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Abstract

When underwater vehicles perform navigation close to the
ocean floor, computer vision techniques can be applied to
obtain quite accurate motion estimates. The most crucial
step in the vision-based estimation of the vehicle motion
consists on detecting matchings between image pairs.
Here we propose the extensive use of texture analysis as a
tool to ameliorate the correspondence problem in under-
water images. Once a robust set of correspondences has
been found, the three-dimensional motion of the vehicle
can be computed with respect to the bed of the sea.
Finally, motion estimates allow the construction of a map
that could aid to the navigation of the robot.

1 Introduction

Quite often the underwater vehicles have to perform certain
tasks alongside the ocean floor. The rich amount of visual
information available when the submersible moves next to a
static environment (bed of the sea, rocks, etc.) has been
exploited in the last years to provide additional sensing to
the robot. Many vision-based systems have been
proposed (i.e. [1,2,3]), nevertheless, it is necessary to
provide tools to improve the accuracy of those systems
that have to work in an adverse environment. Unfortu-
nately, underwater images are difficult to process due to
the medium transmission characteristics [4]. These
properties provoke a blurring of the elements of the image
with high clutter in the regions of interest and lack of
distinct features. Region-correlation techniques have been
extensively used to search for correspondences between
pairs of images [5,6], allowing, thereby, the detection of
motion. Although these approaches lead to successful
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matchings in well-contrasted images, in some cases the lack
of image features cause the matching procedure to fail. For
this reason a new approach based on region matching and
selective texture analysis is proposed in this paper. The
extensive use of textural operators can highly improve the
quality of the image correspondences, ameliorating the
subsequent motion estimation. This is accomplished by
equipping the URIS underwater robot (figure 1) with a color
camera which acquires images of the bottom of the sea. As
the vehicle moves, its 3D motion can be computed by
making use of the intrinsic parameters of the camera and
the detected correspondences. Finally, a visual map of the
zone surveyed by the submersible can be constructed
since the motion parameters are already known [7].

The paper is organized as follows: first, section 2
describes the general aspects of the textural operators that
have been used in our study. Next, the motion detection
problem will be tackled, analyzing those aspects that could
affect the quality of the estimates. Afterwards, the
construction of a 3D visual map is analyzed. Finally, results
on real images are presented.

Figure 1: The URIS Underwater Vehicle, prototype
developed at the University of Girona
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2 Texture analysis

We have tested the behavior of different texture operators
in underwater images. Concretely, we searched for texture
parameters that remain constant for the same scene patch
for the whole image sequence. One of the operators that
have been used are the texture energy filters [8], which are
derived from the computation of a series of statistical
measures on a pre-filtered image. This image is obtained by
applying a set of masks (3x3 or 55) that define some
textural properties of the image. In order to obtain these
masks, a series of vectors defining some textural proprieties
are combined. The typical vectors are level, edge, spot,
wave, ripple and oscillation [8]. -

A second texture operator based on the spatial
distribution of pixels in the image has been used: Co-
occurrence matrix {9]. It takes into account the frequency
of appearance of the pairs of pixels located at a distance d
and an angle @ (co-occurrences). A set of statistics is com-
puted for every co-occurrence matrix, obtaining the textural
characteristics of the image.

Finally, since a textured region can be described by
means of its texture spectrum —that is, a set of values called
texture units— a set of 3x3 simple local patterns can be
defined. The different texture units can be determined from
these patterns, obtaining a texture measure of the
considered region. This last texture operator, known as
Local Binary Pattern [10], has also been used in our study.

It should be taken into account that the first two
operators can generate several measurements, depending
on the number of orientation angles, the distance of corre-
fation and the size of the neighborhood. We have tested
several configurations of these texture operators in order to
find the most advantageous set-up for our application.
Finally, we chose 4 different angles for the coocurrence
matrix, taking only distances of 1-pixel; and 9 masks of the
energy filter taking only a 3x3 neighborhood. From our
experience, the use of larger neighborhoods provides little
improvement at the expense of a higher computational cost.

3 Motion detection

The AUV motion estimation process is performed in several
phases, as illustrated in figure 2. First, the radial distortion
of the camera is corrected, then a set of matches is
computed in order to find the motion from one image to the
next. This motion is measured as a rotation R plus a
translation t that relates the position of the vehicle in two
consecutive time instants. Finally, the relative positions are
mapped into a global frame, constructing a map of the
surveyed zone.
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Figure 2: Dataflow of the motion-detection algorithm
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3.1 Correction of geometric deformations

The physical lenses introduce a non-linear distortion in the
observed image points. Moreover, when treating under-
water images, the ray deflections at the water-camera
housing and the air-camera housing interfaces introduce a
second distortion [11]. For this reason, camera calibration
has to be performed underwater.

We describe here a derivation of the Faugeras-Toscani
algorithm to correct the radial distortion by means of the
following equations, derived from [12]:

x, —(ﬁd—;ﬁ}+(ﬁ;—ﬁ]- k ~r2+c)r Q)
X X
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k, k,
where (x,,y,) are the ideal undistorted coordinates of the
measured distorted point (x,,y,), and (c,,c,) are the

coordinates of the center of the image. The parameters
k,,k,are the scaling factors in the x and y directions,

Yu dy-rftc, @

respectively. They account for differences on the image
axes scaling. The principal point of the image is defined by
(x9-¥0), and it represents the coordinates of the

projection of the optical center of the camera on the image
plane. £ is the first term of the radial correction series, and

r is the squared distance of (x,,y,) from the center of
the image, and accomplishes:
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Once these parameters are known, image correction for
radial distortion can be computed. In our implementation,
the undistorted values are obtained from a Look Up Table
that has been computed offline.

3.2 Finding correspondences

The matching algorithm is sequenced as following: first, the
high gradient areas of the first image are detected through a
detector of interest points (some sort of corner detector).
Then, for every corner in the first image, a set of possible
matchings is established in the second image. These
matches are detected by means of area-correlation. Finally,
a set of texture measures is taken for the area surrounding
the original corner in the first image, and this texture set is
compared to the textures computed at every possible
matching on the second image. As will be shown in the
results, the most similar texture patch corresponds normally
to the correct match.

3.2.1 Detection of interest points

A very simple and fast detector of interest points has been
implemented. First, a Canny edge detector is applied to the
image [13], binarizing the output of the filter at a quite high
threshold. Thus, an undersegmented image containing only
the most relevant contours of the image is obtained. A pixel
is considered to be an inferest point if it is in the
intersection between two straight lines, that is to say, if it
has 3 or more neighbors also belonging to any edge.

322 Gray-level region-correlation

In order to establish correspondences between images a
classical correlation technique can be applied. Since our
images are acquired by a color camera, we have found that
best results are obtained if the correlation is applied to the
blue band of the image. This fact is related to the variation
of the optical properties of different water bodies depend-
ing on the interaction between the light and the aquatic

environment [4]. Given that the light suffers less absorption
when it has a higher frequency, the blue component of the
image provides higher contrast than the average of all

frequencies, that is, the intensity component.

A similarity function measures whether a point in the
second image is likely to be the right matching of a given
interest point in the first image. We then define a minimum
threshold for a matching point to be considered a possible
correspondence of a given interest point. In this way, for
each point in the first image, we thus have aset of p
candidate matches in the second image. The number p of
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possible matches may be different from one interest point
to another.

3.2.3 Texture extraction and similarity measure

Given an interest point, the problem now is to decide which
is the right match among the p candidates selected by the
correlation procedure. An nxn neighborhood is selected
around the interest point. The texture operators defined in
section 2 are computed in this area, sub-sampling the nxn
window. In this way a texture vector is obtained for the
neighborhood of the interest point. Every point of the
neighborhood provides 9 measures of the energy filters, 4
of the co-occurrence matrix, and 1 of the Local Binary
Pattern operator. Thus, the texture vector contains
n’x(9+4+1)=k texture values. The same operation is
performed in the second image centering the nxn window
on every one of the p possible matches. Then, the p texture
vectors are compared with the texture vector of the interest
point by computing the point-to-point Euclidean distance.
The best match is selected as the one minimizing the
following distance:

@B =Y @ -b), Vielol @

where a is the texture vector of the interest point in the

first image, and b; stores the texture attributes of every
candidate matching.

3.3 Determination of the motion parameters

The next problem to solve is the estimation of the motion of
the submersible between two images I and I“"". The
motion is expressed in terms of a rotation R and a transla-
tion t. According to the epipolar geometry theory [14], a
linear equation can be written relating the essential matrix
E with the correspondences between imaged points in con-
secutive frames [15] (see eq. 5). The essential matrix ex
presses the position and orientation of a coordinate system
(i.e. a camera) with respect to another. It is possible to
arrange the elements of the 3x3 E matrix forming a %1
column vector €, obtaining the following equation:

U-e=0 5)
where
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ande= [eu €y €3 € €xn €3 €3 €y 933]T corre-
spond to the elements of matrix E.
If the parameters in £ are available, the motion R{t)
could be computed from (see [15,16]):
E -t=0 ©)
E=t ‘R (@)
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where t, is an antisymmetric matrix defined by t that ac-
complishes t_-p =txp for any 3D vector p. Therefore,

the first step consists on obtaining the elements of matrix E
A least squares solution can be applied to solve for € in
the following way:

min [|U-¢]®, subject to =2 @®)

Once matrix E has been found (re-arranging the
elements of £ ), translation t and rotation R can be obtained
from the minimization of equations (9) and (10),
respectively.

rn‘in “E’ . '“z , subject to | =1 ©)
min [E~t, Rf (10)

By performing the minimizations of equations (9) and
(10) the incremental three-dimensional information on the
motion of the robot is obtained for two consecutive time
instants. For a more detailed description on how to find
(Rt) from image correspondences the reader is addressed
to [15,16].

4 Map construction

Once the translation t and rotation R parameters between
images IY and F**" have been found, the perspective
projection matrix P can be obtained:
P® =All o] an
Pt = AR ] 12)

where A is the 3x3 matrix of intrinsic parameters of the
camera, obtained through calibration (12,17]. In this way,
the 3D coordinates M=(X,Y,Z) of any image point m=(x.y)
can be obtained by means of:

X
Y

= 13)
sy 1=P| z

1
1

where s, is a scaling factor, and m and M are expressed in
homogeneous coordinates. In order to obtain more accu-
rate estimations, when the robot is moving forward, three
different views are used to compute the 3D of the coordi-
nates of a point M, as illustrated in figure 3. The parameter
o is selected on-line, depending on the velocity of the
submersible. The estimation of M is performed by corre-
lating a neighborhood of m, in the different images of the
sequence. Sometimes, three-dimensional occlusions caused
by irregularities in bathymetry provoke this estimation to
fail [18]. For this reason it is important to exploit temporal
redundancy by selecting only those features that have a
high correlation score, discarding the others.

Image (ko)

Image (k+a)

Figure 3: Integration of three frames taken from three
different points of view of the same scene.

Once the 3D coordinates of the points projected on
image I**V are known, they can be mapped together with
the pixels of the image /¥ to construct a composite image.
Matrices (Rt) relate the 3D points of one image with those
of the previous one. If a common reference frame is
selected for all the images, then the relative increments
given by Rt) should be converted to absolute measures
(Rapsstans) €xpressed in terms of the world coordinate system
(O, in figure 3). The resulting map is stored in a matrix
where every element stores four values: the 3D coordinates
of that point ((,Y,Z) and its gray level as imaged m the
image. Since several contributions from different images are
available for the same 3D point, the system averages the
values of the matrix as new values are available. A
visualization tool for such a map is being developed. At the
moment we can only evaluate the accuracy of the motion
estimation process by means of the 2D mosaic-based
visualization map described in [7].

5 Results

Several experiments have been performed in order to vali-
date the texture-based matching strategy. Typical under-
water situations have been used to test our system. The
images have been acquired by a color camera carried by the
URIS underwater robot while this was being teleoperated.
The acquisition frame rate was set to 3 f.p.s. The images
were stored to disk and have been processed offline.
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Figure 4: Comparison of the gray-level correlation results (left) with the use of textural analysis (right);
(a) vs. (b) 15 incorrect matches are found by the correlation, while texture analysis procedure detects 2 false matches.
(c) vs. (d) gray-level correlation finds 10 false matches for 8 of the texture operators.

In order to evaluate the goodness of the matching pro-
cedure we have used a two step approach. First, the
interest points have been detected in the first image, and
the region correlation has been applied to the second
image. Next, a human operator has marked all the visually
incorrect matches, in order to know which correspondences
have been incorrectly established. This has been done for
five different sequences, taking 10 pairs of images per
sequence.

Figure 4 shows a sample of the automatic detection of
matches by using the classical correlation procedure (left
column), and the effect of applying the texture analysis to
all the candidate matches. Two different situations are
illustrated in this figure: fig. 4(a) and (b) present a scene
containing rocks. These images exhibit considerable
differences in depth along the image. In this case 434 in-
terest point were detected by the algorithm. After the re-
gion correlation procedure 15 points were incorrectly
matched. The texture analysis was then applied to all the
candidate matches, producing 2 false matches. This high
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rate is due to the existence of clearly differentiated zones in
the image with rather different textures.

Figures 4(c) and (d) show a rather planar floor of sand
and algae, with an elevated rock on the bottom right side of
the images. 329 points were correlated obtaining 10 false
matches with the classical approach, for 8 wrong
correspondences with the texture operators. The texture
analysis corrected 5 matches that were incorrectly matched
through correlation, but introduced 3 new false matches
among the others.

From the total of 50 images that have been tested, in
broad outline matching results resemble those of the
images illustrated in figure 4. The amount of interest points
ranged from 200 to 450 points, and a percentage of
mismatched points similar to those presented above:
ranging from 6 to 2% of false matches in the classic
correlation; and from 4 to 0.5% for the texture analysis.
Only in two cases textural analysis performed worst than
classical correlation, but with a very small difference.
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6 Conclusions

We have proposed in this paper a new method to improve
image matching in underwater image sequences for esti-
mating the motion of an underwater robot. The accuracy of
the method is directly related to the exploitation of the local
texture parameters in the image. Our approach has proved
to perform better than the merely use of classical region
correlation. However, in some situations, it may introduce
some new false matches.

The construction of a visual map of the surveyed area
has been proposed. Our approach does not suffer from the
constraint of planar scene imposed by other methods, such
as those based on homographies. However, although 3D
estimation from correspondences works fine in irregular
scenes with depth variation, it has serious limitations when
all the matches are coplanar. A possible solution could be
to use two alternative motion detection techniques. If we
can detect when the points are close to a plane we could
switch to the second methodology, and when depth
changes appear the system should switch back. In order to
know when to switch from one method to the other, a pre-
dicted image could be constructed (e.g. assuming copla-
narity) to be comp ared with the real image in the next time
instant.

On the other hand, the quality of the motion estimation
could also take profit of a robust estimation technique (i.e.
LMedS) in order to detect outliers among the correspon-
dences.

Finally, it should be noticed that the increasing
computational power of nowadays computers would allow
URIS to construct real-time high-accuracy maps in the near
future.
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