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Abstract 

 

Time series regression models are especially suitable in epidemiology for evaluating 

short-term effects of time-varying exposures on health. The problem is that potential for 

confounding in time series regression is very high. Thus, it is important that trend and 

seasonality are properly accounted for. Our paper reviews the statistical models commonly 

used in time-series regression methods, specially allowing for serial correlation, make them 

potentially useful for selected epidemiological purposes. In particular, we discuss the use of 

time-series regression for counts using a wide range Generalised Linear Models as well as 

Generalised Additive Models. In addition, recently critical points in using statistical 

software for GAM were stressed, and reanalyses of time series data on air pollution and 

health were performed in order to update already published. Applications are offered 

through an example on the relationship between asthma emergency admissions and 

photochemical air pollutants in Madrid for the period 1995-1998, of how these methods are 

employed. 
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1. Introduction 
 

 

In time series regression dependent and independent variables are measured over time, 

and we would like to model the possible relationship between these through regression 

methods. Examples of epidemiological time series studies are the studies of the 

relationship between mortality and air pollution (Katsouyanni et al. 1996, Ballester et al. 

1999, Samet et al. 2000, Katsouyanni et al. 2002a), hospital admissions and air pollution 

(Katsouyanni et al. 1996, Touloumi et al. 2003), mortality from sudden infant death 

syndrome and environmental temperature (Campbell 1994) and atmospheric pressure 

(Campbell et al. 2001), or infectious gastrointestinal illness (Schwartz et al. 1997) and 

mortality (Braga et al. 2001) related to drinking water. However, various methods have 

been used in these analyses, from linear (Hatzakis et al. 1986) to log-linear 

(Mackenbach et al. 1992) and Poisson regression models (Schwartz et al. 1996), and 

recently generalised additive models (Schwartz 1994, Kelsall et al. 1997).  

Time series regression models are especially suitable in epidemiology for 

evaluating short-term effects of time-varying exposures. Typically, a single population 

is assessed with reference to its change over the time in the rate of any health outcome 

and the corresponding changes in the exposure factors during the same period. 

Covariates varying between subjects but not over time, for example sex, cannot 

confound the associations and there are not considered. Furthermore, covariates that 

may also vary within subjects, say sex or smoking habit, but whose daily variation is 

unlikely to vary at same time with the exposure, can be excluded as confounders. The 

problem is that the potential for confounding in time series regression is very high. It is 

important that seasonality and trends are properly accounted for. Many variables either 

simply increase or decrease over time, and so will be correlated over time (Yule 1926). 

In addition many other epidemiological variables are seasonal, and this variation would 

be present even if the factors were not causally related. Simply because the outcome 

variable is seasonal, it is impossible to ascribe causality because of seasonality of the 

predictor variable. For example, sudden infant deaths are higher in winter than in 

summer, but this does not imply that temperature is a causal factor; there are many other 

factors that might affect the result such as reduced daylight, or presence of viruses. 

However, if an unexpectedly cold winter is associated with an increase in sudden infant 

deaths, or very cold days are consistently followed after a short time by rises in the daily 

sudden infant death rate, then causality may possibly be inferred (Campbell 1994).  

The following paper reviews the statistical models which have commonly been 

used in time series regression, specially allowing for serial correlation, which make 

them potentially useful for selected epidemiological purposes. An application of how 

these methods are employed is given by an example on the relationship between asthma 

emergency room admissions and photochemical air pollutants in Madrid (Spain) (Galan 

et al. 2003).  
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2. Regression model for counts 
 

 

In the analysis of epidemiological time series data consisting of counts, the underlying 

mechanism being modelled is a Poisson process with a homogeneous risk λ, i.e. the 

expected number of counts on day t, to the underlying population is assumed. The 

probability of yt occurrences on a given day t is defined by 
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where xt is the column vector of independent variables on day t with regression 

coefficients β and yt is the dependent variable on day t.  

The equation (2) could also be formulated as a Generalised Linear Model (GLM) 

(McCullagh and Nelder 1989), 
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Variance function 

 

( ) ttyV µ=      (4) 

 

The usefulness of Poisson regression in epidemiology is that it provides an 

estimation of the relative risk (RR) as RRi=exp(βi) where βi is the regression coefficient 

associated with a unit increment in a pollutant. 
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3. Misspecification in time series regression 
 

 

3.1. Autocorrelation 
 

A basic assumption of any regression analysis is that observations must be identically 

independently distributed, that is xt and/or yt are not influenced by previous values, say 

for example xt-1 and yt-1, respectively. Dealing with time series data this assumption is 

usually broken. When the dependent variable, yt, is observed over time, usually all the 

independent variables, xt, have a temporal structure. As a consequence, the observations 

of the response have a temporal dependence, probably due to the effect of 

misspecification, for instance omitted variables.  

Figure 1 presents an example where a positively correlated influence causes 

positively autocorrelated residuals. The possible relationship between xt and yt is 

masked by a clear seasonal pattern in yt. When this relationship is isolated there remains 

an autocorrelated structure for the residuals et. In fact, often when confounding factors 

are correctly accounted for, the serial correlation of the residuals disappears; they appear 

serially correlated because of the association with a time dependent predictor variable, 

and so conditional on this variable the residuals are independent. This is particularly 

likely for mortality data, where, except in epidemics, the individual deaths are unrelated.  

However, if the model were correct, the residual autocorrelation should be 

minimal since one death does not cause another. Thus residual autocorrelation maybe 

implies confounding of air pollution associations due to unmeasured or missmodeled 

variables. In fact, if the inclusion of known or potential cofounders fails to remove the 

serial correlation of the residuals, then it is known that the estimation methods does not 

provide valid estimates of the standard errors of the parameters (Campbell 1998). For 

example, analysing the relationship between daily mortality and air pollutants the effects 

of trend, weather and unusual events are not included in such relationship. These 

variables are autocorrelated themselves and consequently the residuals will be 

dependent. In the same way, the relationship between daily mortality and weather 

temperature presents the typical V-shape (Saez et al. 1995). Low environmental 

temperature implies high mortality and very high weather temperature is also related to 

high mortality. Increasing temperature up to a certain point, however, reduces mortality. 

If the regression does not account for this fact positive residuals will be followed by 

other positive residuals and the same event occurs with negative residuals.  

Thus, in time series regression one can often use conventional regression methods 

followed by a check for the serial correlation of the residuals and need only proceed 

further if there is clear evidence of a lack of independence. 
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Figure 1: Inadequately removed trend causing positively autocorrelated errors 

 

 

3.2. Overdispersion 
 

A basic assumption underlying the use of log-linear regression for Poisson distributed 

data is that the variance of the residual distribution is completely determined by the 

mean. In practice, this assumption often fails. This is known as overdispersion.  
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In this case (4) could be replaced by 

 

φµ=)y(V t      (5) 

 

where φ is an scalar capturing the over-dispersion (McCullagh and Nelder 1989). 
 

 

4. Time series regression models for counts 
 

 

4.1.  Marginal and conditional models 
 

A number of authors have distinguished marginal and conditional models (Fitzmaurice 

1998). For a marginal model E(yt)=f(xt,xt-1,...,xt-τ) where the xt's are external time-

varying covariates. This is in contrast to a conditional model in which E(yt)=f(xt,xt-

1,...,xt-τ,yt-1,...,xt-υ), τ≥0, υ≥1, and the past values of the dependent variable are included 

as new predictor variables. It has been argued that marginal models are rather artificial, 

and give unlikely correlation structures. However, they are very useful for modelling 

mean rates in populations. On the other hand, conditional models are useful for 

modelling changes in individuals but are poor at determining relationships between the y 

and x's variables because the parameters are not readily interpretable (Staneck et al. 

1989). 

 

4.2. Transitional models 
 

Brumback et al. (2000) unifies the marginal and conditional extension of the GLM for 

non-Gaussian time series under the heading of Transitional Regression Models (TRM). 

These are non-linear regression models that can be written in terms of conditional 

means and variances given past observations. The term transitional is used rather than 

conditional to emphasise that the outcomes are ordered in time and that the conditioning 

is on past outcomes only, and also to allude to the transitional probabilities of Markov 

models. Rather than specifying the entire probability distributions of the transitions 

between outcomes, the TRM parameterises the transitional means and variances.  

Firstly, the simplest way to deal with those problems is to included lagged values 

of the outcome as covariates in the model; an approach that could be called transitional 

GLM (TGLM) (Brumback et al. 2000)  
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where fj are (known) functions of both, covariates and past responses, and θj denote 

unknown parameters. 
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A slightly more sophisticated approach includes the case of standardised residuals 

of earlier observations as covariates, the GLM with time series errors, GLM with TSE 

(Schwartz et al. 1996) 
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order to avoid for possible overdispersion. 

Comparison between models could be done by using the Akaike Information 

Criteria (AIC) (Akaike 1973) 

 

AIC = D + 2df      (8) 

 

where D denotes the deviance, and df are the degrees of freedom for the model. 

 

4.2. Generalised Additive Models 
 

The Generalised Additive Models (GAM) extends the GLM by fitting non-parametric 

functions (gi below) to estimate the relationships between the response and the 

predictors (Hastie and Tibshirani, 1989) 
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Since these functions are unknown infinite dimensional parameters, we could 

consider estimating them by using natural cubic smoothing splines (Wahba 1990, Green 

and Silverman 1994). The amount of smoothing in the splines, technically the 

approximate degrees of freedom, could be decided by means of the AIC  

A spline with k degrees of freedom for a particular explanatory variable would be 

similar to introducing k dummy variables for the covariate in the model, each one 

corresponding to a time period of n/k, where n is the total number of days (Kelsall et al.  

1997). 

However, GAM models could also be formulated as transitional models (TGAM) 
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or as a GAM with TSE  
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4.3. Exact GAM 
 

While GAM has been the preferred method to model the relationship between health 

outcome time series and exposures, mainly air pollutants and meteorological variables, 

recent reports, however, have questioned the adequacy of its use for time series 

epidemiological studies.  

Dominici et al. (2002) have reported that in the standard case of studies looking 

for the short-term health effects of air pollution where: a) regression coefficients are 

very small and b) adjustment is made for at least two confounding factors using non-

parametric smoothing functions, estimated GAM models using the gam function in S-

Plus (Insightful Corporation, Seattle, WA, USA) may provide biased estimates of the 

regression coefficients and their standard errors. This is due to the original default 

parameters were inadequate to guarantee the convergence of the backfitting algorithm. 

Although the defaults have recently been revised (Dominici et al 2002, Katsouyanni et 

al. 2002b), a remaining and important problem is that S-Plus function gam calculates 

the standard errors of the linear terms by effectively assuming that the smooth 

component of the model is linear, resulting in an underestimation of uncertainty 

(Chambers and Hastie 1992; Ramsay et al. 2003). 

Briefly, an explicit version for the asymptotically exact covariance matrix of the 

linear terms is HWH)ˆ(V 1−′=β  (Hastie and Tibshirani 1990), where 

( ){ } ( )SIWXXSIWXH
1

−′−′=
−

; X is a design matrix; W is diagonal in the final IRSL 

weights; )z(CovW 1 =− ; z is the working response form the final version of the IRLS 

algorithm (McCullagh and Nelder 1989); and S is the operator matrix that fits the 

additive model involving the smooth terms in the model. 

Because calculation of the operator matrix S can be computationally expensive, 

the current version of the S-Plus function gam approximates ( ) 1

aug

'

augWXX)ˆ(V
−

=β ; 

where Xaug is the design matrix of the model augmented by the predictors used in the 

smooth component (Hastie and Tibshirani 1990, Chambers and Hastie 1992). That is to 

say, the asymptotic variance is approximated by effectively assuming that the smooth 

component of the model is linear. In time series studies, the assumption of linearity is 

inadequate, resulting in underestimation of the standard error of the linear term (Ramsay 

et al. 2003). The degree of underestimation will tend to increase with the number of 

degrees of freedom used in the smoothing splines, because a larger number of non-linear 

terms is ignored in the calculations. Here, Dominici et al. (2003) re-define H as 

( ){ } ( )WSXWXWSXWXXH
1

−−′=
−

 and also provide exact details of the calculation 

of an estimate of the asymptotic variance. 
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5. Example 
 

 

5.1. Data 
 

Asthma daily emergency room admissions to the Emergency Ward of the Gregorio 

Marañón University Hospital, was studied for the period 1995-1998. The pollutants and 

analytical methods used were: particulates measured as the daily average of NO2 and 

average of maximum 8-hourly O3 values. Pollution data were obtained from the 

automated network of the Madrid City Comprehensive Air-Pollution Monitoring, 

Forecasting and Information. We used mean temperature and mean relative humidity as 

registered at the Barajas meteorological observatory, situated 8 kilometres north-east of 

the city. Information was also obtained on reported cases of acute respiratory infection 

attended at the Gregorio Marañón Hospital Emergency Ward. Additional details have 

been reported elsewhere (Galán et al. 2003). 

A total of 4,827 asthma emergency room admissions were registered during the 

period 1995-1998, with a daily mean of 3.3 and range of 0-26 emergencies. A total of 

50% of all attacks involved children ages 0-14 years, 25% of whom were under the age 

of five years. The temporal distribution for daily asthma emergency room admissions 

registered a seasonal pattern, with two epidemic peaks occurring in the second fortnight 

of May 1996 and May 1998. NO2 was evenly distributed thorough the year and O3 

showed a strong seasonal component that peaked during the summer months (Figure 2). 

In general, pollution levels remained below the standards proposed by the European 

Community. NO2 and O3 were slightly negatively correlated (r=-0.209).  
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Figure 2: Distribution of asthma emergency room visits and photochemical pollution 

levels in Madrid, for the study period 1995-1998 
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5.2. Parametric modelling 
 

For Poisson regression models we followed a standardised protocol (Katsouyanni et al. 

1996) which has widely been applied in other multicentre studies (Ballester et al. 1999). 

To control for unobserved covariates with a systematic behaviour in time we introduced 

a linear and quadratic trends and dummy variables for each year to control for long 

wavelength trends, sinusoidal terms to control for seasonality and dummy variables for 

week days and public holidays to control for weekly variation. Covariates considered 

were temperature and humidity; and daily reported cases of acute respiratory infection.  

The variables included in the model were chosen individually, on the basis of their 

respective levels of significance, and jointly on the basis of those that minimised the 

AIC criterion. Once the best-fitted core model had been selected with the support of 

Pearson residuals, we then tested for overdispersion using the overdispersion parameter, 

and for residual autocorrelation using the simple (ACF) and partial autocorrelation 

function (PACF) plots. Finally, four models were considered to assess for the 

relationship between asthma emergency room admissions and photochemical air 

pollutants: GLM, GLM corrected by overdispersion, TGLM, and GLM with TSE, where 

the pollutants were next included on a linear basis, with assessment of lags up to the 

fourth order.  

 

5.3. Non-parametric modelling 
 

Following Kelsall et al. (1997), a long wavelength trend and seasonality were fitted 

using by means of a cubic smoothing spline with at least as many degrees of freedom 

(df) as the number of months of the study period, and also dummy variables for week 

days to control for weekly variation. As covariates, daily mean temperature, relative 

humidity and daily cases of acute respiratory infection were fitted using cubic 

smoothing splines, and dummy variables for each day of the week and public holidays. 

The choice of the number of df for each non-parametric smoothing function was made 

on the basis of minimisation of the AIC and of observed residual autocorrelation using 

the ACF and PACF plots, as well as using cross-validation of predicted values.  

Analyses were performed using the S-Plus statistical software. Models considered 

were: standard GAM Poisson using restrictive convergence parameters (convergence 

precision ε=10
-10

, maximum number of iterations M=1000, convergence precision of the 

backfitting algorithm εbf=10
-10

, maximum number of iterations Mbf=1000 of the 

backfitting algorithm), as suggested by NMMAPS (Dominici et al. 2002) and APHEA2 

researchers (Katsouyanni et al. 2002b), as well as exact GAM proposed by Dominici et 

al. (2003). 

 

5.4. Results 
 

Table 1 shows the best-fitted core parametric model using standard GLM Poisson. The 

model included a linear trend, dummy variables for each year, sinusoidal terms up to the 
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sixth order, dummy variables for each day of the week, also for public holidays (work 

and school), linear and quadratic terms for temperature and humidity, and a linear term 

for acute respiratory infections. The best-fitted non-parametric core model using GAM 

(Table 2) included a cubic smoothing spline with 72 degrees of freedom to control for 

trend and seasonality, dummy variables for days of the week and holidays, and cubic 

smoothing splines with 4 degrees of freedom for temperature and 2 degrees of freedom 

for relative humidity and acute respiratory infections (Figure 3).  
 

 

Variable                     β  (se)           t     p-value  

Intercept  -0.484457  (0.315093)   -1.54    0.124  
Linear trend (t)  0.001327  (0.000406)    3.27    0.001  

Sin(1πt/365)    0.470841  (0.057102)    8.25   <0.001  

Cos(1πt/365)    0.429834  (0.058609)    7.33   <0.001  

Sin(2πt/365)   -0.395921  (0.039713)   -9.97   <0.001  

Cos(2πt/365)  -0.079457  (0.030185)   -2.63    0.008  

Sin(3πt/365)    0.385377  (0.030783)   12.52   <0.001  

Cos(3πt/365)  -0.040153  (0.025004)   -1.61    0.108  

Sin(4πt/365)  -0.117199  (0.026511)   -4.42   <0.001  

Cos(4πt/365)    0.032782  (0.023138)    1.42    0.157  

Sin(5πt/365)    0.006746  (0.023997)    0.28    0.779  

Cos(5πt/365)   0.052777  (0.023171)    2.28    0.023  

Sin(6πt/365)    0.094375  (0.023528)    4.01   <0.001  

Cos(6πt/365)   -0.131819  (0.021949)   -6.01   <0.001  
Year

*
   

   1996   -0.211178  (0.155234)   -1.36    0.174  
   1997       -0.955284  (0.298587)   -3.20    0.001  
   1998      -1.262756  (0.446083)   -2.83    0.005  
Day of week

**
 

   Tuesday  -0.109398  (0.053522)   -2.04    0.041  
   Wednesday    -0.091070  (0.053249)   -1.71    0.087  
   Thursday     -0.090088  (0.053300)   -1.69    0.091  
   Friday     -0.189772  (0.054398)   -3.49   <0.001  
   Saturday     -0.170691  (0.055122)   -3.10    0.002  
   Sunday    -0.092082  (0.059069)   -1.56    0.119  
Public holidays  0.085528  (0.073457)    1.16    0.244  
School holidays  0.094939  (0.056308)    1.69    0.092  
Temperature     -0.029304  (0.013279)   -2.21    0.027  
Temperature

2
      0.001642  (0.000466)    3.52   <0.001  

Humidity       0.031888  (0.008820)    3.62   <0.001  
Humidity

2
    -0.000218  (0.000066)   -3.30    0.001  

Respiratory inf.  0.011383  (0.002143)    5.31   <0.001  

φ    1.44 
Deviance  2071.6 
Residual df  1431.0 
AIC   2131.6    
* 
Reference year was 1995 

**
 Reference day of week was Monday  

 

Table 1: Core model regression coefficients (β×10
-4

) and their standard errors (se) 

obtained by a GLM standard Poisson for asthma emergency room admissions 
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Variable           (df)            β  (se)           t     p-value  

Intercept        0.748498  (0.119703)    6.25   <0.001 
s(Trend)    (72)   0.000056  (0.000037)             
Day of week

**
 

  Tuesday    (1)   -0.072072  (0.028243)   -2.55    0.011 
  Wednesday    (1)   -0.016499  (0.016514)   -1.00    0.317 
  Thursday    (1)   -0.005296  (0.011677)   -0.45    0.653 
  Friday     (1)   -0.018646  (0.009294)   -2.01    0.044 
  Saturday    (1)   -0.010223  (0.007733)   -1.32    0.187 
  Sunday     (1)    0.005310  (0.006941)    0.76    0.447 
Public holidays  (1)    0.084349  (0.075463)    1.12    0.262 
School holidays  (1)   -0.105074  (0.047155)   -2.23    0.026 
s(Temperature)  (4)     0.020437  (0.003134)         
s(Humidity)    (2)     0.000981  (0.001269)         
s(Respiratory inf.)(2)    0.010488  (0.002074)         

φ    1.05 
Deviance   1713.2 
Residual df  1372.6 
AIC   1888.1  
*
 Convergence parameters: precision ε=10-10, maximum iterations 

M=1000, precision of the backfitting algorithm εbf=10
-10

, maximum 
iterations Mbf=1000 of the backfitting algorithm

 

**
 Reference day of week was Monday 

 

Table 2: Core model regression coefficients (β×10
-4

) and their standard errors (se) 

obtained by a GAM* standard Poisson for asthma emergency room admissions 
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Figure 3: Non-linear functions for covariates (trend, temperature, humidity and acute 

respiratory infections) in the core model obtained by GAM standard Poisson 
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Figure 4 compares the estimated seasonal pattern using the parametric model and 

the nonparametric smooth. The parametric model has the same behaviour each year. 

There is was a single peak of emergency admissions in each spring, and was a shoulder 

in the summer of each year. The nature of the sinusoidal functions forces the peak to 

occur either every year or not at all. The non-parametric model allows the spring-to-

summer difference to change from year to year, which it clearly did in this case. It also 

shows a high peak capturing the asthma epidemic excesses on the second fortnight in 

May 1996. The parametric core model showed overdispersion (φ=1.40) as well as 

residual autocorrelation of almost first order (Figure 5). The non-parametric core model 

reduced the overdispersion (φ=1.05) and did not show residual autocorrelation (Figure 

5). 
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Figure 4: Fitted daily asthma emergency room admissions using a parametric modelling, 

based on a linear term and sinusoidal terms up to sixth order (top), versus a non-

parametric smooth (bottom) 
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ACF for GLM standard Poisson core model
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ACF for GAM standard Poisson core model
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Figure 5: Autocorrelation and partial autocorrelation functions for the core model 

residuals obtained by GLM and GAM standard Poisson 

 

After core models were best-fitted, both photochemical pollutants were next 

included on a linear basis, under different models: GLM standard Poisson, GLM 

corrected by overdispersion, TGLM and GLM with TSE allowing for first order 

autocorrelation and also for overdispersion, GAM standard Poisson, and exact GAM. 

For any of these, the lag that describes the strongest association with asthma emergency 

room admissions was the lag of 3 days for NO2, and the lag of 1 day for O3. 

Furthermore, statistically significant associations were observed in the structure of 

fourth-order lags for NO2, and current-day lag, and second- and fourth-order lags for O3.  

Table 3 sets out the results by means of multi-pollutant models including jointly 

best lags of NO2 and O3. Although regression coefficients did not differ substantially 

between parametric models −GLM, TGLM, and GLM with TSE−, being highly 

statistical significant (p<0.001), standard errors were considerable increased when 

overdispersion was allowed for. Allowing for both autocorrelation of first order and 

overdispersion, by using TGLM or GLM with TSE, the model goodness of fit in terms 

of deviance and AIC was improved, and also the residual autocorrelation was reduced 

(Figure 6). Therefore, both models provided similar estimates. Looking at the non-

parametric method, GAM models again showed neither residual autocorrelation (Figure 

6) nor overdispersion (φ=1.09) after including both air pollutants in the model. Even 

though regression coefficients for NO2 and O3 still were statistical significant (p=0.002 

and p=0.003, respectively), but their magnitude were reduced as well as their standard 

errors. In terms of deviance and AIC, the GAM model provided lower values than 

previous models based on GLM. When standard errors were corrected using an exact 

GAM procedure, estimates for both pollutants were now marginally significant 

(p=0.058 and p=0.091). 
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ACF for GLM standard Poisson
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ACF for TGLM, AR(1)
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ACF for GLM with TSE, AR(1)
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Figure 6: Autocorrelation and partial autocorrelation functions for the final model 

residuals obtained by GLM standard Poisson, TGLM, GLM with TSE, GAM standard 

Poisson and exact GAM 
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Air pollutant NO2 (lag 3)  O3 (lag 1)      

Model β (se) p-value  β (se) p-value  φ Dev.† Res.df‡ AIC 

 

GLM  

Standard Poisson 

Corrected by 

overdispersion 

 

 

 

3.329 

3.329 

 

 

 

(0.858) 

(1.014) 

 

 

 

<0.001 

<0.001 

  

 

4.417 

4.417 

 

 

(1.150) 

(1.360) 

 

 

<0.001 

<0.001 

  

 

1.40 

 

 

2041.9 

 

 

1426 

 

 

2105.8 

 

TGLM* 

AR(1) 

 

 

3.423 

 

(1.009) 

 

<0.001 

 

  

4.284 

 

(1.355) 

 

0.002 

   

2020.4 

 

1425 

 

2084.4 

GLM with TSE* 

AR(1) 

 

 

3.407 

 

(1.009) 

 

<0.001 

  

4.302 

 

(1.354) 

 

0.002 

 

   

2020.6 

 

1425 

 

2084.6 

GAM** 

Standard Poisson 

Exact 

 

2.628 

2.628 

 

 

(0.086) 

(1.392) 

 

0.002 

0.058 

  

2.869 

2.869 

 

 

(0.096) 

(1.701) 

 

 

0.003 

0.091 

  

1.09 

 

 

1706.5 

 

1367 

 

 

 

1887.5 

† Deviance, ‡ Residual degrees of freedom 
* Also corrected by overdispersion 
** Convergence parameters: precision ε=10-10, maximum M=1000,  precision of the backfitting algorithm εbf=10-10, maximum 

iterations Mbf=1000 of the backfitting algorithm.  

 

Table 3: Comparison of regression coefficients (β×10
-4

) and their standard errors (se) for 

photochemical air pollutants, NO2 and O3, obtained using different regression models 
 

 

6. Discussion  
 

 

We have presented the statistical models commonly used to evaluate the short-term 

effects of environmental factors, mainly air pollution, on health. As we showed, when 

using time series regression for counts, it is important to account properly for both 

autocorrelation and overdispersion. Consequently, seasonality is an important issue 

when dealing with time series regression. Methods for seasonal adjustment could be 

based in a parametric approach using a combination of trend and sinusoidal terms, or 

through a non-parametric smoothing technique. The parametric modelling presented a 

more rigid approach forces the same seasonal pattern to repeat each year. The non-

parametric smoothing technique, using GAM, allowed more flexibility in the control of 

seasonality, as well as other potential confounders, as was showed in Figure 3. 

The GLM standard Poisson model did not control adequately for autocorrelation 

or overdispersion, and underestimated the standard errors of the estimates. Other 

parametric models which allow for overdispersion and autocorrelation, TGLM and 

GLM with TSE, did not differ substantially being in agreement with those previously 

reported. Although residual autocorrelation was low, what remains was probably due to 

inflexible control of seasonality. The GAM applied here did not show residual 

autocorrelation as well as reduced overdispersion, and generally lead to lower regression 

coefficients of asthma emergency room visits with higher concentrations of NO2 and O3. 
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Standard errors were also reduced using GAM in comparison with those models which 

control for seasonality using a parametric method. This fact has usually been justified by 

the fact that the residual autocorrelation was removed by using a non-parametric 

smoother of time. But when a GAM exact method was used, standard errors were 

considerably increased, being closer to those provided by the parametric autoregressive 

models, TGLM and GLM with TSE. 

Alternative models, that we do not discuss further, have also been applied in the 

analysis of epidemiological time series. Probably the most common choice has been the 

Box-Jenkins methodology, through transfer function modelling (Box and Jenkins 1976). 

This methodology has traditionally been used for forecasting applications in economics. 

These models are very useful to describe changes over time, but the advantage of 

regression methods in epidemiology over Box-Jenkins methodology is that regression 

methods are more flexible. Box-Jenkins methods only can be applied to data with an 

underlying normal structure. Box-Jenkins models are built with the aim of prediction 

and use transformations in the dependent variables which turn the regression parameters 

non-interpretable in an epidemiological manner. Moreover, the use of regression 

methods enables the researcher to address for more specific hypotheses common to 

epidemiology, such as dose-response curves, threshold models, interactions, cumulative 

effects, or even effect modification. Also interpretation of the results from a regression 

model for counts is more familiar and straightforward for the epidemiologist in terms of 

relative risks. However, Box-Jenkins models have also been applied in air pollution 

(Diaz et al. 1999) and temperature studies (Saez et al. 1995). It has also been showed 

that it results did not differ from regression methods when the health outcome is non-

normally distributed, like hospital or emergency room admissions (Tobías et al. 2001). 

Independently of the statistical model used, there are different interpretations of  

time series when the outcome is mortality or something like admissions to hospital 

which can occur more than once. The fundamental difficulty is that the analysis can only 

examine short term effects. Let us imagine a data set in which deaths or hospital 

admissions were evenly spread throughout the week, and also suppose that through a 

clerical error, deaths which occurred before midday on Saturday were included in 

Friday’s total. Then Friday would have 50% more deaths than the average, and Saturday 

50% less. In any time series regression model, the risk for Friday would appear as 1.5, 

and is likely to be highly significant. However, the overall death rate is unaffected. In air 

pollution studies, it may be that the air pollution hastens deaths or hospital admissions 

in susceptible individuals by one day. This is known as harvesting (Zeger et al. 1999, 

Schwartz 2000). So, although the risk is high, the effect in terms of person-years lost in 

the community is likely to be very low. Thus it is important to appreciate that a 

significant risk is not necessarily an important one from a public health view point. To 

examine long term effects one has to compare communities which are standardised for 

the main risk factors such as age, sex and race, but have different levels of pollution 

(Kunzli et al. 2001). Of course, historical levels of pollution also need to be considered, 

because it is likely that it will have effect which may take years to become evident.  
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Another difficulty is that the effect may take several days to build up. If deaths 

occur in the early evening, they may be attributed to the following day. Thus one should 

examine lagged effects of the pollutant. This means that the risk of a particular pollutant 

should be attributable to a particular day. It can be difficult to compare cities if the lag 

structure of the models is different (Samet et al. 2000, Katsouyanni et al. 2002). A 

further problem is in separating out the effects of different pollutants. Most are very 

highly correlated, and it is very difficult to disentangle which are the important ones. 

Statistical solutions are usually somewhat of a compromise. However, this is a highly 

political area, because different pollutants have different sources, such as from cars, 

lorries or industry, and blaming one pollutant at the expense of the others requires very 

strong evidence from the data, and this is usually lacking. 

We have showed that different models lead to different estimates. Care is needed 

in their interpretation, and careful reporting so it is clear how variables have been 

modelled. In this context, GAM presents the best model fit in terms of absence of 

autocorrelation and reduction of overdispersion, leading to more efficient estimates. 

Moreover, GAM can be useful to suggests functional forms for the parametric 

modelling, or for checking an existing parametric model for bias. Thus, we venture to 

suggest the use of GAM methods in the modelling of epidemiological time series. 
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