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Abstract— The work presented in this paper belongs to the
power quality knowledge area and deals with the voltage sags
in power transmission and distribution systems. Propagating
throughout the power network, voltage sags can cause plenty of
problems for domestic and industrial loads that can financially
cost a lot. To impose penalties to responsible party and to
improve monitoring and mitigation strategies, sags must be
located in the power network. With such a worthwhile objective,
this paper comes up with a new method for associating a
sag waveform with its origin in transmission and distribution
networks. It solves this problem through developing hybrid
methods which hire Multiway Principal Component Analysis
(MPCA) as a dimension reduction tool. MPCA reexpresses sag
waveforms in a new subspace just in a few scores. We train
some well-known classifiers with these scores and exploit them
for classification of future sags. The capabilities of the proposed
method for dimension reduction and classification are examined
using the real data gathered from three substations in Catalonia,
Spain. The obtained classification rates certify the goodness and
powerfulness of the developed hybrid methods as brand-new tools
for sag classification.

I. INTRODUCTION

Nowadays, the electricity dependence of industries, com-
merce and services has provoked the regulation of power
quality. The objective is to reduce damages or misbehav-
ior to consumers’ devices and processes. From generators
to customers, voltage waveforms may suffer alterations that
negatively affect the power quality. The most important phe-
nomena that affect voltage quality are short interruptions,
voltage dips (or sags), flicker, supply voltage variations and
harmonic distortion. Among them, voltage sags are the most
significant due to their severity and number of occurrences per
year. The definition of a voltage sag according to the IEEE
standards is a momentary decrease (10%-90%) in the Root
Mean Square (RMS) voltage magnitude where the duration is
longer than a half cycle and less than one minute [1]. Common

causes of voltage sags are storms, the start-up of large loads
at neighboring facilities, and grounding or wiring problems.
Either originated in transmission or distribution network, sags
easily propagate up and down areas of geographical occurrence
point. They can cause interruptions to sensitive end user
equipment and industrial devices such as adjustable-speed
drives, relays, and robots. Voltage sags cause more than 80%
of the industrial customer complaints today, which signifies
economic losses averaging $10,000 US per event. More often
than not, industrial practitioners and customers put the blame
for those financial losses on utilities involved in the distribution
network. On the contrary, the investigation into causes and
location of voltage sags don’t apportion blame for all cases to
electric utilities. Many times these are domestic and industrial
loads initiating sags in the power network. Through sag source
locating, any dispute about the major responsible party can
be resolved fairly. Therefore penalties may be imposed to
the responsible party for generating a disturbance resulting
in customer downtime, as is done for harmonic pollution in
some countries [2]. Besides, sag source location is necessary
for power quality troubleshooting, diagnosis, and mitigation
strategy development. Also, huge amount of data collected
by power quality monitors has need of efficient paradigms
for quick and reliable analysis. Taking into account all these
explanations, automatic analysis and source detection of power
events especially voltage sags have become an essential re-
quirement for power quality monitoring.

Apart from the demand of industry for more research on
this subject, classification of voltage disturbance is a thought-
provoking problem for academicians. Tackling this problem
from different points of view, researchers have developed
diverse techniques. In [3], authors are interested to the voltage
sag origins and categorize them in three classes using some
features fed to a fuzzy system. A new method to locate
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the source of voltage sag in a power distribution system
using polarity of the real current component relative to the
monitoring point has been introduced in [4]. A comprehensive
and profound review of voltage sags as well as their stochastic
assessment has been given in [1]. A phasorial analysis and
an unsupervised method have been compared in [5]. In [6]
decision about location of occurred disturbance is made based
on changes in two indices named disturbance power and dis-
turbance energy. Another possible way of detecting voltage sag
source is to use the seen impedance and its angle before and
after sag occurrence [7]. Extracting some temporal descriptors
such as duration and depth of sags as well as their fall and
recovery slops have been used in with a Learning Algorithm
for Multivariate Data Analysis (LAMDA) in [5] [8]. Other
attributes used with that goal involve phasorial analysis to
obtain the initial phase angle shift or the phase angle difference
between current and voltage or the power factor angle [4] [9].
Implementing different methods for sag source location and
obtained results in [10] clearly show that the available methods
are not totally reliable and more research is needed to extend
the location methods.

Despite all the research done so far, automatic classification
of sags and other events in power systems has not been widely
treated and correct classification rates for the actual events are
not as high as classification results used in areas such as pattern
recognition, speech recognition, and so on.

This paper deals with the problem of locating voltage sags in
the power networks in a completely different fashion. Being
prompted by the promising applications of MPCA in other
areas of engineering, this paper hires it for developing a new
algorithm for sag source location in the power network. Capi-
talizing on the dimension reduction capability of MPCA, here
we come up with some hybrid approaches for locating sags in
transmission and distribution networks. The capabilities of the
proposed method for dimension reduction and detecting sag
sources in the power network are examined and verified using
the real data gathered from some substations in Catalonia,
Spain. The results presented in some rates certify the goodness
and powerfulness of the developed hybrid approaches as a
brand new tool in power quality domain for locating sags.

The remaining part of this paper is structured as follows.
First in section 2, a brief introduction of MPCA is given.
Section 3 comes up with the details of the proposed method.
Numerical results then are presented in section 4 accompanied
by some discussions. Finally, we finish paper with some
conclusions and statements for future work.

II. MPCA

Principal Component Analysis (PCA) is a multivariate sta-
tistical technique that projects data onto linear subspaces that
are the most descriptive of variance in a data set. Linear
combinations of the measured variables make up new latent
variables describing the direction of subspace. In PCA, these
latent variables are referred to as principal components. After
the major events or states have been accounted for by the
dominant principal components, the remaining components are

interpreted as being the result of random errors or noise in the
data. These components are grouped together in an error term.
As such, PCA acts as a filtering technique [11].

The general form of PCA relates the subspaces to the
original scaled data set:

X =
k∑

i=1

tip
T
i (1)

Here ti are known as score vectors and pi are the loading
vectors/principal components (i.e. eigenvectors of covariance
matrix of X). The scores describe where the data points are
projected in the PCA subspace, while the loading vectors
describe the linear combination of the original variables that
constitute each principal component. Put in other words, they
determine that how much each variable contributes to con-
struction of each principal component. Once the eigenvalues,
λi, and the eigenvectors, pi, have been determined, the scores,
ti, can be easily calculated from:

ti = Xpi. (2)

PCA can be used for statistical control application by
applying two different statistics, Hotelling’s T 2 statistic and Q-
statistic (Qresidual). These statistics can be used to construct
multivariate control charts with confidence limits for the entire
PCA model.

One stipulation of PCA is that it can only be used for
modeling two-dimensional data. MPCA is an extension of
PCA that has been developed for the purpose of being able
to apply PCA to data sets consisting of three dimensional
arrays, as is typically the case in applications such as image
processing and batch process monitoring.

Algorithmically, MPCA is consistent with PCA and has
the same goals and benefits. The key difference is a pre-
processing step known as unfolding required to convert a
three dimensional data matrix to a large two dimensional
matrix. Unfolding simply involves a rearrangement of the data.
Rearrangement can be done in sex possible ways that, only
three of which are mathematically unique: time-wise, batch-
wise, and variable wise. Let’s consider XI×J×K as the original
three dimensional data set where I , J , and K stand for number
of batches/experiments, variables, and sample times. One type
of batch-wise unfolding has been presented in Fig. 1. It puts
all observations of each variable for all batches in one block.

Fig. 1. Batch-wise unfolding of the three dimensional matrix leading to a
two dimensional one (I × (K × J))
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The decision on how to unfold the data depends on the
particular objectives of the model or the analysis. In practice,
the time-wise and the batch wise options are most common.

Once a data set has been rearranged, a PCA model is
formulated in the usual fashion. Loading plots, score plots,
Hotelling T 2, and Q-statistic can be calculated for MPCA
models in the same manner as for regular PCA models.

In a nutshell, PCA and its extension MPCA:
• handle large number of correlated variables well,
• take advantage of structure in data,
• provide data compression, and
• provide explanation of which variables (in the original

space) are responsible of an out-of control- situation (bad
fitting the statistical model) [12].

Taking advantage of these properties, in the next section we
develop a procedure for sag classification based on MPCA.

In literature there are countless sources for and applications
of PCA and MPCA in different areas of science and engineer-
ing. We just refer the interested readers for further information
to [13] [14] [15] [16] and references therein.

III. HYBRID SAG SOURCE LOCATION

As we explained in the previous section, PCA and MPCA
are powerful tools for reducing dimensionality of huge data
sets through projecting and reexpressing samples upon some
principal components. In this research we use these new
representations (scores) as features which have been extracted
from data by MPCA and then put them into some classifiers to
solve the problem of sag source location. Put in other words,
sag source location in the power network will be equivalent
with classifying sags in High Voltage (HV) and Medium
Voltage (MV) classes.

We first compute RMS values of currents and voltages for
each voltage sag and then arrange them in a three dimensional
matrix like that one shown in Fig. 1. In this figure, we replace
batches with sags and put sex variables (three voltages and
three currents) along the horizontal axis. The third dimension
is unchanged. Therefore, dimensionality of the final HV and
MV matrices will be numberofsags × 6 × time.

Since RMS magnitudes of voltages and currents are com-
pletely different, scaling is a preprocessing stage needed to
avoid overweighing of voltage variables towards currents.
Without scaling, voltages appear dominant in the analysis due
solely to their relative magnitude with respect to currents.
Among different scaling methods introduced in [14], we apply
autoscaling which results in zero-mean centered data with a
unit variance.

Fig. 2 shows different stages of the proposed method after
database construction. First we create a HV/MV MPCA model
using the HV/MV prepared databases. The same procedure
shown in Fig. 1 is followed for unfolding the three dimensional
matrices when creating models. In the models created using
these unfolded matrices, we can easily discuss how each
variable contributes to the created models based on loading
plots.

Through model creation, we transform the RMS waveforms
of voltages and currents to a point in an k dimensional space,
where k is the number of principal component retained in the
models. These k scores are the features/attributes that we feed
them to the well-known nonlinear classifiers. In this manner, a
classifier can be trained easily and then exploited for solving
the problem of sag source location in the power network. After
projecting HV and MV sags to the built MPCA models, we
pass computed scores to some considered classifiers and train
them using these data. Here we can employ a wide variety of
different nonlinear classifiers such as Neural Network (NN),
Support Vector Machines (SVMs), Decision Trees (DT), etc.

Fig. 2. Different stages in the proposed hybrid method

After training stage which is completed off-line, the ex-
ploitation of the developed method for classification of sags
in online applications is pretty straightforward and simple. It’s
done just in two stage as shown in Fig. 3. Projecting sags to
MPCA models and then putting score into the trained classifier
is the whole procedure that we should follow to solve the
problem of sag source location in the power network.

Fig. 3. Online Exploitation
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Benefits of MPCA with respect to other classification strate-
gies reside in its generality and the fact that no additional
parameters are needed to be adjusted. The previous stages
could be accomplished very quickly and the computation
mass is roughly low which is to some extent important in
online applications. Another noticeable aspect of the proposed
method is its robustness. No matter how sever noise corrupts
some data, it captures and considers its effects as meaningless
variation.

It is interesting to consider this point that in the developed
method we deal with current and voltage waveforms as just
some signals without taking care of from which domain they
come. In contrast with developed methods in literature that
often try to locate sags in the network based on extracting
and computing some electrical concepts and measures from
waveforms such as apparent impedance, we do this more
simply and easily without resorting to those things.

It’s noteworthy mentioning that applying MPCA as a di-
mension reduction tool in the developed hybrid approaches
will lead to great results if the data are well separable based
on scores. And as we will see later in the next chapter when
working with real data, this assumption is almost completely
true.

IV. EXPERIMENT WITH REAL DATA

The proposed method has been tested using sets of real data
registered in a couple of 110/25 KV substations of the Spanish
distribution network in the course of one year. The databases
consist of time histories of three phase voltages and three
currents. According to the registered information, HV and MV
sags have been occurred at different hours, days and seasons
during the year. Admittedly, they properly represent various
types of sags (balanced and unbalanced) and completely reflect
the network behavior after their occurrence as well. Why
variety of sags is so much important stems from the fact
that the proposed methods all are data-driven. Therefore, the
more diverse sags are, the more powerful method is for sag
classification. Fortunately, the used databases all have this
characteristic.

Data from power quality monitors are downloaded to com-
puters. In some MS-Excel files all waveforms have been
recorded for some periods before and after sags occurrence
giving us possibility to analyze them with different tools. Mon-
itoring softwares in substations measure voltage sag magnitude
and duration as well as other temporal features for each voltage
phase and save all important instants in those MS-Excel files.

Waveforms have been sampled at 6400 Hz resulting 128
samples per period (20 ms). Each register contains 39 periods
with 4993 samples for each variable. RMS values for three
voltages and three currents are calculated for HV and MV data
sets using a one period sliding window Fast Fourier Transform
(FFT) to estimate the magnitude of nominal frequency (50
Hz) of the network during sag occurrence. Applying FFT to
voltage and current waveforms before RMS computation is
necessary for filtering those harmonics which have been added
to measures.

TABLE I
OVERALL CLASSIFICATION RATES USING HYBRID APPROACHES FED BY

SCORES

Classifier
Rates (%) for MLP RBF DT

1st Fold 83.6 96.4 87.3
2nd Fold 87.3 90.9 85.4
3rd Fold 94.5 92.7 87.3
4th Fold 85.4 87.3 89.1

Average Rates 87.7 91.8 87.3

There is also another tiny point about working with real
databases. As we mentioned earlier, MPCA models are data-
driven and validity of those is strongly dependent on the selec-
tion of data used. From the other side, recording devices in the
measuring points record any occurred event in the network in
the databases. So, when working with real databases, a precise
inspection of data for removing outliers is vital for success of
the proposed method. Here outlier terminology refers to as any
event else sags. e.g. interruptions, not recovered sags, swells,
etc. This could be simply done through visual inspection or
through developing some simple algorithms for detecting and
removing them. Doing this stage is equivalent to getting sure
that in the MPCA analysis of a chemical process, all available
batches belong to the same process.

To investigate the performance of the method, four fold
cross validation technique is introduced through splitting HV
and MV data sets into training and test subsets. In each fold,
we consider 75% of all sags for MPCA model creation and the
rest, 25%, as not-yet-seen sags for model validation (each sag
is used three times for model creation and once for projection).
To make sure that sags in both training and test subsets are
completely unrelated to each other, we first change the order
of them in the data sets and organize them by chance.

We employ three well-known classifiers for equipping
MPCA with nonlinear data mining tools. They are:

• Multilayer Perceptron (MLP),
• Radial Basic Function (RBF) network,
• Decision tree (DT).

These classifiers have been well investigated in literature and
their implementation could be found in [17]. The type of DT
used here in this research is J48 which is a specific version of
well-known C4.5 decision tree [18].

Table I presents overall (HV and MV) results for different
classifiers when fed by 9 scores. Average rates for different
classifiers are more or less the same, although RBF network
performs a bit better than other classifiers. We see the obtained
rates regardless of the classifier type are satisfactory high.
This means that features extracted by MPCA (scores) are
informatively rich. This reexpression of sags just in a few
coordinates which is quite useable for sag source location
in the power network highlights powerfulness of MPCA for
dimension reduction with minimum loss of information.

In another experiment we normalize scores by correspond-
ing eigenvalues. So, the i-th input of classifiers, xi, will be as
follows:
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TABLE II
OVERALL CLASSIFICATION RATES USING HYBRID APPROACHES FED BY

NORMALIZED SCORES BY CORRESPONDING EIGENVALUES

Classifier
Rates (%) for MLP RBF DT

1st Fold 81.8 94.5 92.7
2nd Fold 87.3 90.9 80.0
3rd Fold 96.4 98.2 94.5
4th Fold 85.4 87.3 90.9

Average Rates 87.7 92.7 89.5

xi =
ti
λi

i = 1, . . . , 9 (3)

Our motive for doing this is to avoid overweighing some
big scores towards small ones. This simple mathematical
computation is done very quickly, hence it is not an disad-
vantage for this method when compared with the previous
one. Besides, since eigenvalues are all positive, score signs
which can carry much useful information for classification
are not killed. Classification rates after applying this to scores
and feeding them to three considered classifiers have been
presented in Table II. In comparison with Table I, the overall
rates for RBF and DT classifier have been improved which
means that normalizing scores by corresponding eigenvalues
is a proper movement for enhancing results.

Besides the presented results here, we have conducted lots
of other experiments with these data. Taking into account the
results presented here and also the results of other experiments,
we come to this conclusion that RBF network when fed by
scores normalized by eigenvalues is the best classifier among
examined ones. Normalizing scores by eigenvalues makes
sags more separable and positively contributes to the rate
enhancement.

Furthermore, these are only HV MPCA models which are
suitable for and useable in hybrid approaches. MV MPCA
models are not much suitable in this specific application at
all, since obtained scores using these models are not well
separable. The maximum average classification rate using
those classifiers comes around 75% which is far below the
rates presented in Table I and Table II. This is the reason why
all MPCA models in Fig. 2 and Fig. 3 have been labeled as
HV models.

V. CONCLUSION AND FUTURE WORK

In this paper, we dealt with the problem of sag source loca-
tion in the power network in an innovative manner. First, we
interpret sag source location in transmission and distribution
systems as a classification task. Then, we hired well-known
and widely used MPCA technique for developing a hybrid
method for classifying sags in two HV and MV classes. In this
approach, MPCA is used as a powerful dimension reduction
algorithm guaranteeing minimum loss of information. Scores
of projected sags to MPCA models were used for training
different nonlinear classifiers (MLP, RBF network, and DT).
Created MPCA model and trained classifier constitute a highly

powerful hybrid tool for properly solving sag source location
problem in the power quality area. Experiments done with sags
recorded in some substations in Catalonia, Spain proved the
powerfulness of the proposed method. Obtained classification
rates for different classifiers are satisfactorily high, although
rates obtained from MPCA-RBF based one is a bit better than
two other ones.

Despite obtained results so far, there are lots of rooms
for improvement. The first direction for further research is
to properly determine how many scores we should put into
classifiers for getting the highest possible results. A method
for selecting the best feature/scores should be done off-line
when training the nonlinear classifiers.

The presented hybrid approach here is lineat in the first
part (dimension reduction)and nonlinear in the second part
(classifier). More attempts for making it completely nonlinear
through equipping the first part with nonlinear dimension
reduction algorithms can enhance overall rates. Using Kernel
PCA (KPCA), we will be able to capture and model nonlinear
variation of data much more properly than linear PCA.

Finally, both PCA and MPCA are unsupervised learning
algorithms for dimension reduction. When capturing and
modeling variation, they don’t consider labels of the data.
As a consequence, they may project and reexpress samples
from different classes similarly. Looking for and applying
linear/nonlinear supervised dimension reduction algorithm is
worth a try. Since we have already got good results with
MPCA, those methods also should be roughly similar to it.
For instance, Partial Least Square (PLS) is a method that has
both properties.

In future work and researches, we will move in the men-
tioned directions for improving reliability of the developed
methods for sag source location in the power network.
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