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ABSTRACT

This paper discusses predictive motion control of a MiRoSoT robot. The dynamic moedel of the
robot is deduced by taking into account the whole process — robot, vision, control and
transmission sysiems. Based on the obiained dynamic model, an integrated predictive control
algorithm is proposed to position precisely with either stationary or moving obstacle avoidance.
This objective is achieved automatically by introducing distant consiraints into the open-loop
optimizalion of control inputs. Simulation results demonstrate the feasibility of such conirol
sirategy for the deduced dynamic model.
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L INFRODUCTION

Robot soccer has atfracted more and more inferest as an intriguing test bed for intelligent
control of dynamic systems in a multi-agent collaborative environment [1]. It is also a iypical
multidisciplinary project, which involves in-depth knowledge in the ficlds of motion control,
radio communication, image processing and strategy programming. Nowadays the use of global
vision has been increasing in robot soccer because of the emphasis on the co-ordination and co-
operation of multiple robots [2]. In such scenario, playing robots ar¢ controlled by a centralised
computing system through the visual information received from a camera mounted above the
playground. The motion control of such configuration is usually difficult due to large time delays
in the image processing stage and the lack of local sensors.

Various methods have been applied to control mobile robots [3]. Nowadays, predictive control
has been used increasingly for their inherent capability of prediction for future states of time-
delay systems in a straightforward way [4]. Messom ctc. [5] and Pereira etc. [6] studied such
predictive control methods for mobile robots with global vision. However, predictors were only
used for predicting the state of the target or the robot and obstacle avoidance was not considered
in their approaches.

In this paper, an integrated predictive control algorithm is proposed to control a MiRoSoT
robot using global vision, where the stability of the time-delay system is to be guaranteed by
incorporating contractive constraints and automatic obstacle avoidance is to be realized by
incarporating distant constraints into the open-loop optimization of control inputs. The paper is
organized as follows: first, in Section 2, the dynamic model of the robot is deduced by taking into
account the whole process, which includes vision system, dynamic system and transmission
sysiem; then in Section 3, a predictive control algorithm with the inherent function of automatic
obstacle avoidance is proposed for the control of the resulting time-delay nonlinear dynamic
system; the simulation results of the proposed algorithm are provided in Section 4; finally, some
conclusions are drawn in Section 5,

325

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 08:26:56 UTC from IEEE Xplore. Restrictions apply.



2. ROBOT MODELING

The variables measured by the global vision system are the position {X,y) of the geometrical

centre of the robot and the angle 9 between the main axis of the robot and the axis X of the
playing field, as shown in Figure 1.

Y“

Figure I. Model of the robot,

Based on Figure | and the Newton’s second faw, a dynamic model for the robot can be derived
and written as
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where i.e. X, indicates the value of X at time instant KT; V and © are the linear and angular
velocity components of the robot and the terms F,; and F,, are the friction forces at the contact
line between the bearing and the floor; m represents the robot mass and [ is the inertia moment
around the robol’s centre of mass G the robat is commanded by two signals, U, and U,,

which represent the magnitudes of the voltage at the right and left motors, respectively; the time
delay between the time of the action of these signals and the visualisation of its effects is denoted

by d.

The model of Eq. (1} is a physically molivated approximate description of the system. One of
the problems in the model is that some terms such as friction forces, are difficult to obtain;
another relevant problem is that the velocity terms are not directly measured by the vision system.
This can be circumvented by an adequate parameierization of the model followed by consistent
parameter estimation. Thus the physical model can be rewritten as

X =%tV T+{c,U , +c;U,  )eos(@, )
Yo = Yuu €, Vy T+ (e, U, +¢, U, ,)sin(0, ) 2)
ek = ek-l +eo, e U, +c0U2k—n
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where V, and V, are the projections of the linear velocity V on the axis X and Y,
respectively. It is important 10 note that the mass m, sampling time T and friction forces
F,,.F,, are grouped together in parameters ¢, (i = 1,---,9) . The velocity components in V., V,
and O can be roughly approximated by

3

{ka-|= L= ;xk—l . Vo= Y ;Yk-z . 0= Dy ;‘Uh:

‘Then Eq. (2} can be represented as an auto-regressive model with exogenous inputs of the form:
X, =, X, +a,,%, , +(b, U, ,+b, U, Jcos(0,_)
Ve =AYty Y, + (b U b Uy, )sing, ) “
B, =20, +a,0,, + b, +by Uy

In order 1o estimate the parameters of the model in Eq. {4) through a generat least-square method,
experimental data from the control inputs, U, and U,, and the system output, x,¥ and O are

needed. The acquisition process of these variables demands a few considerations: dynamical
testing should be performed in open loop to avoid correlation between input signal and
measurement noise; the system must be properly excited to allow parameter estimation and since
the model in Eq. (4) was derived considering basic physical laws and assuming some
approximations, a number of real observed phenomena might not be well represented by it {2]. In
order to reduce the effect of unmodeled phenomena, it is better to excite the robot, whenever
possible, within a limited range around the opérating poini.

Step response data were used to perform preliminary tests and to aid in the dead time
estimation. From the data shown in Figure 2, a dead time of approximately 126 ms was estimated.
For parameter estimation, however, Pseudo Random Binary Signals (PRBS} were used as inputs

Figure 2. Step response of the svstem.

in order to guarantee that the system was properly excited, as shown in Figure 3. A typical
response of such a test is shown in Figure 4. Cross-correlation between inputs and outputs was
generally small and this was somewhat compensated by the use of sufficiently large number of
points. The sampling time was initially chosen to be 18ms based on the characteristics of the
vision, control and communication systems. With the time delay estimated and using the
sampling time of the system, we have d=7.
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Figure 3. Pseudo Random Binary Signal.  Figure 4. Dafa used in parameter estimation.

The Extended Least Squares Method was applied independently to estimate each sub-model of
Eq. {4). The following model was obtained:

X, =1.3724x, , —0.3724x,_, +(0.0096 U,,_, +0.0119U,, ) cos(B, ,)
¥, = 1221y, -022ly, , + (00117 U,,_, +0.0121U,, ,)sin(8,)  (5)
8, =1.1210,_, -0.1218, , -0.00396U , , +0.00422U,, ,

3. PREDICTIVE CONTROL
Based on the obtained model in Eq. (5), the control task of robotic interception is to catch the
target with a proper orientation; meanwhile, the robot will not collide with obstacles during its
movement lo the target, The position of all obstacles is denoted by {xo,yo}. Thus corresponding
control probiem to be solved is to compute a sequence of inputs {U,M,UZM} that will take the
robol [rom its current state X, = {xk,y,,ﬁk} to the desired state X, = {xd,yd,ﬂd} wiih

additional constraints of keeping a distance from all obstacies. The desired state of the robot is to
be determined by the position of the target and the angle of interception,

According to the principle of model predictive control (MPC) [7], the sequence of inputs
U, = {U,M, Uzmris aimed to drive the robol to the 1arget as soon as possible and meanwhile

to guaraniee the robot to keep a distance from all obstacles such as walls and opponent robots,
i.e., the control sequence of every step is to be calculated through minimizing the following cost
function on the basis of satisfying corresponding constraints

"(n.m)(xﬂ) = {u:k[lj‘li‘ﬂ?;;'"
[X(k + 1) - X, ) B, [X(k + k) - X, ]+ ' (6)
EXok -+ ik - X, [ Xtk +nlk) - x,,]+'j“§)‘ U'(k + JR)RU(K + jk)
subject to control, distant and contractive constraints
Uk +]k) <G,
r[xm yk+l]_[xu yn]1 z2G, )]
I[xlmn YIu-n]—[xd Yd]; < Ot![xk ¥i ]_ ["a Y.t]pc- € [0:1)

where n denotes the length of the prediction horizon; m denotes the length of the control
horizon {m < n); G, denotes the maximum absolute value of control signals; G, denotes the
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minimum distance between the robot and the obstacles; « determines the degree of state
contraction for every open-loop optimization.

The control constraint corresponds to the limit of the speed of imotors that drives the robot; the
distant constraint corresponds to the obstacle avoidance by keeping a proper distance from all
obstacles; the contractive constraini is to guaraniee that the robot is approaching to the target by
distance and thus ensures the stability of the closed-loop system since the constraint can be
transformed to a decreasing Lyapuncv function of the closed-loop system [7].

According to the above problem description, the nonlinear MPC control steps are as follows:
I.  Get the corrent state X(K};
2. Solve the optimization in Eq. (6) by comesponding optimization algorithm and get the

optimal control sequence {U"(k + K)o

3. Apply the first control signal U(k) = U.(k]k) in the resulting optimal control sequence;
4. k+1—Kk,Retumnio 1.

It can be seen that a characteristic of the proposed algorithm is that it has integrated the control
task of interception, the task of path planning and the task of obstacle avoidance, which will avoid
heavy computation for extra path planning and obstacle avoidance such as in [8]. Thus it is
especially useful for those cases where online path planning and obstacle avoidance become very
hard due to the lack of global information on the environments around the robot or rapid change
of the environments around the robot.

4. SIMULATION RESULTS

Based on the above predictive control algorithm and the deduced robotic model, two cases are
simulated: robotic interception with stationary obstacle avoidance and robotic interception with
moving obstacle avoidance. In all simulations, the cost function is set to be
Y (X)) = {um'f."i?}:: , 2'§[X(k +ilk)— X, [ [X(k + nik) — X, ] and the other parameters are
settobem=n=17,G, =100,G, =12em,e=0.95. Figure 5 shows the first case, where there
are five stationary obstacles in the environments and the control task is to drive the robot to the
target with the desired orientation. The trajectory of the control result shows that the robot can
arrive to the larget precisely without collision with all obstacles. Figure 6 shows the moving case,
where five obstacles are moving and the contro] task is also to infercept the target with a proper
orientation. The trajectory of the control results also shows that the robot can intercept the target
with the desired orientation and without collision with the maving obstacles.

1

Stutic obstacles

S
Moving obstacles

Figure 5, Robotic interception with Figure 6. Robotic interception with
stationary obstacle avoidance. maoving ehstacle avoidance.
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Simulation results demonstrate the feasibility of the proposed predictive control algorithm
based on the deduced robotic model. However, the trajectonies of the moving obstacles and the
target are assumed 10 be known in advance in these two cases in order to simplify the test of the
algorithm proposed. In praclice, these trajectories should be predicted as well while
corresponding predictive control algorithmt is similar [5],

5. CONCLUSIONS

This paper discussed prediclive motion control of a MiRoSoT robot. The dynamic model of
the robot has been deduced with the consideration of the whole process including robot, vision,
control and transmission systems. Mode] predictive control has been proposed 1o control such
complex dynamic system with nonlinearities and time-delay. Additional constraints such as
contractive constraint and distant constrainl have been integrated into the algorithm for
guarantecing the stability of the close-loop system and realizing obstacle aveidance
simultaneously. However, as illustrated in [9], the computation of open-loop optimizations in
predictive control is heavy and more efficient algorithms should be explored further for real-time
apptication in the future,
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