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Abstract: The design of control, estimation or diagnosis algorithms most often assumes that all
available process variables represent the system state at the same instant of time. However, this
is never true in current network systems, because of the unknown deterministic or stochastic trans-
mission delays introduced by the communication network. During the diagnosing stage, this will
often generate false alarms. Under nominal operation, the different transmission delays associated
with the variables that appear in the computation form produce discrepancies of the residuals from
zero. A technique aiming at the minimisation of the resulting false alarms rate, that is based on the
explicit modelling of communication delays and on their best-case estimation is proposed.
1 Introduction

Owing to the growing complexity and spatial distribution of
automated systems, communication networks have become
the backbone of most control architecture. As systems are
required to be more scalable and flexible, they have
additional sensors, actuators and controllers, often referred
to as field (intelligent) devices [1, 2]. Networked control
systems result from connecting these system components
via a communication network such as controller area
network (CAN), PROFIBUS or Ethernet.
An increasing amount of research addresses the distribu-

ted control of inter-connected dynamical processes: stability
and control [3–5], decision, co-ordination and scheduling
[6, 7], diagnosis of discrete event systems [8] and fault tol-
erance [9–11]. However, only a few studies of the impact of
the communication network on the diagnosis of continuous
systems have recently been published [12–14].
In model-based fault detection and isolation (FDI), a set

of residuals that should be ideally zero in the fault-free
case and different from zero, in the faulty case are designed
[15–17]. However, in practice, residuals are different from
zero, not only because of measurement noise, unknown
inputs and modelling uncertainties but also because of trans-
mission delays. Since no network can communicate instan-
taneously, data which are used in the residual computation
do not represent the state of the system at the time of the
computation. Instead, they represent the state of the
system at some (often unknown) time prior to the compu-
tation. Moreover, each variable being possibly transmitted
under a different transmission delay, the whole set of data
that are used in the residual computation may even not be
consistent with the system state at any moment prior to
the computation. Therefore, residuals that should theoreti-
cally be zero in the non-faulty case might create false
alarms as the result of transmission delays.
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The false alarms rate can be decreased by increasing the
decision threshold, at the cost of reducing the sensitivity to
faults. In this paper, a technique aiming at the minimisation
of the false alarms caused by transmission delays without
increasing the number of missed detection is proposed. It
relies on the explicit modelling of communication delays,
and their most likely estimation.
The paper is organised as follows: Section 2 provides a

background on fault detection and isolation based on
analytical redundancy, with emphasis on the decision
making logic. Section 3 presents the influence of trans-
mission delays. An optimisation technique for the esti-
mation of unknown delays is described in Section 4.
Finally, an illustrative example is shown in Section 5.

2 Analytical redundancy for fault detection and
isolation

2.1 System and faults

Consider the deterministic system modelled by

_x(t) ¼ f [x(t), u(t), w(t)] (1)

y(t) ¼ g[x(t), u(t), w(t)] (2)

where x(t) [ Rn, u(t) [ Rr, y(t) [ Rm and w(t) [ Rq are,
respectively, the state, control, output and fault vector,
and f and g are given smooth vector fields.
The system normal operation on a time window a, b½ ½ is

described by

w(t) ¼ 0, 8t [ ½a, b½ (3)

while the occurrence of a fault at time g is associated with

9l . g:w(t) = 0, 8t [ ½g, l½ (4)

2.2 Analytical redundancy relations

Analytical redundancy is based on successive derivations of
the output signal (2), which together with the repeated use
of (1) produces the system

�y(t) ¼ G(x(t), �u(t), w̄(t)) (5)

where �y(t) [and also �u(t) and w̄(t)] is the vector obtained by
expanding y(t) with its derivatives _y(t), €y(t), and so on. [the
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highest derivation order in �y tð Þ is not explicitly stated,
because it is of no interest here].
In a second step, (5) is transformed into an equivalent

system

�y(t) ¼ G[x(t), �u(t), �y(t), w̄(t))] ()

G1[x(t), �u(t), �y(t), w̄(t)] ¼ 0

G2[�u(t), �y(t), w̄(t)] ¼ 0

�
(6)

where the equations in the subsystem G2 are the so-called
analytic redundancy relations (ARR), which are indepen-
dent on the state vector x(t). It can be shown that such
ARR can always be found, provided the output can be
derivated up to an order large enough [15–17]. The interest
of these ARR is obviously that – since the state has
been eliminated – they depend only on the inputs, outputs
and faults, and thus providing a means to check whether
the no-fault hypothesis is consistent with the observed
input – outputs.

2.3 Practical determination of analytical
redundancy relations

From a practical point of view, obtaining the set of
equations G2 in (6) from the original set (5) makes use of
a projection operator when system (1), (2) is linear (this is
the parity space technique, see for example [15, 17]).
However, for more general cases, it rests on elimination
theory (see for example [18] for the case where (1), (2) is
polynomial).
It is also worth to notice that ARR are not uniquely

defined. Indeed, any linear or nonlinear combination of
analytical redundancy relations is also an analytical redun-
dancy relation.

2.4 Fault detection and isolation

2.4.1 Computation and evaluation forms: Let the
subsystem G2 be decomposed as

G2[�u(t), �y(t), w̄(t)] ¼ Gc ū(t), ȳ(t)½ � � Ge ū(t), ȳ(t), w̄(t)½ �

where for all input/output pairs u(t), y(t) are associated with
systems (1) and (2)

Ge �u(t), �y(t), 0½ � ¼ 0 (7)

Then condition G2 ¼ 0 can be written as

r(t) W Gc �u(t), �y(t)½ � (8)

r(t) ¼ Ge �u(t), �y(t), w̄(t)½ � (9)

where r(t) is the residual vector, and (8) and (9) are, respect-
ively, its computation and evaluation form. The first one
describes how the residual value is obtained from the
system inputs and outputs. The latter describes how the
resulting value depends on faults.
According to (8) and (9), the fault detection and isolation

procedure is decomposed into two steps. The first one is
residual computation where the residual value is computed
from the known variables, using the computation form (8).
The second step is residual evaluation, that includes fault
detection and fault isolation.

2.4.2 Fault detection: Given a time window a, b½ ½, the
fault detection problem is defined as follows: given the
residual r(t), t [ a, b½ ½, select the most likely hypothesis
1472
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between H0
system and H1

system where

H0
system : w(t) ¼ 0, 8t [ ½a, b½

H1
system : 9½g, l½ # ½a, b½:w(t) = 0, 8t [ ½g, l½

Using (7) and (9), the simplest implementation of a fault
detection procedure is obtained by checking the residual
value against zero at each time t (by a slight abuse of nota-
tion, the time intervals a, b½ ½ and g, l½ ½ are no longer men-
tioned).

[H0
system ¼) r(t) ¼ 0] () ½r(t) = 0 ¼) H1

system] (10)

For the sake of simplicity, only perfect deterministic
models have been considered so far that result in (10)
being indeed true. However, measurement noise, unknown
inputs and model uncertainties will result in residuals
being never zero even in normal operation. This can be
taken into account in a more realistic procedure which
extends (10) as follows

�
H0

system ¼) r(t) [ N (0)] () ½r(t) � N (0) ¼) H1
system

�
(11)

where N (0) is some neighbourhood of zero. Note that false

alarms – r(t) � N (0) under H0
system – and missed detections

– r(t) [ N (0) under H1
system – are possible. The design of a

set N (0) that guarantees both a low false alarm and a low
missed detection-rate is the central problem of statistical
decision making [19–21].

2.4.3 Fault isolation: Fault isolation rests on special
properties of the residual evaluation form (directional
residual and structured residuals) are not developed here
(see for example [15, 16, 18] for good presentations): it is
assumed in the sequel that the residual vector r(t) has satis-
factory detection/isolation properties.

3 Influence of transmission delays

3.1 Data decomposition in distributed systems

In distributed control systems, the residual computation
form is implemented as an algorithm in one node of the
network. At each time t, its input data are noted as

z(t) W
�u(t)
�y(t)

� �

According to the overall system distributed architecture,
z(t) is decomposed into a set of subvectors zi(t), i [ I and
the computation form of the residual vector writes

r(t) ¼ Gc zi(t), i [ I
� �

(12)

The subvectors zi(t) are such that all variables in zi(t) are
transmitted in one single packet through the communication
network. Note that this does not imply that all the variables
produced at a given node are transmitted in one single
packet. As shown in Fig. 1

z(t) ¼ [zT1 (t), zT2 (t), zT3 (t)]
T

where z1 is produced and transmitted by node 1 (a smart
sensor), while z2 < z3 are produced by node 2 (a local con-
troller). The data are decomposed into packets z2 and z3 for
their transmission through the communication system.
IET Control Theory Appl., Vol. 1, No. 5, September 2007

on April 23,2010 at 10:15:42 UTC from IEEE Xplore.  Restrictions apply. 



3.2 Incidence of transmission delays

Owing to the transmission delays, the data zi(t) generated at
the production nodes and the data ẑi(t) available at the
residual computation node must be distinguished. One
obviously has

ẑi(t) ¼ zi(t � di), i [ I (13)

where di [ Rþ is the transmission delay, that is the data
zi was produced at time t � di, and it was received only at
time t. Transmission delays di may be time dependent and
generally unknown. The normal operation of the communi-
cation network on a given time window ½a, b½ can be
described by a very simple deterministic model. Namely,
the maximum delay D is assumed to be known

H0
network ¼) 8i [ I , 8t [ ½a, b½:di � D

� �
(14)

() 9i [ I , 9½g, l½# ½a, b½:di . D ¼) H1
network

� �
If communication delays are not taken into account,

residual computation can be performed as

r(t) ¼ Gc ẑi(t), i [ I
� �

(15)

but using data which are taken from the system at different
time instants would obviously result in false alarms.
Taking into account the communication delays by using

future values of the arguments, as in (16), is obviously
impossible.

r(t) ¼ Gc ẑi(t þ di), i [ I
� �

(16)

Finally, the only possibility to obtain a feasible algorithm
is to ‘synchronise’ the data by using a delay t as follows

r(t) ¼ Gc ẑi(t � tþ di), i [ I
� �

(17)

where r(t) is the residual available at the residual compu-
tation node. Note that at a time t one in fact computes the
value that the residual had at time t 2 t

r(t) ¼ r(t � t) (18)

The delay t must obviously satisfy

t � max
i[I

di (19)

4 Decision procedure under unknown
transmission delays

When the vector of transmission delays

d ¼ (di, i [ I)

Fig. 1 Data decomposition in distributed system
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is perfectly known, the decision procedure associated with
(11) can be directly run by choosing

t ¼ dk k1

from (18) it follows that

�
H0

system ¼) r(t) [ N (0)] () [r(t) � N (0)] ¼) H1
system

�
(20)

however when r(t) � N (0) the fault detection process is
delayed by t.
When transmission delays are unknown, the decision has

to be taken in the presence of the so-called nuisance par-
ameters d. From (14) and (20), the following decision
logic is true

[H0
system ^ H0

network] ¼) 9d:[( dk k1� D) ^ (r(t) [ N (0))]

() 8d:[( dk k1. D) _ (r(t) � N (0)]

¼) [H1
system _ H1

network] (21)

This decision logic expresses that the non-existence of a
vector of transmission delays, d such that (1) dk k1� D and
(2) the residual lies inside N (0) evidences that the system,
the network, or both do not operate properly. Even though
both faults in the network and in the system can be detected,
they cannot be isolated from each other in the absence of
extra information.

4.1 Estimating the transmission delays

Let the system fault detection neighbourhood N (0) be
defined by

N (0) ¼ r:J rð Þ � s
� 	

where 8r = 0, J rð Þ . 0, J 0ð Þ ¼ 0, for example
J rð Þ ¼ rTQr with Q . 0 and s . 0 is a given decision
threshold. Checking the property H0

system ^ H0
network can be

done by solving the following optimisation problem

�d ¼ arg min
kdk1�D

J [r(t)] (22)

where r(t) ¼ Gc[ẑ(t � tþ d)]. Let �t ¼


�d



1
, �r(t) ¼

Gc[ẑ(t � �tþ �d)] and �J (t) ¼ J [�r(t)], then the following
interpretation holds

(i) �d is the ‘most likely’ vector of admissible delays in the
sense that the function �J (t) associated with the delayed
residual �r(t) is minimum
(ii) This residual may or may not be compatible with the
hypothesis that the system operates in a nominal way, and
therefore the decision logic (21) becomes

�J (t) . s) H1
system

Finally, it should be noted that the estimation of d̆ by (22)
implements a sufficient condition-based decision logic.
Indeed, if the minimal value �J (t) associated with d̆ does
not satisfy �J (t) � s, then no other estimation will do.
However, the set {d:[kdk1 � D] ^ [r(t) [ N (0)]} may
contain more than one element.
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4.2 Searching for a minimum

The cost function J (r(t)) ¼ J{Gc[ẑ(t � tþ d)]} is in
general a nonlinear function of the adjustable parameters
d, and its minimum can be found using the well-known
iterative search methods [24]. However, since the problem
is to be solved in real time, it is of interest to study the con-
ditions under which the estimation �d can be found quickly
and accurately. Note that even when a dynamic feedback
control loop is involved, the on-line search for a
minimum, being a part of the FDI algorithm, can be run
at a much lower frequency than the one associated with
the control computation, for systems where faults are not
critical (should faults be critical, it can be assumed that
the network would have been designed so as to make trans-
mission delays negligible).

4.2.1 Persistent excitation condition: Assuming that
all functions involved are differentiable, the solution of
the optimisation problem (22) satisfies the necessary con-
dition

@J [r(t)]

@di

þ mi ¼ 0, i [ I (23)

where mi is the Khün and Tücker parameter associated with
the inequality constraint di � t. This system can be solved
for �d if its Jacobian is not too ill conditioned in a neighbour-
hood of the optimum. From

@J [r(t)]

@di

¼
dẑi

ddi

(t � tþ di)

� �T
dr(t)

dẑi

� �
dJ [r(t)]

dr

it is seen that there are some system trajectories that produce
a rank defective Jacobian, namely when zi(t) is constant for
some i [ I. Therefore, for delay estimation, it is necessary
that a persistent excitation condition be satisfied, such that
no transmitted packet of variables is constant over time.
When the persistent excitation condition is not satisfied,

the previous estimated value of the delay can be used to
compute r(t).

4.2.2 Local minima: The search for a minimum is started
out from an initial guess on the parameters d(0) and in
general it will converge towards a local minimum.
Starting with zero at the very beginning and taking the
last estimate of the transmissions delays as the initial
guess for the next estimation seems to be a good approach
when the exploitation conditions of the network do not
change at a faster rate than the rate at which residuals are
computed. Converging towards a local minimum is a
source of false alarms, since the estimation �d may lead to
�r(t) � N (0) while the global minimum, say d�, would
have provided r�(t) [ N (0). In special cases, such as
linear systems and convex cost functions, global minima
will be found, but in more general cases, algorithms that
avoid getting trapped in a local minimum are to be used
[22].

Fig. 2 Schematic diagram of a control position for a DC motor
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5 Illustrative example

Fig. 2 depicts the schematic diagram of a control position
for a DC motor. The aim of this system is to control the pos-
ition c(t) of the mechanical load according to the reference
position u(t). This system has been taken from [23].
The transfer function in open loop is

C(s)

Ev(s)
¼

Km

s(Tms þ 1)
(24)

where C(s) ¼ L[c(t)] and Ev(s) ¼ L[ev(t)], ev(t) is the error
between the output and the input positions. Km and Tm are
known parameters of the system.
Let

r(t) ¼ Tm

d2c(t)

dt2
þ
dc(t)

dt
� Kmev(t) (25)

be the residual computation form associated with the
system, where c(t) and ev(t) are assumed to be produced
in two different nodes of a distributed system (Fig. 3).
The data available at the residual computation node are

êv(t) and ĉ(t), and the actually computed residual is

r(t) ¼ Tm

d2c(t � tþ d1)

dt2
þ
dc(t � tþ d1)

dt
� Kmev(t

� tþ d2) (26)

where di are the delays through the network and t is their
maximum value (19).
Simulations have been performed with Km ¼ 5.5 s21 and

Tm ¼ 0.13 s. u(t) has been modelled as an unit step signal
and c(t) as its response. d1 and d2 are uniformly distributed
in the interval [0, 0.1] s.
Under H0

system ^ H0
network, one obviously obtains r(t) ¼ 0

when di are replaced by their actual values. When these
values are unknown, the admissible delays d̆ i are estimated,
by solving the optimisation problem

min r2(t), under the constraint di [ [0, 0:1] s (27)

Matlab has been used for simulation and optimisation.
The function fmincon has been used for delays estimation.
This function uses a sequential quadratic programming
method [24], and is suitable for finding a minimum of a con-
strained nonlinear multivariable function. Initial condition,
d0, for the algorithm has been fixed at zero.
In order to study the benefits of delay estimation to opti-

mise residual computation, neither unknown inputs (noise
or disturbances) nor uncertainties have been considered.
The analysis has been focused on the performance of the
method to reduce false alarms in the absence of system
faults and to reduce the missed detection rates in presence
of a sensor fault.

Fig. 3 Block diagram of the system
IET Control Theory Appl., Vol. 1, No. 5, September 2007
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Fig. 4 Residual in fault-free situation, comparisons of the actual and estimated delays and the estimation error
Fig. 5 Cost function J[r(t)]
IET Control Theory Appl., Vol. 1, No. 5, September 2007
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5.1 Fault-free situation

Fig. 4 depicts the residual computed without and with the
delay estimation in a fault-free situation [r(t) above and
r(t) below]. Notice that during the transient response,
defined by the interval [0, 1.03] s, the residuals are more sen-
sitive to the actual delays than during the steady-state time
window. It is well known that false alarms can always be
avoided (e.g. by never firing any alarm). This can be seen
in Fig. 4, which shows that false alarms are avoided in both
cases, but at the cost of four orders of magnitude on the
decision threshold (+10 instead of +0.25). This means
worse performances when faults will be present (larger
missed detection rate, bigger size for faults to be detectable).
The comparisons of actual (d1 and d2) and estimated (�d1 and

�d2) delays, and their distributions, are depicted in Fig. 4.
Owing to the lack of a time reference, it seems that estimations
are not well achieved. In order to introduce a time reference,
the estimation error is computed as the difference between the
comparisons of the actual and estimated delays (Fig. 4). The
Fig. 6 Residual in faulty situation, comparisons of the actual and estimated delays and the estimation error
1475
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estimation error is close to zero, and it increases during the
steady-state time window because the excitation condition is
not fulfilled, nevertheless it does not affect the computation
of the residual r(t) as can be seen in Fig. 4.
Fig. 5 depicts the quadratic cost function J[r(t)] to be

minimised at one time instant, in that case the actual
delays were d1 ¼ 0.044 s and d2 ¼ 0.055 s, the dot on the
figure is the minimum of the cost function
J[r(t)] ¼ 1.92 � 1029.

5.2 Faulty system situation

Fig. 6 represents residuals r(t) and r(t) in the presence of an
additive fault introduced on the sensor e(t) as a constant 0.2
bias during the time window [0.3, 0.6] s. The effect of this
fault on residual r(t) is not large enough to overpass the
thresholds, causing missed detections during almost all
the fault instants. On the other hand, the lower figure
depicts how r(t) allows a proper detection. The estimation
error increases significantly during the fault instants, but it
does not affect the detection of the fault.

6 Conclusion

In model-based FDI a set of residuals is computed, which
should be ideally zero in the fault-free case and different
from zero, in the faulty case. However, in practice, residuals
are different from zero, not only because of faults but also
because of measurement noise, unknown inputs modelling
uncertainties and transmission delays in distributed
systems. The use of these residuals will produce false
alarms and missed detections.
In this paper, it is shown that when transmission delays

are known, it is possible to take them into account in the
residual computation, and thus introducing a delayed but
otherwise unchanged decision and avoiding false alarms
as a result of delays. However, when delays are unknown,
it is necessary to estimate them in order to compensate for
their effect in the decision procedure. In this case, based
on a very rough model of the delays, the paper proposes
to address the problem as an optimisation problem. A
search algorithm is used for the delay estimation by mini-
mising the residual under the constraints given by the trans-
mission model. When the persistent excitation condition is
fulfilled, the delays estimation can be carried out giving
reliable results and avoiding false alarms.
The efficiency of the proposed approach is illustrated by a

simple example where a set of different dynamics and fault
magnitudes have been simulated. Current research
addresses more complex transmission models, and more
complex sources of errors (measurement noise and trans-
mission errors).
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