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Abstract- Not considered in the analytical model of the plant,
uncertainties always dramatically decrease the performance of
the fault detection task in the practice. To cope better with this
prevalent problem, in this paper we develop a methodology
using Modal Interval Analysis which takes into account those
uncertainties in the plant model. A fault detection method
is developed based on this model which is quite robust to
uncertainty and results in no false alarm. As soon as a fault
is detected, an ANFIS model is trained in online to capture
the major behavior of the occurred fault which can be used
for fault accommodation. The simulation results understand-
ably demonstrate the capability of the proposed method for
accomplishing both tasks appropriately.

I. INTRODUCTION

Nowadays, fault detection and accommodation is a hot
research line among different groups across the world. This is
due to this fact that it is not only a real challenging problem
from scientific point of view, but also industry insistently
calls for more reliable, practical, self-reliant methods. Need-
less to say, such methods can bring more financial profit
through decreasing the rate of system shut down for repair
or avoiding serious destruction in different parts. Far more
important, they raise the safety of the working environments
and to a high degree prevent the occurrence of disastrous
accidents for operators.

Hardware redundancy broadly used in 70s for fault de-
tection has its own drawbacks for being used in industry
such as expensive implementation or high maintenance costs.
Furthermore, in some cases its implementation is restricted
or perhaps impossible because of some consideration related
to weight and space [1].

Through screening the literature, we can classify all the
analytical redundancy Fault Detection and Isolation (FDI)
approaches in two generic schools: model-based and data-
based [1]. In model-based approaches, it is supposed that a
quantitative or qualitative model of the underlying system
is known. In a strike contrast, the data-based approaches
need not such a model and they detect faults through ex-
ploring available data for finding some abnormalities in the
behaviour of the system [1]. A comprehensive review of these
approaches covering the method characteristics, advantages
and drawbacks can be found in [2], [3], [4].
The most and actually foremost substantial deficiency of

model-based approaches for FDI is their low performance
when uncertainties are prevailing in the underlying system.
In fact, not only uncertainties exist in the analytical model
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of the system owing some complicacy in modeling, but also
they influentially mischievously impress measurements. A
countless number of researchers have devoted a great deal of
effort and time in last decades to deal with these uncertainties
and confine their negative effects on fault detection and false
alarm rates [5], [6], [7], [8], [9], [10].

In this paper we try to deal with this problem in a more
practical fashion. We develop an interval model which is
a set of models instead of one to take into account the
majority of uncertainties in the underlying system. After
that, a vigorous software package based on Modal Interval
Analysis is developed which can robustly distinguish the
occurrence of the fault through monitoring the difference
between the measurements and the predicted values. As a
part of fault accommodation procedure, then we model the
occurred fault in a short time after its detection in online
through employing the ANFIS capability for modelling of
nonlinear systems.

Following the introduction, this paper has been orga-
nized as follows. The problem is stated in section II. The
fundamental concepts of modal intervals and the proposed
method for fault detection have been illustrated in section
III. Section IV first concisely illustrates the ANFIS structure
and then presents the proposed technique for fault modelling.
Simulation results and conclusion constitute the final parts of
this paper.

II. PROBLEM OVERVIEW

Each analytical model of a system has some functions with
some real-valued parameters which are not much accurate.
This is due to this fact that modelling of all uncertainties in
a system because of highly complicate interaction between
different parts is roughly impossible. Furthermore, most of
the parameters in real world plants are varying along the time
aggravating the situation.
From a different angle, in practice, measurements are

available instead of real outputs. Some inaccuracy always
exists in measurements owing uncertainties prevailing in the
measurement procedure. Malfunction of the Controller and
imperfect operation of the fault detection process are results
of such an uncertainty.

These two kinds of uncertainty are the most ruinous causes
for impracticality or, at least, weakness of model-based FDI
approaches in real world applications. Fig. 1 simply depicts
how these uncertainties move into the plant. Finding a way
for presenting them in the analytical model and confining
their effects is the core motive for conducting this research.
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To decrease the computation mass, we compute an external
estimate of Yr(t) and substitute it in (6). It results in

Ym(t) n Yrex(t) = 0, (7)

Using monotonic inclusion property of internal arithmetic
which says if X c Y, then F (X) c F (Y), we can
compute Yrex(t) easily [12]. Interval arithmetic operations
are the natural extension of a rational function

Rf (X) C fR (X). (8)

Fig. 1. Effect of uncertainties on system

III. FAULT DETECTION

In this section we describe the proposed method for fault
detection in some steps which makes its implementation
more straightforward. It has been tried to put the idea of
the fault detection in the simplest way and mathematical
formulation has been presented wherever needed.
A simple but useful way for taking into account parameter

uncertainties is to substitute the real-valued parameters with
intervals. Applying this method results into a set of models
instead of one. Calculation of the output evolution of such a
model set, yr(t), generates a set of curves which are always
between two bounds:

Yr (t) [Yrmin (t) Yrmax (t)] (1)

Consequently, an abnormal condition can be detected
whenever

S() yr(t) (2)
where y(t) is the real output of the system.

Measurement uncertainties cause

Ym(t) 7t y (t) (3)
This inaccuracy considerably increases the rate of false

alarm; i.e. while real output is inside the computed range,
(y(t) C Yr(t)), the measurements are outside (ym(t) ,
Yr(t)).
One option for removing this inaccuracy is definition of

interval measurement:

y(t) E Ym (t) (4)
where

Ym (t) [Ym(t)(I -r) -a, Yt)n(1 -r) + ea]. (5)
er and ea correspond to the relative and absolute errors

respectively.
A fault alarm will be set on whenever

Ym(t) n Yr(t) = 0. (6)

Computation of Yr (t) is a real time-consuming task in a

multi-dimensional space and should be repeated in each step.
Augmentation of the computation mass is another problem
that becomes serious as time goes ahead [11].

fR (X) and Rf (X) are natural extension and the range
of the function f respectively.

Through splitting X, X1 U X2 = X, we can rewrite (8)

Rf (X) C fR (Xi) U fR (X2) C fR (X), (9)

To put an end to the splitting algorithm in (9), we introduce
an internal estimate, Yrin (t) C Yr (t). If Ym(t) n Yri (t) 7t 0,
then, logically we can expect that Ym(t)nYr(t) :t 0. It means
that there is no fault detection and we should stop splitting.

So far, we have obtained the same results of fault detection
using (1) with quite less computation mass and without
false alarm rate. Branch-and-bound algorithms [13] can be
employed for iterative computation of Yrin(t) and Yrex(t).
As a conspicuous property, they eliminate larger subspaces
more quickly than do the other techniques [14].

To reduce the computation mass more, we skillfully intro-
duce the Multiple Sliding Time Window (MSTW) technique
for estimation of the future states using initial states and
inputs. In this fashion, we predict the output from an initial
value between 0 < ti < t, i.e., Yr(t ti) where t -ti = w.
w is named time window and fixing it successfully confines
the computation attempt for obtaining a variable prediction.
Apparently, a longer time window calls for more effort. In
simulation, w starts with the smallest value and goes up
to a time that it gets its maximum possible value or the
occurred fault is detected. The procedure of the proposed
method understandably has been illustrated in Fig. 2.

Although the developed procedure is simple, it signif-
icantly declines the computation mass for fault detection.
The most important characteristic of the proposed method
for fault detection is its robustness. It no doubt guarantees
that there is no false alarm provided that the interval model
and measurements adequately represent the system and the
true values of the variables. The last but not the least, the
simultaneous use of several window lengths not only confines
the computation effort, but also reduces the rate of missed
alarm.

IV. FAULT MODELLING

In the previous section we described how we detect the
occurred fault while the false alarm rate is minimized. In the
next stage and for fault accommodation, we start to model
the detected fault through adjusting parameters of an ANFIS
model based on available measurements.
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and ck are consequent parameters which should be trained.
As shown in Fig. 3, the ANFIS structure contains five

layers where two of them are adaptive and the rest are
fixed. In fact, ANFIS is a feedforward neural network which
implements a fuzzy inference system. The following points
about these layers are noteworthy, helping to find a good
sight to ANFIS structure and output generation.
Nodes in layer 1 are membership functions generating the

degree of membership of inputs. In Fig. 3, Ai and Bi are
presenting membership functions for each input. Oftentimes
they are gaussian functions with two or three parameters
named premise parameters. Having tunable parameters in
nodes is the reason for calling this layer a tunable/adaptive
layer.
Each node in the second layer multiplies the degree of

membership functions and generates firing strength for each
rule:

Wk = PAiA(X1)IBj(X2), i,j = 1,2,3, k = 1,...9 (11)

Apparently, this layer is a fixed layer without any param-
eter to be tuned.

Like the second layer, the third layer is a fixed layer and
inputs are normalized in each node:

Wk= 9 , k =1,...9
1i=l Wi

(12)

The fourth layer is a realization of the then-part of each
fuzzy rule in ANFIS structure. A linear polynomial of inputs
and normalized firing strength are multiplied in each node
of this layer:

Fig. 2. MSTW algorithm
Created by Wiz Fl- wh-ter (L
Visit httpp .. star.co i/wO,

A. ANFIS

In this part we introduce the structure of ANFIS with some
mathematical points useful for explanation of our method.
ANFIS is an excellent extension of fuzzy inference system

which utilizes the learning capabilities of neural networks.
Both fuzzy inference system (FIS) and neural network (NN)
have their own particular disadvantages. In literature, many
striking applications of fuzzy inference system and neural
network have been reported in diverse areas.

Obtaining good results from FIS needs devoting consider-
able times and efforts for proper selection of number, kind,
and parameters of membership functions. While parameters
in NNs are quickly adjusted through a learning method, they
do not use human's knowledge in their structure or training
stage and, therefore, lack transparency.
An ANFIS system structure with two inputs and one

output has been pictured in Fig. 3. In this presentation, there
are three membership functions for each input which results
in 9 rules like this: If X1 is Ai and X2 is Bj, then

Y1 = akXl + bkx2 +ck (10)

where i, j = 1, 2, 3 and k = 1,2,... 9. In (10), x1 and x2
are inputs to ANFIS and Yi is output of each rule. ak, bk

Yk = wk(akXl + bkX2 + ck), k = 1,....9 (13)
(Unlicen.sed Software).
fl-w for p-rh-s options.

As mentioned before, we refer to parameters of this layer
as consequent parameters which introduce this layer as a
tunable/adaptive one.

Finally, the fifth layer is a fixed one generating the overall
output of ANFIS:

9 9

Y = E Wkyk = wk(akXl + bkx2 +ck)
k=l k=l

(14)

B. Fault Modelling
The proposed method for fault modelling in closed-loop

systems has been schematically illustrated in Fig. 4.
We develop an observer using the analytical model of the

system to tune the parameters of the ANFIS model. This
observer which is an appreciable combination of classical
and intelligent models can be presented like this:

y = F(y, u) + f (y, u) + G(y -y) (15)

where y and y are real output and observer output respec-
tively. In (15), F(.) is the analytical model of the underlying
plant and f(.) is the ANFIS model of the fault which should
be tuned [15], [16], [17], [18]. Stability of the observer can
be guaranteed by choosing G as a positive definite matrix.
Parameter values in F (.), plant model, take their nominal
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Fig. 3. ANFIS structure

Fig. 4. Schematic of fault modelling technique

values which are the best available choice regarding to our

information of the plant.
Using well-known back-propagation learning method, both

premise and consequent parameters of the ANFIS model
can be adjusted. But, oftentimes, it is not necessary that we
spend our time for precise tune of premise parameters. This
is due to this fact that they have a less impressive effect
on ANFIS output than consequent parameter. Based on this
and through proper selection of number and kind of inputs
and their membership functions, we can reach satisfying
results through just modifying consequent parameters. This
significantly reduces the computation mass and increases
the speed of fault modelling procedure. Doing this, expect-
edly, inevitably causes some slight impression in modelling.
Nonetheless, advantages still considerably outweigh possible

disadvantages.
ANFIS consequent parameters, Of (.), are adjusted in on-

line. Whenever a new measurement is available, we adapt
them as follows

Of(t) = Of(t- 1) A 61(t) (16)

where A is the learning rate.
As shown in Fig. 4, the objective functional which should

be minimized here is

(y _ )2.
2

If we define estimation error as

e y -,

(17)

(18)

term aO(t) in (16) can be mathematically expanded using
partial derivative rule

aJ &J &e

&Of &e& 00
f

(19)
f

To compute DOe, we need to obtain dynamic of the
estimation error. Subtracting (15) from the intact analytical
model of the system gives

e = y-y = G(y -y) + f(y, u) = Ge + f(y, u). (20)

This shows that after disappearing initial value effect, es-

timation error only depends on the occurred fault. Therefore,
we can rewrite (19)

(21)
Of Of

Layer 1 Layer 2 Layer 5
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which its calculation is straightforward based on specific
structure of ANFIS as presented in the previous subsection.
This completes our discussion for fault modelling.
A characteristic more important than implementation ease

of the proposed method is its capability to cover different
occurred faults in sensors, actuators, and plant components
without any concern about complexity of faults or even
having time-variant dynamic. We will address this striking
property in future works.

V. SIMULATION RESULTS

In this section, we implement the proposed method in the
previous sections on a nonlinear plant. The considered plant
on this research work is a tank that has a controlled valve
in its output. A PI controller controls the valve based on
measurement and reference signal of the tank liquid level.
Fig. 5 schematically simply shows different parts of the
underlying system.

envelopes generated by SQualTrack as well as fault alarm
have been presented in Fig. 6. Void intersection of external
envelope with measurement envelope for the first time occurs
is 375 s, just five seconds after fault occurrence. Fault
occurrence and detection times have been clearly marked in
Figs. 6(a) and 6(b) respectively.

2.6-

2.4-
200 400 600 800 000 200 14200

(a)

¢.1 t=37 5

fit
|sii

200 400 600 800

Time(sec)

(b)

Fig. 5. The controlled tank system

Mathematically, we can present variation of the tank level,
h( ), of this system as follows

A h(t) = Q(t) -Qo(t) = Q(t) -u(t)h(t) (22)

in which Qi(.) and Qo(.) are input and output flows re-

spectively. u(.) is PI controlling signal and -y is a physical
parameter.

Both -' and the level measurement have their own uncer-

tainties. For -' we consider about ±10 % variation around
its nominal value as uncertainty in physical parameters.
Also, uncertainty in measurement of h(.) is considered as

h( 1( ± 0.05).
For fault detection stage, we develop a software package

named SQualTrack (Semi-Qualitative Tracking) which ap-

propriately executes what was formerly explained in section
III. We introduce plant model in this software with the
considered uncertainties in the plant parameters and mea-

surements.
Because of the slow behaviour of the underlying plant,

sample time for measurement of output was fixed at 1 s

without any concern about missing any noticeable deviation.
In simulation, tank level should follow a reference signal
which varies between 2.7 m and 3.3 m. To examine its
capability of fault detection, a leakage fault was deliberately
mathematically generated in the system at 370 s. Needless to
say, the severity of this fault is directly related to the square

root of h(.). Plots of internal, external, and measurement

Fig. 6. (a) External, internal, and measurements envelopes generated in
SQualTrack, (b) Fault alarm

It's noteworthy to mention that this fault detection simula-
tion highlights a striking property of the proposed method. As
shown in Fig. 6(b), there is no false alarm before occurrence
of the fault. In the other word, while the analytical model of
the system and measurement have some kinds of uncertainty,
SQualTrack is quite robust against them and doesn't consider
them as a fault. Furthermore, after fault occurrence, it based
on computed void intersection of envelopes immediately
detects occurrence of the fault and continuously keeps the
fault alarm ON throughout the simulation except for some
negligible instants.

Simulated leakage fault depends on the volume of liquid
inside tank. Taking into account this point, we consider
sensor measurement and its previous values as inputs of
ANFIS model. In this simulation, ANFIS has two inputs
which discourse universe of each one is covered with three
Gaussian membership functions. This structure of ANFIS
includes 27 consequent parameters distributed in 9 if-then
rules. As mentioned in previous section, in contrast with con-
sequent parameters, 12 premise parameters are appropriately
chosen and fixed which fulfill the required precession in our
simulations.

Adjusting ANFIS model parameters starts at 375 s, the
instant that we detect fault, and continues approximately
for 280 s. Fig. 7(a) displays the tank reference and actual
levels in normal and faulty situations. Tank level deviates
from its nominal behaviour at 370 s and the controller
attempts for revitalizing the system to its normal behaviour
are approximately abortive. The actual and estimated fault
values have been depicted in Fig. 7(b). Obviously after the
training time, ANFIS output matches the simulated fault
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acceptably which implies that the fault modelling task has
been done well.

3.
- Reference r

3.6 t=370OIntact
324 Faulty

0.025.

0.02 -=7 =5

0.015

C0.01,

0.005 .''

200 400 600 800
Time(sec)

(b)

Fig. 7. (a) Reference and actual values of tank level in normal and faulty
situations, (b) Actual and estimated fault

It's true that there are some errors in modelling, but they
are so slight that we can safely disregard them. Also, these
small differences can be treated well through more accurate
manual tuning of premise parameters. Needless to say, hiring
more membership functions for inputs or increasing the
number of inputs can be exploited to enhance fault modelling
precision if more needed, although the obtained results in this
simulation acceptably sounds satisfying.
We run many simulations to examine the capability of the

proposed method in both detection and modelling stages.
Reference input, the occurrence time of the fault and its
severity were changed for covering different cases. The
obtained results in these simulations are very similar to the
presented results in this section which strengthen powerful-
ness of the developed methods.

VI. CONCLUSION

In this paper we addressed FDI difficulties arising from
presence of uncertainties in the analytical model of the
plant and in measurements. Using modal interval theory,
a vigorously robust technique for fault detection was de-
veloped. This technique is based on an analytical model
which its parameters are intervals instead of fixed values.
After detection of a fault, we modelled it in online using
ANFIS a short time after its detection. The capability of the
proposed method for FDI was properly shown through its
implementation on a closed loop nonlinear system.
The performance of the proposed method can be still

enhanced in both detection and modelling stages. Using
the fault model for modification of controlling signal is
an interesting issue for completing fault accommodation
task. Moreover, it is possible that we identify and model
occurred faults in sensors and actuators under the proposed
circumstance with some modification. Both will be addressed
in future research works.
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