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Summary. Observations in daily practice are sometimes registered as positive values larger then a given
threshold α. The sample space is in this case the interval (α, +∞), α > 0, which can be structured as a real
Euclidean space in different ways. This fact opens the door to alternative statistical models depending not
only on the assumed distribution function, but also on the metric which is considered as appropriate, i.e. the
way differences are measured, and thus variability.

1. Introduction and motivation

In this paper I am going to constrain myself to random variables which image or sample space is a
generic interval (α, +∞), α > 0. Historically, univariate real statistics has been developed for real
random variables, i.e. for functions going from a probability space to the real line <, including those
cases where the image set is strictly included in <. The image or sample space < has always been
interpreted as the set of real numbers whose elements follow several rules, which are summed up in the
definition of Euclidean space. Consequently, it seems natural to sum and multiply elements of <, to
compute the scalar product of two elements, to determine the length or norm of a vector, or to compute
the distance between two elements without even thinking if this is the proper way to handle a given
data set. Furthermore, there are powerful tools, like integration and derivation, functional relationships,
linear algebra, and many more, which allow to solve many problems, at least in an approximate way,
although sometimes in a rather complicated manner.

The general theory of linear algebra tells us that any real Hilbert space has an orthonormal basis
with respect to which the coefficients behave like usual elements in real space, satisfying all the rules
mentioned. Therefrom, it follows that it is enough to proof properties only for the space of coefficients,
as they transfer directly to the original space. Hence the usage of the term Euclidean space for all those
spaces in the finite dimensional case, identifying the properties of real space with the properties of the
original space. Of particular interest to us is the fact that concepts like Borel sets, probability and
Lebesgue measure, Borel measurable function, probability distribution and density function, moments
and moment generating function, and many more, can be taken as defined on the coefficients with
respect to an orthonormal basis. In other words, statistical analysis in an arbitrary Euclidean space can
be performed on the coefficients with respect to an orthonormal basis. This does not mean that the only
way to do statistics in such a space is to work on those coefficients, but that they can be used as a
shortcut to long mathematical proofs to find properties in any other representation.

One might argue that this facts are of little help in everyday practice, as usual univariate observations
are real numbers—i.e., they are registered as coefficients of the canonical basis of the real line—and
hence have to be analyzed using the rules developed for <. In (Pawlowsky-Glahn et al., in preparation)
it is shown that, not denying the fact that usual observations are in fact real numbers—i.e., that they
are registered as coefficients of a canonical basis of <—, they do not have to be necessarily analyzed
applying the rules developed for < to the observations themselves. To illustrate the possible practical
interest of this approach, there the fact is used that sets like the positive real line, the positive octhant
of the real plane, the (0, 1) interval, the unit square, or the sample space of compositional data—
data whose measurement units are parts of some whole, like parts per unit, percentages or ppm—can
be structured as Euclidean spaces. Consequently, in those very common cases it is possible to apply
standard statistical theory to the coefficients in an orthonormal basis. Results differ from standard
theory, but are surprisingly easy to obtain and to interpret in some instances, an aspect worthwhile to
consider.

Nevertheless, sometimes things do not appear to be that simple, and this is the case presented here.
I show that a single set, namely the interval (α, +∞) ⊆ <+ ⊂ <, can be structured in different ways,
thus offering different options to statistical modeling. The important point is not the fact that different
options are available (there are actually infinitely many), but how to decide which one better suits the
data. This is an open question, although my opinion is, that one has to look for the model that best
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helps in explaining variability in the data, and this is undissolubly linked to the metric, as shall be seen
below.

2. Notation and basic concepts

Consider a one dimensional Euclidean space E . The Abelian group operation or sum of two elements
x,y ∈ E will be denoted by x⊕ y; the iterated sum over an index by

⊕m
i=1 xi; the neutral element with

respect to ⊕ by ν; the inverse operation, equivalent to subtraction, by x ª y; and the inverse element
by ªx. Thus, xª x = ν. The external multiplication by a scalar a ∈ < will be indicated by a¯ x, and
we have (−1) ¯ x = ªx, i.e. x ⊕ ((−1) ¯ x) = x ª x = ν. Scalar product, norm and distance will be
denoted as usual by 〈x,y〉, ‖x‖, d (x,y). A subindex will be used only in those cases where needed to
avoid confusion. Given that E is an Euclidean space, if w is a unitary basis, any observation x ∈ E ⊂ <
can be either expressed in terms of its coefficient x in the canonical basis u of <, or in terms of its (real)
coefficient cx, in the given basis, i.e.

x = xu = cx ¯w.

From real vector space properties it is known that

x⊕ y = (cx + cy)¯w, and a¯ x = (a · cx)¯w,

a fact that suggests the definition of an inner product of two elements, as well as its inverse operation,
the inner quotient, as

x⊗ y = (cx × cx)¯w, and x® y =
cx

cy
¯w,

provided that cy 6= 0. They satisfy with respect to the other operations in E the same properties as the
usual inner product and quotient in <, thus getting a field structure. One important aspect is that it is
possible to consider

x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
k times

= ck
x ¯w,

which is a helpful concept in understanding moments. Obviously, it seems natural to write xk for the
inner product k times of x by itself, and to generalize this power operation to any real value, thus
introducing roots and similar operations in E . Finally, Lebesgue measure in E associated to a given basis
is needed, which is the usual Lebesgue measure on the coefficients. Thus, for x = cx¯w and y = cy¯w
defining an interval, we get

λ(x,y) = |cy − cx|.
Given that the basis is fixed, any random variable X with sample space E transfers its randomness
to its coefficient Cx in that basis. Cx is thus a real random variable in the usual sense, both in the
case that E is coincident with and in the case that it strictly contains the image of X. Furthermore,
probability distribution and density functions can be understood as weighting functions, as they multiply
the coefficient in a given basis. Consequently, to obtain distributions on E simply take distributions on
those coefficients.

Definition 1. A probability distribution function of a random variable X with sample space E,
X = Cx ¯ w, is a probability distribution function FCx(cx) of the random coefficient Cx in <. I shall
write for short

FX(x) = FCx(cx),

with x = cxw. An analogous definition holds for a probability density function, for which I shall write

fX(x) = fCx(cx).

The probability density function just defined is the Radon-Nykodym derivative of the probability dis-
tribution function FX(x) with respect to the Lebesgue measure in E at least in the cases studied up to
now. I think that this assertion is always true, but it requires the proof that in all cases the Lebesgue
measure in E is absolutely continuous with respect to the usual Lebesgue measure in real space.

It is straightforward, although tedious, to rewrite all the basic properties of functions of a random
variables. Therefore, I only recall here some of the most intuitive properties.
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Proposition 1. Let be X, Y random variables with sample space E whose random coefficients with
respect to a given unitary basis w are Cx and Cy. Then it holds

X⊕Y = (Cx + Cy)¯w; X⊗Y = (Cx × Cy)¯w;

XªY = (Cx − Cy)¯w; X®Y = (Cx/Cy)¯w, {Cy = 0} = ∅;
and using standard theory the distribution function or density of any of them can be obtained, whenever
the joint density function of X and Y is known. Furthermore, for any vector of constants a ∈ E, any
scalar a ∈ <, any distribution function FX and its corresponding density function fX, it holds

Fa⊕X(a⊕ x) = FX(x);

Fa¯X(a¯ x) = FX(x), if a > 0 ; Fa¯X(a¯ x) = 1− FX(x), if a < 0 .

fa⊕X(a⊕ x) = fX(x); fa¯X(a¯ x) =
∣∣∣∣
1
a

∣∣∣∣ · fX(x).

Additionally, it is possible to define moments, centred moments and absolute moments of a random
variable X as

E
[
Xk

]
= E

[
Cx

k
]
¯w; E

[
(Xª E [X])k

]
= E

[
(Cx − E [Cx])k

]
¯w; E

[|X|k]
= E

[|Cx|k
]¯w

Thus, for the mathematical expectation and the second order centred moment, it holds

E [X] = E [Cx]¯w; E
[
(Xª E [X])2

]
= E

[
(Cx − E [Cx])2

]
¯w = Var [Cx]¯w.

Note that the usual relationship between second order centred moment and first and second non-centred
moments holds, as

E
[
(Xª E [X])2

]
= Var [Cx]¯w =

(
E

[
Cx

2
]− (E [Cx])2

)
¯w

=
(
E

[
Cx

2
]¯w

)ª
(
(E [Cx])2 ¯w

)

= E
[
X2

]ª (E [X])2 .

This fact suggests the definition of measures of variability as the variance, respectively the standard
deviation, of the coefficients, whereas moments, both centred and non-centred or functions thereof,
are points in space which satisfy certain conditions. They are coincident only in case E = <. Thus,
E

[
(Xª E [X])2

]
is an elements of E which is the squared expected distance apart from the origin,

whereas its square root will be one standard deviation apart from it. The coefficient of variation can
now be defined as a quotient of coefficients (that of the square root of the second order centred moment
and that of the expected value) or as a coefficient of a quotient of elements: in any case it will be a
coefficient and the value will be the same. A similar argument holds for measures of skewness, curtosis,
and other measures, but I am not going to pursue these aspects further, as they are not the central issue
of this paper.

As can be seen, properties transfer easily from the space of coefficients to E when dealing with
probability distribution and density functions, at least in the univariate case. Nevertheless, the essential
thing for my purposes is, at this stage, that the study of those functions is mainly the study of some
numerical characteristics or parameters associated with them, and I will show how to do that easily in
the different possible structures of (α, +∞).

3. Examples

In this section, three possible Euclidean space structures for (α, +∞) ⊆ <+ ⊂ < are introduced. Proofs
are omitted, as they are straightforward, although sometimes tedious. To simplify the presentation, I will
use for the logarithm base a, a ∈ <+, the notation lga and for its inverse function expa. Furthermore,
for iterated logarithms, respectively exponentials, I will use an exponent. Thus, for any real value x,

lga(x) = loga(x); lg2
a(x) = lga(lga(x)); lg3

a = lga (lga(lga(x))) ;

expa(x) = ax; exp2
a(x) = expa (expa(x)) = aax

; exp3
a(x) = expa (expa(expa(x))) = aaax

.
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Case 1. Recall that every element x ∈ (α, +∞) can be viewed as a real vector, x = xu, x > 0, where
u stands for the unit vector in the real line and x for the coefficient in this basis or, as shall be seen, as
an element of the Euclidean space (α, +∞). The example presented in the first place is directly related
to the usual transformation used for the three-parameter lognormal distribution.

• Abelian group operation ⊕, neutral element ν and inverse element ªx:

x⊕ y = (α + (x− α)(y − α)) u; ν = (α + 1)u; ªx =
(

α +
1

x− α

)
u.

• External multiplication ¯:
a¯ x = (α + (x− α)a) u.

• Scalar product 〈·, ·〉, norm ‖·‖ and distance d (·, ·):

〈x,y〉 = lge(x− α) lge(y − α); ‖x‖ = | lge(x− α)|;

d (x,y) = | lge(y − α)− lge(x− α)| =
∣∣∣∣lge

y − α

x− α

∣∣∣∣ .

• Unitary basis w and coefficient cx of an arbitrary vector x in the given basis:

w = (α + e)u ; cx = lge(x− α),

i.e.
x = cx ¯w = lge(x− α)¯ ((α + e)u) =

(
α + elge(x−α)

)
u = xu.

• Internal multiplication ⊗ and quotient ®:

x⊗ y = (cxcy)¯w = (lge(x− α) lge(y − α))¯ ((α + e)u) = α + expe (lge(x− α) lge(y − α)) u;

x® y =
cx

cy
¯w =

(
lge(x− α)
lge(y − α)

)
¯ ((α + e)u) = α + expe

(
lge(x− α)
lge(y − α)

)
u;

• Lebesgue measure of an interval defined by the origin ν and an arbitrary point x:

λ = λ (ν,x) = |cx| = | lge(x− α)|.

Note that we obtain an analogous structure using any base a ∈ R+ for the logarithm and its inverse
function. Note also that it has no influence on the vector space structure, but that it determines
certainly the scalar product, the norm and the distance, and thus the unitary basis and the corresponding
coefficients.

Case 2. Again, consider every element x ∈ (α, +∞) as a real vector, x = xu, x > 0, where u stands for
the unit vector in the real line and x for the coefficient in this basis or as an element of the Euclidean
space (α, +∞). This second example has been suggested by the following chain of transformations:

(α, +∞) −→ (1, +∞) −→ (0, +∞) −→ <
x = xu 7→ (x/α)u 7→ lge(x/α)u 7→ lg2

e(x/α)u.

The inverse chain then reads as follows:

< −→ (0, +∞) −→ (1,+∞) −→ (α, +∞)
y = y u 7→ expe(y)u 7→ exp2

e(y)u 7→ α exp2
e(y)u = αeey

u.

Note that I have used the natural logarithm and its inverse, the exponential base e function, although
any other base could be used both for the logarithm and its inverse function.

• Abelian group operation ⊕, neutral element ν and inverse element ªx:

x⊕ y =
(
α expe

(
lge

x

α
lge

y

α

))
u; ν = (ae)u; ªx =

(
α expe

(
1

lge(x/α)

))
u.
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• External multiplication ¯:
a¯ x =

(
α expe

(
lge

x

α

)a)
u.

• Scalar product 〈·, ·〉, norm ‖·‖ and distance d (·, ·):

〈x,y〉 = lg2
e

x

α
lg2

e

y

α
; ‖x‖ =

∣∣∣lg2
e

x

α

∣∣∣ ;

d (x,y) = | lg2
e

y

α
− lg2

e

x

α
| =

∣∣∣∣lge

lge
y
α

lge
x
α

∣∣∣∣ =
∣∣∣∣lge

lge y − lge α)
lge x− lge α)

∣∣∣∣ .

• Unitary basis w and coefficient cx of an arbitrary vector x in the given basis:

w = αee u ; cx = lg2
e

x

α
,

i.e.
x = cx ¯w = lg2

e

x

α
¯ (aee u) =

(
α exp2

e

(
lg2

e

x

α

))
u =

(
αeelge lge

x
α

)
u = xu.

• Internal multiplication ⊗ and quotient ®:

x⊗ y = (cxcy)¯w =
(
lg2

e

x

α
lg2

e

y

α

)
¯ (aee u) ;

x® y =
cx

cy
¯w =

(
lg2

e

x

α
/ lg2

e

y

α

)
¯ (aee u) ;

• Lebesgue measure of an interval defined by the origin ν and an arbitrary point x:

λ = λ (ν,x) = |cx| =
∣∣∣lg2

e

x

α

∣∣∣ .

Case 3. As before, consider every element x ∈ (α, +∞) as a real vector, x = xu, x > 0, where u stands
for the unit vector in the real line and x for the coefficient in this basis or as an element of the Euclidean
space (α, +∞). This third example is based on the following chain of transformations:

(α, +∞) −→ (1, +∞) −→ (0,+∞) −→ <
x = xu 7→ lgα xu 7→ lg2

α xu 7→ lg3
α xu.

The inverse chain reads as follows:

< −→ (0, +∞) −→ (1, +∞) −→ (α, +∞)
y = y u 7→ expα y u 7→ exp2

α y u 7→ exp3
α y u.

In the following developments I use the same base α for all cases, although looking at the chain above
it is clear that only the first step, respectively the last one in the second case, requires the base to be α.

• Abelian group operation ⊕, neutral element ν and inverse element ªx:

x⊕ y =
(
exp2

α

(
lg2

α x lg2
α y

))
u; ν = αα u; ªx =

(
exp2

α

(
lg2

α

1
x

)
u
)

.

• External multiplication ¯:

a¯ x =
(
exp3

α

(
a lg3

α x
))

=
(
exp2

α

(
lg2

α x
)a

)
u.

• Scalar product 〈·, ·〉, norm ‖·‖ and distance d (·, ·):

〈x,y〉 = lg3
α x lg3

α y; ‖x‖ = | lg3
α x|;

d (x,y) = | lg3
α y − lg3

α x| =
∣∣∣∣lgα

lg2
α y

lg2
α x

∣∣∣∣ .
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• Unitary basis w and coefficient cx of an arbitrary vector x in the given basis:

w =
(
exp3

α 1
)

u =
(
exp2

α α
)

u =
(
ααα

)
u ; cx = lg3

α x,

i.e.
x = cx ¯w = lg3

α x¯ ((
exp3

α 1
)

u
)

=
(
exp3

α

(
lg3

α x
))

u = xu.

• Internal multiplication ⊗ and quotient ®:

x⊗ y =
(
lg3

α x lg3
α y

)¯ ((
exp3

α 1
)

u
)

=
(
exp3

α

(
lg3

α x lg3
α y

))
u;

x® y =
(

lg3
α x

lg3
α y

)
¯ ((

exp3
α 1

)
u
)

=
(

exp3
α

(
lg3

α x

lg3
α y

))
u.

• Lebesgue measure of an interval defined by the origin ν and an arbitrary point x:

λ = λ (ν,x) = |cx| = | lg3
α x|.

4. The normal distribution on (α, +∞).

4.1. Density and moments
Let us assume a normal probability distribution function on (α, +∞) for a random variable X = C ¯w
or, equivalently, on R for the coefficient C. Thus, at each x ∈ (α, +∞) we can write x = cw, and the
value of the density function at that point will be

fX(x) = fC(c) =
1

σ
√

2π
exp

{
− (c− µ)2

2σ2

}
,

where µ and σ are the parameters of the distribution, which depends also on the value of α through
c. Thus, we have a three-parameter normal model, which we shall denote as Nα(µ, σ). We know that
for this model moments about the mean, about the origin, and absolute moments of all order exist.
They can be easily obtained from the moments of the coefficients, which are those of a normal random
variable. For instance, if k is even

E
[
(X− E [X])k

]
= E

[
(C − E [C])k

]
¯w =

(
(k − 1) · (k − 2) · · · 3 · 1 · σk

)¯w,

but if k is odd
E

[
(X− E [X])k

]
= 0¯w.

Furthermore, the mean, the median and the mode are coincident and are equal to µ ¯ w, and the
distribution is symmetric around them. This is not easy to appreciate from an histogram, but one has
to be aware that we are working with metrics different from the usual Euclidean metric in R.

4.2. Parameter estimation
The main problem in using this, and any other distribution, is to obtain a reasonable estimate of the
three parameters involved. Many different methods can be found in the literature to solve this problem,
at least by approximation. Here I am going to follow the scheme in ?), and in each part I will present
first the general results, which are independent of the space structure assumed, and then the details for
each of the three cases considered.

4.2.1. Maximum likelihood function

General. If we consider the loglikelihood function for a sample, we obtain easily the usual ML estimates
m` for µ and s2

` for σ2 expressed in terms of coefficients:

m` =
1
n

n∑

i=1

ci ; (1)

s2
` =

1
n

n∑

i=1

c2
i −m2

` . (2)
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The parameter α is included in the coefficients ci and, therefore, there is no general solution a` for α.
The equation to be solved is

n∑

i=1

(
ci − 1

n

n∑

i=1

ci

)
∂ci

∂α
= 0. (3)

From here on it is necessary to analyze the three cases separately, and I will concentrate on the function
we need to solve to obtain a`.

Case 1. We have c = lge(x− α) and thus ∂c/∂α = −(x− α)−1 leading to

n∑

i=1

lge(xi − α)− 1
n

∑n
j=1 lge(xj − α)

xi − α
= 0.

Case 2. We have c = lg2
e(x/α) and thus ∂c/∂α = − (α(lge x− lge α))−1 leading to

n∑

i=1

lg2
e(xi/α)− 1

n

∑n
i=1 lg2

e(xi/α)
lge xi − lge α

= 0.

Case 3. We have c = lg3
α(x) and thus ∂c/∂α = −(x lgα x lg2

α x)−1 leading to

n∑

i=1

lg3
α(xi)− 1

n

∑n
i=1 lg3

α(xi)
x lgα x lg2

α x
= 0.

Note that the first two equations have, with respect to the coefficients, the same form. In fact, they
could both be written

n∑

i=1

ci − c̄

expe ci
= 0,

whereas for the third one we have
n∑

i=1

ci − c̄

expα ci · exp2
α ci · exp3

α ci
= 0.

4.2.2. Cohen’s least sample method

General. It implies keeping the general solution equations (1) and (2) and substituting (3) by one based
on the least sample value, x0, which is assumed to have empirical frequency n0 in n samples. Thus, the
general estimators are obtained from

mc =
1
n

n∑

i=1

ci = c̄; (4)

s2
c =

1
n

n∑

i=1

c2
i −m2

2; (5)

x0 = c0 ¯w = (m2 + νs2)¯w ⇐⇒ c0 −m2 − δs2 = 0, (6)

where δ is the quantile n0/n from the standard normal. The estimate αc of α will thus be the solution
to the general equation

c0 − 1
n

n∑

i=1

ci − δ

n

n∑

i=1

c2
i −


 1

n

n∑

j=1

cj




2

= 0,

which is written in each of the three cases considered as follows.

Case 1. c = lge(x− α):

lge(x0 − α)− 1
n

n∑

i=1

lge(xi − α)− δ

n

n∑

i=1

(lge(xi − α))2 −

 1

n

n∑

j=1

lge(xj − α)




2

= 0.
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Case 2. c = lg2
e(x/α):

lg2
e(x0/α)− 1

n

n∑

i=1

lg2
e(xi/α)− δ

n

n∑

i=1

(
lg2

e(xi/α)
)2 −


 1

n

n∑

j=1

lg2
e(xj/α)




2

= 0.

Case 3. c = lg3
α(x):

lg3
α(x0)− 1

n

n∑

i=1

lg3
α(xi)− δ

n

n∑

i=1

(
lg3

α(xi)
)2 −


 1

n

n∑

j=1

lg3
α(xj)




2

= 0.

4.2.3. Method of moments

General. The estimators for µ and σ2 are obtained from the coefficients as the usual arithmetic means,
one of observations, the other of squared deviations from the mean, whereas the estimator for the
parameter α is obtained including the third centred moment, which theoretical value is zero. Thus, the
general estimators are obtained from

mm =
1
n

n∑

i=1

ci = c̄; (7)

s2
m =

1
n

n∑

i=1

c2
i −


 1

n

n∑

j=1

cj




2

; (8)

0 =
1
n

n∑

i=1

(ci −mm)3. (9)

For the three cases considered we obtain thus as an estimate of α the solution αm of the following
equations

Case 1. c = lge(x− α):
1
n

n∑

i=1

(lge(xi − α)− 1
n

n∑

i=1

lge(xi − α))3 = 0.

Case 2. c = lg2
e(x/α):

1
n

n∑

i=1

lg2
e(xi/α)− 1

n

n∑

i=1

lg2
e(xi/α))3 = 0.

Case 3. c = lg3
α(xi):

1
n

n∑

i=1

lg3
α(xi)− 1

n

n∑

i=1

lg3
α(xi)))3 = 0.

4.2.4. Method of quantiles

General. In this method, all three required estimates are obtained directly from the sample quantiles,
which are directly obtained from the observations. Thus, if we look for the quantiles q, 0.5 and 1 − q,
we have the general equations:

x0.5 = c0.5 ·w = mq ·w; (10)
xq = cq ·w = (mq − δsq) ·w; (11)

x1−q = c1−q ·w = (mq + δsq) ·w; (12)
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where δ ∈ [0, 1] stands for the theoretical value of the q-th quantile of the standard normal distribution.
Considering only the coefficients we have

mq = c0.5; (13)

sq =
c1−q − cq

2δ
; (14)

0 = c1−q + cq − 2c0.5, (15)

and with this approach sq will always be positive by construction. For the three cases considered we
obtain the following estimators:

Case 1. c = lge(x− α):

mq = lge(x0.5 − αq); (16)

sq =
lge(x1−q − αq)− lge(xq − αq)

2δ
; (17)

αq =
x1−qxq − x2

0.5

x1−q + xq − 2x0.5
. (18)

Case 2. c = lg2
e(x/α):

mq = lg2
e(x0.5/αq); (19)

sq =
lg2

e(x1−q/αq)− lg2
e(xq/αq)

2δ
; (20)

aq = expe

(
lge x1−q lge xq − (lge x0.5)2

lge x1−q + lge xq − 2 lge x0.5

)
. (21)

Case 3. c = lg3
α(xi):

mq = lg3
αq

(x0.5); (22)

sq =
lg3

αq
(x1−q)− lg3

αq
(xq)

2δ
; (23)

αq = exp2
e

(
lg2

e x1−q lg2
e xq − (lg2

e x0.5)2

lg2
e x1−q + lg2

e xq − 2 lg2
e x0.5

)
. (24)
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