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Abstract—Seafloor imagery is a rich source of data for the
study of bhiological and geological processes. Among several
applications, still images of the ocean floor can be used to build
image composites referred to as photo-mosaics. Photo-mosaics
provide a wide-area visual representation of the benthos, and
enable applications as diverse as geological surveys, mapping
and detection of temporal changes in the morphology of bio-
diversity. We present an approach for creating globally aligned
photo-mosaics using 3D position estimates provided by navigation
sensors available in deep water surveys. Without image registra-
tion, such navigation data does not provide enough accuracy to
produce useful composite images. Results from a challenging data
set of the Lucky Strike vent field at the Mid Atlantic Ridge are
reported.

I. INTRODUCTION

Image based mapping techniques provide unique oppor-
tunities to study benthic structures at locations not easily
accessible to scientific divers. Such techniques, complemented
with navigational data from positioning sensors have the
potential to allow the accurate and repetitive mapping of study
areas. Furthermore, a platform equipped with these sensing
capabilities requires minimal end-user intervention during
mission execution, thus benefiting a potentially large group of
marine scientists. It is well known that the characteristics of the
underwater environment offer several challenges, mainly due
to the significant attenuation and scattering of visible light [1].
Moreover, light attenuation does not allow images to be taken
from a large distance [2]-{4]. Therefore, in order to gain global
perspective of the surveyed area, mosaicing techniques are
needed to compose a large number of images into a single
one. On the other hand, while seafloor imagery is commaonly
available, they are underexploited as seafloor mosaics are not
routinely created.

Mosaicing techniques have been used to map areas of
few hundreds of square meters while having enough ground
resolution to allow the identification of colonies of a few
centimeters size [5]. Over areas of low topographic relief, such
techniques allow creating mosaics from image information
alone [6]. However, when attempting to cover areas of more
than 500 square meters or with high relief, the use of additional
positioning information becomes crucial. Such information can
be provided by acoustic positioning systems, inclinometers
and rate gyros. Latest technological developments have sig-
nificantly reduced the price and size of these sensors, thus
allowing for their use even in small frame platforms [6], [7].
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Recent impressive progress has been achieved in the field of
simultaneous localization and mapping (SLAM) for underwa-
ter platforms equipped with cameras [8], [9] and sonars [10],
[11]. SLAM approaches are well suited to navigation appli-
cations namely in the real-time positioning and control of
vehicles. This contrasts with off-line batch approaches where
the data is processed a posteriori. By avoiding real-time
constraints, large scale methods and datasets can be optimized,
with significantly higher accuracy in the final results. Our
approach fits in this category, relating to a mumber of previous
works.

One of the first mosaicing systems was proposed by Stan-
ford/MBARI [12]. They developed a completely autonomous
column-based mosaicking system by using a constrained four-
parameter similarity motion model. Recently, this work was
extended by Richmond and Rock who used a Doppler Ve-
locity Log (DVL) to complement camera measurements [13].
Pizarro et al. [14] proposed a mosaicing system that exploited
navigation and attitude information for bundle adjustment.
Another mosaicing approach was reported by Madjidi and
Negahdaripour [15], who solved the global alignment prob-
lem for a submersible equipped with stereo cameras. They
proposed the use of mixed adjustment model to recursively
determine the pose of the vehicle. Rzhanov et al. described
in [16] a methodology that exploited navigation data to build
geo-referenced photo-mosaics of the mid-ocean ridges at the
East Pacific Rise. Some other approaches explicitly rely on
absolute positioning sensors, Vincent et al. presented in [17]
a software that integrates video mosaics in a geo-referenced
environment. Their system takes profit of both acoustic USBL
positioning and a set of dead-reckoning sensors.

A. Objective and Mofivation

This paper presents a technique to create photo-mosaics
using the navigation data and the image set coming from
typical seafloor surveys. The method is motivated by the need
to create mosaics from large-area photo surveys when only
sparse position and orientation information are available. This
paper represents an effort in creating a set of mosaicing tools
that will be made freely available for the marine science
community. A central goal is to enable scientists to easily
create large underwater mosaics, without requiring extended
knowledge in image processing and optimization.

The structure of the paper is as follows: first, section II
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describes how an estimate of the initial trajectory is generated
from the navigation data. Then, this estimated trajectory is
used to predict overlaps between consecutive images, and
loops in the trajectory, as introduced in section [II. Next,
a bundle adjustment approach to optimally combine image
registration information and navigation data is developed in
section IV. Finally, section V shows the obtained results.

B. Notation

In this paper we use a notation coming from robotics
nomenclature [18] extended to take into account 3D and 2D
elements:

o 3D/2D elements: Names that refer to a 3D element (e.g.
frames and vectors names) are written in capital letters.
Non-capital letters are used to name 2D elements or
scalars.

o Frames: Frame names are expressed within braces {}.

o Vectors: Leading superscript stands for the frame in which
a vector is expressed. There is no specific convention
for trailing subscript, but it usually identifies a vector
component (e.g. z, ¥ and z) or an index in a list. For
instance, given M7 = M(tm, t,,t.) that is a translation T’
in the frame {A}, the = component is referred as ¢,
to keep track from which frame and 3D vector it comes
from and it is written using non capital ¢ because it is an
scalar. The square of a vector is defined as the square of
its components, e.g. M7 = M(s2 2 42). The operator
() stands for the dot product between two vectors, i.e.
{u, v} = Uy Uy + 1ty - vy, The norm of a vector is written
as [[v]| = /v, v).

s Transformation Matrices: Leading subscript stands for
the initial vector space and leading superscript for the
final vector space. For instance, /Y R is a 3 x 3 rotation
matrix than transforms coordinates from the {M 1 frame
to {W} frame. Trailing superscript is used to denote
the inverse or the transpose (R, RT) and the trailing
subscript is normally used as index in lists.

Homogeneous coordinates: Names of vectors in 2D or

3D that are expressed in homogeneous coordinates are

written with tilde. Then, we can write T' = (t,,%,,1.),

T = Gumbptel) of ¢ = Gty § = s byl):

Prior to any addition operation between a homogeneous

vector and a non-homogeneous one, the scale must be

removed. Therefore, we write T = A4 + B meaning

T = {a, + 2—:,% -+ ?}—‘:,az + 2—2) if A = (gt ,)

and B = (by, by, b2, bs).

II. INITIAL ESTIMATION FROM NAVIGATION DATA

The camera is modeled as the classical projective pinhole
camera [19, pp. 155-157] whose projection equation is

E=K-R-[I|-C] @

where, Z is the up-to-scale imaged 2D point, K is the intrinsic
parameter matrix (2), R is the rotation between the camera
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and the world frame, [ is a 3 x 3 identity matrix and ' is the
camera {ranslation with respect to the world coordinate frame.
o 0 o
0 oy oy (2)
0o 0 1

K =

Names in (1) are changed to agree with the notation presented
in section [-B, resulting in (3):

G=K GR- [I|-"T] V"X 3)

where ('R is the 3 x 8 rotation matrix that transforms vector
coordinates defined with respect to the world coordinate frame
{W} to the camera frame {C}, WT is the translation of the
camera center with respect to the frame {W} and % is the
2D point in homogeneous coordinates that corresponds to the
projection onto the image plane of the point X, defined with
respect to the world frame.

The navigation data is assumed to contain the position and
the heading of the vehicle with respect to the coordinate
frame {W placed at the origin of the corresponding UTM
zone. Since the surveyed area can be far from the origin
of the UTM zone, large numbers for coordinates will lead
to poor numerical conditioning in further processing. At the
same lime, we need a 2D mosaic frame {m} to represent the
resulting photo-mosaic image. For these reasons, a 3D mosaic
frame { M} is set up in a way that the 2D mosaic frame is the
plane z = 0 with all the initial vehicle poses within the z-y
positive quadrant. The camera has its own coordinate frame
{C;}. related to the vehicle frame through a rigid motion
transformation. This configuration is depicted in Fig. 1.

Fig. 1. Vehicle poses {V;} are defined with respect to a 3D mosaic frame
{M}. There is a fixed rigid motion between the vehicle frame and the camera
frame {C;} as well as between the world frame {WW} and the 3D mosaic
frame {M}. Images {¢;} taken at each camera pose are projections of the
image plane onto the z = 0O plane in the 3D mosaic frame {M} that
corresponds to the 2D mosaic frame {m}. The angles o, 8 and ~ show
the axis of rotation for roll, pitch and heading respectively. Yellow axis in the
vehicle frames {Vo} and {V;} represent the gravity vector that we define as
antiparallel to the z axis of the world frame {W}.

Let us define the surveyed area (plane z-y in the frame
world frame {W'}) so that it is orthogonal to the gravity vector
(yellow vector g in Fig. 1). Therefore, gravity vector and z axis
of the world frame {W} are antiparallel.
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The rotation 3; R for each vehicle pose can be calculated
using the navigation angular readings as it is shown in (4).

YR =Ra(r) Ruy—7/2) - Ry(8) Ralo) (@)

where, R,, R, and R. denote the rotation operators in the
different axes [18, pp. 34]. The first rotation in z axis aligns
the =z axis of the world frame {W'} with the gravity vector.
Then the heading rotation ~ around the z axis is carried out.
The —m/2 constant compensates for the discrepancy between
heading that has the 0 on the North (y axis in {W}) with
respect to the 0 angle in the {W} coordinate system (z axis).
Finally, pitch and roll rotations are accounted for as shown in
Fig. 2. The vehicle’s translation "7, is defined directly from
the position provided by the navigation data.

Fig.2. The two pictures represent a vehicle frame {V;} that is deviated from
the gravity vector g. A rotation in ¥ axis (left) projects the gravity vector g
to the plane -z resulting in g’ (right). The pitch angle () that can be seen
as the angle between z axis and the projection of g onto the plane x-z. After
the first rotation, we obtain a new frame {1/} in which the roll () is applied

around z axis to align the vector g’ with the z axis.

So far, we have vehicle poses (¥R, "T,,); defined in world
frame. The aim now is to have camera poses with respect
to the 3D mosaic frame. This can be achieved by carring
out rigid motion operations that transform YR and YT,
Applying the motions J¥R and R to 'R we can obtain
the rotation SR, i.e. SR = (R WR.-YR~1)~1. In the
same way, the position of the vehicle W7, with respect to the
world frame can be transformed to the position of the camera
Mp — Gty tz)—r with respect to the mosaic frame. Then, the
vehicle frames {V;} and the world frame {'} are no longer
used.

Expression (3) can be expanded to:

) M
 ow 10 0 M, ’
w | =K.-Sr.| 01 0 M Y1 &
z
4 00 1 M, X

For each camera pose j we have a rotation matrix R , and
a translation vector Y75 = (i, 1y, 8.) .

From (5) we can define an image-to-ground plane map-
pings [20] by projecting to the mosaic plane z = 0 obtain-
ing (6):

M
’ o T o — T
pv | =K. GR-| 01 My | .| ¥ (6)
P 0 0 M 1
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Finally, (7) represents the planar motion between each frame
¢ and the mosaic frame {m}.

1 0 —M,
IH=K:.GR:| 0 1 M, 0!
g8 =M%

Using the planar motion described by (7), a 2D point given
with respect to mosaic frame {m} (i.e. a 3D peint defined with
respect to the frame {M} projected onto the plane *z = 0)
can be transformed to the image frame . In the same way,
LH O = [™H can be used to transform a point expressed
with respect to the image frame 7 to the 21> mosaic frame.
Furthermore, the relative planar motion between overlapping
frames ¢, 1 can be computed by composing the absolute ones
JH=iH JH = JH. ],

To summarize, as output of this section we have:

1) For each image frame ¢ we have computed its 3D camera
pose, defined with respect to the moesaic frame {M}
using sensor data. These poses will be used as initial
guess for bundle adjustment in section IV,

2) The planar transformation from the image frame to
the mosaic frame [*H can be used to build a (non-
optimized) photo-mosaic from navigation data. More-
over, this planar transformation will be used in the
following section to estimate the overlapping image
pairs, prior to image matching.

III. OVERLAP DETECTION AND IMAGE MATCHING

We define two different sets of candidate overlapping pairs
of frames in the trajectory:

o Sequenfial: We assume that each pair of consecutive
entries in the navigation data are potential candidates to
be a sequential pair of overlapping frames (although they
do not overlap in some cases).

e Non-Sequential: As the estimated trajectory is noisy and
may have a drift, a method to include all the possible
crossings has been devised. The center of each image is
computed in the 2D mosaic frame according to planar
transformations [*H obtained in previous section. The
sequence of images is explored to produce candidate pairs
between the current image and all those that are closer
than a certain threshold and that have a lower index !.

The candidate pairs are matched using a robust matching
procedure. This matching is performed in three steps. As a
first step, SURF [21] features are exiracted from both images.
The features are matched using RANSAC [22] under a planar
projective motion model thomography with 8 degrees of free-
dom) [23], [24]. As a second step, a number of verifications
are performed to ensure that this homography corresponds to
a valid camera motion:

Tmages are identified by its position in the trajectory (maintaining the
temporal order in which they were acquired). When producing potential non-
consecutive overlapping pairs, this sequence is scanned. Only those frames
that have a lower position in the trajectory are taken into account to be
associated with the current frame in order to prevent redundancy.
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1) Check that the planar motion does not include improper
rotations.

2) Check that the 3D motion Euler angles associated to this
planar transformation are within a certain range [25].

3) The number of SURF correspondences between the two
images must be larger than a certain threshold.

4) The overlapping area between the images must be higher
than a threshold.

As a last step, further point correspondences are searched for
in the image pairs that passed successfully the above tests. The
two images are aligned according to the previously estimated
homography. Then, we extract Harris corners [26] in one of
the images, and their correspondences are detected through
correlation [27] in the other image. If enough correspondences
are not found, the pair of images is rejected.

As a result of the processing presented in this section,
we produce a set of overlapping pairs with associated point
correspondences that will be used in the next section as input
for the bundle adjustment.

IV. GLOBAL ALIGNMENT

We parameterize the camera trajectory in the most general
terms with 6-DOFs (3D position and orientation) using unitary
guaternions [28] to prevent singularities in the representation
of the camera rotation. Therefore, pose rotation matrices ;5 y
from (6) are converted into a unit quaternions ﬁq I This gives
3 parameters for the position and 4 for the orientation, giving
rise to 7 parameters o be estimated for each image frame 7.

A bundle adjustment [29] procedure will optimize these
poses by minimizing a cost function. The cost function is
defined as a stack of residuals coming from four different
sources. These different sources are described below. The ini-
tial guess given to the optimization is the estimated trajectory
using navigation data.

A. Point Matches

For each overlapping pair computed in the previous sec-
tion, a planar transformation and a set of correspondences
was stored. These correspondences are used as input to the
bundle adjustment optimization. The bundle adjustment finds a
solution for the trajectory parameters by minimizing the norm
of a vector of residuals.

These residuals are a function of the input data (point
matches and navigation data) and the trajectory parameters. To
promote execution speed, we use a subset of correspondences
which are obtained by choosing well spread points that accu-
rately represent the homography. Depending on the required
planar motion model, 2, 3 or 4 is the minimum number of
correspondences that must be used for Buclidean or Similarity,
Affine and Projective motion models, respectively [30]. The
projective model is used in this work since it is the one
able to represent all the degrees of freedom of the trajectory
parameterization (3D rotation and 3D translation).

The following equations show how residuals are calculated
by using the relative planar homographies between frames ¢
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and 7.
i, = b — H (8)
I =7k — 1H -} )
where, { = {1.m} with m being a determined number of
correspondences per pair, and & = {l..n} with »n being a

determined number of overlapping image pairs. Planar relative
motions 41 and /H between image frames ¢ and j are
computed by using the absolute planar motions between each
frame and the 2D mosaic as it is explained in IT.

In (8), %% is a point detected in the frame ¢ while %
is its correspondence in the frame j in homogeneous coor-
dinates, these roles are interchanged in (9). This is used to
avoid biases in the estimation process resulting from large
scale difference between image frames. As an example, for
m = 4 correspondences per pait, n = 10 overlapping images,
4 % 10 x 2 x 2 = 160 residuals will be added to the stack.

B. Fiducial Point Readings

For certain surveying and monitoring applications, a nummber
of world points with known r and y coordinates may be avail-
able. We refer to these points as fiducial points. Fiducial points
can be added as restrictions when some kind of landmark
placed on the sea floor is available. Initially, all the 3D fiducial
points ¥ X, are projected to the plane z = 0 obtaining ™oy
This is, transforming them from the 3D mosaic frame to the
2D mosaic frame. Then, residuals are computed using the
following equation:

Prp =g — LH - ™y, (10)

where, %, corresponds to the 2D imaged point ™#y, in the
image frame <. Bach fiducial point introduces two elements

in the residual stack, one in z direction and the other in ¥
direction.

C. LBL Camera Readings

Each available LBL position reading generates 3 residuals
(over the z, v and z directions), as shown in (11).

Pz Wil — Ty,

(11)

where, Ty, is the 3D position reading associated to the frame
k and M7, is the position vector obtained from the pose k
that is being optimized.

D. Apgular Camera Readings

Commeonly, navigation data provides roll, pitch and heading
orientation of the vehicle. These angles are transformed to
rotations of the camera with respect to the 3D mosaic frame
{M?}. Thus, for each frame, we obtain roll, pitch and yaw as
rotations in x, v and z axes of the camera respectively. Then,
for each camera pose k& we compute 3 residuals in the stack,
one for each angle.

(12)
where, agy, is the vector with the 3 angular readings associated

to frame k&, and ag are the 3 angles associated to the current
vehicle pose of frame k that is being optimized.

a,
Tk = Qop — Gk
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E. Cost junction

The minimization algorithm minimizes the weighted
squared sum of the residual stack described above. This
function is shown in (13).

a
. i g
argmin ('f Ul A 1Py + 2> PP+

1<i<m k=1

1<k<n (13)

8

S+ <w,am2>)

Bl k=1

where "’ri, j’ri and Pry, are two-component vectors and %y, ®ry
are three-component vectors.

Weights for the different measurements are given according
to the uncertainty of the sensors. Thus, we use a constant
7 for point and match correspondences and A for fiducial
point readings. In the case of camera position and angular
readings, as these information may be obtained from different
sensors, the optimization algorithm is ready to take into
account different weights for each coordinate of the camera
position and for each orientation angle. Therefore, 4 is a vector
(ftos phys ) a0d w is a vector (wa,wg, w-).

The minimization of the cost function and the estimation of
the trajectory parameters is carried out using Matlab’s large-
scale methods for non-linear least squares. The optimization
algorithin requires the computation of the Jacobian matrix
containing the derivatives of all residuals with respect to all
trajectory parameters. Fortunately, this Jacobian matrix is very
sparse since each residual depends only on a very small num-
ber of parameters [29]. As an example, for the optimization
results presented in the next section, the percentage of non-
zero values is 0.009 %. Furthermore, it has a clearly defined
block structure, and the sparsity pattern is constant [31]. These
conditions allow for the efficient computation of the Jacobian.
In our implementation, analvtic expressions were derived and
used for computing the blocks of the Jacobian matrix.

V. RESULTS

The generic framework described in the previous sections
was conceived taking into consideration a general setup for
image surveys using underwater platforms equipped with
position and angular sensors. This framework was applied on
a challenging dataset representing a good example of a large-
scale deep water survey.

The deep-sea image set used in this paper was acquired
by the ARGO II vehicle of the Woods Hole Oceanographic
Institution (WHOI) during the LUSTRE’96 cruise over the
Lucky Strike hydrothermal vent field. This vent field is located
at the Mid-Atlantic Ridge and covers an area over 1.5 square
km. The survey pattern comprised large sparse transects, where
more than 20,800 images were captured. Unfortunately, the
navigation file contains only sparse positioning and angular
sensor readings. The survey took approximately 3 days. The
outline of the transects is illustrated in Fig. 3.

Position readings were obtained from two different sensors.
Coordinates in z and y directions were obtained from a
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Fig. 3. Bstimated trajectory (blue) projected onto the z = O plane. Only
the 20,823 robot poses that have an associated image are depicted. Lines in
red show big gaps in the trajectory that identify transects in which either the
vehicle was not taking images, or that the survey was stopped and the vehicle
was taken out of the water. The top-left corner corresponds to the origin of
the 2D mosaic frame {m} presented in section II. The scale of the plot is in
meters therefore, the surveyed area corresponds to an area around 1.5km?.

bottom-moored transponder network (LBL). The z coordinate
was provided by an acoustic altimeter. LBL. measurements
were recorded every 60 seconds while the » measurement was
provided once per second. Positions are defined with respect
to a UTM world coordinate frame {W} whose z axis points
to the East, the 4 axis points to the North and the z axis points
upwards.

Orientation readings were provided by two different sensors
at a rate of 1 Hz. A fluxgate compass sensed the heading () as
the angular offset from the North (y axis of the {W} frame),
while an inclinometer measured pitch (3) and roll (o) angles
(see Fig. 2) that are deviations of the z axis of the vehicle
with respect to the gravity vector in the ¥ and z axis of the
vehicle, respectively.

Each enfry in the navigation data file is identified by a time
stamp with a resolution of 1 second. Therefore, the « and v
coordinates of the vehicle were linearly interpolated to yield
one reading per second. Only around 5,440 position entries in
the navigation file were not interpolated.

One image frame was acquired every 13 seconds and stored
using a time stamp identifier. Then, image time stamps were
intersected with the time stamps in the navigation file entries
to obtain a full pose per image frame. As a result, we obtain
a list of 5396 images for whose we have a non-interpolated
position reading.

Since the LUSTRE'96 dataset does not contain any land-
mark, A is not used as the second sum in (13) is not
considered. The = and v coordinates of the vehicle are given
by the LBL system, while z is provided by the altimeter,
ie gt = (Merpr Myrprs Mz ai)- On the other hand, roll and
pitch angles were sensed by an inclinometer and heading by

a compass, i.c. w = (wo&lnwwﬁ]ncvw’rccmp)'
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A global alignment over the whole LUSTRE’96 dataset
have been carried. It required 90 hours in a 1,800 Mhz
AMD OpteronTM 263 processor using the Matlab optimization
toolbox.

Given the initial mosaic containing 20,823 frames, after
overlap detection and filtering step, a connected graph contain-
ing 20,226 images as nodes is finally obtained. This produces
a non-linear system with 20,226 - 7 = 141,582 parameters (o
be optimized. As constraints for the optimization step, 28,701
overlapping pairs with 4 correspondences per pair were used.
This yields 28,701 - 4 - 2 - 2 = 459,216 residuals for point
and match correspondences. In addition, for each image frame
we had 8 angular readings, that adds 20,226 - 3 = 60,678
residuals into the stack. Finally, only 59€ frames had a non-
interpolated position reading. These fixed positions introduce
596 - 3 = 1,788 additional residuals. The final non-linear
system had 141,582 parameters and 521,682 residuals to
optimize.

Fig. 4 shows a complete view of the mosaic obtained
from the navigation data before optimization (left) and after
the oplimization (right), while Figs. 5 and 6 show the local
alignment of a crossing between segments and a consecutive
segment, respectively. The mosaic sections were rendered by
simple opaque superposition. These areas were obtained from
an interactive visualization tool that is available for scientific
use [32]. The tool is oriented towards facilitating the browsing
of a very large number of registered images, allowing marine
scientists to see fine details in the original images while having
a geo-referenced global view of the whole survey.

Mosaicing assumes that differences in the 3D relief of the
ocean floor are neglectable with respect to the navigation
altitude of the vehicle. Under this assumptions, the camera
motion does not induce any parallax effects [19]. Obviously,
this is not always true in LUSTRE’96 dataset (see Figs. 7 and
8).

VI. CONCLUSION AND FUTURE WORK

This paper described a generic framework for obtaining
large area image mosaics acquired by platforms with position
and angular sensors, using an off-line bundle adjustment
method. It constitutes the initial step in the development of
tools intended to be used by marine scientists in benthic
mapping applications. A very large image data set was used
for testing, representing a good example of a real deep water
survey for geology studies.

This approach is based on the assumption of a planar scene
and allows building large-area underwater photo-mosaics. The
optimization relies in a coherent set of pairwise image cor-
respondences. If false correspondences are infroduced, the
optimization process cannot achieve the desired solution. For
this reason, a three-phase technique is proposed, eliminating
those image pairs with inconsistent motion by exploiting
SURF matches as a first step, then verifying a set of geometric
properties, and finally aligning the images to test correspon-
dences through correlation.
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This effective and robust motion estimation allows the sys-
tem to handle low-overlapping images under arbitrary vehicle
motion. It is the first globally-aligned large-scale photo-mosaic
of the Lucky Strike vent field at the Mid Atlantic Ridge. The
final mosaic contains 20,226 images and has been optimized
including slightly more than 28,000 image constraints.

This technique can be readily used with available imagery
and associated data to generate optimized seafloor mosaics.
These mosaics can then be fully exploited for scientific pur-
poses, including the study of geological, biological, ecological
and other features, and their temporal variability if similar
mosaics of the same area are available. Existing data from
seafloor imagery that remains now unexploited can thus be
accessed and studied for scientific purposes.

Ongoing work addresses the use of multiple iterations of
image matching and optimization in order to improve the
mosaic alignment. After one iteration, the method produces
an optimized trajectory of the camera that is transformed to
navigation data. This is done by converting back the trajectory
to vehicle poses expressed with respect to the world frame
{W} and extracting z, ¥, # position and roll, pitch and heading
angles. This new optimized navigation data will be used as
starting point for a new iteration of the whole algorithm. This
new iteration will find new constraints (i.e. more overlapping
image pairs in new crossings) that will lead to a new minimum
when running the next bundle adjustment.
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Fig. 8. Zoom of the cyan area from Fig. 4b. This section corresponds to a flat area with a small hill located at the center. The three images in the central
row show pairwise image registrations rendering the left-most image on top. The last row renders the right-most on top. Note the strong parallax effects due
to big differences in the 3D relief. 2D mosaicing is not able to cope with this problem.
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