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Abstract 

h this paper we address the problem of extracting representative point samples from polygonal mod&. The 
goal of such a sampling algorithm is to jind points that are evenly distributed. We propose star-discrepancy 
as a measure for sampling quality and propose new sampling methods based on global line distributions. We 
investigate several line generation algorithms including an eficient hardware-based sampling method. Our 
method contributes to the area of point-based graphics by extracting points that are more evenly distributed than 
by sampling with current algorithm. 

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer GraphicsJ: Three-Dimensional 
Graphics and Realism 

1. Introduction 

In recent years, several algorithms for point-based computer 
graphics have been developed [27]. These algorithms ad- 
dress multipIe aspects of point-based models, such as acqui- 
sition, modeling, rendering, compression, storage, smooth- 
ing, and water-marking. To extend the existing powerful tool 
set of point-based computer graphics, this paper contributes 
an algorithm for generating point samples from polygonal 
models. The point samples generated by our algorithm can 
then be used by modeling and rendering tools. 

Traditionally, a strong argument given to support point- 
based computer graphics is the simpIicity of the represen- 
tation. Rusinkiewicz.et al. [28] for example, gave a com- 
plete framework including sampling, level-of-detail render- 
ing, and compression that was conceptually easy to under- 
stand and easy to implement. Dachsbacher et d.[ZS] showed 
impressive results for rendering point-based models by cre- 
ating data structures optimized for hardware rendering. 

The goal of this paper is to continue this tradition of sim- 
plicity and robustness. Therefore, as input to our algorithm 
we consider a soup of triangles with unknown connectivity 
and topology. Our method works in the presence of smooth, 
manifold surfaces, but it also has to consider a set of discon- 

nected triangles, such as leafs of a tree (as will be demon- 
strated in section 6). 

Existing point sampling methods are directly related to 
rendering. Therefore, the sampling algorithms are often tai- 
lored to a specific rendering method. For example, many 
splatting methods emphasize overlapping splats in screen 
space rather than regularity of the sample distribution 1281. 
The general outline, of many algorithms is to sample a point 
set and then post-process the point set according to quality 
criteria imposed by the rendering method. Important repre- 
sentatives are the sampling with layered depth cubes and the 
following three-to-one reduction [22], or the sampling of ge- 
ometry into an octree and the displacement of samples along 
the surface normal [23]. Similarly, level-of-detail algorithms 
for point sets emphasize specific rendering methods 124, 291. 

The nature of our algorithms is fundamentally different, 
because we set out by analyzing the sample distribution as 
such, rather than the optimization for one specific algorithm. 
Additionally, we want to create a framework that is applica- 
ble to general models such as vegetation. In this context, we 
cannot assume smooth, continuous surfaces. We also want 
to constrain the samples to lie on the actual polygons. 

The main contribution of this paper is a theoretical anal- 
ysis of point sampling and the introduction of several meth- 
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ods to create regularly distributed sampling points, including 
a fast hardware assisted sampling implementation. We be- 
lieve that the proposed sampling algorithms, will be an im- 
portant complement to existing algorithms in a point-based 
computer graphics toolbox. 

2. Overview 

We set out to build a theoretical framework that compares 
different sampling strategies. The first important question 
that we will address is bow to compare the quality of sam- 
pling methods and how to measure uniformity. In section 3 
we will address this question and propose discrepancy as a 
measure for sampling uniformity. In section 5 we will review 
several sampling algorithms based on integral geometry and 
show their evaluation and results in section 6.  

3. Discrepancy as a measure of regularity 

The discrepancy [ 1 1, 20, 161 can be viewed as a quantitative 
measure for the deviation of a finite set of d-dimensional 
points from a totally even (regular) distribution (or, in other 
words, as a measure of the irregularity of the distribution). 
There are several formulations of the discrepancy. One of 
them is star-discrepancy, which is defined with respect to the 
family of subsets of I d .  Given a set of points C = XI,. . . , xn of 
P, we can define their star-discrepancy in the following way 

where A is any d-dimensional cube in id that contains the 
origin, n(A) is the number of points that belong to cube A 
and V ( A )  is a normalized measure of the size of cube A. That 
is, the star-discrepancy is the maximum difference between 
the relative number of points of a cube containing the origin 
and its relative size. 

Thus, the lower the discrepancy of a set of points, the 
more regular their distribution. In general, sets of points 
generated using pseudo-random generators (the ones pro- 
vided by the programming languages) have a higher dis- 
crepancy than the ones generated using quasi-Monte Carlo 
sequences (see [ 111). In fact, quasi-Monte Carlo sequences 
have been specially designed to minimize the discrepancy 
(this is the reason they are also called low discrepancy se- 
quences). Quasi-Monte Carlo sequences were introduced in 
Computer Graphics by Alexander Keller [19]. 

It can be shown [ I  1,201 that a set of N points gen- 
erated using pseudo-random values has a star-discrepancy 
O( 4-1, whereas if we consider quasi-Monte Carlo se- 

quences the star-discrepancy behaves as O( w), where d 
is the dimension. Note that the discrepancy grows as the di- 
mension grows, but, since N - l  < N-'I2, there is always a 

value of N from which on this discrepancy is lower than the 
one for pseudo-random generation. 

4. Intersection with random lines 

The basic tool to study intersections with random lines is In- 
tegral Geometry [IO]. Integral geometry allows us to study 
and measure sets of lines, for example how many lines in- 
tersect a convex body, how many intersect a surface, etc. In- 
tegral Geometry defines a uniform density of lines that is 
homogeneous and isotropic (invariant under rotations and 
translations). An embedded body K is intersected by these 
lines. The moments of the chord lengths have been well stud- 
ied for convex bodies, 

The measure of the lines crossing a convex body K is 
given by [9, lo]: 

Z x 
KT GdG= -A 2 

where G represents the uniform lines, dG its measure, and A 
holds for the area of K. 

For a general non-convex body K equality (2) generalizes 
to 

nGdG = rvi 
KT G 

(3) 

where ~ I G  is the number of intersections of line G with object 
K. 

The resulting intersections with K are uniformly dis- 
tributed over the area of the surface. This can be seen in the 
following way. Consider a differential surface from K, dA. 
According to (2) the measure of lines crossing it is RdA (we 
can consider it as a cylinder with height 0 and base dA). But 
this is also the measure of the number of intersections. 

Thus, we can sample points on the surface of a body using 
in a uniform way by using uniformly distributed lines. These 
lines can be obtained in several ways (see section 5.1) The 
most simple case is enclosing the body in a 3D sphere and 
selecting random pairs of points on the surface. (see Fig. 1 a). 
The number of intersected points on area dA follows a bi- 
nomial distribution given by Bin(Nr,p),  where p = g is 
the probability of a line crossing dA, A, is the area of the 
surrounding sphere, and Nr is the number of lines cast. This 
distribution can be approximated by a Poisson distribution 
with mean N$. In the case of generating lines from a general 
convex bounding box 1151 (see section 5.4) Ar is substituted 
by the area of the box. 

Lines can also be obtained using bundles of parallel lines 
(see section 5.3, Fig.lb,Z). The average number of intersec- 
tions is now gwen by where N is the number of bundles 

A, 
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Figure 1: Points are generaredfrom the intersections of lines 
(left) and bundles of parallel lines (right). 

Figure 2: Generating points from intersections with c1 bun- 
dle of parallel lines. 

and A is the area of the cell of the bundle (see section 5.3). 
The number of intersected points on area dA can be thus de- 
scribed by a Poisson distribution with mean %, 

5. Line density generation 

We show here different alternatives to generate a global line 
density (where global has the same meaning as uniform). 
The first 3 methods involve sampling points uniformly dis- 
tributed on the surface of a sphere. Next we describe the al- 
gorithm to generate such points on sphere with center c and 
radius r 

Generate 2 vaIues < ~ , E ; z  uniformly distributed in IO, 1 )  
CO&= 1 - 2 * , 5  
sine = Jw 
cp= 2 * x * 5 2  
vDir = (sing*sincp, cos8 ,sing*coscp) 
udPoirtr = c + r * vDir 

5.1. Two random points on a sphere surface 

In [lo] i t  is shown that the density of global lines intersect- 
ing a convex body K (that is, density of chords) is given by 
-dodo’ , where 6,8’ are the angles of the intersect- 
ing line with the normals in the intersected points, do,do’ 
are area differentials in the same points, and r is the length 
of the chord. This density, for a sphere, becomes simply (ex- 
cept a constant factor) dodo’ (see figure 3a). 

n 

(a) (b) 
Figure 3: (a) Geometry for two points on sphere line generation. 
(b) Geometry for incorrect line generation. 

This means that taking pairs of random points in the 
sphere surface we obtain a global uniform density of lines. 
But observe that t h i s  is only valid for a sphere, this is, taking 
pairs of points on the surface of a convex body does not re- 
sult in a uniform density (except of course for the sphere). To 
see how one can deviate from the uniform density, let us con- 
sider taking pairs of points on opposite faces of an orthogo- 
nal prism [6]. The c o m t  density should be proportional to 

dodo’, the one taken is proportional to dodo’. The 
ratio of the densities is proportional to v. Now, ob- 
serve figure 3b, from this figure cos9 = cos9’ = $, thus the 
ratio is proportional to 5.  This means for instance that for 
twice the distance we cast 24 more lines that necessary. In 
other words, much more lines are cast in oblique directions 
than in orthogonal ones. 

9 

Observe also that the sphere density is equivalent to talang 
a single p i n t  on the sphere and a direction from this point 
weighted according to the cosine of the angle 8 between the 
radius at this point (this is the same to say the normal to 
the tangent plane) and the direction. Thus, taking simply a 
uniformly distributed direction does not result in a uniform 
density of lines. 

The sphere density is described in [ 131, and was first used 
for Radiosity in 1121 and in ZBR in 111. Interestingly, this 
uniform density generation has not a counterpart in 2D. This 
is, talung pairs of points uniformly distributed on a circum- 
ference does not provide a uniform density within the cir- 
cumference [ 131. 
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5.2. Random direction and point in main circle 

This is the generation that appears in classic IC books 
[9, 10, 131 and it has been used in IBR by Camahort et al. 
[ 11. (See figure 4c). It is obviously equivalent to selecting a 
tangent plane (thus a point in the sphere), and a point in the 
projection of the sphere on the plane. 

5.3. Bundles of parallel lines 

If one limits randomness in the previously defined density to 
selecting the tangent plane and taking the points on the plane 
on a regular grid (see figure a), one obtains bundles of par- 
allel lines. This density (see figure 4d) has been used in the 
Radiosity context in 115, 14, 8, 171, and in IBR in [l, 71. A 
point to remark with this density is that the expected num- 
ber of lines crossing a planar polygon with area A given N 
bundles of lines is g, where A is the area of the grid cell. 
Another point is that the grid cell can be any parallelogram. 
Also, to avoid aliasing, the origin of the grid can be jittered 
[IS]. The advantage of using bundles of parallel lines is that 
fast projection algorithms as the z-buffer can be used. 

54. Lines from the walls of a convex bounding box 

Using the fact that the differential of solid angle around 
do can be written as dw = q d d ,  we can transform the 
chord density into cosOdo. This means talung a random 
point on the surface of the convex bounding box and a cosine 
weighted direction (see 4b). This density generation was first 
described in 1151. It is useful as we can use the same bound- 
ing box of the scene to generate the lines. Observe that this is 
not the same as taking pairs of uniformly distributed random 
points on the bounding box surface, which, as seen above, is 
incorrect. 

6. Results 

6.1. Sampling points evenly distributed on a polygon 

Our experiments are intended to study the distribution of the 
points sampled on a polygont by means of embedding it in a 
uniform density of lines, as described above, and computing 
the intersections between this polygon and the lines. Given 
sets of points obtained in this way, we have computed their 
star-discrepancies and compared their values corresponding 
to different line generations, including pseudo-random num- 
ber generators and quasi-Monte Carlo sequences. On the 
other hand, lines have been generated using two different 
techniques, both involving a bounding sphere: 

Sampling pairs of points on the surface of the sphere (see 
5.1). 

~ 

t For practical purposes we use a square, but the results are valid 
for any planar or non-planar shape. 

P 

R 

P4 

F? 

I 1 

Figure 4: Different ways to simulate uniform global lines. (aj Two 
random points on the surface of the sphem. (b) Local lines are cast 
f” the walls of convex bounding box. (c )  Random direction &@- 
ing U disc by the bounding sphere ceniec and random point in this 
disc. (d) Tangentplane by a random point on the sphere surface and 
bundle of pamllel lines perpendicular to this plnne. 

Sampling tangent planes (to the sphere) and generating a 
bundle of parallel lines from each plane (using a grid) (see 
5.3). 

We have to remark that, since the uniform density of lines 
is known to be invariant under rotations and translations, the 
quality of the results (that is, of the point sets) is independent 
on the position of the polygon. 

We have also compared the sets of points mentioned 
above with sets of points sampled directly on the polygon 
using pseudo-random numbers and quasi-Monte Carlo se- 
quences. Next we present the results obtained in our experi- 
ments. 

NOTE: In the case of point sets generated using pseudo- 
random number generators (the ones used in Monte Carlo in- 
tegration), the values of the star-discrepancy have been com- 
puted by averaging the results obtained in several indepen- 
dent tests. 

6.1.1. Points sampled directly on the polygon 

We have sampled N points directly on the polygon us- 
ing pseudo-random number generators and different quasi- 
Monte Carlo sequences like Halton, scrambled Halton, 
Sobol, Weyl and Hammersley ones (for a description on 
these quasi-Monte Carlo sequences, see [ l l ,  20,411. Note 
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LOO 

that, for each point, 2 values in the interval l0,l) are re- 
quired. 

Fig. 5 shows N = 1000 points generated using these tech- 
niques. Star-discrepancies have been computed for each of 
these 6 sets of points, and values obtained using quasi-Monte 
Carlo sequences have been near one order of magnitude 
lower than using pseudo-random generators. The Hammers- 
ley sequence has performed specially well. 

*nm-" - 
"sersmblld-n*lon" ---H--- -sDkl" ___*___ 

"W+Yl" ."-.- 
"Hmmrrslsy' - : 

fdl 

Figure 5: IDW 2 0  points sampled directly on the polygon ming: 
(a) Pseudo-random numbers. (b) Halion sequence. (cj Scrambled 
Halton sequence. (d) Sobol sequence. ( e )  Wqd sequence. cfl Ham- 
mersley sequence. 

We have experimented with different values of N for each 
of the generations. In the graph in Fig. 6 we represent N 
(x-axis) vs. star-discrepancy (y-axis). Values of the discrep- 
ancy corresponding to pseudo-random generation are in all 
cases more than one order of magnitude higher than the ones 
obtained using quasi-Monte Carlo sequences, and so those 
values have been removed from the graph to avoid scale 
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Figure 6: Number of points N times (x-axis)  vs. star- 
discrepancy times 106 (y-axis) for dgerent point sets genemted di- 
rectly on the polygon. The curve corresponding io pseudo-random 
generation has been removed from the graph to avoid scale distor- 
tion, since these values are m m  than one order of magnitude higher 
than the Est. 

6.1.2. Points sampled using lines obtained from pairs of 
points on a bounding sphere 

Now the polygon has been bounded by a sphere. A uniform 
density of lines has been generated in the sphere by means of 
sampling pairs of points on its surface (see 5.1). For each line 
that intersects the polygon, the intersection point has been 
considered, obtaining in this way the point set. Note that in 
this case we deal with 3D-poink but since such points be- 
long to a polygon, they can be easily mapped on a 2D space. 
Note also that 4 values in the interval [0, 1) are required for 
each line. Thus the required dimension i s  4 instead of 2. 

The same pseudo-random generation and quasi-Monte 
Carlo sequences experimented in the previous section have 
been used here. Sets of 1000 2D points have been generated. 
Referring to star-discrepancies of these point sets and com- 
paring them with the ones obtained using direct generation 
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of the points (see section 6.1)* the main fact observed is that, 
while the discrepancy obtained using pseudo-random num- 
bers is very similar to the one obtained in 6.1 (with this gen- 
erator), the discrepancy obtained using quasi-Monte Carlo 
sequences is clearly bigger (about 3 times) than the one ob- 
tained in 6.1. This involves a reduction of the advantage (re- 
ferred to discrepancy) of quasi-Monte Carlo sequences in 
front of pseudo-random generation when point sets are ob- 
tained not by direct sampling on the polygon but intersecting 
it against sets of uniformly distributed lines. Hammersley 
and Halton sequences behave the best in this experiment. 

We have tested different values of N for each of the gener- 
ations. In the graph in Fig. 7 we represent number of points 
N (x-axis) vs. star-discrepancy (y-axis). A higher discrep- 
ancy for pseudo-random generated sets is observed in almost 
all cases, but the differences respect to quasi-Monte Carlo 
generation have been reduced regarding to the ones obtained 
in section 6.1.1. We note also that Weyl sequence behaves 
clearly worse than the rest of quasi-Monte Carlo sequences 
(that present a similar behavior) in this experiment. 

I 

700 200 300 400 6m 800 700 aoo w o  1000 D 

Figure 7:  Number of points N times {x-mk) vs. star- 
discrepancy times lo6 (y-axis) for hfferent poinr sets generated by 
iniersecting the polygon against sets of uniformly distributed lines 
generafed in a bounding sphere by sampling pairs of poinrs on its 

surface. 

Finally, and regarding to the asymptotical behavior, we 
note that here the star-discrepancies of the 2D-point sets gen- 
erated using quasi-Monte Carlo sequences seem to follow 
the expected O( q) for the quasi-Monte Carlo generation 
in dimension 4, and thus the discrepancy decreases slower 
than directly generating the points on the polygon (note that 
in pseudo-random generation the discrepancy behavior does 
not depend on the dimension). 

6.13. Points sampled using bundles of parallel Lines 
generated from tangent planes 

This technique (see section 5.3) also involves generating 
lines and computing their intersections with the polygon. 
We also need a bounding sphere. The randomness relies on 
sampling, €or each of the N bundles, a tangent plane (whose 
normal vector constitutes the direction of all the lines in the 
bundle), and also an origin point for a regular n x n grid on 
the plane (whose cells constitute the origin of the n2 lines in 
the bundle). This involves sampling (for each bundle) a point 
on the sphere surface that sets the tangent plane, and a point 
on the plane that sets the origin of the regular grid. That is, 
4 values in the interval (0,l) are required for each bundle of 
lines. 

A first question to be solved when dealing with this gen- 
eration is the relation between N ,  the number of bundles 
(planes) and n, the number of linear subdivisions in the grid. 
From some previous tests, we have considered N = n a good 
relationship, and all the experiments presented in this sec- 
tion are based on it. Note that with this relationship the total 
number of lines used is N3. Further experiments have shown 
to be optimal the relationship N = :n. 

The fist experiment, like in the previous sections, con- 
sists of generating approximately 1000 points on the poly- 
gon using pseudo-random values and the quasi-Monte Carlo 
sequences used previously. Star-discrepancies are in general 
lower than the ones obtained in the previous section. Fig. 8 
compares the 2 0  projections of such point sets (for pseudo- 
random generators and the Halton sequence) with the ones 
obtained when using lines From pairs of points on a bounding 
sphere (see 6.1.2). The rest of quasi-Monte Carlo sequences 
behave in a similar way. 

In Fig. 9 we present a graph in which x-axis represents 
the number of sampled points and y-axis represents the star- 
discrepancy. From observing this graph, the first conclu- 
sion is that all the generations, including pseudo-random 
numbers, present similar values for the star-discrepancy. 
Thus, there is not any significant difference between pseudo- 
random numbers and quasi-Monte Carlo sequences when us- 
ing bundles of parallel lines. This behavior probably corre- 
sponds to the. lower influence of the random factor. in this 
generation, due to the use of the regular grid. 

We have also represented in this graph the values of 
the star-discrepancy obtained using direct generation of the 
points in the polygon (see section 6.1 .l) and pseudo-random 
numbers, in order to compare them with the correspondmg 
.values using bundles of parallel lines. The interesting point 
is that the discrepancy appears to be clearly lower (up to 3 
times) in this last case. This means that for pseudo-random 
generators (the ones provided by the computers) is more ap- 
propriate using the bundles of lines technique than directly 
sampling the points in the polygon. We can visually confirm 
this behavior by comparing Fig. 5 (a) and Fig3 (a): this last 
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Figure 8: (a) and (b) show loo0 2R points obtainedf" the in- 
tersection of the polygon against l i n e s f "  pairs ofpoints sampled 
on a b o d i n g  sphere using pseudo-mndom numbers in (U)  mul the 
Halton sequence in (b). ( E )  and (d) also show IO00 2D points ob- 
tained now fram !he intersection of the polygon against bundles of 
parallel lines. 20 bundles have been used in this experiment, and 
fangent planes nnd origin points for the corresponding grids have 
been obtained using pseudo-random numbers in (c )  and the Halton 
sequence in (d). Note the higher reguhra'ty of the distribution when 
using bundles of parallel lines. 

set of points appears to be more evenly distributed than the 
first one. 

On the other hand, there is a noticeable reduction of the ' 
star-discrepancy when using this generation respect to the 
values obtained when generating the lines from pairs of 
points sampled on the surface of the bounding sphere (see 
previous section). Star-discrepancy is reduced to approxi- 
mately one half with quasi-Monte Carlo sequences and to 
approximately a third part when using pseudo-random val- 
ues. These results show this generation technique to be su- 
perior than the technique involving sampling pairs of points 
on the sphere (at least regarding to the discrepancy of the ob- 
tained point sets). This fact is shown, for the case of Halton 
sequences, in Fig. 10. 

Regarding to the asymptotical behavior, we note that 
here, like in the previous section, the star-discrepancy values 
corresponding to quasi-Monte Carlo sequences seem to 
follow U( 9) as expected for dimension 4. 

30 

Figure 9: Number of points times (x-aris) vs. star- 
discrepancy times lo6 (y-axis) for dgerent point sets generated by 
intersecting the polygon against bundles of parallel lines generated 
using tangent planes and regubr grids. We huve also represented 
the discrepanq for the point sets obtained using pseudo-random 
values and direct generation on the polygon. 

A 
I 

K) 

Figure 10: Number of points times (x-ais) vs. star- 
discrepancy times 1Db {y-axis). Generation of lines using pairs of 
points on a bounding sphere is compared with the tangent planes 
technique, which offers better resulrs. Halton sequences have been 
used in both cases. 

Systematic sampling for tangent planes 

0 The Eumgrapiua Awdation 2W5. 
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We have tested the generation of the tangent planes 
using systematic sampling (that is, using a regular grid 
mapped on the sphere to obtain the points that set the 
tangent planes). The results obtained do not improve the 
ones obtained without this kind of sampling. Thus, this 
strategy has been discarded. 

Use of only 3 axis-oligned plaries 

Another experiment has been done in the sense of us- 
ing only 3 axis-aligned planes. In this case, the regularity 
of the distribution of the points strongly depends on the 
position of the polygon respect to such planes, that is, 
depends on the direction of the normal to the polygon (the 
more similar this direction to the direction of one of the 
3 planes, the worse the results). This makes th is  strategy 
to be unsuitable for a complex environment in which the 
polygons are supposed to have any direction. 

6.2. Hardware assisted sampling 

We have implemented a tool to sample meshes using bun- 
dles of lines with the depth-peeling algorithm ([26]). The 
algorithm works as follows: 

For each direction of extraction (generated with Monte 
Carlo), the first step is to obtain the intersections of the mesh 
with the bundles of lines. Depth-peeling obtains a set of lay- 
ers from a scene by using a front depth buffer updated along 
multiple render passes. These layers effectively contain the 
intersections with the bundle of lines along the viewing di- 
rection. 

The second step of the algorithm is to reconstruct the 3D 
positions and additional information (color, normal, etc.) of 
the samples on each layer, by using both the rendered buffer 
and the depth buffer of each layer. This second step is per- 
formed in the CPU and involves processing all the pixels on 
each layer and generating the point samples. 

The tool is very fast and works at interactive rates for the 
models used in this paper. 

6.2.1. lmplementation results 

We have tested OUT algorithm with two models. The first 
model, Venus, consists of 43.357 polygons and the second 
model, Tree, contains 32.196. Our tool allows to select the 
number of directions and the resolution of the bundles, The 
tests have been done on a Pentium-M 1.5 notebook with a 
GeForce FX 5650. 

In figure 11 (right) we show the results of sampling the 
Venus model with 12 bundles. The time fo obtain the point 
cloud is 0.78 seconds. For comparison purposes, in figure 1 1 
(left) we show the result with sampling with only 3 mutually 
orthogonal directions (as in [221), but containing the same 

number of rays than the 12 bundles (using denser bundles). 
The time to obtain this p i n t  cloud is 0.22 seconds. Observe 
the much better point distribution in the right image obtained 
at not much higher cost. 

Figure 11: Point clodi  obtained using 3-axisprojection (left) and 
using Monte Carlo IO determine the directions (right). Both contain 
around IZKpoints. 

Another benefit of using hardware rendering to obtain the 
ray intersections is the possibility to use texturing to apply 
transparency masks to the polygons. With this algorithm you 
can sample only the used area of each polygon without a 
noticeable extra cost. This is useful for plant models where 
the detail of the shape of the leaves is added with a partially 
transparent texture. See figure 12 for an illustration of this 
idea. 

Figure 12: This jigure illustrures another benefit of hurdware- 

based sampling. Textured polygons (14) can be sampled according 
to an alpha-terture and samples am only creafed only 41 opaque 
surfoce points automatically. 

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 23,2010 at 10:39:25 UTC from IEEE Xplore.  Restrictions apply. 



Rovira et ai /Point Sampling with Uniformly Distributed Lines 117 

6.2.2. Algorithm efficiency notes 

The effect of the mesh size on the efficiency of our algo- 
rithm is lower than in most CPU-based algorithms. Instead, 
the processing of the layers done in CPU takes most of the 
time. A possible optimization would be to encode the world 
position in the color buffer, as it would make unnecessary 
to use the depth buffer to re-transform from camera-space 
to world-space in CPU. This is  only possible if rendering to 
floating-point buffers is supported. 

Another difference with CPU-based algorithms is that ex- 
tracting information from a sample is limited to the capacity 
of the render buffers. For this reason, to extract all the infor- 
mation like the color, the normal, etc., more than one buffer 
might be needed and thus, more than one rendering pass for 
each layer and for each direction. CPU-based algorithms can 
extract all the information when computing the ray-mesh in- 
tersections, but they are still slower. 

6.23. Hardware limitations 

There are some sources of error on our hardware-based al- 

The first one comes from the depth-peeling precision. The 
depth of each pixel in the front depth buffer i s  encoded with 
limited numerical precision, and as a consequence, inade- 
quate peeling can happen for suifaces which are very close. 
This limitation can be almost eliminated by using floating- 
point precision buffers supported in the current generation of 
hardware. 

The second source of error comes from the resolution 
used to extract the layers. When reconsmcting the world 
position of the samples using the render buffer and depth 
buffer, each pixel actually represents a whole parallelepiped 
in the space. Setting the position in its center is an approx- 
imation that can give large errors if the render resolution 
(density of the bundles) is low. Encoding the world position 
in the color buffer instead as explained in the previous sec- 
tion overcomes this problem. Current hardware maximum 
rendering resolutions is around 4096 pixels, for this reason 
denser line bundles would require splitting the process and 
doing multiple depth-peeling extraction for each direction. 

gorithm. 

7. Conclusions and future work 

We have studied the distribution of point sets obtained by 
intersecting polygons against a set of lines uniformly dis- 
tributed around the polygons. This pmcedure allows to eas- 
ily generate such point sets on a large polygonal model using 
the same set of global lines instead of generating each point 
set individually in each polygon. 

We are interested in generating sets of points that are the 
most regularly distributed on the polygons. As a measure 
of the regularity of the point sets we have used the star- 
discrepancy: the lower the star-discrepancy, the more reg- 
ularly distributed the points. This value tends to decrement 

Figure 13: Tree mesh model (lef?, and LI 4 4 K  point cloud extructed 
with our algorirhm (right) in 3.41 seconds. 

as the number of points (and so the number of lines) grows. 
Thus, given a certain number of lines, we aim for obtaining 
the lowest values of the star-discrepancy. 

According to our experiments, the discrepancy values ob- 
tained using bundles of parailel lines are noticeably lower 
than the ones obtained with lines generated from pairs of 
points sampled on a bounding sphere (see Fig. 10). Regard- 
ing to the generation of the [0, 1 )  values, there a n  no impor- 
tant differences between pseudo-random numbers and quasi- 
Monte Carlo sequences when using bundles of pmllel lines 
(some quasi-Monte Carlo sequences seem to be just a bit 
superior than pseudo-random numbers). Conversely, when 
generating the lines from pairs of points on the sphere, quasi- 
Monte Carlo sequences happen to be clearly superior than 
pseudo-random numbers. 

Another interesting result is that, unlike quasi-Monte 
Carlo sequences, pseudo-random numbers behave clearly 
better (that is, produce point sets with lower discrepancy) 
when generating the points using bundles of parallel lines 
than when directly sampling the points on the polygons (see 
section 6.1.3). 

Finally, we have implemented the bundles of parallel lines 
on a hardware-based tool that is able to extract the point set 
of a polygonal model at interactive rates. 

As a future work we plan to investigate the use of system- 
atic and adaptive sampling of directions to further improve 
the discrepancy. 
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