Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces

Marta Fort*

Abstract

We present an algorithm for computing exact short-
est paths, and consequently distances, from a generalized
source (point, segment, polygonal chain or polygonal re-
gion) on a possibly non-convex polyhedral surface in which
polygonal chain or polygon obstacles are allowed. We
also present algorithms for computing discrete Voronoi dia-
grams of a set of generalized sites (points, segments, polyg-
onal chains or polygons) on a polyhedral surface with ob-
stacles. To obtain the discrete Voronoi diagrams our algo-
rithms, exploiting hardware graphics capabilities, compute
shortest path distances defined by the sites.

1. Introduction

In this paper we present algorithms for computing dis-
crete Voronoi diagrams of a set of generalized sites (points,
segments, polygonal chains or polygons) on a possibly non-
convex polyhedral surface with obstacles. The algorithms
are based on the efficient discretization, obtained by using
graphics hardware, of the shortest path distance functions
defined by the sites on the polyhedral surface.

1.1. Preliminaries

Let P be a, possibly non-convex, polyhedral surface rep-
resented as a mesh consisting of n triangular faces. From
now on, a generalized element on P refers to a point, seg-
ment, polygonal chain or a polygon. We model obstacles in
‘P by a set of non-punctual generalized elements on P.

A shortest path between a generalized source and a point
on P is a shortest path in the Euclidean metric between the
source and the point such that the path stays on P and avoids
the obstacles. The shortest path distance function defined
by a source point p on P is a function D), such that for any
point ¢ € P, Dy(q) is the Euclidean length of the shortest

*Institut d’Informatica i Aplicacions, Universitat de Girona, Spain,
{mfort, sellares}@ima.udg.edu. Partially supported by grant
TIN2004-08065-C02-02. Marta Fort is also partially supported by grant
AP2003-4305.

J. Antoni Sellares*

path along P from g back to point p. The shortest path dis-
tance function defined by a generalized source s is a func-
tion Dy such that for any point ¢ € P, D;(q) is the length
of the shortest path from ¢ back to source s.

Let S be a set of m generalized sites on the polyhe-
dral surface P and let S’ be a subset of k sites of S,
k € {1,---,m — 1}. The set of points of P closer to
each site of S’ than to any other site of S, where distances
are shortest path distances on P, is a possibly empty region
called the k-order Voronoi region of S’. The set of k-order
Voronoi regions of all subsets of k sites of S is called the
k-order Voronoi diagram of S. Whenk =landk =m—1
the k-order Voronoi diagram is called the closest Voronoi
and the furthest Voronoi diagram, respectively.

1.2. Previous work

We give an overview of previous work on shortest path

on polyhedra and generalized Voronoi diagrams computa-
tion.
Shortest path problems. Computing shortest paths on
polyhedral surfaces is a fundamental problem in compu-
tational geometry with important applications in computer
graphics, robotics and geographical information systems
(for further details see references [10, 16].)

The single point source shortest path problem consists
on finding a shortest path in the Euclidean metric from a
source point to any target point such that the path stays on
‘P. Mitchell et al. [11] present an algorithm for solving the
single point source shortest path problem by developing a
“continuous Dijkstra” method which propagates distances
from the source to the rest of P, for the case in which
obstacles are not allowed. The algorithm constructs a data
structure that implicitly encodes the shortest paths from a
given source point to all other points of P in O(n?logn)
time. The structure allows single-source shortest path
queries, where the length of the path and the actual path
can be reported in O(logn) and O(logn + n') time
respectively, n’ is the number of mesh edges crossed by
the path. Different improvements of this algorithm have
been proposed. Surazhsky et al. [16] described a simple
way to implement the algorithm and showed to run much
faster on most polyhedral surfaces than the O(n?logn)

IEE |-:

COMPUTER
SOCIETY

4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)
0-7695-2869-4/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 10:35:57 UTC from IEEE Xplore. Restrictions apply.

theoretical worst case time. Chen and Han [4], using a
rather different approach, improved this to an O(n?) time
algorithm. Their algorithm constructs a search tree and
works by unfolding the facets of the polyhedral surface.
The algorithm also answers single-source shortest path
queries in O(logn + n’) time. Kaneva and O’Rourke [8]
implemented Chen and Han’s algorithm and reported that
the implementation is difficult for non-convex polyhedral
surfaces and that memory size is a limiting factor of the
algorithm. Kapoor [9] presented an algorithm following the
“continuous Dijkstra” paradigm that computes a shortest
path from a source point to a target point in O(n log® n)
time. However, this is a difficult algorithm to implement.

Computation of Voronoi diagrams. The diverse gener-
alizations of Voronoi diagrams (considering sites of dif-
ferent shape or nature, associating weights to the sites or
changing the underlying metrics) have important applica-
tions in many fields and application areas, such as computer
graphics, geometric modelling, geographic information sys-
tems, visualization of medical data-sets, pattern recogni-
tion, robotics and shape analysis [1, 2, 12].

Practical and robust algorithms for computing the ex-
act Voronoi diagram of a set of points in 2D and 3D have
been extensively developed in computational geometry and
related areas. On the other hand, the computation of ex-
act generalized Voronoi diagrams use to be complicated
because involve the manipulation of high-degree algebraic
curves or surfaces and their intersections. For this reason,
many authors have proposed algorithms to approximate the
real diagram within a predetermined precision. Different
distance function based algorithms have been proposed to
compute 2D and 3D discretized closest Voronoi diagrams
along a grid using graphics hardware [5, 7, 13, 15]. These
algorithms rasterize the distance functions of the general-
ized sites and use the depth buffer hardware to compute an
approximation of the lower envelope of the distance func-
tions.

1.3. Our contribution

In this paper we present an algorithm for computing ex-
act shortest paths, and consequently distances, from a gen-
eralized source on a possibly non-convex polyhedral surface
‘P with obstacles. More specifically:

e We extend the ideas developed by Surazhsky et al. [16]
for the implementation of the algorithm of Mitchell et
al. [11] to the case of generalized sources and poly-
hedral surfaces with obstacles. The implementation is
based on an implicit codification of shortest path dis-
tances on P (Section 2). The algorithm easily extends
to the case of several sources and gives an implicit rep-

resentation of the closest Voronoi diagram of a set of
generalized sites on the surface (SubSection 2.5).

e We present an algorithm for discretizing, by using
hardware graphics, the distance function defined by a
generalized source on P (Section 4).

We also present two algorithms, based on distance func-
tions and hardware graphics capabilities, for computing dis-
crete Voronoi diagrams of a set of m generalized sites on the
polyhedral surface P with obstacles:

e The first algorithm is designed specifically for effi-
ciently computing discrete closest Voronoi diagrams
(Section 5).

e The second algorithm permits the computation of all
discrete k-order Voronoi diagrams, k = 1,---,m — 1
(Section 6).

2. Implicit distance function computation

A geodesic is a path that is locally a shortest path, thus,
shortest paths are all geodesics, but the converse need not
hold. Geodesics on non-convex triangulated surfaces have
the following characterization [11]: 1) in the interior of a
triangle the shortest path is a straight line; 2) when crossing
an edge a shortest path corresponds to a straight line if the
two adjacent triangles are unfolded into a common plane;
3) shortest paths can go through a vertex if and only if its
total angle is at least 27 (saddle vertex). The basic idea of
the algorithm of Mitchell et al. [11] for solving the short-
est path problem from a mesh vertex v, as implemented by
Surazhsky et al. [16], is to track together groups of shortest
paths by partitioning each triangle edge into a set of inter-
vals (windows) so that all shortest paths that cross a window
can be encoded locally using a parameterization of the dis-
tance function D,,. After an initialization step, where win-
dows encoding D,, in the edges of the triangles containing v
are created, the distance function is propagated across mesh
triangles in a “continuous Dijkstra” fashion by repeatedly
using a window propagation process. A complete intrinsic
representation of D, is obtained when the propagation pro-
cess ends. From this representation the shortest path from
any point ¢ to the vertex source v is computed by using a
“backtracing” algorithm.

Since the shortest path distance function defined by
a generalized source s can be computed as D.(q) =
minyesDp(g), the shortest path from the generalized
source s to any point destination ¢ has the same charac-
terization as the shortest path between two points that we
described previously. Notice that if s’ is a subsegment of a
generalized source s contained in a triangle ¢ of P, the part
of a shortest path interior to ¢ starting at an interior point of
s’ is orthogonal to s'.

IEE |-:

COMPUTER
SOCIETY

4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)
0-7695-2869-4/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 10:35:57 UTC from IEEE Xplore. Restrictions apply.

2.1. Point and segment sources

Since a point can be considered as a degenerated seg-
ment whose endpoints coincide, the distance function for a
point source can be reduced to the distance function for a
segment source. Consequently we center our study only on
such sources.

To compute the distance function D, for a segment
source s, as is done in the case of a source point, we
track together groups of geodesic paths by partitioning
the edges of P into windows. Geodesic paths that cross
a window go through the same triangles and bend at the
same vertices of P. In the initialization step, windows
defining D, in the triangle(s) containing s are created.
Then the distance function is propagated across triangles in
a Dijkstra-like sweep in such a way that over each window,
D, can be represented compactly using an appropriate
parameterization.

2.1.1. Distance function codification. Consider a short-
est path from the source segment s to some point ¢ on an
edge e, and let us assume that this path does not bend at any
mesh vertex. When all the triangles intersecting the path
are unfolded in a common plane, the path forms a straight
line. The set of neighboring points of ¢ on e whose shortest
paths back to s pass through the same sequence of triangles
form: a) a pencil of rays emanating from an endpoint of s;
b) a pencil of orthogonal rays emanating from the interior
of s (see Figure 1). In both cases we represent the group of
shortest paths over a window of the edge e.

Suppose now that the shortest path from p € s to ¢ bends
on one or more vertices on its way to the source s, and let
v be the nearest such vertex to q. Again, consider the set
of neighboring points on e whose shortest paths back to v
go through the same strip of triangles. In the unfolding of
the strip between e and v, these shortest paths will form a
pencil of rays emanating from the pseudosource vertex v,
as seen in Figure 1. As before, we represent this group of
shortest paths over a window on the edge e.

Figure 1. An unfolded strip of triangles with: a) a seg-
ment source; b) a polygonal chain source.

Windows representing a group of geodesics emanating
from a punctual source p (an endpoint of s, a punctual

source, or a mesh pseudosource vertex) are called p-
windows, and windows representing a group of geodesics
emanating from interior points of s are called s-windows.

p-windows. Following the strategy of Surazhsky et al.
[16], the group of geodesics associated to a p-window
w originated on a point p (an endpoint of s or a pseu-
dosource vertex) is locally encoded by using a 6-tuple
(bo, b1,do,d1,0,7). Where by, by € [0,|e|]] measure
the Euclidian distance from the endpoints of w to the
origin of e (the lexicographically smallest endpoint of e).
Distances dy and d; measure the Euclidean distance from
the endpoints of w to p, direction 7 specifies the side of e
on which p lies, and o gives the distance from p to s. From
the 6-tuple (bg,b1,do,dy,0,7) it is easy to position the
source p on the plane of a triangle ¢ containing w, and to
recover the distance function within w, by simulating the
planar unfolding adjacent to e in the rectangular coordinate
system S, that aligns e with the x-axis as it is shown in
Figure 2 a). The obtained point source is referred as the
virtual source of w and noted wy.

s-windows. The group of geodesics associated to an
s-window w is locally encoded by using a 5-tuple
(bo, b1,do,d1,¢). Where by, by € [0, |e|] are the distances
of the endpoints of w to the origin of e, dy and d; measure
the distance of the endpoints of w to s, finally the angle
determined by e and the rays emanating from s is stored in
¢ € [0,2x]. From the 5-tuple (bg, b1, do, d1, ¢) it is easy to
position the part s’ of s from which geodesics to w emanate
(the visible part of s through the unfolding). Again it is
done by simulating the planar unfolding adjacent to e in
the rectangular coordinate system S, that aligns e with the
x-axis as it is shown in Figure 2 b). The obtained segment
source is referred again as the virtual source of w and noted
ws. Notice that we do not need d; to position s’ but it is
useful in order to obtain the distance function within w.

Figure 2. The virtual source s is positioned using the in-

formation stored in: a) a p-window; b) a s-window.

2.1.2. Window propagation. We propagate the distance
function Dy encoded in a window on an edge e to the next
adjacent triangle ¢ by creating new (potential) windows on
the two opposing edges of t. They are potential windows

IEE l-:

COMPUTER
SOCIETY

4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)
0-7695-2869-4/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 10:35:57 UTC from IEEE Xplore. Restrictions apply.

because they may overlap previously computed windows.
Consequently, we must intersect the potential window with
previous windows and determine the combined minimum
distance function.

Given a p-window or s-window w on an edge e, we
propagate Dg by computing how the pencil of straight
rays representing geodesics associated to w extends across
one more unfolded triangle ¢ adjacent to e. New potential
windows can be created on the opposing edges of ¢ (see
Figures 3 a and 3 b). To encode D, in a new potential
window €’ first, we obtain the position of the source in
the coordinate system S.. Then, we consider the rays
emanating from the source through the endpoints of w to
determine the new window interval [bf,b}] on €. New
distances d;, and d} from the window endpoints to the
source are computed. For p-windows ¢’ does not change,
and for s-windows the angle ¢ is the angle defined by
the rays and edge ¢/. When the window w is adjacent to
a saddle vertex v, geodesics may go through it. Vertex
v is a new pseudosource and generates new potential
p-windows with ¢’ given by do(do + o) or di(dy + o) for
s-windows(p-windows) (see vertex v of Figure 3 c).

Wy

a) b) c)

Figure 3. Examples of s-window propagation resulting
in: a) a new single window; b) two new windows; c) a new
single window and a pseudosource vertex v.

2.1.3. Window overlapping. After the propagation, each
new potential window w’ on edge ¢’ may overlap with pre-
viously created windows. Let w be a previously created
window which overlaps with w’, notice that both w and w’
can be either s-windows or p-windows. We have to decide
which window defines the minimal distance on the over-
lapped subsegment 6 = [bg, b1] N [b, b}]. To correctly ob-
tain the windows we have to compute the point g in 6 where
the two distance functions coincide. We are discarding the
geodesics encoded in w and w’ that cannot be shortest paths.

In order to obtain g, we define the rectangular coordinate
system S,/ that aligns e’ with the z-axis. When w and
w’ are p-windows we obtain the position of their virtual
punctual sources wy and w’, in S, and solve the equation
lwp — q| + 0 = |w;, — q| 4+ ¢’, as it is done in [16]. When w
and w’ are an s-window and a p-window respectively, we
obtain the virtual segment source w; and the virtual punc-
tual source w’, on S, and solve d(ws, ¢) = |w), — q| + o’,
where d(ws,) is the Euclidean distance from ¢ to segment

ws. Finally, when both are s-windows we obtain the
position of both virtual segment sources ws and wy in Ser
and solve the equation d(ws,q) = d(w,q). In all three
cases the resulting equation has a single solution.

2.1.4. Continuous Dijkstra propagation strategy. The
algorithm uses a Dijkstra-like propagation strategy. In the
initialization step, we create windows encoding the distance
function on the edges of the triangle(s) containing the seg-
ment source s. Those points closer to points in the inte-
rior of the segment source are contained in s-windows. On
the other hand, those points whose closest point of s is an
endpoint of s are contained in p-windows. When windows
are created, they are stored in a priority queue which con-
tains both s-windows and p-windows. Windows are stored
by increasing distance to the source. The minimum dis-
tance from an s-window to source s is min(dy,d;). For
p-windows we use min(dy,di) + o as weight in the pri-
ority queue, although it may not be the minimal distance.
It can be done because the obtained solution does not de-
pend on the order in which windows are removed from the
queue, however, by using the priority queue a wavefront is
simulated and the process is accelerated.

The first window of the priority queue is selected,
deleted and propagated.Next, overlays are checked, inter-
sections are computed and the new windows are added to
the priority queue. Notice that when there is an overlay,
windows may be modified or deleted and the priority queue
has to be updated accordingly.

2.1.5. Complexity analysis. We analyze the time and space
complexity needed to obtain the shortest path distance func-
tions from a source segment on a non-convex polyhedral
surface P represented as a mesh consisting of n triangles.

We first give a bound on the number of windows gener-
ated on each mesh edge when the distance function from a
source segment is computed. A similar result is presented
in [11] for source points.

Lemma 2.1 There are at most O(n) windows per mesh
edge created by the algorithm.

Proof. Assume that on the edge e there are n’ windows.
Consider n’ shortest paths starting at an interior point of
each window of e and arriving at s. There may be shortest
paths arriving at interior points of s and other at the end-
points of s. We sort the n’ shortest paths clock-wise around
e and consider pairs of consecutive shortest paths. There
may exist at most four pairs of consecutive shortest paths
that traverse exactly the same triangles. It can only happen
when: 1) one path arrives at an interior point of s and the
other to an endpoint of s ; 2) when the first path arrives at
an endpoint of s and the second path to the other endpoint
of s. The other pairs of consecutive shortest paths are as-
sociated to a triangle-vertex pair (¢,v), where ¢ is the last

IEE I-'

COMPUTER
SOCIETY

4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)
0-7695-2869-4/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 10:35:57 UTC from IEEE Xplore. Restrictions apply.

triangle traversed by both shortest paths, and v is the vertex
separating the pair of paths. Observe that the vertex v may
be the first pseudosource of one of the shortest paths. It is
not difficult to see that at most two different pairs of short-
est paths can be associated to the same (¢,v) pair (when v
is a pseudosource). Since there exists a bijection between
triangle-vertex pairs and edges, we have that n’ € O(n).

For a segment source s, the time needed to compute D
is O(n?logn). It is not difficult to see that the time com-
plexity for computing the shortest path distance function is
bounded by the maximum between the number of created
windows and the time needed to create and maintain the
priority queue. Consequently, according to Lemma 2.1, at
most O(n?) windows are created and in the worst case the
total time complexity is, though, O(n? logn) and the space
complexity O(n?).

2.2. Polygonal sources

The distance function defined by a polygonal chain is ob-
tained by simultaneously considering all the segments of the
polygonal chain in the initialization step. For each segment
s of the polygonal chain we create potential s-windows in
the triangle(s) containing s and for each vertex we create
potential p-windows. We handle one segment/point after
the other and the new potential windows are intersected with
the already created ones to ensure that they define the actual
distance function. The other parts of the algorithm do not
need changes. The distance function defined by a polyg-
onal region r, a connected region of P whose boundary
is a closed polygonal chain, is the distance function of its
boundary in the complementary of r, and is O in the inte-
rior of r. We compute the distance function produced by
its boundary polygonal chain creating, in the initialization
step, windows only in the complementary of 7.

If we make the logical assumption that the number of
segments conforming the polygonal source is smaller than
n, the total time and space complexity of this algorithm are
again O(n?logn) and O(n?), respectively.

2.3. Polygonal obstacles

Given a possibly non-convex polyhedral surface P
(which may represent a terrain), we model obstacles as
polygonal chains or polygonal regions (which may repre-
sent rivers, lakes, etc) on P. The polyhedral surface is re-
triangulated so that the obstacles are represented as several
mesh triangles, edges and vertices. Abusing language, we
keep n as the number of triangles of the new mesh. We
assume that paths cannot traverse the polygonal obstacles,
but we let paths go along them. Now, geodesic paths can
go through a vertex not only if it is a saddle vertex but also
when it is an obstacle vertex. To compute shortest paths we

only need to make two modifications in the window prop-
agation process. On the one hand, windows on an obstacle
edge are not propagated. On the other hand, obstacle ver-
tices are new pseudosource vertices regardless of their total
angle. These modifications do not increase the time or space
complexities of the algorithm.

2.4. Distance and shortest path obtention

When the propagation of the distance function has con-
cluded, the distance and also the shortest path from any
point on a triangle of P to the source can be obtained.

Influence regions. To facilitate the computation of the dis-
tance and shortest paths we first determine which points of
‘P can be reached by the geodesics encoded in a window.

Let w be a window on a mesh edge e and ¢ be a triangle
adjacent to e. We define the influence region of window w,
denoted P, as the set of point of ¢ that can be reached by
geodesics encoded in w. According to the geodesic proper-
ties, a point g € ¢ is reached by a geodesic associated to w
in the planar unfolding adjacent to e when: 1) the triangle ¢
and the virtual source of w, wy, are placed in opposite sides
of e; 2) the point g belongs to a line emanating from w; or
orthogonal to wg depending on whether w is a p-window or
s-window, respectively. Therefore, each window w defines
a unique influence region P,, which is a polygon of at most
five vertices contained in one of the two adjacent triangles
to e.

When w has an endpoint in a saddle vertex v of ¢, the
window w can also define a pseudosource. The points of ¢
that are not contained in P,, and can be reached by a line
segment emanating from the pseudosource v without inter-
secting P,,, determine the influence region of pseudosource
v, P,, which is a convex polygon of at most 3 vertices.

Distance computation. The shortest path distance from
any point g on a triangle ¢ to the source s can be obtained
by finding the window w,, on the edges of ¢ or the pseu-
dosource v defining the minimum distance value.

If Dy ,, denotes the distance function defined by the win-
dow w, we have D, ,,(¢) = Dsw(q") + |¢ — ¢'|, where ¢/
is a point on w such that the line segment of endpoints ¢’
and ¢ is contained in a geodesic emanating from w,. No-
tice that to determine w,,,, those windows whose influence
area does not contain ¢’ can be directly discarded. There-
fore, we only take into account a window w on an edge e if
its virtual source wg and triangle ¢ are located on different
sides of e and ¢ € P,. If g belongs to the influence re-
gion of a pseudosource v, the distance function defined by
v, Ds »(q) = Ds(v) + |q — v|, needs also to be considered.
If we denote € the set of such windows and the possible
pseudosource, then we have D, (q) = min,eq Ds o (q).

The length of the shortest path from a point of P to

IEE |-:

COMPUTER
SOCIETY

4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)
0-7695-2869-4/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 10:35:57 UTC from IEEE Xplore. Restrictions apply.

its nearest source can be obtained by standard methods in
O(logn) time.

Shortest path construction. The shortest path from any
point ¢ on a triangle ¢ to the source s can be obtained by
using a backtracing technique similar to the one described
in [16]. We first determine the element w,,, € {2 defining the
minimum distance to ¢q. There exist two possibilities: 1) If
Wiy, 18 @ window w,,, we jump to the adjacent triangle ¢ by
using the direction 7 when w,, is a p-window or the angle
¢ when w,, is an s-window; 2) If w,, is a pseudosource, it
is an endpoint of a window w,,, which is used to jump to the
adjacent triangle. Then we keep on jumping to the adjacent
triangle until we get s.

The shortest path can be obtained in O(logn + n') time,
when the path crosses n’ triangles.

2.5. Implicit generalized Voronoi diagram

The algorithm for computing the distance function from
a generalized source extends naturally to the case of sev-
eral sources. In this case we obtain a generalized Voronoi
function, which for any point of P gives the shortest path
distance to its nearest source. In the initialization step we
generate windows for each single source and store them in
a unique priority-queue. Thus, we propagate the distance
functions defined by all single sources simultaneously. In
this way we obtain a codification of the Voronoi function
that yields an implicit representation of the Voronoi diagram
of the set of generalized sources.

From now on we denote by N the maximum of n and
the total number of segments conforming the generalized
sources. When the Voronoi function of a set of general-
ized sources is computed, the maximum number of created
windows is O(N?). Consequently, the implicit Voronoi
function can be obtained in O(N?log N) time and O(N?)
space.

3. Distance vectors

The distance vector @ of a point g with respect to a vir-
tual source wg (a point or a segment) is the vector joining
the closest point to ¢ on wy with g. Observe that if ¢ be-
longs to the influence reglon P,, of a window w, we have
D; (q) = d(s,ws) + ||d |I, where d(s,ws) # 0 when w;
is a pseudosource. Distance vector properties, previously
used in [14] for purposes similar to ours, allow us to com-
pute @ interpolating the distance vectors of the vertices of
Pw~

Punctual source. Assume that the convex polygon P, has
been triangulated and the point g of f}w B)elo_r)lgs to the tri-
angle of vertices p1, p2, p3. Denote dy, ds, d3 the distance
vectors of py, ps, p3 relative to a punctual virtual source ws.

The point ¢ can be univocally expressed as ¢ = a1p1 +
Qopa + a3ps, Wlth a1+ as + ag :>1 andghag, ag > 0.
Consequently d =ws, —q = ai1d] + asds + agdg (See
Figure 4a).

Segment source. Assume again that the point ¢ of P,
belongs to the triangle of vertices pi, p2, p3 and now de-
note d1, d17 ds 3 the distance vectors of p1, ps, p3 relative to
a segment virtual source ws. As before the point ¢ can be
univocally expressed as ¢ = a1p1 + asps + asps, with
aj + ag + ag = 1 and a1, az, Q3 > 0 We want to prove
that we have d = a1d1 + aadsy + agdg (See Figure 4b).

Let first con51der the case when there exist one ; equ&}
to 0, for example a3 = 0. Then, the vector a;d; + asds
is the vector perpendicular to w, obtained by joining the
point ¢ to a1 p + aapy, where p) and pf are the points of w,
defining E and d_)g respectively. When «; # 0,47 = 1,2, 3,
we can consider a segment joining ¢ and p3, and determine
the point ¢’ on the segment for which the parameter a3 = 0.
The distance vector d / can be obtalned from d1 and d2 as
explained for the first case and, finally, dq can be similarly
obtained from CE) and ds.

Figure 4. The distance vectors associated to the vertices
of a convex polygon when dealing with: a) a point source;
b) a segment source. In both figures the distance vector to
point g can be obtained by the shown distance vectors.

4. Discrete distance function computation

In this section we present our algorithm to efficiently
compute discrete distance functions by using graphics hard-
ware.

4.1. Planar parameterization

To obtain a discrete representation of the distance func-
tion we use a 2D representation of the triangulated surface
‘P. We map each triangle ¢ of P to a triangle in the zy—
plane with the same shape (angles and area). This is done
in such a way that the mapping of two different triangles of
‘P do not overlap in the zy-plane. The previous mapping is
known as a planar parametrization of the triangulated sur-
face. Computing a parameterization means finding the 2D

IEE |-:

COMPUTER
SOCIETY

4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)
0-7695-2869-4/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 10:35:57 UTC from IEEE Xplore. Restrictions apply.

coordinates corresponding to each triangle of P. This is
a well studied problem in the literature with several strate-
gies and different applications such as: texture mapping,
geometry processing, remeshing, etc [3, 6]. The problem of
obtaining a parameterization maintaining the shape of the
triangles is also known as triangle packing problem. We
use the algorithm for triangle packing given in [3]. It trans-
lates and rotates the mesh triangles so that they are placed in
the xy—plane with the longest edge aligned to the x—axis.
After sorting the triangles by increasing altitude, each other
triangle is flipped, triangles are grouped into equal length
sections and finally triangle groups are stacked vertically.
At the end of the process, the triangles are packed into an
axis-parallel rectangular region R. The time cost of the al-
gorithm is O(nlogn).

For the special case of a polyhedral terrain, a polyhedral
surface such that its intersection with any vertical line is ei-
ther empty or a point, we can alternatively use its projection
on the xy-plane as a 2D parametrization. Now R denotes
the axis-parallel rectangular region bounding the projection.
In this case the shape of the projected triangles do not cor-
respond with its shape on the polyhedral terrain.

4.2. Process overview

After precomputing a parameterization of P, we dis-
cretize the region R of the xy-plane as a rectangular grid of
size W x H that induces a discretization on the triangles of
‘P. When the parameterization maintains the shapes of the
triangles, the discretization error in the xy-plane matches
with the discretization error on P.

The parameterization and the surface discretization are
used to obtain a discrete representation on R of the distance
function defined by shortest paths on P. This is achieved by
keeping track of the explicit representation of the distance
function while it is propagated along the surface P with the
algorithm explained in Section 2. In the window propaga-
tion stage we compute the distance, defined by the current
window w, to all the grid points contained in the influence
region P,,. If a pseudosource v is created we also compute
the distance to the points of the influence region P,. The
distance is computed by using distance vectors and graph-
ics hardware (see Subsection 4.3). Since grid points can
be contained in the influence region of different windows,
during the process we store the minimum of the distances
obtained for its corresponding point on P in each grid point
of the xy-plane.

The OpenGL pipeline triangulates input polygons, pro-
cesses the triangle vertices and rasterizes the triangles into
fragments by interpolation. Within the rasterization step all
the parameters associated to vertices such as texture coordi-
nates, color, normal vectors, etc. are also interpolated from
those associated to the triangle vertices. Consequently the

value obtained in these channels in a fragment is the inter-
polation of the values associated to the triangulated polygon
vertices.

The vertex shader uses the planar parameterization to
map the 3D points on the surface P to 2D points in the
region R of the zy-plane. Then the fragment shader com-
putes the distance defined by the current window or pseu-
dosource at each point and sets this distance normalized into
[0,1] as the depth value of the rasterized fragments. Finally,
the depth test keeps the minimum distance obtained at each
depth buffer position.

4.3. Distance function computation

To compute the explicit distance we discretize the region
R into a grid of W x H pixels. In the initialization pro-
cess of the algorithm explained in Section 2, we initialize
the depth buffer to the maximal depth value (1). When a
new fragment is processed, the depth buffer is updated if
the depth value of the current fragment is lower than the
actual value in the depth buffer. At the end of the process
the value stored in the depth buffer is the minimum depth
(distance) of all the processed fragments. Next we explain
in more detail the computation process.

During the continuous Dijkstra propagation process, for
each propagated window w with virtual source wg, we com-
pute its distance function in the influence region P,, (Sub-
section 2.4) by painting the polygon P,,. The distance given
by w in a point ¢ € P, is obtained by adding the distance
from ¢ to w;y to the distance from s to ws. The distances
to these points are computed and stored in the depth buffer
whenever the distance defined by w is smaller than the dis-
tances previously stored in the buffer. The propagation of w
defines P,,, and sometimes a new pseudosource v is created
(See Figure 5). The influence region P, of the pseudosource
v is handled in the same way that window influence regions.

\Z
b) Vi <)

a)

Figure 5. Examples of influence regions and distance
vectors of: a) a p-window; b) a s-window; c) the vertex
pseudosource obtained in b).

The distance vectors from the virtual source of w; to the
vertices of P, are computed. Posteriorly the polygon P, is
painted by using OpenGL. We associate to the polygon, in
a texture coordinate channel, the distance from the virtual
source to the initial source. We also associate to each vertex

IEE |-:

COMPUTER
SOCIETY

4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)
0-7695-2869-4/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 10:35:57 UTC from IEEE Xplore. Restrictions apply.

of P, its distance vector using another texture coordinate
channel. The influence region P, of a pseudosource v is
handled as the influence region of a window.

At the end of the process, we have in the depth buffer the
distance function defined by the source.

4.4. Algorithm correctness

We have to prove that at each point ¢ of the polyhedral
surface P the actual minimum distance is obtained. On
the one hand, the fact that each window w only affects the
points contained in its influence region and the observations
related to distances and shortest paths to points of a triangle
t (Subsection 2.4) prove that for a given point ¢ in t we have
considered all the possible geodesic paths arriving at q. On
the other hand, the observations given in Section 3 prove
that the path length is correctly computed. In fact, distance
vectors of interior points of an influence region are properly
obtained during the rasterization process from the distance
vectors of the region vertices and, consequently, the algo-
rithm properly computes the distance function value defined
by w in the points of its influence region. Finally, since only
the minimum distance value is stored in the depth buffer, the
shortest path distance function is correctly computed.

5. Discrete closest Voronoi diagrams

In this Section we propose a way to compute the discrete
closest Voronoi diagram for a set of generalized sources S
on the polyhedral surface P with obstacles. Although in
Section 6 a general procedure to compute k-order Voronoi
diagrams is given, for the special case of the closest Voronoi
diagram (k = 1) this process is much more efficient, in
both, time and space complexity.

To obtain the closest Voronoi diagram, we discretize
the generalized Voronoi function and properly determine
the Voronoi regions. The discretization of the generalized
Voronoi function is obtained by slightly modifying the al-
gorithm for computing discrete distance functions described
in Section 4. We use a planar parametrization of the trian-
gulated surface P and a discretized xy-plane. We propa-
gate the Voronoi function defined by all single sources. The
Voronoi function is discretized by painting the correspond-
ing influence regions. To this purpose the process is modi-
fied as follows. We associate a different color to each source
in S and the influence regions are colored with the color
of the generalized source from where they come from. To
identify this source, each window stores an extra parameter
that gives the index of the initial source in S. At the end of
the process, the values stored in the depth buffer are the val-
ues of the Voronoi function and the obtained image in the
color buffer is the discrete closest Voronoi diagram.

Notice that there can exist regions equidistant to two dif-
ferent sites. These regions can be one or two dimensional

regions. The one dimensional regions are easily detected
for being the boundary separating points of different color.
The two dimensional regions are, somehow, lost and will be
painted in one or the other color depending on the behav-
ior of the continuous Dijkstra propagation strategy, and the
order in which the regions are painted.

The extra time needed to obtain the closest Voronoi di-
agram while using the algorithm for implicitly obtain the
Voronoi function is the time spent by painting the windows
influence regions, which is done in constant time. There-
fore, the time and space complexity are O(N?log N) and
O(N?), respectively.

6. Discrete high order Voronoi diagrams

In this section we describe how to obtain the discrete
k-order Voronoi diagram, k¥ = 1,---,m — 1, for a set of
m generalized sources S on the polyhedral surface P with
obstacles. Since obtaining the distance function of a source
is expensive, we assume that we have computed and stored
the discrete distance function of each source. They can be
stored by rendering the depth buffer in a depth texture or
stored in the CPU.

Closest Voronoi diagram. The closest Voronoi diagram
can be obtained by painting, one after the other, the m dis-
tance functions and determining their lower envelope. To
paint a distance function, we store it in a depth texture and
set its value as the depth value of the fragment. The depth
test is used to store the smallest depth value, and conse-
quently each pixel is painted in the color of the closest site.
Finally, the Voronoi diagram is obtained in the color buffer,
and the Voronoi function in the depth buffer.

To obtain the closest Voronoi diagram the m discrete
distance function are computed and stored, then, they
are transferred to a texture and painted. Therefore,
the time and space complexity of the algorithm are
O(m(n%logn + HW)) and O(n? + mHW), respectively.

Furthest Voronoi diagram. The furthest Voronoi dia-
gram is obtained as the upper envelope of the distance
functions. It is computed by rendering one after the other
each distance function and storing the distance in the
depth of the fragment. The depth test is used to store
in each pixel the maximum depth value. Each point is
accordingly painted with the color of the fragment with
maximal depth value, which is the color associated to
the furthest site to each point. Now the furthest Voronoi
diagram is obtained in the color buffer and the furthest
distances in the depth buffer. The complexity analysis
is the same as the one given for the closest Voronoi diagram.

IEE I-'

COMPUTER
SOCIETY

4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)
0-7695-2869-4/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 10:35:57 UTC from IEEE Xplore. Restrictions apply.

k-order Voronoi diagram. Our algorithm for comput-
ing discrete k-order Voronoi diagrams uses a depth peeling
technique similar to the one described on [5] for computing
k-order Voronoi diagrams of a set of points in the plane. It
is a multi-pass algorithm that at every pass “peels” off one
level of the arrangement of distance functions. At each pass
all the distance functions are painted in their corresponding
colors and the minimal depth value is stored in the depth
buffer. In the first pass the closest Voronoi diagram is ob-
tained. When it finishes, the depth buffer is transferred to a
texture and send to the fragment shader. In the second pass
all the distance functions are again painted. In the fragment
shader the distance function that is being painted is com-
pared with the distance obtained in the previous pass at the
current fragment. Only the fragments with distance bigger
than the distance obtained in the previous pass are painted,
the others are discarded. Therefore, the values stored in
the depth buffer in the second step are the second mini-
mal distance. When this process is repeated k times, the
kth-nearest diagram is obtained. The k-order Voronoi di-
agram can be obtained by overlaying the ith-nearest dia-
grams, i = 1. ..k, with transparency 1/k.

To obtain the k-order Voronoi diagram the m discrete
distance function are computed and stored. For each of
the k peeling passes, the depth buffer is copied to a tex-
ture and the m distance functions are transferred to a texture
and painted. Therefore, the algorithm has O(mn?logn +
kmHW) time and O(n? + mHW) space complexities.

7. Visualization on the polyhedral surface

Once we have obtained a discrete representation of the
Voronoi diagram in the color buffer, we can transfer the val-
ues of this buffer to a texture. The texture is an explicit
representation of the Voronoi diagram and by using textur-
ing methods the Voronoi diagram can be visualized on the
3D polyhedral surface.

8. Error analysis

We can distinguish among two different types of error.
On the one hand, the discretization error, which depends on
the discretization size. The biggest the grid size W x H we
use, the smallest the error. On the other hand, the floating
errors, which are specially related to the depth buffer and
depth texture precision. Their 32-bit precision is sufficient
to store the normalized distances which take values in the
interval [0, 1].

9. Results and future work

Results. We have implemented the proposed method us-
ing C++ and OpenGL for the special case of polyhedral ter-

rains. All the images have been carried out on a Intel(R)
Pentium(R) D at 3GHz with 1GB of RAM and a GeForce
7800 GTX/PCI-e/SSE2 graphics board.

Figures 6 to 9 show some examples of Voronoi dia-
grams for generalized sources on polyhedral terrains with
obstacles obtained using our implementation, which is
being improved. We have considered a set S of ten sites:
four points, two segments, two polygonal chains and two
polygon sources, and a terrain with 800 triangular faces.
The generalized sources, except for the polygon sources
interior, are painted on the terrain surface and the remaining
points of the surface are colored according to the Voronoi
region they belong to. In Figure 6 we show the closest
Voronoi diagram of S, it is obtained in 0.748(s). In Figure
7 each point is painted in the color of the 7th nearest site,
we do not show the 7th order Voronoi because the image is
difficult to understand due to the merged colors. The time
needed to obtain and store the 10 distance fields is 7.811(s),
and the extra time needed to visualize the 7th nearest site
is 0.811(s). The error produced by the 32-bit precision
of the depth buffer can be seen in this image, isolated
pixels are painted in the color of the regions adjacent to
the region they belong to. In Figure 8 the furthest Voronoi
diagram is obtained in extra 0.129(s). Finally, we show in
Figure 9 the closest Voronoi diagram of S when obstacles
(two polygonal chains and a polygonal region), which are
painted black, are considered. It was obtained in 0.756 (s).

Future work. We are implementing the algorithms for
computing the distance and Voronoi functions and General-
ized Voronoi diagrams for general polyhedral surfaces. We
expect that in practice the algorithm for distances compu-
tation will run in sub-quadratic time as in [16]. We are
studying alternative heuristics to the algorithm for triangle
packing to obtain a more efficient packing.

Figure 6. Closest Voronoi diagram of a set of ten gener-
alized sites. Each Voronoi region is painted in a different
color which is associated to the site defining the region.

IEE l-i

COMPUTER
SOCIETY

4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)
0-7695-2869-4/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 10:35:57 UTC from IEEE Xplore. Restrictions apply.

References

[1] F. Aurenhammer. Voronoi diagrams: a survey of a fun-
damental geometric data structure. ACM Comput. Surv.,
23(3):345-405, 1991.

[2] F. Aurenhammer and R.Klein. Handbook of Computational
Geometry, chapter Voronoi diagrams, pages 201-290. Else-
vier, 2000.

[3] N. Carr, J. Hart, and J. Maillot. The solid map: Methods for
generating a 2-d texture map for solid texturing. In Proc.
Western Computer Graphics Symposium, pages 179-190,
2000.

[4] J. Chen and Y. Han. Shortest paths on a polyhedron. In
SCG ’90: Proceedings of the sixth annual symposium on

Figure 7. 7th-nearest diagram, each point is painted ac- Computational geometry, pages 360-369, New York, NY,
cording to its 7th-nearest generalized site. See the associ- USA, 1990. ACM Press.
ated colors in Figure 6. [5] I. Fisher and C. Gotsman. Fast approximation of high or-

der voronoi diagrams and distance transforms on the GPU.
Journal of Graphics Tools, 11(4):39-60, 2006.

[6] M. S. Floater and K. Hormann. Surface parameterization: a
tutorial and survey. In N. A. Dodgson, M. S. Floater, and
M. A. Sabin, editors, Advances in multiresolution for geo-
metric modelling, pages 157-186. Springer Verlag, 2005.

[7]1 K.E. Hoff I11, J. Keyser, M. Lin, D. Manocha, and T. Culver.
Fast computation of generalized Voronoi diagrams using
graphics hardware. Computer Graphics, 33(Annual Con-
ference Series):277-286, 1999.

[8] B.KanevaandJ. O’Rourke. An implementation of Chen and
Han’s shortest paths algorithm. In Proceedings of the 12th
Canadian Conference on Computational Geometry, pages
139-146, 2000.

[9] S. Kapoor. Efficient computation of geodesic shortest paths.

In STOC ’99: Proceedings of the thirty-first annual ACM

symposium on Theory of computing, pages 770-779, 1999.

J. Mitchell. Handbook of Computational Geometry, chapter

Geometric shortest paths and network optimization, pages

thest site. See the associated colors in Figure 6. 633-701. Elsevier Science Publishers B. V., 2000.

[11] J. S. B. Mitchell, D. M. Mount, and C. H. Papadim-
itriou. The discrete geodesic problem. SIAM J. Comput.,
16(4):647-668, 1987.

[12] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spa-
tial Tessellation: Concepts and Application of Voronoi Dia-
grams. John Wiley and Sons, 2000.

[13] C.Sigg, R. Peikert, and M. Gross. Signed distance transform
using graphics hardware. In VIS °03: Proceedings of the
14th IEEE Visualization 2003 (VIS’03), pages 83-90, 2003.

[14] A. Sud, N. Govindaraju, R. Gayle, and D. Manocha. Interac-
tive 3d distance field computation using linear factorization.
In SI3D ’06: Proceedings of the 2006 symposium on Inter-
active 3D graphics and games, pages 117-124, 2006.

[15] A. Sud, M. Otaduy, and D. Manocha. DiFi: Fast 3d distance
field computation using graphics hardware. In Eurograph-
ics, volume 23, pages 557-566, 2004.

[16] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and
H. Hoppe. Fast exact and approximate geodesics on meshes.
ACM Trans. Graph., 24(3):553-560, 2005.

Figure 8. Furthest Voronoi diagram of a set of general- [10]
ized sources. Each point is painted in the color of its fur-

Figure 9. Closest site Voronoi diagram of a set of gener-
alized sources for a polyhedral terrain with obstacles. Ob-
stacles are painted black. Each Voronoi region is painted in
a different color which is associated to its site.

4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007) COMPUTER
0-7695-2869-4/07 $25.00 © 2007 IEEE SOCIETY

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 10:35:57 UTC from IEEE Xplore. Restrictions apply.

