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Abstract- This paper presents a complete solution for creating
accurate 3D textured models from monocular video sequences.
The methods are developed within the framework of sequential
Structure from Motion, where a 3D model of the environment
is maintained and updated as new visual information becomes
available. The camera position is recovered by directly associating
the 3D scene model with local image observations. Compared
to standard structure from motion techniques, this approach
decreases the error accumulation while increasing the robustness
to scene occlusions and feature association failures.

The obtained 3D information is used to generate high quality,
composite visual maps of the scene (mosaics). The visual maps
are used to create texture-mapped, realistic views of the scene.

I. INTRODUCTION

Visual mapping represents an important tool in underwater
robotics with applications ranging from marine biology, geol-
ogy, archeology to structural inspections. However, mapping in
the underwater environment is inherently a complex problem.
Light attenuation and backscattering drastically limit the range
and coverage area of optical sensors; usually not more then
a few meters. For this reason alone, large effort has to be
devoted merely to align partially overlapping frames in order
to generate a wider coverage what may be readily captured
in a single frame in the absence of limited visibility. Most
underwater mapping proposals found in the literature employ
mosaicing techniques [1], [2] based on the assumption of
a planar underwater terrain. However most of the areas of
interest (eg. coral reefs, hydrothermal formations, ship wrecks,
underwater structures, etc.) are hardly planar. In these cases
the planarity assumption that characterizes homography-based
approaches is violated, resulting in significant inaccuracies in
the resulting visual maps. We propose a SFM-based method
that enables 3D terrain modeling and localization of the
camera in 6 degrees of freedom. The main novelty of the
proposal consists in the estimation of the camera position
without the need to recover the inter-frame motion as an
intermediate step. A 3D model of the scene is maintained
and updated as new data becomes available. The pose of
the camera is computed directly from frame-to-scene corre-
spondences. By directly estimating the camera position, rather
than obtaining it by integrating sequences of motions, drift
accumulation is highly reduced. Moreover, as each estimation
of camera position does not depend directly on any previous
estimations, it is more robust to misregistration problems and
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Fig. 1. Flowchart of the proposed SFM algorithm.

scene occlusions. The structure of the scene is formed by sets
of 3D vertices characterized by local image descriptors. In
this way, by visually associating image patches extracted from
camera views with the 3D vertices, we can recover the camera
position with respect to the scene model. Subsequently, the
obtained camera positions are used to update the scene model
as new features are tracked.

In the balance of the paper, we provide a detailed description
of our system, present illustrative examples and experimental
results, discussing some results obtained using real datasets,
the efficiency of the proposal and its advantages. Finally, we
conclude with some guidelines describing the further work.

II. ALGORITHM

The proposed SFM method computes directly the position
of the camera without the necessity to recover the inter-frame
motion (see Fig. 1). The structure of the scene is formed by
sets of 3D vertices characterized by local image descriptors. In
this way, by visually associating image patches extracted from
camera views with the 3D vertices, we can recover the camera
position with respect to the scene model. Subsequently, the
obtained camera positions are used to update the scene model
as new features are tracked. Both camera position estimation
and scene model update use robust estimation methods thus
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reducing the impact of poor camera position/vertex estima-
tions.
The proposed SFM algorithm works in two stages. First,

it uses a standard motion estimation technique in order to
initialize a model of the scene structure. Once an initial model
has been generated, all the subsequent camera positions are
computed by registering 2D point projections with 3D scene
structure.

A. Feature Tracking

Feature tracking is the building block of any sparse 3D
reconstruction algorithm. Robust feature tracking is crucial
to the accurate estimation of both the camera positions and
the structure of the scene. Maximizing the number of frames
where a given scene feature is tracked increases the precision
of its 3D position estimation and increases the number of
inter-frame constraints, allowing a higher precision in camera
position estimation. Nevertheless, tracking scene features in
unstructured, cluttered scenes is not a trivial task. In the case
of 3D scenes, especially at close range, the changes of view
point due to camera motion induce quite severe distortions on
local image patches (eg. rotation, scale, affine, etc.).

In the case of underwater scenes, there are additional aspects
to be taken into account. In shallow waters, refracted sunlight
can create flickering illumination patterns that change signifi-
cantly from frame to frame. Additional artificial illumination
used in deep water imagery induce non-uniform illumination
fields [3]. Light scattering and absorbtion decrease the image
contrast and induce blurring specially as the distance of the
camera to the scene increases.
The proposed algorithm uses some of the most important

feature detectors and descriptors found in the literature [4].
In order to assess the efficiency of these methods, we have
tested them under various scenarios. Classical detectors such
as, Harris [5], Hessian [6], Laplacian [7], provide fast detection
but can only cope with small scale and rotation changes.
Newer versions of these detectors called Shape Adaptive (SA)
[8] such as Harris Affine and Hessian-Affine are more robust
to geometrical distortions with some additional computational
cost. The most robust and hence, widely used nowadays but
also with the highest computational cost are Scale-invariant
feature transform (SIFT) [9] and Speeded Up Robust Features
(SURF) [10]. In contrast with the above-mentioned detectors
that are essentially interest point detectors, we have obtained
good tracking results using Maximally Stable Extremal Re-
gions (MSER) detector [11].

The features are encoded using either SIFT [9] or SURF
descriptors [10]. In the case of SIFT, each feature is described
by a 128 elements vector embodying histograms of gradient
directions within the feature patch. SURF and its variants (U-
SURF, SURF-128, U-SURF-128, SURF-36, U-SURF-36) use
36, 64 or 128 dimension descriptor vectors characterizing the
features in terms Haar wavelets responses on image patches.
The feature similarity is defined as the Euclidean distance

between the descriptor vectors. Each descriptor vector can
be seen as a noisy measurement of the image gradient

within a feature patch. As the features are tracked, multiple
measurements of the same patch are obtained. Hence, we
can improve the measurement of the features by combining
multiple observations:

s(Fk, fk) = d( fk,f)
n2f (1)

where s(Fk, fk) is the similarity between the tracked feature
Fk and a possible observation (fk) of the feature in image i
and d is the Euclidean distance.
The feature tracking is done implicitly by continuously

matching 2D image features with features corresponding to
vertices in the 3D model. With the increase in model size this
operation can become computationally expensive as the cost
of matching is quadratic in the number of features. For this
reason, we have employed an Approximate Nearest Neighbor
search algorithm [12] that highly reduces the computational
time associated to feature matching.

B. Model initialization
This step is used only for the initialization of the 3D

structure of the scene, while no 3D information is available.
The camera motion is obtained by Singular Value Decompo-
sition of F into relative rotation and translation of the camera
between frames [13], [1]. As this method is less accurate than
direct camera position estimation, the purpose is to obtain an
initial model in a reduced number of frames. For this, after
testing various fundamental matrix estimation methods [14],
RANSAC based Least Squared method has been adopted as
it proved to provide more robust results in the case of small
base lines. The camera motion can be obtained from F using
[15]:

F (K-l)TTRK-1 (2)
where K is the known camera intrinsic matrix, R is the rotation
matrix of the camera and T is the translation skew-symmetric
matrix (T[,] = t x x for any vector x) with t representing the
camera translation. The approach yields 4 possible solutions (2
translations and 2 rotations). The correct solution is obtained
by applying cheirality constraints (i.e. reconstructed points
must be in front of the camera) [16].
Once the camera motion is obtained, the 3D model is

estimated by applying classical stereo triangulation techniques.
To obtain a consistent 3D model, an outlier rejection approach
is used, based on Sampson distance [1] and robust sampling
method (RANSAC).

C. Direct Pose Registration
We propose a method to directly compute the position of the

camera by establishing correspondences between the camera
view and the 3D structure of the scene. It does not use any a
priori motion or position information. This method improves
the robustness of navigation and mapping as it can naturally
deal with occlusions, recovery from position estimation errors
and loop closures.
The structure of the scene is represented by a set of 3D

vertices in a common world frame (chosen as the coordinate
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system of the first camera position). Each 3D vertex has
an associated descriptor vector (see section II-A). For each
frame 'k we match the extracted image features with the 3D
vertices representing the scene structure. The result is a set
of 3D-to-frame correspondences that are used to determine
the Maximum Likelihood estimate of the camera projection
matrix Pk:

Pk = K (RkItk); (3)
Where Rk and tk are the camera rotation and translation
respectively at time k. Pk is obtained using Direct Linear
Transform (DLT) and further adjusted using least squares
methods in order to minimize the back projection error Ek:

Ekc Z, d(d(x,PkXi)2 (4)

Here, d represents the Euclidean distance, 4' is the projection
of the feature i in frame k and Xi is the 3D position of
feature i. In order to deal with the possible presence of outliers
among the correspondences, a RANSAC-based approach is
used. Once Pk is estimated, the position of the camera is
recovered using eq. 3.

However, it is well known that if the scene points are close
to being coplanar, the estimation of the projection matrix is
ill-conditioned [1]. For dealing with this situation we propose
a dual approach. For each RANSAC sample, we compute the
plane L best fitting the 3D vertices sample set. If the mean
vertex-to-plane distance is smaller than a given threshold, then
we estimate the position of the camera using a homography-
based approach. Here, for a given frame 'k we compute a
planar transformation kHL such as:

xc =k HL xi (5)

Where x4 is the projection of Xi onto plane L. Applying SVD
on kHL [17], [18] we obtain:

HL =kRL + -l tL * N (6)d

where kRL and ktL are the relative rotation and translation of
between the plane L and the camera, N is the plane normal
and d is a scaling factor. This decomposition yields 4 possible
solutions. By checking the consistency of the camera motion
with the scene structure (i.e. 3D points in front of camera) we
can chose the correct transformation. From this, we obtain the
pose of the camera such that:

tk = tL * RL + tL (7)

Rk = kRL RL (8)

with tL and RL representing the pose of plane L in the world
coordinate system.
As the camera moves, the SFM algorithm updates the

model of scene as new features are extracted and tracked.
Knowing the camera positions, the positions of the 3D vertices
are obtained using a multi-view factorization approach [18].
The structure of the scene is continuously refined using least

squares methods as new observations of the vertices are
obtained (see eq. 4).

D. Ortho-mosaicing

The ortho-mosaicing process projects the 3D structure onto
a plane, thus obtaining a virtual "high-altitude" view of the
scene. The projection plane 0 is chosen to have the tilt as the
average tilt of 3-D reconstructed surface. This maximizes the
projection area, providing the highest level of mosaic detail.
All the planar patches forming the 3-D model are mapped
onto the destination plane along the projection rays parallel
to the normal vector; see Fig. 2 as an example for the ortho-
projection of a surface onto plane 0.

The plane 0 is digitized based on a predefined resolution;
each point x' on the grid corresponds to a pixel in the
ortho-mosaic. In order to render the mosaic, the following
transformation relating each point x' to a corresponding point
x from the original images is defined:

x = PkT,x' (9)

where Tn is the ortho-projection transformation of the patch
[X1X2X3] and Pk is the camera projection matrix correspond-
ing to the k-th view. The remaining problem is to determine
which view Ik to use for rendering the point x'. In Fig. 2, the
ideal image 'k to be used to render patch point x' would be the
one minimizing the angle a between the surface normal rnx
at point X and the projection ray XFk. This would provide
the best projection of X into image Ik.

III. EXPERIMENTAL RESULTS

The experiments were focused on testing the efficiency and
precision of the proposed SFM algorithm. The proposal is
intended as a mapping tool and a positioning system for robot
navigation, we are interested in the precision of both the world
model and camera pose estimation.

Here we discuss the results obtained using a dataset depict-
ing a real underwater scene of a coral reef area. This dataset
is part of a larger survey of a benthic habitat undertaken in
shallow waters in The Bahamas. The images were acquired by
the University of Miami using a hand-held High-Definition
camera. The sequence consists of 1.100 images of 962 x
540 pixels (the resolution of the images was reduced from
1920 x 1080 due to interlacing). The area was surveyed with
the camera moving following a "lawnmower" type trajectory
(see Fig. 5), with partial overlap between adjacent columns.
This provides a complete coverage of the area while offering
additional constrains in the model.
The sequence was chosen to include different types of

topologies and textures often found in underwater scenes. Fig.
3 depicts typical entities found in the dataset. The purpose of
this was to assess the efficiency of the proposed algorithm to
model these entities.

Prior to reconstruction, the camera was internally calibrated
and the radial distortion was corrected. We have tested differ-
ent types of feature extractors and descriptors. The highest
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0

Fig. 2. Example of a 3D model and its Ortho-projection on plane 0. Right part of the figure illustrates an example of texture-mapping of a triangle using
camera view 'k*
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stability and precision was obtained using Harris and SURF
interest point detectors. The extracted features were charac-
terized using SURF 64 dimension descriptors. After tracking
and reconstruction, the resulting model consists of 160K 3D
vertices. Fig. 4 illustrates the set of 3D points obtained after
the reconstruction along with the estimated camera trajectory.

As the experiment was carried out with real data, there is
no ground truth available. This makes it difficult to assess the
precision of the SFM algorithm. For this, we took advantage
of the partial overlaps between non-consecutive frames in
the sequence. By detecting these overlaps, we introduce new
constrains in the model, and apply Bundle Adjustment (BA)
techniques to obtain a high precision, globally consistent
model. BA optimizes the camera pose and 3D vertex position
estimates by minimizing a cost function defined by:

c = Ed(PXjx Xi)2 (10)
ii

Fig. 5. Camera trajectory estimated by the DSFM and after global alignment

where C represents the back-projection error and d is
Euclidean distance [1]. C is minimized by adjusting all
camera positions Pt and vertex positions Xj.

the
the

Fig. 5 provides a comparison between the camera trajectory
as obtained from SFM and the trajectory resulting from BA.
Small errors in the estimation of camera position can be noted.
However, unlike classical SFM approaches, the error build-up
is highly reduced as the camera views are directly registered to
the model. This can be better observed by analyzing Fig. 6. For
instance, there is a slight drift in camera position estimation
between frames 400 and 500. However, around frame 500, the
errors are greatly reduced due to the registration of the camera
with a region of the model that has lower errors (corresponding
to frame 160).

Errors in the estimation of both camera poses and 3D vertex
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(a) (b)

(c) (d)
Fig. 3. Sample images from the dataset: (a) and (c) original images depicting different areas of the scene, (b) and (d) same images after contrast enhancement
and color correction.

positions originate mainly in small inaccuracies in the 2D
feature tracking. This aspect is more accentuated in underwater
environments, where scattering and light attenuation decrease
image contrast and dim the textures (see Fig. 3). Fig. 7a
illustrates the quality (saliency) of the interest points. The
saliency is measured by quantifying the amount of the texture
information in the neighborhood around the interest points.
For instance, sandy regions in the left and right extremities
of the scene yield low saliency features, while the coral reef
in the central part having richer textures yield higher saliency
features (refer to Fig. 8a for a better understanding of the scene
configuration).

In other words, higher saliency indicates more discrimi-
native, better localized features. Fig. 7b illustrates the back-
projection error of the vertices while Fig. 7c represents the
reconstruction error versus the Bundle Adjustment. It both
cases it can be noted that the there is a strong relation between
the saliency of the tracked 2D features and the precision of
the 3D vertices.

Using the set of 3D vertices, we applied the proposed ortho-
mosaic technique (see Section II-D). The result is a high
resolution (4 MP), high quality 2D map of the scene, shown
in Fig. 8a. By generating a dense grid that approximates the
scene surface and texture-mapping it using the ortho-mosaic,
we obtain an accurate 3D model of the scene (Fig.8b and c).
In this case, we used bilinear interpolation for generating the
surface, as it provides a more realistic look, taking into account
the geometry of the scene.

IV. CONCLUSIONS

This paper presented a complete framework for 3D structure
recovery and ortho-mosaicing from video sequences. The

method was applied on monocular underwater imagery for
seafloor modeling. Moreover, the developed techniques can
be readily applied on monocular or stereo imaging systems
for applications ranging from autonomous robot navigation to
aerial and land-based imagery.
The proposed SFM algorithm uses an image-to-scene as-

sociation approach that allows a direct recovery of camera
pose. Experimental results show that this approach reduces
errors in both camera pose and structure estimation by taking
into account additional information (i.e. trajectory overlaps). In
addition, directly recovering the camera pose naturally copes
with scene occlusions and pose estimation errors.

Consequently, we show how precision of the 3D model and
camera trajectory estimation is directly related to the saliency
of the 2D image features.

Ongoing and future work includes the use of visual vocab-
ularies for more efficient association between image observa-
tions and 3D scene model. This is expected to reduce the time
complexity of the camera pose estimation and increase the
effectiveness of loop-closure detection over large loops.
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Fig. 8. Obtained scene model: (a) 2D ortho-mosaic of the scene, (b) texture-mapped 3D model of the scene and (c) another view of the 3D model.
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