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Abstract 
Mosaics have been commonly used as visual maps for 

undersea exploration and navigation. The position and 
.orientation of an underwater vehicle can be calculated by 
integrating the apparent motion of the images which form 
the mosaic. A feature-based mosaicking method is pro- 
posed in this paper. The creation of the mosaic is accom- 
plished in four stages: feature selection and matching, 
detection of points describing the dominant motion, ho- 
mography computation and mosaic construction. In this 
work we demonstrate that the use of color and textures as 
discriminative properties of the image can improve, to a 
large extent, the accuracy of the constructed mosaic. 

The system is able to provide 3 0  metric information 
concerning the vehicle motion using the knowledge of the 
intrinsic parameters of the camera while integrating the 
measurements of an ultrasonic sensor. The experimental 
results on real images have been tested on the GARBI 
underwater vehicle. 

1 Introduction 
The task of positioning an underwater vehicle can take 

advantage of the rich amount of information available at 
the bottom of the sea when viewed from a camera. The 
construction of a composite image that combines the set 
of frames taken from the submersible can greatly help in 
this task. This image is known in the literature as a mo- 
saic, and is commonly used as a visual map for undersea 
exploration and navigation. In order to construct ocean 
floor mosaics, the individual images forming the mosaic 
are usually obtained by setting a camera on a ROV or 
AUV. The camera looks down, parallel to the bed of the 
sea, and the acquired images cover a small area of the 
ocean floor. In this way, the position and orientation of 
the underwater vehicle can be calculated by integrating 
the motions from one image to the next [1,2]. 

Unfortunately, underwater images often lack distinct 
features that are commonly exploited in terrestrial vision 
systems for detecting motion. Moreover, the range is lim- 
ited and the need for artificial light introduces many new 
properties to the image, such as low contrast, non-uniform 
illumination and scattering. Quite often, small particles 
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suspended in the water show up as marine snow making 
difficult the feature extraction and matching processes. 

One of the first computer-aided systems to automate the 
construction of underwater mosaics was presented by 
Haywood in [ 3 ] .  In this work, no feature extraction was 
performed at all, and mosaicking was accomplished by 
snapping images at well-known positional coordinates, 
and warping them together since the registration was 
known beforehand. Marks, et al. developed a completely 
autonomous column-based mosaicking system in [4] by 
using a constrained four-parameter semi-rigid motion 
model. Some years later, unconstrained image mosaicking 
was obtained by applying smoother-follower techniques 
to reduce image alignment errors within the mosaic [5]. In 
both cases, the registration between images was computed 
by correlating binary images, after going through a 
signum of Laplacian of Gaussian filtering process, which 
attenuated the effect of nonuniform illumination. 
Negahdaripour, et al. have detected motion from seabed 
images through recursive estimation of optical flow [6]. 
They studied this problem in the presence of intensity 
variations and underwater medium effects [7], and 
developed a “Direct Method” for motion estimation [8]. 
This direct estimation of motion has been successfully 
applied to mosaicking (e.g., [I]) and station-keeping [9]. 
However, the application of gradient-based techniques is 
not always accurate in low contrast environments. Other 
works in underwater mosaicking have made use of image 
corners and gray-level pixel-correlation to detect 
correspondences [2], achieving successful and accurate 
underwater mosaics in well-contrasted images. 

To our knowledge, none of the works described above 
has addressed the problem of feature characterization as a 
whole, in order to improve the correspondences between 
images. We propose a method to solve the matching 
problem by means of a wide study of texture and color. A 
texture-based mosaicking method is proposed in this pa- 
per in order to estimate the position of the GARBI under- 
water submersible [ IO]. 

The paper is organized as follows: first, a brief descrip- 
tion of the GARBI Underwater Vehicle is given. Next, the 
main algorithm to robustly construct a mosaic in a low- 
contrast scenario is detailed in section 3. Finally, the 
following sections present some of the results obtained in 
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a sea mission with GARBI, and summarize the conclu- 
sions of our work. 

2 The GARBI Underwater Vehicle 
GARBI [10,11] was first conceived as a Remotely 

Operated Vehicle (ROV) for exploration in waters up to 
200 meters in depth. At the moment, a control architecture 
is being implemented to transform this vehicle into an 
Autonomous Underwater Vehiclt,. GARBI (see Figure 1) 
was designed with the aim of building an underwater 
vehicle using low cost materials, such as fiber-glass and 
epoxy resins. To solve the problem of resistance to un- 
derwater pressure, the vehicle is servo-pressurized to the 
external pressure by using a compressed air bottle, like 
those used in scuba diving. Air consumption is required 
only in the vertical displacements during which the de- 
compression valves release the required amount of air 1.0 
maintain the vehicle’s internal pressure equal to the exter- 
nal. This vehicle can also be equipped with two arms, 
allowing the vehicle to perform object manipulation tasks 
through tele-operation. 

Figure 1: GARBI underwater vehicle at sea. 

The vehicle incorporates 4 thrusters: two for perfomi- 
ing horizontal movements (yaw motion) and two for ver- 
tical movements (Z axis). Due to the distribution of 
weight, the vehicle is completely stable in pitch and roll. 
For this reason the vertical and horizontal movements are 
totally independent. The robot ha:< a color camera fixed to 
its prow. A geometric calibration of this camera has been 
carried out to obtain its intrinsic parameters. The vehicle 
also includes several sensors which so far have not been 
used in this work, with the exception of a sonar, which 
indicates the distance from the vehicle to the bottom of 
the sea. The dimensions of GARB1 are 1.3 meters in 
length, 0.9 meters in height and a width of 0.7 meters. The . 
vehicle has a maximum speed of 3 knots and its weight 
reaches, 150 Kg. 

3 Mosaic-Based Positioning 
The creation of the mosaic . i s  accomplished in four 

stages: feature selection and matching, estimation of 

dominant motion, homography computation and mosaic 
blending. A more detailed scheme of the algorithm is 
shown in figure 2, and is explained below. 

3.1 Feature selection and matching 
The searching for feature correspondences is performed 

in a two-step approach. First, the zones of the image 
presenting high spatial gradient information are selected 
by means of a comer detector. Then, the textural parame- 
ters of these areas of the image are used as a matching 
vector to be correlated with the next image in the se- 
quence. Textures significantly help in the location of fea- 
tures in the image and are specially indicated for the un- 
derwater environment, where lack of image features and 
lighting variations are the norm. The set of textural fea- 
tures used in our implementation has been chosen for its 
suitability in underwater imaging. Moreover, since our 
system is equipped with a color camera, the corner detec- 
tion and texture extraction procedures are fulfilled not 
only on the intensity image, but also on the hue and satu-. 
ration components. Since hue and saturation have the 
property of scale-invariance, that is, H(R,G,B) = 

H(aR,aG,aB) and S(R,G,B) = S(aR,aG,aB), they are 
more stable to variations on the intensity of the illuminant 
[ 121, being adequate for processing in underwater 
imaging. 

A simple comer detector has been especially developed 
for this application. The main idea is to detect points with 
a high spatial gradient in the X and Y directions [13]. The 
corner detector is applied independently to the Hue, 
Saturation and Intensity images, keeping three lists of 
comers, one for every image component. 

have been obtained, the 
algorithm searches for the candidate matches in the next 
image I(k+’). The matching process is accomplished in the 
following way (see figure 3): For every point my) in 
image a correlation is performed by convolving a small 

Once the comers of image 

Figure 2: Scheme of the algorithm. 
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Figure 3: Typical situation where a comer point m y )  has several possible matches in image P'' 

window centered at m y )  over a search window of image 
I(k+'). It should be noted that the correlation is performed 
on the same image component where the comer was de- 
tected. For instance, given a comer point m y )  in the 

aturation image fik) a search for the best matches 
~ ~ ~ t l ) , m ~ ~ l ) , . . . , n i ~ ~ ' ) }  is performed only in Ir+'). Only 
those matches that are quite similar to the original 
correlation window of m y )  are taken into account. This 
similarity measurement is computed by means of the cor- 
relation score described in [14]. The threshold of the cor- 
relation score to be considered as a candidate match has 

nce the set of possible matches P m(l:"),m$+'), ..., m)kqt') 7 has been obtained, the texture 
parameters of the patches centered at every matching 
point are computed (correlation windows on the right in 
figure 3). 

Continuing with our example, for every possible match 
in the saturation image I?+'), a vector of texture parame- 
ters is computed in the neighborhood of my'). The tex- 
ture parameters that have been used are: Co-occurrence 
matrix [ 151, Energvfilter [ 161, and Local Binary Patterns 
[17]. We should take into account that the first two 
operators can generate several measurements, depending 
on the number of orientation angles, the distance of 
correlation and the size of the neighborhood. In our 
application we chose 8 different angles for the co- 
occurrence matrix, taking only distances of l pixel, and 9 
masks of the energy filter taking only a 3x3 neighbor- 
hood. From our experience, the use of larger neighbor- 
hoods provides little improvement at the expense of a 
higher computational cost. All the texture measurements 
are normalized between 0 and 1. A different vector is 
stored for the Hue, Saturation and Intensity images. 
Summarizing, the texture vector contains 1 %positions, 
namely: 8 measurements of the co-occurrence matrix, 9 
measures of energy, and 1 of the local binary patterns. 
These textures are only computed in the image component 
where the corner has been detected. If the corner m y )  
belongs to the image ff), then the textures of every can- 

een fixed to 0.85. 

didate matching mSk*+l) are measured in the saturation im- 
age lik+'). This texture vector is mapped onto a 18- 
dimentional space, where it is compared with the texture 
vector of the original point my).  The Euclidean distance is 
then computed, obtaining a texture similarity measure. 
After this process, a set of correspondences in image I(k+') 
is obtained from every corner in image f", and every 
correspondence has two measures of similarity: correla- 
tion and texture. By averaging these two values, the reli- 
ability (r) of every match is obtained. Taking into account 
the reliability value, we have devised a method (the dis- 
ambiguate algorithm) to correctly choose the right 
correspondence among the whole set of matches. In order 
to find the best correspondence for the jth corner m y ) ,  the 
disambiguate algorithm can be formulated as follows: 

Compute the centroid of the set of matches, weighing 
every coordinate depending on the reliability measure 
( V j * )  : 

I 
From the centroid [Y:!"), L;ikt')), fix a radius of size R, 
and eliminate those matches which fall outside of the 
circle defined by R, as shown in Figure 4. 

correct correspondence. 
Select the match with the highest reliability as the 

If no match appears inside the circle, then eliminate the 
comer. 

Once this procedure has been accomplished, a set of 
pairs point-matching { [m(f),myt')) l j  = 1, . . . , p }  is ob- 
tained. 
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3.2 Selection of points describing the dominant 

After the correspondences ha.ve been found, a set of 
displacement vectors relating tb: features of two images 
of the sequence is obtained. Every vector relates the 
coordinates of the same feature in both images. Although 
an accurate texture analysis is devoted to the matching 
procedure, some false matches (known as outliers) could 
still appear among the right correspondences. These false 
matches are mainly due to the presence of moving objects 
(algae or fishes) which violate the assumption of static 
scene, or even to the inherent system noise For this 
reason, a robust estimation meth,od has to be applied. The 
Least Median of Squares (LMledS) algorithm aims at 
finding the affine transformation matrix H which 
minimizes the median of the squared errors. The matrix H 
describes the motion between two consecutive images. 
The minimization is performed by searching in the 
parameter space, and the error is defined by the distance 
of a point to the projection of its correspondence. 
Equation (2) expresses the non-singular linear 
transformation of the image plan(: into itself [ 181: 

motion 

xj!' h,, - h 2 ,  h,, X(!+l) 

[y#h;l "?: h y /  [ 1 - ; j  (2) 

where my) = (xy ) ,y jk ) , l )  and my+') = (xjkt'),y;!+'),1) 
denote a correspondence point in the present and next 
image respectively, expressed in homogeneous 
coordinates, h, ,, h12,...,h23 are 5 .parameters that determine 
an affine transform; and indicates equality up to scale. 
Each point correspondence generates two equations, then 
at least 3 points are needed for the 5 unknowns. 

Our implementation of the LMedS algorithm works as 
follows: given the problem of cc,mputing the homography 
matrix H from a set of data points, where 3 is the 
minimum number of data points which determine a 
solution, compute a candidate solution based on a 
randomly chosen 3-tuple from the data. Then, estimate the 
fit of this solution to all the data, defined as the median of 
the squared residuals. The median of the squared residuals 
is defined by: 

where k = (xI ,x2 ,x3)  are the homogeneous coordinates 
of a 2D point m defined in the image plane, being 
m = ( x , , ~ , )  = (x1/x3 ,x2 /x3 )  its corresponding Cartesian 
coordinates; and d 2  (~%y),Hi%:!+')) is the square distance 
from a point %:!I, defined on image I(k),  to the projection 
on the same image plane of its correspondence %:!+'). 

Once the best solution has been found, a minimal 
median is obtained. As from the median, the mean and the 

standard deviation can be computed (see [19] for details). 
Therefore, in our implementation, those points at a 
distance larger than the median are eliminated, and matrix 
H is recomputed with the remaining points, through a 
least squares criteria. 

3.3 Mosaic construction 
As soon as the best transformation H between two 

frames has been found, the two images are warped 
together composing the mosaic. The 2D motion of the 
camera is known in pixels from one image to the next, as 
an affine measure: rotation, translation and scaling. With 
the aid of an ultrasonic sensor, and the knowledge of the 
intrinsic parameters of the camera, 3D metric information 
about vehicle motion can be recovered. Although this 
metric information is relative to the sea bed, it can be very 
useful for navigation and mission planning. At the same 
time it introduces new knowledge on how the mosaic is 
evolving. 

The experimental results on real images have been 
tested on the GARBI underwater vehicle [I  13, showing 
the effectiveness of the proposed method. 

I I 

Figure 4: Given a corner point m(pk)every candidate correspon- 
dence m(jk.+') found in its neighborhood has an associated 
reliability (rjf'"). A weighed centroid ( C j )  can be computed, 
defining a circle of radius R,  where the right correspondence will 
be chosen. 

4 Results 
The sea bed mosaics presented in this paper were crea- 

ted from a set of images taken by the GARBI underwater 
vehicle. GARBI's camera pointed downwards to the 
ocean floor and the image capture rate was set to 4 images 
per second. The images were stored to disk and the cons- 
truction of the mosaic was carried out offline. Figure 5 
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Figure 5: Two consecutive images of the sequence: (a) image 
I (@; (b) image fi'*'). 

shows the different phases accomplished by the 
mosaicking system. (a) and (b) are two consecutive 
images of the sequence. Notice the low-contrast of both 
images, and the difficulty of establishing matches directly 
from the intensity component. The hue, saturation and 
intensity components of the first image are computed to 
run the corner-detector algorithm. The resulting corners 
are shown in Fig. 6(a); while the neighborhood of these 

points is correlated against the next image of the sequence 
using again the components of intensity, hue, and 
saturation. Figure 6 (b) shows a num- ber of pairs 
point/matching after using the textural parameters. The 
larger crosses represent the position of every comer in the 
first image, while the possible matchings in the next 
image are represented with a small cross. 

Figure 6(c) shows how the disambiguate algorithm, 
described in section 3.1, eliminates most of the incorrect 
matches, leaving only one match for every comer. This 
figure illustrates how the algorithm is not able to choose 
the correct matches in a small number of cases. However, 
it reduces the computational burden of the subsequent 
steps by providing a single match for every corner. The 
result of the LMedS algorithm applied to the remaining 
points is demonstrated in Figure 6 (d). 

This algorithm is able to eliminate all the incorrect 
matches, although some of the correct ones are also 
deleted. Two example image mosaics are illustrated in 
Figure 7. 

Figure 6: (a) corners detected in image 8k); number of comers: 138; (b) result of correlation (merging intensity, hue, saturation and 
textural parameters); number of pairs poinumatching: 11 1 ;  the comers are represented with the big cross, and the matchings are 
drawn with a small cross; (c) result of the disambiguate algorithm; (d) result of LMedS after disambiguate. 
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Figure 7: Sea bed mo;;aic examples. 

5 Conclusions and Further Work 
In this paper we have presented a mosaicking algorithm 

which is able to provide positional coordinates to an 
underwater vehicle. The viability of the system has been 
demonstrated with real world experiments. Textures, in 
addition to color, can highly improve the matching 
process, and robust estimation techniques further 
ameliorate the dominant motion estimation. The 
integration of a sonar measurement along with the visual 
information provides 3D position estimations of the 
submersible’s motion. 

Beyond this preliminary work, further research is 
needed to determine which are the texture parameters that 
better fit the matching process. Moreover, an effort is 
being made to ameliorate the throughput of the system by 
means of the development of special-purpose hardware 
for real-time motion estimation. 
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