
Proceedings of the 2000 IEEE/RSJ
International Conference on
Intelligent Robots and Systems

On AUV Control Architecture
P. Ridao", J. Yuh', J. Batlle", K. Sugiharat

Informatics and Applications Institute 0

University of Girona
Avda. Lluis Santa16 s/n Girona CP. 17007 Spain.

{perejbatlle) @eia.udg.es

Abstract
This paper surveys control architectures proposed in the

literature and describes a control architecture that is being
developed for a semi-autonomous underwater vehicle for
intervention missions (SAUVIM) at the Universip of
Hawaii. Conceived as hybrid, this architecture has been
organized in three Layers: Planning, Control and
Execution. The mission is planned with a sequence of sub-
goals. Each sub-goal has a related task supervisor
responsible for arranging a set of pre-programmed task
modules in order to achieve the sub-goal. Task modules are
the key concept of the architecture. They are the main
building bloch and can be dynamically re-arranged by the
task supervisor In our architecture, deliberation takes
place at the planning layer while reaction is dealt through
the parallel execution of the task modules. Hence, the
system presents both a hierarchical and an heterarchical
decomposition, being able to show a predictable response
while keeping rapid reactivip to the dynamic environment.

1. Introduction
Modern development in the fields of control, sensing,

and communication has made increasingly complex and
dedicated robot systems a reality. Used in a highly
hazardous and unknown environment, the autonomy of the
robots is key to a mission solution. Control architecture is a
framework that manages both the sensorial and actuator
systems, thus enabling the robot to undertake a user-
specified mission.

Since the Skakey robot was presented in 1971, a great
number of control architectures have been implemented
and applied to mobile robots, underwater robots, robots for
planetary exploration, and so forth. Different approaches to
autonomous underwater vehicle (AUV) control have been
discussed in the literature [1, 2, 3,4 , 5,6]. They are usually
classified into three main categories: deliberative, reactive
and hybrid.

Deliberative Architecture
Deliberative architectures are based on planning and also

on a world model. They allow reasoning and making

'Mechanical Engineering Dept.
tInformation and Computer Science Dept.
University of Hawaii at Manoa.
Honolulu, Hawaii 96822, USA
yuh@eng. hawaii.edu

predictions about the environment. Data flows from sensors
to the world model (bottom-up), which is used to plan new
actions to be undertaken by the actuators (top-down). When
dealing with a highly dynamic environment, the delay in
the response time is the main drawback.

This approach is used in the Planning Software
Architecture proposed by Hall et al. [6] . It is a hierarchical
planner arranged into three homogeneous layers. Rock and
Wang [I I] described an architecture applied to OTTER. It
has a three level control structure including a task level.
Bamett et al. [12] used a deliberative architecture called
AUVC. It is organized in three hierarchical levels:
planning, c6ntro1, and diagnostic.

Reactive Architecture
Behavioral architectures, also known as reactive

architectures or heterarchies, have been discussed in the
literature [7, 8, 91. Decomposition is based on the desired
behaviors for the robot and missions are normally described
as a sequence of phases with a set of active behaviors. The
behaviors continuously react to the situation sensed by the
perception system. The robot's global behavior emerges
from the combination of the elemental active behaviors.
The real world acts as a model to which the robot reacts,
based on the active behaviors. As active behaviors are
based on the sense-react principle, they are suitable for
dynamical environments. Since each behavior pursues its
own goal, reaction actions issued by one behavior may
cause another behavior to deviate from its respective goal.
Then, at times, the robot behavior is not predictable.

The work on reactive architectures was started by Brooks
[7] who proposed the subsumption architecture that layers
the control system in a parallel set of competence-levels,
tying the sensors with the actuators. It uses a priority
arbitration through inhibition andlor supression.
Bellingham et al. [13], adapted the subsumption
architecture to the Sea Squirt AUV. They also extended the
arbitration mechanism by proposing the masking. Zheng
[141 introduced the cooperation concept within a
subsumption-like control architecture. He also used a
layered sensing subsystem dealing with fault tolerance.
Payton et al. [15] used a behavioral approach to build a

-855-
0-7803-6348-5/00/$10.00 Q2000 BEE.

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:35:54 UTC from IEEE Xplore. Restrictions apply.

http://hawaii.edu

distributed fault tolerant control architecture. Boswell and
Leany [161 applied a layered control architecture to the Eric
underwater robot, introducing protected and hormone
modules. The Distributed Vehicle Management
Architecture (DVMA) was presented by Fuj i and Ura [171.
The basic idea is that a behavior can be created by a
combination of specific functions given to the robot, and a
mission is accomplished by the robot performing
sequentially appropriate behaviors. Recently, Rosenblatt et
al. [IS] have applied the Distributed Architecture for
Mobile Navigation (DAMN) to the Oberon submersible. Its
main feature is the coordination mechanism that is a
competence scheme using a voting mechanism to select an
appropriate action.

Hvbrid Architecture
Hybrid architectures take advantage of the two previous

architectures while minimizing their limitations. They
usually consist of three layers [IO]: (I) the deliberative
layer, based on planning, (2) the control execution layer,
and (3) a functional reactive layer.

Bonasso [191 described a situated reasoning architecture
applied to the Hylas underwater vehicle. Behavior
coordination follows a competitive approach and the
architecture also includes a deliberative layer. The RBM
architecture developed by Healey et al. [20] is organized in
three levels: Execution level, Tactic level, and Strategic
level. Borrelly et al. [21] presented an Open Robot
Controller Computer-Aided Design Architecture
(ORCCAD). They introduced the concepts of robot-tasks
(RT) and module tasks (MT). A mission is built by
sequencing RTs and defining event handlers. Borges et al.
described the DCA architecture [22] that permitted the real-
time parallel execution of tasks. It was based on a
hierarchical structure consisting of three levels,
Organization, Coordination, and Functional level. Choi et
al. [23] developed an architecture for the ODIN A W . It
uses a supervisor to handle mission parameters on the basis
of lower-level information and three separate blocks:
Sensory database, Knowledge base, and Planner. Recently,
Valavanis et al. [2] presented the state-configured
embedded control architecture which is organized in two-
layers: (1) a supervisory control level and (2) a functional
control level. This architecture uses a Master Controller
(MC) to coordinate the operation of the AUV by
transferring control actions among several functionally
independent modules.

Summarv
Manv control architectures recently proposed converge - - -

to a similar structure that addresses the use of reusable and
modularized software packages such as task modules and
behaviors that are linked together for both predictability
and reactivity.

The paper is organized as follows: section 2 presents the
Intelligent Task-Oriented Control Architecture (ITOCA)
that is the high-level control of the SAUVIM vehicle.
Section 3 deals with the simulation environment and the
results, and section 4 reports the conclusions.

2. The Intelligent Task-Oriented Control
Architecture

This section describes the ITOCA being developed for a
new semi-AUV, S A W I M , a research project funded by
the U.S. Navy to design and build a semi-AUV for
intervention missions. Its dry weight is about 6 tons and
design depth is 6,000 m. It has multi-CPUs in VxWorks
OS, various sensors, and a robotic manipulator. The
SAUVIM is described in [24]. ITOCA is a hybrid control
architecture organized into three layers (fig. 1):

Execution: contains sensor and actuator groups.
Control: contains the vehicle low-level controllers. It is
in charge of the non-linear control of the vehicle and
the arm.
Planning: is in charge of the high level control of the
vehicle during the mission. It is responsible for the
mission planning, execution, and supervision.

Each of these layers is described below.

Execution Laver
This layer is responsible for the interface between

vehicle hardware, comprised of the sensor group and the
actuator group. Sensors are accessed by the controllers of
the upper layer and by the remains of the architecture
components. The actuator group is responsible for
interfacing with the hardware actuators.

Control Laver
The Control layer has the low-level servo control of the

vehicle. For S A W I M , the Adaptive Leaming controller
[25] is used to control the vehicle in 6 DOF. Fig2 shows
the low-level controller, where 17 is the actual position and

qd is the desired position.

Plannina Laver
A user delivers a mission to the vehicle by using a

Graphical User Interface (CUI). The mission is
decomposed by the planner supervisor into a sequence of
sub-goals. Each sub-goal has a related task supervisor
responsible for arranging the task modules in a suitable
configuration for the sub-goal undertaken. Task modules
are the main building blocks of our architecture. Each task
module is designed to perform a well-defined task and have
a solid solution for it. Task modules read input values from
sensors, other task modules or the task supervisor, and use
the Task-Processing-Function to compute the outputs to be
sent to other task modules, or the task supervisor (fig. 3).

- 856 -

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:35:54 UTC from IEEE Xplore. Restrictions apply.

Within the task module, fault tolerance is addressed by the
fault-tolerance function. Some task modules are related to
one low-level controller in the control layer. They have a
one-to-one relationship with the physical hardware. The
initial values for each controller of each task module are
transferred from previous task modules or given by the task
supervisor.

I-
I '

I :
I :

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

L - - T - - - J

Fig. 1 Diagram of the Control Architecture

Modules
AL Controller TCM'

Fig. 2 Low-Level Controller

Task modules
As stated above, task modules are generic components

used as building blocks of our architecture. There are two
types of task modules: Motion task modules and Functional
task modules. Motion task modules are responsible for
sending set-points to the low-level controller. Some of
these modules being worked on include:

Transit: moves the vehicle along the point-to-point
local path.

Repulsion: avoids obstacles.

Stroll: wanders around.

Functional task modules are responsible for computing
data structures needed by other task modules of the
architecture. Some of these modules being worked on
include:

Data-sampling&analysis: samples environmental data
for situation detection and exception generation.
Photographing: takes images about the environment.
Sleep: waits until new command.
Local Map Building: builds a local map of the vehicle
surroundings.
Weight Average: merges the output of the enabled
Motion task modules into a unique set point to be sent
to the low-level controller.

Tracking: follows an object of interest or a sequence of
given points.

Navigation: generates the global path (sequence of
way-points).
Hover: keeps the vehicle position.

Sub-aoals
Sub-goals for A W s include Docking, Survey,

Searching, and Station Keeping. Organization of the task
modules for each of these sub-goals includes:

Docking={Navigation; Repulsion, Local Map
Building, Sleep, ApproachinglDeparting routine,
Weight Average}: approach to a docking position for
data transmission or recharging the battery.
Searching={Navigation; Repulsion; Local Map
Building; Stroll; Data sampling & analysis module,
Weight Average }: looking for objects of interest.
Station keeping={Navigation; Repulsion; Local Map
Building; Sleep; Hover; Weight Average} : keeping the
vehicle position at the desired location.
Survey={ Navigation; Repulsion; Local Map Building;
Transit; Stroll; Data Sampling & Analysis; Tracking;
Photographing; Weight Average} : navigating through
way-points while updating the world model.

Consider the execution of the survey sub-goal as an
example. When a survey sub-goal is issued at the planning
layer, the corresponding task supervisor starts the
correspondent task modules (Fig.4). Initially only the
Navigation task module is enabled. Once the path is
available, the Transit task module is responsible for driving

-8857-

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:35:54 UTC from IEEE Xplore. Restrictions apply.

I survey 1-1

Fig.5 An example of navigation.

the vehicle from way-point A to way-point B following a
straight line (fig.5). For each coordinate, it computes the
speed that has to be used in order to do an isochronal
movement (all coordinates start and end the movement
simultaneously). While the path is free of obstacles, Transit
is the unique enabled task module, hence the output of the
weight average module matches the Transit output. When
an obstacle is detected along the path by the sensor-group
(point C), the Local Map Functional task module registers
it within its internal data structures. Repulsion task-module
is then enabled and its output is merged with the output of
Transit. The final set points direct the vehicle on a path free
of obstacles. When the robot has surpassed the obstacle,
Transit must re-evaluate its output (point D). This is needed
since, the robot position is far from the predicted one (point
D’), hence it must readjust the speed in each coordinate. In
fact, Transit is continuously re-adjusting its output speed.
At point E, the situation is a bit different, since the
repulsion from the obstacle cancels the Transit output. This
is the well-known local minimum problem. When the
survey supervisor recognizes that the speed set point has
dropped to zero, it enables the Stroll task module for a
while in order to break the equilibrium point. After a while
it is disabled another time. Finally the vehicle reaches point
B.

Nawgauon

R<pllSlO”

T“U

SUOIl

W c i b r Arerage

Lou1 Map Buldmg

Ddld Sampltng b: A r u l p s

Tidrkme

Phut0graphmg

The World Model
The World model plays an important role within our

architecture, since it is only partially known. Before
operating the vehicle, a survey is conducted in order to

make a coarse-grained model of the environment. The
model consists in a net of points where the altitude is
known. Nevertheless, between two nodes of this net we
have no information about the environment. Hence, the
vehicle must rely on its own sensors to sense and react.
This can be done using reactive navigation. While the
vehicle carries out a mission, it continuously updates the
model. The world model resides in the shared database and
can be accessed when needed by any architecture
component like task modules, task supervisors, and/or the
plan supervisor.

The Local Mar,
While the robot navigates through an unknown part of

the environment, a local map is built to keep track of the
vehicle’s surroundings. It is a double resolution grid. The
high resolution squares shown in fig6 represent the sonar
readings while low resolution squares represent spatial
zones where sonar pings have detected obstacles. In the
example shown, low resolution items are about 2x2 meters
and there are lOxl0 high resolution items for each low
resolution one. This double resolution allows -a fast access
while keeping an accurate knowledge of the environment.
A counter of the readings concerning each low resolution
item is computed. When this counter is greater than a
threshold, it is considered a fixed obstacle and then it can
be updated within the world model. Otherwise, this counter
is decremented periodically (aging process) and the item is
removed when it drops to zero. This is necessary to remove
false objects due to sonar glitches and/or moving obstacles.
Then, only contrasted objects are kept within the map.

- k1 .- “
,CAY

-

0 5 1 0 1 5 2 0 2 5

Fig.6. Local map built while navigating the environment
shown in fig.8.

Coordination of the Task Modules
The outputs of the Motion task modules are the speed

set points for the vehicle. Since more than one task module
can be enabled simultaneously, some coordination
mechanism is needed in order to generate a unique set point
to the low-level controller. There are two main approaches
to do this: competition and cooperation. Using competition,
the output of one of the task modules is chosen as the
output to be sent to the low-level controller. In the case of
cooperation, the output of all the enabled task modules are

-858-

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:35:54 UTC from IEEE Xplore. Restrictions apply.

conveniently merged into a unique set point for the low-
level controller. In this paper we focus on cooperation
using a weight average approach. This means that the task
supervisor chooses a weight (gain) for each task module.
Then, the Weigh Average module computes the average.
Finally, the desired speed is adjusted using a trapezoidal,
and then integrated and differentiated to compute the
desired position and acceleration, respectively. Although at
this moment fixed gains are used, in the future, new
techniques will be explored for choosing online the gains
which will allow a new way of adaptation.

3. Simulation
Survey sub-goal in ITOCA was simulated with an AUV

to show how to achieve reactive navigation within ITOCA
using different task modules. A Matlab/Simulink simulator
was built (fig.7) including blocks for a dynamic model of
the vehicle, the low-level controller, the ITOCA, and a
virtual environment through which the vehicle is moved
(fig.8). In the simulation, we used the dynamic model of
the ODIN vehicle. The model is shown in equation 1 [29].

U # = (M R B + MA)- ' (T + G(q)- D(u). U - (CRB(U)+ c,(u)).u)

U = J u ' dt q ' = ~ (q) . ~ 17 = J q ' dt

where :
U', U :acceleration and speeds vector; q : position & orientation vector
MRB. MA : rigid body inertia and added mass matrixes

T : input forces vector; G(q): gravity and buoyancy vector
D(u) : Hydrodynamic damping matrix
C

J(q) :angular velocity transformation

(U) C,(u): rigid body and added coriolis matrixes RB

Eq. 1. Dynamic model of the vehicle

The numerical value of these parameters can be found in
ref. [28]. These equations are used for the "ODZN
MODEL" block (fig.7). In the same figure, the
"Under-wuter Environment" block is used for monitoring
the vehicle movement across the virtual environment (fig.8)
and for the simulation of the sonar readings. The block
labeled "AL Controller" is the low-level controller and the
numerical gains used for the simulation can be find in ref.
[28]. The blocks labeled "Survey Supervisor ", "Trunsit ",
Stroll". "Repulsion ", "Local Map " and "Weight Average"
correspond to the respective task modules of the ITOCA
planning layer.

Results
The results described hereafter correspond to different

simulation experiments performed to test the ITOCA
architecture. The virtual environment for the experiments
corresponds to the swimming pool of the University of
Hawaii at Manoa (fig.S), where actual experiments are

L

Fig.7 Matlab/simulink simulation

pool

scheduled for the summer'2000. Hence, in the future,
simulation and actual experiments will be compared. In all
the experiments, the robot initial position was (2.5,2.5,2.3).
The first experiment was used to test the Repulsion task
module. The gain of Repulsion was set to one and other
gains to zero, hence only the Repulsion module was
operational. A radius of 5 meters was considered as the
action radius of the detected obstacles (the swimming pool
walls). As shown in fig.9, the vehicle moved away from
both walls and reached the point (5,5,2.3) where it
remained static. The goal of the second experiment was to
test the Transit task module, so its gain was set to one while
other gains were set to zero. The input path was [(5,5,2.3),
(5,20,2.3), (1 0,20,2.3), (1 0,5,2.3), (1 5,5,2.3)] and there
were no obstacles in the environment. Fig.10 shows the
result. The third experiment tested the cooperation between
the task modules Repulsion and Stroll, hence both gains
were set to one. Other gains were set to zero. The result
(fig.11) shows the robot moving away from the walls and
then wandering across the environment. Note that it always
keeps x>5 and y>5 (5 being the action radius considered
for the obstacles). Finally, the fourth experiment

- 859 -

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:35:54 UTC from IEEE Xplore. Restrictions apply.

x Y Plot
7c

m -

1 5 .

a
>

0 5 10 15 20 25
X Axis

Fig. 9. The robot avoid the walls of the swimming pool.
x Y Plot

25 -
J

0 5 1 0 1 5 2 0 2 5
X Axis

Figure 1 I . The robot wanders around while avoiding contact
with the walls

corresponds to the survey sub-goal as it has to be executed
in real environments. Initial Transit and Repulsion were
enabled (gain one) and Stroll was disabled (gain zero). The
input path was [(5,5,2.3), (5,20,2.3), (10,20,2.3), (10,5,2.3),
(15,5,2.3)], and the environment is shown in fig.9 and
fig. 12 shows the result.

Discussion
As discussed above, reactive navigation with

appropriate strategies is a good approach to navigate the
robot when knowledge about its environment is not
available. Nevertheless, some situations (like the local
minimum) can trap the vehicle. Escape behaviors like Stroll
or others proposed in the literature [27] can help the vehicle
to recover from these types of traps. However, due the
locality of the knowledge used for the reactive navigation,
there will always be a complex environment where the
reactive system alone cannot help the vehicle find a path to
the goal position or will take too long to find its path. This
failure must be handled by the task supervisor by using
path planning [26]. Therefore, the reactive system is
responsible for using all the available strategies in trying to
achieve the way-point, while the deliberative system must
re-plan when the strategies fail. Results of a hybrid system
merging the reactive and the deliberative approach will be
presented in the future.

1
0 5 10 15 20 25

X Axis

Fig. 10 Survey through a path free of obstacles

Fig. 12. Survey through obstacles.

simulation results of reactive navigation. The ITOCA
architecture focuses on the task modules as the basic
elements in the decomposition of a mission, and they are
also the elements that enable the system to achieve
reactivity. A hierarchical structure of the architecture that
has three layers was adopted, and in the planning layer
lateral decomposition of sub-goals in task modules was
adopted. The hierarchical deliberative structure is produced
by the planner according to the world model in order to get
a predictable scheme of the execution of the mission.
Reactivity is guaranteed through the parallel execution of
the task modules coordinating sense and action. Exceptions
are handled by the task supervisor provoking changes in the
organization of the task modules corresponding to the sub-
goal in execution.

References: Due to the limited space, a list of refs. is
available at http://eia.udg.es/-pere/iros2000

4. Conclusions
In this paper, different control architectures were

surveyed and a new architecture was described with recent

- 860 -

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:35:54 UTC from IEEE Xplore. Restrictions apply.

http://eia.udg.es/-pere/iros2000

