
SLAM using an Imaging Sonar for Partially
Structured Underwater Environments

David Ribas, Pere Ridao
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Abstract— In this paper we describe a system for underwater
navigation with AUVs in partially structured environments, such
as dams, ports or marine platforms. An imaging sonar is used
to obtain information about the location of planar structures
present in such environments. This information is incorporated
into a feature-based SLAM algorithm in a two step process:
(1) the full 360◦ sonar scan is undistorted (to compensate for
vehicle motion), thresholded and segmented to determine which
measurements correspond to planar environment features and
which should be ignored; and (2) SLAM proceeds once the
data association is obtained: both the vehicle motion and the
measurements whose correct association has been previously
determined are incorporated in the SLAM algorithm. This two
step delayed SLAM process allows to robustly determine the
feature and vehicle locations in the presence of large amounts of
spurious or unrelated measurements that might correspond to
boats, rocks, etc. Preliminary experiments show the viability of
the proposed approach.

I. INTRODUCTION

The possibility of having truly autonomous vehicles heavily
depends on their ability to build accurate models or maps of
the environments they traverse, and to know their location in
them. This has made this problem, known as Simultaneous
Localization and Mapping (SLAM), the focus of a great
deal of attention in recent years [1], [2], [3]. Many foreseen
applications indoors, outdoors, on land, on air, and underwater
will be possible once robust and efficient SLAM algorithms
are available.

SLAM is currently considered solved for environments of
limited size [4]. Algorithms based on both Extended Kalman
Filters (EKFs) [5], [6], [7] and Particle Filter (PFs) [8], [9]
can be used to map indoor and outdoor at least partially
structured environments. Many of these systems use laser
scanners, which provide precise 2D and 3D depth information.
More recently, cameras are being used in SLAM systems due
to their reduced cost and the possibility of obtaining texture
information of the environment [10].

In some specially challenging environments and applica-
tions, such as underwater environments, it is not possible
to use lasers, and there are also many difficulties in using
cameras, among other issues due to lighting conditions. Sonar
scanners have been used for a long time in underwater systems
in general, and more recently for underwater SLAM systems
[11], [12]. The range information provided by sonars is much

Fig. 1. Acoustic image superposed to a harbor satellite image

more difficult to interpret than laser scans because it is subject
to more angular uncertainty. Also, spurious measurements are
much more frequent. Underwater SLAM systems using sonars
usually look for point features in the environment, which are
very infrequent naturally in most underwater applications, and
thus artificial landmarks have to be deployed.

In this paper we describe an underwater SLAM system for
AUVs using an imaging sonar that builds a feature-based map
of the environment, consisting in line features corresponding to
planar structures in the environment. These types of structures
are present in many environments of interest for AUVs such as
dams, ports, or marine platforms (See Figure 1). They can be
used to accurately determine the location of the vehicle in the
environment, as it has been shown in indoor and outdoor urban
environments. We use a mechanically scanning imaging sonar,
a low cost acoustic sensor with an operating range of up to
100 meters which is usually used for obstacle detection. This
imaging sonar provides a 360◦ scan of the environment in 6.6
seconds. In contrast with laser scanners, this sensor provides
100 returns of different intensities for each beam, making
more difficult the extraction of information regarding features
such as stable planar structures. An additional difficulty lies in
the fact that when mounted on an AUV, the resulting scan is
distorted due to vehicle motion. To obtain an initial estimation

1-4244-0259-X/06/$20.00 ©2006 IEEE
5040

Proceedings of the 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems

October 9 - 15, 2006, Beijing, China

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



of motion, the vehicle has a Doppler Velocity Log (DVL) that
provides an estimation of velocity, as well as a compass and
two inclinometers to provide absolute orientation.

SLAM cannot be carried out in the standard way because
the information provided by the sensor in one direction is
insufficient to carry out feature extraction and data association
[6]. In this paper we describe the two step SLAM process that
is carried out: (1) the full 360◦ sonar scan is undistorted (to
compensate for vehicle motion), thresholded and segmented to
determine which measurements correspond to planar environ-
ment features and which should be ignored (section II); and (2)
both the vehicle motion and the measurements whose correct
association has been previously determined are incorporated
in the SLAM algorithm (section III). Preliminary experiments
(section IV) were carried out in our underwater laboratory to
show the viability of the proposed approach.

II. SEGMENTATION AND FEATURE EXTRACTION

Mechanically scanning sonars perform scans in a 2D plane
by rotating a sonar beam through a series of small angle
steps. For each emitted beam, distance vs. echo-amplitude
data is returned forming an acoustic image of the surroundings
(Figure 2). The scanning rate of these devices is really slow in
comparison with multibeam sonars. For this reason, the vehicle
movement along a complete scan usually induces important
distortions in the acoustic image (See Figure 2(b)). Extracting
features from this kind of images produces inaccuracies and
yield to poor results. To cope with the slow scanning rate
of the low cost imaging sonars, we propose a 2 step line
extraction procedure. First, the trajectory of the vehicle is
estimated at the same time that the acoustic beams are grabbed
(described in section A). Then, when the position of each beam
is known, the distortion induced by motion is compensated
(Figure 2(c)). The segmentation procedure together with the
Hough transform yield the lines present in the undistorted
acoustic image as reported in section B.

A. Trajectory estimation

In order to be able to correct the image, whenever a new
sonar beam is read, it is tagged with the current robot pose. A
SonTek Argonaut DVL unit which includes a compass, 2 incli-
nometers and a depth sensor is used to estimate the robot pose
(navigation problem). Sonar beams are read at 30 Hz while
DVL readings arrive asynchronously at a frequency within
1.5 Hz interval. An EKF is used to estimate the 6DOF robot
pose whenever a sonar beam is read. DVL readings are used
asynchronously to update the filter. To reduce noise inherent
to the DVL measurements, a simple 6DOF constant velocity
kinematics model is used instead of a more conventional
dead reckoning method. Since AUVs are commonly operated
describing rectilinear transects at constant speed during survey
missions, we believe that the proposed model is a simple but
realistic way to describe the motion. Equations 1 and 2 show
the state vector and the proposed state space model:

xB

R
=

[
η

B
, ν

R
]T

(1)

Fig. 2. (a) Schematic representation of the environment where the sonar data
were gathered. The highlighted zones represent the expected sonar returns.
Images generated from acoustic data, (b) distorted and (c) undistorted image
through DVL integration
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with:

η
B = [x, y, z, φ, θ, ψ]T ; ν

R = [u, v, w, p, q, r]T (3)

J(η)=

⎡
⎢⎢⎢⎣

cψcθ cψsθsφ−sψcφ cψsθcφ+sψsφ 0 0 0
sψcθ sφsψsθ+cψcφ sψsθcφ−sφcψ 0 0 0
−sθ cθsφ cθcφ 0 0 0
0 0 0 1 sφtθ cφtθ
0 0 0 0 cφ −sφ
0 0 0 0 sφ/cθ cφ/cθ

⎤
⎥⎥⎥⎦ (4)

where, as defined in [13], ηB is the position and attitude vector
referenced to a base frame B, and νR is the linear and angular
velocity vector referenced to the robot coordinate frame R.
The coordinate frame B is oriented to the north. Hence, the
compass measurements can be straight forward integrated.
Although in this model the velocity is considered to be
constant, in order to allow for slight movements, the velocity
is modelled as the integral of a stationary white noise v

k
with

a diagonal Q in the order of magnitude of the maximum
acceleration increment that the robot can experiment over a
sample period.

ν
R

k
= ν̂

R

k
+ v

k
T (5)

E[v
k
] = 0; E[v

k
,vT

j
] = δ

kj
Q (6)

Hence, the acceleration noise is additive in the velocity (Equa-
tion 5) and propagates nonlinearly to the position. Finally, the
model prediction and update is carried out as detailed below:

1) Prediction: The estimate of the state is obtained as:

x̂B

R,k
= f(x̂B

R,k−1
) (7)
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and its covariance matrix as:

PB

R,k
= F

R,k
PB

R,k−1
FT

R,k
+ G

R,k
Q

k
GT

R,k
(8)

where F
R,k

and G
R,k

are the Jacobian matrices of partial
derivatives of the non-linear model function f with respect to
the state xB

R,k
and the noise v

k
, respectively.

2) Update: The model prediction is updated by the standard
Kalman filter equations each time a new DVL measurement
is available:

z
S,k

= [u
b
, v

b
, w

b
, uw , vw , ww , φi , θi , ψc , z

depth
]T (9)

where subindex b stands for bottom tracking velocity, w for
through water velocity, i for inclinometers and c represents
the compass. The measurement model is:

z
S,k

= H
S,k

xB

k|k−1
+ w

k
(10)

H
S

=

⎡
⎢⎢⎣

03×3 03×3 I3×3 03×3

03×3 03×3 I3×3 03×3

03×3 I3×3 03×3 03×3

0 0 1 01×3 01×3 01×3

⎤
⎥⎥⎦ (11)

where w
k

(measurement noise) is a zero-mean white noise:

E[w
k
] = 0; E[w

k
,wT

j
] = δ

kj
R (12)

Since the DVL sensor provides a status measurement for the
bottom tracking and water velocity, depending on the quality
of the measurements, different versions of the H matrix are
used to fuse one (removing row 2), the other (removing row
1), or both readings (using the full matrix).

3) Trajectory Smoothing: Since the line extraction process
is started when the full 360◦ scan is completed, a smoothing
procedure is used to provide the best estimate of the whole
trajectory followed by the robot through the current scan.
Hence, during the scanning, the state is augmented with each
beam pose, and each DVL reading cause adjustments to the
whole trajectory. Assuming an augmented state vector x̂B ,
composed of both the actual vehicle state estimation at time
k and the rest of previously stored positions, the smoothing is
performed by augmenting the state with a copy (or clone [14])
of the actual position estimate η̂B

k
and placing it immediately

below the vehicle state x̂B

k
:

x̂B

k
=

⎡
⎢⎢⎢⎢⎢⎢⎣

η̂B

k

ν̂B

k

η̂B

k

...
η̂B

1

⎤
⎥⎥⎥⎥⎥⎥⎦
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k
=

⎡
⎢⎢⎢⎢⎢⎢⎣

PB

η,k
PB

ην,k
PB

η,k
. . . PB

η,k,1

PB

νη,k
PB

ν,k
PB

νη,k
. . .PB

νη,k,1

PB

η,k
PB

ην,k
PB

η,k
. . . PB

η,k,1

...
...

...
. . .

...
PB

η,1,k
PB

ην,1,k
PB

η,k,1
. . . PB

η,1

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

As a consequence of this state augmentation, the equations
presented in Sections II-A.1 and II-A.2 need to be adapted as
follows: ⎡

⎢⎢⎢⎣
x̂B

R,k+1

η̂B

k

...
η̂B

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f(x̂B

R,k
, 0)

η̂B

k

...
η̂B

1

⎤
⎥⎥⎥⎦ (14)

F
k

=
[

F
R,k

012×6k

06k×12 I6k×6k

]
G

k
=

[
G

R,k

06k×12

]
(15)

Finally, at the correction step only H
S

needs to be adapted
by adding 6k zero columns. Therefore, the cloning and
smoothing continues until the end of the scan when we have in
the state vector the best trajectory estimation. At the beginning
of the next scan, the previously stored positions are removed
before resuming the process.

B. Line extraction

Once an estimation of the vehicle trajectory through the
sonar scan has been obtained, it is time to search for possible
features. Since objects present in the environment appear
as high echo-amplitude returns, a thresholding is applied to
discard low echo returns which contain no significant informa-
tion. Then, a search for local maximums is carried out for each
beam. This reduces the number of considered measurements
without appreciable loss in the accuracy of the features. Since
we know the coordinates of each single echo return x̂R

P
with

respect to the vehicle reference R, the corrected position is
computed using with the vehicle position after the cloning
process (through the transformation-point feature composition
operator [6]):

x̂B

P
= η̂

B

R
⊕ x̂R

P
(16)

Figure 3(a) shows the resulting position of the thresholded
sonar returns from a single scan.

For line extraction in this type of images, a Hough trans-
form with a particular voting scheme has been used. When
extracting lines from sonar data using voting schemes like
Hough, authors [6] have proposed to vote to all the tangent
lines to the sonar arc. In that case, the sonar beam had around
20-30◦ of aperture. When dealing with our imaging sonar,
which makes use of narrow horizontal beam (3◦ of aperture)
we observed that the narrow beams were able to detect walls
whose surface was not tangent to the corresponding arc, but
within an interval. For this reason, we propose to vote not
only to the tangent lines but to the lines with a slope slightly
higher or lower than the tangent ones. Since we are interested
in line features, the Hough space is parameterized by ρB and
θB . Then, each sonar return position vote on this discretized
parametric space for all the candidate lines according to the
above mentioned sonar model. In Figure 3(b) the resulting
Hough votation space is shown. The selection among the
candidate lines starts by rejecting the lines which had not
received a minimum number of votes. Next, the most voted
line from each cluster is selected. Finally we force the line to
have a minimum density of points, filtering those whose points
are scattered through line. At the end of the process, the point-
to-line association has been established. The result is the set
of detected lines together with the set of points belonging to
them conveniently labelled.
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(a) (b)

Fig. 3. Hough transform for line detection. (a) High echo-amplitude returns
and the winning lines. (b)The obtained Hough voting space

III. DELAYED SLAM

Each time a scan is completed, the segmentation and
feature extraction process provides a set of features and the
correspondences with the measured points. This information
is only available when the entire scan is processed. Therefore,
the SLAM algorithm must run in a delayed manner

The stochastic map information is stored in the state vector
xB which contains the vehicle state xB

R
, estimated as explained

in Sections II-A.1 and II-A.2, as well as the line features
conforming the map of the surroundings. Therefore, this state
augmentation makes it necessary to adapt the equations in a
similar way as reported in 14 and 15. From this, the algorithm
will be structured in two steps:

A. Line feature estimation

The process of the line estimation uses the information
obtained from the feature extraction algorithm to initialize the
lines in the map and then process the associated measurements
to estimate the line uncertainty.

1) Initialization: At the beginning of a scan, the state is
augmented with the previously detected lines x̂B

Ln
:

x̂B

0
=

⎡
⎢⎢⎢⎢⎣

x̂B

R

x̂B

L1
...

x̂B

Ln

⎤
⎥⎥⎥⎥⎦ PB

0
=

⎡
⎢⎢⎢⎢⎣

PB

R
0 . . . 0

0 PB

L1
. . . 0

...
...

. . .
...

0 0 . . . PB

Ln

⎤
⎥⎥⎥⎥⎦ (17)

Where x̂B

Ln
= [ρB , θB ]T and the line parameters ρB and

θB are the values obtained by the Hough transform. The line
covariances PB

Ln,k
are initialized with a large uncertainty value

as an uninformative prior.

2) Update: The vehicle movement is estimated as usual,
but when a selected measurement happens it is introduced in

the map as a point feature x̂B

Pm
:

x̂B

k
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x̂B

R

...
x̂B

Ln

...
x̂B

Pm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x̂B

R

...
x̂B

Ln

...
η̂B

R
⊕ x̂R

Pm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(18)

Then, it is necessary to update the estimated error covariance
matrix:

PB

k
= F

k
PB

k
FT + GPR

Pm
GT (19)

F
k

=

⎡
⎢⎢⎢⎣

I 0 . . . 0
...

... . . .
...

0 0 . . . I
J1⊕ 0 . . . 0

⎤
⎥⎥⎥⎦ G

k
=

⎡
⎢⎢⎢⎣

0
...
0

J2⊕

⎤
⎥⎥⎥⎦

where J1⊕ and J2⊕ are the Jacobians of the composition
transformation [15] and PR

Pm
is the covariance of the point

measured from the vehicle with the sonar. The same procedure
is repeated for all the points.

3) Merge sonar returns: At the end of a scan, the state
vector should contain the detected lines (with total uncertainty)
and their corresponding sonar measurements. As the associa-
tion between the points and the lines is perfectly known we
can merge the information and thus, estimate the line state.
Lets suppose that H

P
is the hypothesis relating each sonar

return with its associated line. Since both the features and
the measurements belong to the state, we can represent the
condition that the points correspond to each line by an ideal
measurement equation without noise [16]:

z
k

= hH
P

(xB

k
) = 0

Then, the state can be updated using a modified version of
the EKF update equations [6], with z

k
= 0 and covariance

equal to zero. As hH
P

is the point to line distance nonlinear

function it is necessary to linearize. The update is performed
as:

KH
P

= PB

k|k−1
HT

H
P

(HH
P

PB

k|k−1
HT

H
P

)−1
(20)

x̂B

k
= x̂B

k|k−1
− KH

P
hH

P
(x̂B

k
) (21)

PB

k
= (I − KH

P
HH

P
)PB

k|k−1
(22)

After the update, the lines have been estimated using the
information from the points. Hence, the lines are correlated
with the vehicle pose and its uncertainty has been totally
determined from the uncertainty of the corresponding points.
Finally, the points are removed from the state vector.

B. Matching lines between scans

Every time a scan is completed, a set of lines is estimated
and introduced into the stochastic map. Lines from different
scans may correspond to the same object from the environ-
ment. They are thus susceptible to be associated and merged
in order to correct the whole state.
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Fig. 4. The GARBIAUV

1) Compatibility test: To produce the update, an association
hypothesis is needed. For this purpose, an individual compat-
ibility test is performed at the end of each scan between each
new line and all the lines previously in the map. Again, an
ideal measurement equation without noise is used:

z
k

= hH
k

(xB

k
) = 0

Taking into account that the Jacobian of the nonlinear function
hH is HH , a compatibility test can be written as:

D
2

H = hH
k

(x̂B

k
)T HH

k
PB

k
HT

H
k

hH
k

(x̂B

k
) < χ

2

d,α
(23)

Distance D
2

H is the Mahalanobis distance. The correspondence
is accepted if the distance is less than χ

2

d,α
, with α defined as

the confidence level and d = dim(hH ).
The Nearest Neighbor (NN) selection criterion determines

that among the features that satisfy (23), the one with the
smallest Mahalanobis distance is chosen and hypothesis H

k

is accepted.
2) Merge compatible lines: Having an Hypothesis H

k

relating compatible lines, an update of the stochastic map can
be performed:

KH
k

= PB

k|k−1
HT

H
k

(HH
k
PB

k|k−1
HT

H
k

)−1
(24)

x̂B

k
= x̂B

k|k−1
− KH

k
hH

k
(x̂B

k
) (25)

PB

k
= (I − KH

k
HH

k
)PB

k|k−1
(26)

The lines estimated in the last scan which match with a feature
already in the map can now be eliminated from the state.

IV. EXPERIMENTAL RESULTS

We carried out an experiment with the GARBIAUV (See
Figure 4) in the water tank of the Underwater Robotics
Research Center at the University of Girona (See Figure 5).
The vehicle was equipped with a Miniking Imaging sonar from
Tritech, a sensor designed for use in underwater applications

Fig. 5. Water tank at the Research Center on Underwater Robotics of the
University of Girona

like obstacle avoidance and target tracking. It can perform
scans in a 2D plane by rotating a fan-shaped sonar beam of
3◦ of horizontal beamwidth and 40◦ of vertical beamwidth.
During the experiment, the sensor was set up to work within
a range of 10 meters, capturing a sonar return every 0.1 meters
(100 measurements per beam). Its scanning rate was set to the
maximum (around 6 seconds per a 360◦ scan).

In order to estimate the vehicle movement an Argonaut DVL
from Sontek was used. The DVL is a sensor specially designed
for ROV/AUV applications which measures ocean currents
and vehicle speed over ground, by means of the Doppler shift
effect, and altimetry. Moreover, the unit is also equipped with
a compass/tilt sensor which permits to recollect attitude data, a
pressure sensor to estimate the depth and a temperature sensor
for sound speed calculations.

The GARBIAUV carried out a guided trajectory of around
42 meters, consisting on several loops; 161 complete sonar
scans were taken.

The final map obtained is shown in Figure 6. The es-
timated lines are shown in light gray, represented within
a 95% confidence level, while the tank contour had been
highlighted for easier identification. For comparison purposes
the trajectory estimated using dead reckoning of the DVL
measurements (blue dash-dotted line) is represented together
with the SLAM estimated one (black line). As it can be seen,
the dead reckoning trajectory has an important drift, which is
controlled using the proposed SLAM algorithm. As the tank
dimensions are known, they can be used as a ground truth for
evaluation of the resulting map. Figure 7 shows the error plots
for the estimation of the length of the four boundary walls.
We can clearly see that errors remain inside the 2σ bounds
most of the time.

V. CONCLUSION

Most of the previous work in underwater SLAM has been
focused on the use of point features. The main contribution of
this work consists on carrying out underwater SLAM detecting
lines using sonar imagery in a partially structured environment
like harbors or dams. We propose a method to correct the
motion that induces distortion commonly present in the sonar
scans gathered with low cost, slow, mechanically scanning
sonar. Trajectory smoothing by cloning along a sonar scan
is carried out to the best estimate of the robot trajectory at the
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end of the scan. The smoothing improves the results when the
velocity measurements coming from the DVL are very noisy
or include outliers. For an imaging sonar which provides echo
intensities along the sonar beam, voting to an interval of lines
enclosing the lines tangent to the sonar arc, has probed to be
very important for line detection. One of the weakest points
of our current implementation stands for the low frequency of
the DVL measurements. This is particularly important for the
heading, forcing us to use a pessimistic error model for the
compass. Using a higher frequency compass, would allow us to
increment the operation velocity of the robot, specially the yaw
rate, without compromising the correction of the distortion.

Fig. 6. Global map obtained using sonar and DVL together
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