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Abstract 

The paper discusses maintenance challenges of 
organisations with a huge number of devices and 
proposes the use of probabilistic models to assist 
monitoring and maintenance planning. The proposal 
assumes connectivity of instruments to report relevant 
features for monitoring. Also, the existence of enough 
historical registers with diagnosed breakdowns is 
required to make probabilistic models reliable and 
useful for predictive maintenance strategies based on 
them. Regular Markov models based on estimated 
failure and repair rates are proposed to calculate the 
availability of the instruments and Dynamic Bayesian 
Networks are proposed to model cause-effect 
relationships to trigger predictive maintenance 
services based on the influence between observed 
features and previously documented diagnostics. 

 

1. Introduction 

This work has been motivated within the project 
AIMES (Advanced Infrastructures for Medical 
Equipment Supervision, UE-ITEA2). The project goals 
include the development of predictive mechanisms to 
assist maintenance of a large set of instruments 
submitted to an intensive use in healthcare institutions 
(hospitals). However, maintenance of a huge number 
of instruments is a challenge for large process 
industries (e.g. chemical, petrochemical or 
pharmaceutical) and also distribution industries spread 
across a wide area (e.g. electricity, gas, oil and water 
distribution) or networks of meteorological 
observatories with multiple (sometimes thousands) and 
heterogeneous devices submitted to an intensive use 
and rigorous maintenance and calibration scheduling. 
In all of these domains, specific maintenance policies 
are being applied to reduce cost and time associated to 
the downtimes of devices and the inclusion of reliable 
predictive mechanisms are strongly recommended. 

Maintenance policies can be classified according to 
multiple criteria and strategies [1]. For example unit 
/multi-unit policies, reactive/periodic-preventive/ 
predictive policies or repair/replacement–non repair 

polices can be developed based on cost/benefit analysis. 
In this work, a scenario of multi-unit repairable devices is 
assumed and the aim is to develop a probabilistic 
approach to assist the implantation of predictive policies. 

The intervention time with respect to equipment 
breakdown allows introducing three maintenance 
strategies: reactive, preventive and predictive 
maintenance. Reactive maintenance is associated with 
actions performed as a direct consequence of a 
breakdown. That is, once a failure has been produced the 
device is out of service and maintenance tasks consist in 
recovering its usage capabilities. On the other hand, 
preventive and predictive maintenance describe actions on 
the equipment previous to the occurrence of a breakdown. 
The aim of both is a reduction of costs and time 
associated to unexpected out of service equipment. The 
difference between them (preventive and predictive 
maintenance) is mainly associated to the cause that 
triggers these maintenance actions. 

Preventive maintenance actions are associated to the 
existence of maintenance plan with scheduled actions to 
avoid possible breakdowns. Cleaning, substitution of 
consumables, calibration or equipment alternation, are 
some of these typical actions. Nevertheless, despite the 
existence of preventive maintenance policies breakdowns 
occur and predictive policies are being required to 
minimise the impact associated to the device 
unavailability. Predictive actions imply the existence of a 
monitoring system capable to sense and evaluate those 
devices on line in order to detect faults before occurring. 
In this paper, a probabilistic approach has been 
considered to create predictive models based on the 
exploitation of existing maintenance registers for the 
estimation of failure rates and internal cause-effect 
relationships to build those models. In the literature 
[2][3], several approaches to cope with this challenge 
have been described, that range from Markov models, 
Neural Networks, Regressive models, Decision Trees or 
Fuzzy models to Bayesian Networks (BN) or Influence 
Diagrams (ID). BNs provide a theoretical framework to 
include such information into a rigorous analysis and at 
same time exploiting their representation capabilities to 
give understandable models instead of the “black-box” 
solutions provided by neural networks or SVMs, which 
are usually not accepted in medical domains.  
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The paper has been organised in five additional 
sections. Section 2 is devoted to define a representation 
for instruments. In section 3 and 4 probability models 
useful for instrument maintenance and their 
exploitation to assist predictive maintenance policies 
are introduced. Finally, conclusions are summarised in 
Section 5. 

2. Instrument representation 

A basic monitoring infrastructure is assumed to 
guarantee the connectivity of the instruments being 
monitored with the monitoring and maintenance 
applications in order to assure the existence of 
historical maintenance data. On line monitoring of 
internal variables and access to reports of autocheck 
units are examples of the observable data or symptoms, 
obs. The evaluation of these observations as abnormal 
fires the necessity of a maintenance service who 
diagnoses the causes of the misbehaviour, or 
diagnostics, diag. 
The purpose of this paper is to exploit information 
gathered in these diagnostic reports to model for each 
instrument the dependencies among the variables in the 
set {obs,diag}. These models will be proposed as 
useful predictive mechanisms in presence of certain 
evidences or observed realisations of some variables in 
the set {obs,diag}. Based on this issue, the following 
instantaneous representation, It, is proposed for a 
monitored instrument:  
 
௧ܫ ൌ ,݁ۃ ,ݏ  (1)    ۄݐ
 
where e represents the set of observed evidences at the 
time instant t and s the corresponding status (s=OK, the 
instrument is under normal operating conditions; and 
s=F indicates a failure requiring a maintenance 
intervention). 

3. Probability methods for instrument 
maintenance 

Markov modelling is a technique commonly used for 
reliability and safety analysis to represent models of 
non-repairable, partially repairable or fully repairable 
systems based on state diagrams [4]. Success and 
failure states are represented by circles and transitions 
between two states by directed arcs. Markov process is 
based on the assumption that the transition from one 
state to another one only depends on the current state 
and not on the previous states. In the context of 
maintenance, transitions from a successfully operating 
state to a maintenance state represent instantaneous 
failure rates () whereas the transitions from a 
maintenance service to a normal operating conditions 
represent a repair rate (). Thus, simple repairable 
devices submitted to a reactive maintenance policy can 
be represented by the simple graph Fig.  1a), where 

only two states are possible (s=OK/F) and transitions 
between both are represented by failure rate, OF, and the 
repair rate, OF. An enhanced model including 
mechanisms for triggering predictive actions is 
represented in Fig.  1b). In this diagram, D represents the 
instrument in the predictive maintenance state (transition 
rate OD), from which the device would have to return to a 
normal operating condition (repair rate DO), but in 
certain occasion a breakdown, µDF, could occur before the 
predictive intervention.  
 
 
 
 
 
 
 
 
 
 
 
Predictive maintenance aims at cost reduction associated 
to unexpected breakdowns (ߣԢைி<ߣைி  in Fig.  1) by 
means of the inclusion of early detection mechanisms 
capable to trigger a predictive maintenance actions 
(possibly associated with degraded operating conditions). 

3.1. Reactive maintenance model creation 
 
Assuming that the device is submitted to a uniform 
constant strength and a random stress, failure rate in the 
previous model can be considered constant (exponential 
probability distribution function). Therefore, a feasible 
estimation can be obtained from a family of instruments 
submitted to the same use conditions by computing the 
following expression:  
 

ைிߣ ൌ
ே௨௠௕௘௥ ௢௙ ி௔௜௟௨௥௘௦

்௢௧௔௟ ௧௜௠௘ ௘௫௣௢௦௘ௗ
   (2) 

 
where Total time exposed is the addition of cumulative 
time associated to the instruments considered in the 
sample. For example, imagine that a set of 15 Vital-Signs 
monitors installed in the Intensive Care Unit (ICU) area 
of a hospital are used in this estimation and 5 of them 
failed during an observation time of 5 years. The failure 
rate estimation can be computed as OF=5/(15x5x365) 
when a discrete time interval of 1 day is considered. 
Similarly a repair rate can be estimated if the average 
repair time is known (in the same time units) using the 
following expression: 
 

ிைߤ ൌ
ଵ

஺௩௘௥௔௚௘ ௥௘௣௔௜௥ ௧௜௠௘
   (3) 

 
where the average repair time is also known as MTTR or 
Mean Time To Repair. 
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Fig.  1 State diagram: a) reactive 
maintenance b) predictive maintenance) 
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3.2. Predictive maintenance model creation 
 
The three-state model proposed in subsection 3.1 is 

a high-level representation of a possible predictive 
model whose main drawback resides in the estimation 
of ߣை஽ before implementing predictive maintenance 
policies. Nevertheless, from the existing maintenance 
reports and repair worksheets is possible to establish 
relationships between evidences, Ê, and the commonest 
failures. The exploitation of this information in a 
probabilistic graphical model, which represents a set of 
variables and their probabilistic independencies, can be 
easily done with BNs [5]. 

BNs can be applied in cases of uncertainty when 
certain probabilities are well-known and other 
unknown ones are tried to be obtained. Sometimes, a 
BN can be specified by a domain expert whilst, in 
other cases, this task is automatically done by a 
learning algorithm. In those cases, the network 
structure and its parameters are estimated from the 
database. 

The result is a directed acyclic graph G = (V, A) 
such that A ⊆ [V]2 (the elements of A are 2-element 
subsets of V). The elements of V are the vertices of the 
graph G and the elements of A are its edges. In our 
case, the elements of V represent concepts or events in 
the real world whereas the elements of A symbolise the 
causal relationship between two vertices vi, vj ∈ V. 
The elements of V can be divided into two groups: root 
nodes (without ancestors) which are expressed by a 
probability table and intermediate nodes, which are 
described by a conditional probability table. 

The inclusion of a temporal representation in such a 
model leads to Dynamic Bayesian Networks (DBN). A 
DBN is basically a BN that represents sequences of 
variables. The simplest DBN would be a hidden 
Markov [8] model in which the state is not directly 
visible, while the output of a given state is observable. 
DBN are commonly proposed to predict and report 
potential risks which should be faced. Obviously, this 
can be also approached by using an ID but DBNs [6] 
usually behave faster in such an environment [7].  

Within a DBN, the dynamic behaviours can be 
approached as a set of timeslices which describe the 
state of a given device at an instant, t. At this stage, we 
firstly need a representation for our DBN. Thus, let Xt 
be a set of unobservable states at a time t and Êt, a set 
of observable evidences at a time t. In this way, the 
initial state can be expressed as )( 0XP . In order to 

simplify the problem, suppose that the transition rate 
λOD follows a stationary process, in other words, its 
joint probability distribution does not change when 
shifted in time or space. Considering that values in any 
state are only influenced by the values of the state 
which directly precedes it (Markov assumption), 
previous states can be removed once a specified 
timeslice has been passed. Taking into account these 
considerations, transition model which describes 

temporal dependencies among states is defined as 
follows: 

 
)/()/( 11:1   tttt XXPXXP   (4) 

Note that, although unobservable states influence some 
variables, we do not need to directly know these states 
since we can define an observation model by reducing the 
ancestors of the evidence Êt, as follows: 

 

)/Ê()Ê,/Ê( 1:1:1 ttttt XPXP    (5) 

Idyllically, once the transition and observation models 
are defined for a given instant, a probability distribution 
which describes the current state of unobservable features 
can be inferred from current evidences and our knowledge 
from previous states. Unfortunately, an accurate solution 
for this inference problem rapidly becomes unfeasible. To 
mitigate this handicap, we propose the Boyen-Koller 
algorithm [8], BK, which requires low computing times 
and storage capabilities (this algorithm is briefly 
explained in subsection 4.2).  

As example of the propose mechanism, a simplified 
vision of a Vital-Signs Monitor (VSM) with four potential 
failure causes or diagnostics (diag) is presented: 
Electricity {Ok, Fail}, Oximeter {Ok, Fail}, Blood 
Pressure Analyser {Ok, Fail} and Screen {Ok, Fail} 
which could cause VSM not to correctly work. This 
misbehaviour can be detected by observing 3 symptoms 
(obs):  S1-VSM displays random numbers, S2- the 
monitor is in black and S3- the VSM is beeping; which 
depend on VSM’s functioning. Then, the set of 
observable nodes, V, will be composed by 8 nodes. Also, 
consider two states, Xt and Xt+1 (see Figure 2). 

 

Fig. 2 DBN which models VSM’s misbehaviours 
through two timeslices (from t to t+1). 

 
In our example, Electricity (El), Oximeter (O), Blood 

Pressure Analyser (B) and Screen (Sc) do not only modify 
the probability of having misbehaviours in the VSM, but 
also condition their future states. In this way, the 
transition model for the VSM is P(VSMt|VSMt-1) and the 
observation model is P(VSMt /Elt,Ot,Bt,Sct). We can now 
consider binary states for the devices: F means 
misbehaviour in the VSM, and OK means that the VSM is 
completely operational [7]. If at time t, our evidence Êt is 
that Electricity=Fail, then the P(VSMt+1=F) increases. 
The prediction from t to t+1, applying the Markov 
property at t+1, is ),/( 11  ttt EEVSMP . 

If our evidence Êt is that S2=True, then the 
P(VSMt+i=F) also increases but we would not know the 
causality since it might be caused by  the nodes 
Electricity or Screen. For this reason, their probabilities 

t                 t+1 
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P(El=Fail) and P(Sc=Fail) also increase. The prediction 
from t to t+1 would be analogous to the previous 
example but respecting their conditional probabilities. 

4. Maintenance model exploitation  

4.1. Availability analysis 
 
Since the states (ok / faulty) are directly visible this 
type of models are known as regular Markov models 
and the state transition probabilities are the only 
parameters. The previous models presented in 3 can be 
represented by the following transition matrix, P, 
(where the diagonal corresponds to the no change rate 
for each state) for Fig.  1a) and Fig.  1b) respectively: 
 

ܲ ൌ ൤
1 െ ைிߣ ைிߣ

ிைߤ 1 െ ிைߤ
൨  (6) 

ܲ ൌ ቎
1 െ Ԣைிߣ െ ை஽ߣ Ԣைிߣ ை஽ߣ

ிைߤ 1 െ ைிߤ 0
஽ைߤ ஽ிߣ 1 െ ஽ைߤ െ ஽ிߣ

቏ (7) 

 
Transitions matrix, P, shows probabilities for 

moving from any one state to another state in one time 
interval or n time intervals if Pn is used instead. For 
n∞ the limiting state is reached (the probability of 
going to a specific state is the same regardless of 
starting state). Limiting state can be used to compute 
the availability, AV, of the instrument; that is the 
probability that the device is successful at time t. It is 
computed by adding the success limiting states 
probability [4]. Assuming that the initial state is s=OK 
the following expression can be used to compute 
availability of Fig.  1: 

 
AV=[1 0] Pn  
 

where n is the day when the availability is going to be 
evaluated. For n∞ the steady state availability is 
obtained. 

4.2. Failure prediction  
 

Boyen-Koller algorithm [8], BK algorithm represents 
the belief state as a product of marginals over clusters. 
The main steps of this algorithm are the following 
ones: 
1. Choose a tractable representation for an 

approximate belief state. BK scheme assumes 
independence among factors. In our example, 
every feature could be a valid factor of BK (4 
clusters). If we had another feature pointing to 
Electricity (an ancestor), then it would belong to 
its cluster too. 

2. Propagate the belief state through the transition 
model at the instant t and condition it, according to 
t+1. 

3. Continue approximating the belief state. 
The application of this algorithm is suggested in the 
exploitation step.  

5. Conclusions and Future Work 

The paper recovers existing approaches to integrate in a 
common framework different maintenance policies based 
on the exploitation and reuse of useful information 
generated through daily maintenance activity. Probability 
models have been proposed to assist maintenance policies 
and simple regular models have been introduced to model 
reactive and predictive maintenance. The impossibility to 
estimate transition rates from normal operating conditions 
to predictive states has been overcome with the use of 
DBN. BN allows for representing independency among 
variables, including those that are observables but also the 
variables describing fault causes; and these extensions, 
DBN, allows modelling the temporal dimension. 
For the evaluation of such a methodology, a selection of 
instruments submitted to an intensive use, e.g. VSM, will 
be used. Historical maintenance registers are proposed to 
estimate the involved parameters and DBN topology and 
probabilities. Cross validation will be used to evaluate 
performance with the available data and confusion matrix 
based indices (e.g. sensitivity, precision or accuracy) will 
be used to rank the method.  
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