I-SS: Integrated Supervision Systems Approach based on Interactive Components

Orlando C. Contreras N.
Grup eXiT - IIiA
Universitat de Girona & LEA-SICA
Av. Lluis Santal6 s/n, 17071, Girona
Spain
&

Laboratorio de Computo Especializado
Univeridad Auténoma de Bucaramanga
Calle 48 No. 39-234, Bucaramanga
Colombia

Abstract ~ Process supervision is the activity focused on
monitoring the process operation in order to deduce conditions
to maintain the normality including when faults are present.
Depending on the number/distribution/heterogeneity of
variables, behaviour situations, sub-processes and so on from
processes, human operators and engineers do not easily
manipulate the information. This causes the necessity of
automation of supervision activities. Nevertheless, the
complexity to deal with the information difficult the design and
development of software applications. We present the approach
called “Integrated Supervision Systems”. It proposes multiple
supervisors, under co-ordination, should supervise multiple
sub-processes whose interactions should permit to supervise the
global process.

I. INTRODUCTION

Process supervision is the branch of process control that
takes into account the way in that a process operates, or
changes, i.e., the way in that the process behaves. It implies
to monitor the process operation by means of redundancy
(additional sensors, knowledge and so on) in order to deduce
conditions to maintain the normality including when faults
(misbehaviours) are present [1] [2]. According to this goal,
operators and engineers deal with the process information
(variables, parameters and relations among them), reasoning
on it in order to identify and diagnose faults and to propose
correction actions. Depending on the
number/distribution/heterogeneity of variables, behaviour
situations, interacting sub-processes and so on (according to
the process), that information is not easily to manipulate.
This causes the necessity of automation of supervision
activities. Nevertheless, those issues difficult also the
construction of software applications.

Software applications specially constructed to automate
supervision activities are so-called supervision systems
(SSs). The goal is to reduce the dependency on human
operators to assure the normal process operation. This kind
of applications use process behaviour models (PBMs) that
describe normal operation situations in order to detect
deviations (faults), to deduce the origin (diagnose them) and
to propose or to execute appropriated correction actions.

The construction of a SS involves an important analysis and
treatment on information from a process in order to obtain a

0-7803-7241-7/01/$10.00 (c)2001 IEEE

Josep Lluis De La Rosa
Grup eXiT - IliA
Universitat de Girona & LEA-SICA
Av. Lluis Santalé s/n, 17071, Girona
Spain

Joaquim Melendez Frigola
Grup eXiT - IIA
Universitat de Girona & LEA-SICA
Av. Lluis Santal6 s/n, 17071, Girona
Spain

PBM that could be easily mapped into computational
structures and easily developed as software. Information
analysis and processing increases with the process
complexity. Usually the process is so complex that is either
difficult or inappropriate to describe all the situations into an
unique and complete PBM. This is due mainly to the big
volume of information (from a big number of variables and
behaviour situations) and interactions of multiple distributed
heterogeneous sub-processes (according to the process
nature). As a consequence it is difficult to map a
computational model that could be developed as software.
We cope with that complexity with specialised components
tuned to solve simple tasks that should operate under co-
ordination, which are based on concepts of software agents
[3] [4]- Software agents offer capabilities (encapsulation,
problem-solving focused, autonomy, co-operation and so
on) that allow to manage the complexity by dealing with the
multiplicity/distribution/interaction/sharing of tasks and
information. We propose that multiple PBMs from sub-
processes' (sub-PBMs) might be obtained and integrated.
Subsequently, multiple supervisors (and other components
that assist the tasks) should be developed on those sub-
models. Sub-PBMs should capture the sub-process
behaviours whose interactions should capture the global
behaviour; supervisors should supervise sub-processes
whose interactions should supervise the global process. This
proper approach is called “Integrated Supervision Systems”.

In the following sections the proposed approach is briefly
presented. General concept, components and models that
define it are presented in the section II. Software platform
developed to apply it is presented in the section III. Example
to clarify it and conclusions are presented in the sections IV
and V respectively.

II. INTEGRATED SUPERVISION SYSTEMS APPROACH
A. Introductory

The State of the Art about process supervision does not refer
approaches to deal with the complexity of SSs and nor

approaches to develop this kind of applications, particularly
with interactive components. It has mainly treated the use of

' Sub-process refers part of process.

119

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 11:29:49 UTC from IEEE Xplore. Restrictions apply.

software techniques (of artificial intelligence and procedural
programming) in the development of applications with the
objective of automate supervision tasks and of provide
support to human operators during the process operation [5]
[6] [7] [8]- Investigations have also treated interactions and
co-operations among applications motivated by the positive
aspects of distributed processing performance, flexibility,
modularity and resource sharing [9] [10] [11] [12] [13].
Nevertheless, greater part of results were closed solutions
that did not take into account the heterogeneous and
distributed nature of complex processes, process flexibility
and multiplicity of tasks that must be tuned to achieve the
supervision goals.

B. General Concept

An integrated supervision system (I-SS) is defined as a
“system with the ability to sense a process and act on it,
composed of interactive components for reasoning about the
process behaviour in order to propose (and to execute)
appropriated actions to maintain the normal operating
conditions in case of faults”. It is based on the procedure
depicted in the Fig. 1. Process constitutes the environment
with which components interact. It provides perceptions, and
actions are exerted on it. Variable measurements and
additional information from them constitute perceptions.
Analysis functions applied on variable measurements obtain
that additional information, which we name “abstractions”.
Set point changes, parameter re-tunes and so on constitute
actions to execute on the process. Messages to humans, e.g.,
showing messages on screen, firing alarms and so on,
constitute also actions.

In general, an I-SS is a set of different supervisors that
should supervise multiple sub-processes of a process, whose
interactions should permit to supervise the global process.
Multiple sub-PBMs from the process behaviour might be
obtained and integrated. Sub-PBMs should capture the sub-
process behaviours whose interactions should capture the
global behaviour. Subsequently, multiple components
should be developed on those sub-models; components
should accomplish activities to achieve the supervision
goals. Fault detection, fault diagnosis and reconfiguration

| Reasoning about Process Behaviour l

4

Perceptions

| Actions
|
¢ Analysis Functions
! Variable Iy
| measurements
B v
I Sensors J r Actuators. l

l proces 1

Fig. 1 Process information treatment

methods [1] [2] [14] should be used and combined to
analyse situations that should compose sub-PBMs.
Computational mappings from them constitute data and
knowledge for components.

C. Components

1) Basic Components: They are focused on the treatment of
the process information, i.e. on the acquisition, abstraction,
storing, reasoning and execution of/on data and behaviour
situations, according to the procedure depicted in the Fig. 1.
Five kinds of basic compornents so-called perceptors,
actuators, abstractors, perception bases and supervisors are
defined. The behaviour (the way of acting) of a component
is determined by services that it must support to an I-SS for
dealing with the information and for interacting with process
and humans. Interactions among those components and with
process and humans are showed in the Fig. 2. Predetermined
charges of those components are:

* Perceptors constitute mechanisms for inputting data
from process. They perceive updated variable
measurements and supply abstractors, perception bases
and supervisors with that information. Devices (sensors)
are linked to those components.

¢ Actuators constitute mechanisms for outputting data to
process. Actuators execute actions (set point changes,
re-tuning parameters and son on) on process. Devices
(actuators) are linked to those components.

e Abstractors are in charge of abstracting information
from acquired variable measurements. They elaborate,
by means of analysis functions, significant information
for interpreting updated variable facts, e.g. trends,
deviations, mean values and so on.

¢ Perception bases are stores of (updated and historical)

variable measurements and abstractions. That
information indicates how process evolves through
time.
A stractos

"\ e [s.,,,m.,oﬂ_.l]

Perception l

Bases

Pelcep!ou u Acwators

H Scosors I Devices Actustors

vm: varisble measurements

abs: abstractions

p: (updates, bistorical) variable measuremacnts and abstractions
a: actions

pr: partial results

Fig. 2 Interactions amony basic components, and
with process and humans

120

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 11:29:49 UTC from IEEE Xplore. Restrictions apply.

¢ Supervisors are in charge of reason on the behaviour of
process (or sub-processes). Fault detection, fault
diagnosis and reconfiguration are tasks associated to
those components. Action execution is achieved through
actuators.

2) Support Components: They are focused on services to
basic components. Two kinds of support components so-
called assistants and fact bases are defined. The behaviour
of a components is determined by services that it support to
basic components for accomplishing their tasks. Interactions
among basic components and support components are
showed in the Fig. 3. Predetermined charges of those
components are:

¢ Assistants are in charge of accomplishing support
operations for abstractors and supervisors, e.g.
mathematical operations.

* Fact bases are stores of happening facts, i.e., stores of
partial results, actions and so on, which supervisors
could need for accomplishing tasks.

3) Coordination Components: They are focused on the
control/co-ordination of before mentioned components. Only
a kind of those components so-called co-ordinators is
defined. They are in charge of control basic and support
components and of co-ordinate interactions among them.
Interactions among co-ordinators and basic and support
components are showed in the Fig. 4.

4) Operation Cycle among Components: When a process is
operating, the I-SS perceives, by means of perceptors,

abstractors, perception bases and supervisors with that
information. Abstractors access perception bases to get
needed information to apply analysis functions on variable
measurements. They supply perception bases and
supervisors with the results. At that time, an abstractor could
request support operations to one any assistant (if needed).
Then, supervisors reason on the behaviour of the process (or
sub-processes). They apply their knowledge on data
(updated/historical variable measurements and abstractions).
So, they detect and diagnose possible faults. They take
decisions to cope with the detected faults (if exist). At that
time, a supervisor could request support operations to one
any assistant (if needed). It also could request partial results
to one other supervisor (if needed). Then and depending on
the decisions, supervisors send actions to actuators (or
messages to humans). Moreover, they could supply facts
into fact bases. Actuators execute the actions on the process.
Also, at any time, any component ‘could send the state of
communication with some other component to the co-
ordinator. Then, it reasons on that information and takes
decisions on the interactions among the components. In that
case and depending to the decisions, it sends communication
actions to the involved components.

D. Models

1) Process Behaviour Models, PBMs: PBM captures
situations of interest that determine the process behaviour
through variables, parameters and relations (among them). If
PBM refers a sub-process so, it is a sub-PBM. Real
principles on process components, i.c. the general belief
about the way that they would behave, and tasks to achieve

updated variable measurements. Perceptors supply the supervision goals must be taken into account to analyse
situations.
s) Problem-solving techniques based on analytic/heuristic
/ I knowledge are used and combined for the interpretation of
UTb,:,.m =1 | s..pmtssm ‘ situa_tions (more speciﬁcally of var'iables, param.eters and
relations that describe them). Analytic knowledge is used to
T produce quantifiable, analytical information from where
,,,,, process behaviour features could be extracted and then
I compared with normal operation features. Heuristic
et knowledge usc.es information in qualitative tc@s, which
ctskeguen could be provided by process operators and engineers. In
this way, variables, parameters, characteristic/gencrated
. . . values and so on can be represented as imprecise data, €.g.
Fig. 3 Interactions among basic and support components small, large, 100 hot and so on.
Three kinds of basic models are differentiated: quantitative,
[Lacemon | [aveiscions | qualitative and diagnostic. Quantitative models describe the
o '%, ! Tomm) opresentations. Quataive models desribe the foncions
Co-ordinator * N N N
process behaviour with heuristic representations. Diagnostic
T models describe the functional process behaviour with pre-
‘m assigned links among symptoms, faults and actions. None
kind of model is exclusive to describe determined process
Fig. 4 Interactions between co-ordinator and behaviours and a combination could be satisfactorily
other components
121

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 11:29:49 UTC from IEEE Xplore. Restrictions apply.

required according to problem-solving techniques used for
the interpretation of situations.

The following example can clarify this: the sentence “when
the temperature in the reactor is too hot, open the input
valve to 70-90%” describes the situation “the temperature
experiments the behaviour of too hot” that is happening in
the “reactor”, thereby necessitating an action “open the
input valve to 70-90%” to cool it. Comparison of the
measured temperature with a certain range of temperatures
considered “too hot” should permit to determine if it is too
hot. This situation is part of a sub-PBM that determine the
behaviour of the “reactor”, which is component of a plant.

2) Mapping PBMs: Techniques from artificial intelligence
and procedural programming can be applied in different
ways to map information from behaviour situations. They
would be selected according to the techniques used for the
analysis and interpretation of situations, e.g., sentences that
describe situations in terms of qualities or if-then rules are
normally mapped with artificial intelligence structures. None
software technique is exclusive to problem-solving
techniques and a combination could be satisfactorily
required. In fact, the best strategy is using of all the available
techniques (arrays, objects, heuristic rules, logic fuzzy.and
so on, or hybrid) to manipulate the information into
computational structures. The use of one or other technique
is only submitted to the treatment of data and situations,
which would determine the I-SS complexity (imprecision,
uncertainty, heterogeneity, distribution and volume of
information). :

For example, the sentence “if TempReactor == TOO_HOT {
action(OPEN_INPUT _VALVE, 80) }” shows a mapping of
the before mentioned situation. The symbol “TempReactor”
represents the variable “temperature in the reactor”; the
symbol “TOO_HOT” represents the range of temperatures
considered too hot; the symbol “OPEN_INPUT _VALVE”
represents the action “open the input valve”; the symbol
“80” (which is in the range of 70-90) represents the
measurement of opening the input valve that would be
executed.

3) Interacting Components Models, ICMs: Interactions
among components that compose an I-SS should be co-
ordinated using an ICM, which captures situations of interest
through “communication acts” (among them).
Communication acts are special actions that a component
accomplishes to interact with other ones, ¢.g. establishing
communication, sending data, requesting a specified task
and so on. A communication language, described in the
section 111, defines the communication acts.

Example to clarify this: the sentence “when faulty
communication with supervisor, stop it and establish
communication with supervisor,” describes the situation “the
I-SS experiments a faulty communication” that is happening
with “supervisor,”, thereby necessitating the actions “stop

supervisor,” to that it stops activities and “establish
communication with supervisor,” to that it accomplishes
activities that supervisor, was accomplishing.

4) Mapping ICMs: A communication protocol, described in
the section III, specifies the communication acts how
common communication patterns. These patterns are used to
map interactions among components.

For example, the sentence “if ComSupervisor, ==
TIME_OUT { Ungo(Supervisor,); Go(Supervisor,) }” shows
a mapping of the before mentioned situation. The symbol
“ComSupervisor,” represents the variable that registers the
communication with supervisor,; the symbol “TIME_OUT”
is the response act that indicates communication faulty by
excess time; the symbols “Ungo” and “Go” are execution
acts that indicate stop and run a component respectively.

ITI. SOFTWARE PLATFORM

I-SS software platform provides the necessary frame to
develop and to communicate the I-SS components. It is
basically the software framework that provides the
computational machinery both of the structures for
components and of the infrastructure for communications. It
is based and developed on the so-called “Intelligent Control
architecture” (ICa)’ [15], a framework to support the design
and development of flexible and interoperable distributed
software.

A. Component Structures

Component structures specify how components should be
developed. Two basic structures were obtained’, which are
briefly described.

Components of perceptor, actuator, abstractor, supervisor,
assistant and co-ordinator kinds share the agent structure
showed in the Fig. 5. Execution mechanism permits to
run/stop a component. Communication mechanism registers
the component on the software platform* on which it runs,
and permits the communication with other components
through that platform (see the Fig. 7). Own data and
operations constitute information and activities to support
particular tasks that a component accomplishes. Aim is the
core of the knowledge that a component has to accomplish
tasks, to interact with other components and with its
environment and humans in order to achieve own goals. It is
inherent in component, and it is continuously executing
when the component is running.

? The “Autonomous Systems Laboratory” (ASLab)
developed ICa. It authorised to use ICa in researches and
developments.

* The computational structures were developed to
implementations in C++ language.

* The developed communication infrastructure permits to
execute/interact components on Win32 platform.

122

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 11:29:49 UTC from IEEE Xplore. Restrictions apply.

Components of perception base and fact base kinds share the
data-store structure showed in the Fig. 6. Execution
mechanism permits to run/stop a data-store. Communication
mechanism registers the data-store on the software platform
on which it runs, and permits to put/get data into it.

B. Communication Infrastructure

1) Communication Language: 1-SS communication language
specifies the structure of messages that components use for
communications. The fundamental view of messages is that
they represent communication acts, e.g. running a
component, sending data to any other component and so on.
Nevertheless, they also refer acts to deliver tasks between
components, e.g. requesting a task to a component,
informing an action to other component and so on. The
language defines the form and meaning of messages, i.c., the
communication act and content of messages.
Communication act is an action that a component can
accomplish to interact with other ones. Content of message
refers what a communication act applies to.

The following example can clarify this: the sentence
“supervisor supplies to actuator the action of open the input
valve to 70-90%” describes the situation “supervisor” sends
the message “supplying the action of open the input valve to
70-90%” to “actuator”. Thus, “supplying” is the
communication act and “the action of open the input valve to

—» | Component identification

Interface AgentName
{

#include"C: Mech h"

‘Communication mechanism

#include . .

Type; LocalData,;
T

ed,
Type, Operationy(. . . Knowledge I

Type, Operationy(. .

}

Fig. 5 Partial representation of the software pattern
for components with agent entities

Interface Data-storeName

—> (G|
{

Type; LocalData;;
Type, LocalData,;

.

Fig. 6 Partial representation of the software
pattern for agent-based data-stores

70-90% is the content of the message from “supervisor” to
“actuator”.

The communication language defines a set of
communication acts, each of which is given a specific
meaning. In terms of determination of the meaning of
messages, we distinguish three kinds of communication acts
so-called execution acts, interaction acts and response acts.
Execution acts are those that permit to control the execution
of components, e¢.g. running a component. Interaction acts
are those that permit interactions among components, €.g.
requesting a task to a component. Response acts are those in
response to some other act, e.g. indicating communication
faulty. They are:

Execution acts:

¢ Go: to run a component.
¢ Ungo: to stop a component.

Interaction acts:

* Put: to put data into a perception base/fact base.

* Get: to get data into a perception base/fact base.

* Supply: to supply data to a component.

* Require: to request to an assistant that accomplishes a
specified task. Response is in waiting.

¢ Request: to request to an assistant that accomplishes a
specified task. Response is not in waiting.

* Send: to send result of a requested task.

¢ Respond: to inform that a requested task was not
accomplished.

* Cancel: to cancel some task previously requested.

¢ Inform: to inform about communication states to co-
ordinator/other component.

Response acts:

OK: to indicate that the communication with other
component was successfully accomplished.
TIME_OUT: to indicate that the communication with
other component was not successfully accomplished
because the time to establish the communication was
exceeded.

* NOT_FOUND: to indicate that the communication with
other component was not successfully accomplished
because that component is not running.

e NOT_KNOWN: to indicate that a specified data/task

was not known/understood.

2) Communication Protocol: 1t is basically the
definition/implementation of the communication acts as
common communication patterns. So, the communication
acts have syntax defined in the following ways:

For the execution acts the syntax is:
<execution act>(<component name>);

123

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 11:29:49 UTC from IEEE Xplore. Restrictions apply.

For example, in the situation “co-ordinator runs assistant”,
the instruction is: Go(assistant);. “Go” is the act what “co-
ordinator” sends to “assistant” so that it starts activities.

For the interaction acts the syntax is:
<interaction act>(<component name>, <content>);
<content> is the content of the message.

For example, in the situation “supervisor cancels the
multiplication solicited to assistant” the instruction is:
cancel(assistant, multiplication);. “cancel” is the act what
“supervisor” sends to “assistant”; “multiplication” is the
content of the message, which the act is applied on.

For the response acts the syntax is: <response act>

For example, in the situation “supervisor cancels the
multiplication solicited to assistant”, thereby “assistant”
confirms “OK” to indicate what the solicitation was
successfully accomplished. “OK” is the response, which
“assistant” returns to “supervisor”.

3) Communication Broker: It is the middleware responsible
of deliver messages among components, i.e., it is the
communication channel (see the Fig. 7). It transmits
messages between components, which inhabit into
applications where they would execute (independently of
others). Applications could be distributed into different
machines on network.

IV. EXAMPLE

In order to clarify the proposed approach, we consider a hot-
and-cold laboratory plant’ connected to a software
application used as control-panel. An I-SS supervises the
plant. This is an academic example accomplished to verify
desirable features in I-SSs such as interaction of partial
supervisors to reach global supervision, distribution of

Application / Application /

-

O ® GRON
® ®

® 0
ON

®
O}

]

"

Application

& ®

Fig. 7 Schematic of communications among components

* The hot-and-cold plant is a didactic industrial process
located in the Universitat de Girona.

data/knowledge, sharing tasks/results and so on.

The hot-and-cold plant is a simple closed water circuit. It
consists of a primary circuit, a seccondary circuit and a heat-
exchanger (see the Fig. 8). In the primary circuit, multiple
boilers warm up the water. Multiple pumps force the warm
water to the heat-exchanger. In the heat-exchanger, the water
into the primary circuit warms up the water into the
secondary circuit. In the secondary circuit, a pump forces the
warm water to a refrigerator, which cools down it. Then, the
water passes again through the heat-exchanger. Multiple
open/close valves and a three-way valve are both on the
primary circuit and on the secondary circuit. Open/close
valves permit/obstruct to pass the water, e.g. the valve v,, in
the Fig. 8, permits/obstructs the water to the heat-exchanger.
The three-way valve on the primary circuit permits/obstructs
the water from the pumps/heat-exchanger to the boilers. The
three-way valve on the secondary circuit permits/obstructs
the water from the pump to the heat-exchanger. Closing or
opening valves would cause malfunctions on the plant
behaviour.

Control-panel permits to start/stop the boilers and pumps
and to manipulate the valves on the plant, and to get
temperature and pressure measurements from it. Sensors and
actuators (devices) are linked (via a data-acquisition card) to
this application. Sensors acquire water temperatures and
pressures and boiler temperatures and pressures, e.g. from
the points t, t,, t, and t, and boilers b, and b, in the Fig. 8.
Actuators execute set point changes on the boilers, pumps
and valves, e.g. on the valves v, v,, v,, v, and v, in the Fig.
8.

Behaviour situations in the primary and secondary circuits
determine the global plant behaviour. The following are
behaviour situations:

In the primary circuit:

* “When the temperature in the point t, is lower than
524C, close the valve v, and open the three-way valve”.

* “When the temperature in the point t, is upper than
90°C, stop the boilers”. We consider that the water
temperature must not be upper than 90°C (in any point
of the circuit).

* “When the temperature in the bozler b, is upper than
90°C, stop ir”. We consider that the boﬂer temperatures
must not be upper than 90°C.

In the secondary circuit:

¢ “When the temperature in the point t, is cool, close the
valve v, and stop the pump™.

* “When the temperature in the point t, is cool, open the
valve v, to 50-75%”. In this situation, we consider that
the valve v, has 4 positions: 0-25%, 25-50%, 25-75%
and 75-100%.

124

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 11:29:49 UTC from IEEE Xplore. Restrictions apply.

Heat-Exchanger

Secondary Circuit

Open/close valves

Primary Circuit

Refrigerator

~ Pumps

boilers

Fig. 8 Schematic of the hot-and-cold plant

Two sub-PBMs that capture separately the behaviours of the
primary and secondary circuits were obtained.
Analytic/heuristic knowledge were used and integrated to
interpret the behaviour situations.

The following example can clarify this: the sentence “when
the temperature in the point t, is cool, open the valve v, to
50-75% describes the situation “the water temperature
experiments the behaviour of cool” that is happening in the
point t,, thereby is needed the action “open the valve v, to
50-75%” in order to pass the water to the heat-exchanger to
warm it. In this description the symbol “cool” is an
ambiguous interpretation of the behaviour of the variable
“temperature” and the symbol “50-75%” is an imprecise
value of the measurement to open the valve v,. So, problem-
solving techniques based on heuristic knowledge are used to
qualitatively interpret the variable measurements (e.g. too
cool, cool, warm and too warm) and the valve positions (e.g.
1, 2, 3 and 4, which indicate the opening of 0-25%, 25-50%,
25-75% and 75-100% respectively). Qualitative
interpretation permits to identify the fault (if measured
temperature is cool). Associations among symptoms and
kinds based on if-then rules allow the diagnosis of this fault,
e.g. if temperature in the point t, is cool then the water is
cool. Associations among faults and actions based on if-then
rules allow to decide actions, e.g. if water temperature in the
point t, is cool then open the valve v, to the position 3.

Different components were developed on the two obtained
sub-PBMs. The components are:

* Primary perceptor: it is in charge of perceiving
measurements of water temperature/pressure and boiler
temperature/pressure from the primary circuit.

* Primary perception: it constitutes a store of the
measurements supplied by primary perceptor.

* Primary supervisor: it supervises the primary circuit. It
reasons on perceived measurements (supplied by
primary perceptor and stored into primary perception) to
detect and to diagnose possible faults and to propose
actions to cope with them (to global actuator).

* Secondary perceptor: it is in charge of perceiving
measurements of water temperature from the secondary
circuit.

¢ Secondary abstractor: it obtains qualitative values from
the measurements supplied by secondary perceptor. It
supplies secondary supervisor with that information.

* Secondary supervisor. it supervises the secondary
circuit. It reasons on qualitative values (supplied by
secondary abstractor) to detect and to diagnose possible
faults and to propose actions to cope with them (to
global actuator).

* Global actuator: it executes set point values on boilers,
pumps and valves supplied by primary supervisor and
secondary supervisor.

A component so-called global co-ordinator was developed
to control/co-ordinate the executions/interactions among the
before mentioned components. It also constitutes the
interface between the control-panel and those components.
Interactions among the components and with the control-
panel and plant are depicted in the Fig. 9.

Primary perceptor, secondary perceptor, global actuator and
global co-ordinator inhabit into the control-panel application
where they execute. This is due to the devices are linked to
this application and it communicates with global co-
ordinator when the plant supervision is needed. Primary
perception and primary supervisor, and secondary abstractor
and secondary supervisor inhabit into two different
applications where they execute. This is due to the
differentiation of supervisors.

The followings are obtained results:

* The treatment of the information with two sub-PBMs,
which capture separately the behaviours of the primary
and secondary circuits, allowed an easier analysis and
interpretation of the global hot-and-cold plant
behaviour.

125

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 11:29:49 UTC from IEEE Xplore. Restrictions apply.

Primary
. supervisor
o Other P \ 3
modules
Primary
perception ~.]

Secondary
supervisor

A omer
4 modules

Applicllion_

Secondary
abstractor

Application Xw \

Primary
perceptor

Global I

actuator

Secondary
perceptor

I Control Panel I
[, AT, SR,
1

Devices

S

=
.

______________ e

vm: variable measurements

abs: abstractions

p: (updates, historical) variable measurements
a: actions

ca: communication acts

Fig. 9 Interactions among the I-SS components,
control-panel and hot-and-cold plant

¢ The integration of different software techniques
according to the interpretation of the sub-PBMs allowed
an easier manipulation of the information.

¢ The flexibility of the components as self-defined
modules allowed an easier manipulation of them, i.e., an
easier adaptation, execution, co-ordination and so on.

¢ The appropriated processing of the communication acts
during the interactions among components allowed an
easier control of the inter-operations among them, and
subsequently with the control-panel and plant.

V. CONCLUSIONS

The SS complexity is coped with specialised components
tuned to solve simple tasks that should operate under co-
ordination, which are based on concepts of software agents.
This approach is called “Integrated Supervision Systems, I-
S§§”. It proposes multiple supervisors should supervise
multiple sub-processes of a process, whose interactions
should permit to supervise the global process. According to
this goal, multiple sub-PBMs from the process behaviour
might be obtained and integrated. Subsequently, multiple
components should be developed on those sub-models. Sub-
PBMs should capture the sub-process behaviours whose
interactions should capture the global behaviour;
components should accomplish activities to achieve the
supervision goals. Analytic/heuristic knowledge based
techniques/methods are used and combined for the analysis
and interpretation of situations (more specifically of
variables, parameters and relations that describe them).

Different components with predetermined charges and
models for the interpretation of situations (both of process
behaviours and of interactions among components) were

defined and presented. They determine the approach I-SS. A
software platform developed to apply the approach was also
presented. It constitutes the computational support to
develop and to integrate components.

An example that refers an I-SS to supervise a hot-and-cold
laboratory plant connected to a software application used as
control-panel allowed clarifying the approach. The I-SS
consists of different components that were developed on two
sub-PBMs obtained from the behaviours of two sub-circuits
of the plant.

With the proposed approach a set of desirable features we
gathered up. They are:

* Sub-process behaviours are easier to analyse and
interpret than the behaviour of huge/complex processes.

* Components are easier to understand, to build and to
modify than huge applications. Also, they are easier to
adapt to process configurations.

* None of components of an I-SS should have global view
of the solutions. They should share information
(perceptions, knowledge, results and so on) to reach
global solutions.

e If two tasks are functionally similar, one same
component could achieve them. Also, once a set of
components have been constructed for an I-SS, it should
be possible to construct new ones that use these
components.

e If a process changes, the modifications on the I-SS must
be done only on the components where the changes are
involved. Also, it should be possible to replace and/or to
add components to modify the I-SS structure according
to process configurations.

126

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 11:29:49 UTC from IEEE Xplore. Restrictions apply.

* Components could be located in different
logical/physical points according to the nature of the
process with which they interact. That is, they would
inhabit into applications where they would execute
(independently of others), which could be distributed
into different machines on network.

VI. ACKNOWLEDGMENTS

This work is partially funded both by projects CICYT
DPI2000-0658 <“Diseiio de Agentes Fisicos Dindmicos,
Aplicaciones Futuras” and by projects TAP98-0955-C03-02
“Disefio de Agentes Fisicos (DAFNE) / Physical Agents
Design”.

Special thanks to the LCE (UNAB, Colombia) because it
framed the use of I-SS tools with the institutional project
UNAB “Componentes Interactivos para Supervisién de
Procesos”.

VII. REFERENCES

[1] P. Frank and S. Koppen, “New Developments using Al
in fault Diagnosis”, IFAC/IMACS International
Workshop, December 1995.

[2] R.Isermann and P. Ballé, “Trends in the Application of
Model-based Fault Detection and Diagnosis of
Technical Processes”, in Proceedings of the 13"
Triennial World Congress, 1996.

[3] M. Wooldridge and N. Jennings, “Intelligent Agents:
Theory and Practice”, Knowledge Engineering Review,
vol. 10, no. 2, 1995,

[4] S. Russell and P. Norvig, Inteligencia Artificial, Un
Enfoque Moderno, Prentice Hall, Mexico, 1996.

[5] T. Laffey, P. Cox, J. Schmidt, S. Kao and J. Read,
“Real-time Knowledge-based Systems”, AI Magazine,
Spring 1998.

[6] J. Aguilar, “Knowledge-based Systems for the
Supervision of Real-time Control Process”, in
Proceedings of the 4" International Symposium on
Knowledge Engineering, May 1990.

[7] R.Sanz, F. Matia, A. Jiménez, R. Galdn, A. De Antonio
and M. Segarra, “Heterogeneous Software Integration
for Intelligent Process Control: The HINT Project”, in
Proceedings of the Valencia COSY Workshop, 1996.

[8] B. Chaib-Draa, “Industrial Applications of Distributed
AY”, in Chapter 2: Applications, of Readings in Agents,
Morgan Kaufmann Publishers Inc., USA, 1998.

[9] J. De La Rosa, Heuristic for Co-operation of Expert
Systems, Application to Process Control, Doctoral
Thesis, Universitat Auténoma de Barcelona, Spain,
1994.

[10}] B. Moulin and B. Chaub-Draa, “An Overview of
Distributed Artificial Intelligence”, in Foundations of
Distributed Artificial Intelligence, John Wiley & Sons,
USA, 1996.

[11] N. Jennings, E. Mamdani, J. Corera, 1. Laresgoiti, F.
Periollat, P. Skarek and L. Zsolt, “Using ARCHON to
Develop Real-world DAI applications, Part 17, JEEE
Expert, December 1996.

[12] R. Sanz, “Methodologies for Complex Control Systems
Engineering”, in Proceedings of the COSY Workshop
on Integration of Complex Systems, August 1998.

[13] G. Fiol-Roig and M. Ferrer, Expert System for
Supervision of Real Time Control Process, Research
report, Universitat de les Illes Balears, Spain, 1998.

[14] O. Contreras, Interactive Software Agents for Expert
Process Supervision, Preliminary Research Work,
Departament d’Electronica, Informatica i Automatica,
Universitat de Girona, 2000.

[15] A. De Antonio and M. Segarra, ICa, an Intelligent
Control Architecture, Advanced User’s Guide,
Autonomous Systems Laboratory, Universidad
Politécnica de Madrid, 1998.

127

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 27,2010 at 11:29:49 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

