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Simple finite field method for calculation of static and dynamic vibrational
hyperpolarizabilities: Curvature contributions

Bernard Kirtman and Josep M. Luisa)
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~Received 29 December 1997; accepted 20 March 1998!

In the static field limit, the vibrational hyperpolarizability consists of two contributions due to:~1!
the shift in the equilibrium geometry~known as nuclear relaxation!, and~2! the change in the shape
of the potential energy surface~known as curvature!. Simple finite field methods have previously
been developed for evaluating these static field contributions and also for determining the effect of
nuclear relaxation ondynamic vibrational hyperpolarizabilities in the infinite frequency
approximation. In this paper the finite field approach is extended to include, within the infinite
frequency approximation, the effect of curvature on the majordynamicnonlinear optical processes.
© 1998 American Institute of Physics.@S0021-9606~98!02224-7#
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I. INTRODUCTION

The design of materials with large nonlinear optic
~NLO! properties is currently of great interest,1–3 mainly be-
cause of potential utilization in a variety of optical an
electro-optical devices. At the molecular level these NL
properties are determined by the dynamic hyperpolariza
ties. Although one might, at first, think that dynamic hype
polarizabilities are primarily electronic in origin, there is
growing body of evidence that, for materials with large NL
properties, the vibrations play an important role. Indeed
number of cases exist4–7 where the vibrational hyperpolariz
ability far exceeds the electronic hyperpolarizability.

A perturbation treatment of dynamic vibrational hype
polarizabilities has been given by Bishop and Kirtman8,9

~BK!. This treatment is based on the general sum-over-st
formulas10 for the total hyperpolarizability given in terms o
vibronic energies and dipole moment matrix elements. T
vibrational and electronic contributions are, then, separa
by applying a canonical, or clamped nucleus, appro
mation11 wherein the electronic and vibrational motions a
considered sequentially rather than simultaneously. BK
press the resulting vibrational terms using a double pertu
tion expansion in orders (n,m) of electrical and mechanica
anharmonicity, respectively. In low order, i.e., (n,m)
5(0,0), ~1,0!, ~0,1!, ~1,1!, and ~2,0!, this leads to a set o
compact expressions9 for the dynamic vibrational hyperpo
larizabilities.

Quite often the vibrational hyperpolarizability is es
mated in the double harmonic approximation,4,5,12,13 i.e.,
(n,m)5(0,0), but there are also a number of studies14–29

where anharmonic contributions have been evaluated.
though these latter studies mostly pertain to the static hy
polarizability, they do demonstrate that going beyond
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double harmonic approximation can be important and t
the convergence behavior will vary dramatically from o
system to another.

There have been two impediments to including anh
monicities in dynamic vibrational hyperpolarizability calcu
lations. First, the BK compact formulas were, until now30

complete only through first order~i.e., n1m51!. Probably
of more importance, particularly for NLO materials whic
usually involve large molecules or polymers, the anharm
nicity constants that are required are often computation
burdensome to evaluate.

It is possible to circumvent these difficulties in two sp
cial cases through the use of finite field~FF! methods
whereby various molecular properties are determined a
function of one or more static applied electric fields. O
special case is the vibrational hyperpolarizability in the sta
limit,22,24 which satisfies the relation

vibrational hyperpolarizability1ZPVA

5nuclear relaxation contribution

1curvature contribution. ~1!

Here the vibrational hyperpolarizability is the quantity di
cussed in BK, and ZPVA refers to the zero-point vibration
averaging correction for the electronic hyperpolarizabil
~which depends upon the nuclear coordinates!. On the right-
hand side ~rhs! of Eq. ~1!, the nuclear relaxation
contribution24 arises from the change in the electronic e
ergy, or dipole moment, due to the field-induced relaxat
of the molecular geometry. The origin of the curvatu
contribution24 is the change in zero-point vibrational energ
caused directly by the field and indirectly by the geome
relaxation. For a diatomic molecule it has already be
demonstrated31 that Eq.~1! is valid. The ZPVA term, in par-
ticular, is part of the curvature contribution. An extension
the proof for diatomics to an arbitrary polyatom
nt
8 © 1998 American Institute of Physics
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molecule,30 building on the treatment given recently by Lu
et al.,16 is presented in the next paper. The relationship
tween the alternative approaches implied by the two side
Eq. ~1! has recently been reviewed.32

The other special case is the infinite frequency limit.
that limit the nuclear relaxation contribution is obtained
considering the effect of field-induced geometry relaxat
on the linear polarizability~a! and the first hyperpolarizabil
ity ~b!, rather than on the electronic energy or dipole m
ment. As Bishop, Hasan, and Kirtman~BHK! have shown,33

this yields the leading perturbation terms of each type34 in
the formulas for the most common NLO processes. In
few examples that have been examined,35 it has been found
that the vibrational NLO property at a typical optical fr
quency is not very different from the value at the infin
frequency limit. Thus, the latter constitutes a useful appro
mation.

The primary purpose of the current paper is to extend
FF/infinite frequency method to include the analog of t
curvature contribution in Eq.~1!. We find that instead of the
electronica and b, which yield the nuclear relaxation con
tribution, one must now use the ZPVA correction to the
properties. Our treatment then follows along exactly
same lines as BHK and gives entirely analogous results
will be seen from the analysis carried out in the next secti

The leading terms in the ZPVA correction fora and b
are first order in electrical or mechanical anharmonic
However, the required anharmonicity constants have
peated indices and, therefore, can be determined with
slightly more computational effort than is necessary for
harmonic parameters. This is discussed in Sec. III, al
with other approximate computational simplifications. In a
dition, the finite field approach has certain limitations from
theoretical and interpretive point of view. Methods to redu
these limitations are also considered in Sec. III and, fina
we close with a summary of our results.

II. ANALYSIS

We let the equilibrium geometry in an applied elect
field, F, be denoted byRF , while Pe(F8,RF) is the value of
the electronic propertyPe calculated atRF in the presence o
a field F8. In the following, F and F8 will always be the
same, although this is not required. The field-dependent
brationally averaged value ofPe is given by

^0FuPe~F,R!u0F&5Pe~F,RF!1DPZPVA~F,RF!, ~2!

where

DPZPVA~F,RF!5^0FuPe~F,R!2Pe~F,RF!u0F&. ~3!

Here R is an arbitrary geometry andu0F& is the field-
dependent ground-state vibrational wave function. The B
FF/nuclear relaxation method is based on the first term
the rhs of Eq.~2!. One defines the difference

~DPe!RF
5Pe~F,RF!2Pe~0,R0! ~4!

and expands this quantity as a Taylor series inF. For Pe

5me, ae, be, this leads to
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~Dma
e !RF

5a1
eFb1 1

2 b1
eFbFg1 1

6 g1
eFbFgFd1..., ~5!

~Daab
e !RF

5b2
eFg1 1

2 g2
eFgFd1..., ~6!

~Dbabg
e !RF

5g3
eFd1..., ~7!

with

a1
e5aab

e ~0;0!1aab
nr ~0;0!,

b1
e5babg

e ~0;0,0!1babg
nr ~0;0,0!,

~8!
g1

e5gabgd
e ~0;0,0,0!1gabgd

nr ~0;0,0,0!,

b2
e5babg

e ~0;0,0!1babg
nr ~2v;v,0!v→` ,

~9!
g2

e5gabgd
e ~0;0,0,0!1gabgd

nr ~2v;v,0,0!v→` ,

g3
e5gabgd

e ~0;0,0,0!1gabgd
nr ~22v;v,v,0!v→` . ~10!

In Eqs. ~8!–~10! we have used the standard notation, e
g(2vs ;v1 ,v2 ,v3), to designate the frequencies of the o
cillating electric fields~in the orderFa ,Fb ,Fg¯! and, as
usual,vs5( iv i . The value obtained for each quantity
that at the field-free equilibrium geometryR0 .

Although all the calculations are done with static field
Eqs. ~9! and ~10! yield dynamic NLO properties in the
nuclear relaxation infinite frequency (nr/v→`) approxima-
tion. Thus,babg

nr (2v;v,0)v→` contributes to the Pockel
effect, gabgd

nr (2v;v,0,0)v→` to the Kerr effect, and
gabgd

nr (22v;v,v,0)v→` to dc-second harmonic generatio
~dc-SHG!. Analytical expressions for the terms included
the nr/v→` approximation can be obtained16 from a
double expansion about (0,R0) of the electronic energy
V(F,Q), in terms of the field vectorF5(Fx ,Fy ,Fz) and the
normal coordinate displacements,Q. For a fixed F this
double expansion yieldsRF and, then, subsequent variation
of Fx ,Fy ,Fz give the coefficients in Eqs.~5!–~7!. Exactly
the same expressions can be derived from the BK pertu
tion treatment by taking the lowest order terms of each ty
that survive after lettingv become infinite. These terms ar
listed in Table I of BHK and the connections with the doub
expansion method are given in Table I of Ref. 16. The t
approaches together yield a definitive interpretation of
quantities in Eqs.~9! and ~10!.

From the BK perturbation treatment it is easy to demo
strate that the nuclear relaxation~and curvature! contribution
to vibrational second and third harmonic generation~SHG
and THG!, i.e., babg

v (22v;v,v)v→` and gabgd
v

(23v;v,v,v)v→` , vanishes in the infinite frequency limit
Finally, in the nr/v→` approximation the vibrationa
intensity-dependent refractive index~IDRI!, i.e., gabgd

nr

(2v;v,2v,v)v→` contains just the@a2# (0,0) perturbation
term~see Tables I and II of Ref. 30!, which may be estimated
through first order in the finite field method@see Eq.~12! of
BHK# by combining gabgd

nr (2v;v,0,0)v→` , gabgd
nr

(22v;v,v,0)v→` , and gabgd
nr (0;0,0,0)v→` . In this way

we account for the major NLO processes. However, the ID
estimate is valid only for the diagonal tensor components
for the mean value.

Next we consider the second, or ZPVA, term in Eq.~2!.
In this case application of the finite field method as abo
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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yields the vibrational curvature/v→` contribution to the
various NLO processes. Unlike nuclear relaxation, the c
vature contribution is not limited to low orders of perturb
tion theory. It is convenient, however, to begin with the lo
est order terms in Eq.~3! which are given by

DPZPVA5@P#0,11@P#1,0, ~11!

with

@P#0,152
\

4 (
a

S (
b

Fabb

vb
D S ]P/]Qa

va
2 D ~12!

and

@P#1,05
\

4 (
a

~]2P/]Qa
2!

va
. ~13!

Now we take the difference

DPZPVA~F,RF!2DPZPVA~0,R0!, ~14!

whereDPZPVA(0,R0) is defined by Eq.~3! with F50, and
expand that quantity as a power series in the field~s!. This
leads to a set of relations analogous to Eqs.~5!–~7! except
that one must useDPZPVA(F,RF)2DPZPVA(0,R0) instead
of (DPe)RF

. Similarly, in Eqs. ~8!–~10! we substitute
DPZPVA for Pe and simultaneously replace ‘‘nr ’’ by
‘‘curv.’’ In replacing ‘‘ nr ’’ with ‘‘curv’’ it should be under-
stood that the resulting quantity is the difference between
total curvature contribution and that due toDPZPVA. Of
course, fora, b, etc., DPZPVA vanishes at the infinite fre
quency limit.

In order to verify that the ZPVA/curvature relations a
correct we have, again, combined the double expansion
BK perturbation methods. In fact, using Eq.~11! it is easy to
show ~see the Appendix! that

babg
curv~2v;v,0!v→`5@ma#v→`

II , ~15!

gabgd
curv ~2v;v,0,0!v→`5@a2#v→`

II 1@mb#v→`
II

1@m2a#v→`
III , ~16!

gabgd
curv ~22v;v,v,0!v→`5@mb#v→`

II , ~17!

where we have used the shorthand@ # II5@ #2,01@ #1,1

1@ #0,2 and@ # III 5@ #3,01@ #2,11@ #1,21@ #0,3. Note that the
square bracket quantities depend explicitly on the NLO p
cess, although this has not been indicated. Thus, for exam
@mb#v→`

II in Eq. ~16! is not the same as@mb#v→`
II in Eq.

~17!.
Until recently,30 the compact BK perturbation formula

of order~0,2! have not been available and formulas for to
order n1m>3 are still not known. One can, nonetheles
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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verify Eqs. ~15!–~17! with recourse to known formulas. I
the static perturbation expression is available~as it always
is!, then the infinite frequency formula is readily obtaine
without knowing the general frequency-dependent result.
far as the diagonal tensor components~and the mean values!
are concerned, the static and infinite frequency express
are identical except for multiplicative constants, which d
pend only on the NLO process and the type of perturbat
term. This means, for instance, that the@m2a#v→`

III term in
Eq. ~16! can be found from the corresponding@m2a#v50

III ,
@m2a#v→`

I and @m2a#v50
I terms.

The next lowest order terms inDPZPVA are two orders
higher than those given in Eq.~11!, i.e.,

DPZPVA5@P# I1@P# III . ~18!

Thus, the infinite frequency curvature results obtained by
finite field method are correct through the second~total! or-
der of perturbation theory. It is unlikely that Eq.~18! will be
utilized in the foreseeable future with standard quant
chemistry programs since the evaluation of@P#0,3 requires
quintic force constants and@P#3,0 requires the fourth deriva
tive of the electronic property. Without doing any furth
analysis we know that the additional terms in Eqs.~15!–~17!
would be of the same type but two orders higher than th
already discussed.

On the other hand, it may be feasible to evaluate the t
ZPVA correction directly by techniques that sample t
complete potential energy surface. Taking that idea one
further, one could determine the total electronic property
given by Eq.~2!. Then the entire vibrational hyperpolariz
ability, including both the nuclear relaxation and curvatu
contributions, would be obtained at the same time rather t
stepwise, as in the current procedure.

III. DISCUSSION

The starting point for a FF/curvature calculation is t
ZPVA correction term given, in lowest order, by Eqs.~11!–
~13!. It is important to note that only a subset of the mecha
cal and electrical anharmonicity constants, i.e., those w
repeated indices, are needed for evaluation of@P#0,1 and
@P#1,0. Once the equilibrium geometry and normal coord
nates have been determined, then the required anharm
force constants can be obtained by taking the diagonal
ond derivatives of the energy gradients]V/]Qa52Fa ,

Fabb52 lim
Qb→0

@Fa~1Qb!1Fa~2Qb!#

Qb
2 . ~19!

From the numerical point of view, it is clear that th
computational effort that must be expended to obtain the
of cubic force constants,Fabb , is similar to that involved in
calculating the set of quadratic force constants,Fab . A simi-
lar conclusion applies to analytical differentiation assum
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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that an appropriate computer code is available. Essent
the same analysis also pertains to the anharmonic electr
property derivatives]2P/]Qa

2.
Beyond the simplifications discussed above we can a

consider various approximations that may reduce the com
tational effort. One possibility is to carry out preliminar
calculations at a lower level than desired in terms of el
tronic structure method and/or basis set. These prelimin
calculations could be used to specify the normal modes a
perhaps, to eliminate some of these modes as being relat
unimportant. An investigation36 of this approach for the cas
of nuclear relaxation has given promising initial results.

The finite field approach to dynamic vibrational hype
polarizabilities has certain limitations that should be borne
mind. First of all, it is only valid in the infinite frequenc
limit. In that limit the electronic properties and their zer
point vibrational averages vanish. In order to estimate
~zero-field! DPZPVA at an optical frequency, we can scale t
static value in the same manner often used in treating e
tron correlation.37 An example is afforded by a recen
treatment38 of the mean dc-second harmonic generation
methane. The error due to the difference between
frequency-dependent and the staticDPZPVA was calculated
to be 3.5% of the corresponding electronic property atv
50.06 a.u. This error grows to 10.1% atv50.10 au, but is
reduced by a factor of 2 when the staticDPZPVA is scaled.
From the few other examples available39–42it appears that, if
anything, methane corresponds to a worst case scenario

The error in the infinite frequency approximation f
nuclear relaxation has been examined by Bishop
Dalskov.35 For five small molecules they evaluated the me
dc-SHG, THG, and IDRI, as well as the isotropic and ani
tropic Kerr effect at the He/Ne laser frequency (v
50.072 a.u.) and compared them with the same propertie
v→`. In those cases where nuclear relaxation is import
the maximum error~NH3; anisotropic Kerr effect! due to the
infinite frequency approximation~i.e., their approximation
B! turns out to be less than 12% of thev50.072 value.

Another aspect of the finite field approach, which is
limitation on the one hand and an advantage on the othe
the fact that one obtains the entire curvature~or nuclear re-
laxation! effect without knowing the contribution of indi
vidual terms~cf. Ref. 16!. For purposes of analysis, howeve
there are~at least! three different ways of dividing up the
total contribution that could prove useful: ~1!
@P#0,11@P#1,0; ~2! individual normal coordinatesQa in Eqs.
~12! and ~13!; and ~3! individual normal~or internal! coor-
dinates in the field-dependent geometry optimization.
three of these divisions can be carried out separately o
concert.

In implementing our FF/curvature procedure it should
borne in mind that all the quantities in Eqs.~12!, ~13!, and
~19! are field dependent. That includes the normal coo
nates,Qa , and the vibrational frequencies,va , as well as the
forces,Fa , and the electronic properties,P. For a given field
one can use standard quantum chemistry programs to d
mine the field-dependent equilibrium geometry and allQa ,
va and P5a or b ~note thatFa50!. Then, with the field
fixed, the required derivatives ofP andFa can be calculated
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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using finite displacements of theQa . Finally, b2
ZPVA , g2

ZPVA ,
andg3

ZPVA are found by varying the field and fitting the qua
tity in Eq. ~14! to the analog of either Eq.~6! or Eq. ~7!.

In summary, the combination of this paper with BH
yields a simple, practical FF method for calculating vibr
tional NLO properties in the infinite frequency approxim
tion. At the lowest level of treatment the results are compl
through second-order perturbation theory~and include some
of the higher-order terms!, where we refer here to the tota
order in mechanical and electrical anharmonicity. An ana
sis of existing data suggests that the infinite frequency
proximation will be adequate in most instances.
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APPENDIX

In this Appendix we outline the derivation of Eq.~15!;
Eqs.~16! and~17! may be obtained in an analogous fashio
Our starting point is the lowest order expression for the st
DaZPVA5DaZPVA(0;0) asgiven by Eqs.~11!–~13!. In the
notation of Ref. 17,

Daab
ZPVA~0;0!52 (

i 51

3N26

~2a20
i i !21/2

3Fa22
i i ,ab23 (

j 51

3N26

a30
i i j q2

j ,abG , ~A1!

where

anm
i 1¯ i n, j 1¯ j m

5
1

n!m! S ]~n1m!V~Q1 ,...,Q3N26 ,Fx ,Fy ,Fz!

]Qi 1
¯]Qi n

]F j 1
¯]F j m

D
Q,F

and q2
l,ab5a12

l,ab/2a20
ll . ~A2!

Instead of evaluating the potential energy derivatives in
~A2! at Q50, F50 as done previously, we regard them as
function of the electric field,F, and the field-free norma
coordinates,Q. In order to carry out an expansion inF at the
field-dependent equilibrium geometryRF , as desired, we
follow the same two-step iterative procedure described
Refs. 16 and 17:~1! the stationary condition (]V/]Q)RF

50 is applied to findRF , and, then,~2! V is determined as
a function ofF at that geometry. In doing this it is importan
to correctly take into account the dependence of the vib
tional force constants onF as discussed in the following
article. Indeed, the same field-dependent unitary transfor
tion that diagonalizes the harmonic force constant ma
must be applied to all the otheranm coefficients. Then,
straightforward algebra leads to the first derivative,
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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]@Daab
ZPVA~0;0!#

]Fg
52

1

2 (
i 51

3N26

~2a20
i i !1/2F6a23

i i ,abg218 (
j 51

3N26

a30
i i j q3

j ,abg26 (
j 51

3N26

a32
i i j ,abq1

j ,g26 (
j 51

3N26

a31
i i j ,gq2

j ,ab

124 (
j ,k51

3N26

a40
i i jk q1

j ,gq2
k,ab16 (

j ,k51

3N26

a30
i i j a22

jk,abq1
k,g/a20

j j 16 (
j ,k51

3N26

a30
i i j a21

jk,gq2
k,ab/a20

j j

218 (
j ,k,l 51

3N26

a30
i i j a30

jklq2
k,abq1

l ,g24 (
j 51

3N26

a22
i j ,aba21

i j ,g/A20
i j 124 (

j ,k51

3N26

a22
i j ,aba30

i jkq1
k,g/A20

i j

124 (
j ,k51

3N26

a21
i j ,ga30

i jkq2
k,ab/A20

i j 272 (
j ,k,l 51

3N26

a30
i jka30

i j l q2
k,abq1

l ,g/A20
i j G , ~A3!
ne

.

ri-
Vo

ed

th.

.

.

ys.

m,

l.

ical

J.
where

A20
i j 52~Aa20

i i 1Aa20
j j !2,

q1
l,a5a11

l,a/2a20
ll , and q3

l,abg5a13
l,abg/2a20

ll . ~A4!

The first two terms on the rhs of Eq.~A3! constitute the static
ZPVA correction forb, i.e., Dbabg

ZPVA(0;0,0). By comparing
with the BK perturbation treatment at infinite frequency, o
can verify that the remaining terms on the rhs of Eq.~A3! are
equal to @ma#v→`

II . This completes the derivation of Eq
~15!.

1Theoretical and Computational Modeling of NLO and Electronic Mate
als, edited by S. P. Karna and A. T. Yeates, ACS Symposium Series
628 ~ACS, Washington, DC, 1996!.

2Chem. Rev., Thematic issue on Optical Nonlinearities in Chemistry,
ited by J. Michl~1994!.

3Molecular Nonlinear Optics, Materials, Physics and Devices, edited by J.
Zyss ~Academic, New York, 1993!.

4B. Kirtman and M. Hasan, J. Chem. Phys.96, 470 ~1992!.
5E. A. Perpe`te, B. Champagne, and B. Kirtman, J. Chem. Phys.107, 2463
~1997!.

6D. M. Bishop, B. Champagne, and B. Kirtman~in preparation!.
7B. Champagne and B. Kirtman~in preparation!.
8D. M. Bishop and B. Kirtman, J. Chem. Phys.95, 2646~1991!.
9D. M. Bishop and B. Kirtman, J. Chem. Phys.97, 5255~1992!.

10B. J. Orr and J. F. Ward, Mol. Phys.20, 513 ~1971!.
11D. M. Bishop, B. Kirtman, and B. Champagne, J. Chem. Phys.107, 5780

~1997!.
12B. Champagne, E. A. Perpe`te, J-M. André, and B. Kirtman, Synth. Met.
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