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Quantified Set Inversion with Applications to Control
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Abstract— This paper describes a new reliable method,
bhased on Modal Interval Analysis (AMZ.4) and Set Inver-
sion (ST} techniques, for the characterization of solution
sets defined by Quantified Constraints Satisfaction Problems
(QCSP) over continuous domains. The presented method-
ology, called Quantified Set Inversion (QS3Z), can be used
over a wide range of engineering problems involving uncer-
tain nonlinear models. Finally, an application ¢n parameter
identification is presented.

I. INTRODUCTION

Many engineering problems, like in control engineering,
can be formulated in a logical form by means of some
kind of first order predicate formulas: formulas with the
logical quantifiers, universal and existential, a set of real
continuous functions, equalities or inequalities and variables
ranging over real interval domains. More recently, this for-
mulation has been referenced by different authors under the
names: Generalized Constraints Satisfaction Problems [27]
or Quantified Constraints Satisfaction Problems (QCSP)
(2], [24].

A. State-of-the-Art

Up to now, Cylindrical Algebraic Decomposition [29],
7], [12], for which a practical implementation exists [4],
has been the most extended method to solve this type of
problems. However, this technique is only well suited for
small or middie-size problems because of its computational
complexity. Moreover, it often generates huge output
consisting on highly complicated algebraic expressions
which are not useful for many applications and it does
not provide partial information before computing the total
result.

Methods that appear lately [11], [2] uy to avoid some of
these problems restricting oneself to approximate instead
of exact solutions, using solvers based on numerical
methods. However, these algorithms are also restricted to
very special cases (e.g. quantified variables only occur
once, only one quantifierete.). Recently, some of these
deficiencies have been partially removed by Ratschan [24]
but, a lot of work remains to be done before obtaining an
efficient and general method.

Many practical examples exist on the resolution of
QCSP using the different existing approaches, for
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example in control engineering [5], [18], [9], [25], [20],
electrical engineering [28], mechanical engineering [14],
[13], biclogy [6] and various others [3].

II. PROBLEM STATEMENT

A Quantified Constraint (QC) is an algebraic
expression over the reals which containg quantifiers
(3,¥), predicate symbols (e.g.,=,<,<), function
symbols (e.g.+, —, x, 3in,exp), rational constants and
variables & = {x1,...,%,} ranging over reals domains
D={Dy,...,D,}.

An example of a ©C is the following one,
VmeIRm4+pa:2+qz+r20, (1)

where z is a universally (¥) quantified variable and p and
™ are free varjable,

As defined in [27], a nwnerical constraint satisfaction
problem, is a triple CSP = (&, D', C(x)) defined by

(i) a set of numeric variables z = {z1,...,2,}

(i) a set of domains D = {D,,...,D,} where D;, a set

of numeric values, is the domain associated with the
variable ;.
a set of constraints C(x) = {Ci(x},...,Cm(x)}
where a constraint C;(x) is determined by any nu-
meric relation {(equation, inequality, inclusion, etc.)
linking a set of variables under consideration.

(iii)

A solution (o 2 numeric constraint satisfaction problem
C8P = (z, D,C(z)) is an instantiation of the variables of
a for which both inclusien in the associated domains and
all the constraints of C{x) are satisfied. All the solutions
of a constraint satisfaction problem thus constitute the set

L={xe D | C{x)is satisfied}. (2)

Now suppose that the constraints C(2) depend on some
parameters pq,pa,...,p; about which we only know that
they belong to some intervals Py, P, ..., Pr. Moreover,
these parameters have an associated quantifier @ € {¥,3}.
Taking into account the dual character of interval uncer-
tainty, the most general definition of the set of solutions
to such Quantified Constraint Satisfaction problem QCSP
should have the form

E:{I EDlQl(paupol)"-Ql(panpm)c(x)}’ (3)

where
« Q; are logical quantifiers ¥ or 3 (in this paper, only the
case of universal quantifiers preceding the existential
ones will be dealt).
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e {p1,p2,...,p} is the set of parameters of the con-
straints system considered,
« {P,P,..., P} is a set of intervals containing the
possible values of these parameters,
e o; € &y is a permutation of the numbers 1,...,1.
The sets of the form (3) will be referred to as quanti-
fied solutions sets to the numerical quantified constraints
satisfaction problem @QCSP = (z, D, C{x)).

111, METHODOLOGY
A. Set Inversion

One way of solving a CSP is through the
characterization of its solution set by means of the
Set Inversion (SI) approach.

Let CSP be a constraint satisfaction problem
CSP = (z, D,C{z)). Set inversion aims at characterizing
the set £ of all ¢ such that € is satisfied.

Remark: All constraints are considered under the form
C(z) := f(x) = y, where f a continuous function from
R” to R™,

Given a box X (cartesian product of intervals), an
algorithm which does set inversion is based on a branch-
and-bound technique and the 3 followings set of rules:

Rulel: V(x, X)C(z) & X CEL.

This logic formula, used to prove that a box X is contained
in the solution set, is equivalent to the following interval
computation and interval inclusions

Out(f(X) S Y,

where f(X) are the ranges of the function components
over the interval vector X and Owut(f(X)) are outer
approximations of f(X).

Rule2: ¥(z,X)-C(x) & XCZ.

This logic formula, used to prove that a box X does not
belongs to the soluticn set, is easily proved by means of
the following interval computation and interval inclusions

Out(f(X) C Y.

Finally, if Rule 1 and Rule 2 are not accomplished the
position of the box X is undefined.

Rule 3: Otherwise, X is undefined.

Fig. 1 shows a two dimensional example of the three
possible situations corresponding to the 3 rules.
Then the algorithm which does set inversion is as follows

where

» € 8T stops the bisecting procedure over X when this
precision is reached,

TABLE 1
ST ALGORITHM

Algorithm ST(In; C, X ¢, ¢, Out: 2=, AX)

1) Initialization: Stack=X ;2™ = $,AS := @

2) Repeat

3 Unstack X;

4 if With(X) < ¢, then AR = AT U X,

5) else if Bule 1 is satisfied, then &T° (=X~ U X,
6) else if Hule 2 is satisfied, then X is non solution,
7) else Bisect X and stack resulting boxes;

8) Until Stack=0;

+ L7: Subpaving {list of nonoverlapping boxes) repre-
senting an inner approximation of the solution set,

« AX: Subpaving representing all the boxes for which
nothing could be proved.

These subpavings provide the following bracketing of the
solution set:

YT CERCETUAD

B. Quantified Set Inversion via Modal Interval Analysis

Classical ST is well suited characterizing solution sets
of the form (2). The problem arises when the sets are of
the form (3). Several authors have proposed solutions to
this problem using classical interval analysis and constraint
propagation approaches {163, [2], [24]. In this section,
a new algorithm for the characterization of quantified
solution sets based on Modal Interval Analysis (AMZ.A)
[10] is presented. This algorithm will be referred to as
Quantified Set Inversion (QS8T).

Let us consider the case when the constraints are under
the form Clz) := f(z) g 0, with f a continuous function
from B” to R.

The main difference between the classical ST Algorithm
and the quantified one lies on the used set of rules. For the
proposed algorithm the following rules will be used:

2]
3]

1-Solution
2-Non-Bolutian
3-Undefned

X

Fig. 1. Sclution set
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Rulel: ¥(z, X)V¥(py, Pyv)Ipe, Pp) C(z) &

XCZL.

This logic formula, used to prove that a box X belongs
to the solution set, can not be easily proved by means of
classical interval computations. For this reason, MZI.A is
proposed. MIT.A is a powerful mathematical tool which
allows the evaluation of quantified interval formulas by
means of interval computations. Concretely, to evaluate the
set of logic formulas, the *-semantic theorem given by
MTIA is used to reduce equivalently the logical formula
to the interval inclusion

OUt(f*(X:PU»PE)) CZ

where X, Py are proper intervals, Pg improper one,
Out(f*(X, Py, Pg)) is an outer approximation of the
the *.semantic extension of the contimious function f and
Z =[0,0], Z = [-o0,0] or Z = [0,0] depending on if
the constraints are under the form C{z) = f(z) = C.
C(z) = f(z) <Vor C(x):= f(x) > 0, respectively.

Remark: A modal interval X is defined as a couple
X = (X'\¥) or X = (X',d) where X’ is its classic
interval domain, X' € I{R), and the quantifiers ¥ and 3
are a selection modality. The modal intervals of the type
X = (X', E) are called proper intervals or existential
intervals, the intervals of the type X = (X', V) are called
Improper intervals or universal intervals. A modal interval
can be represented using their canonical coordinates in the

form (a8],3) ifa<b
a’ H il a iy
X =lot]= { ([B,a]',¥) ife>b
For example, the interval [2,5] is equal to ({2, 5],3) and
the interval [8,4] is equal to ([4, 8], ).

In order to obtain the second rule, used to prove that a
box X does not belongs to the solution set, the following
implication is used:

Rule2: —(¥(py, Py)3(pe. Pg)I(z,X)Cz)) =

XcCT
This logical formula is, analogously, equivalent to the
following interval exclusion:

Inn(f* (X, Py, Pg)) ¢ Z,

where Py is a proper interval, X, Py improper ones,
Inn(f*(X, Py, Pg)) is an inner approximation of the
the *-semantic extension of the continuous function f. and
Z = [0,0], Z = [~00,0] or Z = [0,05] depending on
if the constraints are under the form C(z) := f(z) = 0,
Clz) = f{z) < 0or C(z) = flz) > 0, respectively.

Finally, if none of these rules are accomplished, the box
X is undefined.

Rule 3: otherwise, X is undefined.

Computing the semantic extension of a continuous
function f by means of any of their interpretable rational
extensions provokes an overestimation of the interval
evaluation, due to the multi-occurrences of variable, when
the rational computations is not optimal. An algorithm,
based on results of AMIA and branch-and-bound
techniques which allows to efficiently compute an inner
and an outer approximation of f* has been recently built.

When the constraints are under the form C(z) :=
flz) § 0, with f a continuous function from R” to R™
and each variable existentially quantified appears in only a
component function, the problem is reduced to m different
problems, one for each component function.

IV. APPLICATION

Interval model based techniques, like robust contrel [26],
[17], [30], [15] or robust fault detection [1], requires from
a well knowledge of the process model to be treated. This
section describes an application of the @Q&8Z algorithm
which consists on identifying on a guaranteed way [31] the
parameter of a nonlinear model.

A. Parameter Identification

The problem treated in this section is a well known
problem of the literature. It has been taken from [16],
which at the same time has been inspired from [23].

B. Problem Statement
The present problem of parameter identification is defined
by two main characteristics:

i. The process model: A nonlinear process which de-
pends on the variable ¢ and two parameters x; and x4
is used. The theoretical model of the process is:

ylz,t) = 20exp(—xt) — Sexp(—zqt).

ii. The constraints to be satisfied: The constraints im-
posed by the system are:

y(m,ti)ey;',ti EE:VI € 1;"'110:

where Y; corresponds to the uncettainty associated
to the measure y; and 7T; represents the uncertainty
associated to the measurement time ;.
Table T shows the uncertainty associated to y and {.
Fig. 2 is a graphic representation of the uncertainty
rectangles associated to the vectors ¢ and y of the table
18
The accepted parameter set is defined by

Ei{.’f: cX | 3t ETl,Elyl EYl,y(a},tl)—yl =0

I R I T )

Jt10 € T10, Iy1o € Y10, ¥(®, t10) — 110 = 0}
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TABLE I
UNCERTAINTY ASSOCIATED TO t AND ¥

i 1; Y;

T [[1-025.L751 || (EL.12.10
) [5.35] 1.04.7.14)
3 || 11.25.3.25] 0.13,3.61]
4 Al 0.95.1.15
5 G.7 [-4.85,-0.29]
6 [8,10] [-5.06,-0.36]
7 12,14 [F.1.-0.04
3 16,18 [-3.16,0.3
9 20,02 (25051
0 124,36 120671

Grouping the existential quantifiers and expressing it under
a vectorial form
Y={zeX|HteTIyecY,y(=t)—y=0}

For one sample ¢ (¢ = {1,...,10}), the logic formula
which fulfils the points belonging to the solution set £; is

Yy, X1)V{(wz, X3)30 T )W, ¥ Dy (2, ) — 9 = 0
which is equivalent to the following inclusion test

Out(f{ (X1, X2, T3, Y)) € [0,0],

with X; and X, proper intervals and 7; and Y; improper
ones.

The logic formula which fulfils the points not belonging
to the solution set L; is

“(Iwr, X1)Iwe, X5) b, T s, Y Yy ® 1) — 9 = 0)

145 ¥
12
10
8

B Ry O N D oo

a5 10 s 1 B

Fig. 2. Graphic representation of the uncenainty associated to the vectors
tand y

Fig. 3.

Pavings generated by @S algorithm

which is implied by the following exclusion test

Inn(fi*(){h )"27212': }"2)) g [O’ 0]:
with X1, X5, T; and ¥; improper intervals,

Then,

2‘-22110-"0210.

C. Test Case

For X = [0,1.2] x [0,0.5] and a precision of ¢ = 0.01,
QST generates in 20 seconds on a Pentium IIl 1GHz, the
paving of fig. 3.

where the darker region corresponds to the solution set
T, the grey region corresponds to the non solution set L
and the white region is undefined.

D. Analysis of the Results

Comparing the obtained results with the ones obtained
by other existing algorithms [16], [19], for which an
efficient implementation [22] exists for the second one, it
can be said that any relevant difference can be observed
in terms of the solution and computational performances.
However, the method proposed in [19] should be better
in terms of computational complexity for a higher order
problem (e.g. more parameter to identify) due to the use
of constraint propagation techniques [8], [21].

The main difference between the presented algorithm
and the mentioned ones does not lie on the computational
complexity but on the conceptual complexity. While in the
Q8T algorithm the set rules used to prove if a box X is
inside or rot from the solution set are achieved by means of
simple interval computations provided by AMZT.A, the other
algorithms needs from more complex strategies to carry on
the same task.
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V. CONCLUSIONS AND FUTURE WORKS [13]
A. Conclusions
T . L [14]
The contribution of this paper has been to introduce a
new algorithm, based on AMMZ.A and ST techniques, for
the characterization of solution sets defined by numerical [15)
QC&P. The applicability of the method to engineering )
problems has been shown by means of a well known
problem of the literature on parameter identification. A tel
comparison with other existing techniques has also been
carried out concluding that the presented algorithm intro-  [17]
duces more simplicity to the problem of characterizing the
set defined by a QCSP. [18]
B. Future Works [19]
1) Reducing the complexity via Constraint Propagation:
In order to reduce the nen polynomial complexity of the (20
ST algorithm due to the branching, a narrowing operator 313
{a contractor) for quantified constraints will be provided.
This contractor, based on constraint propagation techniques 221
and MZI.A, allows the contraction of an initial box X
containing the solution set ¥ to another one X’ such that
X’ still contains . (23]
[24]
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