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A simple extended finite field nuclear relaxation procedure for calculating vibrational contributions
to degenerate four-wave mixing �also known as the intensity-dependent refractive index� is
presented. As a by-product one also obtains the static vibrationally averaged linear polarizability, as
well as the first and second hyperpolarizability. The methodology is validated by illustrative
calculations on the water molecule. Further possible extensions are suggested. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2889950�

I. INTRODUCTION

It is now well established that vibrational contributions
to nonlinear optical �NLO� properties can be very
significant1–4 for most important NLO processes. About
15 years ago, Bishop and Kirtman presented a general per-
turbation theory �BK-PT� treatment,5–7 which allows these
contributions �as well as the vibrational linear polarizability�
to be calculated for polyatomic molecules taking into ac-
count both mechanical and electrical anharmonicity. BK-PT,
which applies in the nonresonant regime where the optical
frequencies involved are substantially smaller than the low-
est electronic excitation energy, remains heavily utilized.10–15

For chemical systems of interest such as NLO materials, the
requirement on the lowest electronic excitation energy is
typically well satisfied.

In addition to BK-PT, alternative approaches continue to
emerge. A variational method for linear polarizabilities,
based on analytical linear response theory,8,9 was presented
very recently by Christiansen et al. For static and electro-
optical hyperpolarizabilities �specified below� an earlier, fi-
nite field-nuclear relaxation �FF-NR� alternative formulation
has proved valuable. The latter is related to BK-PT but
avoids explicit calculation of high-order potential energy and
electrical property derivatives,16–19 which are otherwise re-
quired. This FF-NR methodology relies on determining the
relaxation of the equilibrium molecular geometry induced by
a static electric field.16–19 Subsequent calculation of the elec-
tronic energy or dipole moment, linear polarizability, and
first hyperpolarizability at the relaxed geometry yields the
lowest-order �to be defined later� vibrational perturbation
terms,16–18 while all remaining vibrational terms are obtained
from the zero-point vibrational average �ZPVA� of these
properties.19 The ZPVA, in turn, can be obtained by applying
variational procedures to solve the vibrational Schrödinger
equation.20,21

Experimental measurements are often carried out at op-
tical frequencies much larger than the frequencies of the rel-
evant vibrational excitations. In that event, one may invoke
the infinite optical frequency approximation22–24 �IOFA� in
calculating vibrational NLO properties. Although not strictly
required,25 usually the FF-NR treatment is applied in con-
junction with the IOFA. In that event, this method requires
only the calculation of static electronic and ZPVA �hyper�po-
larizabilities at the field induced geometries, which implies a
major computational simplification.

The vibrational contributions to electro-optical NLO
properties that can be computed by the FF-NR procedure
include ��−� ;� ,0� �dc-Pockels �dc-P� effect�;
��−� ;� ,0 ,0� �dc-Kerr �dc-K� effect�; and ��−2� ;� ,� ,0�
�electric-field-induced second harmonic generation �ESHG��;
as well as the static �, �, and �. An important purely
dynamic NLO property that has, thus far, not proved acces-
sible by the FF-NR approach is ��−� ;� ,−� ,�� �degenerate
four-wave mixing �DFWM�, also known as the intensity-
dependent refractive index �IDRI��. An approximate expres-
sion for the vibrational contribution to DFWM, based on the
FF-NR approach, was presented some time ago.16 However,
that expression is correct only through the first-order of BK-
PT. Subsequent calculations have shown that second-order
contributions from the ��0;0 ,0 ,0� term in this approximate
formula are typically quite large.17,26,27 For that reason, it has
never been used and there are no published calculations of
DFWM beyond the simple double harmonic approximation.
Since DFWM is susceptible to large vibrational contributions
and has a number of useful applications, it is of interest to
remedy that situation. Some of the more noteworthy applica-
tions derive from optical bistability and self-focusing.28,29

The former, in particular, serves as the basis for devices used
in optical memory elements or switches for optical commu-
nications and optical computing.

The purpose of this paper is to show how the FF-NR
procedure may be extended to bring vibrational DFWM un-
der the same rubric as the other NLO properties listed above.
In addition, we obtain a simple way to calculate the statica�Electronic mail: kirtman@chem.ucsb.edu.
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ZPVA of �, �, and �. As already noted, �ZPVA and �ZPVA are
used to determine the three electro-optical NLO processes
mentioned above, whereas �ZPVA is required for our new
procedure in order to isolate the pure vibrational DFWM. In
Sec. II, we set out the methodology and, then, Sec. III pro-
vides illustrative calculations that serve to validate our treat-
ment. Finally, in Sec. IV, we summarize and speculate about
possible future developments.

II. THEORY

According to BK-PT, the vibrational frequency-
dependent second hyperpolarizability may be written in the
general form

���− ��;�1,�2,�3� = ��2� + ���� + ��2�� + ��4� , �1�

where �1, �2, and �3 are the optical input frequencies and
the output frequency ��=�1+�2+�3. DFWM corresponds
to the case ��−� ;� ,−� ,��. The square bracket quantities on
the right-hand side of Eq. �1� are functions of dipolar elec-
trical property derivatives, harmonic vibrational frequencies,
vibrational anharmonicity constants, and optical frequencies.
The symbols inside the square brackets indicate which elec-
tronic dipolar properties are involved. Although the electrical
properties involved are the same for each NLO process, i.e.,
for each choice of �1, �2, and �3, the specific formulas will
vary. In the IOFA limit, however, the square bracket terms
differ by, at most, a multiplicative constant. This constant
may be zero so that some of the contributions vanish in that
limit. Indeed, for DFWM, only the ��2� term survives. The
three remaining square brackets contain electric dipole de-
rivatives. Thus, if the dipole derivative terms are subtracted
out of the Hamiltonian when calculating some other NLO
process by the FF-NR approach, then what remains will be
the desired DFWM square bracket term.

Since ��2� does not contribute to ESHG in the IOFA
limit, the one electro-optical process that could be employed
for our purposes is the dc-K effect. This property is obtained
from the electronic linear polarizability and �ZPVA. However,
it is simpler to use the static �, which is determined from the
electronic and zero-point vibrational energy, ZPVE �or the
electronic � and �ZPVA�. In that case, the ��2� term is mul-
tiplied by 2 /3 to get the correct DFWM result. So this is
what we do.

There are two major steps involved in the FF-NR ap-
proach. The first is to calculate the relaxed geometry in a
finite static field with all dipole derivative terms removed
from the Hamiltonian. This goal can be easily achieved by
subtracting Faa01

a �Q ,0� from the electronic energy and
Faa11

a �Q ,0� from the ith component of the gradient vector.
Here,

anm
i,j,. . .,a,b,. . .�Q,F� =

1

n!m!
� ��n+m�V�Q,F�

�Qi�Qj ¯ �Fa�Fb¯
� �2�

and Fa is the static electric field in the a direction. The quan-
tity a01

a �Q ,0�, for example, is just the a component of the
electronic dipole moment at the geometry corresponding to
the normal coordinate displacement Q and at zero field. Sub-
sequently, the nuclear relaxation contribution to DFWM,

which is the zeroth-order or double harmonic approximation
to ��2�, is obtained by calculating the electronic energy �or
dipole moment� at the field-induced �relaxed� equilibrium
geometry.16,17 This must be repeated at several different
fields. The energy is then fitted to a power series in the field
and the fourth-order term in that power series is the desired
nuclear relaxation � with electric dipole terms removed.

There is an alternative that is far more efficient for ob-
taining the relaxed geometries. It uses just the parameters
anm

i,j,. . .,a,b. . .�0 ,0�, which are determined once and for all at the
field-free equilibrium geometry. From our previous
analysis,18,19,26 it is easily seen that only the first and second
dipole derivatives with respect to field-free normal modes Qi

enter into the field-dependent equilibrium geometry calcula-
tion. Hence, we subtract

Fa� �
i=1

3N−6

a11
i,a�0,0�Qi + �

i,j=1

3N−6

a21
ij,a�0,0�QiQj	 �3�

from the energy and

Fa�a11
i,a�0,0� + 2 �

j=1

3N−6

a21
ij,a�0,0�Qj	 �4�

from ith element of the gradient vector. If one is interested
solely in calculating the nuclear relaxation contribution to
DFWM, then just the first terms of expressions �3� and �4�
are required since the second terms contain anharmonic pa-
rameters.

In order to calculate the higher-order BK-PT contribu-
tions to ��2� a second major step is necessary. It involves
evaluating the field-dependent ZPVE �or �ZPVA� at the re-
laxed geometry. As far as the ZPVE is concerned, accurate
variational procedures for calculating this quantity have re-
cently been developed.30–32 They require fitting the potential
energy surface �PES� at specified geometries Q. In order to
obtain the exact DFWM �within the IOFA�, it is necessary to
subtract the dipolar contribution Faa01

a �Q ,0� at each of these
points.

An approximate treatment, which requires much less
computational effort, utilizes only the leading field-
dependent ZPVE term given �in a.u.� by

Ezp�QF,F� 
 1
2
�a20

ii �QF,F� , �5�

where QF is the field-dependent relaxed geometry. In the
FF-NR procedure, this approximate ZPVE will give rise to
the next highest nonvanishing BK-PT contributions beyond
those included in the nuclear relaxation formula. For ex-
ample, the second-order ��2� term is determined in this man-
ner �since the first-order term vanishes�. Likewise, one ob-
tains the second-order ����, the third-order ��2��, and the
fourth-order ��4�.17 Note that, again, we want to remove all
dipolar contributions. Since a20

ii �QF ,F� in Eq. �5� is obtained
by diagonalizing the field-dependent Hessian, this implies
that Faa21

ij,a�QF ,0� should be subtracted from the �i , j� ele-
ment of the Hessian before calculating the approximate field-
dependent ZPVE of Eq. �5�.

The same general approach can be utilized to obtain the
static �ZPVA, �ZPVA, and �ZPVA ��ZPVA is already obtained in
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the standard FF-NR method�. These quantities appear in the
expression for �EZPVA as calculated by our new procedure,

�EZPVA�F� = �aa
ZPVA�0;0�Fa

2 + �aaa
ZPVA�0;0,0�Fa

3

+ ��aaaa
ZPVA�0;0,0,0�

+ �aaaa
c-ZPVA�− �;�,− �,���→	�Fa

4 + ¯ . �6�

This expression immediately gives the static �ZPVA and
�ZPVA, which are important in their own right and are also
needed to extract higher-order vibrational contributions to
the dc-P, dc-K, and ESHG processes, as described in Sec. I.
Clearly, the static �ZPVA is needed in order to extract the
higher-order vibrational contributions to DFWM �denoted
�c-ZPVA here to correspond with our previous papers� from
Eq. �6�. Again, the first step in determining this quantity is to
evaluate geometry relaxation due to the field. Besides remov-
ing all dipole derivatives from the Hamiltonian, now the lin-
ear polarizability derivatives must be deleted as well. Thus,
the terms Faa01

a �Q ,0�+Fa
2a02

aa�Q ,0� and Faa11
i,a�Q ,0�

+Fa
2a12

i,aa�Q ,0� should be removed from the electronic energy
and ith component of the gradient vector, respectively, dur-
ing the field-dependent geometry optimization. Again, there
is a more efficient alternative formulation based on the equi-
librium anm

i,j,. . .,a,b. . .�0 ,0� parameters. Within this formulation

Fa� �
i=1

3N−6

a11
i,a�0,0�Qi + �

i,j=1

3N−6

a21
ij,a�0,0�QiQj	

+ Fa
2 �

i=1

3N−6

a12
i,aa�0,0�Qi �7�

is subtracted from the electronic energy and

Fa�a11
i,a�0,0� + 2 �

j=1

3N−6

a21
ij,a�0,0�Qj	 + Fa

2a12
i,aa�0,0� �8�

from ith element of the gradient vector. Finally, the second
step again involves evaluating the ZPVE at the relaxed ge-
ometry with the dipolar and linear polarizability terms re-
moved from the PES. If only the harmonic ZPVE is com-
puted �i.e., Eq. �5��, we must remove Faa21

ij,a�QF ,0�
+Fa

2a22
ij,aa�QF ,0� from the �i , j� element of the field-

dependent Hessian.
In summary, to evaluate the exact �c-ZPVA�−� ;� ,

−� ,�� and exact static �ZPVA, �ZPVA, and � ZPVA as effi-
ciently as possible using our new FF-NR approach, the fol-
lowing quantities are required for the field-dependent geom-
etry optimizations: a11

i,a�0 ,0�, a21
ij,a�0 ,0�, and a12

i,aa�0 ,0�. In
addition, the ZPVE is obtained using a PES modified at each
point Q by subtracting terms that involve the quantities
a01

a �Q ,0� and a02
aa�Q ,0�. If the harmonic approximation is

employed for ZPVE, then only the reduced set of quantities:
a20

ii �QF ,F�, a21
ij,a�QF ,0�, and a22

ij,aa�QF ,0� is required. The lat-
ter approximation leads to vibrational NLO contributions
through second order in BK-PT. In comparison, to evaluate
the same properties �through second order� using the BK-PT
method, it is necessary to calculate a20

ii �0 ,0�, a30
ijk�0 ,0�,

a12
i,aa�0 ,0�, a40

iijk�0 ,0�, a22
ij,aa�0 ,0�, a13

i,aaa�0 ,0�, a32
iij,aa�0 ,0�,

a23
ii,aaa�0 ,0�, a14

i,aaaa�0 ,0�, and a24
ii,aaaa�0 ,0�. The cost of calcu-

lating high-order normal coordinate derivatives, such as
a32

iij,aa�0 ,0� and a40
iijk�0 ,0�, increases dramatically with the

number of atoms. For that reason, the BK-PT method is prac-
tical only for small molecules. Finally, although we have
presented FF-NR expressions only for diagonal components,
exactly analogous procedures can be applied for the nondi-
agonal components as well.

III. ILLUSTRATIVE EXAMPLE

The primary goal of this section is to validate our new
methodology rather than to calculate benchmark values for
comparison with experiment or previous literature results. It
is noteworthy, nevertheless, that we report vibrational contri-
butions to DFWM calculated for the first time beyond the
double harmonic approximation �denoted here by nr as in
previous usage�. Our calculations were done on the water
molecule at the HF and MP2 levels with the d-aug-cc-pVTZ
basis set. For the sake of simplicity, we used the approxima-
tion of Eq. �5�, and only the diagonal component of the prop-
erty �in the direction parallel to the dipole moment� was
considered. Table I compares our new FF-NR method with
BK-PT for the nr and Pc-ZPVA �second-order� contribution to
�zzzz�−� ;� ,−� ,���→	, as well as the ZPVA for the static
linear polarizability ��zz�0;0��, first hyperpolarizability
��zzz�0;0 ,0��, and second hyperpolarizability
��zzzz�0;0 ,0 ,0��. It is clear from the table that there is very
good agreement between the FF-NR and BK-PT results. The
small differences for Pc-ZPVA are of the same magnitude as
the numerical error involved in calculating this property.

The data in Table I support the well-established conclu-
sion that electron correlation can have a very strong effect on
the vibrational contribution. Usually the importance of vibra-
tional contributions decreases when the number of static
fields involved in the property decreases. The property
��−� ;� ,−� ,���→	 is an exception because there is a can-
cellation of +� and −� in energy denominators of the sum-
over-states formula, which simulates a static field. Indeed, at
the MP2 level the recently published21 IOFA ratio
��nr+�c-ZPVA� /�zzzz

e �0;0 ,0 ,0� is 0.04 for the dc-K process
�two static fields� and 0.01 for ESHG �one static field�,
whereas the corresponding IDRI ratio found here is 0.09 �al-
though the Sadlej basis33 was used in Ref. 21, rather than
d-aug-cc-pVTZ�. The corresponding ratio for the static prop-
erty is larger yet �0.21�, but that is not always the case.
Finally, as an indicator for the convergence of the perturba-

TABLE I. Comparison between BK-PT and our new FF-NR method for the
diagonal component �along the direction parallel to �� of various properties
calculated for water at the HF/ and MP2/d-aug-cc-pVTZ levels using the
approximation of Eq. �5�. All quantities are in a.u.

Properties

HF MP2

FF-NR BK-PT FF-NR BK-PT

�zz
ZPVA�0;0� 0.2532 0.2532 0.2990 0.2991

�zzz
ZPVA�0;0 ,0� 0.855 0.855 0.608 0.608

�zzzz
ZPVA�0;0 ,0 ,0� 50 50 70 71

�zzzz
nr �−� ;� ,� ,−���→	 73 73 112 112

�zzzz
c- ZVPA�−� ;� ,� ,−���→	 11 14 19 17
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tion treatment of anharmonicity we usually use the ratio
Pc-ZPVA / Pnr.20 In agreement with our previous published re-
sults for the static and electrooptical �hyper�polarizabilities
of water,20,21 the ratio obtained here for DFWM is less than
0.18, which indicates that the perturbation series is converg-
ing rapidly.

IV. SUMMARY AND FUTURE OUTLOOK

We have presented a simple extension of our FF-NR
procedure for calculating vibrational nonlinear optical con-
tributions to the DFWM �or IDRI� process. The basic idea is
to subtract out unwanted electric dipole terms from our pre-
vious formulation for �static� properties obtained from the
zero point vibrational energy EZPVA. This new methodology
also leads to a simple procedure for evaluating the static
�ZPVA, �ZPVA, and � ZPVA. The first two of these can be uti-
lized in our previous treatment of the dc-P, dc-K, and ESHG
properties; the last of these is used in extracting the vibra-
tional DFWM from the EZPVA calculation. Our new proce-
dure is validated by application to the water molecule using
the lowest-order approximation for EZPVA.

Future plans call for generalizing the extended FF-NR
procedure to calculate dc-P, dc-K, and ESHG vibrational
contributions from EZPVA. Currently, we obtain these proper-
ties from the static �ZPVA and �ZPVA, which are computation-
ally more expensive to determine than EZPVA. In addition, we
want to incorporate accurate methods for obtaining the static
EZPVA, such as vibrational CI,34–36 within our procedure. The
possibility that an extended FF-NR approach can be adapted
for vibrational two photon absorption37 will also be consid-
ered.
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