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1. Introduction

Nonpoint source pollution problems are characterized by the fact that it is either

impossible to observe the emissions or their observation is prohibitively expensive.

As a result, alternative instruments to a Pigouvian tax on the emissions such as

an ambient tax were proposed to correct this kind of externalities (Segerson 1988;

Cabe and Harriges 1992). However, the application of this tax in practice is highly

questioned (Horan and Shortle 2001) as there is, among other reasons, no direct

relationship between individual behavior and the amount of the ambient tax. Other

approaches utilize the amount of applied input as a proxy of the unobservable emis-

sions within the framework of a principal agent model (Shortle and Dunn 1986; Dosi

and Moretto 1993; Dosi and Moretto 1994). Yet, the amount of the purchased input

is a poor approximation of the real emissions (Shortle and Abler 1998). In order to

relate input use and emissions more precisely, it would be necessary to have complete

information about the amount of input applied at a particular location, the way the

input is applied, and to which activity it is applied. In order to elicit this information

we propose the application of a deposit refund system. In the previous literature,

it consists of a tax on the pollutant and the payment of a subsidy (refund) for the

correct elimination of the pollutant. In contrast to the previous literature (Sigman

1998; Kolstad 2000), where a pollutant was analyzed, we apply this approach to a

polluting input and a contaminating byproduct. Additionally we incorporate space

to take account of the spatial heterogeneity of the land. The consideration of space,

for instance in the form of a site vulnerability index, allows for the creation of a

more precise relationship between the input use and the resulting emissions that

reach the receptor, i.e. the place where environmental damage occurs.

Our proposal for the management of nonpoint source pollution is based on the

figure of an authorized firm that provides the service of a correct1 application of con-

taminating inputs with respect to its form and quantity. The authorized firm issues

a certificate to the firm that commissioned its services. The certificate issued by the

authorized firm allows observation of the correct application of the contaminating

inputs. The incorrect application, however, cannot be observed.

Given this context we derive first the socially optimal distribution of produc-

tion activities over space and their socially optimal intensity, i.e. the solution of

the regional planner’s decision problem. Due to the unobservability of the emis-

1Hereafter, we use the expressions “correct application” versus “incorrect application” to indi-
cate that inputs are applied with more versus less guarantees to avoid emissions, i.e., the correct
amount of inputs is applied and the inputs are applied such that emissions are minimal.
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sions that reach the final receptor or due to the presence of asymmetric information

with respect to the amount and the way of the application of the contaminating

input, a policy that replicates the first-best outcome is not available. Therefore,

a second-best policy based on a voluntary deposit refund system is proposed. The

parameterization of space, based on site vulnerability, allows for targeting the policy

site-specific, i.e., the deposit refund system is site-specifically differentiated.

Unfortunately, the introduction of spatially differentiated taxes gives rise to the

possibility of arbitrage and thus a black market may emerge. To avoid black markets

we propose ex ante uniform taxes and ex post spatially differentiated tax reductions,

for instance in conjunction with the income tax.

Once we have obtained the optimal distribution of production activities over

space and their socially optimal intensity we take account of the fact that many pol-

lutants accumulate over time. Therefore, we introduce time into our spatial model.

In order to obtain the socially optimal solution over space and time we employ

a further developed optimization procedure in two stages, initially introduced by

Goetz and Zilberman, 2000. This procedure enables an analysis of how the socially

optimal spatial distribution of production activities and their corresponding optimal

intensity develop over time. Given this knowledge we can design an intertemporally

and spatially optimal deposit refund system.

This paper is organized as follows. In section 2 we introduce the concept of

space based on certain characteristics of the land. Based on this concept, in section

3 we present our spatial economic model and in section 4 we study the case of

asymmetric information where we propose a deposit refund system. In section 5 the

intertemporal aspects of the problem are introduced. The paper closes out in section

6 with some conclusions.

2. The concept of space

We suppose that in a given region Ω, some production activities causing pollution

take place. Region Ω reflects the origin of direct emissions of pollution and/or the

space where emissions convert into a pollutant that accumulates at a receptor located

in the region (for example, in the case of surface or underground water pollution, Ω

would represent underlying watershed). In order to have a more tractable model and

to concentrate on the proposal of a deposit refund system, we consider the case in
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which there is only one pollutant.2 Since the pollutant accumulates at the receptor

it will be necessary to consider time explicitly.

In our work we first concentrate on the spatial aspect in order to analyze the

repercussion of space in the determination of ambient policies.

We start from the idea that region Ω can be represented by a line that starts at

point 0, the urban center, and ends at point α, the limit of the region. Each location

is identified by α, α ∈ [0, α]. In order that variable α be sufficient to parameterize

region Ω, we employ several variables of interest such as geophysics, topography and

hydrology. In this way α can be interpreted as a georeferenciated index and not only

as a form of coordinates. Thus, our index is a function from Rn to R, where n is the

amount of variables of interest, and R is the real line. For example, α can represent

a land classification system that collects the relevant characteristics of each location

with respect to the pollution process at the receptor. Thus, space is not introduced

in the form of a standard parameterization but in the form of a parameterization of

the site vulnerability of each location within the considered region. Site vulnerability

captures the extent to which the application of a contaminating input leads to an

increase in the concentration of a contaminant at the receptor.

All the economic transactions in the region except production activities take

place at the urban center where extension collapses at a single point since it is small

relative to the total region. Production activities generate emissions of a single

pollutant that accumulates at a receptor that is located in the urban center (at

α = 0). The land outside the urban center is exclusively dedicated to production

activities. The emphasis in our model is on consumers that live in the urban center,

and are therefore affected by the pollutant at the receptor, versus the ones that live

outside the urban center. This is based on the hypothesis that there are many more

consumers living inside the urban center than outside.

Moreover, the different productive activities are part of a competitive system

where changes in regional production or changes in regional demand for inputs do

not affect the production or input prices of the competitive system. In other words,

they are exogenously given within our model.

To reduce the complexity of the analysis, we concentrate on the emissions that

reach the receptor (as in Hochman, Pines and Zilberman, 1977). That is, we consider

final emissions, accepting that part of the emissions in the origin are lost (absorbed,

decomposed or solidified) before they reach the receptor.

2The results with two or more pollutants would strongly depend on the existing interactions
between the different pollutants. Thus, we would obtain very specific results for each particular
case.
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Given this situation, we determine the optimal location of different production

activities in the region. For this end, we suppose that a regional planner maximizes

net actual benefits from the different agricultural activities, taking into account that

an environmental standard with respect to the emissions of the pollutant that reach

the receptor, should not be exceeded.

However, the optimal allocation of the production activities over space is only

the first stage of our optimization process over space and time. The regional plan-

ner’s maximal net benefit is then reflected by a value function that depends on the

optimal value of the decision variables and the exogenously defined parameters, for

instance, the environmental standard with respect to the emissions of the pollutant

that reach the receptor. Precisely this parameter becomes the decision variable in

the second stage. This procedure, described in more detail by Goetz and Zilberman

(2000) and Goetz and Zilberman (2002), allows the spatial and intertemporal opti-

mization processes to split into two consecutive stages, enabling the obtainment of

an analytical solution more easily.

3. The spatial economic model

According to the separation of the spatial and intertemporal optimization procedure

we start out with the first stage where we optimize over space. For the sake of

concreteness the production process is given by production activities with an infinite

number of agents, say farmers. Each farmer cultivates at a given location α, where

α is the parameterization of the region Ω, the total region for cultivation. Let L

denote the number of hectares of arable land in Ω. Since our parameterization of

space permits that not only a single point, but also a subarea of Ω corresponds to

a location α, the size of a given location α in relation to the size of the region Ω is

captured by the density function g(α) with
α∫
0

g(α)dα = 1. Thus, for each α, g(α)L

denotes the number of hectares of arable land at location α. The support of g is

the interval [0, α]. In the discrete case, g(α) denotes the proportion of Ω associated

with each α.

Without loss of generality, we suppose that only a single farmer cultivates at a

given location α and that there are two agricultural activities i, i = 1, 2 related to

crop production, for instance the cultivation of wheat and corn.3 The share of land

3Considering more than one farmer cultivating in α would complicate the analysis without
obtaining any additional insight for the problem posed. If m > 1 farmers cultivate in α, the

functions gs(α) defined for each farmer s = 1, ...,m satisfy
m∑

s=1
gs(α) = g(α).
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utilized for the cultivation of crop i at the location α is denoted by δi(α) ∈ [0, 1]

where
2∑

i=1

δi(α) ≤ 1. The production of each crop per hectare is given by the function

ϕ (xi(α) + yi(α), α; βi), where xi(α) and yi(α) are the only inputs considered; they

denote the amount per hectare of mineral fertilizer and the amount per hectare of

organic fertilizer applied at location α to crop i, i = 1, 2, respectively. We suppose

that ϕ presents constant returns to scale with respect to the size of the cultivated

area. The production function is site-specific and therefore crop yields vary with

location α. The parameter βi presents a productivity index specific for each crop i.

The fixed costs per hectare associated with the cultivation of crop i are denoted

by ki, i = 1, 2, which stand for the annualized capital investment costs. We assume

that the production function ϕ(·; βi) is differentiable in xi, yi and α. Applying the

chain rule we denote the derivative of ϕ with respect to either xi or yi by ϕ′, which

is usually positive but very high amounts of fertilizer may lead to negative marginal

productivity. Moreover, ϕ is concave with respect to fertilizer, that is, ϕ′′ < 0.

The farmer at location α has also the possibility to keep livestock. The benefits

and costs of livestock at location α are denoted by h(y (α)) and z(y (α)), respectively,

where y (α) indicates the amount of manure per hectare of arable land at α (which

is equivalent to the stocking rate). Let us denote by h′(y (α)) and z′(y (α)) their

derivative with respect to y. A one to one relationship exists between manure and

the amount of animals. However, since we are interested in manure as a fertilizer as

well as a source of water pollution we have opted to express the amount of animals

in terms of manure. Farmers either use manure as organic fertilizer or if an excess

exists, they dump it. Let ye(α) denote the amount of manure in excess of organic

fertilizer per hectare of arable land at α. The per hectare manure balance condition

for the farm is given by:

ye(α) = y(α)−
2∑

i=1

δi(α)yi(α) for any α ∈ [0, α] .

Moreover, the use of fertilizer is not only productive but also leads to emis-

sions that are captured by two different emission functions. For mineral fertilizer

applied to crop i at location α the final emission function per hectare is given by

φ (xi(α), α; γx
i ) and reflects the final emissions due to the use of mineral fertilizer

that reaches the receptor located in the urban center. Organic fertilizer applied to

crop i at location α leads to the emission function φ (yi(α), α; γy
i ) and denotes the

magnitude of the emissions per hectare due to the use of organic fertilizer with site

quality characteristics α that reaches the receptor. We assume that φ (xi(α), α; γx
i )

and φ (yi(α), α; γy
i ) are differentiable in xi(α), α and in yi(α), α, respectively. We
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denote their partial derivatives with respect to xi and yi by φxi
(xi(α), α; γx

i ) and

φyi
(yi(α), α; γy

i ), respectively, which we assume positive. Parameters γx
i and γy

i ,

i = 1, 2 denote a pollution index which captures the relationships between the

amount of emissions and the amount per hectare of mineral or organic fertilizer ap-

plied in the production process, respectively. The dumping of excess manure leads to

the emission function per hectare φ
(
ye(α), α; γye)

, whose partial derivative with re-

spect to ye is denoted by φye

(
ye(α), α; γye)

and where for all i = 1, 2, φ
(
ye, α; γye)

>

φ (yi, α; γy
i ), for all ye = yi.

For all α, let pi(α) and ωi(α) denote the output and mineral fertilizer prices,

respectively, that are faced by the farmer located at α. We suppose that for all

α > 0, pi(α) and ωi(α) differ from pi(0) and ωi(0) only by the transportation costs

that are taken care of by the farmer with p′i(α) < 0 and ω′
i(α) ≥ 0.4 Thus, we rewrite

prices as pi(α) ≡ pi (ς(α)) and ωi(α) ≡ ωi (ς(α)) where ς(α) is a function that takes

only distance into account and no other variables of the land classification system.

We also consider the application costs of each type of fertilizer xi, yi, for each crop

i = 1, 2. They are defined by cxi (xi) and cyi (yi). We denote their derivatives with

respect to xi and yi by cx′i (xi) and cy′i (yi), respectively.

Let cy
e
(ye) denote the costs of dumping of excess manure and by cy

e′(ye) its

derivative with respect to ye. We suppose that cy
e
(ye) satisfies that for all i = 1, 2,

cy
e
(ye) < cy(yi) for any ye = y1 = y2. For the sake of concreteness we assume that

the single pollutant is given by nitrate NO−
3 .

Given this setup and taking into account an environmental standard that in-

troduces an upper limit on the concentration of the pollutant at the receptor, the

decision problem of the regional planner, say problem (R), consists in determining

the optimal values for xi(α) and yi(α), in selecting δi(α) the optimal activity itself

together with its scale, and in choosing the optimal scale of husbandry y(α) in order

to maximize the net benefits of the agricultural and livestock activities.

The solution of the decision problem of the regional planner allows for the design

of environmental policies that induce individuals to behave optimally from a regional

perspective by correcting the optimal intensity and the choice of the type and scale

of the activity. See the appendix for details of the solution of problem (R) and

possible environmental policies under the assumption of full information.

In contrast to the regulator, farmers do not take into account pollution at the

receptor. To correct for this negative production externality, market intervention is

required. Pigouvian taxes on emissions at the origin were considered insufficient to

4With respect to labor we assume that the labor requirements of the activities are predominantly
met by the members of farm households.
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correct the externality (see Henderson, 1977, Hochman and Ofek, 1979, and Tomasi

and Weise, 1994). Hochman and Ofek (1979) show that an adequate tax should

equal the aggregate of the spatially differentiated marginal damage at each location

α. Like Hochman and Ofek (1979), Goetz and Zilberman (2002) introduced a final

emissions function that relates the amount of a polluter at the urban center with

the farmer’s emissions at each location α.

In this way, the Pigouvian tax on the final emissions at the receptor is able to

determine the optimal allocation of the use of land and fertilizers. However, since

this tax is imposed on final emissions at the receptor it is constant through space, i.e.

it is not spatially differentiated. Yet, these policies are not implementable because

of the required information. As an alternative, input taxes (nitrogen tax) have been

proposed. However, as shown in the appendix and by Goetz and Zilberman (2002)

input taxes alone are not able to establish the social optimum. They need to be

complemented by land-use taxes that, depending on the curvature of the emission

function, are either positive (tax) or negative (subsidy), in order to achieve the

socially optimal outcome.

While the land-use can be observed easily by the regulator, the amount of input

applied to each crop cannot be observed easily. Thus, the presence of asymmet-

ric information impedes that input taxes are able to establish the socially optimal

outcome.

The literature has not yet developed a widely accepted solution to the problem

of the optimal regulation of nonpoint source pollution.5 All previous approaches

share the fact that they do not take into account the way the contaminating inputs

are applied. To a great extent it is not only the amount of input which is responsible

for emissions but also the way the input is applied.

In order to give farmers incentives to reveal information about the correct appli-

cation of the inputs with respect to the amount and the method of its application, we

propose a deposit refund system that is presented formally in the following section.

This approach is new to the literature of the optimal management of nonpoint source

pollution. Sigman (1998) and Kolstad (2000) previously applied this approach in the

literature to regulate a pollutant directly. In contrast, the analysis presented in this

paper applies this approach to regulate a contaminating input and a contaminating

byproduct with respect to the applied amount and the method of its application

taking the spatial heterogeneity of the land into account. The correct application

of the input has to be done by an authorized firm that certifies the amount of in-

5For a discussion of the advantages and disadvantages of the different existing approaches see
Shortle and Abler (1998).
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put applied, and the correct form of its application for a particular crop at a given

location. For example, certain farmers or special firms may have been approved by

the authorities to apply mineral and/or organic fertilizers. Moreover, the authorized

firm issues a document that certifies the correct application of the input with respect

to its form and quantity. In order to provide incentives to apply fertilizers correctly,

the regulator gives a subsidy to reward the correct application. Farmers are only

entitled to enjoy the subsidy if they present the certificate of the authorized firm to

the regulatory body. In this way, the regulator can observe the correct application

of the farm’s fertilizers. The subsidy corresponds to the net savings of the social

costs of correct versus incorrect application. The regulator can derive the remaining

part of fertilizers that has not been applied correctly by observing the total amount

of fertilizers purchased and the total amount of manure generated at location α.

To reflect the social costs of the incorrect application of the fertilizer, a tax needs

to be introduced. As the net savings of the social cost for the correct application

are reimbursed via the subsidy, this tax is imposed on all fertilizers independently

whether they have been applied correctly or incorrectly.6

4. Site-specific deposit refund system

In this section we depart from the spatial economic model previously discussed.

The amount per hectare of mineral fertilizer applied correctly by an authorized firm

to crop i at location α is denoted by xa
i (α). Similarly, the amount per hectare of

mineral fertilizer applied to crop i by the farm itself at location α is denoted by

xf
i (α). Thus, xi(α) = xa

i (α) + xf
i (α) is the total amount per hectare of mineral

fertilizer applied at location α. The price per unit of mineral fertilizer at location α

is ωi(α). The price of the fertilizer is independent of whether the input is applied

correctly by an authorized firm or not.

For location α, the authorized firm charges cax
i (xa

i (α)) for the correct application

of xa
i (α).7 Likewise, the application of xf

i (α) by the farm leads to application costs

6Alternatively to a voluntary deposit refund system, one could think of an obligatory program
where farmers are obliged to contract the services of an authorized firm. However, this solution
would not be efficient since the externality caused even by the correct application is not internalized
in the farmers’ decision process.

7In order to concentrate on the proposal of a deposit refund system we assume that the net
benefits of the authorized firm are zero at each period and that the farm costs do not depend on
the demand by the farmers.
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of cfx
i

(
xf

i (α)
)
, with cax

i (xa
i ) > cfx

i

(
xf

i

)
for each crop i, i = 1, 2 for every xa

i = xf
i .

Similarly, cay
i (ya

i (α)) and cfy
i

(
yf

i (α)
)

indicate the application costs of organic fertil-

izer for crop i at location α by an authorized firm or by the farm itself, respectively,

with cay
i (ya

i ) > cfy
i

(
yf

i

)
for each crop i, i = 1, 2 for every ya

i = yf
i . All cost functions

are costs per hectare. For any k = a, f , we denote their derivatives with respect to xk
i

and yk
i by ckx′

i (xk
i ) and cky′

i (yk
i ), respectively. Thus, the per hectare production func-

tion now reads as ϕ
(
xa

i (α) + xf
i (α) + ya

i (α) + yf
i (α), α; βi

)
. As before, by the chain

rule we denote the derivative of ϕ with respect to either xa
i , x

f
i , y

a
i , or yf

i by ϕ′, which

is usually positive but very high amounts of fertilizer may lead to negative marginal

productivity. Moreover, ϕ is concave with respect to fertilizer, that is, ϕ′′ < 0. The

emission function can now be differentiated according to the type and form of the

application of the fertilizer. For mineral fertilizer applied to crop i at location α

by an authorized firm the final emission function is given by φ (xa
i (α), α; γax

i ), and

by φ
(
xf

i (α), α; γfx
i

)
if the mineral fertilizer is applied by the farm itself. Organic

fertilizer applied by an authorized firm to crop i at location α leads to the emission

function φ (ya
i (α), α; γay

i ), and to φ
(
yf

i (α), α; γfy
i

)
if the farm applies the organic

fertilizer itself. For any k = a, f , we denote their partial derivatives with respect to

xk
i , and yk

i by φxk
i

(
xk

i (α), α; γkx
i

)
and φyk

i

(
yk

i (α), α; γky
i

)
, respectively. These emis-

sion functions satisfy φxf
i
(·), φxa

i
(·) ≥ 0, and φ

(
xa

i , α; γax
i

)
< φ

(
xf

i , α; γfx
i

)
for any

xa
i = xf

i , and φyf
i
(·), φya

i
(·) ≥ 0, and φ

(
ya

i , α; γay
i

)
< φ

(
yf

i , α; γfy
i

)
for any ya

i = yf
i .

In this new framework, the manure constraint per hectare is given by

y(α) = ye(α) +
2∑

i=1

δi(α)
(
ya

i (α) + yf
i (α)

)
for any α ∈ [0, α] .

The spreading of ye(α), the amount of excess manure dumped per hectare of arable

land, leads to the emission function φ
(
ye, α; γye)

whose partial derivative with re-

spect to ye is denoted by φye

(
ye(α), α; γye)

and such that for all i = 1, 2, φ
(
ye, α; γye)

>

φ
(
yf

i , α; γfy
i

)
for all ye = yf

1 = yf
2 . Let cy

e
(ye(α)) denote the costs of spreading the

excess manure and by cy
e′(ye(α)) its derivative with respect to ye. We suppose that

for all i = 1, 2, cy
e
(ye) < cfy

i (yf
i ) for any ye = yf

i .

Given this setup and taking into account that the regulator has imposed an

environmental standard, the decision problem of the regional planner from now on
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referred to as (RA) is given by

max
{xk

i (α),yk
i (α),y(α),ye(α),δi(α)} i=1,2

k=a,f

α∫
0

{
2∑

i=1

δi(α)
[
pi(α)ϕ

(
xa

i (α) + xf
i (α) + ya

i (α) + yf
i (α), α; βi

)
−

−ki − ωi(α)(xa
i (α) + xf

i (α))− cax
i (xa

i (α))− cfx
i

(
xf

i (α)
)
− cay

i (ya
i (α))−

cfy
i

(
yf

i (α)
)]}

g(α)Ldα+

α∫
0

{
h(y(α))− z(y(α))− cy

e

(ye(α))
}
g(α)Ldα (RA)

subject to

z0 ≥
α∫

0

{
2∑

i=1

δi(α)
[
φ (xa

i (α), α; γax
i ) + φ

(
xf

i (α), α; γfx
i

)
+ φ (ya

i (α), α; γay
i ) +

+φ
(
yf

i (α), α; γfy
i

)]
+ φ

(
ye(α), α; γye)}

g(α)Ldα, (PC-RA)

ye(α) ≡ y(α)−
2∑

i=1

δi(α)
(
ya

i (α) + yf
i (α)

)
for any α ∈ [0, α] , (MC-RA)

xa
i (α) · g(α)L ≥ 0, xf

i (α) · g(α)L ≥ 0, ya
i (α) · g(α)L ≥ 0, yf

i (α) · g(α)L ≥ 0,

δi(α) · g(α)L ≥ 0, for i = 1, 2; y(α) · g(α)L ≥ 0, ye(α) · g(α)L ≥ 0, and(
1−

2∑
i=1

δi(α)

)
· g(α) ≥ 0 for any α ∈ [0, α] . (LULC-RA)

In order to solve this problem we substitute ye(α) by y(α)−
2∑

i=1

δi(α)
(
ya

i (α) + yf
i (α)

)
as defined in the manure constraint (MC-RA).8 We define the Lagrangian function

L1 where we introduce the multipliers µ, λ2, ξ
kx
i , ξky

i , ξδ
i , ξ

y and χ for i = 1, 2 and

for k = a, f . The multiplier µ is associated with the pollution constraint (PC-RA),

while all other multipliers (ξkx
i , ξky

i , ξδ
i , ξ

y, λ2 and χ for i = 1, 2 and for k = a, f)

are related with lower and upper limit constraints (LULC-RA).

The argument α of the variables/functions xk
i , y

k
i , y, δi, pi, ωi, g and of the

Lagrange multipliers will be omitted in order to simplify notation. The Lagrangian

is therefore given by

8In what follows, for sake of simplicity, we will use the notation ye if no ambiguity arises.
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L1 =

α∫
0

2∑
i=1

δi

[
piϕ(xa

i + xf
i + ya

i + yf
i , α; βi) −

−ki − ωi(x
a
i + xf

i )− cax
i (xa

i )− cfx
i

(
xf

i

)
− cay

i (ya
i )− cfy

i

(
yf

i

)]
gLdα+

+

α∫
0

[
h(y)− z(y)− cy

e

(ye)
]
gLdα+

+µ

z0 −
α∫

0

{
2∑

i=1

δi

[
φ (xa

i , α; γax
i ) + φ

(
xf

i , α; γfx
i

)
+ φ (ya

i , α; γay
i ) +

+φ
(
yf

i , α; γfy
i

)]
+ φ

(
ye, α; γye)}

gLdα
]

+

+

α∫
0

{
2∑

i=1

[
ξax

i x
a
i + ξfx

i xf
i + ξay

i y
a
i + ξfy

i y
f
i + ξδ

i δi

]
+

+χ

(
1−

2∑
i=1

δi

)
+ ξyy + λ2y

e

}
gLdα.

We assume both that there exists a unique solution of this problem and that

g(α) > 0 for all α. Then, the solution has to comply with the following conditions

at every location α, α ∈ [0, α]:

L1
xk

i
= δi

(
piϕ

′
(
xa

i + xf
i + ya

i + yf
i , α; βi

)
− ωi − ckx′

i (xk
i )− µφxk

i

(
xk

i , α; γkx
i

))
+

+ ξkx
i = 0, i = 1, 2 and k = a, f.

L1
yk

i
= δi

(
piϕ

′
(
xa

i + xf
i + ya

i + yf
i , α; βi

)
− cky′

i (yk
i ) + cy

e′(ye)− µφyk
i

(
yk

i , α; γky
i

)
+

+µφye

(
ye, α; γye)− λ2

)
+ ξky

i = 0, for any i = 1, 2 and k = a, f.

L1
y = h′(y)− z′(y)− cy

e′(ye)− µφye

(
ye, α; γye)

+ ξy + λ2 = 0.

12



L1
δi

= piϕ
(
xa

i + xf
i + ya

i + yf
i , α; βi

)
− ki − ωi

(
xa

i + xf
i

)
− cax

i − cfx
i − cay

i − cfy
i +

+ cy
e′(ye)

(
ya

i + yf
i

)
+ µφye

(
ye, α; γye) (

ya
i + yf

i

)
−

− µ
(
φ (xa

i , α; γax
i ) + φ

(
xf

i , α; γfx
i

)
+ φ (ya

i , α; γay
i ) + φ

(
yf

i , α; γfy
i

))
−

−
(
ya

i + yf
i

)
λ2 + ξδ

i − χ = 0, i = 1, 2.

µ ≥ 0, µ

z0 −
α∫

0

{
2∑

i=1

δi

[
φ (xa

i , α; γax
i ) + φ

(
xf

i , α; γfx
i

)
+ φ (ya

i , α; γay
i ) +

+φ
(
yf

i , α; γfy
i

)]
+ φ

(
ye, α; γye)}

gLdα
]

= 0.

In order to concentrate on the economic interpretations we assume that the

Kuhn-Tucker conditions related to the restriction (LULC-RA) are satisfied.9 Once

the optimal value of all decision variables are obtained, these values can be used to

obtain the optimal value of ye, ye∗ using the (MC-RA) condition.

We now analyze the implementation of a deposit refund system to give farmers

incentives to contract an authorized firm that applies the inputs correctly. The

following proposition defines a deposit refund system that establishes the optimal

social outcome.

Proposition 1 (Site-specific deposit refund system)

Given the existence of an authorized firm and provided that (1) the total amount of

mineral fertilizer and the total amount of organic fertilizer used by the farmer for

each activity i can be observed at each location α, (2) and that technology choices,

βi, γ
ax
i , γay

i , γfx
i , γfy

i and γye
can also be observed at each location α and for each

activity i, then an optimal policy can be obtained by the deposit refund system defined

as follows:

(a1) a spatially differentiated and crop-specific tax over the total amount of mineral

fertilizer applied to activity i at location α, τm
i (α), equal to

τm
i (α) = µ∗φxf

i

(
xf∗

i , α; γfx
i

)
, i = 1, 2, and

9We use an asterisk as a superindex of a decision variable or a multiplier to denote its optimal
values.
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(a2) a spatially differentiated and crop-specific tax over the total amount of organic

fertilizer applied to activity i at location α, τ o
i (α), equal to

τ o
i (α) = µ∗φyf

i

(
yf∗

i , α; γfy
i

)
, i = 1, 2, and

(a3) a spatially differentiated tax on the excess manure, τ(α), given by

τ(α) = µ∗φye

(
ye∗, α; γye)

, and

(b1) a spatially differentiated and crop-specific subsidy over the amount of mineral

fertilizer correctly applied to activity i at location α, sm
i (α), equal to

sm
i (α) = τm

i (α)− µ∗φxa
i
(xa∗

i (α), α; γax
i ) , i = 1, 2, together with

(b2) a spatially differentiated and crop-specific subsidy over the amount of organic

fertilizer correctly applied to activity i at location α, so
i (α), equal to

so
i (α) = τ o

i (α)− µ∗φya
i
(ya∗

i (α), α; γay
i ) , i = 1, 2, and

(c1) a spatially differentiated and crop-specific land-use tax or subsidy σi(α) given

by

σi(α) = µ∗
(
φ (ya∗

i , α; γay
i ) + φ

(
yf∗

i , α; γfy
i

)
+ φ (xa∗

i , α; γax
i ) + φ

(
xf∗

i , α; γfx
i

))
−

− τm
i (α) ·

(
xa∗

i (α) + xf∗
i (α)

)
− τ o

i (α) ·
(
ya∗

i (α) + yf∗
i (α)

)
+

+ sm
i (α) · xa∗

i (α) + so
i (α) · ya∗

i (α) R 0, i = 1, 2.

For simplicity of notation, the argument α of the taxes and subsidies τm
i , τ o

i , τ ,

sm
i , so

i , σi, i = 1, 2 are suppressed unless it is required for an unambiguous notation.

Proof. These instruments are obtained straightforward by comparing the first

order conditions (f.o.c.) of the regional planner problem (RA) with the f.o.c. of the

farmers’ decision problems that is analyzed below where a deposit refund system

and land-use taxes are implemented.

Each farmer cultivating at location α will choose the optimal strategy solving his/her

private decision problem given by:10

max
{xk

i ,yk
i ,y,δi}

i=1,2,k=a,f

gL

{
2∑

i=1

δi

[
piϕ(xa

i + xf
i + ya

i + yf
i , α; βi) −

10For sake of simplicity, we suppress the Lagrange multipliers ξkx
i , ξky

i , ξδ
i , ξy, λ2, and χ for

i = 1, 2 and k = a, f , as decision variables.
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−ki − ωi(x
a
i + xf

i )− cax
i (xa

i )− cfx
i

(
xf

i

)
− cay

i (ya
i )− cfy

i

(
yf

i

)
−

−τm
i

(
xa

i + xf
i

)
− τ o

i

(
ya

i + yf
i

)
+ sm

i x
a
i + so

iy
a
i − σi

]
+
[
h(y)− z(y)− cy

e

(ye)− τye
]
+

+
2∑

i=1

[
ξax

i x
a
i + ξfx

i xf
i + ξay

i y
a
i + ξfy

i y
f
i + ξδ

i δi

]
+ ξyy + χ

(
1−

2∑
i=1

δi

)
+ λ2y

e

}
,

where ye is replaced by y −
2∑

i=1

δi

(
ya

i + yf
i

)
given equation (MC-RA). Being L the

Lagrangian of this maximization problem,

Lxa
i

= δi

(
piϕ

′
(
xa

i + xf
i + ya

i + yf
i , α; βi

)
− ωi − cax′

i (xa
i )− τm

i + sm
i

)
+ξax

i = 0, i = 1, 2.

Lxf
i

= δi

(
piϕ

′
(
xa

i + xf
i + ya

i + yf
i , α; βi

)
− ωi − cfx′

i (xf
i )− τm

i

)
+ ξfx

i = 0, i = 1, 2.

Lya
i

= δi

(
piϕ

′
(
xa

i + xf
i + ya

i + yf
i , α; βi

)
− cay′

i (ya
i ) + cy

e′(ye)− τ o
i + so

i + τ − λ2

)
+

+ ξay
i = 0, i = 1, 2.

Lyf
i

= δi

(
piϕ

′
(
xa

i + xf
i + ya

i + yf
i , α; βi

)
− cfy′

i (yf
i ) + cy

e′(ye)− τ o
i + τ − λ2

)
+

+ ξfy
i = 0, i = 1, 2.

Ly = h′(y)− z′(y)− cy
e′(ye)− τ + ξy + λ2 = 0.

Lδi
= piϕ

(
xa

i + xf
i + ya

i + yf
i , α; βi

)
− ki − ωi

(
xa

i + xf
i

)
− cax

i − cfx
i − cay

i − cfy
i +

+ cy
e′(ye)

(
ya

i + yf
i

)
− τm

i

(
xa

i + xf
i

)
− τ o

i

(
ya

i + yf
i

)
+ sm

i x
a
i + so

iy
a
i − σi + ξδ

i − χ+

− λ2

(
ya

i + yf
i

)
+ τ

(
ya

i + yf
i

)
= 0, i = 1, 2.

�
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It is important to note that the sign of the land-use tax, σi, can be either positive

or negative. That is, it can be either a tax or a subsidy.

The implementation of the deposit refund system as defined in Proposition

1 requires that the regulator is able to observe for every farmer the amount of

each type of fertilizer applied to each crop. However, the regulator cannot dis-

tinguish to which crop the fertilizer has been applied. Therefore, the regulator

cannot tailor the environmental policy to each specific crop in terms of the tax.

The tax of an implementable deposit refund system can be site-specific but not

crop-specific. As a remedy we propose taxes τm(α) = µ∗
2∑

i=1

δiφxf
i

(
xf∗

i , α; γfx
i

)
and

τ o(α) = µ∗
2∑

i=1

δiφyf
i

(
yf∗

i , α; γfy
i

)
over the total amount of mineral fertilizer applied

at location α and over the total amount of organic fertilizer applied at location

α, respectively. That is, over
2∑

i=1

δi

(
xa

i + xf
i

)
and

2∑
i=1

δi

(
ya

i + yf
i

)
, respectively. In

other words, for each type of fertilizer, the fertilizer tax corresponds to the weighted

average of the marginal costs of the final emissions of the two activities. Like-

wise, one can not observe the amount of manure that is applied by the farmer

and the amount of excess manure. Therefore, it is proposed to define a single ma-

nure tax, τ(α), that does not distinguish between yf
i (α) and ye(α). It is given by

τ(α) = max{τ(α), τ o(α)} and it is applied over the amount of manure not applied

by the authorized firm at location α, that is, over
2∑

i=1

δiy
f
i + ye. At the end of the

cultivating period the regulator can observe the total output. Thus, given the infor-

mation about xa
i , x

f
i , and ya

i he can estimate yf
i . With this information, the regulator

may reimburse part of the collected tax, i.e., [τ(α)− τ o(α)] yf
i if τ(α) = τ(α) and

[τ(α)− τ(α)] ye if τ(α) = τ o(α).

Consequently, the land-use tax has to be adapted accordingly. Moreover, since

site-specific taxes may differ from one location to another, arbitrage may occur, i.e.,

there may exist black markets for mineral fertilizer where farmers with a high input

tax are potential buyers and farmers with a low input tax are potential sellers. To

avoid the problem of arbitrage we propose to fix a tax τm = maxα τ
m(α). Farmers

with input taxes below maxατ
m(α) are able to claim back the difference between

what they paid and what they should have paid in their tax declaration. Since the

tax declaration is in retrospective the regulator already knows the cultivated crop

and the obtained yield. Given this information the regulator can calculate what the

farmer should have paid on the mineral fertilizer tax. Therefore, the regulator can

verify within certain limits whether the claims of the farmer are justified or not.

Proposition 1 establishes the conditions to determine the optimal taxes and sub-
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sidies. However, before implementing this deposit refund system the regulator has

to verify that the implementation of this system is socially and privately desirable.

That is, the social and private net benefits are bigger with the deposit refund system

compared to a system where no authorized firm exists. In other words, two types

of inequality constraints have to be fulfilled (social implementation constraints and

private participation constraints).

5. The Optimal Land Allocation over Space and

Time

After having analyzed the optimal allocation of inputs and land over space and

proposed an environmental policy to achieve a second best social outcome we now

turn to the intertemporal optimization of the optimal spatial allocation.

The value function V from the first stage is now employed in the second stage

of the regional planner’s decision problem. The objective consists of the sum of the

value function V that depends on z and a function m(s) that captures the monetary

damages caused by the pollution at the receptor and s denotes the concentration of

the pollutant at the receptor. The left-hand side value of the constraint (PC-RA)

of the first stage problem, z, becomes the decision variable in the second stage. It

still denotes the emissions of the entire region that reach the receptor; however, it

now depends on t like s. The terminal value function is given by F (s(T )). Given

this context the regional planner’s decision problem reads as:

max
z(t)

∫ T

0

(
V (z(t))−m(s(t)

)
e−rt dt− e−rT F (s(T )),

subject to

ṡ(t) = z(t)− ξs(t), s(0) = s0, z(t) ∈ Z, (RT)

where a dot over a variable denotes the operator d
dt

. The set Z presents the interval

[0, z̄], where the upper limit of the set corresponds to the possible highest emissions

that could reach the receptor. Argument t of all the dynamic variables is dropped to

simplify notations whenever possible, without introducing an ambiguous notation.

Hence, the current value Hamiltonian in the second stage H reads as H ≡ V (z) −
m(s)− ψ(z − ξs). Note, that a negative sign in front of the costate variable ψ has

been introduced to facilitate its interpretation. The necessary conditions11 for an

11See theorems 1 and 3 in Seierstad and Sydsæter (1987).
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interior solution 0 < z < z̄ of problem (RT ) are given by

Hz = Vz − ψ = 0 ⇒ µ(t) = ψ(t) (2)

ψ̇ = ψr +Hs = ψ(r + ξ)−m′(s(t)) (3)

ṡ = z − ξs , s(0) = s0, (4)

where we made use of the dynamic envelope theorem to obtain the result of equation

(2). This equation states that the marginal value of the final emissions of the entire

region should equal its shadow cost ψ which, in turn, is equal to the shadow cost of

the spatial allocation problem µ. Equation (3) explains the change in the shadow

cost of a delayed reduction of a marginal unit of the pollution stock from period t

to period t+ 1. It states that the change is equal to the extra interest and “decay”

forgone paid on the shadow cost minus the cost of extra pollution associated with

the delay. The transversality condition requires that

ψ(T ) = F ′(s(T )). (5)

It shows that the shadow cost at the terminal point of time has to equal the marginal

terminal value of the amount of pollutant at the receptor. Hence, the particular

solution of differential equation (3) yields

ψ(t) = F ′(s(T ))e(r+ξ)(t−T ) + e(r+ξ)t

∫ T

t

m′(s(τ))e−(r+ξ)τ dτ , (6)

which states that shadow costs at time t correspond to the sum of the discounted

marginal terminal value for the remaining time (T−t) and the “present value” of the

integral of the discounted marginal damage from time t to the end of the planning

horizon. For both terms of the sum the discount rate consists of the social discount

rate and the natural decay rate.

Knowing that the optimal values of µ(t) and ψ(t) are identical we are able to

write the dynamic version of the proposed deposit refund system, simply by replacing

µ by µ(t) in proposition 1.

6. Summary and conclusions

For nonpoint source pollution neither the quantity nor the polluter is known. Fur-

thermore the problem is exacerbated by the heterogeneity of the biophysical condi-

tions that determine the transport and transformation process of the pollutant from

its origin to the arrival at the receptor. As a solution to this problem this paper
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proposes to incorporate the dimension of space in order to target an environmen-

tal policy specific to the biophysical conditions at each location. In this way it is

possible to relate more closely the amount of the contaminating inputs and of the

contaminating byproduct with the emissions that reach the receptor.

However, the emissions that reach the receptor do not only depend on the amount

of the applied inputs and byproduct but also on the way these are applied. Given

the fact that the regulator can neither observe the quantity nor the way the inputs

and the byproduct are applied there exists the problem of moral hazard. As a so-

lution that is new to the literature of the management of nonpoint source pollution

management, we propose a spatially differentiated deposit refund system. The re-

sults show that farmers who commission the service of an authorized firm to apply

the contaminating input or the contaminating byproduct correctly should receive a

subsidy equivalent to the net savings of the social costs of correct versus incorrect

application. The social costs of the incorrect application of the input and the con-

taminating byproduct however, need to be imposed on the polluter in the form of a

tax reflecting these costs on the input and on the byproduct. As the net savings of

the social costs for the correct application are reimbursed via the subsidy, the tax

is imposed on the input and the byproduct in general independently whether they

are applied correctly or not.

While the subsidy is site and crop-specific, the implementable tax is only site-

specific. To overcome this shortcoming a weighted tax is proposed. The different

magnitude of the tax from one location to another may give rise to arbitrage, i.e.

black markets may emerge. In order to avoid the formation of black markets it is

proposed to impose the highest site-specific tax and allow for reimbursement via

the tax declaration if the optimal site-specific tax should be below the highest tax.

Likewise, the regulator can not observe whether the manure is used as a fertilizer by

the farmer or whether it is dumped. Therefore, it is also proposed to utilize a single

tax on manure not applied by the authorized firm. The information about the crop

yields allows the regulator to reimburse part of the collected taxes after harvest.

Apart from policy questions, the paper also demonstrates the utilization of a

two stage optimization technique that optimizes in the first stage the allocation of

inputs and land over space and in the second stage, determines how this optimal

spatial allocation changes over time. In this way the optimal spatial intertemporal

form of the deposit refund system can be derived.
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Appendix

The regional decision problem (R) can be stated as

max
{xi(α),yi(α),δi(α),ye(α),y(α)}i=1,2

α∫
0

2∑
i=1

δi(α) (pi(α)ϕ(xi(α) + yi(α), α; βi)−

−ki − ωi(α)xi(α)− cxi (xi)− cyi (yi)) g(α)Ldα+

+

α∫
0

[
h (y(α))− z (y(α))− cy

e

(ye(α))
]
g(α)Ldα (R)

subject to

z0 ≥
ᾱ∫

0

{
2∑

i=1

δi(α) [φ (xi(α), α; γx
i ) + φ (yi(α), α; γy

i )] + φ
(
ye(α), α; γye)}

g(α)Ldα,

(PC)

ye(α) = y(α)−
2∑

i=1

δi(α)yi(α) for any α ∈ [0, α] , (MC)
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xi(α) · g(α)L ≥ 0, yi(α) · g(α)L ≥ 0, δi(α) · g(α)L ≥ 0, i = 1, 2; y(α) · g(α)L ≥ 0,

ye(α) · g(α)L ≥ 0,

(
1−

2∑
i=1

δi(α)

)
· g(α)L ≥ 0 for any α ∈ [0, α] , (LULC)

where the maximal admissible concentration of the pollutant at the receptor, as

introduced in the pollution constraint (PC), is denoted by z0.

In order to solve this problem we substitute ye(α) by y(α) −
2∑

i=1

δi(α)yi(α) as

defined in the manure constraint (MC).12 We define the Lagrangian function L̂,

where we introduce the Lagrange multipliers µ, λ2, ξ
x
i , ξ

y
i , ξ

δ
i , ξ

y and χ for i = 1, 2.

The multiplier µ is associated with the pollution constraint (PC), and all other

multipliers (ξx
i , ξ

y
i , ξ

δ
i , ξ

y, λ2 and χ for i = 1, 2) are associated with lower and upper

limit constraints (LULC).

The argument α of the variables/functions xi, yi, y, δi, pi, ωi, g and of all

Lagrange multipliers, will be omitted in order to simplify notation in the text below.

Given the restrictions imposed on the decision variables the Lagrangian can be stated

as

L̂ =

α∫
0

{
2∑

i=1

δi [piϕ(xi + yi, α; βi)− ki − ωixi − cxi (xi)− cyi (yi)] +

+h(y)− z(y)− cy
e

(
y −

2∑
i=1

δiyi

)}
gLdα+

+µ

z0 −
α∫

0

{
2∑

i=1

δi [φ (xi, α; γx
i ) + φ (yi, α; γy

i )] + φ

(
y −

2∑
i=1

δiyi, α; γye

)}
gLdα

+

+

α∫
0

{
2∑

i=1

[
ξx

i xi + ξy
i yi + ξδ

i δi

]
+ ξyy + χ

(
1−

2∑
i=1

δi

)
+ λ2

(
y −

2∑
i=1

δiyi

)}
gLdα.

We assume both that there exists a unique solution of problem (R) and that

g(α) > 0 for all α. Then, the solution has to comply with the following conditions

at every location α, α ∈ [0, α]:

L̂xi
= δi

[
piϕ

′ (xi + yi, α; βi)− ωi − cx′i (xi)− µφxi
(xi, α; γx

i )
]
+ ξx

i = 0, i = 1, 2.

12In what follows, for sake of simplicity, note simply ye if no ambiguity may arise.
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L̂yi
= δi

[
piϕ

′ (xi + yi, α; βi)− cy′i (yi) + cy
e′(ye)− µφyi

(yi, α; γy
i ) + µφye

(
ye, α; γye)−

−λ2] + ξy
i = 0, i = 1, 2.

L̂y = h′(y)− z′(y)− cy
e′(ye)− µφye

(
ye, α; γye)

+ ξy + λ2 = 0.

L̂δi
= piϕ (xi + yi, α; βi)− ki − ωixi − cxi (yi)− cyi (xi) + cy

e′(ye)yi − µφ (xi, α; γx
i )−

− µφ (yi, α; γy
i ) + µφye

(
ye, α; γye)

yi + ξδ
i − χ− λ2yi = 0, i = 1, 2.

µ ≥ 0, µ

z0 −
α∫

0

{
2∑

i=1

δi [φ (xi, α; γx
i ) + φ (yi, α; γy

i )] + φ
(
ye, α; γye)}

gLdα

 = 0.

Additionally, we assume that the Kuhn-Tucker conditions, as a result of restrictions

(LULC), hold.

The Lagrange multiplier µ is interpreted as the shadow price of the prespecified

level of pollutant at the receptor. Thus, µ is constant over α since it is not evaluated

at a specific location but over the whole interval of the domain. Like the rest of

the multipliers, x∗i , y
∗
i , y

∗, and δ∗i , the optimal values of variables xi, yi, y, and δi,

i = 1, 2, depend on α.13

Spatial environmental policy

In the following proposition we specify policies that would assure the optimal allo-

cation of inputs and land.

Proposition. (Spatial policies)

1. Provided that the final emissions can be observed, the first-best solution can be

obtained by a Pigouvian tax τ p on final emissions. The Pigouvian tax is τ p = µ∗.

2. Provided that the inputs and technology choices, βi, γi, and γye
, can be observed

at each location α and for each activity i, an optimal policy can be obtained by

(a) spatially differentiated and crop-specific input taxes τm
i (α) and τ o

i (α) on the

amount of used inputs xi and yi, respectively, equal to

τm
i (α) = µ∗φxi

(x∗i , α; γx
i ) , i = 1, 2, α ∈ [0, α]

τ o
i (α) = µ∗φyi

(y∗i , α; γy
i ) , i = 1, 2, α ∈ [0, α] together with

(b) a spatially differentiated tax τ(α) on the dumped excess manure ye given by

τ(α) = µ∗φye

(
ye∗, α; γye)

, α ∈ [0, α] , and with

13We use an asterisk as a superindex of a decision variable or a multiplier to denote its optimal
values.
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(c) a spatially differentiated and crop-specific land-use tax or subsidy σi(α) given

by

σi(α) = −τm
i (α)x∗i−τ o

i (α)y∗i +µ
∗ [φ (x∗i , α; γx

i ) + φ (y∗i , α; γy
i )] R 0, i = 1, 2, α ∈ [0, α] .

To make notation simpler, we will omit the argument α of taxes and/or subsidies

τm
i , τ o

i , τ , and σi, i = 1, 2 unless necessary to avoid confusions.

Proof. Part 1 : It is straightforward when comparing the f.o.c. of problem (R)

of the regional planner with the f.o.c. of the farmers’ decision problems analyzed

below when introducing a Pigouvian tax.

Each farmer cultivating at location α will choose his optimal strategy solving the

following problem:14

max
{xi,yi,y,δi}i=1,2

gL

[
2∑

i=1

δi {piϕ(xi + yi, α; βi)− ki − ωixi − cxi (xi)− cyi (yi)}+

+h(y)− z(y)− cy
e

(
y −

2∑
i=1

δiyi

)
−

−τP

(
2∑

i=1

δi [φ (xi, α; γx
i ) + φ (yi, α; γy

i )] + φ

(
y −

2∑
i=1

δiyi, α; γye

))
+

+
2∑

i=1

[
ξx

i xi + ξy
i yi + ξδ

i δi

]
+ ξyy + χ

(
1−

2∑
i=1

δi

)
+ λ2

(
y −

2∑
i=1

δiyi

)]
.

Being L̃ the Lagrangian of this maximization problem, the first order conditions

are the following:

L̃xi
= δi

(
piϕ

′ (xi + yi, α; βi)− ωi − cx′i (xi)− τPφxi
(xi, α; γx

i )
)

+ ξx
i = 0, i = 1, 2.

L̃yi
= δi

(
piϕ

′ (xi + yi, α; βi)− cy′i (yi) + cy
e′(ye)− τPφyi

(yi, α; γy
i ) +

+τPφye

(
ye, α; γye

i

)
− λ2

)
+ ξy

i = 0, i = 1, 2.

14For sake of simplicity, we suppress the Lagrange multipliers ξx
i , ξy

i , ξδ
i , ξy, λ2, and χ, for

i = 1, 2, as decision variables.
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L̃y = h′(y)− z′(y)− cy
e′(ye)− τPφye

(
ye, α; γye

i

)
+ ξy + λ2 = 0.

L̃δi
= piϕ (xi + yi, α; βi)− ki − ωixi − cxi (xi)− cyi (yi) + cy

e′(ye)yi−

−τP
(
φ (xi, α; γx

i ) + φ (yi, α; γy
i )− φye

(
ye, α; γye

i

)
yi

)
+ξδ

i −χ−λ2yi = 0, i = 1, 2.

Part 2 : It is straightforward when comparing the f.o.c of problem (R) of the re-

gional planner with the f.o.c of the farmers’ decision problems analyzed below when

introducing input and land-use taxes or subsidies.

Each farmer cultivating at location α will choose the optimal strategy to solve the

following problem:15

max
{xi,yi,y,δi}i=1,2

gL

[
2∑

i=1

{δi [piϕ(xi + yi, α; βi)− ki − ωixi − cxi (xi)− cyi (yi)−

−τm
i xi − τ o

iyi − σi]}+ h(y)− z(y)− cy
e

(
y −

2∑
i=1

δiyi

)
− τ

(
y −

2∑
i=1

δiyi

)
+

+
2∑

i=1

[
ξx

i xi + ξy
i yi + ξδ

i δi

]
+ ξyy + χ

(
1−

2∑
i=1

δi

)
+ λ2

(
y −

2∑
i=1

δiyi

)]
.

Being L̃ the Lagrangian of this maximization problem, the first order conditions

are:

L̃xi
= δi (piϕ

′ (xi + yi, α; βi)− ωi − cx′i (xi)− τm
i ) + ξx

i = 0, i = 1, 2.

L̃yi
= δi

(
piϕ

′ (xi + yi, α; βi)− cy′i (yi)− τ o
i + cy

e′(ye) + τ − λ2

)
+ ξy

i = 0, i = 1, 2.

L̃y = h′(y)− z′(y)− cy
e′(ye)− τ + ξy + λ2 = 0.

L̃δi
= piϕ (xi + yi, α; βi)− ki−ωixi− cxi − c

y
i + cy

e′(ye)yi− τm
i xi− τ o

iyi−σi + τyi+

+ ξδ
i − χ− λ2yi = 0, i = 1, 2.

�

15For sake of simplicity, we suppress the Lagrange multipliers ξx
i , ξy

i , ξδ
i , ξy, λ2, and χ, for

i = 1, 2, as decision variables.
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The Pigouvian tax determines the optimal allocation of the use of land and

fertilizers. Since the tax is imposed on final emissions at the receptor it is con-

stant through space, not spatially differentiated. However, these policies are not

implementable because of the information required. For this reason, alternative in-

struments have to be considered. In part 2 of this proposition we concentrate on the

regulation of input use. However, inputs taxes are not enough to get the regional

optimum. The selected taxes have to go along with land-use taxes or subsidies that

determines the efficient allocation of land from the social viewpoint.
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