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Abstract— In this paper, we address this problem through
the design of a semiactive controller based on the mixed
H2/H∞ control theory. The vibrations caused by the seismic
motions are mitigated by a semiactive damper installed in the
bottom of the structure. It is meant by semiactive damper, a
device that absorbs but cannot inject energy into the system.
Sufficient conditions for the design of a desired control are
given in terms of linear matrix inequalities (LMIs). A controller
that guarantees asymptotic stability and a mixed H2/H∞
performance is then developed. An algorithm is proposed to
handle the semiactive nature of the actuator. The performance
of the controller is experimentally evaluated in a real-time
hybrid testing facility that consists of a physical specimen (a
small-scale magnetorheological damper) and a numerical model
(a large-scale three-story building).

I. INTRODUCTION

In recent years, the protection of structures against

hazardous vibrations has gained special interest. Structures

such as buildings, bridges and vehicle suspension systems

are subject to vibrations that may cause malfunctioning,

uncomfort or collapse. It is an extended practice to install

damping devices in order to mitigate such vibrations [1].

Because of their ability in online tuning, its inherent stability

and low energy requirements, semiactive devices such as

magnetorheological dampers are an attractive solution and

efforts have been devoted to their understanding in the past

years [2], [3].

Most of semiactive structural control strategies are

based on the idea of attenuating vibrations or maintaining

structural time response within certain acceptable ranges,

when external forces such as earthquakes or strong winds

act on the structures. The controller design is usually

done in time-domain by considering that the system model

and its associated parameters are known or uncertain

but with known upper and lower bounds. Examples of

techniques used are Lyapunov theory [4], Bang-Bang

control [5], Sliding Mode Control [6], and Backstepping

[7]. There are, however, other works that consider the

frequency modes. The modal frequency control is of

a great interest for achieving the structural safety and

human comfort. Examples of frequency control techniques
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employed for mitigating vibrations are QFT [3] and H∞ [8].

In this paper, we consider the vibration problem from a

mixed time-frequency domain perspective. It is desirable

that this problem be solved not only by reducing the time

response but the frequency response as well. This can be

approached by the mixed H2/H∞ control methodology. The

objective is to find an H∞ controller that achieves the robust

performance of the system by minimizing its controlled

output response against the external disturbances within

the frequency range, while combing it with the H2 control

approach in order to reduce the structural time response

and control effort. Also, the controller is formulated by

feeding back the output so that the limited measurements

problem can be accounted for. Based on the Lyapunov

theory, some required sufficient conditions are established

in terms of linear matrix inequalities (LMIs) for the stability

and stabilization of the considered system using some free

matrices. The desired robust mixed H2/H∞ output feedback

control is derived based on a convex optimization method

such that the resulting closed-loop system is asymptotically

stable and satisfies H2 performance with a guaranteed cost

and a prescribed level of H∞ performance, simultaneously.

An algorithm is also proposed to include the dynamics of

the actuator in order to estimate the control signal.

This paper is organized as follows. Section II presents

the problem of vibration mitigation in a n-story building. A

detail description of the structure is presented and diverse

issues for control formulation are discussed. Section III

is devoted to the details of the formulation of the output

feedback mixed H2/H∞ controller. LMIs for the H2 and

H∞ performances are developed. These LMIs form the set

that solves the problem of the mixed constraints. Then, in

Section IV, experimental validation of the controllers on a

hybrid-testing facility is discussed. Finally, the conclusions

are outlined at the end of the paper.

II. PROBLEM DEFINITION

Consider an n-story building with an actuator placed at

the first floor, as shown in Fig. 1. This is a flexible structure

that can be modeled with the second order motion equation:

Mẍr + Cẋr + Kxr = Gsfmr − MLsẍg (1)

where xr is the vector of relative displacements, i.e., mea-

sured with respect to the ground (the r subindex means

relative coordinates); fmr is the damper force input; ẍg is the

input disturbance, i.e., the incoming earthquake acceleration.
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Fig. 1. Schematic of the 3-story building with MR damper.

Denote as ẍai the absolute acceleration of the i–th floor, i.e,

measured with respect to an inertial frame (the a subindex

means absolute coordinates). Then the relationship between

relative and absolute displacements is xri = xai − xg . Ms

is the mass matrix, Cs is the damping matrix, Ks is the

stiffness matrix, Gs is a vector that accounts for the location

of the damping devices in the structure and Ls is a vector

that accounts for the disturbance inputs. The structure of

these matrices and vectors is:

Ms = diag (mi) , i = 1, 2, ..., n (2)

Cs =











c1 + c2 −c2 0 0
−c2 c2 + c3 −c3 0

...
...

...
...

0 0 −cn cn











(3)

Ks =











k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 0

...
...

...
...

0 0 −kn kn











(4)

Gs = [−1, 0, ..., 0]
T

Ls = [1, 1, ..., 1]
T

(5)

The objective of the control design is to reduce the

structure response when subject to a seismic motion.

Earthquakes are unpredictable events whose duration and

intensity are unknown but bounded. The goal is to keep

the relative displacements and the absolute accelerations

as small as possible with a low control effort. In general,

minimizing the relative displacement of each floor leads to

preserving the integrity of the structure while reducing the

absolute accelerations helps improving both the security and

comfort of the occupants. Furthermore, it is desirable that the

amount of sensors necessary for control implementation is as

minimal as possible. Sensors usually available for controller

implementation and monitoring are accelerometers, which

provide a direct reading of the absolute acceleration; load

cells for measuring the damper force; and linear voltage

displacement transducers (LVDT) which provide a measure

of the relative displacements. Accelerometers are the most

widely used sensors because of practical implementation

issues.

In this research, the mixed H2/H∞ control approach is

proposed to solve the vibration mitigation problem of the

n–story structure. The structural response reduction under

unknown disturbances can be achieved with the H∞ control

while the minimization of control effort requirements can be

achieved with the H2 control. Moreover, in order to account

for limited measurement availability, an output-feedback

approach is chosen.

The n-story building dynamic model can be written in

state space form as follows:

ẋ = Ax + B1u + B2w (6)

z = C1x + D11u + D12w (7)

y = C2x + D21u + D22w (8)

where x = [xr, ẋr]
T is the state vector, composed of the

relative displacements and velocities of each floor; u is the

input vector, i.e., the damper force input (fmr); w is the

exogenous input vector, i.e., the seismic motion acceleration

(ẍg); z = [Λ1xr,Λ2ẍa]
T

is the vector of controlled out-

puts which is composed of weighted relative displacements

and absolute accelerations (Λ1 and Λ2 are matrices that

contain the weighting factor of the relative displacements

and absolute accelerations); and y = ẍa is the vector of

measured outputs which consists of the absolute acceleration

measurements. The matrices of the system (6) - (8) are given

by:

A =

[

0 I

−Ms
−1Ks −Ms

−1Cs

]

(9)

B1 =

[

0

Ms
−1Gs

]

B2 =

[

0

−Ls

]

(10)

C1 =

[

0 Λ1I

−Λ2M
−1
s

Ks −Λ2M
−1
s

Cs

]

(11)

D11 =

[

0

Λ2Ms
−1Gs

]

D12 = 0 (12)

C2 =
[

−M−1
s Ks −M−1

s Cs

]

(13)

D21 = Ms
−1Gs D22 = 0 (14)

The H2 performance measure of the system (6) - (8) is

defined as:

J2 =

∫

∞

0

(

xTS1x + uTS2u
)

dt (15)

where w = 0 and the constant matrices S1 and S2 are given.

On the other hand, the H∞ performance measure is defined

as:

J∞ =

∫

∞

0

(

zTz − γ2wTw
)

dt (16)
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where γ is a given positive scalar. Then, the mixed H2/H∞

performance measure is defined as:

Min {J0|J∞ < 0 and J2 ≤ J0} (17)

which is equivalent to minimize the upper bound J2

(J0 > 0) subject to J∞ < 0. The minimization of J2

will result in the reduction of the system response and

control effort while achieving J∞ < 0 will keep the system

response within prescribed intervals in the presence of

external disturbances.

Up to now, several control approaches has proposed to

solve the mixed H2/H∞ control problem [9] - [12]. The

problem of the controller design to be addressed in this

paper is formulated as follows: given the second-order linear

system (6) - (8) with a prescribed level of disturbance

attenuation γ > 0, find a mixed H2/H∞ output feedback

control u = K2∞y where K2∞ is the control gain to be

determined such that:

1) the resulting closed-loop system is asymptotically sta-

ble,

2) under w=0 the H2 performance measure satisfies J2 ≤
J0, where the positive scalar J0 is a guaranteed cost,

3) under zero initial conditions and for all non-zero

w ∈ L2[0,∞), the upper bound of H2 satisfies

J∞ < 0.

In this case, the second order linear system (6) - (8) is

asymptotically stable with a mixed H2/H∞ performance.

III. LMI FORMULATION OF THE OUTPUT FEEDBACK

CONTROLLER

Recall the state space model (6) - (8). Then, augmenting

the control u = K2∞y to the system (6) - (8) results in:

ẋ = Āx + B2w (18)

z = C̄x + D12w (19)

y = (I − D21K2∞)−1C2x (20)

where Ā = A + B1K2∞(I − D21K2∞)−1C2 and

C̄ = C1 + D11K2∞(I − D21K2∞)−1C2. Now, represent

the system (18) - (20) in a model descriptor form as follows:

ẋ = ηd (21)

0 = −ηd + Āx + B2w (22)

Define the following Lyapunov functional:

V = xTP1x :=
[

xT ηd
T

]

TP

[

x

ηd

]

(23)

where T = diag{I,0}, P1 = PT
1 > 0 and P =

[

P1 0

P3 P2

]

, such that P2 and P3 are some free matrices.

Differentiating V along the system trajectories (18) yields:

V̇ = 2[ xT ηd
T ]PT

{[

0 I

Ā I

] [

x

ηd

]

+

[

0

B2

]

w

}

(24)

Before proceeding with the controller formulation, a

lemma that will be further used is stated next.

Lemma 1 [12]. For a given M ∈ R
p×n with rank(M) =

p < n, assume that Z ∈ R
n×n is a symmetric matrix, then

there exists a matrix Ẑ ∈ R
p×p such that MZ = ẐM if and

only if

Z = V

[

Z1 0

0 Z2

]

VT (25)

Ẑ = UM̂Z1M̂
−1UT (26)

where Z1 ∈ R
p×p, Z2 ∈ R

(n−p)×(n−p) and the singular

value decomposition of the matrix M is represented as M =
U

[

M̂ 0
]

VT with the unitary matrices U ∈ R
p×p,

V ∈ R
n×n and a diagonal matrix M̂ ∈ R

p×p with positive

diagonal elements in decreasing order.

A. H∞ performance

Under zero initial conditions, the H∞ performance mea-

sure can be written as:

J∞ ≤

∫

∞

0

[

zTz − γ2wTw
]

dt − V|t=0 + V|t=∞

=

∫

∞

0

[

zTz − γ2wTw + V̇
]

dt

(27)

Substituting Eq. 7 into Eq. 27 yields the inequality J∞ ≤
∫

∞

0 νTΠ∞ν ds where ν =
[

x ηd w
]T

and Π∞ is

given by:

Π∞ :=









∆1 PT

[

0

B1

]

+

[

C̄TD12

0

]

⋆ D12
TD12 − γ2I









(28)

∆1 = sym

(

PT

[

0 I

Ā −I

])

+

[

C̄T

0

] [

C̄T

0

]T

(29)

The operator sym is defined as sym(x) = x + xT. Then,

applying the Schur complement lemma on the matrix Π∞

(28) yields:
















sym

(

PT

[

0 I

Ā −I

])

PT

[

0

B1

] [

C̄T

0

]

⋆ −γ2I D12
T

⋆ ⋆ −I

















< 0

(30)

Let X = P−1 =

[

X1 0

X3 X2

]

and a congruence trans-

formation ξ = diag(X, I,X1). Pre- and post-multiplying ξ
to (30) yields:
















sym

([

0 I

Ā −I

]

X

) [

0

B2

]

X

[

C̄T

0

]

⋆ −γ2I D12
T

⋆ ⋆ −I

















< 0

(31)
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Now consider the equality constraint C2X1 = X̂1C2

from Lemma 1, with X̂1 as a new LMI variable. Let

X̃1 = K2∞(I − D21K2∞)−1X̂1. Then, (31) is represented

in the following LMI form:
















∆2

[

0

B2

] [

(C1X1 + D11X̃1C2)T

0

]

⋆ −γ2I D12
T

⋆ ⋆ −I

















< 0

(32)

∆2 = sym

([

X3 X2

AX1 + B1X̃1C2 − X3 −X2

])

(33)

B. H2 performance

Recall the Lyapunov function (23). Under zero initial

conditions and with w = 0, the H2 performance can be

written as:

J2 ≤

∫

∞

0

[

xTS1x + uTS2u + V̇
]

dt =

∫

∞

0

νTΠ2ν dt

(34)

where the vector ν =
[

x ηd

]T
and the matrix Π2 is as

given in (35).

Π2 = sym

(

PT

[

0 I

Ā −I

])

+ ∆3 < 0 (35)

∆3 =

[

S1 + ∆T
4
S2∆4 0

0 0

]

(36)

∆4 = K2∞(I− D21K2∞)−1C2) (37)

Let a congruence transformation ξ = diag{X, I}. Apply-

ing the Schur complement lemma to (35) and then, pre- and

post-multiplying ξ to the result yields:

Π2 =









∆5 XT

[

∆4
TS2

0

]

⋆ −S2









(38)

∆5 = sym

([

0 I

Ā −I

]

X

)

+ XT

[

S1 0

0 0

]

X (39)

Let again X̃1 = K2∞(I − D21K2∞)−1X̂1. Then, after

substitution of X =

[

X1 0

X3 X2

]

into (38) and application

of the Schur complement to the result, yields the LMI (40).

















∆2

[

(X̃1C2)TS2

0

] [

X1
TS1

0

]

⋆ −S2 0

⋆ ⋆ −S1

















< 0 (40)

The controller gain K2∞ can be obtained from the solu-

tion of the LMIs (32) and (40) as follows:

K2∞ = (I + X̃1X̂
−1
1

D21)−1X̃1X̂
−1
1

(41)

IV. EXPERIMENTAL RESULTS

In this section, the mixed H2/H∞ controller is

experimentally validated in a Real-Time Hybrid Testing

facility at the Smart Structures Technology Laboratory

(University of Illinois at Urbana-Champaign, USA).

This experimental platform allows for testing large-scale

structures through the combination of simulations of

numerical models and the experimentation with physical

specimens. Usually, the numerical models represent systems

whose dynamics are well known such as those of linear

systems. On the other hand, the physical specimens

are critical components that generally exhibit nonlinear

dynamics. Coupling between the physical components

and numerical models is done by a software-hardware

interface. In this setup, the numerical model corresponds

to that of a large–scale three-story building that can be

modeled as in (1). The physical specimen is a small-scale

magnetorheological (MR) damper.

The experiment consists of exciting the three-story build-

ing with seismic motions. The values of the mass, damping

and stiffness matrices of this structure are:

Ms =





20253 0 0
0 20253 0
0 0 20253



 kg (42)

Cs =





7243.2 −2070 0
−2070 4138.2 −2070

0 −2070 2070



N − s/m (43)

Ks =





9932 −5661 0
−5661 11338 −5661

0 −5661 5661



N/m (44)

The MR damper, which is installed in the first floor

of the structure, is used to mitigate the vibrations caused

by the earthquake. A picture of the MR damper used in

the experiment is shown in Fig. 2. The damping force is

produced when the current flowing through the internal coils

makes the magnetorheological fluid change its rheological

properties. Thus, when no current is flowing, the fluid

is in a liquid state, providing low damping force. On

the other hand, as the current becomes higher, the fluid

goes to a semisolid state and hence, the damping force is

higher. In this experiment, the current is generated by a

voltage-controlled pulse width modulator (PWM).

The small-scale MR damper dynamics are modeled with

the Bouc-Wen model [14]:

f∗

mr = (cmra + cmrbvf ) ẋp + (kmra + kmrbvf )xp

+ (αmra + αmrbvf ) ̺
(45)

˙̺ = −ϕ|ẋp|̺|̺|
n−1 − βẋp|̺|

n + κẋp (46)

where f∗

mr is the damper force, cmr = cmra + cmrbvf

is the voltage-dependent device damping coefficient,

kmr = kmra + kmrbvf is the voltage-dependent device

stiffness, xp is the piston displacement, ̺ is an evolutionary
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Fig. 2. MR damper and PWM system.

variable that describes the hysteretic behavior of the

damper and vf is the voltage output of the first order

filter v̇f = −η(vf − v) introduced to represent the

transient behavior of the MR fluid in reaching the

rheological equilibrium. The parameters of the MR damper

specimen are: αmra = 33.27 N/m, αmrb = 182.65
N/m-V, cmra = 754.41 N-s/m, cmrb = 712.73 N-s/m-V,

kmra = 1137.57 N/m, kmrb = 1443.50 N/m-V, x0 = 0
m, ϕ = 4209.8 m−2, β = 4205.2 m−2, κ = 10246,

n = 2, η = 57 s−1. The following scaling factors are

used to integrate the physical small-scale MR damper

into the numerical large-scale three-story building: the

first floor relative displacement is reduced by a factor

SL = 7.25 to obtain the damper piston displacement (that

is, xp = x1r/SL) and the MR damper force is increased by

a factor SF = 60 to obtain the input force to the structure

(that is, fmr in (1) is given by fmr = SF f∗

mr).

The details of this system setup and the hardware

and software necessary for the interaction between the

simulations and the experiment can be found in [13].

The output feedback controller u = K2∞y yields a force

signal that cannot be commanded to the MR damper. Instead

a voltage signal must be generated to drive the damper. In

order to implement the controller in this experiment setup,

an algorithm was develop to estimate the voltage signal. Let

F2∞ be the control force estimated by the mixed H2/H∞

controller gain. Then, from (45) and (46), the voltage signal

to the MR damper is estimated with the following equation:

v =
F2∞/SF − (cmraẋp + kmraxp + αmra̺)

cmrbẋp + kmrbxp + αmrb̺
(47)

provided that v 6= 0, otherwise, v = 0. The vector of

controlled signals is composed of the absolute accelera-

tions and relative velocities of each floor. These signals are

weighted by some weighting factors as shown in (11) and

(12). Thus, the vector of controlled outputs was is z =
[

(Λ1xr)
T (Λ2ẍa)T

]T
, Λ1 = diag{500, 500, 500} and

Λ2 = diag{500, 150, 1000}. The available measurements

are the absolute accelerations of each floor. Finally, the

matrices S1 and S2 were chosen as S1 = I and S2 = I.

A solution of the set of LMIs (32) and (40) was found

with γ = 131. The resulting control gain is:

K2∞ =
[

493.90 −4.20 −95.95
]

(48)

The model of the three-story building and the controller

are implemented in Matlab/Simulink. The ordinary

differential equation solver used is the 4th order Runge-

Kutta method with a time step Ts = 5 × 10−4 seconds.

The structure is subject to the El Centro, Loma Prieta and

Northridge seismic motion records; the scale amplitude used

is 0.4.

The H∞ performance, measured as
√

||z||/
√

||w|| is

shown in Table I for the different seismic motions. The

performance bound (γ = 131) is satisfied the controller under

the three seismic motions. In comparison, in the case of no

MR damper actuating, the H∞ performance is higher than γ.

Furthermore, the H2 performance was measured in all cases.

For initial conditions (measured in cm and cm/s)

x(0) =
[

0.0127 0.2032 0.0254 1.27 2.032 2.54
]T

(49)

the bound J0 = x(0)TX−1

1
x(0) = 1.02 × 109 is greater

than the J2 value achieved by the controllers in all cases,

as can be seen in Table II.

Uncontrolled Mixed H2/H∞ control

El Centro 207.15 120.14
Loma Prieta 188.11 103.88
Northridge 182.42 113.08

TABLE I

H∞ PERFORMANCE INDICES UNDER EL CENTRO, LOMA PRIETA AND

NORTHRIDGE EARTHQUAKES.

Mixed H2/H∞ control

El Centro 7.29 × 108

Loma Prieta 4.24 × 108

Northridge 5.43 × 108

TABLE II

H2 PERFORMANCE INDICES UNDER EL CENTRO, LOMA PRIETA AND

NORTHRIDGE EARTHQUAKES.

From Fig. 3 it can be seen that the controller is able

to reduce the displacement and acceleration responses of

the structure. Fig. 4 shows the MR damper response to

the input voltage and piston displacement. The resulting

damper force is within its reasonable range (±3000 N). Fig.

5 shows that the controller is also able to reduce the power

spectral density of the displacement response of the structure.

V. CONCLUSIONS

In this paper, an output feedback mixed H2/H∞

controller was formulated to reduce the vibrations of a
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Fig. 4. MR damper response under El Centro earthquake.
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Fig. 5. Displacement power spectral density under El Centro earthquake.

three-story building with MR damper when subject to

seismic motions. The controller was designed following

an LMI approach so that both H2 and H∞ performances

could be achieved simultaneously. To generate the control

signal, an algorithm based on the Bouc-Wen model of the

damper was proposed. As a result, the experiments show a

reduction in both acceleration and displacement responses.

Furthermore, the power spectral density of the displacement

of each floor decreased with the action of the controller.
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