Blanco et al.9

have extended the Hartree-Fock energy decomposition
scheme of Ref. 10 to the post-Hartree-Fock case by partition-
ing the second order density matrix and introducing an effi-
cient numerical quadrature algorithm for the two-center inte-
grations. Despite of the effectiveness of their integration
algorithm, it is still not sufficient for routine calculations of
larger systems, while population analysis and bond order cal-
culations are feasible.

Most recently, we have proposed,11,12 as an alternative to
AIM, the use of “fuzzy atoms” for the 3D analysis. Fuzzy
atoms mean that the 3D physical space is divided into atomic
regions having no sharp boundaries but exhibiting a continu-
ous transition from one to another. Such “fuzzy” atoms were
first considered by Hirshfeld13 and recently explored by
Clark and Davidson14,15 for calculating effective atomic
charges in molecules by using the so-called stockholders
scheme; our definition is different only by use of another
weight function �that of Becke16� for calculating the distribu-
tion of the electron density between the different atoms at
different points. The advantages of using fuzzy atoms are
basically twofold. First, the numerical integrations are much
cheaper computationally, which is especially important for
the two-electron ones. Second, since they have no sharp
boundaries, the atoms share the interatomic part of the physi-
cal space to some extent. This allowed us11,12 to introduce
the concept of overlap population in the 3D framework, as
well as to modify our previous formalism—actually to re-
group some kinetic energy components—and devise an en-
ergy decomposition scheme of the Hartree-Fock energy as to
get diatomic energy components which are “on the chemical
scale.”17 �In this respect, the fuzzy atoms 3D decomposition
scheme is much similar to the Hilbert-space analysis wherea�Electronic mail: pedro.salvador@udg.es
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one obtains diatomic kinetic energy terms quite naturally.�
Energy components are static parameters computed from the
actual molecular wave function, they are not directly related
to the dissociation energies, and, therefore, there is no re-
quirement that they must be on the “chemical scale.” Never-
theless, having such components which compare well with
the dissociation energies seems to be desirable from a chem-
ist’s point of view. �For a summary of our approaches to the
problem, we refer to Ref. 18; in Ref. 19, a dilemma con-
nected with the use of diatomic kinetic energy component is
discussed in detail.�

It is worth mentioning that it is relatively easy to intro-
duce a general scheme for the partitioning of functions such
as the electron density, obtained at any level of theory. How-
ever, when dealing with the decomposition of the molecular
energy, one faces the difficulty that the energy formulas of
different methods contain quite different types of quantities,
and hence, it is not easy to devise a general strategy to treat
all levels of theory on equal footing. Since the basic idea
behind the method is to decompose each term that contrib-
utes to the total energy, we are forced to apply somewhat
different strategies for different quantum chemical method-
ologies.

In a recent paper,6 it has been shown that the results of
the Hilbert-space Hartree-Fock energy component analysis5

can also be formulated by introducing effective atomic first
order density matrices �A�r ,r�� and effective atomic poten-

tials V̂A �having a nonlocal component accounting for ex-
change�; then the electron-nuclear and electron-electron in-
teraction energies can be presented as a sum of integrals
representing effective atomic potentials acting on the differ-
ent effective atomic density matrices. Along that line, a
Hilbert-space decomposition of the DFT energy has also
been proposed6 based on the approximate expansion of the
exchange-correlation energy density per electron in terms of
the basis orbitals. Reasonable energy components have been
obtained for different DFT functionals, although sensitive to
the variations of the method and, in particular, to the geom-
etry variations taking place when one turns from HF to dif-
ferent DFT variants. That may indicate that we have not yet
reached the ultimate solution even for that Hilbert-space
DFT energy decomposition problem. Our attempts to get a
straightforward generalization of the methods used in the
Hartree-Fock case to the fuzzy atom DFT energy decompo-
sition did not give satisfactory results at all. In fact, one
could anticipate that if one uses the same simple direct ap-
proaches in DFT which were successful in HF, then one may
get difficulties: there is no obvious way to decompose the
exchange energy with a density-based local exchange func-
tional in the same straightforward manner as it is done in the
Hartree-Fock case. The reason is that one cannot exactly
determine how much exchange energy is gained by atom A
due to the density coming from atom B, because the
exchange-correlation functionals are nonlinear.

Despite of all these problems, we felt rather desirable to
extend the 3D energy decomposition method and devise a
general decomposition scheme for the DFT energy in terms
of atomic and diatomic contributions. In fact, the bottleneck
of the 3D-space energy decompositions for wave-function-

based methods such as HF is the computation of the ex-
change energy contributions, since they involve extremely
time consuming numerical integrations for each pair of at-
oms and each pair of occupied orbitals. Pure generalized
gradient approximation methods �without any admixture of
the “exact� HF exchange� are of practical interest since they
require only a single two-electron integration per pair of at-
oms �for the Coulomb energy component�, thus offering us
the possibility of energy decompositions which are afford-
able in routine calculations. Hence we focus on this particu-
lar family of DFT functionals and do not consider those DFT
variants �B3LYP, OEP, etc.� in which exchange is computed
�fully or partly� by using the exact Hartree-Fock exchange
energy formula.

In what follows, we will show that one can get an ap-
propriate DFT energy decomposition scheme on the basis of
recalling the role of exchange in the chemical bond forma-
tion.

II. PHYSICAL-SPACE DECOMPOSITION OF THE DFT
ENERGY

A. Atomic decomposition of identity and the energy
components

Recently, a scheme of “atomic decomposition of iden-
tity” has been introduced2 in which the identity operator is
written as a sum of terms20 which are—in that or another
manner—assigned to the individual atoms A:

Î = �
A

�̂A. �1�

This permits us to treat the most different schemes of popu-
lation analysis and energy decomposition in a framework of
a common formalism. In the case of fuzzy atoms, the decom-
position is based on assigning a non-negative weight func-
tion wA�r� to each atom in every point r of the 3D space,
satisfying the requirement

�
A

wA�r� = 1 �2�

everywhere. It is assumed that wA�r� is large “inside” atom A
and quickly becomes negligible outside.

The decompositions pertinent to the fuzzy atoms can be
obtained by defining the operators �̂A as

�̂A = wA��r���r�=r. �3�

Here the notation r�=r indicates that one should replace r�
by r after the action of all the operators on the wave func-
tions depending on r is evaluated, but before the integration
over r is carried out. Thus quantum mechanical operators act
only on the electronic wave functions but not on the weight
functions wA�r�. In the particular case of the AIM frame-
work, the atomic weight functions take the value of 1 if the
point belongs to the basin of the atom and 0 otherwise.

By using this formalism of the “atomic resolution of
identity” and the definition �Eq. �3�� of the operators �̂A, one
can easily recover the formulas used in Refs. 8 and 11 for the
decomposition of the HF energy within AIM and fuzzy atom
frameworks, respectively. The two schemes of calculations
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discussed in the latter paper differ by introducing the decom-
position �Eq. �2�� once or twice in the expectation value of

the kinetic energy operator T̂. In the first case, the kinetic
energy is decomposed into atomic contributions only; in the
second one, it is presented as a sum of mono- and diatomic
contributions.

The expressions of all the energy components are the
same in the HF and DFT cases, except the exchange
�exchange-correlation� energy. Thus, assuming a closed-shell
case with doubly filled orbitals, we have for the kinetic en-
ergy Ekin either the expansion

Ekin = − �
A

�
i

occ � wA�r��i
*�r���i�r�dv , �4�

representing a sum of terms of atomic type, or the expression

Ekin = − �
A,B

�
i

occ � wA�r�wB�r��i
*�r���i�r�dv , �5�

which is a sum of monoatomic �A=B� and diatomic �A
�B� terms.

Similarly, the electron-nuclear attraction energy

Eel-nuc = − 2�
A,B

�
i

occ � wA�r�
ZB

rB
��i�r��2dv �6�

and the Coulomb energy

ECoul = 2�
A,B

�
i,j

occ � � wA�r1�wB�r2�

���i�r1��2
1

r12
�� j�r2��2dv1dv2 �7�

both contain monoatomic and diatomic components depend-
ing on A=B or A�B. �The nuclear repulsion energy is ob-
viously a sum of diatomic terms only.�

The exchange-correlation energy �functional� is an inte-
gral over the exchange-correlation energy density �xc���r��;
thus, formally, it is a one-electron quantity, for which both
decompositions such as Eqs. �4� and �5� would be possible,
giving

Exc = �
A
� wA�r��xc���r��dv �8�

and

Exc = �
A,B

� wA�r�wB�r��xc���r��dv , �9�

respectively. However, as noted in the Introduction, the non-
linear character of the exchange functional indicates that this
avenue is questionable from a physical point of view. Also,
our numerical studies showed that these formulas do not give
reasonable results from a chemical point of view either, be-
cause the exchange appears basically attributed to the atoms
and not to the bonds. Furthermore, no diatomic exchange
energy components would be obtained for disjoint atomic
domains such as AIM theory, which can hardly be put in
correspondence with bonding interactions. Therefore, the de-

composition of the exchange energy requires another ap-
proach,

B. Bond order density and exchange energy
components

The pair density �diagonal part of the spinless second
order density matrix� for a single determinant wave function
is21

�2�r,r�� = ��r���r�� − �x�r,r�� , �10�

where the first �“direct” or “Coulomb type”� term is the prod-
uct of the electron densities in points r and r�, whereas the
second is the two-electron “exchange density.” The exchange
density originates from the antisymmetry of the wave func-
tion; it also contains the compensation for the “self-
interaction” of the electrons.22 If one uses doubly occupied
orthonormalized orbitals �restricted Hartree-Fock or closed-
shell Kohn-Sham determinants�, then the exchange density
can be expressed via the molecular orbitals �i as21

�x�r,r�� = 2�
i,j

occ

�i
*�r�� j

*�r��� j�r��i�r�� . �11�

Integrating over both coordinates and taking into ac-
count the orthonormalization of the orbitals, one gets the
normalization of the exchange density as21

� � �x�r,r��dvdv� = N , �12�

where N is the number of electrons.
Now, introducing in the integrand of Eq. �12� two atomic

resolutions of identity as �A�BwA�r�wB�r��=1, we get the
decomposition of this normalization of the exchange density
into atomic �A=B� and diatomic �A�B� contributions:

�
A,B

� � wA�r�wB�r���x�r,r��dvdv� = N . �13�

The two terms of this sum, corresponding to a given pair of
atoms A and B, equal the bond order index BAB between
them, defined in the fuzzy atom framework:

BAB =� � wA�r�wB�r���x�r,r��dvdv�

+� � wB�r�wA�r���x�r,r��dvdv�. �14�

�It is easy to check that this definition is equivalent to the
explicit one given in Ref. 12.� Thus the bond order can be
considered as the integral over the diatomic part of the ex-
change density matrix,

�AB
x �r,r�� = wA�r�wB�r���x�r,r�� + wB�r�wA�r���x�r,r�� ,

�15�

which, at the Hartree-Fock level of theory, gives rise to the
Hartree-Fock exchange energy component
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Ex,AB
HF = −

1

2
� � �AB

x �r,r��
�r − r��

dvdv�. �16�

The diatomic exchange energy components represent large
negative numbers for chemically bonded atoms, usually cor-
relating well with the respective bond order indices.23

It was shown by Borisova and Semenov25 for the Wiberg
index26 of the complete neglect of differential overlap
�CNDO� theory and by one of us for the ab initio27 that the
bond order index calculated in the Hilbert-space framework
may be considered as the effective number of electron pairs
participating in the bonding between the atoms considered.28

This should be applicable mutatis mutandis in the fuzzy at-
oms frame as well.

It is important to realize that neither the bond order in-
dex nor the Hartree-Fock exchange energy components are
directly related to the interatomic overlap populations, i.e., to
the electronic charge accumulated in the bonding regions.
They are connected with the existence of bonding molecular
orbitals spreading over the atoms in question, which leads to
a correlation between the fluctuations of the atomic
populations:18,29 if there is a positive charge fluctuation on
one atom, then on the bonded atom, a negative one may be
expected—and this correlation leads to a negative energy
contribution, similar to that as the correlation of fluctuating
dipoles causes attractive dispersion interaction. This negative
energy component appears even if the charge is completely
concentrated near the nuclei: it is present18,30,31 in the
CNDO-type semiempirical theories in which the overlap
populations integrate to zero �the orbitals are assumed or-
thogonal� and the zero differential overlap approximation is
used for the integrals, and even in the case of a point-charge
approximation of the two-electron integrals.31,32

This connection between the diatomic exchange, bond
orders, and negative exchange energy contributions moti-
vated us to introduce a new quantity called “bond order
density”—it will be discussed in more detail elsewhere. The
bond order density �AB�r� for the pair of atoms A and B is
obtained by integrating the diatomic exchange density
�AB

x �r ,r�� over the coordinate r�; for the closed-shell case
considered here, one gets

�AB�r� = 2�
i,j

occ

�wA�r�Sij
B + wB�r�Sij

A��i
*�r�� j�r� , �17�

where the elements of the “atomic overlap matrix” SA of the
molecular orbitals are defined as

Sij
A =� wA�r��i

*�r�� j�r�dv . �18�

The name bond order density has been proposed because
this function integrates to the bond order index between the
pairs of atoms A and B. Actually, it represents the part of the
total electron density that is used by the bonding interaction
between atoms A and B through the exchange interaction.
For A=B, the intra-atomic bond order density �AA can also
be defined; it stands for the part of the electron density of
atom A that is not involved in the bonds:33

�AA�r� = 2�
i,j

occ

wA�r�Sij
A�i

*�r�� j�r� . �19�

Equation �17� is the definition equation of the bond order
density for the single determinant wave functions used in the
Hartree-Fock or Kohn-Sham frameworks. Obviously, in the
DFT case, the exchange density equation �Eq. �11�� and thus
the bond order density equation �Eq. �17�� reflect the pair
density properties of the Kohn-Sham single determinant
wave function and should be considered as being only some
approximations from the point of view of an exact �orbital-
free� DFT theory.

One of the important features that concerns the present
case is that the sum of all atomic and diatomic bond order
densities exactly reproduces the molecular electronic density,
so that

��r� = �
A�B

�AB�r� = �
A

�AA�r� + 1
2 �

A,B

A�B

�AB�r� . �20�

The above considerations mean that the introduction of
the concept of bond order density permits us to decompose
the electronic density in a manner reflecting closely the
bonding interactions between the atoms. This decomposition
differs from all the standard ones. Figure 1 depicts the di-
atomic bond order density �henceforth BOD� along the bond
axis of the CO molecule calculated at the BLYP/6-31G**

level. It has two peaks at the atomic positions but also ex-
tends into the interatomic region resembling a bonding or-
bital. In particular, it is important to stress that the electron
density actually involved in the bond is not solely localized
in the interatomic region but is partially concentrated also in
the regions close to the nuclei. This observation is in full
agreement with the discussion above about the character of
the exchange interaction and stresses again the differences
between bond orders and overlap populations.

Another important point is that �contrary the overlap
populations� the BOD does not vanish when nonoverlapping
atomic domains are used. Thus the present scheme is appli-
cable to any method of decomposing the 3D space, including
AIM or the use of Voronoi cells. In Fig. 2, we show the
BODs for the CO bond calculated from three different types
of atomic partitionings, namely, Becke, AIM, and Becke-rho.
The latter12,37,38 stands for Becke’s fuzzy atom weights cal-
culated using the minimum of the electron density along the
interatomic distance to define the ratio between the atomic
radii of the two atoms, which is to be used in the Becke
formula16 for calculating the weight functions wA�r�. It has
been shown recently37 that the AIM and Becke-rho schemes
yield very similar populations and bond orders. In all cases,
the BODs exhibit the two characteristic peaks at the atomic
positions and extends over the interatomic region. By com-
paring the Becke and Becke-rho functions, one can see that
the difference in atomic sizes affect the height of the atomic
peaks and the polarization of the BOD in the interatomic
region. The main feature of the AIM BOD is that it is not
continuous �except for the special case of symmetric homo-
nuclear bonds�, which complicates its topological analysis.
Apart from that, the shape of the BOD obtained for different
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physical-space partitionings are quite similar, which is to be
translated in the corresponding values of the diatomic ex-
change energy contributions.

If in Eq. �16� one performs the integration only over r�,
then one gets an expression for the diatomic Hartree-Fock
exchange energy density as follows:

�x,AB
HF �r� = −

1

2
� �AB

x �r,r��
�r − r��

dv�. �21�

It is not surprising �see Fig. 3� that its topology—after
changing the sign—is very similar39 to that of the bond order
density �AB�r�. This motivated us to suppose that the ener-
getic contribution of the BOD could be determined by using
the local exchange energy density functionals of the DFT.
That is, we introduce the bond order density given by Eq.
�17� into the DFT energy expression Ex=��x���r��dv and
get the definition for the diatomic exchange energy compo-
nent as

Ex,AB =� �x��AB�r��dv . �22�

We have calculated these diatomic exchange energy compo-
nents within the fuzzy atom framework at the
BLYP/6-31G** level of theory40 and used the same numeri-
cal integration scheme41 as that in Ref. 11. The results ob-
tained for the relevant bonding interactions in a selected set
of 12 molecules are listed in Table I. �As known, the BLYP
scheme uses the Becke88 functional for the exchange.� The
results obtained are in surprisingly good agreement with the
Hartree-Fock ones—obtained with the same Kohn-Sham or-
bitals at the same DFT geometry. The correlation between
the two sets of values is almost perfect, with a slope very
close to unity �see Fig. 4�. This is especially the case if one
does not include the multiply bonded molecules CO and N2

having very large exchange contributions and distorting
somewhat the regression �see Fig. 4�. The correlation equa-

FIG. 1. Bond order density, intra-
atomic bond order densities, and total
electron density profiles �in a.u.� for
the CO molecule along the interatomic
axis from BLYP/6-31G** Kohn-Sham
orbitals.

FIG. 2. Bond order density profiles for
several atomic definitions �see text�
along the intermolecular axis of the
CO molecule from BLYP/6-31G**

Kohn-Sham orbitals.
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tion is almost the same at the BLYP/6-311+ +G** level of
theory �results not reported�.

We expect that a similar good correlation will be ob-
tained by using other functionals or atomic weight function
definitions such as AIM, too. Indeed, very good correlations
have been obtained even by using in Eq. �22� the simplest
lead-density approximation �LDA� type of exchange energy
density, representing the leading term of the exchange func-
tionals. The regression equation between the LDA and HF
diatomic exchange components computed using the BLYP
Kohn-Sham orbitals was y=1.01x+0.07, with a correlation
coefficient 0.99. Remarkably, the same equation was ob-
tained at the HFS/6-31G** level of theory using the LDA
Kohn-Sham orbitals and geometry. The constant underesti-
mation of 	0.07 a.u. in the LDA results can be clearly con-
nected with the fact that LDA exchange underestimates the
energetic contribution of the atomic peaks of �AB�r�. �Nev-

ertheless, the use of simple LDA functional may be appro-
priate also in the cases when the functional used cannot
properly be separated into exchange and correlation terms.�

A different approach is required for calculating atomic
exchange energy components. Since the exchange energy
density is not a linear functional of the density, one cannot
compute all the atomic and diatomic exchange energy con-
tributions by using Eq. �22�—they would not recover the
total exchange energy. �No such problem appears in the
Hartree-Fock case.� Therefore, we propose to proceed in the
following manner. We compute an approximate atomic ex-
change energy component by using Eq. �8� and then add a
proper correction term to avoid double counting of the
BODs. The final expression for the corrected atomic ex-
change component is

Ex,A =� wa�r��x���r��dv − 1
2 �

B

�B�A�

Ex,AB. �23�

As it is easy to see, the sum of atomic and diatomic exchange
energy components Ex,A and Ex,AB, respectively, computed in
this manner, recovers the total molecular exchange energy.

Figure 5 and Table I compare the atomic exchange com-
ponents calculated in the manner just discussed with the
Hartree-Fock ones by using the BLYP/6-31G** orbitals. One
can see a very good correlation for the heavy atoms and a
fair one for the hydrogens. �The largest deviations are ob-
served for the bridging hydrogens in diborane and for the
hydrogen in hydrogen fluoride.�

C. Atomic and diatomic energy components

The reasons which lead us to calculate the diatomic ex-
change energy components by using the bond order density
seem not applicable to the problem of correlation, so the
correlation energy can be simply decomposed by using equa-
tions of type of Eq. �9�, i.e., as

Ec = �
A,B

� wA�r�wB�r��c���r��dv , �24�

FIG. 3. Hartree-Fock and DFT di-
atomic exchange energy density pro-
files calculated from BLYP/6-31G**

Kohn-Sham orbitals for CO molecule
along the interatomic axis. The LDA
and B88 values have been obtained
from the bond order density �see text�.

FIG. 4. Comparison of Hartree-Fock and B88 diatomic exchange energy
components for the set of molecules listed in Table I using the
BLYP/6-31G** Kohn-Sham orbitals.
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where �c���r�� is the purely correlational part of the
exchange-correlation energy density. This completes the for-
mulas required to perform a complete energy decomposition
in the DFT framework. For kinetic energy, we shall use Eq.
�5�, so we restrict ourselves to the equilibrium molecular
geometries �cf. Ref. 19�.

The final atomic and diatomic energy components ob-
tained for the set of molecules at the BLYP/6-31G** and
BLYP/6-311+ +G** levels of theory are collected in Tables
II and III, respectively. The diatomic BLYP/6-31G** values
are compared to the Hartree-Fock ones using the same orbit-
als and geometry in Fig. 6. The correlation is again very
good, especially excluding the largest values �r2=0.96�. In

this case, the slope of the regression equation is greater than
1, which is basically due to the correlation contribution. The
diatomic components, like the Hartree-Fock ones in Ref. 11,
are on the chemical scale and fairly independent of the basis
set.

The promotion energies, defined with respect to the
atomic ROBLYP energies, are, in general, within the chemi-
cal scale and very close to those obtained for the same set of
molecules at the Hartree-Fock level in Ref. 11. These pro-
motion energies are in most cases positive, even though par-
tial ionization effects can lead to negative energy contribu-
tions on the electron-receiving atoms.

Finally, the accuracy of the numerical integration �sum
of atomic and diatomic components� is slightly superior to
the Hartree-Fock case. This is not surprising since it was
already shown11 that the main source of error in the Hartree-
Fock decomposition was the numerical two-electron integra-
tions, specially the exchange ones. The main advantage of
the present approach is that, relying on pure DFT exchange
functionals, these cumbersome numerical integrations are
avoided. That aspect may even motivate one to use the
present scheme as an approximate one for analyzing the re-
sults of the Hartree-Fock calculations for rather large sys-
tems for which these two-electron integrations may become
too costly.

III. CONCLUSIONS

In this paper, a new energy decomposition scheme is
proposed for the DFT theory and is realized in the frame-
work of the “fuzzy atoms” based 3D analysis. We had to
recur to the use of bond order density when calculating di-
atomic exchange energy components because the diatomic
contribution of exchange is related to the correlation of
charge fluctuations on different atoms and thus represents an
essentially nonlocal aspect even in the formally local DFT
theory. By using this new concept, unexpectedly close results
have been obtained for the atomic and diatomic exchange

FIG. 5. �a� Hartree-Fock vs Becke88 atomic exchange energy components
for the heavy atoms of the set of molecules using the BLYP/6-31G** Kohn-
Sham orbitals. �b� Hartree-Fock vs Becke88 atomic exchange energy com-
ponents for the hydrogen atoms of the set of molecules using the
BLYP/6-31G** Kohn-Sham orbitals.

FIG. 6. Comparison of Hartree-Fock and BLYP total diatomic energy com-
ponents �including correlation� for the set of molecules using the
BLYP/6-31G** Kohn-Sham orbitals.
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TABLE II. One and two-center energy components, atomic promotion energies with respect to the atomic
ROHF energies, and error of integration � for selected molecules at the BLYP/6-31G�d,p� level of theory.

Molecule Atom
�EA HF

�kcal/mol�
�EA BLYP
�kcal/mol�

Atomic
pair

EAB HF
�kcal/mol�

EAB BLYP
�kcal/mol�

�

�kcal/mol�

H2 H 9.2 −0.8 H,H −102.8 −109.5 −0.2
HF H 28.6 27.6 H,F −132.7 −140.6 −2.1

F 10.3 −23.9
N2 N 42.5 18.5 N,N −187.1 −273.9 −0.7
CO C −43.2 −32.4 C,O −204.1 −266.4 1.6

O 82.1 38.2
H2O O 63.0 7.0 O,H −133.5 −137.6 0.6

H 23.5 17.1
NH3 N 116.1 47.1 N,H −131.8 −132.7 −0.2

H 23.7 12.5
CH4 C 67.2 27.7 C,H −134.6 −133.7 0.3

H 27.7 13.6
C2H6 C 70.3 17.8 C,C −104.2 −83.8 −1.9

H 33.1 17.6 C,H −126.5 −124.4
C6H6 C 57.8 −7.5 C,C −127.5 −109.4 −1.3

H 37.9 22.3 C,H −111.6 −108.2
C2H4 C 50.9 8.4 C,C −158.7 −164.5 −2.6

H 32.8 18.2 C,H −119.8 −117.3
C2H2 C 38.2 10.4 C,C −198.5 −237.3 −1.6

H 34.5 21.9 C,H −112.2 −109.3
B2H6 B 26.7 −7.6 B,Hb −75.6 −63.1 −3.7

Hb 66.8 36.8 B,Ht −119.9 −118.2
Ht 32.9 15.9 B,B −64.6 −46.0

TABLE I. Hartree-Fock and Becke88 one and two-center exchange energy components for selected molecules
at the BLYP/6-31G�d,p� level of theory.

Molecule Atom
HF

�a.u.�
B88
�a.u.�

Atomic
pair

HF
�a.u.�

B88
�a.u.�

H2 H −0.1948 −0.1914 H,H −0.2687 −0.2745
HF H −0.1013 −0.0894 H,F −0.3682 −0.3736

F −9.9662 −10.0180
N2 N −6.0331 −6.0299 N,N −0.9986 −1.1097
CO C −4.7454 −4.7018 C,O −0.9365 −1.0097

O −7.5973 −7.6595
H2O O −7.9932 −8.0508 O,H −0.3469 −0.3461

H −0.1197 −0.1145
NH3 N −6.2817 −6.3236 N,H −0.3154 −0.3097

H −0.1352 −0.1361
CH4 C −4.8277 −4.8368 C,H −0.2829 −0.2752

H −0.1467 −0.1516
C2H6 C −4.7425 −4.7776 C,C −0.3799 −0.3315

H −0.1457 −0.1526 C,H −0.2738 −0.2645
C6H6 C −4.6149 −4.6812 C,C −0.4646 −0.4163

H −0.1384 −0.1459 C,H −0.2688 −0.2579
C2H4 C −4.6973 −4.7232 C,C −0.6021 −0.5904

H −0.1413 −0.1473 C,H −0.2760 −0.2661
C2H2 C −4.6547 −4.6637 C,C −0.8281 −0.8643

H −0.1242 −0.1288 C,H −0.2802 −0.2698
B2H6 B −3.5793 −3.6001 B,Hb −0.1286 −0.1054

Hb −0.1200 −0.1506 B,Ht −0.2562 −0.2478
Ht −0.1634 −0.1715 B,B −0.2236 −0.1857
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energy components to the “exact” �Hartree-Fock� ones cal-
culated by using the same Kohn-Sham orbitals. As a conse-
quence, very reasonable overall energy components have
been obtained, too.
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