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Abstract-In this paper, robustness of parametric 
systems is analyzed using a new approach to interval 
mathematics called Modal Interval Analysis. Modal 
Intervals are an interval extension that, instead of 
classic intervals, recovers some of the properties re- 
quired by a numerical system. Modal Interval Anal- 
ysis not only simplifies the computation of interval 
functions but allows semantic interpretation of their 
results. Necessary, sufficient and, in some cases, neces- 
sary and sufficient conditions for robust performance 
are presented. 

I. INTRODUCTION 

Many robust control problems can be stated as a system 
with a fixed model structure and nominal parameters val- 
ues affected by parameter variations and a fixed controller 
with unknown parameters. Methods for assessing robust 
stability of parameter dependent linear systems often f d l  
into two categories: those that underestimate robustness 
and those that overestimate robustness. Pessimistic or 
conservative methods underestimate robustness. These 
methods are usually based on some analytical result that 
describes sufficient (but no necessary) conditions of robust 
stability, for example, the small gain theorem, the circle 
theorem, or the Lyapunov theorem. Optimistic methods, 
on the other hand, overestimate robustness, often by re- 
stricting attention to a large but finite subset of &. One 
example is Monte Carlo method. 

In this paper, we will consider a class of plants with 
structured parametric uncertainties described by the fol- 
lowing uncertain transfer function: 

depending on a structured perturbation characterized by 
the parameter vector 

q = [Q1 QZ - * e  QlIT (2) 
where each parameter enters into the system description 
with polynomial dependency. 

We also consider a certain configuration of the feedback 
system with a fixed controller C(s, k), where k is the de- 
sign parameter vector. 
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The motivation of this kind of system description is that 
the system parameters, q, can represent physical quanti- 
ties that are known only to within a certain accuracy, 
or vary depending on operating conditions while the con- 
troller parameters, k ,  represent degrees of freedom avail- 
able to the control system designer. 

Due to the physical interpretation of the uncertain pa- 
rameters, each one can be considered independent from 
the other and their values lie between upper and lower 
bounds. Then, the uncertain domain can be defined as 
an hyperrectangle: 

Q = { q = [ ~ i ~ z  ... 4iITI4i E [Q;,Q~], i=1, . . . ,2 )  (3) 

With this kind of feedback system description, several 
robust control problems as stability of the ciosed loop sys- 
tem, cornputation of the stability margins, pe-f T ormance 
analysis and robust control synthesis can be formulated. 
Robust performance specifications may be given as pole 
locations as well as H ,  performances expressed in the 
frequency domain. It is known that the solution of these 
problems can be reduced to the problem of checking the 
positivity of a set of rational functions over a given do- 
main: 

f i (a ,q ,k )  > 0, Qa E A, Qq E $, Vk E K (4) 

where a is the generalized frequency and k E K may be 
a single point (nominal controller I C o )  or a certain domain 
in the parameter's space of the controller depending on 
the problem considered. 

It is possible to  solve these problems in an analytical- 
njumerical way. When the number of uncertain parameters 
increases, the so-called combinational explosion occurs. 
For practical applications, the method is recommended 
to be used for up to three parameters. 

An obvious solution is to  formulate the problem as 
an optimization one: first, calculate the minimum of 
f i ( a , q , k )  over A, Q and K and then verify positivity. 
This approach yields to a non convex global optimization 
problem of growing complexity when feedback control sys- 
tems are considered. 

The application of interval arithmetic in optimization 
problems enables a new approach: Garloff and Mdan 
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have applied interval arithmetic for robust control anal- 
ysis and design. These approaches use standard interval 
algorithms in order to evaluate the range of interval func- 
tions and then, check for zero exclusion-inclusion. This 
straightforward translation of interval methods consist in 
the computation of overbounded values of the exact range 
of a function over a domain, then these methods can be in- 
cluded into the pessimistic ones. The only two answers to 
the question of robustness are: “yes” (the overbounded 
range is positive) or “maybe” (zero is included into the 
overbounded range). Moreover, when standard optimiza- 
tion algorithms are used to  evaluate better ranges, the 
computation complexity increases, especially when these 
algorithms are called iteratively, as in the robust control 
design procedure. 

In this paper, robustness of parametric systems is ana- 
lyzed using a new approach to  interval mathematics called 
Modal Interval Analysis (see, e.g., [l]). Modal Intervals 
are an interval extension that, instead of classic intervals, 
recovers some of the properties required by a numerical 
system. Modal Interval Analysis not only simplifies the 
computation of interval functions but allows semantic in- 
terpretation of their results. 

Necessary, sufficient and, in some cases, necessary and 
sufEcient conditions for robust performance will be ob- 
tained. Also, the computational complexity will be re- 
duced by the application of the optimallity theorems of 
Modal Interval Analysis. As result, the algorithms based 
on Modal Interval Analysis will be more efficient. 

The paper is organized as follows: In the next section, 
some necessary concepts of Modal Interval Analysis are 
introduced; Section 3 presents the main results of this pa- 
per: new robustness conditions and computational sim- 
plification; it also describes the robustness checking algo- 
rithm that implements the main results. 

11. MODAL INTERVAL ANALYSIS 

Modal interval analysis [l] extends real numbers to in- 
tervals, identifying the intervals by the predicates that the 
real numbers fulfil, unlike classical interval analysis which 
identifies the intervals with the set of real numbers that 
they contain. In the following, some of the properties of 
modal intervals are stated. 

Given the set of closed intervals of R, I (R)  = {[a, b]’ I 
a: b E R, asb}, and the set of logical existential and 
universal quantsers {E,U}; a modal interval is defined 
by a pair: 

x := (X’, Q X )  (5 )  

where X‘ E I ( R )  and QX E { E , U } .  X’ is called the 
extension and Q X  is the modality. The set of modal. 
intervals will be denoted by I*(R). A modal interval 
( [al, a#, E )  is called existential intervaZ or proper interval 

while ( [ a ~ ,  all’, U )  is called universal interval or improper 
interval. 

The modal quantifier Q associates to every real pred- 
icate P(.) E Pred(R) a unique interv? predicate: for a 
variable z E R and a modal interval ( A  , QA) E I*(R), 

Q(z, (A‘, &A)) := QA(z ,  A’). (6) 

The canonicd notation for modal intervals is: 

The rational operations between modal intervals are ex- 
tensions of the classical interval arithmetic with the addi- 
tion of the dual operator defined by: 

dU([Ul, az]) = [az, a11 (8) 

The structure (I* (R) ,  2) is a lattice and the mini- 
mum and the maximum for a family of modal intervals 
{ A  (i) I A (i) C: I* (R) , i E I} are called meet and join. 

Meet : A ( i , I ) A ( i )  = m a x o ( i ) , r g i n a ]  (9) 
[*€I - %€I 

Join : v ( i , I ) A ( i )  = 

The dual formulation of the modal intervals allows one 
to define two 13emantic interval functions, denoted by f * 
and f’* respectively, which will play a very important role 
in the theory because they are in close relation with the 
modal interval extensions and will provide meanings to  
the interval computations. 

Definition 1 (* and **-semantic functions) If f i s  
an R” to R continuous function and A E I* (R”) then 

f* ( A )  
f** ( A )  

:= 

:= 
v (up, A;) A (ai, A:) Ef ( U P ,  ai) > f (up, ai)] 
A (ai, A:) v (a,, A;) [f ( a p t  ai) , f (up, 4 1  

where a = (ap, ai) i s  the component split corresponding to 
A = (Ap,Ai),  with Ap a subvector containing the proper 
components o j  A and Ai a subvector containing the im- 
proper components of A .  

The two following key theorems give a meaning to the 
interval results f* and f** and characterize them as modal 
interval extensions. 

Theorem 1 I( f * Semantic Theorem) 
Giwen F : I*(R”) + I*(R), an interval extension of the 
continuous function f : R” -+ R, and a modal vector 
A E I*(R”), ;Men f* (A)  E F(A) implies 

V ( a , , A ~ ) Q ( z , F ( A ) ) E ( a i , A ; )  = f (ap,ai)  (11) 
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A dual semantic for proper and improper modal intervals 
is established by the next result. 

Theorem 2 (f ** Semantic Theorem) 
Given F : I*(Rn) + I*(R), an interval extension of the 
continuous function f : R" -+ R, and a modal vector 
A E I*(Rn), then f * * ( A )  2 F(A) implies 

To compute the semantic extensions f * and f ** is, in gen- 
eral, a difficult challenge. When the continuous function 
f is rational, it can be operationally extended to a modal 
rational function by using the computing program d e h e d  
by the syntactical tree of the expression of the function, 
where the real operators are transformed into their *-or 
**-semantic extensions. For a class of operators, both s e  
mantic extensions are equal. In this case, there exists a 
modal rational function, f R(A),  defined by the program 
associated with the syntactical tree of f where the real 
operators are transformed into their semantic extensions. 
However, f R(A) is not interpretable. The interpretation 
problem for a modal rational function consists of relating 
it to the corresponding semantic functions, which have 
standard meanings defined by the semantic theorems. 

There are several theorems relating the modal rational 
function f R(A) to the modal semantic extensions f * and 
f**. The following ones give two *- and **-interpretable 
coercions. 

Definition 2 A component xi of x is uni-incident in a 
rational function f (x) if it occupies only one leaf of the 
syntactical tree of f;  otherwise, xi is multi-incident in 
f (XI. 
Theorem 3 If in f R ( A )  there are multi-incident im- 
proper components and i f  AT" is obtained from A by  
transforming, for each if them, all incidences but one into 
their duals, then f * ( A )  C fR(AT*).  

If all components of A are proper, then AT' = A and 
f * ( 4  E f R W .  

Theorem 4 If in f R(A) there are multi-incident proper 
components and i f  AT** is obtained from A by tmnsform- 
ing, for each of them, all incidences but one into their 
duals, then f ** (A)  2 f R(AT**). 

If all components of A are improper, then AT** = A 
and f**(A) 2 f R ( A ) .  

An interpretable rational interval program fR(A)  may 
nevertheless result in a loss of information far more im- 
portant than that produced by numerical rounding. Then 
it is very important to determine criteria to character- 
ize the rational interval functions for which the program 
fR(A),  with an ideal computation (infinite precision), has 

the property that f*(A)  = f R ( A )  = f**(A) .  In this case, 
we say that fR(.) is optimal for A. 

There are several results which characterize the opti- 
mality of a modal rational function according to  its mono- 
tonicity. 

Definition 3 A continuous function f(x,y), is, a ,mi- 
formly monotonic function of x in a domain ,(X ,Y ) E 
(R, R") i f  it is a monotonic function of x in,X and keeps 
the same type of monotonicity for all y E Y . 
Definition 4 A continuous function f (x, y), is a totally 
monotonjc function of a multi-incident variable x in a do- 
main ( X  ,Y') c (R,Rm) i f  it is a uniformly monotonic 
function of x in X' and, for every incidence of x con- 
sidered as an independent variable, it is also uniformly 
monotonic. 

Theorem 5 (*-partially optimal coercion) Let A b f  
an interval vector and f R  be defined in the domain A 
and totally monotonous for a subset B of multa-incident 
components. Let ADT* be the enlarged vector of A, such 
that each incidence of every multi-incident component of 
the subset B is included in ADT* as an independent com- 
ponent, but transformed into its dual i f  the corresponding 
incidence-point has a type of monotonicity contrary to the 
globul one; for the rest, the multi-incident improper com- 
ponents care transformed into their dual in every incidence 
except one. Then 

f*W s f R ( U T * )  (13) 

Theorem 6 (optimal coertion) Let A b: an interval 
vector and f R  be defined in the domain A and totally 
monotonous for all its multi-incident components. Let 
AD* be the enlarged vector of A, such that each incidence 
of every multi-incident component is included in AD* as 
an independent component, but transformed into its dual 
i f  the corresponding incidence-point has a type of mono- 
tonicity contrary to the global one of the corresponding 
A-component. Then 

f*(A)  = fR(AD) = f**(A) (14) 

111. ROBUSTNESS ANALYSIS 

As seen in section 1, checking the robustness of a con- 
trolled system is equivalent to  verifying the positiveness 
of the range of a set of functions. Therefore the study 
of robustness stability or robust performance of uncertain 
systems can be generalized to  the study of uncertain func- 
tions and hence these functions can be labeled as stable 
or not. 

Definition 5 An uncertain function Fi(q)  is stable over 
Q if Fi(q) > 0 for all q E Q  
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Definition 6 An uncertain function Fi(q) is unstable 
over Q i f  there exists at least one qoEQ such that 

According to the definitions stated above, the semart- 
tic interpretations of f *  and f * *  are very closely related 
with the concept of robust stability [2]. *-semantics can 
be used for testing stability and **-semantics can check 
instability. So, according to  the above results obtained 
for rational functions, optimality implies necessary and 
sufficient positivity conditions. Outer approximations of 
f * will yield sufficient positivity conditions and necessary 
conditions will be obtained by inner approximations of 

It will also be shown that the application of the previous 
theorem entails faster and simpler computations. 

In order to formulate the positivity conditions by using 
modal intervals, the uncertainty domain should be repre 
sented as a suitable set of modal intervals. An uncertain 
domain means that every uncertain parameter qi has a s  
unknovm value between qi and z. This fact means consid- 
ering every uncertain pariameter as a proper or existential 
modal interval: 

(16) 

Fi(qo> 0 

f**. 

Qi = ([&>GI,q 3 Qi = [%,GI, !& 5 G. 
A straightforward translation of the semantic theorems t o  
the interval function obtained by substituting the uncer- 
tain parameters by proper intervals gives the next the13 
rem: 

Theorem 7 Consider a function F,(q)  depending on an 
uncertain parameter vector q belonging to  an uncertainty 
domain Q. The function Fi(q) is stable over Q if and 
only if F,*(q) > 0. 

As *- and **-extensions are not always calculable, some 
properties of modal intervals applied to  rational functions 
must be used, in order to work with computable functions. 
The previous theorem is reformulated for modal rational 
extensions as: 

Theorem 8 Let FRi(q) be a modal rational extension 
of F;(q).  Fi(q) i s  stable over Q i f  and only i f  FR,(q)  is  
optimal, and FR,(q)  > 0. 

The key problem is the study of the optimality of the 
rational function FRi(q). As shown in the previous sec- 
tion, optimality is very closely related to  monotonicity. 

When the function Fi(q) is monotonic for all or some 
of its variables, modal interval analysis gives conditions of 
optimality or, at least, interpretability of F&(q). 

If Fi(q) is uniformly monotonic for each variable and 
for all its incidences, then theorem 6 can be applied to 
get an optimal computation. When Fi(q)  is not totally 
monotonic for any variable, theorems 3 and 4 can be ap- 
plied to obtain the following general conditions: 

Theorem 9 Fi(q) i s  stable over Q if FRi(qT*) > 0 

This theorem provides only a sufficient positivity con- 
dition. In order to implement a suitable stability testing 
algorithm, necessary conditions are needed. The following 
theorem gives such conditions. 

Theorem 10 Consider the function Fi(q)  described 
above. Let FR(qT**) = { FR,k(qT**), k = 1,. . . , 
be the set of the N possible results obtained by transform- 
ing, for e v e q  multi-incident parameter, all incidences but 
one into its dual. 

The function Fi(q)  i s  unstable over Q if the lower 
bound of the interval [ F R : ( q T * * ) , m l  is not 
positive for  tiome k 

In order to remark the importance of this theorem, the 
semantic interpretation will be analyzed according to the 
modality of the result. 

First, suppose that a result FRf(qT**) is proper. 
The meaning is: for every value of the result c E 
[FR~(qT**) ,FRf(qT**)]  , there exists a point q E q 

such that FRF(q) = c. In other words, there exists at 
least one unstable function. 

The 
semantic interpretation is: there exists a value c E 
[FR~(qT**) ,FRf (qT**) ]  and a point q E q such 
that FRf(q)  = c. If inf FRl(qT**)) 5 0, then 

sup(FRl(q’T**)) <_ 0, and the meaning is: there exists 
at least one unstable function. 

These conditions has been combined into an stabil- 
ity analysis algorithm in order to check the performance 
achievement of a given set Q. The implemented algorithm 
splits the uncertainty domain in the parameters space k t o  
sub-boxes according to  the monotonicity. 

Several examples showing the use of these algorithms as 
well as their use into robust control design routines can 
be found in [2]. 

Suppose now that FRt(qT**) is improper. 
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