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An analytical set of field-induced coordinates~FICs! is defined. It is shown that, instead of 3N
26 normal coordinates, a relatively small number of FICs is sufficient to describe the vibrational
polarizability and hyperpolarizabilities due to nuclear relaxation. The fact that the number of FICs
does not depend upon the size of the molecule leads to computational advantages. A method is
provided for separating anharmonic contributions from harmonic contributions as well as effective
mechanical from electrical anharmonicity. Hartree–Fock calculations on a dozen representative
conjugated molecules illustrate the procedures and indicate that anharmonicity can be very
important. Other potential applications including the determination of zero-point vibrational
averaging corrections are noted. ©2000 American Institute of Physics.@S0021-9606~00!32137-7#
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I. INTRODUCTION

The key role of vibrational contributions to the nonline
optical~NLO! properties of conjugated polymers and orga
molecules of practical consequence is now w
established.1,2 At the microscopic level these properties a
governed by the first hyperpolarizabilily tensor,b, and the
second hyperpolarizability tensor,g. Typically, the longitu-
dinal component of these tensors (bL ,gL) will be dominant.
Most treatments of the vibrationalbL andgL have been car-
ried out by the perturbation theory method of Bishop a
Kirtman3–5 ~see, for example, Refs. 6–8!. Even at the sim-
plest~double harmonic! level of approximation, however,ab
initio calculations for large molecules have been limited
the Hartree–Fock level because a complete force cons
determination is required. When electrical and mechan
anharmonicity is included the computational difficulties a
exacerbated.

A few years ago Bishop, Hasan, and Kirtman~BHK!
~Ref. 9! formulated an alternative finite field method th
does not require explicit calculation of the vibrational for
constants. It utilizes an ‘‘infinite optical frequency’’ approx
mation which implicity includes low order anharmonici
terms. The BHK procedure gives the so-called nuclear re
ation contribution to the vibrational polarizability and hype
polarizabilites. Except for zero-point vibrational averagi
~ZPVA! this contribution contains the leading vibration
term of each type~see later!. Tests of the infinite optica
frequency approximation10,11 have shown that it yields satis
5200021-9606/2000/113(13)/5203/11/$17.00
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factory results, at least for small molecules. The general
tion of BHK for an arbitrary optical frequency has recent
been presented12 but it is more difficult to apply.

The first step of BHK involves determining the rela
ation of the equilibrium configuration in response to a fin
external static field. This is followed by calculation of th
change thereby induced in the electronic dipole moment,
ear polarizability, and first hyperpolarizability. Finally, th
desired vibrational properties are obtained from these fie
induced property changes by numerical differentiation w
respect to the field. The first successful implementation
this procedure, which requires a careful treatment of the E
art conditions, was reported a short while ago.13 Since then it
has been extended to the static linear polarizability
polymers14 and, very recently,15 applied to obtain the vibra-
tional gL for eight different homologous series of conjugat
oligomers, each containing up to twelve heavy atoms alo
the backbone. In addition, it has been shown16 that an exactly
analogous procedure can be used to determine nuclear r
ation corrections to the ZPVA. Despite these successes
ther improvements are desirable. One difficulty is that
peated geometry optimizations are necessary in orde
determine the numerical derivatives and, for sufficiently a
curate results, we find15 that very tight thresholds on th
residual forces have to be employed. As a consequence i
not yet been feasible to study the role of electron correlat
for systems of interest in materials science. In this conn
tion we note that DFT methods are not feasible because
3 © 2000 American Institute of Physics
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cannot provide accurate polarizabilities and hyperpola
abilities of longitudinally extended systems.17–19 Further-
more, in contrast with perturbation theory, BHK does n
yield the contribution of individual coordinates nor does
allow a separation of electrical and mechanical anharmo
ity effects.

In this paper we present a combination of the pertur
tion theory and BHK~i.e., nuclear relaxation! approaches
that paves the way for calculations which include elect
correlation and, at the same time, allow one to specify
key vibrational coordinates and to separate electrical fr
mechanical anharmonicity effects. Our new approach
based on the determination of a small number of vibratio
coordinates thatexactly reproduce the BHK results for th
complete vibrational space. There are quite a few calc
tions in the literature which show that, for longitudinal
extended conjugated molecules or oligomers,1,7,20 the double
harmonic vibrational polarizabilities and hyperpolarizab
ties are often dominated~at least, at the Hartree–Fock leve!
by contributions from a limited number of normal mode
However, no prescription has been given for determining
precise form of these modes or for predicting when ot
modes may become important. On the other hand, in
initial implementation of BHK~Ref. 13! we learned that one
could numerically generate apair of field-induced coordi-
nates~FICs! that were sufficient to accurately determine t
vibrational nuclear relaxation~infinite frequency approxima
tion! longitudinal polarizabilities and hyperpolarizabilites f
a small set of prototypep-conjugated molecules. This dis
covery provided the impetus for the development of ex
field-induced coordinates which provide the desired presc
tion.

The FICs areanalytically defined in Sec. II A. These
coordinates are associated with the displacement of the e
librium geometry due to a static applied field. Correspond
to the displacements that are first-order, second-order, et
the field there are first-order, second-order, etc. FICs. In e
order, beyond first, one can also define a pure harmonic
ordinate by discarding the anharmonic component. For
longitudinal nuclear relaxation~infinite optical frequency!
~hyper!polarizabilities either one or, at most, two of the
FICs are sufficient to reproduce exactly the results of a co
plete 3N-6 normal coordinate calculation. After provin
these relations for the longitudinal component we genera
to the other diagonal, as well as off-diagonal, component
the polarizability and hyperpolarizability tensors. More FIC
are needed, of course, to generate the entire tensor bu
key point is that the number of coordinates remains the s
regardless of the size of the system. Furthermore, our re
are not limited to conjugated systems; they are valid for a
molecule.

In Sec. II B the FIC formulas for evaluating the vibra
tional nuclear relaxation properties are presented along
an analysis of various computational methods—both ‘‘e
act’’ and approximate—that can be employed to take adv
tage of the reduced number of active coordinates. The res
of Hartree–Fock calculations on 12 representative con
gated molecules are reported in Sec. III. These serve to~1!
evaluate some of the approximation methods;~2! determine
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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the form of the FICs;~3! illustrate their use for interpretive
purposes; and, by way of passing,~4! assess the potentia
importance of anharmonic effects. Finally, in the last sect
we discuss electron correlation calculations and other fu
applications including an extension to the zero-point vib
tional averaging correction~as well as the effect of nuclea
relaxation on the latter! and to determining deviations from
the infinite optical frequency approximation.

II. FIELD INDUCED COORDINATES

A. Definition and properties

In the presence of a uniform static external electric fie
the equilibrium geometry of a molecule will relax to a ne
field-dependent configuration. This is due to the fact that
electrostatic interaction with the field depends linearly up
the field-free normal coordinates. The new minimum in t
potential energy may be obtained as usual by applying
stationary condition. One may solve the resulting relat
order-by-order in the field21,22 for the value of thei th field-
free normal coordinate at the field-dependent equilibrium
ometry,

Qi
F~Fx ,Fy ,Fz!52 (

a

x,y,z

q1
i ,aFa2 (

a,b

x,y,z Fq2
i ,ab2 (

j 51

3N26 a21
i j ,a

a20
i i q1

i ,b

1 (
j ,k51

3N26 3a30
i jk

2a20
i i q1

j ,aq1
k,bGFaFb1¯ , ~1!

where,

anm
i j ...ab...

5
1

n!m! S ]~n1m!V~Q1,...,Q3N26 ,Fx ,Fy ,Fz!

]Qi]Qj¯]Fa]Fb¯
D

Q50,F50

,

~2!

qI
i ,a5

a11
i ,a

2a20
i i , q2

i ,ab5
a12

i ,ab

2a20
i i , ~3!

and the sums over 3N26 normal coordinates reduce to 3N
25 for linear molecules. In Eq.~2!, n is the total order of
differentiation with respect to normal coordinates, whilem is
the total order with respect to the fields. Derivatives w
m.0 andn.1 are electrical anharmonicity parameters. F
m50 those derivatives withn.2 are the usual mechanica
anharmonicity constants. The quantityq1

i ,a in Eq. ~1! repre-
sents the linear field-induced change along the field-free n
mal coordinateQi . Thus, we define the first-order FIC in th
directiona by

x1
a52 (

i 51

3N26

ql
i ,aQi . ~4!

The second-order FICs are defined analogously,

x2
ab52 (

i 51

3N26 Fq2
i ,ab2 (

j 51

3N26 a21
i j ,a

a20
i i q1

j ,b

1 (
j ,k51

3N26 3a30
i jk

2a20
i i ql

j ,aqI
k,bGQi . ~5!
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Here the second term on the rhs of Eq.~5! contains electrical
anharmonicity parameters, while the third term involves m
chanical anharmonicity. Using just the first term of Eq.~5!,
which is the pure harmonic component, we may also de

x2,har
ab 52 (

i 51

3N26

q2
i ,abQi , ~6!

Note thatx1,har
a 5x1

a . Although it would be straightforward
to extend these definitions to third- and higher-order, tha
not necessary for our purposes. Recently, we have bec
aware of a related treatment of infrared intensity-carry
modes by Torii and co-workers.23 It turns out that those
modes are a special case of the first-order FICs defined in
~4!, where the vibrational force constants, i.e.,a20

i i , are the
same for alli. This is the appropriate choice for the infrare
intensity problem.

We are now in a position to use the first-order FIC in t
longitudinal direction~L! to obtain an analytical expressio
for the nuclear relaxation contribution to the electro-op
Pockels effect~EOPE!, bL

nr(2v;v,0)v→` . This may be
done following a procedure21 based on BHK. The first step i
to define$f i% as a set of vibrational coordinates withf1

equal tox l
L and$f2 ,f3 ,...,f3N26% orthogonal to each othe

~for convenience! and tox1
L , i.e.,

f i5 (
j 51

3N26

Mi j Qj , ~7!

where M is an orthogonal matrix. From Eqs.~4! and ~7!
M1 j52q1

J,L . Obviously, the value off i at the field-
dependent equilibrium geometry is given by

f i
F5 (

j 51

3N26

Mi j Qj
F . ~8!

Then, the field-dependent linear polarizability may be w
ten as a power series in the fieldF5FL ,

aL~RF ,F5FL!5aL~R0 ,F50!

1 (
i 51

3N26
]aL

]Qi

]Qi
F

]FL
FL1

]aL

]FL
FL1¯ ~9!

in which R0 andRF are, respectively, the field free and fiel
dependent equilibrium geometry. In Eq.~9! the second term
involving the normal coordinate displacementsQi

F , gives
rise to the nuclear relaxation contribution to the Pockels
fect in the infinite optical frequency approximation, i.e
bL

nr(2v;v,0)v→` . Using the chain rule to express]aL /]Qi

in terms of]aL /]f i , the fact that]Qi
F/]FL5M1i , and Eq.

~8! for f i
F , we have

bL
nr~2v;v,0!v→`5 (

i 51

3N26
]aL

]Qi

]Qi
F

]FL

5 (
i , j 51

3N26
]aL

]f j
M ji M li

5
]aL

]f l
(
i 51

3N26

Mli
2 5

]aL

]f1

]f1
F

]FL
. ~10!
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This demonstrates that in the infinite frequency approxim
tion a single FIC, i.e.,f15x1

L , yields exactly the same
nuclear relaxation contribution as the complete set of 3N-6
normal coordinates.

Following an analogous treatment, but replaci
aL(RF ,F5FL) in Eq. ~9! by either mL(RF ,F5FL) or
bL(RF ,F5FL), it is easy to demonstrate thataL

nr(0;0), and
the nuclear relaxation contribution to dc-second harmo
generation~dc-SHG!, gL

nr(22v;v,v,0)v→` , can also be
calculated~see Table I! using onlyx1

L . On the other hand

TABLE I. Analytical formulas for the polarizabilities and hyperpolarizabil
ties in terms of field-induced coordinates~FICs!. The upper index on each
sum is either 1 or 2, depending upon the particular property and compo
~see Table II!. For those properties where more than one coordinate is
quired, we have assumed that a prior linear combination has been ma
satisfy the condition]2V/]f i]f j50 for iÞ j .

aab
nr~0;0!5

1

2 (
i 51

Paba11
i ,aq1

i ,b

babc
nr ~0;0,0!5(

i 51
Pabca12

i ,abq1
i ,c2 (

i , j 51
Pabca21

i j ,aq1
i ,bq1

j ,c

1 (
i , j ,k51

Pabca30
i jkq1

i ,aq1
j ,bq1

k,c

babc
nr ~2v;v,0!v→`5(

i 51
2a12

i ,abq1
i ,c

gabcd
nr ~22v;v,v,0!v→`5(

i 51
6a13

i ,abcq1
i ,d

gabcd
nr ~2v;v,0,0!v→`5(

i 51
Pcd~6a13

i ,abcq1
i ,d12a12

i ,abq2
i ,cd!

2 (
i , j 51

Pcd~2a22
i j ,abq1

i ,cq1
j ,d14a21

i j ,aq1
i ,bq2

j ,cd!

1 (
i , j ,k51

Pcd6a30
i jkq1

i ,aq1
j ,bq2

k,cd

gabcd
nr ~0;0,0,0!5(

i 51
PabcdS a13

i ,abcq1
i ,d1

a12
i ,ab

2
q2

i ,cdD
2 (

i , j 51
Pabcd~a22

i j ,abq1
i ,cq1

j ,d12a21
i j ,aq1

i ,bq2
j ,cd!

1 (
i , j ,k51

PabcdS 3a30
i jkq1

i ,aq1
j ,bq2

k,cd1a31
i jk ,aq1

i ,bq1
j ,cq1

k,d

1
a21

i j ,aa21
jk,b

a20
j j q1

i ,cq1
k,dD

2 (
i , j ,k,l 51

F

PabcdS a40
i jkl q1

i ,aq1
j ,bq1

k,cq1
l ,d

1
3a30

i jka21
kl,a

a20
kk q1

i ,bq1
j ,cq1

l ,dD
1 (

i , j ,k,l ,m51
PabcdS 9

4

a30
i jka30

klm

a20
kk q1

i ,bq1
j ,cq1

l ,cq1
m,dD

gabcd
nr ~2v;v,2v,v!v→`54(

i 51
~a12

i ,abq2
i ,cd1a12

i ,adq2
i ,bc!

Fanm
i j ¯ab¯5

1

n!m! S ]~n1m!V~f1,f2,..., Fx ,Fy ,Fz!

]f i]f j •••]Fa]Fb••• D
f50,F50

,

q1
i ,a5

a11
i ,a

2a20
i i , q2

i ,ab5
a12

i ,ab

2a20
i i G
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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bL
nr(0;0,0) and the nuclear relaxation contribution to t

electro-optic Kerr effect~EOKE!, gL
nr(2v;v,0,0)v→` , are

determined9 by the second derivatives ofmL(RF ,F5FL)
and aL(RF ,F5FL), respectively. Nonetheless, fo
bL

nr(0;0,0), it is easy to show that thex1
L FIC, by itself, gives

the full 3N26 normal coordinate result. In this derivatio
and those that follow, we may start with the 3N26 normal
coordinate perturbation expressions of Bishop a
Kirtman3–5 or, equivalently, with those of Ref. 21. Using E
~6! of Ref. 21, i.e.,

bL
nr~0;0,0!56 (

i 51

3N26

a12
i ,LLqI

i ,L26 (
i , j 51

3N26

a21
i j ,Lq1

j ,L

16 (
i , j ,k51

3N26

a30
i jkq1

i ,Lq1
j ,Lql

k,L ~11!

along with the definitionsmL52]V/]FL , aL52]2V/]FL
2

and our Eqs.~1!–~3! yields

bL
nr~0;0,0!523 (

i 51

3N26
]aL

]Qi

]Qi
F

]FL

13 (
i , j 51

3N26
]2mL

]Qi]Qj

]Qi
F

]FL

]Qj
F

]FL

1 (
i , j ,k51

3N26
]3V

]Qi]Qj]Qk

]Qi
F

]FL

]Qj
F

]FL

]Qk
F

]FL
. ~12!

If the chain rule is employed to write]2mL /]Qi]Qj and
]3V/]Qi]Qj]Qk , as well as]aL /]Qi , in terms of the co-
ordinates,f i , then Eq.~12! becomes

bL
nr~0;0,0!53

]aL

]f1

]f1
F

]fL
23

]2mL

]f1
2 S ]f1

F

]FL
D 2

1
]3V

]f1
3 S ]f1

F

]FL
D 3

. ~13!

Although the second and third terms on the rhs of Eq.~13!
involve electrical and mechanical anharmonicity only
single anharmonicity parameter occurs in either case.

A procedure parallel to the one above can be emplo
to obtain a simple FIC equation forgL

nr(2v;v,0,0)v→` .
This time we start with Eq.~12! of Ref. 21,

gL
nr~2v;v,0,!v→`

5 (
i 51

3N26

4~3a13
i ,LLLq1

i ,L1a12
i ,LLq2

i ,LL!

2 (
i , j 51

3N26

4~a22
i j ,LLq1

i ,Lq1
j ,L12a21

i j ,Lq1
i ,Lq2

j ,LL!

1 (
i , j ,k51

3N26

12a30
i jkq1

i ,Lq1
j ,Lq2

k,LL . ~14!

It is convenient in this case to define the FICs so thatf1

5x1
L , f25x2,har

L and the set$f3 ,f4 ,...,f3N26% is orthogo-
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
d

d

nal to x1
L and x2,har

L 5x2,har
LL . In that event @cf. Eq. ~3!#

]Qi
F/]FL52q1

i ,L5M1i , (]2Qi
F/]FL

2)har522q2
i ,LL5M2i ,

and

]f1
F

]FL
5 (

i 51

3N26

M1i
2 , ~15!

]f2
F

]FL
5S ]2f1

F

]FL
2 D

har

5 (
i 51

3N26

M2iM1i , ~16!

S ]2f2
F

]FL
2 D

har

5 (
i 51

3N26

M2i
2 . ~17!

Here (]2f i
F/]FL

2)har refers to the harmonic component o
]2f i

F/]FL
2. Then, after applying the chain rule to conve

from $Qi% to $f i%, taking advantage of orthonormality an
bL52]3V/]FL

3, Eq. ~14! reduces to

gL
nr~2v;v,0,0!v→`

52(
i 51

2 S 2
]bL

]f i

]f i
F

]FL
1

]aL

]f i
S ]2f i

F

]FL
2 D

har
D

1 (
i , j 51

2 S ]2aL

]f i]f j

]f i
F

]FL

]f j
F

]FL

12
]2mL

]f i]f j

]f i
F

]FL
S ]2f j

F

]FL
2 D

har
D

1 (
i , j ,k51

2
]3V

]f i]f j]fk

]f i
F

]FL

]f j
F

]FL
S ]2fk

F

]FL
2 D

har

, ~18!

where, now,f15x1
L and f25x2,har

L are sufficient to obtain
the exactgL

nr(2v;v,0,0)v→` . Alternatively, by combining
the terms in Eq.~14! that containq2 one can obtain the
expression

gL
nr~2v;v,0,0!v→`

52(
i 51

2 S 2
]bL

]f i

]f i
F

]FL
1

]aL

]f i

]2f i
F

]FL
2 D

1 (
i , j 51

2
]2aL

]f i]f j

]f i
F

]FL

]f j
F

]FL
, ~19!

with the FICs defined so thatf15x1
L andf25x2

L . Thus, the
EOKE can also be written entirely in terms ofx1

L andx2
L .

For gL
nr(0;0,0,0) one can follow a similar procedure

show that this quantity depends only on thex1
L andx2

L coor-
dinates. We start with Eq.~7! of Ref. 21,
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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gL
nr~0;0,0,0!5 (

i 51

3N26

24S a13
i ,LLLq1

i ,L1
a12

i ,LL

2
q2

i ,LLD 2 (
i , j 51

3N26

24~a22
i j ,LLq1

i ,Lq1
j ,L12a21

i j ,Lq1
i ,Lq2

j ,LL!1 (
i , j ,k51

3N26

24S a31
i jk ,Lq1

i ,Lq1
j ,Lq1

k,L

13a30
i jkq1

i ,Lq1
j ,Lq2

k,LL1
a21

i j ,La21
jk,L

a20
j j q1

i ,Lq1
k,LD 2 (

i , j ,k,l 51

3N26

24S a40
i jkl q1

i ,Lq1
j ,Lq1

k,Lq1
l ,L1

3a30
i jka21

kl,L

a20
kk q1

i ,Lq1
j ,Lq1

l ,LD
1 (

i , j ,k,l ,m51

3N26

24S 9a30
i jka30

klm

4a20
kk q1

i ,Lq1
j ,Lq1

l ,Lq1
m,LD . ~20!

The terms involvinga20 in the denominator can be eliminated by using@cf. Eq. ~1!#

]2Qi
F

]FL
2 522S q2

i ,LL2 (
j 51

3N26 a21
i j ,L

a20
i i q1

j ,L1 (
j ,k51

3N26 3a30
i jk

2a20
i i q1

j ,Lq1
k,LD , ~21!

which gives

gL
nr~0;0,0,0!5 (

i 51

3N26

24S a13
i ,LLLq1

i ,L1
a12

i ,LL

4

]2Qi
F

]FL
2 D 2 (

i , j 51

3N26

24S a22
i j ,LLq1

i ,Lq1
j ,L2

a21
i j ,Lq1

i ,L

2

]2Qj
F

]FL
2 D

1 (
i , j ,k51

3N26

24S a31
i jk ,Lq1

i ,Lq1
j ,Lq1

k,L2
3

4
a30

i jkq1
i ,Lq1

j ,L
]2Qk

F

]FL
2 D 2 (

i , j ,k,l 51

3N26

24~a40
i jkl q1

i ,Lq1
j ,Lq1

k,Lq1
l ,L!. ~22!

This time we employ the vibrational coordinates$f i%, wheref15x1
L , f25x2

L , and $f3 ,f4 ,...,f3N26% are orthogonal to
x1

L andx2
L . In that event]Qi

F/]FL5M1i , ]2Qi
F/]FL

25M2i and it is straightforward to verify that Eqs.~15!–~17! remain valid
~although nowf2 andM2i have a different meaning! if we replace (]2f i

F/]FL
2)har by ]2f i

F/]FL
2. Then, applying the chain rule

to transforma13
i ,LLL ,a12

i ,LL ,... from $Qi% to $f i% one obtains

gL
nr~0;0,0,0!52(

i 51

2

12S 1

3

]bL

]f i

]f i
F

]FL
1

1

4

]aL

]f i

]2f i
F

]FL
2 D 1 (

i , j 51

2

12S 1

2
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]f i]f j

]f i
F

]FL

]f j
F

]FL
1

1

2

]2mL

]f i]f j

]f i
F

]FL

]2f j
F

]FL
2 D

2 (
i , j ,k51

2

4S ]3mL

]f i]f j]fk

]f i
F

]FL

]f j
F

]FL

]fk
F

]FL
2

3

4

]3V

]f i]f j]fk

]f i
F

]FL

]f i
F

]FL

]2fk
F

]FL
2 D

2 (
i , j ,k,l 51

2 S ]4V

]f i]f j]fk]f l

]f i
F

]FL

]f j
F

]FL
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Clearly, the only coordinates that appear in Eq.~23! aref1

5x1
L andf25x2

L .
Although no static fields are involved in the intensit

dependent refractive index~IDRI! effect, gL
nr(2v;v,

2v,v)v→` , the vibrational contribution to this propert
does not vanish in the infinite frequency approximation.
obtain the FIC formula we utilize Eq.~14a! of Ref. 21,

gL
nr~2v;v,2v,v!v→`5 (

i

3N26

8a12
i ,LLq2

i ,LL . ~24!

For this case only one FIC,f15x2,har
L is required. As usua

we define$f2 ,f3 ,...,f3N26% so that this set is orthogona
to x2,har

L . Following a procedure completely parallel to th
previous cases Eq.~24! can be transformed to

gL
nr~2v;v,2v,v!v→`522

]aL

]f1
S ]2f1

F

]FL
2 D

har

. ~25!

Thus,gL
nr(2v;v,2v,v)v→` can be calculated exactly us

ing only thef15x2,har
L coordinate.
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B. Working analytical formulas for properties and
computational considerations

Now that the FICs needed for each property have b
defined, we are ready to develop compact analytical work
expressions for these properties. This is done by expan
the potential energy in terms of the required FICs. It is co
venient to diagonalize the Hessian in the reduced FIC ba
Then, one can use exactly the same formulation as in
usual scheme based on normal coordinates.21 The resulting
equations are presented in Table I in a form that extends
above treatment to all components of the polarizability a
hyperpolarizability tensors. For each diagonal componen
the property one needs the FICs in the corresponding di
tion; for off-diagonal components the three independent o
diagonal components of the second-order FICs may
needed as well. Thus, from Table II we see that 15 FICs
required to obtain all components of all properties. Th
number is reduced to 9 if only the diagonal components
desired or 6 if the IDRI is excluded. Still further reduction
occur for various subsets of the properties and/or com
nents. In order to determine the longitudinal Pockels effe
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE II. FICs required to calculate diagonal and off-diagonal elements of the property tensor. The dire
a, b, c, andd are along thex, y, andz Cartesian axes.

Property Diagonal Off-diagonal

aab
nr (0;0) x1

a (b5a) x1
a , x1

b

babc
nr (0;0,0) x1

a (c5b5a) x1
a , x1

b , x1
c

babc
nr (2v;v,0)v→` x1

a (c5b5a) x1
c

gabcd
nr (22v;v,v,0)v→` x1

a (d5c5b5a) x1
d

gabcd
nr (2v;v,0,0)v→` x1

a ,(x2,har
aa or x2

aa)(d5c5b5a) x1
c , x1

d ,(x2,har
cd or x2

cd)
gabcd

nr (0;0,0,0) x1
a , x2

aa (d5c5b5a) x1
a , x1

b , x1
c , x1

d ,
x2

ab , x2
ac , x2

ad , x2
bc , x2

bd , x2
cd

gabcd
nr (2v;v,2v,v)v→` x2,har

aa (d5c5b5a) x2,har
bc , x2,har

cd
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for example, just a single FIC is required. For average v
ues, however, each component must be computed separ
A key point is that the number of FICs involved is indepe
dent of the size of the system. Note that the same fundam
tal quantities appear in Table I as in Eqs.~2! and ~3! except
that the derivatives are taken with respect to FICs as oppo
to normal coordinates. In fact, we do not use the FICs the
selves but, rather, the linear combinations that diagona
the Hessian.

An immediate question that arises is how to take adv
tage of the reduction in the number of coordinates up
transforming from normal modes to FICs. From a compu
tional perspective two distinct phases are involved in
treatment. The first is a determination of the FICs. Bothx1

a

and x2
ab can be obtained either by evaluating appropri

derivatives of the potential or from field-dependent geome
optimizations. The first-order FICs depend upon the dip
derivatives]m/]Qi52]2V/]F]Qi and the vibrational force
constants~i.e., the Hessian!. x2,har

ab is similar except that it
involves the derivative ofa rather thanm; whereasx2

ab de-
pends, in addition, upon anharmonicity parameters de
mined by one further derivative with respect to the norm
coordinates. Even at the Hartree–Fock level, to our kno
edge there are no commonly available programs for ana
cally evaluating all these anharmonicity parameters. On
other hand,x2

ab is readily obtained from finite field geometr
optimizations—as isx1

a—and this procedure also avoids ca
culating the full 3N2633N26 Hessian. Since only low
order FICs are required the fields should be kept sm
which is a feature we did not utilize in earlier work.13 Small
fields usually, though not always, make it easier~fewer
steps! to attain the tight convergence in geometry evaluat
that was previously15 found necessary to obtain accurate
sults ~primarily for staticg! using the BHK treatment. An-
other possibility~not pursued here! is to forego tight conver-
gence and, instead, employ one or two additional FICs ba
on semiempirical calculations and/or intuitive consid
ations. Unfortunately,x2,har

ab , which is needed only for the
IDRI, cannot be obtained from field-dependent geometry
timizations. It can, of course, be found simply by evaluati
the polarizability derivatives]aab /]Qi and the harmonic
force constants. If one wishes to avoidab initio computation
of the Hessian a reasonable approach is to employ s
empirical force constants and normal coordinates. In orde
improve on the accuracy in this case one could augment
basis with~a small number of! FICs as mentioned above.
 to 84.88.138.106. Redistribution subject to AIP licens
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The second phase of our treatment is to evaluate
nuclear relaxation polarizabilities and hyperpolarizabilities
terms of the FICs. Again, this may be done either by expl
evaluation of the derivatives involved or by the BHK fini
field procedure. The former yields each of the individu
contributions shown in Table I, which is desirable for inte
pretive purposes. It is also the only way to determine
IDRI and, for smaller molecules, especially if one is inte
ested in all tensor components, it may be the computation
more efficient method for all properties. As noted abo
there are no commonly available programs that permit a
lytical evaluation of the anharmonicity parameters in Table
For large molecules the number of parameters is dram
cally lessened by replacing normal coordinates with FIC
which makes their numerical computation feasible. Inde
even at levels where the analytical Hessian is not availa
the use of the FICs with the BHK method could be advan
geous.

III. TEST CALCULATIONS

Ab initio RHF/6-31G calculations were carried out fo
testing purposes on hexatriene, hexasilane, and a repres
tive set~see Fig. 1! of ten push–pullp-conjugated molecules
taken from the work of Bishopet al.24 Although average
values of the various properties were calculated to confi
the efficiency of the FIC procedure, our focus here will be
the longitudinal component of the hyperpolarizability te
sors, which is dominant for these molecules. We took
longitudinal direction to be along the principal axis asso
ated with the largest rotational constant. The first-order F
x1

L , was determined both analytically and by finite field g
ometry optimization. Sincex2,har

L cannot be obtained by th
latter procedure we used the analytical coordinate~see below
however!. On the other hand, it is excessively tim
consuming to computex2

L analytically so that coordinate wa
found by the finite field geometry optimization techniqu
Given the FICs we want to evaluate the properties using
derivative expressions of Table I. For our molecules it
feasible at the Hartree–Fock/6-31G level to use theGAUSS-

IAN98 suite of programs25 to obtain analytical results fora20,
a01, a11, a02, a12, anda03. Then, numerical differentiation
of a20, a11, a12, anda03 with respect to the FICs yieldsa30,
a21, a22, anda13, respectively.a40 anda31 were computed
by double numerical differentiation ofa20 anda11.

As a first step the analytical FICsx1
L and x2,har

L were
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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employed, together with derivatives obtained as above
compute the properties listed in Table I~except for the static
g which requiresx2

L!. For comparison the same properti
were calculated using all 3N26 normal coordinates. Be
cause the normal coordinate treatment is so time-consum
we did not evaluate the derivatives in this case but, inste
applied the equivalent finite field procedure which is emb
ied in our recently developed Eckart program.13 As expected
the 3N-6 normal coordinate results were reproduced by
FICs for all molecules and for all properties within 0.3
numerical round-off error.

Next we obtainedx1
L and x2

L by finite field geometry
optimization withF50.0,60.0004 a.u. and repeated the F
calculations with these numerical coordinates. Remarka
agreement with the analytical coordinate values—wit
1.5% in every case—was found. Thus, the field-depend
geometry optimization method for determining the first- a
second-order FICs appears to be very robust. The IDRI
not included in the data set because it is determined byx2,har

L

rather thanx1
L andx2

L . For the molecules I, II, III, IX, and
XII it turns out that thex1

L ,x2
L pair gives good values o

gL
nr(2v;v,2v,v)v→` , but that is not true for the othe

donor/acceptor molecules or for hexasilane. It is interes
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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to note that the donor/aceptor molecules showing a sm
effect due to the anharmonicity inx2

L are covalent, wherea
the remaining molecules are either of medium or lar
ionicity.24 The possible relationship between the importan
of anharmonicity and the degree of covalency is a sub
that deserves further investigation. We tried to improve
nuclear relaxation values of the IDRI simply by using
additional FIC generated from a geometry optimization c
ried out at a relatively large field, i.e.,F50.0064 a.u. How-
ever, the results obtained showed no improvement. This
dicates that it is probably preferable to approximatex2,har

L

directly, as discussed in Sec. II B, rather than by purifyingx2
L

of the anharmonic contribution.
The harmonic FICsx1

L and x2
L are displayed in Figs.

2–7. For the two centrosymmetricC2h molecules, namely,
Si6H14 ~XI ! ~Fig. 6! and C6H8 ~XII ! ~Fig. 7!, these FICs are
symmetry coordinates—x1

L has the same symmetry (bu) as
mL while x2,har

L has the same symmetry (ag) asaL . As ex-
pectedx1

L bears a similarity to the normal mode that mak
the major contribution to@m2#0, i.e., the TAM-2 mode in
C6H8 ~Ref. 26! and the H-wagging mode in Si6H14.

7,8 Like-
wise, x2,har

L is clearly related to the normal coordinates th
diate
FIG. 1. Formula/structure of molecules studied in this paper.~For molecules I–X and XII bonds of length 1.38–1.40 Å are considered to be interme
between single and double bonds and are indicated by dashed lines.!
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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dominate@a2#0, in this case the LAM-1 mode for Si6H14 and
a carbon skeletal motion for C6H8. The latter is obtained
from two ECC-type normal modes where the skeletal car
motion is combined in-phase and out-of-phase with
H-wag. It should be noted that the natural conjugation co

FIG. 2. Atomic displacements for the FICsx1
L ~top! andx2,har

L ~bottom! of
molecule I from Fig. 1. The length of the arrow is proportional to t
displacement.

FIG. 1. ~Continued.!
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
n
e
r-

dinate ~NCC! defined in our earlier paper13 is not a single
FIC but rather a composite of~primarily! x1

L andx2
L .

All the remaining compounds arep-conjugated donor-
acceptor~D/A! molecules. We have chosen I~Fig. 2! and IX

FIG. 3. Atomic displacements for the FICsx1
L ~top! andx2,har

L ~bottom! of
molecule VI from Fig. 1. The length of the arrow is proportional to th
displacement.

FIG. 4. Atomic displacements for the FICsx1
L ~top! andx2,har

L ~bottom! of
molecule IX from Fig. 1. The length of the arrow is proportional to th
displacement.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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~Fig. 4! as representative of those that have a polyenic
Zwitterionic structure whereas VI~Fig. 3! and X ~Fig. 5! are
cyaninelike. In the former case bothx1

L and x2,har
L exhibit

substantial bond length alternation~BLA ! character—the
aromatic↔quinoid motion in p-nitroaniline ~IX ! is an

FIG. 5. Atomic displacements for the FICsx1
L ~top! andx2,har

L ~bottom! of
molecule X from Fig. 1. The length of the arrow is proportional to t
displacement.

FIG. 6. Atomic displacements for the FICsx1
L ~top! andx2,har

L ~bottom! of
molecule XI from Fig. 1. The length of the arrow is proportional to t
displacement.
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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example—as well as H atom displacements. For the m
ecules with a cyanine structure other longitudinal, as wel
transverse, displacements are more important, and the
also a non-negligible out-of-plane component~not shown in
Figs. 3 and 5!. These results confirm our previou
conclusion13 that no two-state valence bond-charge trans
model based on asingle BLA coordinate can successfull
describe vibrational NLO properties of D/Ap-conjugated
organic chains.

Finally, we turn to the separation of anharmonic fro
harmonic contributions as well as electrical anharmonic
from mechanical anharmonicity. There are three nuclear
laxation properties that are influenced by anharmonic
namely,bL

nr(0;0,0), gL
nr(2v;v,0,0)v→` , andgL

nr(0;0,0,0).
Tables III and IV provide a breakdown of the values of the
properties into the various terms as classified by perturba
theory.27 In the case ofbL

nr(0;0,0), for example, it is readily
seen that the first term on the rhs of the expression in Ta
I is the ~double harmonic! @ma#0,0 term in the notation of
Refs. 3–5. The second term on the rhs, which is first-orde
electrical anharmonicity, is@m3#1,0, whereas the third term is
first-order in mechanical anharmonicity and denoted
@m3#1,0. For gL

nr(2v;v,0,0)v→` the expression in Table
takes the same form whether one usesx2

L or x2,har
L along with

x1
L . However, in order to assign a specific order of pert

bation theory to each term it is necessary to employx2,har
L .

Then, the five successive terms on the rhs
@mb#0,0,@a2#0,0, the two components of@m2a#1,0, and
@m2a#0,1. For gL

nr(0;0,0,0) a second calculation is require
wherex2,har

L is used in the formula of Table I rather thanx2
L .

This gives the correct value for the first five terms in additi
to one component of@m4#2,0 ~i.e., the sixth term! and one

FIG. 7. Atomic displacements for the FICsx1
L ~top! andx2,har

L ~bottom! of
molecule XII from Fig. 1. The length of the arrow is proportional to th
displacement.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE III. Breakdown of RHF/6-31GbL
nr(0;0,0) andgL

nr(2v;v,0,0)v→` for the molecules of Figs. 2–7 into the harmonic and anharmonic terms de
in Ref. 3. All the values are given in a.u.

bL
nr(0;0,0) gL

nr(2v;v,0,0)v→`

@ma#0,0 @m3#1,0 @m3#0,1 Total @a2#0,0 @mb#0,0 @m2a#1,0 @m2a#0,1 Total

I 8.963103 3.873103 1.353102 1.303104 1.863105 1.793105 1.983105 1.843104 5.813105

II 3.343103 1.423103 27.993102 3.963103 9.093104 5.023104 5.233104 26.933103 1.863105

III 1.633104 1.033104 5.303102 2.713104 2.763105 8.593104 3.403105 5.243104 7.543105

IV 23.983103 23.223103 5.233102 26.683103 8.823104 24.463104 6.323104 22.163104 8.523104

V 24.013103 24.043104 4.183103 24.033104 4.063105 24.453105 25.633104 25.673105 26.633105

VI 9.763103 8.073103 21.733104 5.123102 9.123104 21.883106 21.023106 24.423105 23.253106

VII 8.423103 3.953103 2.213102 1.263104 1.393105 24.903105 2.013104 2.433104 23.073105

VIII 2.063102 1.203101 2.503101 2.433102 2.893103 26.623103 22.253102 9.093102 23.053103

IX 1.353103 4.053102 23.803101 1.723103 1.493104 3.053104 1.293104 4.593102 5.883104

X 28.063103 22.173104 1.893103 22.793104 9.673104 21.033106 21.993105 23.563104 21.173106

XI 8.143104 26.403104 6.253104 22.043102 7.973104

XII 2.983104 28.843102 4.253103 23.653103 2.953104
s

re
rd
ni
b

ab

i
or
us
at
ee
th
V

.

if
a-

all

-
-
ibe
is

es
the
s

sian

ate
for

ly.
the
on

dis-
component of@m4#0,2 ~i.e., the eighth term!. Combining this
information with thex2

L result; which gives the total@m4#
contribution and with Eq.~22!, we obtain the combination
@m4#2,011/2@m4#1,1 and @m4#0,211/2@m4#1,1. It is not pos-
sible by means of FICs to make a separation of all th
second-order components, nor is it possible with any coo
nates to make a clean separation of electrical and mecha
anharmonicity. On the other hand, the second-order com
nations given above would seem to be the most reason
choice for splitting the total@m4# contribution into effective
mechanical and electrical anharmonicity components.

The purpose of our calculations, which are reported
Tables III and IV, is to show how the FICs can be utilized f
interpretive purposes. In contrast with our previo
findings13 for planar p-conjugated oligomers, we note th
anharmonicity plays a major role in determining all thr
properties. For the EOKE this is especially true when
@a2#0,0 and @mb#0,0 terms nearly cancel as in compounds
and XI. Typically, for gL

nr(0;0,0,0) the anharmonicity is
dominant due to the@m4# electrical anharmonicity term
~Note that terms of the same type, e.g.,@a2#0,0, have differ-
ent values in Tables III and IV because they occur with d
ferent coefficients.! The above observations, though indic
loaded 02 Dec 2010 to 84.88.138.106. Redistribution subject to AIP licens
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tive, must be qualified by the fact that we have used a sm
basis and omitted electron correlation.

IV. CONCLUSIONS AND FUTURE WORK

By transforming from normal coordinates to field
induced coordinates~FICs! we have shown that the vibra
tional degrees of freedom required to completely descr
nuclear relaxation polarizabilities and hyperpolarizabilities
reduced from 3N-6 to a relatively small number which do
not depend upon the size of the molecule. A summary of
FICs required for each property is given in Table II. In term
of normal coordinates the number of elements of the Hes
that must be determined, even for the lowest~double har-
monic! level of calculation, scales as (3N26)2. If anhar-
monic effects are included—and our calculations indic
they may be quite important in donor/acceptor systems
EOKE, as well as the staticb and g—then the number of
anharmonicity parameters scales as (3N26)3 and (3N26)4

for the first and second hyperpolarizabilities, respective
Various schemes for taking computational advantage of
zeroth-order scaling in terms of FICs, based in large part
field-dependent geometry optimizations, have been
values
TABLE IV. Breakdown of RHF/6-31GgL
nr(0;0,0,0) for the molecules of Figs. 2–7 into the harmonic and anharmonic terms defined in Ref. 3. All the

are given in a.u.

lL
nr(0;0,0,0)

@a2#0,0 @mb#0,0 @m2a#1,0 @m2a#0.1 @m4#2,011/2@m4#1,1 @m4#0,211/2@m4#1,1 Total

I 5.593105 3.583105 1.193106 1.103105 4.823105 5.103104 2.753106

II 2.733105 1.003105 3.143105 24.163104 5.003104 6.743103 7.023105

III 8.273105 1.723105 2.043106 3.143105 1.233106 2.363105 4.833106

IV 2.653105 28.923104 3.793105 21.303105 2.413105 22.963104 6.363105

V 1.223106 28.903105 23.383105 23.403106 1.193107 2.843106 1.133107

VI 2.743105 23.773106 26.123106 22.653106 27.233106 21.573106 22.113107

VII 4.173105 29.803105 1.213105 1.463105 2.233104 2.653105 29.433103

VIII 8.673103 21.323104 21.353103 5.463103 2.393102 6.393103 6.163103

IX 4.473104 6.103104 7.723104 2.753103 2.063104 7.403102 2.073105

X 2.903105 22.063106 21.203106 22.143105 7.083106 2.213105 4.133106

XI 2.443105 21.283105 3.753105 21.233103 4.953104 23.863102 5.393105

XII 8.943104 21.773103 2.553104 22.193104 3.993102 22.673102 9.143104
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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cussed. Since these optimizations are carried out in a red
coordinate space they can be done much more efficie
than in the space of 3N26 normal coordinates. It has als
been shown that the vibrational contributions can be se
rated into different types, as in perturbation theory, for int
pretive purposes. When more than one FIC is employe
breakdown into the individual degrees of freedom and th
interactions could prove useful. With further study we a
hopeful that a practical intuition as to the nature of the FI
will develop.

There are several possibilities for applying FICs to o
tain vibrational hyperpolarizabilities beyond thev→`
nuclear relaxation approximation. One of these is to acco
for finite optical frequencies either approximately, by usi
the v→` FICs in the exact nuclear relaxation perturbati
theory formulas, or by generating exact finite frequen
FICs. Another is to determine the zero-point vibrational a
erage~ZPVA! of the hyperpolarizability. This contribution i
difficult to compute and, for that reason, it is not yet know
how important it is for large organic molecules of interest
nonlinear optics. The ZPVA of any property can be divid
into two terms2—one due to mechanical anharmonicity a
the other due to electrical anharmonicity. In a forthcomi
paper28 we show that both can be written compactly in term
of the zero-point vibrational energy. The contribution due
mechanical anharmonicity, then, depends only on a sin
FIC, whereas the electrical anharmonicity term does not
pend explicitly on vibrational coordinates. As in the case
nuclear relaxation, the use of FICs to determine the ZP
provides an important simplification.
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